
Topics in Distributed Computing:

The Impact of Partial Synchrony, and

Modular Decomposition of Algorithms

by

Jennifer Lundelius Welch

B. A., The University of Texas at Austin
(1979)

S. M., Massachusetts Institute of Technology
(1984)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

June 1988

© 1988 by Massachusetts Institute of Technology

Signature of Author 3/22/88
bepartmnt of Electrical Engineering and Computer Science

Certified by 3/2 / 5
Nancy A. lynch, Thesis Supervisor

Accepted by
Arthim- Smith, Chair

Departmental Committee on Graduate Students
MASSACHUse7TS INSTITUTE

OF TF'ClmIorGY

JUL 2 6 1988
ARCHIVES

UBRARIES

2 -

Topics in Distributed Computing:

The Impact of Partial Synchrony, and

Modular Decomposition of Algorithms

by

Jennifer Lundelius Welch

Submitted to the Department of
Electrical Engineering and Computer Science on March 22, 1988,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract: This thesis solves problems in two distinct areas of theoretical dis-
tributed computing. The first problem area concerns the impact of the degree of
synchrony in a distributed system on what problems can be solved. Results in this
area include studies of the transaction commit problem in a partially synchronous
model, and a simulation showing that one timing model is equivalent to a seemingly
more powerful model. The second problem area is the modular decomposition and
verification of algorithms, especially their liveness properties. Two existing resource
allocation algorithms are studied, and by using modularity new algorithms are ob-
tained that are more efficient. In addition, a lattice-style decomposition is used to
prove correct a network minimum spanning tree algorithm, whose correctness had
not previously been formally given. Several techniques are presented for verifying
liveness proofs in a modular way.

Keywords: Distributed systems, time bounds, fault tolerance, lower bounds,
randomized protocols, simulation, consensus problem, modularity, liveness proofs,
drinking philosophers, minimum spanning tree.

Thesis supervisor: Nancy A. Lynch
Title: Professor of Computer Science and Electrical Engineering

3

4
I

Contents

Acknowledgments . 9

1. Introduction . 13
1. The Impact of Partial Synchrony 13
2. Modular Decomposition of Algorithms 14

2. Transaction Commit in a Realistic Timing Model 17
1. Introduction . 17
2. M odel . 21

2.1 Basic Model . 21
2.2 Timing Constraints 23
2.3 Safety Conditions . 24
2.4 Adversary . 25
2.5 Liveness Condition 26
2.6 Problem Statement 26

3. Randomized Commit Protocol 26
3.1 The Protocol . 27
3.2 Proof of Correctness 30

3.2.1 Safety Conditions 30
3.2.2 Probabilistic Properties 33
3.2.3 Liveness Condition 38

3.3 Time Complexity . 39
4. Lower Bound on Number of Processors 41

5. Lower Bound on Time . 47

5

Contents

3. Simulating Synchronous Processors
1. Introduction .
2. M odel .

2.1 Basic Model
2.2 System s .
2.3 Simulations

3. Simulating Synchronous Processors with Byzantine Faults

3.1 Simulation Protocol
3.2 Constructing Corresponding Runs
3.3 Results .

4. Simulating Synchronous Processors with Weaker Faults .
5. Application .

4. Synthesis of Efficient Drinking Philosophers Algorithms

1. Introduction
2. Theorems for Modular Correctness Proofs . .
3. Problem Statement

3.1 Dining Philosophers
3.2 Drinking Philosophers

4. Drinking Philosophers Automaton
5. Proof of Correctness

5.1 Drinking Philosophers
5.2 No Deadlock and No Lockout
5.3 More Concurrent
5.4 Stronger Problem Definitions

6. Complexity Analysis

5. A Lattice-Structured Proof of a Minimum Spanning
Algorithm .
1. Introduction
2. Foundations

2.1 Safety
2.2 Liveness
2.3 Satisfaction

3. Problem Statement
4. Proof of Correctness

4.1 HI Solves MST(G)
4.2 Safety

4.2.1 COM Simulates HI

Tree

105
105
108
110
113
117
118
119
122
124
125

55
55
57
57
59
59
60
61
62
63
66
67

69
69
71
73
74
76
77
81
81
88
94
96
98

6

.

Contents

4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

4.3 Livene

GC
TA
DC
NC

Cc
GH
ss

Simulates COM
R Simulates GC
Simulates GC

T Simulates COM
N Simulates COM
S Simultaneously Simulates TAR, DC, NOT and CON
. .

4.3.1 COM is Equitable for HI
4.3.2 GC is Equitable for COM
4.3.3 TAR is Equitable for GC
4.3.4 DC is Progressive for an Action of GC .
4.3.5 CON is Progressive for Some Actions of

4.3.6 GHS is Equitable for TAR
4.4 Satisfaction

6. Conclusion
1. Summary
2. Future Work

2.1 Partial Synchrony
2.1.1 Transaction Commit
2.1.2 Simulating Synchronous Processors . .

2.2 Modular Decomposition
2.2.1 Drinking Philosophers
2.2.2 Minimum Spanning Tree

R eferences .

COM

. 305

Appendix .3

133
139
163
192
204

217
267
267
270
272
280
284
289
299

301
301
302
302
302
303
303
303
303

7

. 311

8
I

Acknowledgments

Graduate school was a successful and worthwhile experience for me because of
my thesis advisor, Nancy Lynch. Her ideas pervade this thesis: she is a coauthor
of Chapters 4 and 5, and suggested the topics of Chapters 2 and 3. She read the
entire document with great care, and provided copious comments for corrections
and improvements. She was always accessible, and interested in my professional
development.

The other members of my thesis committee, Baruch Awerbuch and Silvio Mi-

cali, helped me view the results in my thesis from new and interesting perspectives.

I had the pleasure of working together on Chapter 2 with Brian Coan, who
took time out from finishing his own thesis to help me overcome thesis block. I am

grateful to Leslie Lamport for his generous collaboration on Chapter 5.

Barbara Liskov and Bill Weihl, together with Nancy, suggested the problem

studied in Chapter 2; the presentation of the solution was improved by insightful
remarks from Yoram Moses. I received helpful comments from Gil Neiger, Larry

Stockmeyer and an anonymous referee pertaining to Chapter 3. Discussions with

Yehuda Afek, Steve Garland, Michael Merritt, and Liuba Shrira helped me clarify

in my mind the key concepts in Chapter 5.

I enjoyed many stimulating conversations relating to research done for this

thesis with Brian Coan, Alan Fekete, Ken Goldman and Mark Tuttle. During the

9

Acknowledgments

four years that we shared an office, I often took advantage of Mark's willingness
to share his time and knowledge. I also benefited from the Theory of Distributed
Systems group meetings, which were a lively forum for discussing research.

Marilyn Pierce in the EECS Graduate Office and Betty Pothier in the Labora-

tory for Computer Science saved me many bureaucratic headaches.

The inevitable frustrations and tensions of graduate school were eased by hav-
ing good friends. I thank Debbie Thurston for her enduring friendship; my fellow
graduate students in Tech Square, especially Kathy Yelick and Brian Oki for their
unlimited moral support. and the Aloof Bicyclists Club for all that exercise.

I couldn't have done it without the love and encouragement I received from my

husband George and my parents.

Financial support for this work was provided by the Defense Advanced Research
Projects Agency (DARPA) under Contract N00014-83-K-0125, by the National
Science Foundation under Grants DCR-83-02391 and CCR-86-11442, by the Office
of Army Research under Contract DAAG29-84-K-0058, and by the Office of Naval
Research under Contract N00014-85-K-0168.

10

I

Topics in Distributed Computing:

The Impact of Partial Synchrony, and

Modular Decomposition of Algorithms

11

12
I

Introduction

This thesis solves problems in two distinct areas of theoretical distributed com-
puting. The first problem area concerns the impact of the degree of synchrony in
a distributed system on what problems can be solved. The second problem area
is the modular decomposition and verification of algorithms. In this chapter, we
present an overview of these areas, and indicate how the results of this thesis fit in.

1. The Impact of Partial Synchrony

The solvability of many problems in a failure-prone distributed computer sys-
tem depends strongly on the assumptions made about the degree of synchrony
exhibited by the system. For instance, the problem of agreeing on a bit (Byzantine
agreement [PSL] [LSP]) can be solved even if almost one third of the processors are
subject to arbitrary faults, as long as there are known upper bounds on relative
processor speeds and message delivery times. Yet, if there are no such bounds,
then no protocol can guarantee agreement if there is the possibility of even one
processor crashing undetectably [FLP]. Both these models represent extremes -
real distributed systems are seldom so completely synchronous or completely asyn-

chronous. Consequently, researchers have begun to study some intermediate, or
partially synchronous models. Work in [DDS] and [DLS] has proposed a variety

of partially synchronous models and classified the solvability (or unsolvability) and

maximum failure-resiliency of the agreement problem in these models.

Chapter 2 of this thesis studies the transaction commit problem (a special-

13

Chapter 1: Introduction

ization of the very general agreement problem defined in [FLP] and [DDS]) in a
new partially synchronous model. The definition of the model is tailored to the
particular problem, but we believe it is realistic. The fault-tolerant transaction
commit problem has no solution, either deterministic or randomized, in the com-
pletely asynchronous model. We present a positive result about partial synchrony,
that there is a randomized protocol for the transaction commit problem in this
model. Our protocol works as long as fewer than half the processors are subject to

(undetectable) crash failures. We prove a lower bound showing that the number of
faults tolerated is optimal. Our protocol terminates in a small constant expected
number of asynchronous rounds. Our definition of asynchronous rounds is tailored
to our partially synchronous model. Additional justification for the definition is
provided by our result that no protocol in this model can terminate in a bounded
expected number of steps, even if processors are synchronous.

Chapter 3 of this thesis demonstrates the limitations of one form of partial
synchrony; it states that a distributed system in which both relative processor speeds
and message delays are asynchronous can simulate a system in which processors
operate in lockstep synchrony and message delays are asynchronous, in the presence
of various types of processor faults. The notion of simulation used is that each
processor undergoes the same sequence of state transitions in an execution in one
system as it does in a corresponding execution of the other system. One application
of this result is that the result in [FLP], that no consensus protocol for asynchronous
processors and communication can tolerate one failstop fault, implies a result in
[DDS] that no consensus protocol for synchronous processors and asynchronous
communication can tolerate one failstop fault.

2. Modular Decomposition of Algorithms

The second problem area investigated in this thesis is using modularity to
describe and analyze distributed algorithms, including their liveness properties. One
kind of modularity we investigate is composing separate "subroutines" to produc
e an algorithm, and showing how properties of the subroutines combine to give
properties of the composition. The other kind of modularity we study is describing
an algorithm at different levels of abstraction, and showing how properties at one

level imply properties at another level.

Many resource allocation algorithms presented in the literature [PF] [CM] are

described as using a solution to another problem as a "subroutine," yet the de-

scription employs a particular solution, with the details of its implementation in-

extricably embedded in the algorithm. The use of the word "subroutine" suggests

1A4

Section 2: Modular Decomposition of Algorithms

attempting to describe such algorithms modularly, so that any solution at all to the
sub-problem can be used. We use the I/O automaton model of [LT] to describe a
resource allocation algorithm for the drinking philosophers problem [CM] in Chap-
ter 4. The description uses a solution to another problem as a true subroutine;
nothing needs to be known about the implementation, only that its "interface" is

correct. The advantages of this approach are that the algorithm is easier to describe
and prove correct. As an added bonus, one can sometimes obtain more efficient (in

some complexity measure) solutions by using a more efficient subroutine. In fact,
we obtain a faster drinking philosophers algorithm with this method.

A different notion of modular decomposition is applied to the problem of prov-

ing correct the minimum spanning tree algorithm in [GHS]. In that paper, a complex

and delicate algorithm is presented, but no proof of correctness. The approach taken

in Chapter 5 to proving correctness of this algorithm is to describe it at different

levels of abstraction. These different descriptions do not form the usual chain hi-

erarchy, but instead are organized into a lattice. Thus the original algorithm, or

implementation, is described by several more abstract algorithms, each expanding

on a different aspect of the implementation, and incomparable to the others. We

present a framework of definitions and theorems to show the relationships between

algorithms in the lattice and to justify why these relationships imply the correctness

of the implementation.

15

16

Transaction Commit in a
Realistic Fault Model

An important problem in the construction of fault-tolerant distributed database

systems is the design of nonblocking transaction commit protocols. This problem

has been extensively studied for synchronous systems (i.e., systems where no mes-

sages ever arrive late). In this chapter, the synchrony assumption is relaxed. A
new partially synchronous timing model is given. In this model, a new nonblocking

randomized transaction commit protocol is given, based on a Byzantine agreement

protocol of Ben-Or. The new protocol works as long as fewer than half the pro-

cessors fail. A lower bound is proved, showing that the number of processor faults

tolerated is optimal. The protocol exhibits a graceful degradation property: when

more than half the processors fail, the protocol blocks, but no processor produces a

wrong answer. A notion of asynchronous round is defined and the protocol is shown

to terminate in a small constant expected number of asynchronous rounds. The fi-

nal result is that no protocol in this model can terminate in a bounded expected

number of steps, even if processors are synchronous.

1. Introduction

In a distributed database system a transaction may be processed concurrently

at several different processors. To maintain the integrity of the database these pro-

cessors must take consistent action regarding the transaction - either the results

This chapter is joint work with Brian Coan; a preliminary version appeared in the
Proceedings of the Fifth Annual A CM Symposium on Principles of Distributed Sys-
tems [CL].

17

Chapter 2: Transaction Commit

of the transaction are installed in the database at all processors (the transaction is
committed), or the results are installed at no processor (the transaction is aborted).
The decision whether to abort or commit a transaction is made by a transaction
commit protocol. The objective for such a protocol is to commit as many transac-
tions as possible subject to the constraint that each processor must be able to abort
a transaction unilaterally.

A transaction commit protocol must never produce inconsistent decisions, and
it must allow unilateral aborts. It has some leeway, though. Some protocols can
produce more aborts than others, and some protocols fail to terminate in some
situations. If failures can cause some nonfaulty processors to remain undecided
about the fate of a transaction (at least as long as the failure persists), a processor
is said to block, and the protocol is called blocking. Otherwise, the protocol is
nonblocking. The most common transaction commit protocol in practice, two phase
commit, is a blocking protocol. A blocking protocol is preferable in real systems to
one that allows inconsistent decisions to be made, since it allows consistent decisions
to be reached after the failures are repaired. A nonblocking protocol would be more
preferable still.

Many elegant nonblocking transaction commit protocols [Sk] [DSI have been
developed for completely synchronous systems. An obstacle to using these proto-
cols in real systems is that a single violation of the timing assumptions (i.e., a late
message) can cause the protocol to produce the wrong answer. The most common
alternative timing model, the completely asynchronous model, unfortunately does
not allow any solution to the transaction commit problem, either randomized or
deterministic. 1 We give a new timing model that is intermediate between the syn-
chronous and asynchronous models previously studied. In this model, we give a
new nonblocking transaction commit protocol.

We model real systems in which messages are usually delivered within some

known time bound but sometimes come late. We do this by assuming a completely

1The intuition behind this impossibility result is the following. Suppose there is a
protocol that works in an asynchronous system, and guarantees that nonfaulty processors
eventually decide (with probability 1); if the processors all begin with commit and there
are no failures, then they all decide commit; and if any processor begins with abort, then
the nonfaulty processors decide abort. Consider a run in which all processors but p begin
with commit and are nonfaulty, while p fails initially. Eventually, the rest of the processors
must decide. Since p could have started with abort, the processors must decide abort. But
there is another run that looks identical up to the decision point to all the processors except
p, in which p begins with commit, and all its messages are delayed until after the decision
is made. But in this run, the decision should have been commit.

18

Section 1: Introduction

asynchronous system, in which relative processor speeds are unbounded and mes-
sages can take arbitrarily long to arrive, and letting the timing behavior affect the
correctness conditions for the transaction commit problem, as follows. If every pro-
cessor initially wants to commit the transaction, then the common decision must be
to commit, provided no processors fail and all messages arrive within some known
fixed time bound. If any processor initially wants to abort the transaction, then the
common decision must be to abort, no matter what the timing and fault behavior
of the system is. This problem definition takes advantage of the leeway allowed in
specifying when processors must commit. Assuming that failures and late messages
are relatively rare, the overall progress of the transaction processing system will not
be impeded very much. A similar division is made in [DLS], in which properties
that must always hold are separated from properties that only need hold when the
system is well-behaved. In most other respects our model differs from theirs.

We prove that in our model no transaction commit protocol can terminate in

a bounded expected number of steps. Consequently a new measure is needed to

analyze the time performance of our protocol. One of the contributions of this

chapter is such a measure, which we call an asynchronous round. Our definition of

asynchronous round is strong enough to allow us to show that our protocol termi-

nates in a small constant expected number of asynchronous rounds. In Section 2
we argue that this notion of asynchronous round is not unrealistically strong.

Randomization is needed in the protocol because a result of [DDS] implies that

no deterministic protocol is possible. In order to analyze a randomized protocol,
we must define the adversaries against which the protocol will work. Our notion of

the adversary is drawn from [CMS]. The adversary in our model chooses the order

in which processors take steps, when each message will be delivered, and which

processors fail and when (as long as fewer than half fail). It makes these decisions

dynamically, during the execution of the protocol, using unlimited computational

power. The adversary has available at any point in the execution all information

about the hardware and software of the processors, and the pattern of communica-

tion up to that time, but it does not know the contents of the messages sent, nor

the local states of processors, nor the processors' local random choices, unless that

information is deducible from the pattern of communication. We will be careful to

design our protocol so that it is not deducible.

Our protocol uses a modified version of a solution to the agreement problem.

In the agreement problem each processor begins with an initial value, 0 or 1, and

decides on a final value. All nonfaulty processors' final values must be equal, and if

19

Chapter 2: Transaction Commit

all processors have the same initial value, then that value must be the final value.
Thus if one processor begins with 0 and the rest with 1, either 0 or 1 is a correct
answer to the agreement problem, whereas in the transaction commit problem, the
answer must be 0 (if 0 is identified with abort).

An important difference between the transaction commit problem and the
agreement problem is that in the former, all processors that decide are required
to agree, including processors that decide and subsequently fail. This strict agree-
ment condition is imposed because we assume that failed processors will eventually
recover. The hope is that processors that fail and subsequently recover can be
reintegrated using a separate recovery protocol. Skeen's thesis has an excellent dis-
cussion of recovery protocols [Sk]. We do not discuss these protocols further in this
chapter.

We assume that the faulty processors fail by crashing (i.e., stopping without
warning). This is a realistic assumption that is commonly made in the database
literature [Sk]. The number of faults tolerated by our protocol is optimal, since we
prove a matching lower bound. Our protocol works as long as more than half the
processors are nonfaulty. An important property of our protocol is that it degrades
gracefully if the bound on the number of faulty processors is exceeded - instead of
producing a wrong answer, the protocol simply fails to terminate.

At the beginning of our protocol, processors exchange some messages, and then
execute a modification of Ben-Or's asynchronous agreement protocol [Be] to decide
the fate of the transaction. The preliminary message exchanges serve two purposes:
first, the differences between the input-output relations for the transaction commit
and agreement problems are resolved, and second, a number of identical random bits
are distributed.' These identical random bits are used in the agreement protocol
to lower the expected running time from exponential to constant. There is a body
of work dealing with attaining constant expected running time for the agreement
problem [R] [CMS]; our technique does not solve this problem, for the following
reason. In our protocol, if the identical random bits are not distributed in a timely
fashion, processors can unilaterally decide 0 (abort), because we are solving the
transaction commit problem. Such action is not an option for processors trying
to solve the agreement problem, because it could violate the condition that all
processors decide 1 if they all start with 1.

'We have not solved the global coin toss problem, however, because our protocol does
not guarantee that the identical random bits are successfully distributed; the nature of
the transaction commit problem, as discussed above, is such that our protocol can tolerate
this failure.

20

Section 2.1: Basic Model

The transaction commit protocols of Skeen [Sk] and Dwork and Skeen [DS]
tolerate any number of processor faults, while our protocol only handles fewer than
half of the processors failing. However, if half or more of the processors fail, our
protocol does not produce a wrong answer but merely fails to terminate, leaving

open the opportunity for processors to recover. Late messages are not a problem

for our protocol because of our model, but as we noted earlier they can cause the
protocols in [Sk] and [DS] to produce a wrong answer.

In summary, the principal contributions of this chapter are a realistic timing

model, a method for analyzing the time performance of protocols in this model,
an efficient fault-tolerant protocol for the transaction commit problem, and lower

bounds showing that the protocol has optimal fault-tolerance, and that no protocol

can terminate in a constant expected number of steps for each processor.

Following an exposition of our formal model in Section 2, we present our ran-

domized transaction commit protocol in Section 3. Section 4 contains the lower

bound proof showing that our protocol tolerates the maximal number of faulty pro-

cessors. Finally, in Section 5 we show that no transaction commit protocol can

guarantee that each processor terminate in a bounded expected number of its own

steps, even if processors are synchronous.

2. Model

Processors are modeled as state machines that communicate by sending mes-

sages. Messages can take arbitrarily long to arrive. Our protocol works even in a

very weak model in which there is no bound on the relative frequency with which

processors take steps, and in which there is no atomic broadcast of messages. Our

lower bound results are shown for the stronger case in which processors run in lock-

step synchrony and possess atomic broadcast. In this section we present the weaker

model. In Sections 4 and 5 we indicate the necessary changes for the stronger model.

Our model is similar to those in [FLP] and [DDS].

Throughout this chapter, 1 is identified with "commit" and 0 with "abort."

2.1 Basic Model

A raw message consists of some text, and the names of the sending and receiving

processors. A message is a (raw message, integer) ordered pair; the integer denotes

the sending time, as will be explained later. The reason for distinguishing between

messages and raw messages is that we do not wish to require timestamps on all

21

Chapter 2: Transaction Commit

(raw) messages sent by processors, yet this information is useful in the exposition
of the model for distinguishing multiple instances of the same raw message and

determining message delays.

A processor is an infinite state machine, together with a message buffer, and a
random number generator. The message buffer holds messages that have been sent

to the processor but not yet received, and is modeled as a set of messages. The

random number generator supplies an infinite sequence of n-bit strings. The state

machine's transition function uses the current state, current random bit string and

set of raw messages received to compute the new state and raw messages to be sent.

Certain states are initial states, designated (id, initval), where id is a nonnegative

integer and initval is either 0 or 1. The id element of the initial state is the

processor's name, or identification number. The initval element is the processor's

initial value. Each processor can send zero or one message to every processor in one

step. There is an integer in each processor's state, called its clock, which is 0 in an

initial state, and is always incremented by 1 by the transition function. Thus, the

clock counts how many steps the processor has taken so far. A protocol is a set of

n processors.

A configuration C consists of n states, one for each processor, and n sets of

messages, one for each processor's buffer. An initial configuration has all processors

in initial states and all buffers equal to the empty set.

An event is denoted (p, M, b), in which processor p receives the set of messages

M (which can be empty), and the random bit string b.

An event e = (p, M, b) is applicable to configuration C if every message in M

is an element of p's buffer in C. Let s and M' be the state and set of raw messages

resulting from applying p's transition function to p's state in C, b, and the raw

messages extracted from M. The configuration resulting from applying e to C,
denoted e(C), is obtained from C by removing all messages in M from p's buffer,
changing p's state to s, and adding the message (m, i), for each m E M', to the

appropriate buffer, where i is the value of p's clock in s.

A schedule is a finite or infinite sequence of events. A finite schedule o =

eie2 ... ek is applicable to configuration C if ei is applicable to C, e2 is applicable

to e1 (C), etc. The resulting configuration is denoted a(C). An infinite schedule is

applicable to C if every finite prefix of the schedule is applicable to C.

Given configuration C1 and schedule a applicable to C1, we define the run R =

run(C1 , o) obtained from C1 and o, as follows. If a = eie 2 . . ek is finite, then R is

22

Section 2.2: Timing Constraints 23

the sequence Cie 1 C 2 e 2 . . . ekCk+1, where Ci+1 = ei(Ci), 1 < i < k. If o = e1 e2 ... is

infinite, then R is the sequence Cie 1 C 2 e2 .. ., where, for all i, Cie 1 C 2 e2 ... eiCi+i =
run(C1, ei e2 ... e,). We also denote o- by sched(R). Informally, a run is a schedule

together with its associated configurations.

Processor p is nonfaulty in an infinite run or schedule if it takes an infinite

number of steps; otherwise it is faulty. An infinite run or schedule is failure-free

if no processor is faulty in it. Since the interleaving of processors' steps in a run

or schedule may be arbitrary, no particular degree of synchronization is necessarily

achieved.

A message sent by processor p at event e in infinite run R is guaranteed if e is

not the last step of p in R. An infinite run R is t-admissible, for 0 < t < n, if

" the first configuration is an initial configuration,

* at most t processors are faulty, and

" all guaranteed messages sent to nonfaulty processors are eventually received.

The notion of guaranteed messages is used to model the lack of atomic broadcast.

Since messages sent at a processor's last step do not have to be received, we effec-

tively model a processor failing in the middle of a broadcast.

There are two disjoint sets of decision states, Y and Y1 , such that if a processor

enters a state in Y or Y1 it stays in that set forever. A processor decides v when

it is in a state in Y,. A run is deciding if every nonfaulty processor decides. A

configuration C has decision value v if there is some processor whose state in C is

an element of Y,.

2.2 Timing Constraints

We fix a positive constant K > 1, which is used to define late messages. A

message m from p to q is late in run R = Cie1 C 2 e2 ... if event e, adds m to q's

message buffer, and one of the following is true. (1) There is no event in R that

removes m from q's message buffer, and some processor takes more than K steps

in R after e. (2) There is an event er that removes m from q's message buffer,

and some processor takes more than K steps in the schedule e,+1 ... er. A run is

on-time if it contains no late messages.

Ideally we would like a processor to decide in a constant expected number of

its own steps. Unfortunately, as we prove in Section 5, we cannot do this, even if

processors run in lockstep synchrony. Instead, we characterize the time performance

of our protocol using the following definition. Given an infinite run, a processor is

Chapter 2: Transaction Commit

defined inductively to be in a particular asynchronous round (or round) as follows.
Asynchronous round 1 begins for processor p when p first takes a step and ends
after p's Kth step. Asynchronous round r, r > 1, begins for p at the end of p's

round r - 1 and ends either K of p's steps after the end of p's round r - 1, or as
soon as p receives every received message sent by a processor q in q's round r - 1,
whichever happens later. (We say "every received message" in order to make sure
that no round lasts infinitely long due to p's waiting for a non-guaranteed message

from q that never arrives.)

This definition uses two criteria for ending a round, the number of processor

steps taken and the collection of messages received. These criteria seem natural in

our timing model, in which processors can take actions depending on the receipt of

messages, as well as on timeouts.

A processor cannot compute its current asynchronous round; the definition is

for our use as omniscient observers as we analyze protocols. The reason we require

a round to last at least K steps is to prevent a round from collapsing to nothing if

no messages are sent in the previous round. If processors take steps in round-robin

order, and receive and send messages only at the beginning of a round, and if each

message sent at the sender's ith step is received at the recipient's (i + K)th step (for

all i), then this definition is essentially the same as the synchronous round definition

in [DS]. Thus this definition is not unreasonably strong.

2.3 Safety Conditions

The following definition restricts what must happen if a processor decides, but

does not require any processor to decide. A protocol is a transaction commit protocol

if for every t-admissible run R:

* Agreement Condition: Every configuration has at most one decision value.

* Abort Validity Condition: If the initial value of any processor is 0, then no

configuration has decision value 1.

" Commit Validity Condition: If the initial value of all processors is 1 and R is

failure-free and on-time, then no configuration has decision value 0.

To exclude uninteresting protocols, we require that each processor must be able

to receive at least n messages at each step. Otherwise, processors could swamp the

message system, causing messages to become late not because the message system

misbehaves, but because the ability of the processors to handle all the incoming

24A

Section 2.4: Adversary

message traffic is inadequate. 1 For instance, the protocol "cause the run to be not

on-time by flooding the message system and then abort" is not of much practical
interest.

2.4 Adversary

The adversary can be considered a scheduler - it decides which processor

takes a step next and what messages are received. In the introduction we gave an

informal description of the adversary. This subsection formalizes the notion.

The message pattern of finite run R = Cie1 ... ekCk+1, where ej = (pi, Mi, fi)
for all 1 < i < k, is the sequence of triples (p, E1, P1).. .(pk, Ek, Pk), where Pi is

the set of processors to which messages were sent by event ei, and Ei is a set of

integers indexing the events in the run that sent the messages, Mi, received in ei.

The point of making this definition is to isolate the pattern of message sending and

receiving while hiding the contents of the messages.

An adversary is a function that takes a message pattern, and returns a processor

p and a set E of integers (which may be empty) satisfying the following condition.

If i is in E, then in the ith element of the message pattern, (pi, Ei, P), p is in Pi

(i.e., there actually was a message sent to p at the it event), and in no element of

the message pattern does p receive this message (i.e., the message in question has

not yet been received). Thus, the adversary decides on the next processor to take

a step, plus a collection of messages to be received.

Let F be the collection of all n-tuples of infinite sequences of n-bit strings. Each

element of F is a possible set of choices returned by the n processors' random number

generators in an infinite run. A run is uniquely determined by an adversary A, an

initial configuration I, and an element F of F. Denote this run by run(A, I, F).

The construction of run(A, I, F) = Cie 1C2 e2 ... is inductive. Let C1 = I. Suppose

the run up to configuration C, has been constructed. Let p and E be the result of A

acting on the message pattern of run Cie1 ... C;. Then ej consists of the processor

p, the messages sent to p in all the events indexed by E, and the next unused bit

1Suppose each processor can send n messages per step but only receive n -1. Consider
the protocol: At each step, broadcast a message; at step 1, decide 0. We now show that
no infinite run is on-time. Let R be an infinite run. After Kn(n - 1) + n events,
(Kn(n - 1) + n)n messages have been sent, and at most (Kn(n - 1) + n)(n - 1)
have been received. So there are at least Kn(n - 1) + n outstanding messages. By the
pigeonhole principle, some processor p has at least K(n - 1) + 1 outstanding messages
(to be received). It will take p at least K + 1 steps to receive all those messages, by which

time the run will no longer be on-time.

25

Chapter 2: Transaction Commit

string in the sequence for p in F. Finally, Cj+i = ei(Ci). Since the adversary is
a total function, run(A, I, F) is an infinite run, and thus at least one processor is
nonfaulty.

If the adversary were not restricted in any way, it could cause all processors
(but one) to fail or no messages to be delivered, and no protocol would be possible.
We limit the power of the adversary in the following reasonable way. We define a

t-admissible adversary to be an adversary such that for all initial configurations I
and all F in F, run(A, I, F) is t-admissible.

For predicate P defined on runs, let Pr[P] be the probability of the event

{F E F: run(A, I, F) satisfies P}, for a fixed adversary A and initial configuration

I.

The expected value of any complexity measure for a fixed randomized protocol

is defined as follows. Let T be a random variable that given a run returns the

complexity measure of interest for that run. For fixed t-admissible adversary A and

initial configuration I, let the expected value of T, taken over the random numbers

F, be denoted E(TA,I). Define the expected value for the protocol, ET, to be

maxA,I{E(TA,I)}.

2.5 Liveness Condition

Given infinite run R and integer r, let DONE(R, r) be the predicate that every

nonfaulty processor decides by its asynchronous round r in R. A protocol is t-

nonblocking if for any t-admissible adversary A and any initial configuration I,

lim Pr[DONE(run(A, I, F), r)] = 1.
r-.oo

2.6 Problem Statement

Our goal is to design a t-nonblocking transaction commit protocol.

3. Randomized Commit Protocol

Our protocol to solve the transaction commit problem is based on the asyn-

chronous agreement protocol in [Be]. Similar protocols have been widely used [Br]

[CC] [CMS] [R). For the rest of this section, we assume a fixed t with n > 2t.

