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ABSTRACT

Let T C G be a maximal torus of a compact connected Lie group and
7 : BT -+ BG the induced G/T fiber bundle. Suppose h* is a cohomology
theory with characteristic classes for complex vector bundles and let 7r, :
h*(BT) -+ h*(BG) be the resulting umkehr homomorphism. A formula for
the composition 7r* o 7r, is given. For the special case when h* is K-theory,
this formula is interpreted as the Weyl character formula. A generalization
of the operation x* o r*, is then used to construct irreducible subquotients
for certain Verma modules.

Using the formula described above, certain operators Di on h*(BT)
are constructed which generalize the BGG operators and the Demazure
operators. We prove that ordinary cohomology and K-theory are essentially
the only theories in which the D; satisfy braid relations. Moreover, this
fact is given a geometric interpretation which is important for the study of
h*(G|T).

Thesis Supervisor: Professor Bertram Kostant
Title: Professor of Mathematics
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Introduction

Much work in Lie theory in the past thirty years has centered on ge-
ometric properties of the flag manifold. For example, the work of Borel,
Kostant, Bernstein-Gel'fand-Gel'fand, and Kostant-Kumar has given an ex-
plicit determination of the generalized Schubert calculus, even for the case
of a Kae-Moody group. From the point of view of representation theory,
the work of Borel and Weil gave an explicit realization of the finite dimen-
sional irreducible representations of a compact Lie group G as the space
of sections of a line bundle over the flag manifold. Later work by Bott

(see also Kostant and Demazure) implies that this representation may be
interpreted as a class in K-theory of the classifying space of the group G.
More recently, a spectacular conjecture by Kazhdan and Lusztig led to a
realization of infinite-dimensional representations of the Lie algebra of G
as complexes of sheaves on the flag variety. Beilinson and Bernstein's proof
of the Kazhdan-Lusztig conjecture gave in addition a realization of the
irreducible representations of an associated real semisimple Lie group.

Almost all of this work used the differential or algebraic structure of
the flag variety. As such, it has largely ignored the machinery of modern
algebraic topology. This thesis is perhaps best described as an attempt
to use algebraic topology to study the flag variety. Of course, I have not
managed to recover all, nor even very many of the results described above.
However, this work has the advantage that because the techniques are not
specific to cohomology or K-theory, they generalize immediately to a wide
variety of cohomology theories. Aside from cohomology and K-theory, the
most important of these is complex cobordism, although the new theory of
elliptic cohomology may eventually prove to be much more interesting.

The class of cohomology theories which we study here are the complex
orientable theories. These are are theories with a reasonable theory of char-
acteristic classes for complex vector bundles. This condition is necessary for
the following reason. Almost all of the work cited above involves some form
of a push-forward operation. That is, suppose we have some contravariant
functor F from some category of topological spaces to rings. Then for any
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morphism 7 : X -> Y we have a natural map 7r* : F(Y) -+ F(X). A

push-forward operation is a functor 7r : F(X) -- F(Y). Then if F is a
cohomology theory h*, the assumption that h* be complex orientable im-

plies the existence of an umkehr homomorphism r. : h*(X) -+ h*(Y), given
certain assumptions on the map 7r.

The solution to the generalized Schubert calculus provides a good il-
lustration of the above idea. First, we need a short introduction to the
problem. Let G be a compact connected Lie group with maximal torus T.
Then the flag manifold GIT has a complex structure, given by the identi-

fication G/T a GC/B, where Gc is the complexification of G and B is a
Borel subgroup of Gc. Then GIT has a cell decomposition into Schubert
cells X, parameterized by elements w of the Weyl group W. These cells
are 21(w)-dimensional, where (w) is the length of w. As a consequence,

H*(G/T, Q) n QPw,

where
Pw E H 21(w)(G/T,Q)

is the cohomology class dual to the cell X. Then for the classes P" and
PV, the cup product

P p UP' ayPY
yEW

The problem the generalized Schubert calculus solves is the determination
of the numbers ay.

The solution is as follows. Since G -> GIT is a T-principal bundle,
there is a classifying map 9 : GIT -+ BT, the classifying space of T. The
induced map 0* : H*(BT, Q) -+ H*(G/T, Q) is surjective. H*(BT, Q) is
a polynomial algebra Q [ai, - , al], generated by the Chern classes of line
bundles associated to simple roots. Moreover, the unique top dimensional
class Pwo of H*(G/T, Q), dual to G/T, is easily seen to be the image of the
product ]~a, where the product is over the full set of positive roots R+.

To express other cohomology classes Pw in terms of characteristic classes,
Bernstein-Gel'fand- Gel'fand introduced certain operators

1
Ai = (1 + si)- : Hk(G/T) --> H k~2 (G/T)

oti
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(s; is the simple reflection associated to the simple root ai)[BGG]. The
A; have the property that if l(wsg) < 1(w), then A1(Pw) = P**i. Thus, if

w = wos 1 ... k, where s1 ... Sk is a minimal decomposition of wo w, then

PW = Ak -.. A1(Po)

Since the operators Ai are already expressed in terms of characteristic
classes and Pwo = rl a, we may express P"' and Pv as classes in H*(BT, Q)
and multiply them there. Then we evaluate the product on H*(G/T, Q) to

determine the numbers a,.
Thus, the operators A; play a crucial role. They are constructed as

follows. Let H; be a rank one subgroup of G corresponding to the root a;.
Then the induced map 7ri BT -+ BH is a CP(1) fiber bundle. Let

ri, : Hk(BT) -+ H k-2(BH )

be the standard integration over the fiber map, used by Borel and Hirze-
bruch [BH]. Then 7r o 7ri, o 0* = A;.

It is clear that the above operation may be carried out whenever 7r;,

is defined. So suppose h* is complex orientable and that the coefficients
h*(pt) have no 2-torsion. Moreover, the situation is no more difficult if we
replace Hi with G so we consider 7r : BT -+ BG. We have the following

formula, whose proof uses the Becker-Gottlieb transfer.

Theorem 11.2 : (Bressler-Evens) Let x(-a) be the Euler class of the line
bundle over BT induced by the character e-"'. Then for x E h*(BT),

* ~ 1
7r o 7r,(x) = x

wEW 1aE R+ X(--a)

For the case when 7r = 7ri,

1
Di(x) = 'r ri,(x) = (1 + si) x

X(-ai)

A striking fact about the above formulas is that there is no purely algebraic
reason why the expressions on the right hand side should lie in h*(BT)
rather than in its fraction field. This fact is proved via topology.
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One consequence is the following theorem. A crucial fact for BGG (and
for Demazure in his investigations of K-theory) is that the operators Di
satisfy the so-called braid relations. That is, if s; and s. are two distinct
roots with

(sisj)" = 1

then

D;DjDI ... = DjD;Dj - (mi terms on each side)

One can then prove the following surprising theorem.

Theorem 13.9 : (Bressler-Evens) Suppose the Di satisfy braid relations.
Then if h* is torsion-free, h* is essentially either cohomology or complex
K-theory. More precisely, its formal group law must be that of ordinary
cohomology or complex K-theory.

Moreover, using Quillen's construction of cobordism, this fact is given a
geometric interpretation in chapter fourteen, which I hope will eventually
lead to an understanding of the ring structure of h*(G/T). One can use this
geometric interpretation to recover many of the standard facts about the
Schubert calculus and its generalization to K-theory. Another interpreta-
tion of Theorem 13.9 is that the failure to satisfy braid relations gives geo-
metric information about the flag variety which cohomology and K-theory
do not detect.

A second interpretation of Theorem 11.2 is more closely related to rep-
resentation theory. Suppose h* is K-theory. In K-theory the Euler class of
a line bundle L may be taken to be [1] - [L*], where 1 is the trivial line
bundle and [L] is the K-theory class of the dual of L (We use the dual L*
instead of L in order to make topological push-forwards correspond to sheaf
theoretic push-forwards). Moreover, K(BT) is a completion of R(T), the
representation ring of T. In this correspondence X(-oi) = 1 - eci. Then

11.2 reduces to the Weyl character formula. By an argument due to Atiyah
and Bott[AB], the Grothendieck-Riemann-Roch Theorem and the Borel-
Weil-Bott Theorem imply that ir*-r*(eA) is the irreducible representation
of lowest weight A when A is anti-dominant. Thus, one can compute the
character of a finite dimensional representation via very general topological
machinery.
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Of course, one is also interested in infinite-dimensional representations.

The expression
eA

(1- ea)

can be interpreted as the formal character of a Verma module, which is

a Lie algebra induced representation. On the other hand, it may also be

interpreted as an element of K-theory of the Thom space of a certain vector

bundle over BT. Then a variation on the argument in the proof of Theorem

11.2 gives the irreducible subquotient for Verma modules which correspond

to Weyl group elements corresponding to nonsingular Schubert varieties.

It seems unlikely that arbitrary irreducible subquotients of Verma modules

can be produced in this manner. Nevertheless, it would be interesting to

try, especially since the Thom space associated to BT is important in the

Segal conjecture on cohomotopy [May].

Some comments about the structure of this thesis are in order. It is

written for a reader with a first course in algebraic topology and some

understanding of the structure of compact Lie groups and their represen-

tations, plus some mathematical maturity. Since additional material from

algebraic topology is necessary, the first eight chapters are an exposition

on the necessary subjects. Few proofs are included, and those that are

included are to illustrate ideas, rather than for rigor. Many readers may

prefer to skip these chapters entirely, or to use them only for reference.

The chapters are kept short to facilitate reference use. Topologists will

note that we have avoided use of the stable category. We have not included

any formal expositions on Lie theory. For the most part, we have not used

any definitions from Lie theory which would mystify a reader with a basic

knowledge of the representation theory of compact Lie groups. The notion

of a Verma module is explained when it arises. Some good general refer-

ences are Adams [Ad] for complex oriented cohomology theories, Dyer [Dy]

for the umkehr homomorphism, and Humphreys [Hum] for Lie theory.

The organization of the first eight chapters is as follows. The first

chapter makes some preliminary remarks on generalized cohomology and

constructs the Atiyah-Hirzebruch spectral sequence. Chapter two defines

the Becker-Gottlieb transfer, which is the key tool in the proof of 11.2.

Chapter three is a brief exposition on classifying spaces. In chapter four,
we discuss a theorem of Brumfiel and Madsen which computes the Becker-
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Gottlieb transfer in the case relevant to 11.2. Chapter five defines the

notoion of a complex orientable cohomology theory. Chapter six is an

exposition on the role of formal group laws in algebraic topology, which

describes the behavior of characteristic classes of tensor products of line

bundles. Chapter seven discusses the complex orientable theories K-theory,
complex cobordism, and elliptic cohomology. In chapter eight, we define the

umkehr homomorphism 7r. and relates it to the Becker-Gottlieb transfer.

The remainder of this thesis is devoted to results described earlier in

the introduction. Chapters nine and ten are preparation for 11.2, which

is proved in chapter eleven. Chapter twelves explains the application to

induced representations. Chapters thirteen, fourteen, and fifteen discuss

the operators D; = 7ri ri, and their application to the study of h*(G/T).
Chapter sixteen is a collection of some results on the algebra generated by
the operators Di.

It will be clear to the reader that certain results are joint work with
Paul Bressler. In particular, the torsion-free version of 11.2, and most of

the results in chapters thirteen through fifteen are joint. Many other results
owe some debt to him. It goes without saying that many of the ideas
discussed here were suggested by my thesis advisor, Bertram Kostant. The
same statement is true for Haynes Miller.
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Chapter 1

Generalities on generalized cohomology

A generalized cohomology theory h* is a contravariant functor from

topological spaces to abelian groups which satisfies all the Eilenberg-Steenrod

axioms except the dimension axiom. That is, we do not assume that the co-

efficients h* = h*(pt) are concentrated in a single degree. We will always as-

sume h* is multiplicative, and that the associated ring structure is commu-

tative in the graded sense. The first example is ordinary cohomology with

coefficients in Z. To fix ideas, we take Ht(X) = H(X, Z) = [X, K(Z, i)],
where K(Z, i) is an Eilenberg-MacLane space, and [X, Y] denotes homo-

topy classes of maps from X to Y.

For a generalized theory h* there is a spectral sequence which computes

h*(X) in terms of H*(X) and the coefficients h*. This spectral sequence

was invented by Whitehead and is therefore called the Atiyah-Hirzebruch

spectral sequence. It is constructed as follows [Ad, p. 215]. First we

construct an exact couple. Let X be a CW-complex with a finite filtration

by subcomplexes,

0 = X-1 C Xo C X1 C - C X, = X.

Then for the pair (X,, X,_ 1 ), we have the long exact cohomology sequence

given by

h*(X,) h*(Xp,)
j* \ / a

h*(X,/Xp,)

where 0 increases degrees by 1. Summing over p, we get,

E, h*(Xp) E zh*(Xp,)
j* 1\ / a

E, h*(X,/Xp,1)
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Thus, we have a triangle of the form,

A A
j "\/ g

C

and from this exact couple we produce a spectral sequence in the standard
way [HS, pp. 256-261]. The E1 term is E1 = H*(E, h*(X,, X,_ 1 ), di) with

the differential di = a o j*. Then EP' = hP+(X,, X,_ 1 ). But X,/X,-1

VSP, so EP'j 2 CP(X, he(pt)). Then EP' c HP(X, he(pt)). As usual, Et e
GphP+q(X). To summarize,

Theorem 1.1 There is a spectral sequence with E 2 term

H P(X, h q(pt)) ==> h,+q(X ).

The differentials d, are of degree (r, -(r - 1)).

Corollary 1.2 Suppose X has no odd dimensional cells and h"(pt) = 0 for
q odd. Then the Atiyah-Hirzebruch spectral sequence degenerates at the
E 2 term.