26

Section 3.1: The Protocol

3.1 The Protocol

In this subsection, we present the randomized transaction commit protocol by
describing, for each processor p, the states and transition function of p. First, we

give an informal description.

Throughout the protocol each processor keeps a vote telling what it currently

wants to do with the transaction. The processor with id 0 is the coordinator; at its

first step, it chooses n random bits and distributes them to the other processors, the

participants, by broadcasting a coins message containing the bits. If a participant

receives no message at its first step, it sends a request message to the coordinator

(to try to jog it awake); if no reply is received within 2K steps, the participant sets

its vote to 0 and decides 0. If a participant receives a message at its first step,
it extracts the n bits and broadcasts them in a coins message, to indicate "I am

participating in the protocol." If a processor does not receive a coins message from

everyone within 2K steps after broadcasting one, it sets its vote to 0 and decides 0.

Then each processor broadcasts its vote. If a processor does not receive n votes for

1 within a short time, it sets its vote to 0, but remains undecided.

The rest of the protocol proceeds in stages (as in [Be]), numbered from 1 up

without bound. In stage s, each processor p broadcasts its vote in a stage (s, 1)

message and waits to receive n - t stage (s, 1) messages. If p receives more than

n/2 stage (s, 1) messages with vote v E {0, 1}, then p broadcasts v in a stage (s, 2)

message; otherwise p broadcasts "?" in a stage (s, 2) message. Then p waits to

receive n - t stage (s, 2) messages. If p receives a stage (s, 2) message with value

v E {0, 1}, then p sets its vote to v; otherwise, p sets its vote to a random bit, either

the sih random bit from the coins message if s < n, or else a locally-determined

random bit. If p receives n - t stage (s, 2) messages for value v E {0, 1}, then p

decides v.

Processor p uses the following constants, variables and subroutines. Constants

are p, n and K. Variables are:

" clock,: nonnegative integer; initially 0.

" stage,: values are "asleep," "request," "coins," "vote," (s,1) and (s, 2) for all

s > 1; initially "asleep."

" timer,: nonnegative integer or nil; initially nil.

" coins,: n-bit string or nil; initially nil.

* vote,: boolean; initially p's initial value.

" decide,: boolean or nil; initially nil.

27

Chapter 2: Transaction Commit

The text of each raw message consists of the sending processor's current stage,
and optionally a value (0, 1 or "?"), and an n-bit string.

Below we describe p's transition function, acting on state q of p, set M of
raw messages, and n-bit string b. The description consists of several clusters of
pseudocode. Each cluster is preceded by a predicate on q and M. The predicate
of at most one cluster is true for any q and M. The state of p returned by the
transition function is obtained from q by incrementing clock, by 1, remembering

the set M, and then executing the cluster (if any) whose predicate is true of q and

M. The set of raw messages returned by the transition function is that indicated

by the send and broadcast statements of the appropriate cluster. If no cluster is

true, then no raw messages are sent, the only changes to the state are that clock,
is incremented and the received messages are remembered.

/* coordinator initiates protocol by distributing n random bits */

stage, = "asleep" for p = coordinator:

coins, := b

stage, := "coins"

timer, := clock, + 2K

broadcast (stage,,"?",coins,)

/* non-coordinator wakes up and requests that coordinator initiate */

stage, = "asleep" for p # coordinator and M = 0:
stage, := "request"
timer, := clock, + 2K

send "request" to coordinator

/* non-coordinator receives coins */

stage, = "asleep" or "request" for p # coordinator and

there is a message in M with text (s, v, coins):

coins, := coins

stage, := "coins"
timer, clock, + 2K

broadcast (stage,,"?",coins,)

/* non-coordinator times out while waiting to receive coins */

stage, = "request" and clock, = timer,:

28

Section 3.1: The Protocol

vote, := 0

decide, := 0

/* distributing votes */

stage, = "coins" and either clock, = timer, or n coins messages have been

received:
stage, := "vote"
timer, := clock, + 2K

if less than n coins messages have been received then

vote, := 0

decide, := 0|
broadcast (stage,vote,coins,)

/* completing stage 0 */

stage, = "vote" and either clock, = timer, or n vote messages have been

received:
stage, := (1,1)

if n votes for 1 have been received
then vote, := 1

else voter := 0

broadcast (stage,, vote,, coins,)

/* finishing first part of stage s

stage, = (s, 1) and at least n - t stage (s, 1) messages have been received:

stage, := (s,2)

if more than n/2 stage (s, 1) messages received have value v, for some v,
then broadcast (stage,, v, coins,)
else broadcast (stage,,"?", coins,)

/* finishing second part of stage s

stage, = (s, 2) and at least n - t stage (s, 2) messages have been received:

stage, := (s + 1, 1)

if a stage (s, 2) message received has value v, for some v, then

vote, := V

if at least n -t stage (s, 2) messages received have value v then decide, := v

else if s < n then vote, := coins,[s] else vote, := first bit of b

29

Chapter 2: Transaction Commit

broadcast (stage,, vote,, coins,)

Transaction Commit Protocol: p's transition function on input M, b,
and arbitrary state

3.2 Proof of Correctness

The proof is organized as follows. Section 3.2.1 shows the safety properties,
i.e., that the protocol is a transaction commit protocol. Section 3.2.2 contains

the probabilistic analysis, which is applied to show the t-nonblocking property in
Section 3.2.3.

3.2.1 Safety Conditions

Section 3.2.1 culminates in Theorem 8, which shows that the protocol is a

transaction commit protocol.

All the lemmas in Section 3.2.1 hold for any (infinite) run from an initial

configuration. In particular, they hold for runs in which more than t processors

fail. Stating these results in this way allows us to show the graceful degradation

property of the protocol.

In run R, processor p is said to be in stage s, for s > 1, if stage, = (s, 1) or

(s, 2). We say p completes stage s 0 if p ever sets stage, to (s +1,1) in R. Let p's
decision states Y and Y be states with decide, = 0 and decide, = 1 respectively;

Lemma 7 below shows that once p enters a state in Y,, it stays in that set forever.

Note that if no nonfaulty processor ever receives a coins message, then no processor

completes stage 0.

Lemma 1: In any run from an initial configuration, if some processor p has vote, =

0 initially, then every stage (1,1) message has value 0.

Proof: No processor ever receives a vote message with value 1 from p. Thus no

processor sets its vote to 1 at the end of its vote stage, and no processor broadcasts

a stage (1,1) message with value 1. 0

Lemma 2: In any infinite run from an initial configuration, if every processor p

has vote, = 1 initially, and the run is failure-free and on-time, then every processor

broadcasts a stage (1,1) message with value 1.

Proof: First we show that each processor p broadcasts a vote message with value

1. Suppose either p is the coordinator, or p receives a message at its first step.

30

Section 3.2.1: Proof of Safety Conditions

Then p broadcasts a coins message at its first step. By time K on p's clock, each
processor receives p's coins message and broadcasts its own coins message (if it has
not already done so). By time 2K on p's clock, p receives n coins messages. Thus
p broadcasts a vote message with value 1.

Now suppose p is not the coordinator and does not receive any messages at
its first step. It sends a request message to the coordinator, which is received by
time K on p's clock. The coordinator then broadcasts a coins message, if it has not
already done so, and p receives the coins message by time 2K on p's clock. Then
p broadcasts a coins message; by time 3K on p's clock, each processor receives p's
coins message and broadcasts its own coins message (if it has not already done so).

By time 4K on p's clock p receives n coins messages. Thus p broadcasts a vote

message with value 1.

Now we show that every processor p receives n vote messages within 2K of its

clock ticks after it broadcasts its vote. Processor p broadcasts its vote as soon as

it receives its n coins message. Suppose its clock reads T then. Since the run
is on-time, every other processor receives its nth coins message, and broadcasts its

vote, by the time p's clock reads T + K. Thus p receives all n vote messages by
the time its clock reads T + 2K. Then p broadcasts its stage (1,1) message with

value 1. 0

Lemma 3: In any run from an initial configuration, if every stage (s,1) message

has value v E {0, 1}, then every processor that completes stage s decides v at stage

s, for any s > 1.

Proof: Let p be any processor that broadcasts a stage (s, 2) message. Then p

receives at least n - t stage (s, 1) messages, all with value v E {0, 1} by assumption.

Since n > 2t, n - t > n/2. Thus p broadcasts a stage (s, 2) message with value v.

Now let p be any processor that completes stage s. Then p receives at least

n - t stage (s, 2) messages, all with value v. Thus p decides v. 0

For any s > 1, we call a stage (s, 2) message with value v E {0, 1} an S-message

("S" for "set"), because the receipt of such a message can cause a processor to set

its vote to v (if this message is among the first n - t stage (s, 2) messages received

by the processor).

Lemma 4: In any run from an initial configuration, there is at most one value sent

in S-messages during any stage s > 1.

31

Chapter 2: Transaction Commit

Proof: In order to send an S-message for some value v at stage s, a processor must
receive more than n/2 stage (s, 1) messages with value v. Since processors do not
broadcast conflicting messages, fewer than n/2 processors can broadcast a stage

(s, 1) message with value w : v. Thus, no processor receives more than n/2 stage

(s, 1) messages with value w, and no processor sends an S-message for w at stage
S. 5

Lemma 5: In any run from an initial configuration, if any processor decides v
before stage 1, then

(1) v = 0, and
(2) every processor that completes stage 1 decides v by the end of stage 1.

Proof: Suppose p decides before stage 1.

(1) By inspecting the code, we see that p decides 0, and sets its vote to 0 before
broadcasting its vote message.

(2) As in the proof of Lemma 1, every stage (1,1) message has value 0, and by
Lemma 3, every processor that completes stage 1 decides 0. 0

Lemma 6: In any run from an initial configuration, if some processor decides v at
stage s > 1, then

(1) no processor decides w # v at stage s, and
(2) every processor that completes stage s + 1 decides v at stage s + 1.

Proof: Suppose processor p decides v at stage s > 1. Let q be any processor that
completes stage s. Since p decides v at stage s, it receives at least n - t stage (s, 2)
messages with value v before completing stage s. Thus, since n > 2t and q receives
at least n - t stage (S, 2) messages before completing stage s, at least one of these
messages is from a processor from which p receives an S-message for v in stage
s. Since processors do not broadcast conflicting messages, q receives at least one
S-message for v at stage s. By Lemma 4, q sets its vote to v, and thus q broadcasts
a stage (s + 1, 1) message with value v.

(1) If q decides in stage s, then q decides v.

(2) By Lemma 3, every processor that completes stage s + 1 decides v at stage
S+ 1. 0

Lemma 7: In any run from an initial configuration, decide, changes value at most
once, for every processor p.

32

Section 3.2.2: Proof of Probabilistic Properties

Proof: Pick any processor p. If decide, is set before stage 1, then by Lemma 5,
every processor that completes stage 1 decides v at stage 1. If decide, is set for the
first time in stage s > 1, then by Lemma 6, every processor that completes stage
s + 1 decides v by the end of stage s + 1. Lemma 3 shows that for any r > 1, if
every processor that completes stage r decides v at stage r, then any processor that
completes stage r + 1 decides v at stage r + 1.

Theorem 8: Protocol 1 is a transaction commit protocol.

Proof: Let R be a t-admissible run. First we show the agreement condition, that
there is at most one decision value in every configuration of R. If some processor

decides before stage 1, then Lemmas 5 and 7 give the result. If no processor decides

until stage s > 1, then Lemmas 6 and 7 give the result.

Next we show the abort validity condition. Suppose some processor begins

with initial value 0. If no processor completes stage 0, then Lemma 5 shows that

no processor decides 1. If some processor completes stage 0, then all nonfaulty
processors complete stage s, for all s > 0. Lemmas 1 and 3 (with u = t) give the

result.

Finally, we show the commit validity condition. Suppose R is failure-free and

on-time, and all processors begin with 1. Then Lemmas 2 and 3 give the result. 0

Since Lemmas 1 through 7 are true for any (infinite) run from an initial con-

figuration, the agreement, abort validity, and commit validity conditions are true

even for runs in which more than t processors fail. This is the graceful degradation

property exhibited by our protocol.

3.2.2 Probabilistic Properties

The analysis in this subsection is directed toward showing that the probability

that all processors that complete stage s, decide by stage s, apporaches 1 as s

increases. Recall that probabilities are taken over the random information, holding

the adversary and initial configuration fixed.

For the following definitions, fix adversary A, initial configuration I, and F

and F' in F. Let R = run(A, I, F) and R' = run(A, I, F').

Define F(p, k) to be the kt' element in the sequence for p in F.

33

Chapter 2: Transaction Commit

Define coins(F) to be F(O, 1) (i.e., the coordinator's first n-bit string). It is
easy to see that if coins, is ever nonnil in R, then it equals coins(F), for all p. We
denote the Sth element of coins(F) by coins(F)[s].

For processor p and s > 1, define index(R, p, s) to be the number of steps taken
by p to complete stage s in R. If p does not complete stage s, then index(R, p, s)
is undefined. Thus index(R,p, s) is also the index into the sequence for p in F of
the bit string used to determine the value of vote, in stage s, in case s > n and p
receives no S-message in stage s.

The next definition maps a bit to each processor and each stage s > n in a run,
such that each stage gets "new" bits. This mapping is consistent with the mapping
implemented in the protocol for those cases where a processor uses a random bit.
Let random(R, p, s), for processor p and s > n, be defined as follows. (1) If p
completes stage s in R, then random(R,p, s) is the first bit of F(p, k), where k =
index(R, p, s). (2) If p does not complete stage s in R, then random(R, p, s) is the
second bit of F(p, s + 1) (i.e., a safe default).

For 0 < s < n, define F and F' to be (A, I, s)-equal if coins(F)[i] = coins(F')[i]
for all i, 1 < i < s. For s > n, define F and F' to be (A, I, s)-equal if F and
F' are (A, I, n)-equal, and for every i, n + 1 < i < s, and every processor p,
random(R, p, s) = random(R', p, s).

For s > 1, define v(R, s) to be the value of an S-message sent in run R at stage
s. If no S-message is sent in R at stage s, then let v(R, s) = 0. By Lemma 4, v(R, s)
is uniquely defined.

Define MATCH(R, s) to be the predicate that if s < n, then coins(F)[s] =

v(R, s), and if s > n, then random(R, p, s) = v(R, s) for all p.

Define SAME(R, s) to be the predicate that all processors that complete stage
s in R set their votes to the same value in stage s.

Define DECIDE(R, s) to be the predicate that each processor that completes
stage s has decided by the end of stage s in R.

The next lemma characterizes two aspects of runs that are unchanged, once an
adversary and initial configuration are fixed.

Lemma 9: Let A be an adversary, I an initial configuration, and F and F' E F.
Let R = run(A, I, F) = C1 e1 C2 ... and R' = run(A, I, F') = C'e'C2

34

Section 3.2.2: Proof of Probabilistic Properties

(1) For all i > 1, the message pattern of Cle1 ... Ci is the same as the message

pattern of C'e' . . . C'.

(2) For all processors p and all s > 1, index(R, p, s) = index(R', p, s).

Proof: (1) The structure of the protocol is such that the random information
does not affect which processors send messages to which other processes - it only
affects the values of the local variables and the message contents. But this is the
very information not available to the adversaries under consideration. Thus, for a
fixed adversary and initial configuration, the sequence of processor steps and the
message delays are the same, regardless of the random information.

(2) Follows from (1).

The next lemma states that the value of an S-message sent in stage s + 1 only

depends on the random information available through stage s, once an adversary

and initial configuration are fixed.

Lemma 10: Let R = run(A, I, F) and R' = run(A, I, F') for adversary A, initial

configuration I, and F and F' in F. If F and F' are (A, I, s)-equal, then v(R, s+1) =

v(R', s + 1), for any s > 0.

Proof: By Lemma 9, the message patterns for R and R' are the same. Since F and
F' are (A, I, s)-equal, the random information that affects the local variables and

message contents in R and R' up through stage s is the same in F and F'. Thus,
the values of corresponding processors' variables, and the contents of corresponding

messages sent up through stage s are the same in R and R'. The random information

used in stage s + 1 is not used until the end of stage s + 1, so the same messages are

sent in stage s + 1 in R and R', even though the stage s + 1 random information

might be different in F and F'.

The next lemma states some simple relationships between MATCH, SAME, and

DECIDE.

Lemma 11: Let R = run(A, I, F) for adversary A, initial configuration I and

F E F. For all s > 1,
(1) MATCH(R, s) implies SAME(R, s), and

(2) SAME(R, s) implies DECIDE(R, s + 1).

Proof: Fix s > 1.

35

Chapter 2: Transaction Commit

(1) If s < n, then MATCH(R, s) means that coins(F)[s] = v(R, s). Thus coins,
has the same value as any S-message sent in stage s of R, for all p. Thus, each

processor that completes stage s sets its vote to v(R, s), and SAME(R, s) is true.

If s > n, then MATCH(R, s) means that the first bit of F(p, k), where k

index(R, p, s), is equal to the value of any S-message sent in stage s of R, for all p.

Thus, each processor that completes stage s sets its vote to v(R, s), and SAME(R, s)

is true.

(2) If SAME(R, s) is true, then all stage (s + 1, 1) messages have the same value

v E {0, 1}. Thus all stage (s + 1,2) messages have value v. Thus, every processor

that completes stage s + 1, decides v, and DECIDE(R, s + 1) is true. 0

The following technical lemma concerns any equivalence class of F, where the

equivalence is defined by (A, I, s)-equality.

Lemma 12: Fix adversary A, initial configuration I, and s > 0. Partition F into

the maximal equivalence classes, within each of which all elements are (A, I, s)-

equal. Pick any class C.

(1) MATCH(run(A, I, F), i) = MATCH(run(A, I, F'), i) for all i, 1 < i < s, and any

F and F' in C.
(2) If s < n, then MATCH(run(A, I, F), s + 1) is true for half the elements F of C;

if s > n, then MATCH(run(A, I, F), s +1) is true for a 1/2" fraction of the elements

F of C.

Proof: (1) Choose any i, 1 K i < s, and any F and F' in C. Let R = run(A, I, F)

and R' = run(A, I, F'). Since F and F' are (A, I, i - 1)-equal, v(R, i) = v(R', i),
by Lemma 10. Since F and F' are (A, I, i)-equal, coins(F)[i] = coins(F')[i] if
i < n, and random(R, p, i) = random(R', p, i) for all p if i > n; thus MATCH(R,z) =

MATCH(R', i).

(2) By Lemma 10, v(run(A, I, F), s + 1) is the same for all F E C.

Suppose s < n. In half the elements F of C, coins(F)[s + 1] = 0, and in

half coins(F)[s + 1] = 1, since all the elements of C are (A, I, s)-equal. Thus

MATCH(run(A, I, F), s + 1)is true for half the elements F of C.

Suppose s > n. Let R = run(A, I, F) for F in C. MATCH(R, s + 1) means

random(R, p, s + 1) = v(R, s + 1) for all p. The position of random(R, p, s + 1) in

F depends on whether p completes stage s + 1 in R or not. By Lemma 9, either p

completes stage s + 1 in R for all F in C, or p fails to complete stage s + 1 in R

36

Section 3.2.2: Proof of Probabilistic Properties

for all F in C. If p does not complete stage s + 1, then random(R,p, s +1) is the
second bit of F(p, s + 2), obviously a fixed position for all F in C. If p does complete
stage s, then random(R, p, s) is the first bit of F(p, k), where k = index(R, p, s). By
Lemma 9, k is the same for all F in C, so this is also a fixed position for all F in
C. The positions of random(R, p, s) for all p are all distinct. Thus a 1/2" fraction
of the elements F of C have random(R, p, s) = v(R, s) for all p. 5

The next lemma is the key to the termination of the protocol, as well as the
good time performance. It says that there is a high probability that the random
information used to set votes matches the value in S-messages for the first n stages,
and there is a smaller, but still positive probability for subsequent stages.

Lemma 13: Fix adversary A and initial configuration I. Then

Pr[MATCH(run(A, I, F), s)] = 1/2 if s < n, and 1/2" if s > n.

Proof: By part (2) of Lemma 12, since the lemma is true for every equivalence

class of F. D

The next lemma shows that the events of not matching in different stages are

independent.

Lemma 14: Fix adversary A and initial configuration I. Let R = run(A, I, F) for

F E F. Then for any s > 1,

Pr[-MATCH(R, 1) A ... A -MATCH(R, s)] = Pr[-,MATCH(R, 1)] - Pr[-,MATCH(R, s)].

Proof: Pick any i, 1 < i < s. We will show that

Pr[-,MATCH(R, 1) A ... A -MATCH(R, i)]

= Pr[-,MATCH(R, 1) A ... A -MATCH(R,i - 1)]. Pr[-,MATCH(R, i)].

Let X be the set of all F E F such that -MATCH(R, 1) A ... A -'MATCH(R, i - 1)

is true, where R = run(A, I, F). Partition F into equivalence classes based on

(A, I, i - 1)-equality. If F is in X, and F and F' are (A, I, i - 1)-equal, then F' is

also in X, by part (1) of Lemma 12. Pick any equivalence class C that is a subset

of X. Part (2) of Lemma 12 gives the result. S

37

Chapter 2: Transaction Commit

The next lemma shows that the probability that all processors that complete
stage s, decide by stage s, approaches 1 as s increases.

Lemma 15: For any adversary A and initial configuration I,

lim Pr[DECIDE(run(A, I, F), s)] = 1.
S -+00

Proof: Let R = run(A, I, F). First note that

Pr[DECIDE(R, s)] Pr[MATCH(R, 1) V ... V MATCH(R, s - 1)].

The reason is that if MATCH(R, s') is true for some s', 1 < s' < s - 1, then by
Lemma 11, SAME(R, s') is true, and thus DECIDE(R, s' +1) is true. Since s' + 1 < s,
DECIDE(R, s) is true.

Pr[MATCH(R, 1) V . .. V MATCH(R, s - 1)]

= 1 - Pr[-,MATCH(R, 1) A ... A -MATCH(R, s - 1)]
s-1

= 1 - 1(1 - Pr[MATCH(R, i)]), by Lemma 14
i=1

> 1 - (1 - 1/2")~', by Lemma 13.

Since lim,..o(1 - 1/2n)'-1 = 0 we are done.

3.2.3 Liveness Condition

Lemmas 16 and 17 convert Lemma 15 into a statement about the predicate
DONE, in order to show the t-nonblocking property in Theorem 18.

Lemma 16: In any run from an initial configuration, each processor that completes
stage 0 without having decided is in at most asynchronous round 6.

Proof: Suppose p completes stage 0 without having decided. Then p obtains the
n random bits in some message by its 2Kth step, and broadcasts its coins message.
At most 4K steps later, p completes stage 0. Since each asynchronous round lasts
at least K steps, at most 6 rounds elapse. El

The next lemma shows that each stage s > 1 takes only a bounded number of
asynchronous rounds.

Lemma 17: In any run from an initial configuration, if each processor that com-
pletes stage s > 0 is in at most asynchronous round r when it completes stage s,

38

Section 3.3: Time Complexity 39

then each processor that completes stage s + 1 is in at most asynchronous round

r + 2 when it completes stage s + 1.

Proof: Let p be any processor that broadcasts a stage (s + 1, 1) message. This
happens when p completes stage s, so all stage (s + 1,1) messages are at most
round r messages.

Let p be any processor that broadcasts a stage (s + 1, 2) message. Processor
p cannot enter round r + 1 until it has received the last of the round r messages,
including all the stage (s + 1, 1) messages. Immediately after receiving the last of
these (if not before), p broadcasts its stage (s + 1, 2) message, so all stage (s + 1, 2)

messages are at most round r + 1 messages.

No processor p can enter round r + 2 until it has received the last of the round

r + 1 messages, including all the stage (s + 1, 2) messages. Yet by the time p receives
all the stage (s + 1, 2) messages, p has completed stage s + 1. 0

Theorem 18: Protocol 1 is t-non blocking.

Proof: Pick any t-admissible run R. Suppose no nonfaulty processor p receives a

coins message in R. Then p decides 0 by time 2K on its clock, i.e., by round 2. Now

suppose some nonfaulty processor receives a coins message in R. Then, since R is

t-admissible, every nonfaulty processor receives a coins message in R, and completes

stage s, for all s > 0. By Lemmas 16 and 17, DECIDE(R, s) implies DONE(R, 6+ 2s)

for any t-admissible run R. Lemma 15 gives the result. 0

3.3 Time Complexity

Recall that expectation is defined in Section 2.4 to be taken over t-admissible

adversaries and initial configurations. First, we show that the expected number of

stages is less than 4.

Lemma 19: Let X be a random variable giving the least s such that all processors

that complete stage s decide by stage s. Then EX < 4.

Proof: Fix t-admissible adversary A and initial configuration I. Let R =

run(A, I, F), for F in F. Let q, = Pr[-MATCH(R, s)]. Let Y be a random variable

giving the least number s such that all processors that complete stage s have the

40 Chapter 2: Transaction Commit

same vote at the end of stage s. By Lemma 3, X < Y + 1.

00

EX < E(Y + 1) = 1 + EY = 1+ s - Pr[Y = s]

< 1 + s - Pr /\;'~ -,MATCH(R, i) A MAT CH(R, s)
8=1
00

= 1 s + qlq2 .*qsi(1 - q,), by Lemma 14
3=1

oo

- 3_ -).,- - (:s - qgig2 -
8=1

(~s + qq 2

00

= 2+ (s + 1 -s) 2 ... q,
3=1

00

=2+ 'qq2...q
8=1

n

= 2+ E q1
(8=1

oo

E gn+1
s=n+1

We simplify using specific values for q,. For 1 < s < n, q, = 1/2, and for s > n,
q, = 1 - 1/2n, by Lemma 13.

EX <2+
1

8=1

1)-"

s=n+1

<2+1+
oo

8=1

1
=3 + -

=3+ 1(2" - 1)

< 4.

Theorem 20: All nonfaulty processors decide in a constant expected number of
asynchronous rounds.

=1+ S - gq2

= 1 + 1 + ,s - q,1q2 - *- qq.,

(1 - 1/2"
1 - (1 - 1/2")

oo
-. -'). - (

3=1

- - - q3 + (q1 -. - n -

Section 4: Lower Bound on Number of Processors

Proof: Let R = run(A, I, F) for some t-admissible adversary A, initial configura-
tion I, and F E F. If no nonfaulty processor receives a coins message in R, then
every nonfaulty processor decides by round 2.

Suppose some nonfaulty processor receives a coins message in R. Then, since
R is t-admissible, every nonfaulty processor p receives a coins message in R, and
completes stage s, for all s > 0. By Lemma 16, p is in at most asynchronous round

6 when it completes stage 0. By Lemma 17, when p completes stage s of Protocol 1,
it is in at most asynchronous round 6 + 2s. The expected number of stages is 4, by
Lemma 19. Therefore all nonfaulty processors decide in 14 expected asynchronous

rounds.

4. Lower Bound on Number of Processors

The lower bounds proved in the next two sections hold even if processors run

in lockstep synchrony and possess an atomic broadcast capability. In this section,
we first give relevant details of this stronger model, and then show that the number

of faults tolerated by our transaction commit protocol is optimal.

A processor failure is represented by an explicit failure step, denoted (p, I, b).

After a failure step for p, p is in a distinguished failed state. Thus failures can

be evidenced in finite runs. (Of course, processors cannot detect failures because

message delivery is asynchronous.) A processor is faulty in a run if it takes a failure

step, otherwise it is nonfaulty.

Processors take steps in round-robin order, 0 through n - 1; a schedule of the

form (0, M 1, fi)... (n - 1, Mn, fn) is a cycle. To enforce the round-robin behavior,
each configuration has a turn component, designating which processor's turn it is to

take a step. An initial configuration has turn = 0. In order for an event e = (p, *, b)

to be applicable to a configuration C, turn(C) must equal p, and if p is in the failed

state in C, then e must be a failure step. After an event is applied, the resulting

configuration's turn component is incremented by 1 (modulo n).

The guarantee definition is no longer needed, since atomic broadcast is allowed.

The delay of message m that is received in run R is the number of the cycle to which

the receiving event belongs minus the sending time of m. An infinite run R is t-

admissible, for 0 < t < n, if

" the first configuration is an initial configuration,
* at most t processors are faulty,
" all messages sent to a nonfaulty processor are received, and

41

Chapter 2: Transaction Commit

* all received messages have delay at least 1.

In this model, the adversary cannot schedule when processors take steps, but
can only determine when a processor fails and what the message delays are.

In this section we show that no protocol, even a randomized one, can solve the

transaction commit problem unless more than half the processors are nonfaulty. The
intuition behind the proof is similar to that for the coordinated attack problem (first

posed in [Gr]; also analyzed in [HM]). We partition the processors into two groups,
each of size at most t. Given a run that decides 1 (in which all processors begin

with 1), we work backwards from the end of the run to the beginning, delaying

messages between the two groups and showing that the resulting runs must still

decide 1. Eventually we get a run in which no messages between the groups are

received, yet the processors decide 1. This situation leads to a contradiction, since

one group could have started with O's, in which case the decision should be 0.

The actual construction of the runs is fairly involved, and is facilitated by the

following definitions and lemmas.

Let state(p, C) be the state of processor p in configuration C, and buff (p, C)
be the state of p's buffer in C. Given a schedule o and a subset S of the processors,
define alS to be the subsequence of a consisting of exactly those events that are

steps for processors in S. Also define kill(S, o) to be the schedule obtained from o

by replacing every event (p, *, b) (where * can be M or I) with (p, -, b) whenever p
is in S; similarly, define deafen(S, a) to be the schedule obtained from a by replacing
every event (p, *, b) (where * can be M or I) with (p, 0, b) whenever p is in S.

Lemma 21: Let o be a schedule applicable to configuration C and r be a schedule

applicable to configuration D. Let S be a set of processors. If state(p, C) =
state(p, D) for all processors p in S and if o|S = r|S, then for any processor p

in S, state(p, u(C)) = state(p, r(D)).

Proof: Use induction on the length of oIS, and the fact that the transition functions

are deterministic, given states, messages and random numbers. [I

Given a partition of the set of processors P into two sets S and S', define an

intergroup message (relative to S and S') to be a message sent from a processor in

S to a processor in S' or vice versa.

Lemma 22: Let S and S' be a partition of the set of processors, and let C and D be

two configurations such that state(p, C) = state(p, D) and buff (p, C) E buff (p, D)

42

Section 4: Lower Bound on Number of Processors

for all p in S. Let o be a schedule applicable to C in which any intergroup message

that is received by p E S in a is in buff (p, C). Then

(a) the schedule # = kill(S', o) is applicable to D;

(b) if no processor in S' is in a failed state in D, then the schedule r = deafen(S', a)

is applicable to D.

Proof: We show (b); (a) is similar. We proceed by induction on the length I of o.

Basis: I = 1. Let o- = e and r = e'. If e is an event for p in S', then p receives

no messages in e'. This event is clearly applicable to D since p has not failed in D.

If e is an event for p in S, then since r = a and buff(p, C) G buff (p, D), the fact

that oT is applicable to C implies that r is applicable to D.

Induction: I > 1. Suppose the lemma is true for schedules of length I - 1 and

show for length 1. Let a = a'e be a schedule of length 1. Since a' has length I -1,
by the induction hypothesis r' = deafen(S', C') is applicable to D. We must show

that e' = deafen(S', e) is applicable to r'(D) = E. If e is an event for p in S', then

p receives no messages. This event is clearly applicable to E since p has not failed

in D and no subsequent steps are failure steps.

Suppose e = (p, M, b) for p in S. We must show that each m in M is in

buff(p, E). Choose m in M and let q be the sender.

If m is in bufflp, C), then m is in p's buffer in every configuration from C to

OC'(C). Since bufflp, C) 9 buff (p, D),and no message is removed from a buffer by r'

that is not removed by cr', m is still in buffp, E).

Suppose m is not in buff(p, C). Then by assumption on CT, q is in S. Let a"g

be the prefix of a' such that (C"g)(C) is when m first appears in p's buffer. Thus,
q sends m as a result of event g in run(C, C'). Since q is in S, r"g is a prefix of

'r', where r" = deafen(S', C"). By the induction hypothesis, r" is applicable to D,

so by Lemma 21, state(q,T"(C)) = state(q, r"(D)). By the inductive hypothesis,
since the length of a"g is less than 1, g is applicable to r"(D). Thus m is also sent

in run(D, r'), and m is in p's buffer in E. 0

The next theorem shows that for any protocol, there is some finite run that

computes the wrong decision value, if no more than half the processors are nonfaulty.

Theorem 23: There is no t-nonblocking transaction commit protocol if n < 2t.

43

Chapter 2: Transaction Commit

Proof: Suppose n < 2t and that there is a t-nonblocking transaction commit
protocol with processors 0 through n - 1.

Let A = {0,..., t - 1} and B = {t,...,n - 1}. Each of A and B has at most
t elements. The first t events of a cycle form an A-semicycle (each processor in A
takes a step); the remaining events of a cycle form a B-semicycle (each processor in
B takes a step). An infinite schedule applicable to an initial configuration consists
of alternating A- and B-semicycles.

Let I,, be the initial configuration in which all processors have initial value
1. Since the protocol is a t-nonblocking transaction commit protocol, given an
adversary that kills no processors and delivers in cycle j + 1 any message sent in
cycle j (so every run is failure-free and on-time), there is at least one finite deciding
run run(a, Ill) such that all processors have decided 1 in a(Inl). Let a = -1 ... ry
where each i is a semicycle.

Claim: There exist y + 1 finite failure-free schedules ai through ay+1 such that
for each i, (1) ai = ... ;_....1 ;yj, (2) a, is applicable to In, (3) all processors have

decided 1 in ai(Iin), and (4) no intergroup message is received in Y.

Proof of Claim: We show the claim by descending induction on i. Let Ci =

(r 1 . . . ri)(I 1) for i > 1, and CO = I.

Basis: i = y + 1. Letting ey+1 = a (so that y+1 is empty) proves the claim.

Induction: i < y + 1. We assume the claim is true for i + 1 and show it for i.

Assume ri is a B-semicycle, i.e., i is even. (We will indicate in parentheses the
changes necessary when w; is an A-semicycle, i.e., when i is odd.) If no processor
in B receives any message from a processor in A in iri, then letting 7f = 7riyi+1

satisfies properties (1) through (4).

Suppose some processor in B receives a message from some processor in A in
iri. We construct 'yi in two steps; first we construct #1, after which all processors
in A have decided, and then we construct #2, in which all processors in B decide.
Then 7i will be #1#2.

Define #1 to be deafen(B, 7r3y+ 1). (See Figure 1.) By Lemma 22, #1 is appli-
cable to Ci_1 . Since flu1 A = 7ri i+1 |A, Lemma 21 applies and each processor in A
has the same state in #1(Ci_ 1) = F as it does in (7rj7+)(C;_1), so each decides 1
in F. No intergroup message is received in #1 because processors in B receive no

A4A

Section 4: Lower Bound on Number of Processors 45

messages in #I, and processors in A receive no intergroup messages in 7riti+l or in

'1.

InI = Coo q a Ci-2 A Ci-1 s I- ..
A-sxc. B-s..

#1 =deafen(B, ri-i+1)

F

CU = a(In,)

A,B: 1

B
A

T
A, B : 11

Figure 1: Construction of #1

Now w-- ust give a schedule #2 that causes processors in B to decide 1 without
hearing fro Tm any processors in A. The intuition is that processors in B must be
able to decide without hearing from processors in A, because it is possible that all
the processors in A have died. By the agreement condition, the processors in B
must decide 1 also. The problem with applying this argument is that there may be
leftover messages sent by processors in A before the point at which the processors
in B think they died, and thus processors in B could wait to receive these messages
before deciding. Thus, we must show that processors in A might have died even
earlier.

Semicycle r; is part of cycle number [i/2] = j in aj. (See Figure 2.) Let D
be the configuration in run(ai, I,,) immediately preceding the (j - 1)8 cycle of a,.
(If j = 1, then let D = I,.) Let r be the substring of ai between I,, and D. Let
p be the substring of a, between D and Ci_1. There are two possibilities for p.

e If i = 2, then D = In and p = 7r1 . Thus, p is an A-semicycle.

* If i > 2, then D = Ci- 4 and p = 7ri-37ri-2ri- 1 . Thus, p consists of all of cycle

7'i+1

A <-

B -

Chapter 2: Transaction Commit

j - 1 and the first half of cycle j (an A-semicycle followed by a B-semicycle
followed by another A-semicycle). (Pictured in Figure 2.)

(If ri is an A-semicycle, i.e., if i is odd, then there are the following two
possibilities for p.

0 If i = 1, then D = II and p is empty.

* If i > 1, then D = Ci-3 and p = 7r-27i..i Thus, p consists of cycle j - 1 (an
A-semicycle, followed by a B-semicycle).)

cycle j - 1

A-s.c. . B-s.c.

p
p= ki l(A, p)

= kiil(A,/31)

E

BDv

cycle j

B-s.c.

01 =deafe{ (B, riri,1) 7i+1
A9 B
B -A

F
AA,B: 1

02 =deaen(A,6)

Figure 2: Construction of #2

Let p' = kill(A, p). Since no message is sent and received in the same cycle
in a (and hence in p), any message received in p by a processor p in B from a
processor in A is sent in run(r, Iu), i.e., prior to cycle j - 1, and is in buff(p, D).
By Lemma 22, p' is applicable to D. Since p|B = p'IB, Lemma 21 implies that
state(p, p'(D)) = state(p, Ci_ 1) for all p in B.

Consider the schedule 0' = kill(A, #1). (See Figure 2.) Since the processors in
A are failed and the processors in B receive no messages, 0' is obviously applicable to

p'(D). Let E = #'(p'(D)). Since O'IB = #1 |B and state(p, p'(D)) = state(p, Ci- 1)
for all p in B, Lemma 21 implies that state(p, E) = state(p, F) for all p in B.

.D

46

Section 5: Lower Bound on Time

By the t-nonblocking property, since JAl ; t, there must exist a finite deciding
run from E with schedule 6. Suppose the decision value is v. Thus, all processors
in B decide v in 6(E). By choice of a, all messages sent in run(r, I1), i.e., before
cycle j - 1, are received by the end of cycle j - 1, i.e., by the end of p or earlier.
Since p'IB = plB, every processor in B receives in p' all messages sent to it in
run(r, II), i.e., before cycle j -1. Thus in 6, processors in B receive only messages
sent in run(p'036, p'(D)). Since all processors in A are dead in p'#'36, B receives no
intergroup messages in 6.

Let 32 = deafen(A, 6). Pick p in B. From above, state(p, E) = state(p, F).

Let m be any message in buff (p, E); m could only have been sent by a processor q
in B in run(p'#3, D), i.e., in cycle j - 1 or later. Lemma 21 implies that q has the

same state in corresponding configurations in run(p'3', D) and run(p,31, D). Thus
q sends the same messages in the two runs, and m is also in buff (p, F). Now we

can apply Lemma 22 to show that 02 is applicable to F.

Since #2 1B = 6|B and state(p, F) = state(p, E) for all p in B, Lemma 21

implies that each processor p in B is in the same state in #2(F) as in 6(E). So

each processor in B decides v in #2 (F); by the agreement condition, v = 1, because

processors in A have already decided 1 in F. No intergroup message is received in

02 because none is received in 6.

Let 7i = 31,2. We have shown that a; = iri ... 7ri_17; satisfies properties (1),
(2), (3) and (4). End of Claim.

Note that a1 is a finite schedule in which no intergroup messages are received.

Construct schedule a = kill(A,a1). By Lemma 22, o is applicable to Il. Since

olB = aiIB, Lemma 21 implies that each processor in B has the same state in

o(Inl) as it does in ai(Iii), and thus also decides 1 in a(In).

Let I01 be the initial configuration in which all processors in A have initial

value 0 and all processors in B have initial value 1. By Lemma 22, a is applicable

to I01. Since each processor in B begins with the same state in I01 as in I1, by

Lemma 21 each has the same state in a(Ioi) as it does in a(In), and thus also

decides 1 in a(Ioi). But this violates the abort validity condition. O

5. Lower Bound on Time

One might imagine a transaction commit protocol for our model such that each

processor could decide in a constant number of its own steps, at least in many runs.

AT

Chapter 2: Transaction Commit

For instance, in the protocol presented in Section 3, at most 6K steps are required
for a processor to complete stage 0 - a processor need not wait arbitrarily long for
messages since the existence of a late message means that the processor is allowed
to abort. Yet in the subsequent stages, no advantage is taken of this flexibility,
and processors wait potentially unbounded time for messages. Unfortunately, the
intuition that it may be possible to use the detection of late messages in order to
shorten the running time (as measured in processor steps) is incorrect. In fact, in
this section we prove that no protocol can guarantee that each processor terminate
in a constant expected number of its own steps, even if processors run in lockstep
synchrony, and even if only one processor can fail.

In particular, we show that for any constant B, there is a 1-admissible adversary
and an initial configuration such that the expected number of cycles needed for all
nonfaulty processors to decide is more than B. The proof is constructed as follows.
We consider the initial configuration in which all processors begin with 1, and the
adversary that kills no processors and delivers all messages with delay 1. If no run
from this initial configuration with this adversary is deciding by cycle B, we are
done. Suppose there is such a B-cycle run that is deciding. We find a point in this
run that has the property there are some very long runs extending from this point
that are not deciding. These runs are kept undeciding by delaying the delivery of
all messages. These runs are so long that they cause the expected value to exceed
B, when calculated with the appropriate initial configuration and adversary.

Thus, we must solve two subproblems. First, we must find the appropriate
point in the run from which the long runs branch off (cf. Lemma 24); second, we
must show that the long runs extending from this point are undeciding (cf. Lemma
25).

We need the following definitions in addition to the definitions and Lemmas 21
and 22 from Section 4.

If p is a processor, then schedule o is p-free if p only takes failure steps in o.

A run is x-slow for some constant x if every message received in the run has
delay at least x. Given a configuration C, a schedule o is x-slow relative to C if the
run obtained by applying a to C is x-slow.

A seed (for protocol P) is an n-tuple of sequences of n-bit strings, such that
either each sequence is infinite or each sequence has the same number of elements.
The length of a seed is the length of one sequence. If seed F has infinite length,
then F is in F. There is a finite number of seeds of any finite length.

48

Section 5: Lower Bound on Time

A run is F-compatible, for seed F, if for all processors p and all i not exceeding

the length of F, the random string that p receives in its ith step is the same as
the ith element of p's sequence in F. Given configuration C, a schedule a is F-

compatible relative to C if C is reachable by an F-compatible run and run(C, C) is
F-compatible.

For the remainder of this section, we fix an arbitrary 1-nonblocking transaction

commit protocol P. From now on, "run" means a 1-admissible run of P, and

"configuration" means a configuration reachable from some initial configuration of

P by a 1-admissible run of P.

Let V be a subset of {0, 1}, x an integer, and F a seed. Configuration C

is {x, F, V}-valent if V is the set of decision values of all configurations that are

reachable from C by an x-slow F-compatible run.

For the rest of this section, let I1 be the initial configuration in which all

processors have initial value 1.

The next lemma shows that in an F-compatible run that decides 1, there

exists a configuration from which some F-compatible, x-slow run decides 1, and

from which some other F-compatible, x-slow run decides 0.

Lemma 24: If run(I1, r) is a finite failure-free on-time deciding run that is F-

compatible for finite seed F, then for any integer x > 0 there exists a configuration

in run(I1, r) that is (x, F, {0, 1})-valent.

Proof: Pick such a run run(II, r) that is F-compatible, and fix x. By the com-

mit validity condition, r(II) = C has decision value 1. Thus all runs starting

at C, including x-slow F-compatible runs, have decision value 1, and hence C is

(x, F, {1})-valent.

Let 101 be the initial configuration in which some processor q has initial value

0 and the rest have initial value 1. Since the protocol is 1-nonblocking and since F

is finite, there is a finite q-free x-slow F-compatible run run(o, I01) such that a(Ioi)

has decision value 0, and by the agreement condition, o(Ioi) is (x, F, {0})-valent.

By Lemma 22, o is also applicable to I1. By Lemma 21, all processors except

q have the same state in u(Ii) as in o(Ioi), and decide 0 in o(I1). Thus I1 is either

(x, F, {0})-valent or (x, F, {0, 1})-valent. If the latter is true, we are done. Suppose

the former is true.

49

Chapter 2: Transaction Commit

Since F is finite, by the 1-nonblocking property no configuration in run(I, r)
is (x, F, 0)-valent. The valencies of I1 and C imply that there must be an event
e = (p, M, b) and two adjacent configurations in run(I1, r), Co and C1 with C1 =
e(Co), such that CO is either (x, F, {0})-valent or (x, F, {0, 1})-valent, and C1 is
either (x, F, {1})-valent or (x, F, {0, 1})-valent. (See Figure 3.)

I1 -- Co e = (p, M, b) C 1 -.- C = r(I1)

07 1 1

e' = L, b')
a'0* 0

a'

0

Figure 3: Demonstrating the existence of an (x, F, {0, 1})-valent configuration

If either configuration is (x, F, {0, 1})-valent, we are done. Say neither is. Since
the protocol is 1-nonblocking, F is finite, no processor has failed so far, and CO is

(x, F, {0})-valent, there is a finite p-free x-slow F-compatible run run(a, Co) in
which the nonfaulty processors decide 0. Say a = (p, L, b')a'. (If F is long enough
to extend past CO, then b' = b; otherwise, b' could differ from b.) Since a' is
applicable to C1, Lemma 21 implies that all the processors except p have the same

state in a'(CI) as they do in a(Co). But since they decide 0 in a(Co), and since a'

is F-compatible and x-slow relative to C1, this is a contradiction to the hypothesis

that C1 is (x, F, {1})-valent. C

The next lemma shows that in a certain situation, processors must remain

undecided as long as no messages are received.

Lemma 25: Let A be the adversary that kills no processors, and that for the first I

events delivers messages after delay 1 and subsequently delivers messages after delay

50

Section 5: Lower Bound on Time

x, for some x > 1. Let F be a seed of length x. If the configuration C following
the 1 h event in run(A, I1, F) is (x, F, {0, 1})-valent, then the final configuration in
run(A, I1, F) is (x, F, {0, 1})-valent.

Proof: Let run(A, I1, F) = run(ao,I1), where C = a(I1). Assume in contradic-
tion that o(C) is not (x, F, {0, 1})-valent. Since F is finite, by the 1-nonblocking
property, a(C) cannot be (x, F, 0)-valent. Assume o(C) is (x, F, {v})-valent. Then
there is a configuration D in run(a, C) and some event e = (p, M, b) in a such that
D is (x, F, {0, 1})-valent and e(D) is (x, F, {w})-valent. M must be the empty set,
since no messages are received in run(a, C). Suppose w = 0. (The argument is

analogous if w = 1.) The only other event applicable to D that can be part of

an x-slow F-compatible run is (p, L, b) = e', because all messages sent more than

x cycles ago have delay 1 and have already been received, and because F is long

enough to extend to e. (See Figure 4.)

delay D e = (p,Ob e(D)- o(C)

0/1 0/100

e' l 1 b)

0/1 or 1

I
Figure 4: Demonstrating that o(C) is (x, F, {0, 1})-valent

Since D is (x, F, {0, 1})-valent, e'(D) must be either (x, F, {0, 1})-valent or

(X, F, {1})-valent. Thus there is some finite p-free x-slow F-compatible run from

e'(D) that has decision value 1; let r be its schedule. Now r is also applicable, x-

slow and F-compatible relative to e(D), and all processors except p have the same

state in r(e(D)) as in r(e'(D)) (by Lemma 21), so they decide 1, contradicting the

valency of e(D). 0

51

Chapter 2: Transaction Commit

Given infinite run R, let T(R) be the cycle when the last nonfaulty processor
decides.

Theorem 26: For any constant B, there is a 1-admissible adversary A and an
initial configuration I such that E(TA,1) > B.

Proof: Fix B. Let 1? be the set of all runs of the form run(A1, I1, F), where F is
a seed of length B, and A1 is the adversary that kills no processors and delivers all
messages with delay 1. Let IRI = j. Thus, j is also the number of seeds of length
B.

Case 1: No run in R is deciding. Let A = A1 and I = I1. Then E(TA,I) B.

Case 2: There is some run R in 1Z that is deciding. Let C be the set of all
configurations in run R, and let m = IC|. Let S be the collection of all seeds with
length jmB that extend the seed of R. S is finite; in fact, IS = z/j, where z is the
total number of seeds of length jmB.

We will associate each seed in S with a configuration in C in such a way that
all runs from a configuration in C, using a particular adversary and any of the
associated seeds, is undeciding. The extreme length of these undeciding runs will
cause the desired expected value to exceed B.

For each C E C, define S(C) to be the set of all F E S such that C is
the first (jmB, F, {0, 1})-valent configuration in R. By Lemma 24, at least one
(jmB, F, {0, 1})-valent configuration exists in R; thus, each F E S is in S(C) for
exactly one configuration C.

Fix C to be a configuration in C with IS(C)i 2 - ISI. Such a configuration
exists by the pigeonhole principle, since IC| = m. Thus, IS(C)| 2 .LM - z.

Let I be the number of events that precede C in run R. Let A be the adversary
that for the first I events delivers messages after delay 1 and that subsequently
delivers messages after delay jmB. By Lemma 25, for every F in S(C), the final
configuration of run(A, I, F) is (jmB, F, {0, 1})-valent. Thus, no processor has
decided in that final configuration, and T(R') > jmB, for any infinite run R' that
is an extension of run(A, I1, F).

Let I = I1. By choice of C, at least a - fraction of all the seeds of length

jmB are in S(C). Thus, at least a - fraction of all infinite seeds have a prefix in

52

Section 5: Lower Bound on Time 53

S(C). For any infinite seed F with a prefix in S(C), T(run(A, I, F)) > jmB, by
the argument above. As a result,

E(TA,I) ;>
1

-7-- jmB = B.
3m

51

54

Simulating Synchronous
Processors

In this chapter we show how a distributed system with synchronous processors

and asynchronous message delays can be simulated by a system with both asyn-

chronous processors and asynchronous message delays in the presence of various

types of processor faults. Consequently, the result of Fischer, Lynch and Paterson,
that no consensus protocol for asynchronous processors and communication can

tolerate one failstop fault, implies a result of Dolev, Dwork and Stockmeyer, that

no consensus protocol for synchronous processors and asynchronous communication

can tolerate one failstop fault.

1. Introduction

In this chapter we show how a distributed system with synchronous processors

and asynchronous message delays can be simulated by a system in which both pro-

cessors and messages are asynchronous, in the presence of various types of processor

failures. One application of this result is that now a result in [DDS], that no fault-

tolerant consensus protocol is possible in a distributed system with asynchronous

communication even if processors are synchronous, follows easily from the result in

[FLP], that no fault-tolerant consensus protocol is possible when communication

and processors are asynchronous.

The equivalence of a system with synchronous processors and asynchronous

communication to one in which both processors and communication are asyn-

This chapter was published in Information and Computation [W].

55

Chapter 3: Simulating Synchronous Processors

chronous has been a folk theorem in distributed computing circles for some time.
One of the contributions of this chapter is to present a careful statement and proof of
this result, using a variant of Lamport clocks [La1]. We have made precise a notion
of simulation particularly suited to showing impossibility results. The novel feature
of this chapter is applying the simulation result to obtain an easy proof of the im-

possibility of fault-tolerant consensus for synchronous processors and asynchronous
communication.

The sense in which we show that the two systems are equivalent is that no

processor can tell if it is in one system or the other. Of course, an outside observer

can tell the difference. For instance, if all the processors are to perform some action

at their tenth step, the effect could be quite different with synchronous processors

(where the actions would happen at the same real time) than with asynchronous

processors (where the actions do not necessarily happen at the same real time).

Thus, the notion of simulation that we define preserves local views, but not global

views.

We observe that the only situation visible to a processor in the system with

asynchronous processors that cannot happen in the system with synchronous pro-

cessors is for the processor to receive a message at its ith step that was sent at

the sender's jtl step, where j > i. To avoid this anomalous situation, our simula-

tion tags all messages with the sender's current step number; then processors save

messages that arrive too early, and wait to process them until they are no longer

early. (Compare Lamport clocks, which cause the local clock, or step counter, to

skip ahead when a message with too large a timestamp arrives.)

Neiger and Toueg [NT] have independently developed the same simulation tech-

nique. However, they do not consider faults, and they apply the simulation to

different problems, namely, determining when one can substitute these modified

Lamport clocks for real time clocks while maintaining correctness, and determining

when a variant of common knowledge, achieved with the help of this simulation, can

be substituted for the standard notion of common knowledge. Their paper formally

characterizes types of behavior that can be preserved by this simulation.

Our formal model is presented in Section 2. In Section 3 we show how to do the

simulation for Byzantine processor faults. Simplifications for weaker fault models

are presented in Section 4. Finally, Section 5 demonstrates that the result in [DDS]

follows from that in [FLP].

56

Section 2.1: Basic Model

2. Model

We model a general distributed system in which processors communicate by
sending messages. Conceptually, there is a global clock that measures time in
integer ticks. At each tick, some processors take steps, in which they can atomically
receive messages, change state and send messages. A message buffer holds messages

between the sending and receiving times. A protocol determines for each processor
the state changes and messages sent, given the old state and messages received.

A run of the protocol specifies at each tick which processors take steps and which

messages are received. Various kinds of faulty processor behaviors are introduced

next. After formally defining what a system is in this general model, we define the

type of simulation we are concerned with.

2.1 Basic Model

Messages are assumed to be unique and are tagged with both the sender's and

recipient's names by the message system. The message buffer holds messages that

have been sent but not yet received. It is modeled as a set of messages. A processor

is a deterministic state machine with a set of states, and a transition function that

uses the current state and messages received to compute the new state and messages

to be sent (at most one message to each processor). Certain states are designated

initial states. A protocol is a set of n processors. In our terminology, a processor is

more than just bare hardware - it includes the local algorithm for changing state

and sending messages. A protocol is the collection of all the local algorithms.

A step of processor p is designated either a, indicating that p does some com-

putation, or A, indicating that p does nothing. An a step is an active step. A

processor history for processor p, H,, consists of an infinite sequence disid2 s2 - .. of

states di of p alternating with steps si of p such that di is an initial state, and if

si = A, then di = di+ 1. The ith state of H, is denoted state(H,, i), and the ith step

step(H,, i). Given processor history H, and integer i, define active(H,, i) to be the

number of active steps in H, up to and including the ith step. A message buffer

history HB is an infinite sequence M1 M2 ... , where each Mi is a set of messages

and M1 = 0, such that if message m is in Mi and not in Mi+1, then m is not in Mj

for any j > i. The ith element of HB is denoted by msgs(HB, i).

A run R of protocol P consists of n processor histories H,, one for each pro-

cessor p in P, and a message buffer history HB such that the following are true.

Suppose message m has sender p and recipient q, and i is the smallest integer such

that m is in msgs(HB,i). (1) Then step(H,,i - 1) is active. We say m is sent

5T

Chapter 3: Simulating Synchronous Processors

by p at step i - 1. (2) Furthermore, if j is the greatest integer such that m is in
msgs(HBj), then step(Hq, j) is active. We say m is received by q at step j.

Given a processor history H,, define states(H,) to be the (finite or infinite)
sequence of states did 2 ... , where di = state(Hp, 1) and dj+1 is the state following
the ith active step in H,. (The do-nothing steps have been eliminated and the
state transitions isolated.) For a run R = (HB, {H,},PE), define states(R) to be

{states (Hp)},P p.

Various types of processor faults are now considered, classified by their observ-
able effects. Suppose processor p has processor history H, = dis, d2S2 ... in run R.
Fix i and let M be the set of messages received by p at step si, and let M' be the
set of messages sent by p at step si. Processor p operates correctly at step si, if di+1
is the result of p's transition function applied to di and M, and if M' is exactly the
set of messages returned by p's transition function applied to di and M. Processor
p exhibits an omission failure upon sending at si if di+1 is the result of p's transition
function applied to di and a subset S of M, and M' is a strict subset of the set
of messages returned by p's transition function applied to di and S. Processor p
exhibits an omission failure upon receiving at si if p does not operate correctly at
si, but p's transition function applied to di and a strict subset of M produces di+1

and a set of messages of which M' is a subset. A message not used by the transition
function, or not placed in the message buffer is omitted. (Note that these definitions
allow a processor to exhibit an omission failure upon both sending and receiving at
the same step.) Processor p exhibits a Byzantine failure at si if dj+1 and M' cannot
be described as the result of p's operating correctly, or p's exhibiting an omission
failure upon sending or receiving.

Processor p is nonfaulty in run R if it takes an infinite number of active steps
and operates correctly at each one; otherwise p is faulty. Faulty processor p is
failstop-faulty in run R if it takes only a finite number of active steps and operates
correctly at each one. Faulty processor p is omission-faulty in run R if p is not
failstop-faulty, and at each active step p either operates correctly or exhibits an
omission failure upon sending or receiving. Faulty processor p is Byzantine-faulty

in run R if p is not failstop-faulty or omission-faulty, and at each active step p
operates correctly, exhibits an omission failure, or exhibits a Byzantine failure.

The next definition concerns communication faults. A message m sent in an
infinite run is lost if the recipient takes infinitely many active steps but never receives
m.

58

Section 2.3: Simulations

2.2 Systems

We are interested in restricting the allowable runs (of any protocol) in different
ways. Fix a protocol P. Let runs(P) be the set of all runs of P. Define the universe
of all runs, U, to be Uaui P runs(P). A system is a subset of U. The system U can be
characterized as having unreliable, asynchronous communication, since it includes
runs in which messages are lost and runs in which messages remain in the buffer
for arbitrarily long periods of time. Similarly, U has asynchronous processors, since
there is no restriction on the number of A steps between consecutive active steps in
a processor history. There is also no restriction on the number or types of processor
faults exhibited, when all the runs of U are considered.

The following systems are used as building blocks in this chapter.

" System SP: the set of all runs such that if a processor takes a A step, then all
subsequent steps of that processor are A steps. This system has synchronous

processors. The processors can know the global clock value, because it is the
same as the number of active steps they have taken.

" System RC: the set of all runs such that no messages are lost. This system has
asynchronous, but reliable, communication.

We can restrict the number and type of faults to be considered by defining:

" System FS(t): the set of all runs such that at most t processors are failstop-
faulty, and the rest are nonfaulty.

" System OM(t): the set of all runs such that at most t processors are omission-

faulty or failstop-faulty, and the rest are nonfaulty.

" System BZ(t): the set of all runs such that at most t processors are Byzantine-

faulty, omission-faulty or failstop-faulty, and the rest are nonfaulty.

2.3 Simulations

A simulation function f,, for processors p' and p is a function from states of p'
to states of p. Extend f,, to map sequences of states of p' to sequences of states of

p by defining f,(d1 d2 ...) = f,(d1)f,(d2)....

Run R' = (HB,{ {H,'},'eP') of protocol P' simulates run R = (HB, {Hp}PEP)

of protocol P via set F = {f,, : p' E P'} of simulation functions, if there exists a

59

Chapter 3: Simulating Synchronous Processors

one-to-one correspondence c between processors of P' and processors of P with the
following properties. Fix p' in P', and let p = c(p'). (1) The simulation function
f,' for p' and p satisfies fpi(states(Hp,)) = states(H,). (2) If p' is nonfaulty in R',
then p is nonfaulty in R. We say processor p' simulates processor p for runs R and
R' via f,,. (The simulation function f,, does not necessarily cause p' to simulate p
for other pairs of runs.)

Protocol P' in system A' simulates protocol P in system A if there exists a set

F of simulation functions such that (1) for every run R' of P' in system A', there

exists a run R of P in system A such that R' simulates R via F, and (2) for every

run R of P in system A, there is a run R' of P' in system A' such that R' simulates

R via F. We call P' a simulation protocol for P relative to A' and A.

System A' simulates system A if, for any protocol P, there exists a protocol P'

such that protocol P' in system A' simulates protocol P in system A.

This definition of simulation is very strong, since the correspondence between

runs of the simulation protocol and runs of the original protocol must be onto. How-

ever, for showing lower bounds or impossibility results, this strength is good, and

in fact is necessary for the application in Section 5. A more appropriate definition

for upper bounds would not require the correspondence to be onto, but would need
some condition on the responses of the simulation protocol to various inputs of the

original protocol, in order to rule out trivial solutions. As discussed in the intro-

duction, this definition of simulation concentrates on the sequences of individual
processors' state transitions, and is not concerned with global behavior that is only
detectable by an observer outside the system.

3. Simulating Synchronous Processors with Byzantine Faults

Our goal is to show that if the communication system is asynchronous, then

synchronous processors "don't help" - i.e., a system with asynchronous processors

and asynchronous communication can simulate (the state transitions of) a system

with synchronous processors and asynchronous communication, even if there is any

number of Byzantine-faulty processors. The main idea of the simulation is for each

asynchronous processor to keep track of how many active steps it has taken and

append this number on each message (of the synchronous protocol) sent. The only

situation visible to the processors in the asynchronous case that cannot occur in the

synchronous case is for a processor at its ith active step to receive a message that

was sent at the sender's jth active step, where j > i. To avoid this anomaly, such

60

Section 3.1: Simulation Protocol

"early" messages are simply saved up until the recipient has passed its 1 h active
step, and then they are used in the simulation.

Although the model of computation presented in this chapter gives processors
the ability to receive and send messages in the same atomic step, and to send
messages to all the processors at one step, this power is not necessary for the
simulation to work. If the model is weakened so that processors can send at most

one message at a step, or can only send or receive at a step, but not both, (as

studied in [DDS]) the same simulation will show that asynchronous processors can
simulate synchronous processors when communication is asynchronous.

Subsection 3.1 describes the simulation protocol for a given synchronous pro-
tocol in more detail. In Subsection 3.2, we show how to map a run of the simulation

protocol to a run of the simulated protocol. The proof of the main result is presented

in Subsection 3.3.

3.1 Simulation Protocol

Fix t between 1 and n. Let system Sl(t) be the intersection of systems

BZ(t) and RC and SP. This is the system with at most t Byzantine-faulty pro-

cessors, reliable asynchronous communication and synchronous processors. Let sys-

tem A1(t) be the intersection of systems BZ(t) and RC. This is the system with

at most t Byzantine-faulty processors, reliable asynchronous communication and

asynchronous processors.

Fix a protocol P. We define a simulation protocol P' for P relative to A1(t)

and S1(t) as follows. Each processor p' in P' is assigned a processor p in P to

simulate; it knows the states and transition function for p as well as the processor

correspondence c. Each state d of p' has a component d.sim. It also has components

d.early, which is a set of messages (to be described below), and d.counter, which

tells the sequence number of the next active step p' will take. Every message m

that p' sends in the step following state d has the value of d.counter appended to

it, in a tag called m.tag. Each processor also keeps the necessary information to

decide if message m from p' is the first message from p' with the tag value m.tag.

(More than one such message is only sent if p' is Byzantine-faulty.)

We first describe the states of p'. An initial state d of p' has d.sim equal to

an initial state of p, d.early = 0 and d.counter = 1. There is one initial state of p'

for each initial state of p. Non-initial states are obtained by starting from an initial

state and applying p"s transition function (some number of times).

61

Chapter 3: Simulating Synchronous Processors

We now describe p"s transition function. Suppose that p' is in state d and
receives the set of messages M. Let E be the set of all messages m in M U d.early
such that m is the first message received from the sender with the tag value m.tag.
Let M' be the set of all messages m in E such that m.tag < d.counter. Then p'
calculates the result of the transition function for p applied to d.sim and M' (after

removing the tag components of the messages and applying c to the sender's name).

Call the results the state d" and the message set M". Let d' be the new state of p';
d'.sim is set equal to d", d'.early is set equal to E - M', and d'.counter is set equal

to d.counter + 1. The messages sent are those in M", each tagged with d.counter.

3.2 Constructing Corresponding Runs

Pick a run R' = (HB', {Hp'}p'EP') of P' in system A1(t). We describe a

particular run R of protocol P corresponding to R'. (In the next subsection we

show that R is in S1(t).)