Reduced cohomology is defined as follows. Let i : pt -+ X be the
inclusion of a point and ir : X -> pt be the collapsing map. Then yr oi = id,
so i* o 7r* = id on h*(pt). Let h(X) = keri* be the reduced cohomology of
X. Then h*(X) 2 h*(X) e h*(pt). Indeed, 7r* gives the required splitting.
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Chapter 2

The transfer map

Let F be a compact differentiable G-manifold for a compact Lie group

G and let 7r : E -+ B be a fiber bundle with fiber F. For a cohomology

theory h*, we have a natural induced map 7r* : h*(B) -+ h*(E). A transfer
map is a backwards map h*(E) -+ h*(B). Of course, one way to produce a

transfer would be to produce a section s : B -+ E. However, such a section

usually does not exist. The technique for producing a transfer will instead

be to produce a map r(7r) : EiB+ - iE+, and to use the suspension

axiom to get the desired backwards map.
As a preliminary, we need the notion of the Thom space of a vector

bundle V -- B. If we suppose B is paracompact, we may assume V has a

metric, and we can define the Thom space as follows. Let D(V) = (v E
V : ol < 1) and let S(V) = (v E V : lv = 1). Then the Thom space
Bv = D(V)/S(V). If V is the trivial n-dimensional vector bundle, then
BV E"B+, where B+ denotes B U point. We will generally regard By as

the pair (D(V), S(V) and h*(BV) will refer to h*(D(V). S(V)). If ( and rj
are two vector bundles over B, then

Bt A B7 c Bt* .

Here if (X, A) and (Y, B) are two pairs of spaces, X A Y refers to the smash

product of X and Y.
We are now ready to define the transfer. There are a number of different

definitions. We will give one of the simplest. While the basic properties

of the transfer follow relatively easily from this definition, the method of

computing the transfer involves a different definition. Since we are only in-

terested in applying formulas for the transfer, we present only this relatively

simple definition.
We first define the transfer for the map from F to a point. We may em-

bed F equivariantly into a real G-representation V of dimension r. Assume
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r > dim F. Let N -+ F be the normal bundle to the embedding. N may be
identified with a tubular neighborhood U of F by a diffeomorphism 0. Let

SV denote the one point compactification of V. Then there is an associated
Pontryagin-Thom collapsing map c: SV -> FN defined as follows.

c(x) = base pt of FNif x U

c(x) = 4(x) if x E U.

Let T(F) be the tangent bundle to F. Then T(F) e N may be identified
with the G-equivariant bundle F x V. There is a corresponding inclusion

i : N -+ N D T(F) F x V,

and hence an inclusion of Thom spaces

i : FN SV A F+.

Definition 2.1: The transfer r to a point is the composition rT = i o c.

Remark 2.2: Clearly, the transfer depends on the embedding. However,
the cohomology class r* is independent of the embedding for any cohomol-
ogy theory. The proof [BG, p. 5] follows from standard arguments and
in fact asserts that the stable homotopy class of r is independent of the
embedding. By construction, the transfer is equivariant.

Let 7r : E -+ B be a fiber bundle with fiber F whose structure group
reduces to G. Then there is a principal G-bundle p : P -+ B associated to
-r. The above definition of transfer to a point gives a map

(2.3). id x r: PxG SV -4P xG (F x V)+

When we collapse the section at oo to a point, which is equivalent to taking
Thom spaces, we get a map

t : B -+ E*m

where ( is the vector bundle associated to the representation V. Let i be
the inverse bundle so ( E= [m], the m-dimensional trivial bundle. Then

there is a map
t A 1 : BC A B -> E''C A B .

13



Restricting to the diagonal in B x B, we have a map

,r(r) : E'B+ --+ E'E+.

Definition 2.4: The transfer associated to the fiber bundle r : E -+ B is
the map r(-x).

Remark 2.5: The transfer need not be defined in an equivariant set-

ting. For some equivalent non-equivariant definitions see my preprint with
Bressler [BE2], or for a more complete version Brumfiel-Madsen [BM], Dold
[Do], or Feshbach [Fel]. For a more complete version of the equivariant
transfer, see the original paper of Becker-Gottlieb [BG], Brumfiel-Madsen,
or for the most general version Lewis-May-Steinberger [LMS]. The preprint
of Mitchell and Priddy [MP] is also illuminating. The proof that all these
versions are equivalent may be found in [LMS].

Remark 2.6: The formula for transfer gives a map

-r( -7) : Ei'B+ _, E+'

For i > 1, the set of homotopy classes of maps [EtB+, EtE+] forms a group.
We let g, f : S' A B+ - S' A E+. We can multiply g - f as follows. We
may regard S' as I/It, where P is the i-fold cartesian product of the unit
interval. Then

g - f(t 1 , - ,tix) = g(2t 1 ,t 2 , . . ,tiX) if 0 ti 1/2

g . f(t 1 , ... tix) = f(2ti - 1,t 2 , .. ti, X) if 1/2 ti 5 1

as in defining the group structure on homotopy groups. If i > 2, then the
group structure is abelian. Thus, a formula

r( )=E fj

means
r(ir) = E-i(E fjEi)

for some i.
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Chapter 3

Classifying spaces

In this chapter we summarize some basic facts about classifying spaces

of groups. Let G be a compact Lie group. Then there is a universal space

EG with a free G-action and -r;(EG) = 0 for all i > 0. Moreover, EG is
a limit of manifolds with the inductive limit topology. For example, for

G = U(n), the unitary group,

EU(n) = limm-Vn(Cn+m),

where the Stiefel manifold V,(Cn+m ) = U(n + m)/U(m). Any compact Lie
group G embeds into U(n) for sufficiently large n so EG may always be

given as EU(n). The classifying space BG is then defined as EG/G. For
G = U(n), BG ~ limm-.,Gn(n+m), the infinite Grassmannian of n-planes.
BG has the following universal property. Let P -+ B be a numerable G-
principal bundle. Then there exists a unique (up to homotopy) classifying

map 0: B -+ BG such that

-~(E G) ~ P

as G-principal bundles over B. As a consequence, BG is well-defined up to

homotopy-type.
BG also classifies induced vector bundles. Let P -+ B be our G-

principal bundle. Then if V is a finite dimensional representation of G,
E XG V is the associated vector bundle over B with structure group G.
Then E induces a classifying map 9: B -+ BG with

9-1 (EG XG V) ~ E

as G-vector bundles over B.

The special case of the classifying space for complex line bundles will be

important. Here the appropriate structure group is U(1) so the appropriate
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classifying space is BU(1). By the above construction,

BU(1) = limm-.x CP(m) = CP(oo).

As a consequence,

H*(BU(1), Z) = limm-oH*(CP(m), Z) a Z[[t]],

where t occurs in degree 2, and R[[ti, - - - , t1]] denotes the ring of formal

power series in I variables with coefficients in the ring R. Of course, it

is more standard to think of H*(BU(1)) as a polynomial algebra. Be-
cause H* is graded, the distinction is not important here. The power series

formulation is more consistent with other cohomology theories. Now let

T = HrL1 U(1) be a torus. Then we may take ET = HL EU(1). There-
fore, BT = H- BU(1), and

H*(BT, Z) 2 @!{1 H*(BU(1), Z) f Z[[ti, -. t.

There are no Ext groups since H*(BU(1)) is torsion-free.
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Chapter 4

The Brumfiel-Madsen formula for transfer

We give a formula for r(7r)* due to Brumfiel and Madsen. Let G be a
compact connected Lie group with maximal torus T. Let H be a closed
connected subgroup of G containing T. Let WG and WH be the Weyl groups
of G and H. Suppose P -+ B is a principal G-bundle. We have associated
bundles E1 = P XG G/T and E 2 = P XG G/H over B. There are fibrations

E1 -7+ E 2

7ri \ / 7r2

B

The Weyl group WG acts on GIT by w -gT = gwT. Hence, WG acts on E1
over B. The fibers of 7r are H/T. Hence, the Weyl group WH of H acts on
E1 over E 2. Thus, cosets w E WG/WH define maps 7r o w on El over E2.
We have

Theorem 4.1(Brumfiel-Madsen[BM]):

7r* o r(7r2 )*= w o r*.
wEWG/WH

Corollary 4.2: If H = T so 7ri = r2,

7r* o r(r= Z w.
WEWG

Remark 4.3: Although Brumfiel and Madsen were the first to assert that
this theorem is true, their proof is wrong. Indeed, Mitchell and Priddy have
constructed a counterexample to Theorem 2.10 in Brumfiel-Madsen, which
is used in the proof of the above theorem. However, Feshbach [Fel] and
Lewis-May-Steinberger [LMS] have given independent proofs of Theorem
4.1.
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Now let P = EG. Since EG is a universal space for T, we have

Theorem 4.4: Let r : BT --+ BG be the associated fiber bundle. Then

7r* o 7-x)* = 1 w.
wEWG

We will need the following series of theorems, due to Feshbach [Fe2]. Recall
that we are assuming h* is multiplicative and commutative.

Theorem 4.5: Let B be locally compact. Let r : E -+ B be a fiber bundle
with fiber F a compact G-manifold. Then

7-(r)* o 7r*(x) = x(F)x + ux,

where u E h(B) is nilpotent, and X(F) is the usual Euler characteristic of

F.

Corollary 4.6: If x(F) is a unit, then 7r* is injective.

Corollary 4.7: 7r* : h*(BG) --+ h*(BT) is injective if |WI is a unit in
h*(pt).

Proof. It is well-known that x(G/T) = IWI.

Proposition 4.8: 7r*(h*(BG)) = h*(BT)w 0 Z[

Proof: First we show C . Any group G acts on its classifying space by
conjugation of the group. This action is always homotopic to the identity.
The Weyl group WG 2 N(T)/T acts on BT by the conjugation action of
N(T). Moreover, the map -r : BT -+ BG is N(T)-equivariant. Therefore,
for x E h*(BG), w-r*(x) = r*(wx) = 7r*(x). So C is clear. D follows from
Theorem 4.4.
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Chapter 5

Complex orientable cohomology theories

For the results of the previous section to be applicable we need a class
of cohomology theories for which h*(BT) is easy to understand. For these
theories, we will have

h*(BT) c-- (_1 =h*(BU(1)).

The crucial point will be that h*(BU(1)) has an orientation class.

Definition 5.1: Let i : CP(1) -+ CP(oo) = BU(1) be the obvious inclu-
sion. We say h* is complex orientable if there exists a class x E h*(CP(oo))
such that i*(x) is a generator of h*(CP(1)) over h*(pt).

Remark: By the suspension axiom, h*(CP(1)) c h*(S 2 ) is generated by
one element over h*(pt).

Example: If h* = H*, x may be taken as a ring generator of H*(CP(1), Z),
so x E H 2 (CP(oo), Z).

CP(oo) has a universal line bundle L(A) given as follows. Let eA be the
one-dimensional representation CA of S1 = U(1) given by eA(eil) . V = ev-.
Then by definition, for a complex orientable theory h* with orientation
given by x, x = c1(L(A)), the h* first Chern class. Let T be an 1-dimensional
torus.

Theorem 5.2[Ad, p. 39]: In a complex orientable theory h*,

(1)h*(CP(oo)) h( h*(pt)[[x]]

(2)h*(BT ) !2e h*(pt )[[x1, -- - , x ] ]
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(3)h*(CP(n)) h*(pt)[x]/(x"+")

(4)h*(yJ CP(ni)) - h*(pt)[xi, - - - , ... -,

Proof. We have an Atiyah-Hirzebruch spectral sequence with E 2 term

Ep'q 2- HP (C P(oo) , h q(pt))

and
H*(C P(oo), h*(pt )) c-- h*(pt )[[x ]].

There is also an Atiyah-Hirzebruch spectral sequence for CP(1) with

E'''q HP(CP(1), hq(pt)),

which is isomorphic to h*(pt)[x']/(x'2 ). Moreover, by the naturality of the
construction of the Atiyah-Hirzebruch spectral sequence, we may assume
that i*(x) = x'. The E' spectral sequence degenerates at the E2' level since
we know h*(CP(1)) c the E2' term by the suspension axiom. Thus, for
y E E2 , i*(y) = 0 in E2' if and only if i*(y) = 0 in h*(CP(1)). Any element
y E h*(CP(oo)), comes from an element of the form xk0a, where a E h*(pt).
Suppose y defines the complex orientation of h*, so i*(y) = ux', where u is
a unit. Then also i*(xk 0 a) = ux'. It follows that k = 1 and a = u. Thus,
there exists an element x 0 u which survives in the spectral sequence, so
d 2 (x 0 u) = 0. But d 2 is h*-linear, so ud 2 (x) = 0 so d2 (x) = 0. Also, d 2 is
a derivation so d2 (Xj 0 a) = 0 for all j and all a. Similarly, all d,. vanish.
Hence, the CP(oo) spectral sequence collapses at the E2 term. This proves
(1). The proofs of (2), (3), and (4) follow by analogous arguments.

Now let 7r : L -- X be a line bundle over X. Then L induces a classifying
map 0 : X -+ CP(oo).

Definition 5.3: The first Chern class of L, c1(L) = 9*(x).

Remark: Let f'(L) -> Y be the pulback of L under a map f : Y -- X.
Then f-(L) induces a classifying map 9' : Y -+ CP(oo). Then 9' = 9 o f
so

c1(f'(L)) = 9'*(x) = f*0*(x) = f*(c1(L)).
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One can go on to define Chern classes of vector bundles following the
procedure of Grothendieck[CF, pp. 48-52]. We will only need the top Chern
class of a vector bundle, which can be defined as follows. Let 7r : E -- X
be a vector bundle. Then there is a space Fl(E) and a map f : Fl(E) -+ X

such that f'(E) ~ EL;, where the Li are line bundles. Moreover, f* is
injective. Then c.(E) is given by the formula, f*c,(E) = H1 c1(L;).

Remark: We will often refer to the top Chern class c,(E) as the Euler
class X(E). Note that this class lies in h*(B). It is the usual Euler class
when h* = H*.
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Chapter 6

Formal group laws

In ordinary cohomology, c1(L 0M) = c1(L)+c1(M), when L and M are
line bundles. In a complex oriented theory, c1(L 9 M) = F(c1(L), c1(M))

where F is a power series. F is called the formal group law of the theory.

In this section, we explain this notion. A reference for this section is [Ad,
pp. 36-46].

A line bundle L over a space X is equivalent to a homotopy class of

maps fL : X -+ CP(oo). Suppose L and M are two line bundles. Then we

have fL x fm : X -- CP(oo) x CP(oo). CP(oo) has an H-space structure

m : CP(oo)x CP(oo) -4 CP(oo). Indeed, since U(1) is abelian, the product
map i : U(1) x U(1) -+ U(1) is a group homomorphism. Thus, there is a
map

m: EU(1) x EU(1)/U(1) x U(1) -+ EU(1) x EU(1)/U(1).