We define the message buffer history HB. Suppose processor p', at its ath

active step, sends message m' with tag b to processor q'. (As will be discussed in

Section 4, if p' is not Byzantine-faulty, then a = b.) Let m be the message obtained
from m' by deleting the tag and changing the sender to p and the recipient to q. If
b is anything other than a positive integer (for instance, missing) or if m' is not the

first message received by q' from p' with tag b, then nothing corresponding to m' is

present in HB. Otherwise, let i = min(a + 1, b + 1). (The goal is for m to be sent

in R either at the same active step when p' actually sends m', or when p' claims,
via the tag, to have sent it, whichever is earlier.) Suppose q' receives m' at its 1 h

active step. Let j = max(b +1, 1). If m' is never received in Hq, or if q' takes fewer
than j active steps, then m is in msgs(HB, k) precisely for all k > i. Otherwise m

is in msgs(HB, k) precisely for i < k < j. No other messages are present. Clearly
HB is a message history.

We define inductively the processor history H, = disid2s 2 ... for processor p

in P, which is simulated by processor p' in P'. Let H, = d's'd's'.... For the

basis, di = d'1.sim. Suppose the processor history up to di has been defined. If

there are fewer than i active steps in H, then si = A and di+1 = di. Otherwise,
si = a, and di+1 = d',.sim, where d'. is the state following the ith active step in
H,,. Clearly, the sequence H, is a processor history for p in P.

Lemma 1: R = (HB, {H,},PP), as defined above, is a run of protocol P.

Proof: We already know that the H,'s are processor histories for P. We must

show that the message buffer behaves properly. Suppose message m has sender p

62

Section 3.3: Results

and recipient q, and i is the smallest integer such that m is in msgs(HB, i). (1)
By construction of R, there exists a such that m' (m with tag b) is sent at p"s
a th active step, and i - 1 = min(a, b). Thus p' takes at least i - 1 active steps,
so step(H,, i - 1) is active. (2) Suppose m is received in R. Let j be the greatest
integer such that m is in msgs(HB, j). By construction of R, there exists I such
that m is received at q"s 1 th active step, j = max(b + 1, 1), and q' takes at least j
active steps. Thus, step(Hq, j) is active.

3.3 Results

This subsection contains the proof that the simulation protocol actually works.
For the remainder of this section, fix a run R' of P' in A1(t), and construct run R

from R' as above. Recall that processor p' in P' simulates processor p in P for runs

R' and R.

Lemma 2: Processor p' takes an infinite number of active steps in R' if and only
if p takes an infinite number of active steps in R.

Proof: By construction of R.

Nonfaulty, sending omission-faulty and failstop-faulty behaviors are preserved
by the simulation. However, if a processor p' exhibits an omission failure upon
receiving in R' and the message omitted is early, then p in R may exhibit a weaker

form of faulty behavior (or perhaps be nonfaulty). Similarly, if a processor p'
exhibits a Byzantine failure in R' and the Byzantine nature of the error only affects

the tag on a message, then p in R may exhibit a weaker form of faulty behavior (or

perhaps be nonfaulty). Lemmas 3 and 4 demonstrate these facts.

Lemma 3: If p' is not Byzantine-faulty and p' operates correctly at step(H,,, i),
then p operates correctly at step(H,, j), where j = active(H,,, i).

Proof: Suppose at step(H,, i), p' applies p's transition function to the set of

messages M', and that p receives the set of messages M at step(H,, j). The following

argument shows that M' = M. We say that a message m' of R' and a message m of

R correspond if the text is the same and the senders and recipients are corresponding

processors (with respect to the simulation). Message m is in M' if and only if there

is some corresponding message m' such that m' is the first message received from

the sender in H, with tag value m'.tag, m'.tag is a positive integer, and m'.tag < j.
These three conditions are true if and only if m is in M.

63

Chapter 3: Simulating Synchronous Processors

By construction of R, state(H,, j) = state(H,,, i).sim. Since p' operates cor-

rectly at step(H,,, i), and it applies p's transition function to state(H,, j) and M,
and since state(H,j + 1) = state(Hi,i + 1).sim, p changes state correctly at

s tep(H H, j).

Suppose p' sends the set of messages N' at step(H,,, i) and p sends the set

of messages N at step(H,, j). Since p' operates correctly, we can deduce that

state(H,,, i).counter = j, all the tags of messages in N' are equal to j, there is at

most one message sent to each processor, and no other messages from p' have tag j
(because p' is not Byzantine-faulty). Thus, if m' is in N', then a corresponding m

is in N, and if m is in N, then a corresponding m' is in N'.

Thus, p sends the correct messages at step(Hp,j). 0

Lemma 4: (a) If processor p' is nonfaulty in R', then processor p is nonfaulty in

R.

(b) If processor p' is failstop-faulty in R', then processor p is failstop-faulty in

R.

(c) If processor p' is omission-faulty in R', then processor p is omission-faulty,

failstop-faulty or nonfaulty in R.

Proof: Parts (a) and (b) follow from Lemmas 2 and 3.

(c) The hypothesis that p' is omission-faulty in R' is equivalent to assuming

that at each active step (of which there are either a finite or infinite number), p'

either operates correctly or exhibits an omission failure, and there is some active

step at which p' exhibits an omission failure.

By Lemma 3, if p' operates correctly at step(H,,, i), then p operates correctly

at step(H,, j), where j = active(H,,, i).

Suppose p' exhibits an omission failure upon sending at step(H,,, i). Then by

construction of R, p exhibits an omission failure upon sending at step(Hp, j), where

j = active(Hp,, i).

Suppose p' exhibits an omission failure upon receiving at step(H,, i), and

one of the messages omitted is m. Let a = active(Hi, i) and m.tag = b. If

b < a, then by construction of R, p exhibits an omission failure upon receiving

at step(H,, a) (p' should have used m in the simulation when m was received). If

64A

Section 3.3: Results

b > a, then by construction of R, p could exhibit an omission failure upon receiving
at step(Hp, b + 1) (p' should have saved m and used it in the simulation when its
counter reached b + 1). However, it might be the case that the presence or absence

of message m is immaterial to p's state change and set of messages sent, in which

case p operates correctly at step(H,, b + 1).

Thus, at each active step in R, p either operates correctly, or exhibits an
omission failure. The result follows.

Lemma 5: R is in system S1(t).

Proof: R is in system SP since, by construction of R, once a processor takes a A

step, all subsequent steps are A steps.

Since R' is in system BZ(t), at least n - t processors are nonfaulty in R'. By
Lemma 4, at least n - t processors are nonfaulty in R. Thus, R is in system BZ(t).

Next we show that R is in system RC. Suppose message m is sent in R by

processor p to processor q, and q takes infinitely many active steps. In R', p' sends

message m' (m with tag b for some positive integer b) to q'. Since R' is in system

RC, and since by Lemma 2 q' takes infinitely many active steps, m' eventually

arrives in R', say at q"s lth active step. Then m is received at step(Hq, j), where

j = max(b + 1, l). O

Theorem 6: System A1(t) simulates system S1(t), for any value of t, 1 < t < n.

Proof: Fix any protocol P. Let P' be the protocol defined above. We must show

that protocol P' in system A1(t) simulates protocol P in system Sl(t). Let the

correspondence c between processors in P' and processors in P be that implicit in

the construction of P'. Define a set F = {f,, : p' E P'} of simulation functions as

follows. Fix p' in P' and let p = c(p'). Define simulation function f,, from states

of p' to states of p to be f,,(d') = d'.sim.

The first direction is showing that for every run R' of P' in system A1(t), there

exists a run R of P in system S1(t) such that R' simulates R via F. Given a run R'

of P' in system A1(t), let R be the run constructed as above. By Lemma 1, R is a

run of P. By Lemma 5, R is in system Sl(t). Now we must show that R' simulates

R via F. By construction of R, fi(states(H,)) = states(Hp). Furthermore, if p'

is nonfaulty in R', then p is nonfaulty in R, by Lemma 4.

The second direction is showing that given a run R of P in S1(t), there is

a run R' of P' in system A1(t) such that R' simulates R via F. The idea of the

65

Chapter 3: Simulating Synchronous Processors

construction is to let processors in R' take the same steps at exactly the same ticks as
do the processors they are simulating in R, and to let the message delays be exactly
the same. The key is to observe that a run in which processors are synchronous is
also in the system with asynchronous processors (i.e., S1(t) is a subset of A1(t)).
The following merely formalizes the idea and adds the appropriate tags to the
messages.

Let R = (HB, {Hp}pEP). Define a message buffer history HB' as follows.
Suppose message m from processor p to processor q is in msgs(HB, i) for some i,
and let b be the smallest integer such that m is in msgs(HB, b). Then message m',
equal to m with tag b - 1, from processor p' to processor q', is in msgs(HBI, i). No

other messages are in msgs(HBI, i).

Define processor history H, = ds'd'' ... as follows. Let d' be the initial state

of p' with sim component equal to state(Hp, 1). Suppose H, has been defined up
to d'. Then si = step(H,, i). If si = A, then d'i+ 1 = d'; otherwise let d'; 1.sim =

state(Hp, i + 1), d'i+1.counter = d'.counter + 1, and d' 1 .early = 0. This defines
the states of Hp,.

It is straightforward to show that R' = (HB', {Hp'}P'EP') is a run of P' in

system A1(t), and that R' simulates R via F. 0

4. Simulating Synchronous Processors with Weaker Faults

If the strongest type of processor fault allowed is omission, then the simulation

and proofs can be slightly simplified. Fix t between 1 and n. Let system S2(t) be the

intersection of systems OM(t) and RC and SP. Let system A2(t) be the intersection

of systems OM(t) and RC. The same simulation as in Section 3 can be used, except

it is no longer necessary to check if a message is the first one with that tag value.

Since no Byzantine faults are considered, the message tag is always the correct active

step count, so in constructing a run of the simulated protocol, variables a and b are

always equal. Furthermore, Lemma 4 implies that each simulated processor has the

same behavior (or better) as its simulating processor.

Theorem 7: System A2(t) simulates system S2(t), for any value of t, 1 < t K n.

The same simplifications apply if the only type of faults is failstop. Fix t

between 1 and n. Let system S3(t) be the intersection of systems FS(t) and RC

and SP. Let system A3 be the intersection of systems FS(t) and RC.

Theorem 8: System A3(t) simulates system S3(t), for any value of t, 1 <t < n.

66

Section 5: Application

5. Application

An important result in the theoretical study of distributed systems is that no
consensus protocol operating in a system with asynchronous processors and asyn-

chronous communication can be guaranteed to terminate, if it must tolerate even

one failstop processor fault [FLP]. This result was subsequently extended [DDS] to

show that no consensus protocol operating in a system with asynchronous commu-

nication, but with processors in lockstep synchrony, can be guaranteed to terminate,
if it must tolerate even one failstop processor fault. The proof in [DDS] followed the

spirit of the proof in [FLP], but required additional machinery and a more involved

argument.

The result in [DDS) can be seen to be a corollary of the result in [FLP] using

Theorem 8 of this chapter.

Given a system S, a consensus protocol P for S is a protocol that satisfies the

following. (1) Each processor's set of non-initial states has two disjoint subsets, the

0-final states and the 1-final states. Once a processor enters a v-final state, it is

always in a v-final state. (2) There exists a run of P in S in which a processor

enters a 0-final state, and there exists a run of P in S in which a processor enters a

1-final state. (3) For every run of P in system S, if some processor enters a v-final

state, then no processor enters a w-final state for w / v. (4) For every run of P in

system S, some processor enters a v-final state, for some v.

The model in [FLP] corresponds in our model to the system A3(1) obtained

from the intersection of systems FS(1) and RC, i.e., the system with asynchronous

processors, at most one of which is failstop-faulty, and reliable but asynchronous

communication.

Theorem 9: (Theorem Iin [FLP]) There is no consensus protocol for system A3(1).

The model in [DDS] corresponds in our model to the system S3(1) obtained

from the intersection of systems FS(1) and SP and RC, i.e., the system with

lockstep-synchronous processors, at most one of which is failstop-faulty, and re-

liable but asynchronous communication.

Theorem 10: (Theorem 10 in [DDS]) There is no consensus protocol for system

S3(1).

We now show that Theorem 10 follows from Theorem 9 using the results of

this chapter.

67

Chapter 3: Simulating Synchronous Processors

Theorem 11: If there is no consensus protocol for system A3(1), then there is no
consensus protocol for system S3(1).

Proof: Suppose in contradiction that there is a consensus protocol P for system
S3(1). By Theorem 8, system A3(1) simulates system S3(1). Thus, there exists a
simulation protocol P' such that P' in system A3(1) simulates P in system S3(1).
The protocol P' can be used to construct a consensus protocol for system A3(1)
simply by letting v-final states of P' be those states d such that d.sim is a v-final
state of P. Since P is a consensus protocol for system S3(1), there is a run Ro of
P in system S3(1) in which some processor enters a 0-final state and another run
R1 of P in system S3(1) in which some processor enters a 1-final state. Since P' in
A3(1) simulates P in S3(1), there is a run R' of P' in system A3(1) that simulates
Ro, i.e., in which some processor enters a 0-final state, and another run R' of P' in
system A3(1) that simulates R 1 , i.e., in which some processor enters a 1-final state.
Since P is a consensus protocol for S3(1), and since P is simulated by P', there is
no run of P' in system A3(1) with processors in conflicting final states, and some
processor eventually enters a final state in every run in system A3(1). Thus there
is a consensus protocol for system A3(1), contradicting the hypothesis. 5

68

Synthesis of Efficient
Drinking Philosophers
Algorithms

A variant of the drinking philosophers algorithm of Chandy and Misra is de-
scribed and proved correct in a modular way, using the I/O automaton model of
Lynch and Tuttle. The algorithm of Chandy and Misra is based on a particular
dining philosophers algorithm, and relies on certain properties of its implementa-
tion. The drinking philosophers algorithm presented in this chapter is able to use
an arbitrary dining philosophers algorithm as a true subroutine; nothing about
the implementation needs to be known, only that it solves the dining philosophers
problem. An important advantage of this modularity is that by substituting a
more time-efficient dining philosophers algorithm than the one used by Chandy
and Misra, a drinking philosophers algorithm with 0(1) worst-case waiting time is

obtained, whereas the drinking philosophers algorithm of Chandy and Misra has

0(n) worst-case waiting time (for n philosophers). Formal definitions are given to

distinguish the drinking and dining philosophers problems and to specify precisely

varying degrees of concurrency.

1. Introduction

In this chapter, we present a modular description and proof of correctness

for an algorithm to solve the drinking philosophers problem in a message-passing

distributed system. Our algorithm uses an arbitrary solution to the dining philoso-

phers problem as a subroutine; by using a time-efficient subroutine, one can obtain

This chapter is joint work with Nancy Lynch.

69

Chapter 4: Drinking Philosophers

a drinking philosophers algorithm with 0(1) worst-case waiting time. Another con-
tribution of this chapter is a complete and rigorous problem statement and proof
of correctness, which are often lacking in work in this area.

The drinking philosophers problem is a dynamic variant due to Chandy and
Misra [CM] of the dining philosophers problem, a much-studied resource allocation
problem [D2] [Ly] [RL]. In the original dining philosophers problem of Dijkstra [D2],
five philosophers (processes) are arranged in a ring with one fork (resource) between
them, and in order to eat (do work), a philosopher must have exclusive access to

both of its adjacent forks. A more general version of the problem allows any number
of processes and puts no restrictions on which processes share resources, as studied

in [Ly] and [CM]. In the drinking philosophers problem, for each process there is a

maximum set of resources that it can request, and each time a process wishes to do

some work, it may request an arbitrary subset of its maximum set.

Our drinking philosophers algorithm is a variant of the one in [CM]. Their algo-
rithm is based on a particular dining philosophers algorithm, and relies on certain

properties of its implementation. Our drinking philosophers algorithm is able to
use an arbitrary dining philosophers algorithm as a true subroutine; nothing about
the implementation needs to be known, only that it solves the dining philosophers
problem. We show that the maximum waiting time for a drinking philosopher to

enter its critical region is roughly equal to the maximum waiting time for a dining
philosopher to enter its critical region in the subroutine. Thus, by replacing the

dining philosophers algorithm of [CM], which has waiting time 0(n), with a dining
philosophers algorithm such as [Ly], which has waiting time 0(1), we obtain a more
efficient drinking philosophers algorithm.

We provide definitions that distinguish the drinking and dining philosophers

problem, and that specify precisely varying degrees of concurrency. We use the

model in [LT], which is useful for stating properties that concern the infinite be-

havior of a system, such as no-deadlock and no-lockout, and encourages modular

algorithm design and verification. This model, together with the particular defi-

nitions developed in this chapter for expressing the safety and liveness properties

for resource allocation problems, make possible a clear and precise proof of correct-

ness for our construction. In fact, the same combination has been used in work on

modular decomposition of other resource allocation problems [W2].

All the program modules in this chapter are specified using implications, essen-

tially of the form: "If the input is well-behaved, then the output is well-behaved."

Such conditional specifications must have the property that the consequent is fully

70

Section 2: Theorems for Modular Correctness Proofs

under the control of the module being specified, assuming the input satisfies the
antecedent. Safety and liveness properties receive a uniform treatment in our condi-
tional specifications; both kinds of conditions are described in English as predicates
on the desired sequences of actions. The basis of our method for proving the cor-

rectness of the drinking philosophers algorithm is a general theorem that identifies

a sufficient condition for when the composition of several modules, each satisfying

a conditional specification, itself satisfies a conditional specification. Composable

specifications for concurrent and/or distributed systems have been widely studied.

In [HO], [La2] and [NDGO], specifications are described using temporal logic, but

no method is presented that is tailored for combining conditional specifications.

Theorems similar to ours do appear in [MC] and [J] (only for safety properties) and

in [MCS] and [St] (for safety and liveness properties).

Section 2 consists of the general theorems used to do modular correctness

proofs. In Section 3, the dining philosophers and drinking philosophers problems

are defined. In Section 4, we describe our algorithm, as an automaton. Section

5 contains the proof of correctness of our algorithm, and Section 6 analyzes the

performance of our algorithm with respect to various complexity measures.

2. Theorems for Modular Correctness Proofs

For the rest of this chapter, we assume the model of [LT]. (See the Appendix

for a summary of its relevant features.) The following theorem provides the formal

basis for the method we use to prove that an automaton that "calls a subroutine"

solves a problem. Suppose automaton S solves a problem whose schedules are all

sequences of actions that satisfy some set of m implications. We would like to

show that the automaton A formed by composing S with another automaton solves

the problem whose schedules are all sequences of actions that satisfy some other

implication. A sufficient condition for showing this is that there is a subset of the m

implications for S such that the antecedent of the desired implication for A implies

the antecedents of the subset of implications for S, and the antecedent of the desired

implication together with the consequents of the subset of implications for S imply

the consequent of the desired implication.

Theorem 1: Let automaton A be the composition of two automata E and S, where

S solves the problem P' consisting of all sequences from ext(S) satisfying the m

implications p' D q', 1 < i < m, where p' and q are predicates on strings from

ext(S). Let p and q be predicates on strings from ext(A). Suppose that for any fair

execution e of A, with schedule a, the following is true: There exists a subset I of

{i : 1 < i < m} such that

71

72 Chapter 4: Drinking Philosophers

(1) if p is true of aext(A), then Aicp' is true of alext(S), and

(2) if p is true of alext(A) and AiEI q. is true of alext(S), then q is true of aext(A).

Then A solves the problem P consisting of all sequences from ext(A) satisfying the
implication p D q.

Proof: Let e be a fair execution of A with schedule a. Since e is fair, elS is fair,
by a result in [LT]. Thus, alext(S) is in Fbeh(S). Since S solves P', every schedule
in Fbeh(S) satisfies p' D q, for 1 < i < m. Assume p is true of afext(A). By
assumption (1), there exists a subset I of {i : 1 < i < m} such that AsiEp' is
true of alext(S). Thus, AiEI q is true of alext(S). By assumption (2), q is true of
a ext(A).

The previous theorem can be easily generalized to show that A satisfies a set
of implications.

Corollary 2: Let automaton A be the composition of two automata E and S,
where S solves the problem P' consisting of all sequences from ext(S) satisfying the
m implications p' D q', 1 < i < m, where p' and q' are predicates on strings from
ext(S). Let pj and qj, 1 < j 5 n, be predicates on strings from ext(A). Suppose
that for any fair execution e of A, with schedule a, the following is true for all j,
1 < j < n: There exists a subset I of {i : 1 < i < m} such that

(1) if p1 is true of ajext(A), then AEIp' is true of alext(S), and

(2) if p3 is true of alext(A) and AEIq' is true of alext(S), then qj is true of
a Iext(A).

Then A solves the problem P consisting of all sequences from ext(A) satisfying the
n implications Pj D qj, 1 < j K n.

The previous corollary can be generalized to prove that an automaton that
calls several subroutines solves a problem.

Corollary 3: Let automaton A be the composition of 1+1 automata E, S1,... Si,
where for 1 K h K 1, Sh solves the problem Ph consisting of all sequences from
ext(Sh) satisfying the mh implications p, D q4, 1 < i < mh, where p and q4 are

predicates on strings from ext(Sh). Let p3 and qj, 1 < j n, be predicates on
strings from ext(A). Suppose that for any fair execution e of A, with schedule a,
the following is true for all j, 1 < J n: For all h, 1 K h K 1, there exists a subset
I of {i: 1 i mh} such that

Section 3: Problem Statement

(1) if p3 is true of acext(A), then A 1 p is true of acext(Sh) for all h, 1 < h < 1,
and

(2) if pg is true of alext(A) and A, qi is true of alext(Sh) for all h, 1 < h < 1,
then qi is true of alext(A).

Then A solves the problem P consisting of all sequences from ext(A) satisfying the
n implications p3 D qj, 1 < j n.

3. Problem Statement

There are n user processes in the system being modeled, and at various times,
each one needs some of the system resources. Only one process at a time may

have access to a resource. Each user's code is divided into four parts. In its trying

region, the user is vying for access to its required resources. Once the resources

are obtained, the user may enter its critical region. When the user is through with

the resources, it enters its exit region, which usually involves some "cleaning up"

activities. Otherwise, the user is in its remainder region. A resource allocation

algorithm specifies the code of the trying and exit regions. Our goal is to define
two resource allocation problems, dining philosophers and drinking philosophers, as

external schedule modules. We imagine an automaton that, given input from some

number of users informing the automaton of their desire to gain or give up a set
U of resources (with input actions T(U) and Ej(U) for each user i), decides which

users are allowed to enter their critical and remainder regions at which times (with

output actions Cj(U) and Ri(U)). The automaton, then, represents the algorithm

used to allocate the resources.

In the dining philosophers problem, each user (or philosopher) always requests

the same set of resources. In the drinking philosophers problem, each user can

request an arbitrary subset of the total set of resources that it ever will want.

We consider several versions of the dining and drinking philosophers problems,
each satisfying successively stronger liveness properties. First we define the basic

dining and drinking philosophers problems, which only satisfy safety conditions.

Then the no-deadlock versions are defined, in which as long as a philosopher wants

to eat (or drink), eventually some philosopher succeeds, but not necessarily the

original one. In the no-lockout versions, any philosopher that wants to eat (or

drink) eventually does so. The no-deadlock and no-lockout conditions assume that

no user keeps resources forever.

T73

Chapter 4: Drinking Philosophers

Up to this point, no real distinction has been made between the dining and
drinking philosophers problems; in fact, a dining philosophers algorithm can be
used to solve the drinking philosophers problem. However, drinkers may be blocked
unnecessarily. A preferable solution would not rule out two drinkers that share a
resource from entering their critical regions simultaneously, if their current resource
requirements are disjoint. We capture part of this intuition by defining the "more-
concurrent" condition - if a drinker requests a set of resources, none of which
is currently being sought or used by another drinker, then the drinker enters its
critical region, even if some other resources are never relinquished. (One might
imagine being interested in defining even stronger forms of the drinking philosophers

problem. In Section 5.4, we explore a few such definitions and discuss why or why
not our algorithm and that in [CM] satisfy them.)

Let Utensils be a finite set of resources, or utensils. Define an n-process utensil

requirement to a collection of n sets Ui, for 1 < i < n, where each U; is a subset

of Utensils, such that no utensil is in more than two Ui's. This restriction makes

the algorithm much simpler to describe and reason about, but is not substantial.
If a resource is shared by k users, then it can be represented by k choose 2 virtual

resources, one shared between each pair of the original k users; to gain the "real"

resource, a user must gain the k - 1 virtual resources shared with it.

In the context of the dining philosophers problem, utensils will be referred to as

forks; in the context of the drinking philosophers problem, utensils will be referred
to as bottles.

3.1 Dining Philosophers

In order to specify the external schedule module for the dining philosophers
problem, we define several properties on strings. Conditions (Il-F), (12-F), (01-F)

and (02-F) state that input and output actions alternate correctly, in the order

Ti, Ci, Ei, Ri. Condition (13-F) models that fact that no user process keeps the

resources forever. (EX-F), (ND-F), and (NL-F) are the exclusion, no-deadlock and

no-lockout conditions. Conditions (Il-F), (12-F), (01-F), (02-F) and (EX-F) are

safety properties; (I3-F), (ND-F) and (NL-F) are liveness properties.

Fix an n-process fork requirement F = {Fi : 1 < i < n}. The following

definitions are all made relative to this fork requirement.

For a positive integer i, let the set {Ti, C;, Ei, Ri} be denoted F- TCER. Since

each user i must request the same set Fi of forks each time, we don't explicitly

include the set of utensils in the action names. (The letter F stands for "fork.")

74

Section 3.2: Drinking Philosophers Problem Statement 75

Given a sequence a from F- TCERi, we define the following conditions, which
a may or may not satisfy.

" (Il-F) For any prefix Oa of a, if a = Ti, then # is empty or # ends in Ri.

" (12-F) For any prefix #a of a, if a = Ei, then # ends in Ci.

" (13-F) If a is finite, then a does not end in C2 .

" (01-F) For any prefix 3a of a, if a = C2 , then 3 ends in Ti.

" (02-F) For any prefix Oa of a, if a = R;, then # ends in E.

Given a sequence a from an alphabet {Ti, C2 , E2 , Ri : 1 < i < n}, where n is

some positive integer, we define the following conditions, which a may or may not

satisfy.

" (EX-F) For any i and j, if a = #1 CA#2 Cj# 3 and if F nFj : 0, then 02 contains

E.

* (ND-F) For any i, if a is finite, then aJF-TCERj ends in Ri.

" (NL-F) For any i, if aIF-TCER is finite, then aIF-TCERi ends in Ri.

The dining philosophers problem for F is the external schedule module MDine

with input actions {Ti, Ei : 1 < i < n} and output actions {C,, Ri : 1 < i < n}; the

schedules of MDine are all sequences a of actions of MDine satisfying the (EX-F)

implication: namely, if (Il-F) and (12-F) are true of ajF-TCER; for all i, then

(01-F) and (02-F) are true of aIF-TCER for all i, and (EX-F) is true of a.

The no-deadlock dining philosophers problem for F is the external schedule

module MNDDine that is the sub-schedule module of MDine consisting of all se-

quences a of actions that, in addition to satisfying the (EX-F) implication, also

satisfy the (ND-F) implication: namely, if (Il-F), (12-F) and (13-F) are true of

ajF-TCERi for all i, then (01-F) and (02-F) are true of aIF-TCER; for all i, and

(EX-F) and (ND-F) are true of a.

The no-lockout dining philosophers problem for F is the external schedule mod-

ule MNL Dine that is the sub-schedule module of MDine consisting of all sequences

a of actions that, in addition to satisfying the (EX-F) implication, also satisfy the

(NL-F) implication: namely, if (Il-F), (12-F) and (13-F) are true of aIF- TCERi for

Chapter 4: Drinking Philosophers

all i, then (01-F) and (02-F) are true of a|F-TCERi for all i, and (EX-F) and
(NL-F) are true of a.

3.2 Drinking Philosophers

Fix an n-process bottle requirement B = {B; : 1 < i < n}. The following defi-
nitions are made relative to this bottle requirement, and most are similar to those

in Section 3.1. Two new conditions, (MC-B) and (14-B)i are used to create implica-

tions to distinguish the drinking philosophers problem from the dining philosophers

problem. (14-B)2 is indexed by process id i, and is a safety condition imposed on

the input, stating that whenever user i requests a set of resources, no other user is

currently requesting or using any of those resources. (MC-B) is a liveness condition

imposed on the output, that the process is never stuck in its trying or exit regions.

For a positive integer i, let the set {T(B), Ci(B), E(B), Ri(B) : B C Bi} be

denoted B- TCER;. (The letter B stands for "bottles.") Given a sequence a from

B- TCER, we define the following conditions, which a may or may not satisfy.

* (Il-B) For any prefix 3a of a, if a = Ti(B) for some B C Bi, then 3 is empty

or # ends in R;(B') for some B' C Bi.

* (12-B) For any prefix #a of a, if a = Ei(B) for some B C Bi, then # ends in

Ci(B).

* (13-B) If a is finite, then a does not end in Ci(B) for any B C Bi.

* (01-B) For any prefix pa of a, if a = Ci(B) for some B C Bi, then / ends in

Ti(B).

e (02-B) For any prefix #a of a, if a = Ri(B) for some B C Bi, then 3 ends in

Ei(B).

* (MC-B) If a is finite, then a does not end in Ti(B) or Ei(B) for any B C Bi.

Given a sequence a from an alphabet U= 1 B- TCER, we define the following
conditions, which a may or may not satisfy.

* (EX-B) For any i and j, if a = #1 Cj(B)# 2 Cj(B')# 3 for some B C Bi and

B' C Bj, and if B n B' # 0, then /2 contains Ei(B).

e (ND-B) For any i, if a is finite, then aIB-TCER, ends in Ri(B) for some

B C B.

76

Section 4: Drinking Philosophers Automaton

" (NL-B) For any i, if a|B-TCER, is finite, then ajB-TCER, ends in Rj(B) for
some B C B,.

" (14-B)i If there is an action Ti(B) in a and there is an action Tj(B') in a for
any j with BnB' : 0, then either there is an action E/(B') between the T)(B')
and T(B) actions, or there is an action C;(B) between the Ti(B) and Tj(B')
actions.

The drinking philosophers problem for B is the external schedule module

MDrink with input actions U7=1 {T(B),Ej(B) : B C Bi} and output actions

U"=1 {C(B),Ri(B) : B C Bi}; the schedules of MDrink are all sequences a of

actions of MDrink satisfying the (EX-B) implication: namely, if (Il-B) and (12-B)

are true of aIB-TCERi for all i, then (01-B) and (02-B) are true of a|B-TCERj

for all i, and (EX-B) is true of a.

The no-deadlock drinking philosophers problem for B is the external schedule

module MNDDrink that is the sub-schedule module of MDrink consisting of all

sequences a of actions that, in addition to satisfying the (EX-B) implication, also

satisfy the (ND-B) implication: namely, if (Il-B), (12-B) and (13-B) are true of

aIB-TCER; for all i, then (01-B) and (02-B) are true of aIB-TCER, for all i, and

(EX-B) and (ND-B) are true of a.

The no-lockout drinking philosophers problem for B is the external schedule

module MNLDrink that is the sub-schedule module of MDrink consisting of all se-

quences a of actions that, in addition to satisfying the (EX-B) implication, also

satisfy the (NL-B) implication: namely, if (Il-B), (12-B) and (13-B) are true of

a|B-TCER, for all i, then (01-B) and (02-B) are true of aIB-TCER, for all i, and

(EX-B) and (NL-B) are true of a.

The more-concurrent drinking philosophers problem for B is the external sched-

ule module MMCDrink that is the sub-schedule module of MNLDrink consisting of

all sequences a of actions that, in addition to satisfying the (EX-B) and (NL-B)

implications, also satisfy the following n implications, (MC-B) for i, 1 < i < n:

namely, if (Il-B) and(12-B) are true of a|B-TCERk for all k, and if (14-B); is true

of a, then (01-B) and (02-B) are true of aIB- TCERk for all k, (EX-B) and (NL-B)

are true of a, and (MC-B) is true of a|B-TCER,.