Thus, we have m : CP(oo) x CP(oo) -* CP(oo). The homotopy class of

m o (fL x fM) is then equivalent to the tensor product L & M. There is an

induced map,

m* :h*(CP(oo)) -+ h*(CP(oo) x CP(oo)).

Since,

h*(CP(oo)) a h*(pt)[[x]] and h*(CP(oo) x CP(oo)) 2 h*(pt)[[x1, X2]],

m* has the form,

m*(x) = E aj-xizx = F(xi,x2 ).

Then
c1(L 0 M) = F(c1(L), ci(M)).

22



Proposition 6.1:
(1)a;, = ai

(2)F(F(xi, x 2 ), X3 ) = F(xi, F(x 2 , X3 ))

(3)aio = ao; = 0 if i > 2.

(4)aoo = 0

Proof: (1) and (2) follows from the isomorphisms L 0 M e M 0 L and

(L @ M) 0 N - L 0 (M 0 N) (N a line bundle). Suppose L is trivial.
L induces a classifying map 0 : X --+ CP(oo). L = 7r'[1] where 7r is

the map from X to a point and [1] is the line bundle over a point. Let

9' : pt -+ CP(oo) be the map induced by [1]. Then

c1(L) = 9*(x) =r* o 0'*(x).

Since
9'*(x) E h*(pt) = 0 '*(x) = 0.

Hence, c1(L) = 0. Now, let M be arbitrary. Then

X2 = c1(M) = ci(L 0 M) = F(0, x 2 ) = Z aoixi.

(1) and (2) follow easily.

Remark: The requirement that a formal power series F satisfy (1) through

(4) is a strict requirement. Indeed, it is easy to show that if F is polyno-

mial then F(X, Y) = X + Y or F(X, Y) = X + Y + an1XY, provided the
coefficients ai3 are not nilpotent [Ha].
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Chapter 7

Some examples of complex orientable cohomology theories

In this section we present our main examples which are (1) ordinary
cohomology, (2) complex K-theory, (3) complex cobordism, and (4) elliptic
cohomology. We have already discussed ordinary cohomology. As stated,
ordinary cohomology H*(X) refers to H*(X, Z).

(2) Complex K-theory [Huse]. The familiar notion of complex K-theory
as the Grothendieck group of vector bundles is inadequate for our purposes.
It is appropriate only for locally compact spaces. For a classifying space
one needs a homotopy theoretic definition. The space BU is defined as
follows. The Grassmannian of n-planes in 2n-space

Gn (C2") ~U(2n)/U(n) x U(n).

There is an inclusion to the middle 2n-coordinates U(2n) <-+ U(2m) for
m >_ n. Under this inclusion, U(n) x U(n) -+ U(m) x U(m). Hence, there

is an inclusion
Gn(C 2 ") c-> Gm(C 2m).

Then
BU = limn-Gn(C2n),

topologized via the inductive limit topology. By definition, for n even

K"(X) = [X, BU x Z],

where [X, Y] denotes homotopy classes of maps from X to Y. For n odd

K"(X) = [X, 4(BU x Z)]

where fX denotes the loop space of X. If g E K 0 (X) and f : Y -+ X is
a map, then f*(g) = g o f. It is well-known that for a finite complex X,
K 0 (X) is the Grothendieck group of complex vector bundles and that the
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above definition of f* coincides with pullback of vector bundles. Suppose
X = BG is the classifying space for a group G. Then any representation

(7r, V) of G induces a vector bundle over BG and a class in K0 (BG) via
finite approximations. Indeed,

K 0 (BG) = lim K(X,)

where X., is a finite approximation of BG [AS, Prop. 4.1].
Implicit in this definition of K-theory is the periodicity isomorphism

K"(X) K n-2(X),

which is given by the mapping

where w E K-2(pt) c fC'(S2 ) is the Bott class, which represents the uni-
veral line bundle over S2 2 CP(1). As defined, K-theory is a generalized
cohomology theory.

Complex K-theory is complex orientable. The complex orientation is
given as follows [Ad, p. 38]. Let V* be the dual bundle to a bundle V. Let
L be the canonical line bundle over CP(oo). Then [1] - [L*] represents a
class in k"(CP(oo)). Moreover, restricted to CP(1), [1] - [L*] is a generator
of ko(CP(1)) so we set cK(M) = [1] - [M*] for a line bundle M. We use
[M*] instead of [M] in order to make topological constructions correspond
to sheaf-theoretic constructions. The formal group law is easy to compute.
It is

F(X,Y) = X +Y - XY.

We can, and sometimes will, regard x = c1(L) as [1] - [L*] E k2(CP(oo))
by the periodicity isomorphism. In that case,

F(X,Y) = X + Y -wXY.

By Theorem 5.2, K 0(BT) c Z[[ti, ... t,]]. However, KO(BG) for any
compact Lie group G has a more natural realization. Let R(G) be the
representation ring of G. Then there is a map i* : R(G) -+ K 0 (BG) given
as follows. Let (7r, V) be a representation of G. Then

EGxGV-Y
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defines a class in K 0 (BG). Let

I(G) = ker(e : R(G) -+ Z)

where E(V) = dimV. Then we can complete R(G) with respect to the ideal

I(G) to get R(G).

Theorem 7.2: ([AH],[AS]) K0 (BG) ~ R(G). Moreover, if G is connected,
the natural map R(G) -+ R(G) is an inclusion.

For the case where G = T is a torus then R(T) is generated by one-
dimensional representations of T, and I(T) is generated by the Chern classes
[1] - [L*] of the associated line bundles.

(3) Complex cobordism. Complex cobordism is the universal complex ori-
entable theory, in a sense we will describe. As with K-theory, there is a
geometric definition valid for manifolds, and a homotopy theoretic defini-
tion valid in general. We will give both definitions because they both will
be useful.

We begin with the geometrical definition due to Quillen [Qu]. The first
step is to define a complex-orientable map. Let f : Z - X be a proper
map of manifolds where Z is compact. Suppose

dimZ, - dimXf ()

is even. Then a complex orientation of (Z, f) is given by a commutative
diagram

Z-L E
f \ / p

X

where i is an embedding into a complex vector bundle E over X, together
with a complex structure on the normal bundle to i. We say

Z E

f \ / p
X
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is equivalent to
Z -+E'

f \ / p'
X

if E and E' embed into a vector bundle E" --+ X such that i and i' are
isotopic in E" compatibly with the complex structure on the normal bundle.
If Z and X are complex manifolds, and f is holomorphic then (Z, f) is
complex orientable.

Now suppose dimZ, - dimX(7) is odd. Then a complex orientation
for f : Z -+ X will be given by a complex orientation for (f, e) : Z -+ X x R
with e(z) = 0. For a general map, let Z = Z' U Z", where

dimZ', - dimXf(x)

is even, and
dimZ", - dimXf(,)

is odd. Then f is complex-orientable if it is complex orientable on each
piece.

We will define Tq(X) to be equivalence classes of complex oriented maps
(Z, f) f : Z -+ X, where dim X -dim Z =q. Tq is contravariant with respect
to maps in the following sense. Let g : Y -+ X be a map transverse to f.
Then the induced map g* is defined by

g*(Zf)= p 1 :Y xx Z -+Y

which has a complex orientation given by the pullback of the bundle defining
the complex orientation on f. The transversality condition implies Y x X Z is
a manifold. Since every map § : Y -- X is homotopic to a map g : Y --+ X
tranverse to f, we can define j*(Z, f) = g*(Z, f) in a homotopy invariant
way. Thus, Tq is a contravariant functor from spaces to abelian groups.

Complex cobordism, MUe(X) is T"(X) modulo an equivalence relation
given as follows. Let

fi : Z 1 -+ X, f 2 : Z 2 --+ X

be two proper complex-oriented maps. Let

Ei, e2: X -+ X x R
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be given by e(x) = (x, i). We say (Z 1, fi) is cobordant to (Z 2 , f2) if there is

a proper complex-oriented map b : W -+ X x R such that b is transversal

to ej and e,(b) is equivalent to f;. Then cobordism is an equivalence relation

~. and by definition, MUq(X) ~ Te(X)/ ~ . To review,

Definition 7.3: MUq(X) is the set of cobordism classes of proper complex-

oriented maps of codimension q.

MU*(X) has a ring structure given as follows. If fi : Z1 -+ X and

f2 : Z2 -+ X are two cobordism classes, (Z 1 , fi) and (Z 2 , f 2 ) then

(Z 1 , fi) + (Z 2 , f 2)

is the class of the map

fi U f 2 : Z1 U Z2 -+ X.

The negative of (Z, f) is (Z, f) with the opposite orientation on the normal

bundle. The product structure on MU*(X) is given by products of mani-

folds. That is, if (Z1 , fi) E MUe(X) and (Z 2 , f2) E MUr(X) are as before,
then

(fl, f2) : Z1 x Z 2 -+ X x X E MUq+r(X x X).

Then
(Z 1, fi) - (Z 2 , f 2) = A*((Z1, Z 2 ), (fi, 2 ))

(A : X -- X x X is the diagonal embedding). The unit element 1 E
MU0 (X) is given by the identity map X -+ X.

Now we sketch the homotopy theoretic definition [Ad, p. 5]. Let E(n) -+

BU(n) be the universal rank n vector bundle over BU(n). Let D(E) and

S(E) be its disc and sphere bundles. Then D(E)/S(E) = MU(n). More-

over, if E(n + 1) -+ BU(n + 1) is the universal bundle, and i : BU(n) -+

BU(n + 1) is the map induced by the inclusion U(n) -- U(n + 1),

i-E(n + 1) ~ E(n) D C.

Then the Thom space

BU(n)E(n)e C S 2 A MU(n)
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maps to MU(n +1) in the obvious way. Thus, we have a sequence of spaces

E2n = MU(n) and maps

S 2 A E2n -- + E2n+2-

In other words, the above sequence of spaces defines a spectrum denoted
MU.. By standard reasoning, the group of maps MU(X) = [ X, MU]
defines a cohomology theory [Huss, pp. 103-111]. Moreover, if X is a
manifold, MU(X) = MU(X) [Qu]. For applications, we will generally use
the geometric description of MU*(X).

The complex orientation of MU* is given as follows. By construction,
MU(1) = D(E)/S(E) where E is the canonical line bundle over BU(1).
We have the principal U(1) bundle S(E) --+ BU(1), which realizes S(E) as
the universal U(1) principal bundle. In particular, S(E) is contractible, so
MU(1) ~ D(E) ~ BU(1). Hence, we have a homotopy equivalence

9 : BU(1) --+ MU(1)

given by the zero section. By definition, 9 defines a class x E MU 2(CP(oo)).
By construction, i*(x) is given by the inclusion

0 o i : CP(1) -+ MU(1).

It is trivial to check that 9oi is equivalent to the image of 1 E MU(pt) under
the suspension isomorphism, MU 0 (pt) ~ MU 2 (CP(1)). Thus, x defines the
complex orientability of MU*.

The geometric definition of MU*(X) has the virtue that a push-forward
map is easy to construct [Qu]. Indeed, let f : X -+ Y be a proper complex-
oriented map of codimension -d. Let g : Z -- X define a class (Z, g) E
MUq(X). Then since g and f are proper and complex-oriented, so is f o g
[Dy, p. 57], so we have a new class

(Z,f 0 g) E MUq-dW L

Definition 7.4: The push-forward f,(Z, g) = (Z, f o g).

The universality of MU* can then be described as follows. Let h* be
a generalized cohomology theory with a push-forward, i.e., for any proper
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complex-oriented map g : Z -- X, there is a map g. : h*(Z) -+ h*(X).
Suppose moreover that push-forward satisfies the following two properties.

(1):Base change. Let
y xx Z -*- Z

Y -*- X

be a Cartesian square of manifolds, with g transversal to f, and suppose
f is proper and complex-oriented and give f' the pullback of the complex
orientation of f. Then,

g* o f. = f', o g'* : h*(Z) -+ h*(Y).

(2):Functoriality. If f : Z -+ X and g X -+ Y are proper complex-oriented
maps, and if go f is given the composition of the complex orientations, then
(g o f), = g, o f,.

Proposition 7.5: (Quillen) Given an element a of h*(pt), there is a unique
morphism 0 of functors commuting with pushforwards such that 01 = a,
where 1 E MU(pt) is the cobordism class of the identity.

Proof Let (Z,f) E MU*(X) be a cobordism class. Let 1z E MU*(Z) be
the cobordism class of the identity. Then it follows from the definitions that
f,(lz) = (Z, f). Let 7rz Z -- pt be the projection to a point. 1 z = 7rz*(1).
Then,

9(Z,f) = f*7rz*(1) = f*7rz*0(1) = f*lrz*(a)
Thus, uniqueness of clear. Existence of 9 amounts to showing that 9(Z, f)
depends only on the cobordism class of (Z, f). This follows from the homo-
topy invariance of h*.

Thus, MU* is universal with respect to push-forwards. Quillen uses this
fact to prove the following result.

Theorem 7.6: (Quillen, see also Adams) Let h* be a complex-orientable
cohomology theory. Then there is a multiplicative natural transformation
9 : MU* --+ h*, and

9Fmu(X,Y ) = Fh(9(X),0(Y))
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(Fh refers to the formal group law in h*).

As a consequence, to prove certain relations about complex orientable

theories it suffices to prove statements about MU. As a point of information,

MU* (Pt) Z Z[X1, X2,---,

where x, represents the map from a particular 2n - dimensional manifold

M2" -+ pt and so xn occurs in degree -2n [Ad, p. 75]. If we work over the

rationals, we may take M 2" = CP(n). The formal group law for MU is the

universal one-dimensional formal group law introduced by Lazard.

(4): Elliptic cohomology. One can produce cohomology theories from MU*

as follows [La]. MU*(X) is a module over MU*(pt). Suppose R is a ring

and we have some ring homomorphism 4 : MU(pt) -+ R. Then we can

define a functor
ho*(X) = MU(X) OMu(pt) R,

where R is a MU(pt) - module under the ring homomorphism 4. Of course,
hg,* need not be a cohomology theory, since R need not be flat over MU* (pt).
However, there is an exact functor theorem which gives a criterion for h4 *
to be a cohomology theory. For example, if 4 is given by the classical Todd

genus, Conner and Floyd proved ho* = K - theory.
A cohomology theory defined as above is said to be elliptic in the fol-

lowing situation. Let 6 and E be 2 algebraically independent elements over

Z[1/2] of degrees -4 and -8 respectively. Let R = Z[1/2][6, e, -1]. We

construct a ring homomorphism 4$: MU -+ R. CP(n) defines a class yn in

MU. Let
R(x) = 1 - 26x 2 + eX 4 .

Then R(t)- 1/2 has a power series expansion

R(t) = E a t".

Then 4 is said to be elliptic if 4(yn) = an. As a consequence, 4(yn) = 0 if

n is odd for an elliptic genus.

Proposition-Definition 7.7: Let 4 be elliptic. The functor

h4*(X) = MU*(X) ®mu(pt) R
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defined by 4$: MU(pt) --> R is a cohomology theory Ell*(X), called elliptic

cohomology. It is complex orientable and its formal group law is given by

the expression,

x y R(y) + y VR(x)
F(x,y) = 2 2

The complex orientation is given by x -+ x 0 1 in Ell*(CP(oo)), where x

gives the complex orientation of MU*(X).
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Chapter 8

The umkehr homomorphism

We saw in the previous section that complex cobordism was universal
with respect to cohomology theories with push-forwards. In this section we
construct a push-forward 7r. for complex orientable generalized cohomology
theories. Here, x : E -* B is a fiber bundle with fiber a compact complex
manifold associated to a G-principal bundle. 7r, is closely related to transfer.
Our discussion follows Becker-Gottlieb [BG].

First, we need a Thom isomorphism theorem for a complex orientable
theory h*. Let r : M -+ X be a complex line bundle. There is an induced
map 0 : X -- CP(oo) and an induced map of line bundles M -- L, where L
is the universal line bundle over CP(oo). Then there is also an induced map
of Thom spaces # : XM -* CP(oo)L. Let D(L) and S(L) be the disc and
sphere bundles of L. Then

CP(oo)L = D(L)/S(L) ~ D(L)

since S(L) is contractible. But D(L) ~ CP(oo). Hence CP(oo)L ~ CP(oo).
As a consequence, we can define u E h*(CP(oo)L) to be the class correspond-
ing to c1(L) under the isomorphism

h*(CP(oo)L) - h*(CP(oo)).

Let
UM = N*(u) E h*(XM).

Recall that h*(XM) is a h*(X) - module.

Theorem 8.1: (Dold [Dy, p. 45]) P : h*(X) -> h*(XM) given by 4(x) =
UM . r*(x) is an isomorphism.

More generally, if E is any vector bundle, there is an associated Thom
class u E h*(XE). We have,
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Theorem 8.2(Dold) : 4 : h*(X) -- h*(XE) given by 4(x) = u - r*(x) is an
isomorphism.

Let ir : E -+ B be a fiber bundle with compact smooth f-dimensional
fiber F associated to a G-principal bundle P -- B. As in chapter 2, let
i : F -+ V be an embedding with normal bundle N. Let c : SV -> FN be
the associated Pontryagin-Thom collapsing map. Let be the vector bundle
over B associated to the representation V and let be its inverse bundle.
The Pontryagin-Thom map induces a map

1 XG C: P XG SV -- P XG FN

and hence a map,

(1 XGc) A 1:P XG SV AB -- P XG F N XB E.

Identifying B to a point, we get a map

i: BE*D = E*(B+) -4 ENep-()

Now, suppose T(F), the tangent bundle to F, is a complex vector bundle.
Then its inverse bundle

NEp 1 (D ) =

may be chosen to have a complex structure so it has a Thom class U E
h'-f(EO) and an associated Thom isomorphism

4 : hk( E+) -+ hk+s-f (E).

Let
a-: hi( E*B+) _>+ h'~*(B+)

be the suspension isomorphism.

Definition 8.3: The umkehr homomorphism

7. = ooc*oqt : hk (E+) -+ hk+s-f(E Np~'(t) -+ hk+s-f (B+) -> hk~f(B+).

Since the tangent bundle T(F) has a complex structure so does T,. Hence,
in our complex orientable theory h*, T, has an Euler class,

x(T,) = cn(T,).
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Theorem 8.4: (BG, Thm 4.3) The transfer

hk(E+) -+ hk(B+)

is given by
r(7)*(z) = x,(z - x(T,)).

Proof: The following diagram is commutative.

hk( E+)'-LT hk+f (E+) -+ hk(B+)

hk+"(n E+) L hk+n (EP) -c*+ hk+"("B+)

Here the map i* is induced from the inclusion of 8 into the trivial rank n
vector bundle. The commutativity of the left hand square follows from the
naturality properties of the Thom isomorphism. The commutativity of the
right hand square is just the definition of 7r*. The lower line of the diagram is
the transfer. The result follows by naturality of the suspension isomorphism.

The map 7r, satisfies the universal properties for push-forwards described
in chapter 7 .

(1): If the following is a Cartesian square of fiber bundles

E E'

B B'

then
o ' = ,o 0

(2):functoriality.

As a consequence of (1), we have

Proposition 8.5 :
0* o 7*o' = r* o r* 0*.

Thus, 0* is an intertwining operator between ir* o ir, and 7 '* o r'.
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Chapter 9

The Weyl group invariants on the cohomology of the classifying space

By the results of chapters 3 and 4, we know that rationally the generalized
cohomology of the classifying space of a compact connected Lie group is given
by the Weyl group invariants in the cohomology of the classifying space of a
maximal torus. This fact makes the Weyl group action on the cohomology
of the classifying space of a maximal torus very important. In this chapter
we study that action. The main result is that this action is equivalent to
the action on the ordinary cohomology. Most of these results will be proved
under the assumption that I W I is invertible in our cohomology theory h*.

Let W be the Weyl group and let

h* h*( I )

The W-action on BT is induced from the W-action on T and on R(T)
Let eA be a one-dimensional representation of T and let L(A) --+ BT be the
corresponding line bundle. Let x(A) = c1(L(A)), where ci denotes the h*
Chern class. Then w induces an automorphism 0, of BT, so

x*.x(A) = x(O;'L(A))

by naturality. Since

4$jL(A) = L(wA), 0* x(A) = X(w(A)).

Let s, be a reflection. Then

a()= A- < A, a> a,

where < A, a >E Z is the Cartan pairing

2(A, a)

(a, a)
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Thus,

X(sc(A)) = x(A- < A, a > a) = x(A)- < A, a > X(a) + higher order terms

because the formal group law is of the form

F(X, Y) = X + Y + higher order terms.

If we filter h*(BT) as in the Atiyah-Hirzebruch spectral sequence, then the
sa-action on Grh*(BT) is identical with the s.-action on

H*(BT, h*(pt)).

Since the Weyl group is generated by reflections, the same statement is true
for the Weyl group. Of course, this fact follows from generalities about the
Atiyah-Hirzebruch spectral sequence but it seems more instructive to give an
explicit proof.

Proposition 9.1 : Assume h* has no 2-torsion. Then the Weyl group acts
faithfully on h*(BT).
Proof It is well-known that W acts faithfully on H*(BT, Z,) for p f 2. Thus,
W acts faithfully on Grh*(BT) so it acts faithfully on h*(BT).

Theorem 9.2 :
h*(BT) c H*(BT, h*(pt))

as W-modules and as h*(pt) - modules.
Proof The E2 term of the Atiyah-Hirzebruch spectral sequence is

H*(BT, h*(pt)).

The spectral sequence degenerates at the E2 term so

grhP+ (BT) t HP(BT, hq(pt))

where the grading is on the p-index. Since BT is simply connected,

H*(BT, h*(pt)) H*(BT) & h*(pt).

Moreover, the same considerations are valid for X, = II = CP(n) where
l=dim T.

37



First we construct a linear map 9 from

H*(X, h*(pt)) -+ h*(Xn).

Choose an algebraically independent set of ring generators e A,--- , eA' for
R(T). Let x; = ciY(L(A)), the Chern class in ordinary cohomology. Then the
xi are ring generators for H*(Xn, h*(pt)) over h*(pt). Define 9(xi) = X(Aj).
Extend 9 linearly and multiplicatively to H*(Xn, h*(pt)). Thus, for example,
6(-x;) = -X(A;). Define 0 by averaging over the Weyl group so

9(x)- 1I(X = 1 EL 7h(W)b(1rH(WI)X).

Here lrH denotes the representation of W on

H*(Xn, h*(pt))

and 7rh denotes the representation of W on h*(Xn). By construction, 0 is
W-equivariant. Since the representation of W on Grh*(Xn) is isomorphic
with the representation of W on

H*( Xn, h*(pt )),

9(x) = x + higher order terms.

H* (Xn, h *(pt))

and h*(Xn) are finitely generated h*(pt) - modules. Thus. as a finite matrix,
9 is upper triangular with 1's on the diagonal and coefficients in h*(pt).
Hence it has an inverse 0-1 which is automatically W-equivariant. Denote
the homomorphism 9 by O(n). Then 9(n) respects inclusions i : X - X,
for m > n. That is, O(n) o i* = i* o 9(m). Thus, 9(n) and its inverse 0(n)- 1

can be extended to

9 : H*(BT, h*(pt)) -> h*(BT)

and
0~1 : h*(BT) - H*(BT, h*(pt))

and are still W-equivariant. The result follows.
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Chapter 10

Nonvanishing of some characteristic classes

Suppose L(a) is the line bundle on BT associated to a character e" where
a is a root. We want to determine when its characteristic classes are not zero
divisors. This will be important later when we seek to invert characteristic
classes. The main difficulty is that the characters ea do not usually generate
R(T).

Let
g = Lie(G) OR C

be the complexified Lie algebra of G so

t = Lie(T) OR C

is a Cartan subalgebra of g. We begin by introducing a particular set of
generators for R(T). Let R be the set of roots and let R+ be a system of
positive roots with corresponding simple roots A = (ai, , al). For each
simple root a;, there is a corresponding subgroup

S; = PSU(2) or SU(2) C G

with Lie(S;) OR C having roots a; and -ai. Let T C T be a maximal torus
of this S;. Let eAi be a generator of R(T) such that e", = e i or e2Aj on T.
Extend ei to R(T) by setting eAj = 1 on T for i # j. Then the ei are a set
of generators for R(T). As a consequence, Proposition 5.2 asserts that

h*(BT) ~ h*(pt)[[X(AS), ... , X(A,)]].

Thus, the X(Aj) are not zero-divisors in h*(BT). Suppose

e A E R(T).

Then in t,
A = ZnAs.

39



Thus,
X(A) = niy(Ai) + higher order terms

If some ni is not a zero-divisor in h*(pt), then X(A) is not a zero-divisor in
h*(BT). Indeed, X(A) is then a power series with first term not a zero-divisor.

We want to apply this result to the case where A is a root. Each

ai = ZniA;,ni E Z.

Proposition 10.1: If p > 3 is a prime, there is some ni such that p does
not divide ni.
Proof This follows from the classification of complex semisimple Lie algebras.
If p divides n, for all i, then p divides all entries in the corresponding row of
the Cartan matrix. By examination of Cartan matrices, one sees that p = 2.

Corollary 10.2: If h*(pt) has no 2-torsion, then X(ag) is not a zero-divisor
for any simple root ai.

Proposition 10.3: If h*(pt) has no 2-torsion, X(a) is not a zero-divisor for
any root a.
Proof Every root a is Weyl group conjugate to a simple root ai. Since the
Weyl group acts by automorphism on h*(BT) and X(a) is W-conjugate to

X(ai), the result follows from the above corollary.
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Chapter 11

The formula for the umkehr homomorphism

In this section, we combine the Brumfiel-Madsen formula from chapter 4
with the results of the previous section to prove a formula for the umkehr
homomorphism. In the next few sections, we will interpret this formula in
various ways.

Again, G is a compact connected Lie group with maximal torus T. Sup-
pose h* is a complex-orientable cohomology theory in which X(a) is not a
zero-divisor for any root a. Let

x : BT -+ BG

be the fiber bundle with fiber GIT induced by the inclusion of T in G. To
define the umkehr homomorphism

7r.: h*(BT) -+ h*(BG)

we need a complex structure on GIT.
Since G is compact, it embeds into GL(n, C) for some n. As before g is

the complexified Lie algebra of G. Let GC denote the complex Lie group in
GL(n, C) which corresponds to g. Let B be a Borel subgroup of Gc. Then
Gc/B G CIT. We may assume T C B. In this way, a choice of a Borel
subgroup determines a complex structure on G/T[BH].

We want to compute the tangent bundle to the fibers T, in terms of Lie
theoretic data. Let R+ be the positive root system determined by B, so
a E R+ means a is a weight of the action of t on Lie(B) = b. We have the
identification of T(Gc/B) with G XT g/b. As a T-representation space,

g = b e (e-ER+Ca)

where C-, denotes the character of T defined by the root -a. As a conse-
quence,

g/b EDCEn+C-a,
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Then the tangent bundle along the fibers is

T,= EG XT g/b = EG XTE eER+C..a= L(-a),

where L(-a) is the line bundle associated to the root -a. In any complex-
orientable theory h*,

(11.1) x(T4) = 1 x(-a)
atER+

Now assume h* has coefficients with no 2-torsion. Theorem 8.4 asserts
that for x E h*(BT),

7* o r(7r)*(x) = x* o x,(x(T,) -x)

By 10.3, X(T,) is a product of non-zero-divisors in h*(BT), so we may for-
mally invert it in a localization

Q = 1
Q = h*(BT)[ 1T]

x(T,)
with h*(BT) c-> Q. Thus, using the Brumfiel-Madsen formula 4.4, we have
the identity in Q,

7r*o ,(x)= 7* or(\)* 1 = W w x

x(T,) wEW IaER+ x( -- a)

As written, this is an identity on Q but since the left hand side preserves the
subring h*(BT), it may be regarded as an identity on h*(BT).