4. Drinking Philosophers Automaton

In this section we describe an automaton Drink(B) to solve the drinking philoso-

phers problem for the n-process bottle requirement B, in a message-passing dis-

77T

78 Chapter 4: Drinking Philosophers

tributed system. It is created by composing several automata, to be described, and
then hiding most of the actions, in order for the external actions to be consistent
with the definition of the problem. The component automata are Drinker(i), for
1 < i < n, and any automaton Dine(Y) that solves the dining philosophers problem
for F = B. After describing the Drinker automata, we identify the actions that are
hidden in the creation of Drink(B). But first, we describe the algorithm informally.

As soon as a drinker enters its trying region, it does the following two tasks:
(1) It sends request messages for all bottles that it needs but lacks. (2) If the dining
subroutine is in its remainder region, the drinker sends it to its trying region. Any
requests received for needed bottles while the drinker is in its trying region are
deferred; other requests are satisfied. If a demand for a bottle is received, it is
satisfied, unless the dining subroutine is in its critical region, in which case the
demand is deferred. (If the demand is for an unneeded bottle, it is satisfied.) If the
dining subroutine enters its critical region, the drinker sends demand messages for
all the bottles it still lacks.

Eventually, the drinker obtains all needed bottles and can enter its critical
region. Any requests or demands for bottles in use are deferred; others are satisfied.
If the dining subroutine ever is in its critical region, it is sent to its exit region.

As soon as the drinker enters its exit region, all deferred requests and demands
are satisfied. If the dining subroutine enters its critical region, it is immediately
sent to its exit region.

In its remainder region, the drinker satisfies all requests and demands for bot-
tles. If the dining subroutine enters its critical region, it is immediately sent to its
exit region.

Our algorithm manipulates the dining philosophers subroutine in the same way
as the algorithm in [CM], except that the dining critical region is left as soon as the
drinking critical region is entered, instead of when the drinking critical region is left.
Also, the rules for relinquishing and keeping bottles, which in [CM) require knowing
the current state of the particular dining philosophers algorithm, are different in
our solution.

The set of possible messages is {req(b), sat(b), dem(b) : b E Utensils}.

The state of Drinker(i), 1 < i < n, consists of values for the following variables:
drink-region, dine-region, deferred, bottles, req-bottles, buflj] for all j J i, send-
Ti, and send-Ei. The region variables take on the values T, C, E and R, and

Section 4: Drinking Philosophers Automaton

indicate which region the ith dining and ith drinking philosophers are in. The
deferred variable is a set of (bottle,id) pairs, indicating whose requests for which
bottles have been deferred. The bottles and req-bottles variables are sets of bottles,
and indicate which bottles the ith drinking philosopher has and which it requires,
respectively. For each j # i, the variable bufflj] is a FIFO queue of messages to send

to Drinker(j), and is manipulated with operations enqueue and dequeue. The send
variables are Booleans and control when the named output actions are enabled.

Initially, the regions are R; deferred, req-bottles, and all the bufij] are empty; and

the sends are false. Each bottle shared by Drinker(i) and Drinker(j) is initially in

the bottles variable of either Drinker(i) or Drinker(j) but not both.

The actions of Drinker(i) are listed below, together with their preconditions

and effects. (There are no internal actions.) First we define two macros, SAT and

DEFER.

SAT(b,j) == enqueue(bujflj],sat(b)); bottles +- bottles -{b}

DEFER(b, j) == if b E req-bottles then deferred +- deferred U{(b, j)} else SA T(b, j)

Input actions:

* Ti(B), B C Bi
Effects:

drink-region <- T

req-bottles <- B

for all j #A i and b E B n Bj: if b V bottles then enqueue(buffj],req(b))

if dine-region = R then send-Ti <- true

* E,(B), B C Bi
Effects:

drink-region +- E

for all (b, j) E deferred: SAT(b,j)
deferred +- 0

* deliver(sat(b), j,i) for all j # i, b E Bi n Bj

Effects:
bottles <- bottles U{b}

e deliver(req(b),.j, i) for all j # i, b E Bi n Bj

Effects:
case drink-region of

79

80 Chapter 4: Drinking Philosophers

T or C: DEFER(b,j)
E or R: SAT(b,j)

e deliver(dem(b), j, i) for all j # i, b c Bi n Bj
Effects:

if b E bottles then

if drink-region = C or (drink-region = T & dine-region = C) then

DEFER(b, j)
else [SAT(b,j); deferred <- deferred -{(b,j)}

. Ci

Effects:
dine-region <- C

if drink-region = T then

for all j # i and b E req-bottles nBj : if b g bottles then
enqueue(bufljj], dem(b))

else send-Ei <- true

* Ri

Effects:

dine-region +- R

if drink-region = T then send-Ti <- true

Output actions:

e Ci(B), B C Bi
Preconditions:

drink-region = T and req-bottles C bottles and send-Ti = send-Ei = false

Effects:

drink-region <- C

if dine-region = C then send-Ei <- true

e Ri(B), B C Bi

Preconditions:
drink-region = E and send-Ti = send-Ei = false

Effects:
drink-region <- R

* deliver(m, i, j) for all j : i, m E {req(b), sat(b), dem(b) : b E Bi n Bj}

Preconditions:

Section 5.1: Drinking Philosophers Correctness Proof 81

m is at head of bufij]

Effects:
dequeue(buflij])

" Tj

Preconditions:
send-Ti = true

Effects:
dine-region <- T

send-Ti +- false

" Ei

Preconditions:
send-E; = true

Effects:
dine-region +- E

send-Ei +- false

The output actions are partitioned into n classes, one for the delivery of mes-

sages in each buflj], and one for all the other actions. Formally, the subsets

of the output actions are {Cj(B),Rj(B),Ti,Ej : B C Bi}, and for each j -# i,
{deliver(m, i, j) : m = req(b), dem(b), or sat(b), b E Bi n Bj}. This partition guar-

antees that messages are eventually delivered in fair executions, since the message

queues are FIFO. In essence, the buff variables are modeling separate pieces of

hardware, the communication links.

The automaton Drink(B) is formed by composing Drinker(i), 1 < i < n, and

Dine(F), where F = B, and then hiding all actions except U= 1 B-TCER,.

5. Proof of Correctness

5.1 Drinking Philosophers

Our goal is to use Corollary 2 to prove that Drink(B) solves the drinking

philosophers problem. The drinking philosophers problem is defined by the (EX-

B) implication. Interestingly enough, showing that Drink(B) solves the drinking

philosophers problem requires nothing about the behavior of Dine(F). Thus, in us-

ing Corollary 2, the set of implications of the subroutine used to verify the (unique)

implication of the composition is empty. Consequently, condition (1) of the theorem

82 Chapter 4: Drinking Philosophers

is trivially true. Lemmas 4 and 5 are used to verify condition (2). Theorem 6 puts
the pieces of the argument together.

(Throughout this paper, Greek letters stand for sequences of actions, and Ro-
man letters for single actions.)

Lemma 4: Let e be an execution of Drink(B) with schedule a such that (Il-B)

and (12-B) are true of a|B-TCER for all i. Then (01-B) and (02-B) are true of

ajB-TCER for all i.

Proof: By induction on the length of the prefixes 7r of a.

Basis: 17rI = 0. The lemma is vacuously true.

Induction: br > 0. Assume the lemma is true for all prefixes of a shorter

than 7r. Let 7r = ir'a. Then ir'IB-TCERi satisfies (01-B) and (02-B). If a is not in

B- TCER; for any i, then the inductive hypothesis gives the result for 7r. Suppose

a is in B- TCERi. Then the inductive hypothesis implies that ir B- TCERj satisfies

(01-B) and (02-B) for all j f i.

For now, assume that 7r' B- TCER, = 6b. The following four cases show that

7r|B-TCER, = Sba satisfies (01-B) and (02-B).

Case 1: b = Ti(B) for some B C Bi.

By assumption that alB- TCER satisfies (I1-B) and (I2-B), a cannot be Ti(B')

or Ei(B') for any B' C Bi.

After b, drink-region is T and does not change until further actions in B- TCERi

occur. Since Ri(B') is not enabled unless drink-region is E, a cannot be Ri(B') for

any B' C Bi.

Ci(B') is only enabled if req-bottles = B', which is only true if the most recent

B-TCER, action is Ti(B'). Thus Ci(B) is the only possibility.

Case 2: b = Ci(B) for some B C Bi.

By assumption that ajB-TCER, obeys (Il-B), a cannot be Ti(B') for any

B' C Bi.

After b, drink-region is C and does not change until further actions in B-

TCERi occur. Since Ri(B') is not enabled unless drink-region is E, and Ci(B')

Section 5.1: Drinking Philosophers Correctness Proof 83

is not enabled unless drink-region is T, a can be neither of these actions for any

B' C Bi.

Thus a = Ei(B) is the only possibility, since Ei(B') for any B' : B is ruled

out by (12-B).

Case 3: b = Ei(B) for some B C B;.

By assumption that ajB-TCER obeys (Il-B) and (12-B), a cannot be Ti(B')

or Ei(B') for any B' C Bi.

After b, drink-region is E and does not change until further actions in B- TCERi

occur. Since Ci(B') is not enabled unless drink-region is T, a cannot be Ci(B') for

any B' C Bi.

Ri(B'), for any B' G Bi, is only enabled if the most recent B- TCER, action is

Ei(B'). Thus a = Ri(B) is the only possibility.

Case 4: b = Ri(B) for some B C Bi.

By assumption that a|B- TCER, obeys (12-B), a cannot be Ei(B') for any

B' C Bi.

After b, drink-region is R and does not change until further actions in B- TCER,

occur. Since Ci(B') is not enabled unless drink-region is T and Ri(B') is not enabled

unless drink-region is E, a cannot be either of these actions for any B' C Bi.

Thus a = Ti(B'), for some B' C Bi, is the only possibility.

End of Cases.

If there is no such b, i.e., a is the first action from B- TCERi in ir, then essentially

the same argument as Case 4 shows that a must be Ti(B') for some B' C Bi. 0

We say that bottle b resides at Drinker(i) in state s if b is in Drinker(i)'s

bottles variable in s. The following lemma implies that b resides at no more than

one Drinker in any state.

Lemma 5: Let e be an execution of Drink(B) with schedule a such that (I1-B) and

(12-B) are true of a|B-TCER; for all i. Let b be a bottle shared between Drinker(i)

and Drinker(j). Then in every state of e, the following are true:

84 Chapter 4: Drinking Philosophers

(a) Exactly one of the following is true: b resides at Drinker(i), b resides at
Drinker(j), sat(b) is in buffli] at Drinker(j), or sat(b) is in bujflj] at Drinker(i).

(b) At most one sat(b) message is in bufili] at Drinker(j) and buflj] at
Drinker(i).

(c) If (b, j) is in deferred at Drinker(i), then b resides at Drinker(i).

(d) If req(b) is at the head of bufihi] at Drinker(j), then b resides at Drinker(i)

and (b,j) is not in deferred at Drinker(i).

Proof: Let e = soaisi ... amsm We proceed by induction on m, which indexes

the states of e.

(a), (b), (c) and (d) are obviously true of so, since it is a start state. Assuming
(a), (b), (c) and (d) are true of all states of e up to and including sm-1, we show
they are true of sm.

We show that (a), (b) and (c) are true in sm by considering all possible values
for the action am.

Case 1: am = Ti(B) for some B C B;. Inspecting the code reveals that this

action causes no change to either deferred or bottles at Drinker(i), and causes no

sat(b) to be placed in any buff. Thus, the inductive hypothesis that (a),(b) and (c)
are true in sm-1 implies that they are true in sm-

Case 2: am = Ej(B) for some B C Bi.

(a) and (b) If (b,j) is in deferred at Drinker(i) in sm_1, then by the inductive
hypothesis for (c), b resides at Drinker(i) in sm-1, and by the inductive hypothesis

for (a), b does not reside at Drinker(j) and there is no sat(b) in either buff in sm-1.

Thus, in sm, b does not reside at Drinker(i) or Drinker(j), exactly one sat(b) is in

bufijj] at Drinker(i), and no sat(b) is in buffli] at Drinker(j).

If (b,j) is not in deferred at Drinker(i) in sm-1, then there are no changes in

going from sm_1 to sm that affect the truth of (a) and (b).

(c) Since deferred at Drinker(i) is empty in sm, (c) is vacuously true.

Case 3: am = deliver(sat(b),j,i).

(a) and (b) In sm-1, b does not reside at Drinker(i) or Drinker(j), and there

is no sat(b) in buflj] at Drinker(i), since there is exactly one sat(b) in bufli) at

Section 5.1: Drinking Philosophers Correctness Proof 85

Drinker(j). Thus, in sm, b resides at Drinker(i) and not at Drinker(j), and there
is no sat(b) in either buff variable.

(c) Since b resides at Drinker(i) in sm by the argument for (a) and (b), (c) is
true whether or not (b,j) is in deferred.

Case 4: am = deliver(req(b),ji).

Thus, req(b) is at the head of buffli] at Drinker(j) in sm-1. By the inductive
hypothesis for (d), b resides at Drinker(i) and (b, j) is not in deferred in sm-.

(a) and (b) Since b resides at Drinker(i) in sm-1, b does not reside at Drinker(j)

and there is no sat(b) in either buff in sm-1. Thus, in sm, either the same is true, or

else b does not reside at either Drinker and there is exactly one sat(b) in one buff.

(c) If the request is deferred as a result of am, then b still resides at Drinker(i)
in sm. If the request is not deferred, then b is removed from bottles and (b,j) is not
in deferred in sm, because it is not in sm-1.

Case 5: am = deliver(dem(b),j,i).

(a), (b) and (c) are true in sm because they are true in sm-1 and the code

checks if b resides at Drinker(i) before making any changes.

Case 6: am is Ti, Ci, Ei, Ri, Ci(B) or Ri(B).

(a), (b) and (c) are true in sm because they are true in sm-1 and no relevant
changes are made as a result of any of these actions.

End of (a), (b) and (c).

We prove that (d) is true in sm by contradiction. Assume that in Sm, req(b) is
at the head of buflfi] at Drinker(j), but that either b does not reside at Drinker(i)

or that (b,j) is in deferred at Drinker(i).

Suppose b does not reside at Drinker(i). The req(b) at the head of the buff is
triggered by a most recent Tj(B) action in e, for some B ; Bj. If, prior to this
Tj(B), b never resides at Drinker(j), then it is easy to see that this is the first req(b)

sent by Drinker(j) and that no dem(b) is sent by Drinker(j) up to this point. Thus,
b initially resides at Drinker(i). There are two ways that b can leave Drinker(i),
either by the delivery of req(b) or dem(b), or by the occurrence of some Ei(B')
action when (b,j) is in deferred. But (b,j) can only be in deferred if previously a

Chapter 4: Drinking Philosophers

req(b) or dem(b) is delivered. Thus, b still resides at Drinker(i) as long as this first
req(b) has not been delivered.

Assume that at some prior point, b does reside at Drinker(j). (See Figure 1.)

b not

Drinker(i) a here

sat(b) req(b)

Drinker(j)

TI(B)

Figure 1

Some action occurs before the Tj(B) (triggering the req(b) at the head of bugi])
that causes sat(b) to be put in bufiji] at Drinker(j). Since req(b) is at the head of the
buff, this sat(b) is delivered before sm, at which point b resides at Drinker(i). Yet,
b does not reside at Drinker(i) in sm. How can this be? Some action a occurring
between the delivery of the sat(b) to Drinker(i) and sm causes a sat(b) to be placed
in bufihj] at Drinker(i).

Case 1: a is the delivery of a req(b) or dem(b) message. (See Figure 2.)
When this message is sent, Drinker(j) is in drink-region T and remains there until
b resides at Drinker(j). Yet b does not reside at Drinker(j) until after the Tj(B).
This contradicts (Il-B).

Case 2: a is Ei(B') for some B' C Bi, and (b,j) is in deferred at Drinker(i).
Now (b, j) is in deferred because of the delivery of some req(b) or dem(b) message
from Drinker(j). Call this message m.

Case 2a: The message m follows sat(b) in buffli] (at Drinker(j)). The same
argument as in Case 1 gives a contradiction.

Case 2b: The message m precedes sat(b) in buffli]. (See Figure 3.) Then (b,j)
is in deferred at the same time as sat(b) is in bufi] at Drinker(j). By the inductive
hypothesis for (c), as long as (b, j) is in deferred, b resides at Drinker(i). This
contradicts the inductive hypothesis for (a).

86

Section 5.1: Drinking Philosophers Correctness Proof

Drinker(i)

Drinker(j)

sat(b)

b not
a here

req(b at(b)
or rqb

dem(b

Tj(B)

Figure 2

Drinker(i)

Drinker(j)

Tj(B)

Figure 3

We have now shown that b resides at Drinker(i) in sm.

It remains to show that (b, j) is not in deferred at Drinker(i)
it is. (See Figure 4.)

in sm. Suppose

Then (b, j) is put in deferred at Drinker(i) by the delivery of either a req(b)
or a dem(b) message from Drinker(j). Call this message m. When the message m
is placed in buffi], due to action a, Drinker(j) is in drink-region T and b does not
reside at Drinker(j). By Lemma 4, there is an action C3 (B') (with b in B') between
a and the Tj(B) that triggers the req(b) message at the head of buffli] in sm. When
the C,(B') occurs, b resides at Drinker(j). Since b does not reside at Drinker(j)

when the T(B) occurs, a sat(b) message is put in buffli] at Drinker(j) after the
message m. But since buffli] is FIFO, sat(b) is delivered after m is and before the
req(b) is. Thus, there is a state in which (b,j) is in deferred at Drinker(i), and by
the inductive hypothesis for (c), b resides at Drinker(i), yet simultaneously, sat(b)

87

Chapter 4: Drinking Philosophers

Drinker(i)
sat(b)

sat(b req(b)

Drinker(j)

a C,(B') T(B)

Figure 4

is in buffi)i. This situation contradicts the inductive hypothesis for (a). 0

Here is the main theorem.

Theorem 6: Drink(B) solves the drinking philosophers problem for B.

Proof: For the (EX-B) implication defining the drinking philosophers problem, we

verify that conditions (1) and (2) of Corollary 2 are true, where the corresponding
set of implications of the subroutine is empty. Condition (1) is vacuously true.

Condition (2) is reduced to showing the (EX-B) implication. Let e be a fair
execution of Drink(B) with schedule a such that (I1-B) and (12-B) are true of aJB-

TCER, for all i. By Lemma 4, (01-B) and (02-B) are true of aIB-TCER; for all
i.

We show (EX-B) is true of alezt(Drink(B)). Let a = a1Cj(B)a2 Cj(B')a3 for

some i and j, with B C;Bi, B' CBi, andBfnB' #0. Choose b inBfnB'.

By Lemma 5, in every state of e, b resides at no more than one drinker. The

C(B') is not enabled until all bottles in B' reside at Drinker(j), yet b resides at

Drinker(i) from before the Ci(B) until an Ei(B) action occurs. Thus a2 contains

Ei(B), and (EX-B) is true of alext(Drink(B)) since Ci(B), E(B) and C(B') are

in ext(Drink(B)).

By Corollary 2, Drink(B) solves the drinking philosophers problem. 0

5.2 No Deadlock and No Lockout

In this subsection we show that Drink(B) solves the no-deadlock (resp., no-

lockout) drinking philosophers problem if Dine(F) solves the no-deadlock (resp.,

88

Section 5.2: No Deadlock and No Lockout Proof

no-lockout) dining philosophers problem. Again, we use Corollary 2. The no-
deadlock and no-lockout versions of the drinking philosophers problem are both
defined by two implications, the (EX-B) and (ND-B) implications for no-deadlock,
and the (EX-B) and (NL-B) implications for no-lockout. The (EX-B) implication
has been taken care of in the previous section. First we prove in Lemma 7 that the
subroutine behaves properly in the composition. Lemmas 8 and 9 verify condition
(1) of Corollary 2 for the (ND-B) and (NL-B) implications, and Lemma 10 verifies
condition (2). Theorems 11 and 12 finish the argument.

Lemma 7 shows that Dine(.F) behaves properly in the composition. (This
lemma and the next one do not rely on any liveness properties such as fairness or

(I3-B), and thus could have been in the previous section, but the results were not

needed there.)

Lemma 7: Let e be a fair execution of Drink(B) with schedule a such that (Il-F)

and (I2-F) are true of a|F-TCERi for all i. If Dine(F) solves the dining philosophers

problem for F, then

(a) aIF-TCER, satisfies (01-F) and (02-F) for all i.

(b) ajext(Dine(F)) satisfies (EX-F).

Proof: Since e is fair, elDine(F) is fair, by a result in [LT]. Thus ajext(Dine(F))

= # is in Fbeh(Dine(F)). Since (Il-F) and (12-F) are true of #IF-TCER for all i,
(01-F) and (02-F) are true of #IF-TCERi = aIF-TCERi for all i, and (EX-F) is

true of #. 5

The next lemma shows that (Il-F) and (12-F) are true for Dine(F) in the

composition. This fact is true simply because of local code and requires nothing

about the input actions to the composition.

Lemma 8: Let e be an execution of Drink(B) with schedule a. Then (I1-F) and

(I2-F) are true of a|F-TCERi for all i.

Proof: By induction on the length of the prefixes r of a.

Basis: IrI = 0. The lemma is vacuously true.

Induction: |H| > 0. Assume the lemma is true for all prefixes of a shorter than

ir. Let 7r = ir'a. Then 7r'jF-TCER satisfies (Il-F) and (12-F) for all i. If a is not in

F- TCER for any i, then the inductive hypothesis gives the result for 7r. Suppose a

89

90 Chapter 4: Drinking Philosophers

is in F- TCERi. The inductive hypothesis implies that 7rlF- TCERj satisfies (Il-F)
and (12-F) for all j # i.

For now, assume that 7r'|F- TCER, = Sb. The following four cases show that
irIF- TCERi = Sba satisfies (Il-F) and (12-F).

Case 1: b = Ti.

After b, dine-region is T and does not change until further actions in F- TCERi
occur. Since Ti is only enabled when dine-region is R, and Ei is only enabled when
dine-region is C, a can be neither of these actions.

Case 2: b = Ci.

After b, dine-region is C and does not become R until Ri occurs. Since T is
only enabled when dine-region is R, a cannot be Ti.

Case 3: b = Ei.

After b, dine-region is E and does not change until further actions in F- TCER
occur. Since T is only enabled when dine-region is R, and Ei is only enabled when
dine-region is C, a can be neither of these actions.

Case 4: b = Ri.

After b, dine-region is R and does not change until further actions in F- TCERi
occur. Since E is only enabled when dine-region is C, a cannot be Ei.

End of Cases.

If there is no such b, i.e., a is the first action of F- TCERi in r, then initially
dine-region is R. The same argument as in Case 4 shows that a cannot be Ei. 0

Next we show that (I3-F) is true for the Dine(F) subroutine. One of the
hypotheses is that Dine(.F) solve the dining philosophers problem; this assump-
tion is sufficient for the results of this subsection, since an automaton that solves
the no-deadlock (or no-lockout) dining philosophers problem also solves the dining
philosophers problem.

Lemma 9: Let e be a fair execution of Drink(B) with schedule a such that a|B-
TCER, satisfies (Il-B), (12-B) and (I3-B) for all i. If Dine(.F) solves the dining
philosophers problem for F = B, then a|F-TCERi satisfies (I3-F) for all i.

Section 5.2: No Deadlock and No Lockout Proof

Proof: Suppose in contradiction that aIF- TCER ends in C for some i.

If Drinker(i) is in drink-region C, E or R when the final Ci occurs, Ei becomes
enabled and remains enabled throughout e. Ti never becomes enabled once Ei is
(by Lemma 8), and Ci(B) and Ri(B) are not enabled for any B (since send-Ei is
true). Thus, no output action in this class of the partition occurs after the final C2 ,
giving a contradiction since e is fair.

Assume Drinker(i) is in drink-region T when the final Ci occurs. Then for
some B G Bi, a = a1 Ti(B)a 2 Cia 3, where there is no Ci(B) in a2, and no action
from F- TCER; in a3. We show that eventually Ci(B) occurs in a3. When the
final Ci occurs, if there is any b in B that is not in bottles at Drinker(i), dem(b) is
placed in bufj], where b E B3 . By fairness, eventually deliver(dem(b),ij) occurs.
If Drinker(j) is in drink-region C at that time, then (b, i) is put in its deferred
variable. By (I3-B), there is a subsequent Ej(B') actions, for some B' C By, and
at that time, sat(b) is put in bulhi] at Drinker(j). Suppose Drinker(j) is not in
drink-region C when the demand is delivered. By Lemma 8 and part (b) of Lemma
7, Drinker(j) is not in dine-region C, and sat(b) is immediately placed in buffli]. In
either case, by fairness, eventually deliver(sat(b),j, i) occurs. Thus, all bottles in B
eventually reside at Drinker(i) and remain there, since all subsequent requests are
deferred. Thus, Ci(B) is enabled, and occurs, causing Ei to become enabled, again
giving a contradiction.

The next lemma verifies condition (2) of Corollary 2 for showing no-deadlock
and no-lockout.

Lemma 10: Let e be a fair execution of Drink(B) with schedule a such that

a|B-TCERi satisfies (I1-B), (I2-B) and (13-B) for all i. Assume that a|F-TCERi

satisfies (01-F) and (02-F) for all i, and aIext(Dine(.F)) satisfies (EX-F) and (ND-

F) (resp., (NL-F)), with F = B. For any i, if a (resp., a|B-TCERi) is finite, then

a|B- TCER ends in Ri(B) for some B C Bi.

Proof: Suppose in contradiction that there exists an i such that a (resp., a|B-
TCER) is finite and a|B-TCERi does not end in Ri(B) for any B C B2 .

We now show that aIF- TCERi ends in Ri. Let # = al ext(Din e(F)).

No-deadlock: Since a is finite, # is also finite. Since # satisfies (ND-F), #3F-
TCER = a|F-TCERi ends in Ri.

91

92 Chapter 4: Drinking Philosophers

No-lockout: Since a|B-TCERi is finite, a|F-TCER = /|F-TCERi is also fi-
nite, because Ti is only enabled if some T(B) occurs. Since # satisfies (NL-F),
I|F-TCERi = ajF-TCER ends in R;.

We now show that any choice other than Ri(B) for the final action in a|B-
TCER; leads to a contradiction.

Case 1: aIB-TCERi ends in T(B) for some B C Bi. Then Drinker(i) remains

in drink-region T for the rest of e. We show that Ei becomes enabled after the final
Ti(B), and use this fact to produce a contradiction.

Subcase 1a: If Drinker(i) is in dine-region T when the final Ti(B) occurs, then

subsequently E becomes enabled, since a|F- TCERi ends in R.

Subcase 1b: If Drinker(i) is in dine-region C when the final Ti(B) occurs, then

there is a subsequent R,, since a F- TCER ends in Ri. T is immediately enabled.

Ei never becomes enabled once Ti is (by Lemma 8), and Ci(B') and Ri(B') are not
enabled for any B' (since send-Ti is true). Ti eventually occurs, since e is fair. Since

a IF- TCER; ends in Ri, eventually Ei becomes enabled.

Subcase 1c: If Drinker(i) is in dine-region E when the final Ti(B) occurs, then

there is a following Ri, since aIF- TCER, ends in Ri. T is immediately enabled, and

the same argument as in Subcase lb shows that subsequently Ei becomes enabled.

Subcase id: If Drinker(i) is in dine-region R when the final Ti(B) occurs,
then Ti is immediately enabled. The same argument as in Subcase lb shows that

subsequently Ei becomes enabled.

End of Subcases.

We have shown that Ei becomes enabled after the final Ti(B). But Ei becomes
enabled in one of two ways: either drink-region is C, E or R when some Ci action

occurs, which is not possible since drink-region remains T, or else some Ei(B) action

occurs, contradicting our assumption that Ti(B) is the last action in aIB-TCERi.

Case 2: aIB-TCERi ends in Ci(B) for some B C Bi. This case is ruled out by

(I3-B).

Case 3: a|B-TCERi ends in Ei(B) for some B C Bi. Ci(B) is never enabled
after this point, because Drinker(i) remains in drink-region E. If Ti is enabled when

the final E,(B) occurs, it eventually occurs (cf. the argument in Subcase 1b), and

Section 5.2: No Deadlock and No Lockout Proof

since a|F- TCER, ends in R;, there are subsequent Ci, Ei and Ri actions. If Ei is
enabled when the final ES(B) occurs, there are subsequent Ej and R, actions since
aJF-TCERi ends in Ri. But after this R, action, T, and thus Ei, are never again

enabled. So after some point, Ri(B), and no other action in the same class of the

partition, is enabled for the rest of e, contradicting e being fair. El

The main theorems follow.

Theorem 11: If Dine(F) solves the no-deadlock dining philosophers problem for

F, then Drink(B) solves the no-deadlock drinking philosophers problem for 8 = F.

Proof: We verify conditions (1) and (2) of Corollary 2 for the (EX-B) and (ND-B)

implications.

The same argument as in the proof of Theorem 6 verifies conditions (1) and

(2) for the (EX-B) implication.

Consider the (ND-B) implication. The corresponding set of implications of the

subroutine consists solely of the (ND-F) implication. Let e be a fair execution of

Drink(B) with schedule a.

(1) Suppose that alB-TCERi satisfies (Il-B), (12-B) and (13-B) for all i. By

Lemmas 8 and 9, aIF- TCERi satisfies (Il-F), (12-F) and (13-F) for all i.

(2) Suppose that alB-TCER; satisfies (Il-B), (12-B) and (13-B) for all i, and

that aIF- TCERi satisfies (01-F) and (02-F) for all i, and alext(Dine(F)) satisfies

(EX-F) and (ND-F). The same argument as in the proof of Theorem 6 shows that

aIB- TCER satisfies (01-B) and (02-B) for all i and that alext(Drink(B)) satisfies

(EX-B). By Lemma 10, if a is finite, then alB-TCERi ends in R, for all i, thus

showing that alext(Drink(B)) satisfies (ND-B).

By Corollary 2, Drink(B) solves the no-deadlock drinking philosophers prob-

lem. 11

Theorem 12: If Dine(F) solves the no-lockout dining philosophers problem for F,
then Drink(B) solves the no-lockout drinking philosophers problem for B = F.

Proof: We verify conditions (1) and (2) of Corollary 2, for the (EX-B) and (NL-B)

implications.

The same argument as in the proof of Theorem 6 verifies conditions (1) and

(2) for the (EX-B) implication.

93

94 Chapter 4: Drinking Philosophers

Consider the (NL-B) implication. The corresponding set of implications of the
subroutine consists solely of the (NL-F) implication. Let e be a fair execution of
Drink(B) with schedule a.

(1) Suppose that a|B-TCER satisfies (Il-B), (12-B) and (13-B) for all i. By
Lemmas 8 and 9, a|F- TCERi satisfies (Il-F), (12-F) and (13-F) for all i.

(2) Suppose that alB-TCERj satisfies (Il-B), (12-B) and (13-B) for all i, and
that alF-TCER satisfies (01-F) and (02-F) for all i, and alext(Dine(.F)) satisfies
(EX-F) and (NL-F). The same argument as in the proof of Theorem 6 shows that
alB-TCER satisfies (01-B) and (02-B) for all i and that alext(Drink(B)) satisfies
(EX-B). By Lemma 10, if alB- TCER, is finite for some i, then alB- TCERi ends in
Ri, thus showing that aI ext(Drink(B)) satisfies (NL-B).