Theorem 11.2 : (Bressler-Evens) Suppose h* has no 2-torsion, then for
x E h*(BT) we have the formula

xo ,x)= w 1
wEW Hx(-a)

Remark 11.3 : The only place where we used the absence of 2-torsion was
when we asserted that x(a) was not a zero-divisor. If we have some other
reason for knowing x(a) is not a zero-divisor, then the result is still true. For
example, if the formal group law of h* is of the form

X+Y+anXY+---

and anl is a unit, then for G = SU(2), x(a) is not a zero-divisor. In any case
when G = SO(3), x(a) is not a zero-divisor because the associated character
generates R(T).
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Chapter 12

The Weyl character formula and Verma modules

In this section we interpret Theorem 11.2 for the case of complex K-theory.
As a first application, we show that 11.2 is just the Weyl character formula.
Then we will interpret a part of the formula as a topological construction
of a Verma module. A modification of the Brumfiel-Madsen formula will
then give irreducible quotients of Verma modules associated to nonsingular
Schubert varieties.

We use the notation of the previous section. Also, for all applications in
this section K' = 0 so by Bott periodicity we may regard KO = K. Using this
convention, we have the identifications K(BT) a R(T) and K(BG) e R(G)
(Theorem 7.2). In these identifications, a representation of a compact group
is identified with the associated vector bundle over the classifying space of
the group. Thus, if e' is a representation of a torus T, then [L(A)] is the
associated class in K(BT). Using our convention that

x(L) = [1] - [L*]

x(-ai) = 1 - e"t

as an element of R(T). With this identification, 11.2 reads

1
O* 0 7(x) = W ( x.

We apply this formula to the class of the line bundle [L(A)] = eA. Thus we
have,

1
7*o 7r*(eA) = w ( e A.

wEW BaE R+O -I- ea

The action of W induced on K(BT) agrees with its action on roots. Hence,
we may compute as follows. Let

p =a.
2 OER+
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Let 1(w) be the length of w, which is equal to the number of positive roots
whose sign is changed by w. Then,

1 1
E w 1 e\ = E w eA-P

WEW faR+(1 - ea) =GW vaFER+(e-a|2 - ea/2)

1 L (_1).)ew(P,
HaER+(e-a/2 - ea/2) wEW

which is the ordinary form of the Weyl character formula [Hum, p. 139].
Of course, there is a theorem attached to the above formula which as-

serts that the right hand side is the restriction to T of a finite dimensional
irreducible representation. The proof of this theorem will require some ad-
ditional results. We need to interpret 7r* o ir, in another way. First, observe
that

K(BT) -+ K(BG)

can be interpreted as a map

7r, : R(T ) -+(G).

In this guise, ir, is called holomorphic induction. Ir* is naturally identified
as the restriction map R(G) -- R(T). We can interpret ir, as follows. Let
L(A) (resp. C(A) be the line bundle over BT (resp. G/T) associated to a
character of T. Let H'(G/T, L(A)) be the Cech cohomology groups defined
with respect to holomorphic sections of L(A). These cohomology groups are
G-representations since L(A) is G-equivariant, and finite dimensional since
G/T is Kaehler. Let HW be the associated vector bundle over BG. Then
define,

lr!([L(A)]) = E(-1)"H.

The Atiyah-Hirzebruch version of the Grothendieck-Riemann-Roch theorem
would asserts that 7r, = 7r, for the case where BT and BG are replaced by
finite approximations [AH2]. The generalization of the above result to the
classifying spaces if fairly easy, but lacking a reference, we will give it.

Lemma: 7r, = 7i.

Proof. Let X, give a finite approximation of BT and let Y, give a finite
approximation of BG, so that X, -+ Y is a GIT fiber bundle. Then there
is a Cartesian square
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X -+ BT

Yn -+ BG

which means the induced diagram commutes

K( BT) -- K (X,)

K(BG) -+ K(Yn)

Applying limits and using the fact that K(BG) = lim K(Yn) for any compact

group G, the following diagram commutes.

K(BT ) K(BT )
ir, I I limpn,

K (B G) K(BG)

By the similar reasoning, the following diagram commutes.

R(T ) -+ K(BT )
7. I I limpn,

R(G) -+ K(BG)

The lemma follows.

Returning to the Weyl Character formula, by the Borel-Weil-Bott the-

orem, all but one cohomology group is nonzero [Bott]. Moreover, if A is

anti-dominant with respect to R+, then 'H is the irreducible representation

V(A) of lowest weight A. Let chV(A) denote its decomposition as a represen-

tation of T. Thus, we have

Theorem 12.1 (Weyl character formula): The representation of T given

by the finite dimensional G-representation V(A) of lowest weight A, is given

by the formula,
A

chV(A)= Zw - eA.

There are several points worth making about this argument. First, it uses

two relatively difficult facts : the identification of 7r, with -r!, and the Borel-

Weil-Bott theorem. The logic in the argument is to some extent reversible.
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That is, given our results computing ir* o 7. and the vanishing part of the
Borel-Weil-Bott theorem, we have the following result.

Theorem 12.2 : Any 2 of the following imply the third.

1
(1)ch(V(A)) = E w I e

wEW rBaER+ (1 -ea)

(2)r, : K(BT) -+ K(BG) and 7,: K(BT) -+ K(BG) coincide.

(3)H*(Gc/B, L(A)) = V(A).

Proof. We have already shown that (2) and (3) imply (1). Now suppose we
are given (1) and (3). Then computing 7r* o r*(eA) we get chV(A) by (1) and
Theorem 12.1. By (3), computing 7r* o 7r,(e') we get chV(A), since applying
x* amounts to taking the character. Therefore,

7* o = x* o xr

on line bundles over BT. Since K(BT) is additively generated by line bundles,
they are equal on K(BT). But x* is injective (Corollary 4.7), so ir. = 7ri.

Hence, we have (2). The fact that (1) and (2) imply (3) follows in a similar
way.

The consequence that (1) and (2) imply (3) is not so interesting since the
Borel-Weil theorem admits several much more illuminating proofs [Se] [BB].
However, (2) is a fairly difficult analytic fact and is in fact reasonably far-
reaching. Indeed, suppose X is any space with a free G-action. Consider the
fiber bundle X/T -- X/G. Then we have a classifying map 0 : X/T --+ BT
and an induced map

0* : K(BT) -+ K(X/T).

Then the diagram,

X/T A BT

X/G I + BG

is a pullback diagram. By base change, it follows that

9* o r* o r. = o 0 o. = p* o po*.
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But the left-hand side of the above equation is

0* 0 X*71.

If X/T and X/G are complex projective manifolds (or lie in some other
category of spaces admitting base change), the right-hand side is

p * o p! o 0*.

Therefore, if 0* is surjective,

P o p, = p* 0 pi.

If we assume further that I W I is invertible in K(X/G), then p. = p! since p*
is injective (4.6). This fact for general projective complex manifolds requires
some fairly difficult analysis. It seems useful to have a fairly simple proof of
this fact for the special case described above. Note that fibrations of the form
GIT -+ G/H, where T is a subgroup of H, satisfy the hypotheses, i.e. they
are complex projective manifolds [Se] and the classifying map is surjective
[St]. Moreover, the same result is true for maps of the form G/H -+ G/K,
with T c H c K.

Of course, the Weyl character formula is not a difficult theorem to prove
by standard algebraic machinery. However, the above proof has the virtue
that the terms have some intrinsic meaning. This meaning is very suggestive
for representation theory. Indeed, the Weyl character formula admits the
following interpretation. Let U(g) and U(b) denote the universal enveloping
algebras of g and b respectively. Let b- denote the opposite Borel subalgebra
to b. As before, t C b- is a Cartan subalgebra of g. If we write

1
as (1 + ea + e 2a +---)

(1--ea)

the expression
1

LaER+ (1I- e")

is the formal character of the Verma module M(A) of lowest weight A [Hum,
p. 136]. Thus, the formal character chM(A) is given by dividing the class
of the line bundle [L(A)] by the Euler class of the tangent bundle to Gc/B.
b- decomposes as a Lie algebra direct sum b- = t 6 n_ as a Lie algebra
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direct sum, where n_ is the nilradical of b_. Thus a linear functional A of t
can be extended to b_ by setting A trivial on n-. Call the associated one-
dimensional representation space CA. M(A) is defined as the induced Lie
algebra representation

U(g) 0 u(b.) CA.

Thus, as others have no doubt noticed, chV(A) is obtained by formally av-
eraging chM(A) when A is anti-dominant. If A is not anti-dominant, we still
get a virtual finite dimensional representation by averaging, which is actually
an irreducible representation up to a factor of -1.

Readers familiar with representation theory will realize that Verma mod-
ules are usually highest weight modules rather than lowest weight modules.
We are taking Verma modules to be lowest weight modules in order to identify
a topological construction with a sheaf-theoretic construction. Our treatment
is of course completely equivalent to the standard version.

We want to give a topological interpretation to chM(A) and to certain
associated objects. None of the results discussed here are new results in
representation theory. They only give topological realizations to familiar
objects. Again, we let 7 : BT -+ BG be the fiber bundle with fiber GC/B of
real dimension n. Let x(T,) be the Euler class of the tangent bundle to the
fiber. Let 3 be a s - n-dimensional complementary vector bundle over BT
with associated Thom isomorphism . The relation between 7r, and r(ir)*
was derived from the commutativity of the following diagram.

hk(BT+) hk+n(BT+)

hk+s (E.'(BT+)) _ hk+*(BTO)

We want to apply this diagram to K-theory. We may assume all dimen-
sions are even since n is even, so we work with K = KO. Then the above
diagram reads,

K(BT+) -) K(BT+

K(YE*(BT+) _'_+ K(BT3

For a vector bundle r : E -+ B with Thom class U we will write the
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Thom isomorphism
h*(B) -+ h*(BE)

as x -> - U

instead of as r*(x) - U

in order to simplify notation. Let

r[,] : BT x R* = T, E3 -- BT

and

,ro : 8 --+ BT

be the associated vector bundles with respective Thom classes

e E K(E*(BT+))

and

U E K(BT3 ).

Then for x E K(BT+), the suspension isomorphism a is

o(z) = x - E.
Moreover, e is invariant under any automorphism of BT, in particular under
the Weyl group. The inclusion 0 -+ R* induces the inclusion

i : BTO -+ E*(BT+

Thus, in K-theory, we have an induced map

i*: a(x) '- U - x(T,) - x.

X(T,) is not a zero-divisor in K-theory so adjoining its inverse, we have a

map

i* : a( ) - U - X.
X(Tr)

Thus, multiplication by U is equivariantly division by x(T,). But X(T,) =

IER+(1 - e") so the Thom isomorphism <D : K(BT) -> K(BTO) is

<b(x) = U - x = i*E( 1 X)
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Thus, we have

Theorem 12.4 :
<t(eA) = i*-(chM(A)),

where e' denotes the line bundle on BT corresponding to the character eA
of T.

In the sequel we will regard chM(A) as an element of K(BTO) via the above
map.

Recall that a Verma module has a central character. That is, if z E Z(g),
the center of the universal enveloping algebra, then if v E M(A),

z -V = X(z) . ,

where
XX : Z(g) --+ C

is an algebra homomorphism independent of v. Moreover, we have

XA = XW(A-P)±p

for w E W [Hum, p. 130] Regarded as elements of K(BT), characters of
Verma modules admit a Weyl group action.

Proposition 12.5 :

wchM(A) = (-1)l(w)chM(w(A - p) + p).

Proof
1 eA = .1 eA-p

W Hc2ER+ (1- eal) HcER+ (eo1 - ea/2)

(-1)1(w) 1 e(A-P) = (_1)(W) 1 ew(A-p)+p.
HcaER+(e-a/2 - ea/2) ( lcER+1(1 - e")

Corollary 12.6 : Weyl group orbits on K(BTO) correspond to Verma mod-
ules with the same infinitessimal character.
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The motivation behind the previous result is that we have constructed
the Verma modules (or at least their formal characters) without defining a g
action on them. Thus, our construction of Verma modules is lacking a crucial
structure. If M(A) and M(A') are Verma modules, there can be Lie algebra
homomorphisms

4 : M (A) -+ M (A')

only if XA = Xy. Therefore, the category of modules with central character
generated by Verma modules breaks up into a direct sum of subcategories.
The corollary asserts that these subcategories correspond to Weyl group or-

bits. As a result, our construction can see some of the g - module structure.

Definition 12.7 : Let P(x) denote the category of modules with central
character X generated by Verma modules M(X) with x. = x.

We want to discuss irreducible objects in the category P(X). We recall
some basic facts. M(A) has a unique irreducible quotient, which we denote
L(A). L(A) has the property that the weight A occurs exactly once and every
other weight A' which occurs has

XER+

with n,, < 0. Such modules are called lowest weight modules. M(A) has a
composition series of finite length, and each composition factor is of the form
L(p) with X, = X. Thus, we have the expression,

chM(A) = E a(A, pi)chL(p)

where a(A, p) is the number of composition factors of the form L(p) which
occur in M(A). Then a(A, A) = 1. Furthermore, if p appears in the sum,

/1 = w(A - p)+ p.

There exists a unique p = po such that

< PO - pa >> 0

for all a E R+. Let
M(w) = M(w(po - p) + p).
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We can rewrite the above expression as

chM(w) = E a(w, y)chL(y).
YEW

Assume further that A - p is regular, so

< A - p, a >:A 0 for a E R.

For example, it is usual to take

yo = 2p,

so Z(g) acts trivially on M(po) = M(e). Then a(w, y) 74 0 if and only if
y < w in the Bruhat order [Vo, p. 95]. This fact, combined with the fact
that a(w, w) = 1 enables us to invert the matrix A = a(w, y) giving,

chL(w) = E (-1)'(Y)-'(w)b(w, y)chM(y),
Y<W

with b(w, y) E Z.
We recall some statements about Schubert cells. The flag variety

Gc/B = UwEWXw

with the B-orbit BwB = X.. Also X,, is isomorphic to l(w) - dimensional
complex affine space. The closures

X, = Us.X,

are the Schubert cells. Since each X, is a B-orbit it is in particular T-stable.
Hence we can form the space

EG x Xw,

which is a fiber bundle over BT with fiber X1.
The proof of the Brumfiel-Madsen formula goes as follows [Fel]. We have

r : BT -+ BG and we want to compute 7r* o r(7r)*. We have the Cartesian
diagram,
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EGxTG/T _ BT
7r4 ItIir
BT BG

with
7r,(x, g) = x, 2(x, g) = Xg,

for x E EG, and g = gT E GIT. Then by naturality of the transfer, we have

r* or(x)* = r(7r1)* o 7 2*.

The proof of the Brumfiel-Madsen formula is then a computation of r(7r,)*.
Now there is no way to fill in the lower right-hand diagonal in the above Carte-
sian square to produce an operator corresponding to an arbitrary Schubert
variety. However, there is an obvious way to fill in the upper left-hand part
of the square. We just replace EG XT GIT with EG XT ,,,. The maps ir1
and 72 are the same as with G/T. Thus, we can form the operator

#w = 0()* o r2* on h*(BT).

Theorem 12.8 :0w = E',. y.

Proof This fact is essentially Theorem 1.4 in Mitchell-Priddy. First, we give
Xw a finite bundle decomposition. This means,

X = Lxi,
where each Xi is homeomorphic to an open disc bundle Di over a finite
complex F satisfying the following two conditions: (1) Di -- Xi extends to
a continuous map of the closed disc bundle Di into Xw, (2) Xi - Xj = U Xy,
where the fiber dimension of X, is less than the fiber dimension of Xi. For
X, X, = Xy, the open Schubert cell. Of course, X, is diffeomorphic to a
vector bundle over a point. Indeed, let N be the unipotent radical of B and
let N_ be the unipotent radical of the opposite Borel subgroup. Then N, =
yNy 1 flN is a complex connected unipotent subgroup of real dimension
21(y). The map N, -- X, given by n -+ nyB is a diffeomorphism [BGG,
Theorem 1.1]. Of course, any complex connected unipotent group is a vector
space. Thus, conditions (1) and (2) are satisfied.
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This bundle decomposition is T-equivariant. This means that the vector
bundles X, and the attaching maps are T-equivariant. To see that X, is
T-equivariant, we show that the T-action on X, is equivalent to the T-action
by conjugation on N,, which is equivariantly diffeomorphic to the T-action
on Lie(N,) via the exponential map. Indeed, the above identification maps

tnt~1 -+ tnt-'wB = tnw!B = tnwB.

There is a transfer r, for the vector bundle

EG XTX -- BT.

Then Mitchell and Priddy have proved,

Theorem 12.9 : Let P XG F -+ B be a fiber bundle where the fiber F has
an equivariant bundle decomposition. Suppose the fiber F decomposes into
complex vector bundles Xi with associated transfers ri. Then -* = L ri*.

In our situation, the bundles X, have a unique T-fixed point at the origin.
By standard arguments about the transfer, r, is just the inclusion of the
zero-section. In our situation, the zero-section corresponds to the map x -+

(x, yT), y E W. Thus,
rr1*o 7r2 = y.

The operator 4w can be lifted to an operator on K(BT 3 ) via the Thom
isomorphism.

Corollary 12.10: Suppose X1 is smooth. Then as an operator on K(BTO),

(-1)(w)O,(chM(e)) = chL(w).

Proof. Proposition 12.5 asserts that

y(chM(e)) = (-1)'(Y)chM(y).

Thus,
(-1)(W) -= J(-l)(w)l(Y)chAM(y).
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By a famous result of Kazhdan and Lusztig, the integers b(w, y) = 1 when
X, is smooth [KL1].

So we have a formula for 7* o 7r., which when applied to K-theory gives
the Weyl character formula. Moreover, a variation of 7r* o 7., still applied to
K-theory, gives certain irreducible quotients of Verma modules. The obvious
generalization is to apply these operations to other cohomology theories and
to try to interpret the results. The main question here is to which cohomology
classes one should apply these operators. In K-theory we applied them to
eA = [L(A)]. In an arbitrary theory we do not have an analogous notion of
a class associated to a line bundle. The notion of a characteristic class is
not a good generalization, since applying our operator to it does not give a
representation. The philosophical point here is that the fundamental objects
of study in representation theory are not really natural from the point of
view of algebraic topology. Representations give a basis in K(BT), but a
particular basis is not a natural object to generalize to other cohomology
theories. There are several approaches which might be useful in trying to
interpret the Weyl character formula in other cohomology theories. First,
many of these other cohomology theories have geometric interpretations. For
example, elliptic cohomology may be interpreted as a character-valued index
for a certain operator associated to a spin structure [Wi]. Thus, the meaning
of our Weyl character formula should have some importance in this context.
Second, Adams operations provide a way of picking out the actual vector
bundles from the virtual vector bundles in K-theory. An Adams operation
is just an example of a cohomology operation in a generalized cohomology
theory. Thus, it should be interesting to see if cohomology operations can
provide a way of picking out distinguished classes in generalized cohomology
theories which play the same role as vector bundles in K-theory. I hope to
do some later work on these topics.
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Chapter 13

Braid relations and induction

In this section, we discuss some work of Bressler and myself and reinter-
pret in terms of induction. The basic idea is to introduce an operator on
h*(BT) for each simple root. Our main theorem is that the operators at-
tached to pairs of simple roots satisfy the same relations as the corresponding
simple reflections in the Weyl group if and only if the formal group law of
the cohomology theory is that of ordinary cohomology or of K-theory.

Again let T C G be a maximal torus of a compact Lie group. The braid
relations are defined as follows. The Weyl group is a Coxeter group. As such,
it is a free group on I generators s1 ,--- , sl modulo certain relations. First,

S= 1.

We will for the most part ignore these relations. Second, for i $ j there exist
integers mi such that

(sisj)" = 1.
Therefore,

sisis, - = sisis ... , (mij factors on each side).

These are called the braid relations because for the special case when the
Weyl group is the symmetric group, they give the defining relations for
Artin's braid group. It is well-known that the possible values for mi are
2,3,4, and 6.

Definition 13.1 : Let Di, i = 1,.-. 1 be linear operators associated to each
simple root a;. Then we say the Di satisfy braid relations if

Di DjD; -.. -= DjDiDj -.. (mij factors on each side)

for all pairs i and j.
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Remark 13.2 :If R is an algebra generated by operators Di which satisfy
braid relations we can define an operator D, for w E W as follows[Bour,
Prop. 5, p. 16]. We take a minimal decomposition of w = si, - - -si, and then
we set D, = Di, - - -Dik. By a theorem of Matsumoto, D, does not depend
on the choice of a minimal decompostion.

We define operators Di on h*(BT) as follows. Any simple root ai (in fact
any root) defines a subgroup

Hi SU(2) x T c G.

LieH E® C = hi has as its root spaces g,, and g-, [Hum, p. 37]. The
induced fiber bundle ir : BT -+ BHi has fiber Hi/T a CP(1). Then for
any complex oriented cohomology theory h*, we have operators xi* o iri, on
h*(BT).

Definition 13.3 : D; = 7rj* 0 ir,.

Operators of this form were first introduced by Bernstein, Gel'fand, and
Gel'fand on the cohomology of the flag variety [BGG] and by Demazure on
K-theory and on the Chow ring of the flag variety [De]. They were used
to prove statements about the ring structures of these objects. Later, Kae
and Peterson gave the purely topological description described above [KP].
Kostant and Kumar extended many of the results of BGG and Demazure
to the Kae-Moody situation [KK1,KK2]. I should also mention the work
of Arabia [Ar] and Gutkin-Slodowy [GS] on related questions. Kae has used
these operators to prove some striking theorems on torsion in the cohomology
of Lie groups [Kae]. Perhaps most importantly, Kazhdan and Lusztig have
used a mild generalization of this construction to give a topological construc-
tion of Hecke algebras [Lu] and to prove the Deligne-Langlands conjecture
[KL2,KL3].

Proposition 13.4

D(x) = (1 + si) 1 x

Proof This is just Theorem 11.2.
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There is an isomorphism 0 : t* - H 2 (BT, C) given by A -- x(A). 0
extends to an inclusion of the symmetric algebra S(t*) into H*(BT, C). Given
this identification the previous theorem asserts that

Di =(1+ s) 1
-ck,

Propositon 13.5:

1 1
D3(x) = Di(l)Di(x) = [ + ]Di(x)

X(-ai) x(ai)](

Proof: There is a projection formula

7ri*(7ri*(y) - z) = y - 7ri,(z) [Dy, p.54].

Let y = r;,(x) and let z = 1. Then we have,

7r*7ri* 7ri,(x) = lri*ri*(x) - gr*r;,(1) = Di(x)Di(1).

But,
1 _ 1 1

Di(1) = (1 + si)x= +
x(-a'g) x(-ai) xVai)

Corollary 13.6 :Let L* be the dual bundle to L. If X(L*) = -x(L), then
D? = 0.

As a consequence, D? = 0 in ordinary cohomology and in elliptic coho-
mology. For ordinary cohomology this relation is well-known. In K-theory
the formal group law implies

X(-ai) = x(a)
W - X(ai) +1

where w is the Bott class. Therefore, D? = wDi. If we use the periodicity
isomorphism, we get D? = Di. This is the well-known formula for the De-
mazure operator [Lu]. Thus, we can recover some of the standard facts about
these operators solely in terms of a formal group laws.
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Suppose h* is a complex oriented theory satisfying the assumptions of
11.2. Consider the extension

1 1
Q = h*(BT)[ ].

Proposition 13.7 : The elements w E W are linearly independent over Q
as operators on Q.
Proof If Q were an integral domain, this fact would follow from a well-known
theorem of Artin [Art, p. 35]. In our four main examples this is the case.
However, Q is not a domain in general, but we can modify Artin's argument
for our purposes. Suppose there is some relation

(13.8) E aww = 0
mEW

We can choose such a relation with a minimal number of nonzero a,. Suppose
awl and a. are nonzero. The argument that W acts faithfully on h*(BT)
implies there is some characteristic class x(A) on which w1 and w2 differ.
Apply (13.8) to x(A) -x. Then,

E awX(wA)-wx=0
wEW

and also,

Z awx(wiA)wx = 0
wEW

Subtracting, we get

E am(X(wA) - X(w1A))w(x) = 0
WEW

and there is no awl term in the above sum. Hence, all terms are zero since
we took a minimal relation. But

x(W2A) - x(wiA) = x(w 2 (A) - wi(A)) + higher order terms

If we can show that the above expression is not a zero-divisor, then we have
a contradiction. We may as well assume that w2 = e and A is a simple root
aj. Then it is not difficult to check that we can choose ac so that

wi(ai) = E mc aj,
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with some m <12 I and f4 0. It follows that

x(wai - a,) = E mx(a) + higher order terms

Since there is no 2-torsion and x(a,) is not a zero-divisor then the above
expression is not a zero-divisor. Hence, we have the desired contradiction.

Theorem 13.9 : Let G be a compact connected Lie group with at least two
nonorthogonal roots and let h* be a complex oriented cohomology theory with
no torsion. Let the Di be the operators defined above. Then the D; satisfy
braid relations if and only if the formal group law is that of cohomology or
K-theory.

Proof. There are three cases to consider. These cases are when the two non-
orthogonal roots a; and a3 have mi = 3,4, or 6. (mi = 2 implies the roots
are orthogonal.) We first study the case mi = 3.

We need to evaluate an identity of the form

D1 D2 D1 = D 2 D1 D 2 -

By Proposition 13.6 we can check the above identity by expanding each side
and equating coefficients of a Weyl group element on each side. When we
expand each side we have to interchange characteristic classes x(a) with Weyl
group elements. for x E h*(BT),

w(x(a)x) = x(wa)w(x )

so as operators,
wx(a) = x(wa)w.

Using this rule, when we examine terms on each side with coefficients si, we
get

1 1 1

X(ai) x(-a; - a,)X(a,) x(-ai)x(-a)

1 ) 1

x(a;) x(-aj)x(-a; - og)

since s;(a,) = a, + a, and s,(ai) = -ai. Therefore, when we equate co-
efficients, multiply through by x(a,), and reduce denominators, we get the
expression

x(-ai)x(-ai) + x(a)x(-ai - a 2 ) = X(-ai)X(ai)
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By our discussion on formal group laws,

x(-a -)= x(-ai) + x(-as) + ( aklx(-ai)X(-a,'
k,l>1

It is easy to see that

X(ai) = ( bkax(--i)k,
k>1

with b1 = -1 [Ad, p. 45]. Simplifying further and replacing x(-ai) by X
and x(-a) by Y, we get

XY = -(( bkXk)(Y + ( akiXkYl
k>1 k,1>1

Since the left hand side has no expressions with powers of Y > 1, neither
does the right hand side. The expression,

X(ai) = ( bkX(--ai)k,
k>1

is not a zero-divisor so aki = 0 for 1 > 1. But aki = alk, so the formal group
law has the form

F(X,Y) = X +Y + auXY

If au = 0, h* has the formal group law of cohomology. If aul 5 0, h* has the
formal group law of complex K-theory, with the ambiguity in the choice of
aul corresponding to the ambiguity in choices of Chern classes. It is easy to
check that the operators for cohomology and K-theory satisfy braid relations.

For the cases mi, = 4 and 6 a similar, but much more involved, argument

works. However, the calculations are burdensome and we will not present

them here. Instead we will explain how our earlier paper combined with

Gutkin's work solves the problem. Since there is no torsion, we can replace

x(a) by a formal power series g(a;) in L(a,) called the logarithm. g has the
property that

g(L 0 M) = F(g(L), g(M))

Gutkin [G3] has established necessary conditions for when an operator of the

form Di = (f(ai)+sig(ag)) satisfies braid relations for the cases mij = 4 or 6
(Bressler and I established the necessity for mi = 3 and sufficiency for the

general case [BE1]). In particular, taking f = g, braid relations imply that
the formal group law is either that of cohomology or complex K-theory.
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Remark 13.10: The argument given for the case mi = 3 requires only
that there is no 2-torsion. However, Gutkin's argument requires that h* be
torsion-free. It seems likely that 13.9 can be proved for the case with no
2-torsion.

Remark 13.11: One sees easily that the argument is valid for Affine
Kae-Moody groups also.