By Corollary 2, Drink(B) solves the no-lockout drinking philosophers prob-
lem. D

5.3 More Concurrent

In this subsection we show that Drink(B) solves the more-concurrent drinking
philosophers problem if Dine(.F) solves the no-lockout dining philosophers problem.
Again, we want to use Corollary 2. The more-concurrent drinking philosophers
problem is defined by n + 2 implications, (EX-B), (NL-B), and (MC-B) for i, 1 <
i < n. The (EX-B) and (NL-B) implications have been taken care of in previous
sections. In this section we pick an arbitrary i and concentrate on the implication
(MC-B) for i. Showing this implication is true requires nothing about the Dine(F)
subroutine. Thus, in using Corollary 2, the set of implications of the subroutine
used to verify (MC-B) for i is empty. Consequently, condition (1) of Corollary 2
is trivially true. Lemma 13 is used to verify condition (2). Theorem 14 puts the
pieces together.

Lemma 13: Let e be a fair execution of Drink() with schedule a such that (Il-B)

and (12-B) are true of a|B-TCERk for all k, and (14-B) is true of acext(Drink(B))
for some fixed i. Then a|B-TCERj satisfies (MC-B).

Proof: Suppose in contradiction that aIB- TCER ends in Ti(B) or Ej(B) for some
B C Bi.

Case 1: ajB-TCERj ends in Ti(B). When the final Ti(B) occurs, request mes-
sages for any bottles in B that do not reside at Drinker(i) are placed in Drinker(i)'s

Section 5.3: More Concurrent Proof

buff variables. Since e is fair, they are eventually delivered. By (14-B)i, every recipi-
ent is in drink-region E or R when the request arrives, and immediately satisfies the
request. Since e is fair, the satisfy messages are eventually delivered to Drinker(i).

Again by (14-B)i, no request or demand message for any bottle in B is delivered to

Drinker(i) as long as it is in (the current) drink-region T. Thus, once a bottle in B

resides at Drinker(i) after the final Ti(B), it remains there.

If Ei is enabled when the final Ti(B) occurs, it eventually occurs by fairness

of e, since no more actions in B- TCERi occur and Ti cannot be enabled. It is

possible that an Ri action occurs after the Ei, in which case Ti becomes enabled.

If T is enabled in any state after the final Ti(B), it eventually occurs, since no

more actions in B- TCERi occur and E, cannot be enabled. It is possible that a Ci

action occurs after the Ti, however, no Ei action is subsequently enabled, because
Drinker(i) remains in drink-region T. Thus, eventually Ci(B) and no other action

in the same class of the partition is enabled and remains enabled, yet never occurs,
contradicting e being fair.

Case 2: alB-TCERi ends in Ei(B). If T is enabled when the final Ri(B)

occurs, it eventually occurs by fairness of e, since no more actions in B-TCERi

occur and Ei cannot be enabled. It is possible that a C; action occurs after the

Ti, in which case E, becomes enabled. If E, is enabled in any state after the

final E,(B), it eventually occurs, since no more actions in B- TCERi occur, and Ti

cannot be enabled. It is possible that an Ri action occurs after the Ei; however,
no Ti action is subsequently enabled, because Drinker(i) remains in drink-region E.

Thus, eventually Ri(B) and no other action in the same class of the partition is

enabled and remains enabled, yet never occurs, contradicting e being fair. 0

Theorem 14: If Dine(F) solves the no-lockout dining philosophers problem for F,

then Drink(B) solves the more-concurrent drinking philosophers problem for B = F.

Proof: We verify conditions (1) and (2) of Corollary 2 for the n + 2 implications

(EX-B), (NL-B), and (MC-B) for i, 1 < i < n. The same argument as in the proof of

Theorem 12 verifies conditions (1) and (2) for the (EX-B) and (NL-B) implications.

Choose (MC-B) for any i, 1 < i < n. The corresponding set of implications of

the subroutine is empty. Condition (1) is vacuously true. Condition (2) is reduced

to showing (MC-B) for i. Let e be fair execution of Drink(B) with schedule a

such that (Il-B) and (12-B) are true of a|B-TCERk for all k, and (14-B)i is true

of alext(Drink(B)). The same argument as in the proof of Theorem 6 shows that

95

96 Chapter 4: Drinking Philosophers

a|B- TCERk satisfies (01-B) and (02-B) for all k, and that alextDrink(B)) satisfies
(EX-B). By Lemma 13, ajB-TCER, satisfies (MC-B).

By Corollary 2, Drink(B) solves the more-concurrent drinking philosophers
problem for B.

5.4 Stronger Problem Definitions

In this subsection, we explore two other versions of the drinking philosophers
problem, that demand a higher degree of concurrency than does the more-concurrent
formulation. One version, the strongest, is not satisfied by either our algorithm
or that in [CM]. The second, intermediate between the strongest and the more-
concurrent, is not satisfied by our algorithm but is by [CM]. Our contribution in
this section is providing precise definitions of the degree of concurrency demanded.

The strongest possible version of the drinking philosophers problem would re-
quire that if a drinker requests a set B of bottles, it should eventually enter its
critical region, as long as no other drinker uses any of the bottles in B forever. (We
could also allow the bottles in B to be kept forever after this request is satisfied.)
Unfortunately, neither the algorithm in this paper nor that in [CM] satisfies this
conditions. It would be interesting to devise one that does.

We now formalize this "strongest" definition. We introduce a new condition (15-
B)i which, similarly to (14-B)i, is indexed by process id i. It is a liveness condition
imposed on the input, stating that whenever user i requests a set of resources, none
of those resources is kept forever until (possibly) after i enters its critical region.

Given a sequence a from the set Un=1 B-TCERi, define condition (I5-B), for a
fixed i, which a may or may not satisfy.

e (I5-B), If a T,(B) action and a Cj(B') action occur in a, for any j : i with
B n B' # 0, then either an Ej(B') action occurs after the C)(B') action, or a
C,(B) action occurs between the T,(B) action and the Cj(B') action.

The strongest drinking philosophers problem for B is the external schedule
module MSTDrink that is the sub-schedule module of MNLDrink consisting of all

sequences a of actions that, in addition to satisfying the (EX-B) and (NL-B) impli-
cations, also satisfy the following n implications (ST-B) for i, 1 < i < n: namely, if
(Il-B) and (12-B) are true of aIB- TCERk for all k and if (I5-B); is true of a, then
(01-B) and (02-B) are true of aIB-TCERk for all k, (EX-B) and (NL-B) are true
of a, and (MC-B) is true of a|B-TCER,.

Section 5.4: Stronger Problem Definitions

The following situation shows that our algorithm does not solve the strongest
drinking philosophers problem. (Essentially the same scenario shows that the algo-
rithm in [CM] also does not.) Suppose there are three drinkers, 1, 2 and 3; 1 and
2 share bottle a, 2 and 3 share bottle b. First, 1 gets bottle a, enters its drinking
critical region, and stays there forever. Then 2 requests a and b, obtains b, and
enters its dining critical region. Since 2 can never obtain a, it stays in its dining
critical region forever. Finally, 3 requests b. Drinker 2 does not relinquish b upon
a mere request, and 3 can never demand b, because it can never enter its dining
critical region. Thus, even though 3's bottle request includes no bottle that is ever

in use, it can never enter its drinking critical region.

There is a version of the drinking philosophers problem specifying a degree

of concurrency intermediate between strongest and more-concurrent, that the al-

gorithm in [CM] solves and ours does not. The informal description is that if a

drinker requests a set B of bottles, it should eventually enter its critical region, as

long as no other drinker uses or wants any of the bottles in B forever. The formal

statement is the same as the strongest definition, with (I5-B) replaced with (16-B)i:

e (16-B)i If a Ti(B) action and a T(B') action occur in a, for any j # i with

B n B' # 0, then either an Ej(B') action occurs after the Tj(B') action, or a

Ci(B) action occurs between the Ti(B) action and the Tj(B') action.

The following scenario shows that our algorithm does not solve this problem.

Suppose there are five drinkers, 1 through 5. Drinkers 1 and 2 share bottle a, 2

and 3 share b, 3 and 4 share c, and 3 and 5 share d. First, 1 gets a, enters its

drinking critical region and stays there forever. Then 2 requests a and b, obtains b

and enters its dining critical region. As in the previous scenario, 2 remains in its

dining critical region forever. Next, 3 requests c and d. It obtains c from 4. Then

4 requests c from 3, the request is deferred, 4 demands c from 3, and the request

is satisfied. Now 3 obtains d from 5. But 3 will never get c from 4, because it can

never demand it. Thus, although none of the bottles required by 3 are ever wanted

forever by another drinker, 3 cannot enter its drinking critical region.

In this particular case, a small change to the algorithm can solve the problem

- whenever a demand for a needed bottle is satisfied, another request for that

bottle is sent. (Almost the identical analysis as already given can be used to verify

the correctness of the algorithm with this change.) However, 3 can be locked out if

4 and 5 alternate forever using c and d even with this change.

In contrast, the algorithm in [CM] will allow 3 to enter its drinking critical

97

Chapter 4: Drinking Philosophers

region, even if 4 and 5 alternate forever using c and d. The forks in the dining
philosophers algorithm provide a priority for the use of the corresponding bottles
by the drinkers. The priority alternates between the two processes sharing the
resource. Thus, once 3 obtains c it will not relinquish it until it has gotten to use
it. In general, priority is broken down on a link-by-link basis, whereas in our (more
modular) algorithm, the priority comes only with entering the dining critical region.

6. Complexity Analysis

In this section, we evaluate our no-lockout algorithm using the criteria listed in
[CM], as well as analyzing the worst-case waiting time. The analysis of the worst-
case waiting time shows that the limiting factor is the no-lockout dining philosophers
subroutine. By replacing the O(n) subroutine of [CM] with an 0(1) subroutine (for
instance, that of [Ly]), we obtain an 0(1) drinking philosophers algorithm.

We would like to bound how long a process must wait after requesting to enter
its critical region until it does so. The following definitions provide a measure of
time complexity for our model that is analogous to that in [PF], in which an upper
bound on process step time, but no lower bound, is assumed. (Thus, all interleavings
of system events are still possible.)

Given an execution e of automaton A, where e = soaisia2 ... , a timing function
for e is an increasing function te mapping positive integers to nonnegative real
numbers such that for each real number t, only a finite number of integers i satisfy
te(i) < t. Intuitively, te(i) is the real time at which ai occurs; we rule out an infinite

number of actions occurring before a finite real time.

Execution e is c-bounded, for positive real c, if the following condition is true
for each class C of the partition part(A). For each i > 0, either

(1) there exists j > i such that a3 is in C and te(j) - te(i) c, or

(2) there exists j > i such that no action of C is enabled in sj and te(j) - te(i) < c.

That is, starting at any point in the execution, within time c either some output
action in C occurs, or else the automaton passes through a state in which no output

action in C is enabled. Each class of the partition is considered separately, since
each class corresponds, in some sense, to a distinct entity in a larger system.

Now we analyze the worst-case time behavior of the no-lockout drinking
philosophers algorithm, automaton Drink(B), which uses any no-lockout dining

98

Section 6: Complexity Analysis

philosophers subroutine Dine(F), with F = B. For the following definitions, we
only consider fair c-bounded executions of Drink(B) with schedules a such that
a|B- TCERi satisfies (Il-B), (12-B) and (13-B) for all i.

Let trYDrink be the maximum time, over all i and all B C Bi, between any
Ti(B) action and the subsequent Ci(B) action, in any execution. Let critDrink be
the maximum time, over all i and all B C Bi, between any Ci(B) action and the
subsequent Ei(B) action, in any execution.

Let tryDine be the maximum time over all i between any T action and the
subsequent Ci action, in any execution. Let exitDine be the maximum time over all
i between any Ei action and the subsequent Ri action, in any execution.

We assume that CTitDrink and exitDine are constants.

Our goal is to find an upper bound on tryDrink, the maximum tine a user

process must wait after requesting to enter its critical region until it is allowed to

do so. First we show that in any state, there are a bounded number of messages in
any buff. Let r be the maximum number of bottles shared by any two drinkers.

Lemma 15: Let e be a fair execution of Drink(B) with schedule a such that (Il-B)

and (I2-B) are true of a|B-TCERi for all i. If Dine(F) solves the dining philosophers

problem for F = B, then in any state of e, there are at most 4r messages in buffj]

at Drinker(i), for any i and j.

Proof: Let s be any state in e, and b a bottle shared between Drinker(i) and

Drinker(j). The following four facts imply the result.

(1) First we show that there cannot be two req(b) messages in bufji] at

Drinker(j) in s. Suppose such is the case. (See Figure 5.)

Let Tj(B) be the action triggering the first req(b), and Tj(B') the action trig-

gering the second. (Thus, b is in both B and B'.) By Lemma 4, there is an action

Cj(B) between Tj(B) and Tj(B'). Thus, at some point between the Tj(B) and

the Cj(B), b resides at Drinker(j). Since b does not reside at Drinker(j) when the

Tj(B') occurs, there is a sat(b) message between the two req(b) messages in bufli].

Consider the state s immediately before the delivery of the first req(b) message. By

Lemma 5, part (d), b resides at Drinker(i) in s. Yet there is also a sat(b) message

in buffii] at Drinker(j), contradicting Lemma 5, part (a).

(2) By Lemma 5, part (b), there cannot be two sat(b) messages in buffli] at

Drinker(j) in s.

99

Chapter 4: Drinking Philosophers

Drinker(i)

Drinkerdj)
Tj(B) C,(B) Tj(B')

Figure 5

(3) Next we show that there cannot be a sat(b) message immediately followed

by a dem(b) message in bufli] at Drinker(j) in s. Suppose such is the case. Some

action C3 causes the dem(b) to be put in buffli], and at that time Drinker(j) is in
drink-region T.

If the Tj(B) action causing Drinker(j) to be in drink-region T occurs when the

sat(b) message is in bugfi], then at that time, b does not reside at Drinker(j) (by

Lemma 5, part (a)), and so there is a req(b) message in between the sat(b) and the

dem(b), contradicting our assumption.

Thus, the Tj(B) action must precede the action that triggers the sat(b) mes-

sage. (See Figure 6.)

Drinker(i)

Drinkerj)
Tj(B) Ci

Figure 6

The only action that can trigger the sat(b) message while Drinker(j) is in

drink-region T is the delivery of a dem(b) message to Drinker(j) while b resides

100

Section 6: Complexity Analysis

at Drinker(j). The dem(b) message to Drinker(j) is triggered by a Ci action. By
Lemma 8 and part (b) of Lemma 7, there is an Ei action between the C and the
Cj. Yet this E, cannot happen until some Ci(B') action occurs (for some B' C Bi),
which cannot happen until b resides at Drinker(i). Yet once the sat(b) is in buff i] at
Drinker(j), by part (a) of Lemma 5, b cannot reside at Drinker(i), and sat(b) cannot
be in buffj] at Drinker(i). Thus, a sat(b) message from Drinker(i) to Drinker(j) is
triggered by some action that follows the Ci(B') (and thus follows the Ci), yet is
delivered before the dem(b) message from Drinker(i) to Drinker(j), contradicting
the FIFO nature of buffj].

(4) Finally we show that there cannot be two consecutive dem(b) messages in
bufli] at Drinker(j) in s. Suppose there are. Each of the two dem(b) messages

is triggered by a C action occurring when Drinker(j) is in drink-region T. Thus
there is a Tj(B) action preceding the first C,, and a Tj(B') action between the two

C, actions. By Lemma 4, there is a Cj(B) action between the first C, action and
the Tj(B'). When the C,(B) occurs, b resides at Drinker(j). Yet at the second

C, b does not reside at Drinker(j), so there is a sat(b) message in between the two

dem(b) messages, contradicting our assumption. 5

The main theorem follows. (Recall that r is the maximum number of bottles
shared by any two drinkers.)

Theorem 16: tryDrink < (3 + 8r)c + exitDine + try Dine + critDrink-

Proof: Let e be a fair c-bounded execution of Drink(B) with schedule a such that

(Il-B), (12-B) and (13-B) are true of a|B-TCER, for all i. Choose any i. Suppose

Ti(B) occurs at time t, for some B C Bi. First we bound the time until the next
Ci action occurs, considering all possible values of dine-region for Drinker(i) in the

state s immediately before the action T(B).

Case 1: dine-region is T in s. By time t + tryDine, Ci occurs.

Case 2: dine-region is C in s. Thus, there is a most recent Ci action preceding

the Ti(B). We show that send-Ei is already true. If there is some Ei(B') action

between the preceding C and the Ti(B), then send-Ei is set to true when the

Ei(B') occurs. Otherwise, drink-region is E or R when the preceding C occurs,
and send-Ei is set to true then. Since no other output action in the same class of

the partition can be enabled while Ei is, an Ei action occurs by time t + c. By

time t + c+ exit Dine, an Ri action occurs and send-Ti is set to true. Since no other

output action in the same class of the partition can be enabled while Ti is, a Ti

101

102 Chapter 4: Drinking Philosophers

action occurs by time t+2c+ exitDine. Finally, by time t+2c+ eXitDine + tryDine,
a Ci action occurs.

Case 3: dine-region is E in s. By time t + exzitDine, Ri occurs and since drink-
region is T, send-Ti is set to true. By time t + c + exitDine, Ti occurs. Finally, by
time t + c + eXitDine + try Dine, Ci occurs.

Case 4: dine-region is R in s. Then send-Ti is set to true when T(B) occurs.
By time t + c, Ti occurs, and by time t + c + tryDine, Ci occurs.

End of Cases.

Thus, in the worst case, the next Ci action occurs by time t + 2c + exitDine +
tryDine-

Now we analyze how long it can take some bottle b E B to reside at Drinker(i)
after this next Ci action has occurred. Pick any b E B that does not reside at
Drinker(i) when the Ci occurs. Then dem(b) is put in buflj] at Drinker(i), where
b E Bj. By Lemma 15, there are at most 4r messages in bufj] in any state of e;
by 4rc time later, deliver(dem(b), i, j) occurs. If Drinker(j) is not in drink-region
C when the demand is delivered, sat(b) is immediately put in buffli] at Drinker(j)
(since, by Lemma 8 and part (b) of Lemma 7, Drinker(j) cannot be in dine-region
C). Otherwise, (b, i) is put in deferred; by critDrink later, Ej(B') occurs, for some
B' C Bj, and then sat(b) is added to buffli]. In either case, when sat(b) is added
to bufii], there are at most 4r messages in buffli] (by Lemma 15), and by 4rc later,
deliver(sat(b), j, i) occurs.

Thus, by 8rc+ critDrink time after the Ci, all bottles in B reside at Drinker(i)
and stay there. Thus Ci(B) is enabled and remains enabled until it occurs. By
Lemma 4, Ri(B) cannot be enabled before Ci(B) occurs; by Lemma 8 and part
(a) of Lemma 7, T; cannot be enabled as long as Ci is the most recent action from
F- TCER,; by inspecting the code, Ei cannot be enabled before Ci(B) occurs. Thus,
by c time after all bottles in B reside at Drinker(i), Ci(B) occurs. Summing all
these bounds gives the result.

Since we assume that critDrink, eXitDine, r and c are constants, the worst-case

waiting time of this solution depends on tryDine, the worst-case waiting time of the
dining philosophers subroutine. The dining philosophers subroutine used in [CM]

has tryDine of 0(n). By replacing it with, for instance, the dining philosophers algo-

rithm in [Ly], which has worst-case waiting time of 0(1), we obtain a more efficient

Section 6: Complexity Analysis

drinking philosophers algorithm. (The algorithm in [Ly] has time 0(1) in the sense
that the worst-case waiting time is a function of local information, including the
maximum number of users for each resource, and the maximum number of resources
for each user, and is not necessarily a function of the total number of users.)

Our drinking philosophers algorithm could be modified to replace r with a
small constant, if the request, demand, and satisfy messages took a set of bottles
as arguments instead of a single bottle.

Five criteria for evaluating resource allocation algorithms are given in [CM],
fairness, symmetry, economy, concurrency and boundedness. We discuss each in

turn.

Fairness corresponds to our definition of no-lockout. Our drinking philosophers
solution has the no-lockout property as long as the dining philosophers subroutine

has it.

Symmetry means that each process runs the identical program. This property
is true of our solution, as long as it is true of the subroutine.

Economy means that processes send and receive a finite number of messages

between subsequent entries to their critical regions, and a process that enters its
critical region a finite number of times does not send or receive an infinite number

of messages. Our solution has this property: Recall that when a drinker first re-

ceives Ti(B), it sends req(b) messages for all missing resource. It defers any req(b)

messages it receives when in drink-region T, but yields to dem(b) messages. When

it enters dine-region C, it sends dem(b) messages for any missing resources. Thus at

most four messages (req(b), sat(b), dem(b), sat(b)) are sent on behalf of any bottle

for any one trying attempt. Furthermore, once a drinker stops wanting to enter its

critical region, it may receive a request for each of its bottles, but after satisfying

the requests, it never sends or receives any more messages.

Concurrency means that "the solution does not deny the possibility of simul-

taneous drinking from different bottles by different philosophers." This is certainly

true of our algorithm, since it satisfies the more-concurrent condition. More precise

formulations of "concurrency" were given in our definitions (see Sections 3 and 5.4).

Boundedness means that the number of messages in any buflij] variable is

bounded, and the size of each message is bounded. This is certainly true of our

solution, by Lemma 15.

103

104

A Lattice-Structured Proof
of a Minimum Spanning
Tree Algorithm

A complete and rigorous proof of the correctness of Gallager, Humblet and

Spira's distributed minimum spanning tree algorithm is presented. This important

algorithm has been difficult to prove, because it does not break down naturally into

pieces that may be proved separately and then composed. Our lattice-structured

technique provides a way to use modularity to prove such not-very-modular algo-

rithms. The method of proof is to represent the entire algorithm at different levels

of abstraction and demonstrate relationships between the representations that pre-

serve correctness. Each representation is a complete description of the algorithm,
but with different aspects of the algorithm's states and actions described at differ-

ent levels of detail. The representations are arranged in a lattice instead of a chain;

representations that are not comparable in the lattice concentrate on different tasks

performed by the algorithm. A framework of definitions and theorems is given,
using the I/O automaton model of Lynch and Tuttle, for showing that both safety

and liveness properties of the algorithm are preserved throughout the lattice.

1. Introduction

A complete and rigorous proof of the correctness of Gallager, Humblet and

Spira's distributed minimum spanning tree algorithm [GHS] is presented. This par-

ticular algorithm has been of great interest for some time; although an intuitive

description of why it should work is given, there is no formal proof of its correctness

This chapter is joint work with Leslie Lamport and Nancy Lynch.

105

106 Chapter 5: Minimum Spanning Tree

in [GHS]. It is important to have such a proof for several reasons. First, this algo-
rithm solves a significant problem. Minimum spanning trees are very useful in many
distributed applications, such as implementing efficient broadcast in communication
networks, and electing a leader. In turn, the election of a leader can facilitate crash
recovery. Second, the algorithm of [GHS] often appears as a subroutine in other
algorithms [A2] [AG]; the correctness of these algorithms thus depends directly on
the correctness of [GHS]. Finally, many of the individual concepts and techniques

are taken from [GHS], out of context, and used in other algorithms [A2] [CT] [Ga].
Yet the pieces of the [GHS] algorithm interact in subtle ways, some of which are

not explained in the original paper. A careful proof of the entire algorithm can

illuminate the dependencies between the pieces.

We present a way to generalize existing verification techniques for a totally

ordered hierarchy to a partially ordered one. Our method of proof is to represent the

algorithm at different levels of abstraction and demonstrate relationships between

the representations that preserve correctness. The representations are arranged in

a lattice instead of a chain. Each representation is a complete description of the
algorithm, but with different aspects of the algorithm's actions and state described

at different levels of detail. Representations that are not comparable in the lattice

concentrate on different functions performed by the algorithm. The advantage is

that one can concentrate on a single function at a time, without becoming bogged
down by irrelevant details.

A framework of definitions and theorems is given, using the I/O automaton
model of Lynch, Merritt, and Tuttle [LT] [LM], for verifying both safety and liveness
properties of the algorithm. (Any state-based assertional method could be used; we

chose I/O automata because of the support it gives for describing the interaction

between the algorithm and its environment.) Once a more concrete version of the

algorithm and one (or more) more abstract versions of the algorithm have been

presented, state and action mappings from the more concrete to the more abstract

version(s) are posited, together with a predicate about the state of the more concrete

version. To verify safety properties, it is necessary to show that the predicate is an

invariant (i.e., true in every reachable state), and that steps of the more concrete

version simulate steps of the more abstract version(s). Generally, an invariant about

the more abstract version is used in the verification. We provide three techniques

for verifying liveness properties; all are similar to the safety technique in that they

only involve checking that certain conditions are true in certain states, and that

certain steps preserve certain properties.

Section 1: Introduction

The method seems useful for developing modular proofs of algorithms that are
not very modular, even very complicated ones (i.e., many practical algorithms). It
would have been very hard for us to come up with a proof of [GHS] if we had to
work with the whole algorithm at once - this method let us reason about each
facet of the algorithm alone, which we felt was necessary to allow us to discover
the correct invariants. One can sometimes describe a more modular algorithm as
a true composition of automata. (See, for example, the proof in [FLS] of the syn-
chronizer from [Al].) Such a complete decomposition allows for a simpler, shorter
proof than the one we have here - the lowest level is essentially just a product
of the subalgorithms, and the mappings from the lowest level to the subalgorithms
are immediate. The [GHS] algorithm is not quite modular enough for such a com-

plete decomposition, so there is some duplication in the various subalgorithms. Yet
many of the benefits of modularity are retained - the proof has high-level modular
structure that follows one's intuition; also, whenever a bug surfaced, it was easy to

isolate the affected places and determine what needed to be modified.

The complete proof of the correctness of the [GHS] algorithm is very long.
Part of the reason for the length is the duplication resulting from our decomposi-

tion, as discussed above. We believe the extra length is worthwhile because of the

greater understanding it provides. The full proof also includes extremely detailed
arguments, at a level of detail that is machine-checkable. It seems necessary to go
through the exercise of doing these proofs, though, in order to catch small bugs,
and to formulate the proper invariants. Perhaps in the future the checking could be
done mechanically. Another point to bear in mind when considering the length of

the proof is that the algorithm is delicate and complex, even though it is not very

long.

In the future, it would be interesting to see if our method applies to related

algorithms, such as [A2] [AG] [CT] [Ga], and to see which, if any, of the pieces of
the proof can be reused. This proof took us a year - the others we expect would be

quicker. Machine verification of this and related proofs seems tractable and could

be investigated.

Related work falls into two categories: other proofs of the [GHS] algorithm,

and similar proof techniques. Stomp and de Roever [SR] are currently working on

a proof of the algorithm using the notion of communication-closed layers. Their

proof is at the level of "informal mathematics."

Lam and Shankar [LS] have developed the "method of projections" for analyz-

ing communication protocols. A lattice structure is used in this work as well. A

107

Chapter 5: Minimum Spanning Tree

specific function of the original protocol can be verified by aggregating certain states
and events of the original protocol to produce a "projection" protocol, which focuses
on the desired function. However, their definitions and theorems are specialized for
communication protocols, whereas our technique is more general.

Kurshan [K] has an automata-based model and a method for describing systems
at different levels of abstraction and defining mappings between the levels that
preserve correctness. No support for lattice-structured proofs is given.

Work of Lamport [La2 [La3] uses temporal logic to specify, in a state-based,
axiomatic way, concurrent programs at different levels of abstraction. Each level is
specified by a set of state functions that satisfy a set of temporal logic assertions.
One level is a refinement of another if each high-level state function can be defined in
terms of the low-level state functions such that the high-level assertions are provable
from the low-level assertions. No provision is made for lattice-structured proofs.

One of our techniques for proving liveness (see definition of "progressive" in
Section 2) is very similar to a technique presented in [LPS], called the "method of
helpful directions" in [F]. However, in those works, the method is used to prove
termination of a program, considered at a single level of abstraction, whereas we
use it to show that a low-level algorithm causes high-level actions to be simulated.

Section 2 contains the definitions and theorems upon which our method of
proof is based. Section 3 formally defines the minimum spanning tree problem in
our model. Section 4 consists of the proof of correctness of the algorithm. Following
an overview of the proof, Section 4.1 shows that a very high level description of the
algorithm solves the problem. Section 4.2 verifies the necessary safety properties
throughout the lattice, and Section 4.3 does the same with liveness properties. All
the results are pulled together in Section 4.4.

2. Foundations

This section contains the definitions and theorems used to relate descriptions of
an algorithm at different levels of abstraction. The I/O automaton model of Lynch
and Tuttle [LT] is the basis of our framework. (See Appendix for a summary.) We
define a mapping from a more concrete algorithm to a more abstract algorithm that
preserves the safety and liveness properties necessary to show that the automaton
modeling the more concrete algorithm satisfies the automaton modeling the more
abstract algorithm.

108

Section 2: Foundations

Section 2.1 deals with safety properties. First, suppose there are two automata,
A and B, where B is offered as a "more abstract" version of A. We define a mapping
from executions of A to sequences of alternating states and actions of B; if the
mapping obeys certain conditions, we say A simulates B. Lemma 1 proves that this
definition preserves important safety properties, namely that executions of A map to
executions of B, and that a certain predicate is an invariant for A. Next we suppose
that there are several higher-level versions, A1 , A2 , etc., of one more concrete
automaton A. There are situations in which it is difficult to show independently
that A simulates A1 and A simulates A2 , but invariants about states of A 2 can help
show a mapping from A to A1 , and invariants about states of A1 can help show
a mapping from A to A2 . To capture this, we define a notion of simultaneously
simulates, which Lemma 2 proves preserves the same safety properties as in Lemma
1. Of course, to be able to apply Lemma 2, we must know what the invariants of
A 1 and A2 are, which may require having already shown that A1 and A2 simulate
other automata.

Section 2.2 considers liveness properties. Given automata A and B, and a
locally-controlled action p of B, a definition of A being equitable for W is given;
Lemmas 3 and 4 show that this definition implies that in the execution of B obtained
from a fair execution of A by either of the simulation mappings, once 0 becomes
enabled, it either occurs or becomes disabled. We are on our way to verifying the
fairness of the induced execution of B.

Three methods of showing that A is equitable for locally-controlled action p
of B are described. The first method is to show that there is an action p of A
that is enabled whenever p is, and whose occurrence implies p's occurrence. (Cf.
Lemma 5.)

The second method uses a definition of A being progressive for 0. The intu-
ition behind the definition is that there is a set of "helping" actions of A that are

guaranteed to occur, and which make progress toward an occurrence of W in the
induced execution of B. Lemma 6 shows that progressive implies equitable.

The third method for checking the equitable condition can be useful when

various automata are arranged in a lattice. (See Figure 1.) Suppose B and C are

more abstract versions of A, and D is a more abstract version of C. In order to
show that A is equitable for action p of B, we demonstrate an action p of D that

is "similar" to W, such that C is progressive for p using a set T of helping actions,
and A is equitable for all the helping actions in IF. (Cf. Lemma 7.)

109

Chapter 5: Minimum Spanning Tree

D P

W B C T

A

Figure 1

Theorems 8 and 9 in Section
ously simulates, and equitable to

2.3 relate the definitions of simulates, simultane-
the notion of satisfaction.

2.1 Safety

Let A and B be automata. Throughout this chapter, we only consider au-
tomata such that each locally-controlled action is in a separate class of the action
partition. (The definitions and results of this section can be generalized to avoid
this assumption, but the statements and proofs are more complicated, and the gen-
eralization is not needed for the proof of the [GHS] algorithm.) Let alt-seq(B) be
the set of all finite sequences of alternating actions -of B and states of B that begin
and end with an action, including the empty sequence (and the sequence of a single
action). An abstraction mapping M from A to B is a pair of functions, S and A,
where S maps states(A) to states(B) and A maps pairs (s, 7r), of states a of A and
actions 7r of A enabled in s, to alt-seq(B).

Given execution fragment e = sorisi ... of A, define M(e) as follows.

* If e = so, then M(e) = S(so).

* Suppose e = sosi-irisi, i > 0. If A(si- 1 , ri) is empty, then M(e) =

M(so ... si-1). If A(si-1,ri) = Wit .. tm-1pm, then M(e) = M(so ... si-1)

piti ... tm.-1mS(s). The t1 are called interpolated states of M(e).

* If e is infinite, then M(e) is the limit of M(sorisi ... si) as i increases without

bound.