Remark 13.12 : As the proof implies, the assertion in 13.9 is actually
slightly stronger working with complex coefficients. Suppose any operator
D; of the form f(a;) - g(ai)s satisfies braid relations, where f and g are
meromorphic functions, not identically zero. Then

1 1
f (aj) = - or

ai 1 - eoi

(up to some obvious identifications) and

g(ai)g(-ai) - f(a')f(-a) is constant

This result was proved by Bressler and myself for the root system A2 and
by Gutkin for the other cases. Moreover, Bressler and I proved that these
results are sufficient to imply braid relations for any case. This result may be
interpreted as giving a new distinguishing property for the Todd series. To see
this, let f = g. Given that the function f(ai) = -- defines an operator which
satisfies braid relations, one can ask when a new function h(ai) = f(ai).j(ai)
defines an operator which satisfies braid relations. Our theorem asserts that
up to various choices of constants, the only non-constant choice for j is the
Todd series

a1

1 - e-ai *

In the case of K-theory, we can interpret the Di as a sequence of induced
representations. On the other hand, we could also apply

x*o r. : h*(BT) -+ h*(BT)

where r : BT -+ BG is the induced GIT fiber bundle.A consequence of the
above theorem is that the sequence DDD ... is the same as r* o r* only
for cohomology and K-theory.
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Proposition 13.13 Let G be a simple rank 2 compact connected Lie
group. Let sisjs; ... = wo be a reduced decomposition of the long element of
the Weyl group. Then D;DjDi ... = 7r* o r, if and only if the formal group
law of h* is that of ordinary cohomology or K-theory.

Proof If DIDjD, ... = 7r* o 7r, then since the right hand side is independent
of order, braid relations are satisfied, so the group law is that of cohomology
or K-theory. On the other hand, one can check that the required relation is
true in those two cases.
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Chapter 14

Some comments about the flag variety

Up to this point, we have concentrated our attention on BT. However,
most of the interesting applications for the operators D are for the gener-
alized flag variety GIT. In this chapter, we explain how the results of the
previous chapters apply to GIT.

First we need some basic facts about GIT. It is a finite CW-complex with
cells only in even degrees. As a result, its integral cohomology is completely
given by its cell complex decomposition.

Proposition 14.1 :Let h* be any complex oriented cohomology theory.
Then the Atiyah-Hirzebruch spectral sequence for GIT degenerates at the
E 2 term.

Proof MU* has coefficients only in even degrees. As a consequence, the
MU* spectral sequence degenerates at the E2 - term (Corollary 1.2). For
any complex oriented theory, there is a natural transformation t : MU* -+ h*
such that t(1) = 1. By naturality of the Atiyah-Hirzebruch spectral sequence,
td,MU = d,.ht. Hence dr = 0 on the image of t. But at the E2 - level, the
image of t generates the spectral sequence as a module over h*(pt). Since
differentials commute with h*(pt), d2h = 0 on all of E2h. By similar reasoning,
all higher d,. = 0.

We have considered the fiber bundle i; : BT -+ BH. Since GIT is a T-
principal bundle, there is a classifying map 0 : GIT -+ BT. Similarly, there
is a classifying map O6: G/Hi -+ BH. The diagram,

GIT RBT
pi I I ri

G/ Hi B RHi

is a Cartesian square. Let Ci = p;* opi*. By Proposition 8.5, 0* o Di = C, o0*.
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The following theorem implies that rationally the Di determine the Ci.

Theorem 14.2 : Let h* be a complex oriented cohomology theory with
h*(pt) containing the rationals Q. Then 9* is surjective. Moreover,

ker 9* D< 7r*(h*(BG)) >,

the ideal of h*(BT) generated by the reduced cohomology of BG.

Proof It is well-known that 0* is surjective for ordinary cohomology [Bor].
Thus,

0*: E 2(BT) -+ E2(G/T)

is surjective. Since each spectral sequence is trivial,

0* : h*(BT) -+ h*(G/T)

is surjective. The second assertion is trivial.

Remark 14.3 : To understand the operators C;, we did not really need to
work over Q. It suffices to work with torsion-free coefficients. Indeed, in this
case h*(G/T) embeds in h*(GIT) 0 Q so we may consider C, on h*(G/T).

Theorem 14.2 implies that the operators C satisfy braid relations for
ordinary cohomology and for K-theory. The C for these two cases are the
original operators considered by BGG, Demazure, Kae-Peterson, et al. The
basic difference between our treatment and theirs is that we work with the
classifying space explicitly while they work with it only implicitly, by intro-
ducing operators on its cohomology. The advantage of our approach is that
on the classifying space it is natural to invert characteristic classes, while
such an operation makes no sense on the flag variety, where characteristic
classes are nilpotent.

It would be desirable to extend Theorem 13.9 to h*(G/T). However, we
have not succeeded in overcoming the technical obstacles involved in this
problem. We do have the following result.

Proposition 14.4 : The operator Ci do not satisfy the braid relations for
elliptic cohomology or for complex cobordism in the case mij = 3.
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Proof. First we remark that if the C satisfy braid relations for complex cobor-
dism, they satisfy braid relations for elliptic cohomology. There is a natural
transformation t : MU* -> Ell* commuting with iri, and ir;*. Thus, if

CC.7C -- - = C.CC -..

in complex cobordism, the same relation is satisfied in elliptic cohomology.
Thus, it suffices to prove the claim for elliptic cohomology. We apply,

CiCC H x(a).
aER+

Using the fact that x(-a) = -x(a), we get

4 2[X(aj + as) - x(aj)
X(ai)

We replace X(a) with X and x(a&) with Y. In elliptic cohomology, the group
law is

F(X, Y) = X + Y - S(XY 2 + X 2 Y) + higher order terms.

Thus, the expression,

(14.6) Y 1 6(XY + X 2) + higher order terms

We need to check if it equals,

(14.7) F(Y, X) - X
Y

The difference between (14.6) and (14.7) is

6(X 2 _ y 2 ) + higher order terms.

Moreover, these higher order terms all involve products of at least four charac-
teristic classes. But a product of four characteristic classes lies in E118(G/T),
which is zero since dim GIT = 6. Since the Atiyah-Hirzebruch spectral se-
quence collapses, 6 is not a zero-divisor in Ell*(GIT) so it suffices to prove
that X 2 _ y 2 does not map to 0. There is a natural transformation from
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elliptic cohomology to rational cohomology and the image under this natural
transformation of XEll(a) is XH(c) = a (see remark after 13.4). Thus, it
suffices to show that a 2

2 - a12 does not vanish in ordinary cohomology. A
simple calculation reveals that it does not.

Remark 14.5 : It presumably possible to check in a similar fashion that
the above result is true for min = 4 or 6. The computation is horrendous.
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Chapter 15

A geometric interpretation of braid relations

We want to give a geometric interpretation of our result about braid
relations. Using the geometric interpretation of cobordism (chapter 7), we
will see that a sequence of operators C ... Ci, maps the Euler class of the
tangent bundle of the flag variety to the class given by a Bott-Samelson
desingularization of a Schubert variety. Then we translate this result into a
geometric statement for any complex oriented cohomology theory.

Let E be a complex vector bundle of dimension n over a manifold X and
let i : X -+ E be the zero section. If 1 E MU0 (X) is the class of the identity,
then

i*i*1 E MU2n(X)

may be taken to be the Euler class of E [Qu]. i,(1) is the class of the inclusion
(i, X). To compute i*i*1, we need to adjust i so that it is transversal to itself.
By a homotopy, we may change i to a generic section i. By definition,

i*i,1 = (p1 :X XE X --+ X),

where the first map X -+ E is i and the second is i. Thus, i~i,1 is the
class of the inclusion of the zeroes of a generic section into X. Now suppose
X = G/T and E is its tangent bundle. It is well known that a generic
section may be chosen with zeroes at Weyl group elements. Indeed, we may
identify the tangent bundle T(G/T) with G XT Lie(G)/Lie(T) and define
i(gT) = Adg(X), where X is a regular vector in Lie(T). Then the zeroes of
i are precisely at points gT where g normalizes T. Hence, the class of

(15.1) i*i*1 =1 W I (pt -+ GIT)

so the Euler class of the tangent bundle is given up to a constant by the
inclusion of a point into GIT.

Fix a complex structure GcIB on G/T. Then G/Hi - Gc/P, where
Pi is the complex parabolic subgroup containing B and Hg. Let x be the
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cobordism class of the inclusion of a point into GC/B. As before, let

pi : Gc/B -+ Gc/Pi

be the associated CP(1) fiber bundle. Then

pi*pi,(x) = pi*(pt -+ Gc/Pi)-

Since pi is surjective, it is transverse to any map, so

pi*(pt -- Gc/Pi) = Gc/B XGCI/P pt -+ GC/B,

which is equivalent to the inclusion PS/B -+ GcIB. Let

p, : Gc/B -+ Ge/PI

be the CP(1) bundle associated to a different parabolic P,. Then

pi*pi~pi*pi*(x) = pj*pj,(P/B -- Gc/B))

= p*(P/B -+ Gc/IP) = (GC/B XGCIP, PS/B - Gc/B)
This last space

Gc/B XGCIP, PS/B = [(xB,xjB) xPJ = xP]

= (xi,xi~x E P XB P1/B

The map to GC/B is

(x1,x 2 ) -+ X 1X2 .

Continuing in a similar vein, for any sequence si,-- si, we can construct a
space

Zil,...,, =Pil xBPi 2 x B ... XB Pik1B

together with a map

0: (X1,---,xk) --+ X1--.x E Gc/B

The identification of the B-action in Zi,,...,i, is by

(X1- , xb,xi, -) = (x 1, - -- , xbxi+1,' )
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Definition 15.2 : Let si, -.. si, = w be a minimal decomposition of a Weyl
group element w. Let

ZW = Pi XB ... XB Pjk/B

be the space constructed above and let 9 be the associated map. Then the
pair (Zo, 9) is called a Bott-Samelson variety. Here Wi- refers to a Weyl group
element together with a reduced decomposition.

Theorem 15.3 : (Demazure [De]) 0 : Zo -+ X, is a resolution of singulari-
ties of X,, so 9 maps to X, ZO is smooth, and 9 is proper and birational.

As Haynes Miller has pointed out to me, (Zo, 9) may be interpreted as a
cobordism class. It follows from the above discussion that,

Theorem 15.4 : (ZD, 0) = C, - - -C,(x).

Corollary 15.5 :Let h* be any complex oriented cohomology theory. Let
t : MU* -+ h* be the unique natural transformation commuting with push-
forwards such that t(1) = 1. Let

t(Zf,1) = zE E h*(G/T)

and let e be the identity of the Weyl group. Then

ze = C4 . . Ci (ze)

Proof: The above relation is true in cobordism by construction. Since

Ci = pi* p

C commutes with t, so the above relation is true in h*.

Remark 15.6 : In ordinary cohomology the operator

Ci, -- - Ci, = CW

does not depend on the choice of a reduced decomposition. Hence the class
ze does not depend on the choice of a reduced decomposition. This class zf

70



is dual to the homology class of the Schubert cell X, . Thus, using complex
cobordism, we can recover one of the basic facts about the operators C,, which
is that they take classes dual to Schubert cells to classes dual to Schubert
cells. This argument is in some sense a generalization of an argument for
ordinary cohomology due to Arabia [Ara].

Remark 15.7 : I hope to use Theorem 15.4 in a future paper with Bressler
as follows. We had hoped to generalize the cohomological and K-theoretic
results of BGG, Demazure, Kostant-Kumar (et al) to the case of an arbitrary
complex oriented theory h*. For this purpose, it would suffice to generalize
these results to complex cobordism. In particlar, we needed a generalization
of the concept of the cohomology class dual to a Schubert cell. In a general-
ized homology theory there is no good notion for the generalized homology
class of a cell. However, for MU, there is a notion of the cohomology class
associated to a resolution of singularities. What 15.4 asserts is that if we
replace the notion of the cohomology class dual to a cell with the notion of
a cobordism class given by a Bott-Samelson variety, then the operators Ci
play the same role as in ordinary cohomology. The cobordism classes (ZF, 0)
generate MU*(G/T), but there are relations. We would like to produce a
formula for (Zf, 0) U (Zv, 0) for any pair fi,, W'. Such a formula would spe-
cialize to the classical Schubert calculus for the case of ordinary cohomology
and G = SU(n), and would also give the results of BGG, Demazure, and
Kostant-Kumar. We would like to prove this formula for the case of a Kae-
Moody group also. The problem in deriving any such formula is that one has
to choose specific orderings for elements w E W in order to get a basis for
MU*(G/T), and relating the different bases corresponding to different order-
ings may prove to be too complicated to make the above project worthwhile.
At the least, (15.1) and (15.4) provide an answer to the above question in
terms of characteristic classes.
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Chapter 16

Some nice algebras and some messy algebras

The operators D; introduced in chapter 13 generate an algebra. In K-
theory this algebra has been thoroughly studied. It is a degenerate Hecke
algebra in a sense we will make clear. In ordinary cohomology, this algebra
has not been studied so thoroughly. We will show how it is a degenerate form
of the group algebra of the Weyl group. An intertwining operator will arise
from this analysis which has a very interesting interpretation in terms of a
completely integrable system. Finally, we will make some comments on this
algebra of operators for an arbitrary complex oriented cohomology theory.

We begin with some remarks about the 0-Hecke algebra. These remarks
are not new. They are included only for perspective. For an excellent refer-
ence, see Carter [Car].

In K-theory the operators Di are known as the Demazure operators. Their
defining relations are

(1)D =Di

(2)DiDjD; ... = DDiD ... (i / j, mij terms on each side)

The algebra they generate is finite dimensional over any coeffient ring. We
will refer to it as Ho, the 0-Hecke algebra. The reason for this name is as
follows. Let

T = (q - 1)D; + qsi

Lusztig [Lu] has shown that the Ti generate the Hecke algebra Hq, with
defining relations

(1)(T; - q)(T + 1) = 0

(2)TTjTi T... = TjTiTj ... (m;1 terms on each side)

Thus, the 0-Hecke algebra is the Hecke algebra H, with q specialized to 0.
When q = 1, H, is the group algebra of the Weyl group.

The operators T have a topological interpretation due to Lusztig. Let
7ri : G/T -+ G/Hi be the CP(1) fiber bundle used to define Di. Let Q! be

72



the line bundle over GIT of holomorphic one-forms along the fiber. Then for
E E K(G/T),

E + siE = Di(E) - Dj(E ®)

More generally, replace G with G x U(1) = M and let U(1) act trivially on E
and by scalar multiplication on Q1. Then if we perform the same operation
as before,

E + TE = D;(E) - Dj(E 0 Q,)

Here q implicit in the above description of T is a generator for the characters
of U(1).

Suppose the coefficient ring for H, is the complex numbers. Then the
Hecke algebra is semi-simple and moreover, its representation theory is iden-
tical with that of the group algebra of the Weyl group. The 0-Hecke algebra,
however, is far from being semi-simple. In fact, its left regular representation
is upper triangular. Norton has proved that Ho decomposes into a direct sum
of 21 indecomposable submodules, where 1 is the rank of G. Moreover, she
gives an explicit generator for these submodules. Starkey and Carter have
proved several interesting results about the relation between this decompo-
sition and various decompositions of the group algebra of the Weyl group. It
would be interesting to try to interpret these results in terms of K-theory.

The case of ordinary cohomology is also interesting. There the operators

1
-D; = Ai = (1 + si)-

Their defining relations are
(1)A 2=0

(2)AjAjA-... Aj A ;A,---

The nilpotence condition (1) led Kostant and Kumar to call the algebra R
it generates the nil Hecke ring. R is strictly upper triangular with respect
to the left regular representation. For w E W, let Aw = A1A2 ... Ak, where
w = si ... k is a minimal decomposition for w. Then the A, form a basis
for R over any coefficient ring.

Proposition 16.1 : R is indecomposable.

Proof Let x = ZwEW a.A. be a nonzero element of R. Choose some w so
that w is minimal with respect to the Bruhat order such that aw $ 0. Choose
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v E W such that vw = wo, the long element of the Weyl group. It follows
from (2) above that AA. = A,. Moreover, AA, = 0 for y % w, since
the Ai preserve order relations and wo is the maximum element of the Weyl
group. Hence, Ax = a,,A,,. Thus, every submodule contains A, so R is
indecomposable.

We want to show that R is a degeneration of the group algebra of the
Weyl group C[W]. This fact was first proved by Gutkin and I noticed it
independently later. Let

Ci = ts; + A1.

Bressler and I have proved the following result.

Theorem 16.2: Let C = f(ag)-g(a)sj. The C satisfy the braid relations
if

1 1
ff(a) = - or . 1

and
g(aj)g(-a) - f(ai)f(-ai) = c, c E C.

In our case, f(ai) = 1//a; and g(ag) = t - . Thus,

g(ai)g(-a,) - f(Cg)f(-a,) = t2,

so the condition is satisfied.
It is easy to check that C, = 1 and that the C; satisfy no further relations.

Thus, we have

Proposition 16.3 : (Gutkin) The algebra Rt generated by the C is iso-
morphic to the group algebra of the Weyl group and Ro is the nil Hecke
ring.

For t $ 0, Rt is generated by the operators

Ei = 1/tC = si + 1/tA.

Let u = 1/t and call the corresponding representation of C[W] ir,. Thus, in
this nomenclature 7ro is the standard representation of C[W]. Thus, we have
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a C-parameter family of representations of the Weyl group on H*(BT, C).
Filter H*(BT, C) by

S' = e 1 < H'(BT, C)

Since the A; reduce degree and H' = 0 for i < 0, the C act on S1 , which is
finite dimensional over C.

Proposition 16.4 The r, representation on S, is equivalent to the iro
representation.

Proof A finite dimensional representation of the group algebra of a finite
group is completely determined by its character. Since the A, reduce degree,
they do not contribute to the character. Hence trsi = trEi.

Since r, is equivalent to iro, it follows that there must be an intertwining
operator. We can construct one by averaging. Let

1
4.= w E ru(w)7ro(w)

Then, clearly 4O(iro(w)x) = 7r(w)4o(x). To show 4u is an intertwining oper-
ator we just need to show it is a vector space isomorphism. Filter Si so

Sk = e<kH i(BT, C).

Then 7ru = 7r0 on GrS3 , since

7r -70 = uAj = 0

on GrSi. Hence 4O = 1 on GrS', so 4O is an isomorphism.
Its precise form is interesting. Let w = Si ... k be a reduced decomposi-

tion. Let #1 = a1 and let

# = s1s 2 .-- (ai)

7rU(w)ro(w)~1 = (s1 +tA1)... (Sk + tAk)sk ... S1

But,
(sk + tAk)sk = 1 - tAk, and s,(l - tAk)Si = 1 - tA.,(ak),

where
1Ac = (1 + s)-
a
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for any root a. Thus,

,(w)xo(w)- = (1 - tAo)(1 - tAa) ... (1 - tAp0)

Proposition 16.5 The operator on Sj

1
W E (1 - t A,) -.- (1 - tAA)

is an intertwining operator between 7ro and iru.

The above operator is important in Gutkin's solution of the Bethe Ansatz
in the field of completely integrable systems[Gul]. Gutkin showed that a
certain Hamiltonian H related to the Laplacian is completely integrable. He
proved complete integrability by constructing an integral operator P such
that PAP = H. This operator P is defined on a space of functions over the
Cartan subalgebra t. P has a different form for the different Weyl chambers of
t. Weyl chambers C are indexed by Weyl group elements. Let P" = P in the
chamber C,.,. Then P., is adjoint to the above operator in the following sense.
Consider compactly supported cohomology of BT, H*(BT, C) =i S(t*).Here
S(V) denotes the symmetric algebra of V. We may identify S(t*) with poly-
nomial functions on t and S(t) with constant coefficient differential oper-
ators on t. There is a natural Hermitian pairing between S(t) and S(t*)
given as follows. If D is a differential operator and p is a polynomial then
< D,p >= Dp(O). Thus, there is an integral operator Ci on S(t) adjoint
to our operators Ci on functions. More generally, we can define an integral
operator

QW = ((1 - tAp,) ... (1 - tAok))*,

adjoint to a summand of the intertwining operator constructed in Propo-
sition 16.5. Then Gutkin's operator P. = Q.. It would be interesting to
try to understand this fact better. It asserts that our C-parameter family
of representations of the Weyl group corresponds to a family of completely
integrable systems in some sense.

Finally, we want to comment on the algebra of operators generated by the
Di for an arbitrary complex oriented cohomology theory h*. Our main theo-
rem about these operators was a negative result, in the sense that it asserted
certain relations are not satisfied. It would be interesting to determine the
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precise structure of these algebras. We have no reason to expect them to be
finite dimensional, even over h*(pt). However, the algebra of operators gener-
ated by the C; on h*(G/T) is finite dimensional over h*(pt). Our main result
about the algebra generated by the Di is that D? = Dj(1)Dj (Proposition
13.5). It is not in general true that D;(1) E h*(pt), as is true in ordinary coho-
mology and in K-theory. The question of what relations should replace braid
relations is still unanswered. By a laborious computation, I have managed
to show that for the root system A 2,

D;DDDDjD = DjDiDDDiD;

when x(-a) = -x(a). It is likely that further results would come from some
geometric argument.

77



References

[AB] M. F. Atiyah and R. Bott, A Lefschetz fixed point theorem for
elliptic complexes II, Ann. of Math. 88 (1968) 451-491.

[Ad] J.F. Adams,Stable homotopy and generalised homology, University
of Chicago Press, 1974.

[AH1] M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous
spaces,Proc. Sympos. Pure Math.;Vol. III,7-38,Amer. Math. Soc.,(1961)

[AH2] M. F. Atiyah and F. Hirzebruch, The Riemann-Roch theorem for
analytic embeddings, Topology 1 (1962) 151-166.

[Ara] A. Arabia, Cohomologie T-equivariante de la variete de drapeaux
d'un groupe de Kac-Moody, preprint (1987).

[Art] E. Artin, Galois Theory, Notre Dame lecture notes, 1959.

[AS] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion,
Journal of Differential Geometry 3 (1969) 1-18

[BB] A. A. Beilinson and J. Bernstein, Localisation des g-modules, C.
R. Acad. Sci. Paris 292 (1981), 15-18.

[BG] J.C. Becker and D.H. Gottlieb, The transfer map and fiber bun-
dles, Topology 14 (1975),1-12.

[BGG] J.N. Bernstein, I.M. Gel'fand, S.I. Gel'fand, Schubert cells and
the cohomology of spaces G/P, Russian Math Surveys 28 (1973),1-26.

[BE1] P. Bressler and S. Evens, On certain Hecke rings,Proc. Natl. Acad.
Sci. USA 84 (1987),624-625.

[BE2] P. Bressler and S. Evens, Representations of braid groups and gen-
eralized cohomology, submitted for publication, (1987).

78



[BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous
spaces,I,Amer. J. Math. 80 (1958),458-538.

[BM] G. Brumfiel and I. Madsen, Evaluation of the transfer and the
universal surgery classes,Inventiones math. 32 (1976),133-169.

[Bor] A. Borel, Sur la cohomologie des expaces fibres principaux et des
espaces homogenes de groupes de Lie compacts, Ann. of Math. 57 (1953),
115-207.

[Bott] R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957),203-
248.

[Bour] N. Bourbaki, Groupes et algebres de Lie, Chapitres 4,5, et 6, Her-
mann, Paris, 1968.

[BS] A. Borel and J.-P. Serre, Le theoreme de Riemann-Roch, Bull. Soc.
Math. de France 86 (1958), 97-136.

[Ca] R. W. Carter, Representation theory of the 0-Hecke algebra, Journal
of Algebra 104 (1986), 89-103.

[CF] P.E. Conner and E. E. Floyd, The relation of cobordism to K-
theories, Springer-Verlag, 1966.

[Ch] C. Chevalley, Invariants of finite groups generated by reflections,
Amer. J. Math. 77 (1935), 778-782.

[De] M. Demazure, Desingularisation des varietes de Schubert, Ann. Ec.
Norm. Sup.(4) 7 (1974),53-88.

[Do] A. Dold, The fixed point transfer for fiber-preserving maps, Math.
Z. 148 (1976) 215-244.

[Dy] E. Dyer, Cohomology theories, W.A. Benjamin, 1969.

[Fel] M. Feshbach, The transfer and compact Lie groups, Trans. Amer.

79



Math. Soc.251 (1979), 139-169.

[Fe2] M. Feshbach, Some general theorems on the cohomology of classi-
fying spaces of compact Lie groups, Trans. Amer. Math. Soc.264 (1981),
49-58.

[GS] E. Gutkin and P. Slodowy, Cohomologies des varietes de drapeaux
infinites, C. R. Acad. Sci. Paris 296 (1983), 625-627.

[Gul] E. Gutkin, Integrable systems with delta potential, Duke Math. J.
41 (1982), 1-21.

[Gu2] E. Gutkin, Operator calculi associated with reflection groups, Duke
Math. J. 55 (1987) 1-17.

[Gu3] E. Gutkin, Representations of braid relations, preprint, 1987.

[Ha] M. Hazewinkel, Formal groups and applications, Academic Press,
1978.

[HS] P. J. Hilton and U. Stammbach, A course in homological algebra,
Springer-Verlag, 1971.

[Hum] J. E. Humphreys, Introduction to Lie algebras and representation
theory, Springer-Verlag, 1972.

[Huse] Dale Husemoller, Fiber bundles, McGraw-Hill, 1966.

[Huss] S. Y. Husseini, The topology of classical groups and related topics,
Gordon and Breach, 1969.

[Ka] V. Kae, Torsion in cohomology of compact Lie groups and Chow
rings of reductive algebraic groups, Invent. math 80 (1985) 69-79.

[KP] V. Kae and D. Peterson, Cohomology of infinite dimensional groups
and their flag varieties, to appear.

80



[KL1] D. Kazhdan and G. Lusztig, Representations of Coxeter groups
and Hecke algebras, Invent. math 53 (1979), 165-184.

[KL2] D. Kazhdan and G. Lusztig, Equivariant K-theory and representa-
tions of Hecke algebras II, Invent. math 80 (1985),209-231.

[KL3] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands con-
jecture for Hecke algebra, Invent. math 87 (1987) 153-215.

[KK1] B. Kostant and S. Kumar, The nil Hecke ring and cohomology of
G/P for a Kae-Moody group G, Advances in Math 62 (1986),187-237.

[KK2] B. Kostant and S. Kumar, T-equivariant K-theory of generalized
flag varieties, Proc. Natl. Acad. Sci. USA 84 (1987), 4351-4354.

[Kol] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil
theorem, Ann. of Math. 74 (1961), 329-387.

[Ko2] B. Kostant, Lie algebra cohomology and generalized Schubert cells,
Ann. of Math. 77 (1963), 72-144.

[La] P. S. Landweber, Elliptic cohomology and modular forms, preprint,
1986.

[LMS] L. G. Lewis, J. P. May, M. Steinberger, Equivariant stable homo-
topy theory, Springer-Verlag, 1986.

[Lu] G. Lusztig, Equivariant K-theory and representations of Hecke alge-
bras, Proc. Am. Math. Soc. 94 (1985),337-342.

[May] J. P. May, "Equivariant constructions of nonequivariant spectra",
Algebraic topology and algebraic K-theory, ed. William Browder, Princeton
University Press, 1987.

[MP] S. A. Mitchell and S. B. Priddy, A double coset formula for Levi
subgroups and splitting BGL., preprint (1987).

81



[Qu] D. G. Quillen, Elementary proofs of some results of cobordism theory
using Steenrod operations, Advances in Math. 7 (1971), 29-56.

[Se] J.-P. Serre, Representations lineaires et espaces homogenes Kahleri-
ans des groupes de Lie compacts, Expose 100, Seminaire Bourbaki, 6 e annee,
1953/54, Inst. Henri Poincare, Paris, 1954.

(St] R. Steinberg, On a theorem of Pittie, Topology 14 (1975) 173-177.

[Vo] D. A. Vogan, Representations of real reductive Lie groups, Birkhauser,
1981.

[Wi] E. Witten, Elliptic genera and quantum field theory, pre-print (1986).

82



BIOGRAPHICAL NOTE

Sam Evens was born in Chicago, Illinois on May 17, 1961. After a brief
tenure in Berkeley, he moved to Evanston, Illinois to make sure he would not
learn how to eat alfalfa sprouts on pastrami sandwiches. He graduated with
a B.A. in mathematics from Haverford College in 1984. Since then he has
been a graduate student at MIT working under the supervision of Professor
Bertram Kostant. He hopes to soon move to a state with a name he can
spell.

83