We now define a particular kind of abstraction mapping, one tailored for show-
ing inductively that a certain predicate is an invariant of A, and that executions of

110

Section 2.1: Safety

A map to (nontrivial) executions of B. (A predicate is a Boolean-valued function.
If Q is a predicate on states(B), and S maps states(A) to states(B), then (Q o S),
applied to state s of A, is the predicate "Q is true in S(s)," and is also written

(Q(S(s)).)

Definition: Let A and B be automata with the same external action signature. Let

M = (S, A) be an abstraction mapping from A to B, P be a predicate on states(A),
and Q be a predicate true of all reachable states of B. We say A simulates B via

M, P, and Q if the following three conditions are true.

(1) If s is in start(A), then

(a) P(s) is true, and
(b) S(s) is in start(B).

(2) If s is a state of A such that Q(S(s)) and P(s) are true, and 7r is any action of

A enabled in s, then A(s, r)Iext(B)= irlext(A).

(3) Let (s', r, s) be a step of A such that Q(S(s')) and P(s') are true. Then

(a) P(s) is true,
(b) if A(s', 7r) is empty, then S(s) = S(s'), and

(c) if A(s',ir) = (piti . .. t,-i(pm, then S(s')piti ... tm-1imS(s) is an execu-

tion fragment of B. 0

The first lemma verifies that if A simulates B via M, then M(e) is an execution

of B and a certain predicate is true of all states of e.

Lemma 1: If A simulates B via M = (S, A), P and Q, then the following are true

for any execution e of A.

(1) M(e) is an execution of B.

(2) (Q o S) A P is true in every state of e.

Proof: Let e = soirsi If (1) and (2) are true for every finite prefix ei = so ... Si

of e, then (1) and (2) are true for e. We proceed by induction on i. We need to

strengthen the inductive hypothesis for (1) to be the following:

(1) M(e:) is an execution of B and S(si) = t, where t is the final state in M(e,).

(Throughout this proof, "conditions (1), (2) and (3)" refer to the conditions in

the definition of "simulates".)

111

Chapter 5: Minimum Spanning Tree

Basis: i = 0. (1) M(eo) = S(so). Since eo is an execution of A, So is in

start(A). Condition (1b) implies that S(so) is in start(B), so M(eo) is an execution
of B. Obviously, the assertion about the final states is true.

(2) Condition (1a) states that P is true in so. Since S(so) is in start(B), it is

a reachable state of B, and Q(S(so)) is true.

Induction: i > 0. By the inductive hypothesis for (2), Q(S(s_ 1)) and P(si_1)

are true. Thus, conditions (3a), (3b) and (3c) are true.

(1) Let M(e._1) = topiti ... tj and M(e 1) = topiti ... tmn. Obviously, m > j.

Suppose m = j. Then M(e,) = M(ei-1) and is an execution of B by the

inductive hypothesis for (1). We deduce that A(s-1,,7ri) is empty, so by condition

(3b), S(si) = S(si-1), and by the inductive hypothesis for (1), S(si-1) = tj.

Suppose m > j. By construction of M(ei), A(si1, 7ri) = pj+itj+1 .. . tm-1m,

and tm = S(si). By the inductive hypothesis for (1), S(s;_ 1) = tj. By condition

(3c), tj p +1 . . Pmtm is an execution fragment of B. Thus, M(e;) is an execution

of B. Obviously, the assertion about the final states is true.

(2) By the inductive hypothesis for (2), (Q o S) A P is true in every state of

ei, except (possibly) si. By condition (3a), P(si) is true. The final state in M(e,)

is S(s,). Since, by part (1), M(e 1) is an execution of B and S(si) equals the final

state of M(e 1), S(si) is a reachable state of B. By definition of Q, Q(S(si)) is

true. 0

The next definition maps one automaton to multiple higher-level automata.

Definition: Let I be an index set. Let A and A, r E I, be automata with the

same external action signature. For all r E I, let Mr = (Sr, Ar) be an abstraction

mapping from A to Ar, and let Q, be a predicate true of all reachable states of Ar.
Let P be a predicate on states(A). We say A simultaneously simulates {Ar : r E I}

via {Mr : r E I}, P, and {Qr : r E I} if the following three conditions are true.

(1) If s is in start(A), then

(a) P(s) is true, and

(b) Sr(s) is in start(Ar) for all r E I.

(2) If s is a state of A such that ArEI Qr(Sr(s)) and P(s) are true, and ir is any

action of A enabled in s then A,(s, 7r)lext(Ar) = 7rlext(A) for all r E I.

112

Section 2.2: Liveness 113

(3) Let (s', 7r, s) be a step of A such that ArEI Qr(Sr(S')) and P(s') are true. Then
(a) P(s) is true,
(b) if Ar(s', 7r) is empty, then Sr(s) = Sr(s'), for all r E I, and
(c) if Ar(s', 7r) = piti ... tm-1.pm, then Sr(s')(piti . . . tm-1PmSr(S) is an exe-

cution fragment of Ar, for all r E1. 0

The statement "A simultaneously simulates {A 1, A 2 } via {M 1 , M 2 }, P and

{M1, Q2}" is weaker than the statement "A simulates A1 via M 1 , P and Q1, and
A simulates A2 via M 2 , P and Q2" because the hypotheses of conditions (2) and
(3) in the simultaneous definition require that a stronger predicate be true. (By
restating Q2 as a predicate on states of A, one could show that A simulates A1 via
M 1, P A Q2, and Q1, but a loss of abstraction results.) Lemma 2 shows that the
safety properties of interest are still preserved.

Lemma 2: Let I be an index set. If A simultaneously simulates {A, : r E I} via

{Mr : r E I}, P, and {Qr : r E I}, where Mr = (Sr, Ar) for all r E I, then the
following are true of any execution e of A.

(1) Mr(e) is an execution of Ar, for all r E I.

(2) ArEA(Qr 0 Sr) A P is true in every state of e.

2.2 Liveness

The following notation is introduced to define the basic liveness notion, "equi-
table", and to verify that this definition has the desired properties.

We define an execution e = sori s i ... of automaton A to satisfy S '-+ (T, X),

where S and T are subsets of states(A) and X is a subset of states(A) x acts(A),
if for all i with si E S, there is a j > i such that either sj E T or (sj, rj+1) E X.
In words, starting at any state of e, eventually either a state in T is reached, or a
state-action pair in X is reached.

If M = (S, A) is an abstraction mapping from A to B, then for each locally-
controlled action V of B, we make the following definitions: E. is the set of all

states s of A such that p is enabled in S(s); D. is states(A) - EW; D' is the set of

all states t of B such that p is not enabled in t; X. is the set of all pairs (s, r) of
states s of A and actions 7r of A such that W is in A(s, r); and X' is states(B) x {J}.

Definition: Suppose M is an abstraction mapping from A to B. Let p be a locally-

controlled action of B. If every fair execution of A satisfies states(A) "-+ (D,, XW),

Chapter 5: Minimum Spanning Tree

then A is equitable for ' via M. If A is equitable for W via M for every locally-
controlled action 'p of B, then A is equitable for B. 0

The next lemma motivates the equitable definition - in the induced execution

of B, if 'p is ever enabled, then eventually 'p either occurs or becomes disabled.

Lemma 3: Suppose A simulates B via M. Let p be a locally-controlled action of

B. If A is equitable for ' via M, then M(e) satisfies states(B) -- + (D', X), for

every fair execution e of A.

Proof: Let M = (S,A). Let e = soiris1 ... be a fair execution of A, and let

M(e) = to'piti For any i > 0, define indez(i) to be j such that M(so ... si) =

to ... t. Choose i > 0.

Case 1: ti is not interpolated. Choose any I be such that index(l) = i. Then

ti= S(.s), as argued in the proof of Lemma 1. Suppose there is an m > I such that

sm E DW,. Then there is a j = indez(m) > i such that tj = S(sm), and by definition

of D, tj is in D' . Suppose there is an m > I such that (sm, rm+1) E X,,. Then

there is a j = index(m) > i such that pj = W, by definition of X., and (tj, ,j+ 1)

is in X'
('.

Case 2: ti is interpolated. Let i' be the smallest integer greater than i such

that ti, is not interpolated. If either a state in D' or 'p occurs between i and i' in

M(e), then we are done. Suppose not. Then the argument in Case 1, applied to ti,

shows that eventually after ti,, and thus after ti, either a state in D' or ' occurs

in M(e).

The next lemma is the analog of Lemma 3 for simultaneously simulates. (D'

and X' are defined with respect to Mr.)

Lemma 4: Suppose A simultaneously simulates {Ar : r E I} via {Mr : r E I}.

Let p be a locally-controlled action of Ar for some r. If A is equitable for 'p via

Mr, then Mr(e) satisfies states(B) - (D', X'), for every fair execution e of A.

The rest of this subsection describes three methods of verifying that A is eq-

uitable for action 'p of B. Lemma 5 describes the first method, which is to identify

an action of A that is essentially the "same" as 'p.

Lemma 5: Suppose M = (S, A) is an abstraction mapping from A to B, ' is a

locally-controlled action of B, and p is a locally-controlled action of A such that,
for all reachable states s of A,

114

Section 2.2: Liveness

(1) p is enabled in s if and only if W is enabled in state S(s) of B, and

(2) if p is enabled in s, then <o is included in A(s, p).

Then A is equitable for p via M.

Proof: Let e = so7ri si ... be a fair execution of A. Choose i > 0. If si E D, we

are done. Suppose si E El. By assumption, p is enabled in si. Since e is fair, there
exists j > i such that either 7r1 = p, in which case A(sj-1, r) includes <p, or else
p is not enabled in sj, in which case p is not enabled in S(sj). Thus, e satisfies
states(A) <-+ (Dc,,XW). 0

The second method uses the following definition, which is shown in Lemma 6
to imply equitable.

Definition: Suppose M = (S, A) is an abstraction mapping from A to B. If ep is

a locally-controlled action of B, then we say A is progressive for p via M if there
is a set T of pairs (s, 0) of states s of A and locally-controlled actions # of A, and
a function v from states(A) to a well-founded set such that the following are true.

(1) For any reachable state s E E of A, some action @ is enabled in s such that

(s, 4) is in T.

(2) For any step (s', r, s) of A, where s' is reachable and in E., (s', 7r) V X., and

s E EW,
(a) v(s) < v(s'),
(b) if (s', 7r) E T, then v(s) < v(s'), and

(c) if (s', 7r) V T, 4 is enabled in s', and (s', #) is in T, then 0 is enabled in s

and (s, @) is in T. 0

Lemma 6: If A is progressive for <p via M, then A is equitable for <p via M.

Proof: Let M = (S, A). By assumption, p is a locally-controlled action of B, and

there exist T and v satisfying conditions (1) and (2) in the definition of "progres-

sive".

Let e = sorisi... be a fair execution of A. Choose i > 0. If si E D., we are

done. Suppose si E E,,. Assume in contradiction that for all j 2 i, (sj, jr+1) V XP

and sj E Ev. By condition (1), there is an action @ enabled in si such that (si, @)

is in T. By condition (2c), as long as (s, 7rj+1) T I, # is enabled in sj+1 and

(s j+1,) E T, for j > i. Since e is fair, there is i1 > i such that (si, _1, 7ri) E T.

115

Chapter 5: Minimum Spanning Tree

By conditions (2a) and (2b), v(si,) < v(si). Similarly, we can show that there is

Z2 > ii such that v(si2) < v(si,). We can continue this indefinitely, contradicting
the range of v being a well-founded set.

The next lemma demonstrates a third technique for showing that A is equitable
for locally-controlled action o of B, in a situation when there are multiple higher-
level algorithms. The main idea is to show that there is some action p of D that

is "similar" to p (cf. conditions (2) and (3)) such that C is progressive for p using

certain helping actions (cf. condition (4)), and A is equitable for all the helping

actions for p (cf. condition (5)). By "similar", we mean that if O is enabled in the

B-image of state s of A, then p is enabled in the D-image of the C-image of s; and

if p occurs in the D-image of the C-image of the pair (s', 7r), then V occurs in the

B-image of (s', 7r). Condition (1) is needed for technical reasons. (For convenience,
we define abstraction function M applied to the empty sequence to be the empty

sequence. To avoid ambiguity, we add the superscript AB to E,, D,, and X. when

they are defined with respect to the abstraction function from A to B.)

Lemma 7: Let A, B, C and D be automata such that MAB = (SAB, AAB) is an

abstraction function from A to B, and similarly for MAC and MCD. Let 'p be a

locally-controlled action of B. Suppose the following conditions are true.

(1) MAc(e) is an execution of C for every execution e of A.

(2) There is a locally-controlled action p of D such that for any reachable state

s of A, if s E EV , then SAc(s) E EPD

(3) If (s', 7, s) is a step of A, s' is reachable, and p is in MCD(MAC(s's)),

then 'p is in AAB(s', 7r).

(4) C is progressive for p via MCD, using the set %IP and the function vp.

(5) A is equitable for p via MAC, for all actions 4 of C such that (t, $) E Tp
for some state t of C.

Then A is equitable for ' via MAB.

Proof: Let e = soir1s1 ... be a fair execution of A. Let MAC(e) = topit1 By

assumption (1), tm is a reachable state of C for all m > 0. For any i 2 0, define

index(i) to be m such that MAC(solri ... si) = toP1 i ... tm.

Choose i > 0. If si E DW, we are done. Suppose si E EB. Assume in

contradiction that for all j > i, (sj, 7rji) (XAB and sj E EB. Let m = indez(i).

116

Section 2.3: Satisfaction

By assumption (2), there is a locally-controlled action p of D such that tn E ECD

for all n > m. By assumption (3), (tn, 'n+1) XfD for all n > m.

By assumption (4), C is progressive for p via MCD, using set l,% and function
VP. Thus, there is a locally-controlled action ?k of C enabled in SAC(si) = tm such
that (tm,) E lp. By assumption (5), A is equitable for 4 via MAC. Since e is fair

and si E EAC, by Lemma 3 there exists i1 > i such that either (si, _1 , 7ri) E XAC

or sil E DAC. Let mi = index(ii).

Case 1: (si,1,7ri) E XAC. Then AAC(sii-1,7rj,) includes 4. Since tn is
reachable, tn E ECD, and (tn, Wn+ 1) XCD for all n > m, we conclude that

Vp(tmi) < vp(tm), by parts (2a) and (2b) of the definition of "progressive".

Case 2: sil E DAC. Since tn is reachable, tn E ECD, and (tn,'Pn+1) XCD
for all n > m, by part (2c) of the definition of " progressive", the only way # can
go from enabled in tm to disabled in tmi is for some action in IQ, to occur between

'pm+1 and Wmi. By part (2b) of the definition of "progressive", vp(tm) < vp(tm).

Similarly, we can show that there exists i 2 > ii such that v,(SAC(si 2)) <
Vp(SAc(sjI)). We can continue this indefinitely, contradicting the range of v, being

a well-founded set. E

2.3 Satisfaction

The next theorem shows that our definitions of simulate and equitable are
sufficient for showing that A satisfies B.

Theorem 8: If A simulates B via M, P and Q and if A is equitable for B via M,
then A satisfies B.

Proof: We must show that for any fair execution e of A, there is a fair execution

f of B such that sched(e)Iext(A) = sched(f)|ext(B). Given e, let f be M(e). We

verify that M(e) is a fair execution of B with the desired property. Lemma 1, part

(1), implies that f is an execution of B. Choose any locally-controlled action <p of

B. By Lemma 3, if W is enabled in any state of f, then subsequently in f, either

a state occurs in which 'p is not enabled, or 'p occurs. Thus, f is fair. Finally,
sched(e)|ext(A) = sched(f)|ext(B) because of condition (2) in the definition of

"simulates". O

The next theorem is the analog of Theorem 7 for simultaneously simulates.

117

Chapter 5: Minimum Spanning Tree

Theorem 9: Let I be an index set. If A simultaneously simulates {Ar : r E I} via
{Mr : r E I}, P and {Qr : r E I}, and if A is equitable for Ar via Mr for some
r E I, then A satisfies Ar.

3. Problem Statement

We define the minimum spanning tree problem as an external schedule module.

For the rest of this chapter, let G be a connected undirected graph, with at

least two nodes and for each edge, a unique weight chosen from a totally ordered

set. Nodes are V(G) and edges are E(G). For each edge (p, q) in E(G), there are

two links (i.e., directed edges), (p, q) and (q, p). The set of all links of G is denoted

L(G). The set of all links leaving p is denoted L,(G). The weight of (p, q) is denoted

wt(p, q); wt((p, q)) is defined to be wt(p, q); and wt(nil) is defined to be oo.

The following facts about minimum spanning trees will be useful.

Lemma 10: (Property 2 in [GHS]) The minimum spanning tree of G is unique.

Proof: Suppose in contradiction that T1 and T2 are both minimum spanning trees

of G and T1 # T2. Let e be the minimum-weight edge that is in one of the trees

but not both. Without loss of generality, suppose e is in E(T). The set of edges

{e} U E(T2) must contain a cycle, and at least one edge, say e', of this cycle is not

in E(T). Since e # e' and e' is in one but not both of the trees, wt(e) < wt(e').

Thus replacing e' with e in E(T2) yields a spanning tree of G with smaller weight
than T2, contradicting the assumption. El

Let T(G) be the (unique) minimum spanning tree of G.

An external edge (p, q) of subgraph F of G is an edge of G such that p E V(F)

and q g V(F).

Lemma 11: (Property 1 in [GHS]) If F is a subgraph of T(G), and e is the

minimum-weight external edge of F, then e is in T(G).

Proof: Suppose in contradiction that e is not in T(G). Then a cycle is formed by
e together with some subset of the edges of T(G). At least one other edge e' of this

cycle is also an external edge of F. By choice of e, wt(e) < wt(e'). Thus, replacing

e' with e in the edge set of T(G) produces a spanning tree of G with smaller weight

than T(G), which is a contradiction. D1

118

Section 4: Proof of Correctness

The MST(G) problem is the following external schedule module. Input actions
are {Start(p) : p E V(G)}. Output actions are {InTree(l), NotInTree(l) : I E
L(G)}. Schedules are all sequences of actions such that

e no output action occurs unless an input action occurs;

* if an input action occurs, then exactly one output action occurs for each I E

L(G);

* if In Tree((p, q)) occurs, then (p, q) is in T(G); and

* if Not~n Tree((p, q)) occurs, then (p, q) is not in T(G).

4. Proof of Correctness

The verification of Gallager, Humblet and Spira's minimum-spanning tree al-
gorithm [GHS] uses several automata, arranged into a lattice as in Figure 2.

HI

COM

GC

TAR DC NOT CON

GHS

Figure 2: The Lattice

Each element of the lattice is a complete algorithm. However, the level of detail
in which the actions and state of the original algorithm are represented varies.
Working down the lattice takes us from a description of the algorithm that uses
global information about the state of the graph, and powerful, atomic actions, to a

119

120 Chapter 5: Minimum Spanning Tree

fully distributed algorithm, in which each node can only access its local variables,
and many actions are needed to implement a single higher level action. A brief

overview of each algorithm is given below; a fuller description of each appears later.

HI is a very high-level description of the algorithm, and is easily shown in

Section 4.1 to solve the MST(G) problem. GHS is the detailed algorithm from
[GHS]. We show a path in the lattice from GHS to HI, where each automaton in
the path satisfies the automaton above it. By transitivity of satisfaction, then GHS
will have been shown to solve MST(G).

The essential feature of the state of HI is a set of subgraphs of G, initially

the set of singleton nodes of G. Subgraphs combine, in a single action, along

minimum-weight external edges, until only one subgraph, the minimum spanning

tree, remains.

The COM automaton introduces fragments, each of which corresponds to a

subgraph of HI, plus extra information about the global level and core (or identity)
of the subgraph. Two ways to combine fragments are distinguished, merging and
absorbing, and two milestones that a fragment must reach before combining are

identified. The first milestone is computing the minimum-weight external link of
the fragment, and the second is indicating readiness to combine.

The GC automaton expands on the process of finding the minimum-weight

external link of a fragment, by introducing for each fragment a set testset of nodes

that are participating in the search. Once a node has found its local minimum-
weight external link, it is removed from the testset.

TAR and DC expand on GC in complementary ways. DC focuses on how the

nodes of a fragment cooperate to find the minimum-weight external link of the whole
fragment in a distributed fashion. It describes the flow of messages throughout

the fragments: first a broadcast informs nodes that they should find their local

minimum-weight external links, and then a convergecast reports the results back.

In contrast, TAR is unconcerned with specifying exactly when each node finds its

local minimum-weight external link, and concentrates on the details of the protocol

performed by a node to find this link.

NOT is a refinement of COM that expands on the method by which the global

level and core information for a fragment is implemented by variables local to each

node. Messages attempt to notify nodes of the level and core of the nodes' current

fragment.

Section 4: Proof of Correctness

CON, an orthogonal refinement of COM, concentrates on how messages are
used to implement what happens between the time the minimum-weight external
link of an entire fragment is computed, and the time the fragment is combined with
another one.

Finally, the entire, fully distributed, algorithm is represented in automaton

GHS. It expands on and unites TAR, DC, NOT and CON.

The path chosen through the lattice is HI, COM, GC, TAR, GHS. Why this

path? Obviously, GHS must be shown to simulate one of TAR, DC, NOT and

CON. However, it cannot be done in isolation; that is, invariants about the other

three are necessary to show that GHS simulates one. (As mentioned in Section

2.1, the invariants about the other three could be made predicates about GHS,
but this approach does not take advantage of abstraction.) Thus, we show that

GHS simultaneously simulates those four automata. To show this, however, we

need to verify that certain predicates really are invariants for the four. In order to

do this, we show that TAR and DC (independently) simulate GC, and that NOT

and CON (independently) simulate COM. Likewise, in order to show these facts,
we need to know that certain predicates are invariants of GC and COM, and the

way we do that is to show that GC simulates COM, and that COM simulates HI.

Thus, it is necessary to show safety relationships along every edge in the lattice.

The liveness relationships only need to be shown along one path from GHS to

HI. After inspecting GHS and the four automata directly above it, we decided on

pragmatic grounds that it would be easiest to show that GHS is equitable for TAR.

One consideration was that the output actions have exactly the same preconditions

in GHS and in TAR, and thus showing GHS is equitable for those actions is trivial.

Once TAR was chosen, the rest of the path was fixed.

First, the necessary safety properties are verified in Section 4.2. We show that

COM simulates HI (Section 4.2.1), that GC simulates COM (Section 4.2.2), that

TAR simulates GC (Section 4.2.3), that DC simulates GC (Section 4.2.4), that

NOT simulates COM (Section 4.2.5), that CON simulates COM (Section 4.2.6),

and that GHS simultaneously simulates TAR, DC, NOT and CON (Section 4.2.7).

Section 4.3 contains the liveness arguments. To show the desired chain of

satisfaction, we show that COM is equitable for HI (Section 4.3.1), that GC is

equitable for COM (Section 4.3.2), that TAR is equitable for GC (Section 4.3.3),

and that GHS is equitable for TAR (Section 4.3.6). In Section 4.3.6, the technique

of Lemma 7 is used in several places; thus we need to show that DC is progressive

121

Chapter 5: Minimum Spanning Tree

for an action of GC (Section 4.3.4), and that CON is progressive for several actions
of COM (Section 4.3.5).

Section 4.4 puts the pieces together to show that GHS solves MST(G).

4.1 HI Solves MST(G)

The main feature of the HI state is the data structure FST (for "forest"),
which consists of a set of subgraphs of G, partitioning V(G). The idea is that
the subgraphs of G are connected subgraphs of the minimum spanning tree T(G).
Two subgraphs can combine if the minimum-weight external link of one leads to
the other. The awake variable is used to make sure that no output action occurs
unless an input action occurs. The answered variables are used to ensure that at
most one output action occurs for each link. In Tree((p, q)) can only occur if (p, q) is
already in a subgraph, or is the minimum-weight external edge of a subgraph (i.e.,
is destined to be in a subgraph). NotIn Tree((p, q)) can only occur if p and q are in
the same subgraph but the edge between them is not.

Define automaton HI (for "High Level") as follows.

The state consists of a set FST of subgraphs of G, a Boolean variable
answered(l) for each 1 E L(G), and a Boolean variable awake.

In the start state of HI, FST is the set of single-node graphs, one for each
p E V(G), every answered(l) is false, and awake is false.

Input actions:

e Start(p), p E V(G)
Effects:

awake := true

Output actions:

e In Tree((p, q)), (p, q) E L(G)
Preconditions:

awake = true

(p, q) E F or (p, q) is the minimum-weight external edge of F,
for some F E FST

answered((p, q)) = false
Effects:

122

Section 4.1: HI Solves MST(G) 123

answered((p,q)) := true

* NotInTree((p,q)), (p,q) E L(G)
Preconditions:

awake = true

p, q E F and (p, q) V F, for some F E FST
answered((p, q)) = false

Effects:
answered((p, q)) := true

Internal actions:

e Combine(F, F', e), F, F' E FST, e E E(G)
Preconditions:

awake = true

F # F'
e is an external edge of F
e is the minimum-weight external edge of F'

Effects:
FST:= FST - {F,F'} U {F U F' U e}

Define the following predicates on states(HI). (A minimum spanning forest

of G is a set of disjoint subgraphs of G that span V(G) and form a subgraph of a

minimum spanning tree of G.)

" HI-A: Each F in FST is connected.

" HI-B: FST is a minimum spanning forest of G.

Let PHI = HI-A A HI-B. HI-B implies that the elements of FST form a par-

tition of V(G). Lemma 10 and HI-B imply that FST is a subgraph of T(G).

Theorem 12: HI solves the MST(G) problem, and PHI is true in every reachable

state of HI.

Proof: First we show that PHI is true in every reachable state of HI. If s is a

start state of HI, then PHI is obviously true. Suppose (s', 1r, s) is a step of HI and

PHI is true in s'. If ir # Combine(F, F', e), then, since FST is unchanged, PHI is

obviously true in s as well.

Suppose ir = Combine(F, F', e). By the precondition, F # F', e is the

minimum-weight external edge of F', and e is an external edge of F in s'. By

124 Chapter 5: Minimum Spanning Tree

HI-A, F and F' are each connected in s'; thus, the new fragment formed in s by
joining F and F' along e is connected, and HI-A is true. Since by HI-B and Lemma
10, F and F' are subgraphs of T(G), and since by Lemma 11 e is in T(G), the new
FST is a minimum spanning forest of G, and HI-B is true.

We now show that HI solves MST(G). Let e be a fair execution of HI. The
use of the variable awake ensures that no output action occurs in e unless an input
action occurs in e. The use of the variables answered(l) ensures that at most one
output action occurs in e for each link 1. Suppose In Tree((p, q)) occurs in e. Then
in the preceding state, either (p, q) is in F or (p, q) is the minimum-weight external
edge of F, for some F E FST. By HI-B and Lemmas 10 and 11, (p, q) is in T(G).
Suppose NotInTree((p, q)) occurs in e. Then in the preceding state, p and q are in
F and (p, q) is not in F, for some F E FST. By HI-A, there is path from p to q in
F. By HI-B and Lemma 10, this path is in T(G). Thus (p, q) cannot be in T(G),
or else there would be a cycle.

Suppose an input action occurs in e. We show that an output action occurs in
e for each link. Let e = so*ri s i Obviously, 7ri is an input action. Only a finite

number of output actions can occur in e. Choose m such that 7rm is the last output
action occurring in e. (Let m = 1 if there is no output action in e.) It is easy to
see that sm = si for all i > m. Since an input action occurs in e before sm, awake
= true in sm. IFST| = 1 in sm, because otherwise some Combine(F, F', e') action

would be enabled in sm, contradicting e being fair. Let FST = {F}. By HI-A and
HI-B, F = T(G) in sm. Furthermore, answered(l) is true in sm for each 1, because
otherwise some output action for I would be enabled in sm, contradicting e being
fair. Yet the only way answered(l) can be true in sm is if an output action for I
occurs in e. 5

4.2 Safety

Each algorithm in the lattice below HI is presented in a separate subsection.
Each subsection is organized as follows. First, an informal description of the algo-
rithm is given, together with a discussion of any particularly interesting aspects.
Then comes a description of the state of the automaton, both explicit variables, and
derived variables (if any). A derived variable is a variable that is not an explicit
element of the state, but is a function of the explicit variables. We employ the con-
vention that whenever the definition of a derived variable is not unique or sensible,
then the derived variable is undefined. The actions of the automaton are specified
next. Then predicates to be shown invariant for this automaton are listed. The

Section 4.2.1: COM Simulates HI

abstraction mapping to be used for simulating the higher-level automaton is de-
fined next. All our state mappings conform to the rule that variables with the same
name have the same value in all the algorithms. The only potential problem that
might arise with this rule is if a derived variable is mapped to an explicit variable,
but the derived variable is undefined. Although we will prove that this situation
never occurs in states we are interested in, for completeness of the definition of
state mapping one can simply choose some default value for the explicit variable.
Often it is useful to derive some predicates about this automaton's state that follow
from the invariant for this automaton and the higher-level one; these predicates
are true of any state of this automaton satisfying the invariant and mapping to a

reachable state of the higher-level algorithm. The proof of simulation completes the

subsection.

4.2.1 COM Simulates HI

The COM algorithm still takes a completely global view of the algorithm,
but some intermediate steps leading to combining are identified, and the state is

expanded to include extra information about the subgraphs. The COM state con-

sists of a set of fragments, a data structure used throughout the rest of the lattice.

Each fragment f has associated with it a subgraph of G, as well as other informa-

tion: level(f), core(f), minlink(f), and rootchanged(f). Two milestones must be

reached before a fragment can combine. First, the ComputeMin(f) action causes

the minimum-weight external link of fragment f to be identified as minlink(f), and

second, the ChangeRoot(f) action indicates that fragment f is ready to combine,
by setting the variable rootchanged(f). This automaton distinguishes two ways that

fragments (and hence, their associated subgraphs) can combine. The Merge(f, g)

action causes two fragments, f and g, at the same level with the same minimum-

weight external edge, to combine; the new fragment has a higher level and a new

core (i.e., identifying edge). The A bsorb(f, g) action causes a fragment g to be en-

gulfed by the fragment f at the other end of minlink(g), provided f is at a higher

level than g.

Define automaton COM (for "Common") as follows.

The state consists of a set fragments. Each element f of the set is called a

fragment, and has the following components:

. subtree(f), a subgraph of G;

* core(f), an edge of G or nil;

125

Chapter 5: Minimum Spanning Tree

* level(f), a nonnegative integer;

* minlink(f), a link of G or nil;

e rootchanged(f), a Boolean.

The state also contains Boolean variables, answered(l) one for each I E L(G), and
Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) = 0,
minlink(f) is the minimum-weight link adjacent to p, and rootchanged(f) is false.

Each answered(l) is false and awake is false.

Two fragments will be considered the same if either they have the same single-

node subtree, or they have the same nonnil core.

We define the following derived variables.

" For node p, fragment(p) is the element f of fragments such that p is in
subtree(f).

* A link (p, q) is an external link of p and of fragment(p) if fragment(p) :
fragment(q); otherwise the link is internal.

" If minlink(f) = (p, q), then minedge(f) is the edge (p, q), minnode(f) p, and
root(f) is the endpoint of core(f) closest to p.

* If (p, q) is the minimum-weight external link of fragment f, then mw-minnode(f)

= p and mw-root(f) is the endpoint of core(f) closest to p.

* subtree(p) is all nodes and edges of subtree(fragment(p)) on the opposite side

of p from core(fragment(p)).

* q is a child of p if q E subtree(p) and (p, q) E subtree(fragment(p)).

Input actions:

* Start(p), p E V(G)
Effects:

awake := true

Output actions:

126

Section 4.2.1: COM Simulates HI

* InTree((p,q)), (p,q) E L(G)
Preconditions:

awake = true

(p, q) E subtree(fragment(p)) or (p, q) = minlink(fragment(p))
answered((p, q)) = false

Effects:
answered((p,q)) := true

* NotInTree((p,q)), (p,q) E L(G)
Preconditions:

fragment(p) = fragment(q) and (p, q) ' subtree(fragment(p))

answered((p,q)) = false

Effects:
answered((p, q)) := true

Internal actions:

* ComputeMin(f), f E fragments
Preconditions:

minlink(f) = nil

I is the minimum-weight external link of f
level(f) <; level(fragment(target(l)))

Effects:

minlink(f) := I

* ChangeR oot(f), f E fragments

Preconditions:
awake = true

rootchanged(f) = false

minlink(f) # nil
Effects:

rootchanged(f) := true

e Merge(f, g), f, g E fragments
Preconditions:

f # g
rootchanged(f) = rootchanged(g) = true

minedge(f) = minedge(g)

Effects:
add a new element h to fragments

12T

128 Chapter 5: Minimum Spanning Tree

subtree(h) := subtree(f) U subtree(g) U minedge(f)
core(h) minedge(f)
level(h) := level(f) + 1
minlink(h) := nil

rootchanged(h) := false
delete f and g from fragments

e Absorb(f,g), f,g E fragments

Preconditions:
rootchanged(g) = true

level(g) < level(f)

fragment(target(minlink(g))) = f
Effects:

subtree(f) := subtree(f) U subtree(g) U minedge(g)
delete g from fragments

Define the following predicates on states of COM. (All free variables are uni-
versally quantified.)

* COM-A: If minlink(f) = 1, then I is the minimum-weight external link of f,
and level(f) <; level(fragment(target(l))).

* COM-B: If rootchanged(f) = true, then minlink(f) # nil.

* COM-C: If awake = false, then minlink(f) # nil, rootchanged(f) = false, and
subtree(f) = {p} for some p.

* COM-D: If f : g, then subtree(f) # subtree(g).

* COM-E: If subtree(f) = {p} for some p, then minlink(f) # nil.

e COM-F: If Inodes(f)| = 1, then level(f) = 0 and core(f) = nil; if Inodes(f)| >
1, then level(f) > 0 and core(f) E subtree(f).

Let PcoM be the conjunction of COM-A through COM-F.

In order to show that COM simulates HI, we define an abstraction mapping
M 1 = (Si, A1) from COM to HI. Define the function S1 from states(COM) to
states(HI) as follows. In conformance with our convention (cf. the beginning of
Section 4.2), the values of awake and answered(l) (for all 1) in Si(s) are the same
as in s. The value of FST in Si(s) is the multiset {subtree(f) : f E fragments}.

Section 4.2.1: COM Simulates HI

Define the function A1 as follows. Let s be a state of COM and 7r an action
of COM enabled in s.

" If 7r = Start(p), InTree(l), or NotInTree(l), then A1(s, 7r) =7r.

" If 7r = ComputeMin(f) or ChangeRoot(f), then A1(s, 7r) is empty.

* If 7 = Merge(f, g) or A bsorb(f, g), then A1(s, r) = Combine(F, F', e), where
F = subtree(f) in s, F' = subtree(g) in s, and e = minedge(g) in s.

The following predicate is true in every state of COM satisfying (PHI o S1) A
PCOM. (I-e., it is deducible from PCOM and the HI predicates.)

* COM-G: The multiset {subtree(f) : f E fragments} forms a partition of V(G),
and fragment(p) is well-defined.

Proof: Let s be a state of COM satisfying (PHI o S1) A PCOM. In S 1(s), FST =

{subtree(f): f E fragments}. By HI-B, FST forms a partition of V(G). By COM-
D, the multiset {subtree(f) : f E fragments} = FST, and thus it forms a partition
of V(G). Consequently, fragment(p) is well-defined. 0

Lemma 13: COM simulates HI via M 1, PCOM, and PHI.

Proof: By inspection, the types of COM, HI, M 1 and PCOM are correct. By
Theorem 12, PHI is a predicate true in every reachable state of HI.

(1) Let s be in start(COM). Obviously, PCOM is true in s, and Si(s) is in
start(HI).

(2) Obviously, A1(s, 7r)ext(HI) = irlext(COM) for any state s of A.

(3) Let (s', 7r, s) be a step of COM such that PHI is true of Si(s') and PCOM

is true of s'. We consider each possible value of r.

i) 7r is Start(p), InTree(1), or NotlnTree(1). A1(s', r) = 7. Obviously,
PCOM is true in s, and S1(s')rS1 (s) is an execution fragment of HI.

ii) 7r is ComputeMin(f) or ChangeRoot(f). A1(s', 7r) is empty. Obviously,
S 1(s') = Si(s). Obviously, COM-A, COM-B, COM-D and COM-F are true in s.

By COM-C for ComputeMin(f) and by precondition for ChangeRoot(f), awake =

true in s', and also in s; thus, COM-C is true in s.

129

Chapter 5: Minimum Spanning Tree

Obviously, COM-E is true in s for any fragment f' # f. If r = ComputeMin(f),
then minlink(f) # nil in s, and COM-E is vacuously true in s for f. If r =
ChangeRoot(f), then by COM-B, minlink(f) # nil in s' and also in s, so COM-E
is vacuously true in s for f.

iii) 7 is Merge(fg).

(3c) A1(s', 7) = Combine(F, F', e), where F = subtree(f) in s', F' subtree(g)

in s', and e = minedge(g) in s', for some fragments f and g.

Claims about s':

1. f # g, by precondition.

2. rootchanged(f) = rootchanged(g) = true, by precondition.
3. minedge(f) = minedge(g), by precondition.
4. awake = true, by Claim 2 and COM-C.

5. minedge(f) # nil and minedge(g) # nil, by Claim 2 and COM-B

6. minlink(f) is an external link of f, by COM-A and Claim 5.
7. minlink(g) is the minimum-weight external link of g, by COM-A and Claim 5.

Let F = subtree(f), F' = subtree(g) and e = minedge(g).

Claims about Si(s'): (All depend on the definition of S1 .)

8. awake = true, by Claim 4.

9. F # F', by Claim 1 and COM-D.
10. e is an external edge of F, by Claims 3 and 6.
11. e is the minimum-weight external edge of F', by Claim 7.

By Claims 8 through 11, Combine(F, F', e) is enabled in Si(s'). Obviously, its

effects are mirrored in Si(s).

(3a) More claims about s':

12. level(f) > 0, by COM-F.
13. subtree(f') and subtree(g') are disjoint, for all f' # g', by COM-G.

Claims about s:

14. subtree(h) = subtree(f) U subtree(g) U minedge(f), by code.

15. core(h) = minedge(f), by code.

16. level(h) = level(f) + 1, by code.

130

Section 4.2.1: COM Simulates HI 131

17. minlink(h) = nil, by code.

18. rootchanged(h) = false, by code.

19. f and g are removed from fragments, by code.

20. awake = true, by Claim 4.

21. subtree(f') and subtree(g') are disjoint, for all f' # g', by Claims 13, 14 and 19.
22. Inodes(h)| > 1, by Claim 14.
23. level(h) > 1, by Claims 12 and 16.
24. core(h) E subtree(h), by Claims 14 and 15.

COM-A is vacuously true for h by Claim 17. COM-B is vacuously true for h
by Claim 18. COM-C is vacuously true by Claim 20. COM-D is true by Claim 21.

COM-E is vacuously true for h by Claim 22. COM-F is true for h by Claims 22, 23
and 24.

iv) 7r is Absorb(fg).

(3c) A 1 (s', ir) = Combine(F, F', e), where F = subtree(f) in s', F' = subtree(g)

in s', and e = minedge(g) in s', for some fragments f and g.

Claims about s':

1. rootchanged(g) = true, by precondition.

2. level(g) < level(f), by precondition.

3. fragment (target(minlink(g))) = f, by precondition.
4. f # g, by Claim 2.
5. minlink(g) is an external link of f, by Claims 3 and 4.

6. minlink(g)f nil, by Claim 3.
7. minlink(g) is the minimum-weight external link of g, by Claim 6 and COM-A.
8. awake = true, by Claim 1 and COM-C.

Let F = subtree(f), F' = subtree(g) and e = minedge(g).

Claims about Si(s'): (All depend on the definition of S1 .)

9. awake = true, by Claim 8.
10. F # F', by Claim 4 and COM-D.
11. e is an external edge of F, by Claim 5.
12. e is the minimum-weight external edge of F', by Claim 7.

By Claims 9 through 12, Combine(F, F', e) is enabled in S1(s'). Obviously, its

effects are mirrored in S1(s).

Chapter 5: Minimum Spanning Tree

(3a) COM-A: If minlink(f) = nil in s', then the same is true in s, and COM-A
is vacuously true for f. Suppose minlink(f) = l in s'. Let f' = fragment(target(l)).

More claims about s':

13. level(f) level(f'), by COM-A.
14. f' # g, by Claims 2 and 13.

15. minedge(f) # minedge(g), by Claim 14.

16. minlink(f) is the minimum-weight external link of f, by COM-A.
17. If e' # minedge(g) is an external edge of g, then wt(e') > wt(minedge(f)). Pf:
wt(e') > wt(minedge(g)) by Claim 7, and wt(minedge(g)) > wt(minedge(f)) by
Claims 5, 15 and 16.

Since minlink(f) is the same in s as in s', Claims 16 and 17 imply that in s,
minlink(f) is the minimum-weight external link of f. The only fragment whose level

changes in going from s' to s is g (since g disappears). Thus, Claim 14 implies that

in s, level(f) level(f'). Finally, COM-A is true in s.

The next claims are used to verify COM-B through COM-F.

More claims about s':

18. subtree(f') and subtree(g') are disjoint, for all f' # g', by COM-G.
19. level(g) > 0, by COM-F.
20. level(f) > 0, by Claims 2 and 19.
21. Inodes(f)l > 1, by Claim 20 and COM-F.
22. core(f) E subtree(f), by Claim 21 and COM-F.

Claims about s:

23. awake = true, by Claim 1.

24. subtree(f) in s is equal to subtree(f) U subtree(g) U minedge(g) in s', by code.

25. subtree(f') and subtree(g') are disjoint, for all f' # g', by Claims 18 and 24.

26. Inodes(f)| > 1, by Claims 21 and 24.

27. level(f) > 0, by Claim 20.
28. core(f) E subtree(f), by Claims 22 and 24.

COM-B is unaffected. COM-C is vacuously true by Claim 23. COM-D is true

by Claim 25. COM-E is vacuously true for f by Claim 26. COM-F is true for f by

Claims 26, 27 and 28. 11

Let PCOM = (PHI o S 1) A PCOM-

132

Section 4.2.2: GC Simulates COM

Corollary 14: PcoM is true in every reachable state of COM.

Proof: By Lemmas 1 and 13. E

4.2.2 GC Simulates COM

The GC automaton expands on the process of finding the minimum-weight

external link of a fragment, by introducing for each fragment f a set testset(f) of

nodes that are participating in the search. Once a node in f has found its minimum-

weight external link, it is removed from testset(f). A new action, TestNode(p), is

added, by which a node p atomically finds its minimum-weight external link -

however, the fragment at the other end of the link cannot be at a lower level than

p's fragment in order for this action to occur. The new variable accmin(f) (for

"accumulated minlink") stores the link with the minimum weight over all links

external to nodes of f no longer in testset(f). ComputeMin(f) cannot occur until

testset(f) is empty. When an Absorb(f, g) action occurs, all the nodes formerly in

g are added to testset(f) if and only if the target of minlink(g) is in testset(f). This

version of the algorithm is still totally global in approach.

Define automaton GC (for "Global ComputeMin") as follows.

The state consists of a set fragments. Each element f of the set is called a

fragment, and has the following components:

9 subtree(f), a subgraph of G;

e core(f), an edge of G or nil;

e level(f), a nonnegative integer;

* minlink(f), a link of G or nil;

* rootchanged(f), a Boolean;

e testset(f), a subset of V(G); and

* accmin(f), a link of G or nil.

The state also contains Boolean variables, answered(l), one for each 1 E L(G), and

Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G);

for fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) =

133

Chapter 5: Minimum Spanning Tree

0, minlink(f) is the minimum-weight link

testset(f) is empty, and accmin(f) is nil.

false.

adjacent to p, rootchanged(f) is false,
Each answered(l) is false and awake is

Input actions:

* Start(p), p E V(G)
Effects:

awake := true

Output actions:

* In Tree((p, q)), (p, q) E L(G)
Preconditions:

awake = true

(p, q) E subtree(fragment(p)) or (p, q) = minlink(fragment(p))

answered((p, q)) = false

Effects:
answered((p, q)) := true

* NotIn Tree((p, q)), (p, q) E L(G)
Preconditions:

fragment(p) = fragment(q)

answered((p, q)) = false

Effects:
answered((p, q)) := true

and (p, q) V subtree(fragment(p))

Internal actions:

e TestNode(p), p E V(G)
Preconditions:

- let f = fragment(p) -

p E testset(f)
if (p, q), the minimum-weight external link of p, exists

then level(f) <; level(fragment(q))

Effects:
testset(f) := testset(f) - {p}
if (p, q), the minimum-weight external link of p, exists

and wt(p, q) < wt(accmin(f))

then accmin(f) := (p, q)

134

Section 4.2.2: GC Simulates COM

" ComputeMin(f), f E fragments

Preconditions:

minlink(f) = nil

accmin(f) # nil

testset(f) = 0
Effects:

minlink(f) := accmin(f)

accmin(f) := nil

" ChangeRoot(f), f E fragments

Preconditions:

awake = true

rootchanged(f) = false

minlink(f) :A nil

Effects:

rootchanged(f) := true

" Merge(f, g), f, g E fragments

Preconditions:

f # g
rootchanged(f) = rootchanged(g) = true

minedge(f) = minedge(g) # nil

Effects:

add a new element h to fragments

subtree(h) := subtree(f) U subtree(g) U minedge(f)

core(h) := minedge(f)

level(h) := level(f) + 1
minlink(h) := nil

rootchanged(h) := false

testset(h) := nodes(h)

accmin(h) := nil

delete f and g from fragments

" A bsorb(f, g), f, g E fragments

Preconditions:

rootchanged(g) = true

level(g) < level(f)
- let p = target(minlink(g)) -

fragment(p) = f

135

136 Chapter 5: Minimum Spanning Tree

Effects:
subtree(f) := subtree(f) U subtree(g) U minedge(g)

if p E testset(f) then testset(f) := testset(f) U testset(g)
delete g from fragments

Define the following predicates on the states of GC. (All free variables are
universally quantified.)

* GC-A: If accmin(f) = (p, q), then (p, q) is the minimum-weight external link
of any node in nodes(f) - testset(f), and level(f) !5 level(fragment(q)).

* GC-B: If there is an external link of f, if minlink(f) = nil, and if testset(f) =
0, then accmin(f) # nil.

* GC-C: If testset(f) # 0, then minlink(f) = nil.

Let PGC = GC-A A GC-B A GC-C.

In order to show that GC simulates COM, we define an abstraction mapping

M2 = (S 2 , A2) from GC to COM. Define the function S2 from states(GC) to
states(COM) by simply ignoring the variables accmin(f) and, testset(f) for all
fragments f when going from a state of GC to a state of COM.

Define the function A 2 as follows. Let s be a state of GC and 7r an action of GC
enabled in s. If r = TestNode(p), then A 2 (s,rr) is empty. Otherwise, A 2 (s,r) = 7r.

Recall that PCoM = (PHI o SI) A PCOM. If PCOM(S2(s)) is true, then the
COM predicates are true in S2(s), and the HI predicates are true in 51(S2(5)).

Lemma 15: GC simulates COM via M 2 , PGC, and PCoM.

Proof: By inspection, the types of GC, COM, M 2 , and PGC are correct. By
Corollary 14, PCoM is a predicate true in every reachable state of COM.

(1) Let s be in start(GC). Obviously, PGC is true in s, and S2(s) is in

start(COM).

(2) Obviously, A2(S, -7r)|ext(COM) = rlext(GC).

(3) Let (s', 7r, s) be a step of GC such that PCoM is true of S2(s') and PGC is

true of s'.

Section 4.2.2: GC Simulates COM

i) r is Start(p), InTree(1), NotlnTree(l), or ChangeRoot(f). Obviously,
S 2 (s')rS2 (s) is an execution fragment of COM, and PGC is true in s.

ii) 7r is ComputeMin(f).

(3a) Obviously, PGC is still true in s for any f' # f. GC-A is vacuously true

for f in s, since accmin(f) is set to nil. GC-B is vacuously true for f in s, since
minlink(f) # nil. By COM-C, awake = true in S2 (s') and thus in s'; the same is

true in s, so GC-C(a) is true in s for f. GC-C(b) is vacuously true for f in s, since

testset(f) = 0.

(3c) A 2 (s', 7r) = ir.

Claims about s':

1. testset(f) = 0, by precondition.

2. accmin(f) # nil, by precondition.

3. level(f) level(fragment(target(accmin(f)))), by Claim 2 and GC-A.

4. accmin(f) is the minimum-weight external link of f, by Claim 2, GC-A, and

Claim 1.
5. level(f) level(fragment(target(l))), where I is the minimum-weight external

link of f, by Claims 3 and 4.

Using Claim 5, it is easy to see that S 2 (s')rS2 (s) is an execution fragment of

COM.

iii) 7r is TestNode(p).

(3a) Obviously, PGC is still true in s for any f' # f. Inspecting the code verifies

that GC-A and GC-B are still true in s for f as well. By GC-C(b), minlink(f) = nil

in s'; GC-C is true for f in s because minlink(f) is not changed.

(3b) A 2 (s', 7r) is empty, and obviously S 2 (s') = S 2 (s).

iv) r is Merge(fg).

(3a) Obviously, PGC is still true in s for any f' other than f and g. GC-A is

vacuously true in s for h, since accmin(h) = nil. GC-B is vacuously true in s for

h, since testset(h) # 0. GC-C is true in s for h since minlink(h) = nil.

(3c) A2(s', 7r) = ir. Obviously, S2(s')irS2 (s) is an execution fragment of COM.

137

138 Chapter 5: Minimum Spanning Tree

v) ir is Absorb(fg).

(3a) Obviously, PGC is still true in s for any f' other than f and g.

In going from s' to s, testset(f) is either empty in both or non-empty in both,
minlink(f) remains the same, and the truth of the existence of an external link of
f either stays true or goes from true to false. Thus GC-B and GC-C are true in s
for f.

We now deal with GC-A. If accmin(f) = nil in s', then the same is true in s,
so GC-A is vacuously true for f in s.

Assume accmin(f) = (r, t). Let minlink(g) = (q, p).

Claims about s':

1. level(g) < level(f), by precondition.

2. fragment(p) = f, by precondition.

3. level(f) <_ level(fragment(t)), by GC-A.
4. fragment(t) # g, by Claims 1 and 3.

5. (q, p) # (t, r), by Claim 4 and COM-A.
6. wt(q,p) < wt(l), for any 1 # (q,p) that is an external link of g, by COM-A.
7. If p V testset(f), then wt(r,t) < wt(q,p), by Claim 5 and GC-A.
8. If p V testset(f), then wt(r, t) < wt(l), for any I that is an external link of g, by
Claims 6 and 7.

If p g testset(f) in s', then any node p' E nodes(f) is not in testset(f) in s

exactly if, in s', p' is either in nodes(f)- testset(f) or in nodes(g). Claim 8 implies

that in s, (r, t) is still the minimum-weight external link of any node in f that is

not in testset(f).

If p E testset(f) in s', then any node p' E nodes(f) is not in testset(f) in s

exactly if p' is in nodes(f)- testset(f) in s'. Thus in s, (r,t) is still the minimum-

weight external link of any node in f that is not in testset(f).

Since g is the only fragment whose level changes in going from s' to s, Claim 4

implies that level(f) 5 level(fragment(t)) in s. Thus, since accmin(f) = (r, t) in s,
GC-A is true in s for f.

(3c) A 2 (s, -r) = 7r. Obviously S 2 (s')rS2 (s) is an execution fragment of

COM. 0

Section 4.2.3: TAR Simulates GC

Let PG'c = (EboM o S 2) A PGC.

Corollary 16: PNC is true in every reachable state of GC.

Proof: By Lemmas 1 and 15.

4.2.3 TAR Simulates GC

This automaton expands on the method by which a node finds its local
minimum-weight external link. Some local information is introduced in this ver-
sion, in the form of node variables and messages. Three FIFO message queues are
associated with each link (p, q): tarqueuep((p, q)), the outgoing queue local to p;
tarqueuepq((p, q)), modelling the communication channel; and tarqueueq((p, q)), the
incoming queue local to q. The action ChannelSend(l, m) transfers a message m
from the outgoing local queue of link 1 to the communication channel of 1; and the
action ChannelRecv(l, m) transfers a message m from the communication channel
of link I to the incoming local queue of 1.

Each link I is classified by the variable lstatus(l) as branch, rejected, or un-
known. Branch means the link will definitely be in the minimum spanning tree;
rejected means it definitely will not be; and unknown means that the link's status
is currently unknown. Initially, all the links are unknown.

The search for node p's minimum-weight external link is initiated by the ac-
tion Send Test(p), which causes p to identify its minimum-weight unknown link as
testlink(p), and to send a TEST message over its testlink together with information
about the level and core (identity) of p's fragment. If the level of the recipient q's

fragment is less than p's, the message is requeued at q, to be dealt with later (when
q's level has increased sufficiently). Otherwise, a response is sent back. If the frag-
ments are different, the response is an ACCEPT message, otherwise, it is a REJECT

message. An optimization is that if q has already sent a TEST message over the
same edge and is waiting for a response, and if p and q are in the same fragment,
then q does not respond - the TEST message that q already sent will inform p that

the edge (p, q) is not external.

When a REJECT message (or a TEST in the optimized case described above) is

received, the recipient marks that link as rejected, if it is unknown. It is possible
that the link is already marked as branch, in which case it should not be changed
to rejected.

139

Chapter 5: Minimum Spanning Tree

When a ChangeRoot(f) occurs, minlink(f) is marked as branch; when an
A bsorb(f, g) occurs, the reverse link of minlink(g) is marked as branch. As soon as
a link I is classified as branch, the InTree(l) output action can occur; as soon as a
link I is classified as rejected, the NotInTree(l) output action can occur.

The requeuing of a message is a delicate aspect of this (as well as the original)
algorithm. When p receives a message that it is not yet ready to handle, it cannot
simply block receiving any more messages on that link, but instead it must allow
other messages to jump over that message, as the following example shows. Suppose
p is in a fragment at level 3, q is in a fragment at level 4, p sends a TEST message
to q with parameter 3, and before it is received, q sends a TEST message to p with
parameter 4. When p receives q's TEST message, it is not ready to handle it. When
q receives p's TEST message, it sends back an ACCEPT message. In order to prevent

deadlock, p must be able to receive this ACCEPT message, even though it was sent
after the TEST message. Thus, the correctness of the algorithm depends on a subtle
interplay between FIFO behavior, and occasional, well-defined, exceptions to it.

The following scenario demonstrates the necessity of checking that lstatus(l)
is unknown before changing it to rejected, when a TEST or REJECT is received.
(The reason for the check, which also appears the full algorithm, is not explained
in [GHS].) Suppose p is in fragment f with level 8 and core c, q is in fragment g
with level 4 and core d, and (q, p) is the minimum-weight external link of g. First,
q determines that (q, p) is its local minimum-weight external link. Then p sends a
TEST(8, c) message to p, which is requeued, since 8 > 4. Eventually, ComputeMin(g)
occurs, and minlink(g) is set equal to (q, p). Then ChangeRoot(g) occurs, and (q, p)
is marked as branch. Then Absorb(f, g) occurs, and (p, q) is marked as branch. The
next time that q tries to process p's TEST(8, d) message, it succeeds, determines that
(q, p) is not external, since d is the core of q's fragment, and sends REJECT to q. But
q had better not change the classification of (q,p) from branch to rejected. Similarly,
when p receives q's REJECT message, it had better not change the classification of
(p, q) from branch to rejected.

Define automaton TAR (for "Test-Accept-Reject") as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

* subtree(f), a subgraph of G;

* core(f), an edge of G or nil;

140

Section 4.2.3: TAR Simulates GC 141

" level(f), a nonnegative integer;

" minlink(f), a link of G or nil;

" rootchanged(f), a Boolean; and

* testset(f), a subset of V(G).

For each node p, there is a variable testlink(p), which is either a link of G or nil.

For each link (p, q), there are associated four variables:

" lstatus((p, q)), which takes on the values "unknown", "branch" and "rejected";

" tarqueue,((p, q)), a FIFO queue of messages from p to q waiting at p to be sent;

" tarqueuepq((p, q)), a FIFO queue of messages from p to q that are in the com-
munication channel; and

* tarqueueq((p, q)), a FIFO queue of messages from p to q waiting at q to be
processed.

The set of possible messages M is {TEST(l, c) : I > 0, c E E(G)} U {ACCEPT,
REJECT}.

The state also contains Boolean variables, answered(l), one for each I E L(G),
and Boolean variable awake.

In the start state of TAR, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) = 0,
minlink(f) is the minimum-weight link adjacent to p, rootchanged(f) is false, and
tests et(f) is empty. For all p, testlink(p) is nil. For each link 1, lstatus(l) = unknown.
The message queues are empty. Each answered(l) is false and awake is false.

The derived variable tarqueue((p, q)) is defined to be tarqueuep((p, q)) || tar-
queuepq((p, q)) || tarqueueq((p, q)). 1

The derived variable accmin(f) is defined as follows. If minlink(f) # nil, or
if there is no external link of any p E nodes(f) - testset(f), then accmin(f) = nil.

1 Given two FIFO queues qi and q2, define q1 I Jq2 to be the FIFO queue obtained
by appending q2 to the end of q1 . Obviously this operation is associative.

142 Chapter 5: Minimum Spanning Tree

Otherwise, accmin(f) is the minimum-weight external link of all p E nodes(f) -
testset(f).

Input actions:

* Start(p), p E V(G)
Effects:

awake := true

Output actions:

* In Tree((p, q)), (pq) E L(G)
Preconditions:

latatus((p,q)) = branch

answered((p,q)) = false

Effects:
answered((p,q)) := true

* NotInTree((p,q)), (p,q) E L(G)
Preconditions:

lstatus((p,q)) = rejected

answered((p,q)) = false

Effects:
answered((p,q)) := true

Internal actions (and a procedure):

* ChannelSend((p,q), m), (p,q) E L(G), m E M
Preconditions:

m at head of tarqueue,((p, q))
Effects:

dequeue(tarqueue,((p, q)))
enqueue(m, tarqueuepq((p, q)))

* ChannelRecv((p, q), m), (p, q) E L(G), m E M
Preconditions:

m at head of tarqueuepq((p, q))
Effects:

dequeue(tarqueuep,((p, q)))
enqueue(m, tarqueueq((p, q)))

Section 4.2.3: TAR Simulates GC

e Send Test(p), p E V(G)
Preconditions:

p E testset(fragment(p))
testlink(p) = nil

Effects:

execute procedure Test(p)

e Procedure Test(p), p E V(G)

- let f = fragment(p) -
if 1, the minimum-weight link of p with lstatus(l) = unknown, exists then

testlink(p) := I

enqueue(TEST(level(f), core(f)), tarqueuep(l))
else [

remove p from testset(f)

testlink(p) := nil]

e Receive Test((q, p), l, c), (p, q) E L(G)

Preconditions:

TEST(l, c) at head of tarqueue,((q,p))

Effects:
dequeue(tarqueue,((q, p)))
if I > level(fragment(p)) then

enqueue(TEST(l, c),tarqueue,((q, p)))

else

if c 5 core(fragment(p)) then
enqueue(ACCEPT, tarqueuep((p, q)))

else [
if lstatus((p, q)) = unknown then lstatus((p, q)) := rejected

if testlink(p) # (p, q) then
enqueue(REJECT,tarqueue,((p, q)))

else execute procedure Test(p)]

* ReceiveAccept((q, p)), (q, p) E L(G)
Preconditions:

ACCEPT at head of tarqueue,((q,p))

Effects:

dequeue(tarqueuep((q, p)))
testlink(p) := nil

remove p from tests et(fragment(p))

143

Chapter 5: Minimum Spanning Tree

" ReceiveReject((q,p)), (q,p) E L(G)
Preconditions:

REJECT at head of tarqueue,((q,p))
Effects:

dequeue(tarqueue,((q, p)))
if lstatus((p, q)) = unknown then lstatus((p, q)) := rejected
execute procedure Test(p)

e ComputeMin(f), f E fragments

Preconditions:
minlink(f) = nil

accmin(f) # nil

testset(f) = 0
Effects:

minlink(f) := accmin(f)

e ChangeRoot(f), f E fragments
Preconditions:

awake = true

rootchanged(f) = false

minlink(f) # nil
Effects:

rootchanged(f) := true

lstatus(minlink(f)) := branch

" Merge(f, g), f, g E fragments

Preconditions:

f # g
rootchanged(f) = rootchanged(g) = true

minedge(f) = minedge(g)

Effects:

add a new element h to fragments

subtree(h) := subtree(f) U subtree(g) U minedge(f)
core(h) := minedge(f)

level(h) := level(f) + 1
minlink(h) := nil

rootchanged(h) := false
testset(h) := nodes(h)

delete f and g from fragments

144

Section 4.2.3: TAR Simulates GC

* Absorb(f,g), f,g E fragments

Preconditions:
rootchanged(g) = true

level(g) < level(f)

- let (q,p) = minlink(g) -

fragment(p) = f
Effects:

subtree(f) := subtree(f) U subtree(g) U minedge(g)

if p E testset(f) then testset(f) := testset(f) U nodes(g)
lstatus((p,q)) := branch

delete g from fragments

A message m is defined to be a protocol message for link (p, q) in a state if m

is one of the following:
(a) a TEST message in tarqueue((p, q)) with lstatus((p, q)) # rejected.

(b) an ACCEPT message in tarqueue((q,p))

(c) a REJECT message in tarqueue((q,p))

(d) a TEST message in tarqueue((q,p)) with lstatus((q,p)) = rejected.

A protocol message for (p, q) can be considered a message that is actively helping

p to discover whether (p, q) is external.

Define the following predicates on states of TAR. (All free variables are uni-

versally quantified.)

* TAR-A:
(a) If lstatus((p, q)) = branch, then either (p, q) E subtree(fragment(p)) or min-

link (fragment(p)) = (p, q).
(b) If (p, q) E subtree(fragment(p)), then lstatus((p, q)) = lstatus((q, p)) =

branch.

" TAR-B: If lstatus((p, q)) = rejected, then fragment(p) = fragment(q) and

(p, q) V subtree(fragment(p)).

* TAR-C: If testlink(p) # nil, then

(a) testlink(p) = (p, q) for some q;
(b) p E testset(fragment(p));

(c) there is exactly one protocol message for (p, q);

(d) if lstatus((p, q)) # branch, then (p, q) is the minimum-weight link of p with

lstatus unknown;

145

146 Chapter 5: Minimum Spanning Tree

(e) if lstatus((p, q)) = branch, then lstatus((q, p)) = branch and testlink(q) #
(q, p).

9 TAR-D: If there is a protocol message for (p, q), then testlink(p) = (p, q).

* TAR-E: If TEST(l, c) is in tarqueue((p, q)) then

(a) (p, q) # core(fragment(p));

(b) if lstatus((p, q)) # rejected, then c = core(fragment(p))

ment(p)); and

(c) if lstatus((p,q)) = rejected, then c = core(fragment(q))

ment(q)).

" TAR-F: If ACCEPT is in tarqueue((p,q)), then fragment(p)

level (fragment(p)) > level(fragment(q)).

" TAR-G: If REJECT is in tarqueue((p,q)), then fragment(p)

lstatus ((p,q)) # unknown.

and I = level(frag-

and I = levelfrag-

fragment(q) and

= fragment(q) and

* TAR-H: rootchanged(f) is true if and only if latatus(minlink(f)) = branch.

* TAR-I: If p V testset(fragment(p)), then either no (p, q) has lstatus((p, q)) =

unknown, or else there is an external link (r, t) of fragment(p) with level(frag-
ment(p)) <; level(fragment(t)).

* TAR-J: If awake = false, then lstatus((p, q)) = unknown.

Let PTAR be the conjunction of TAR-A through TAR-J.

In order to show that TAR simulates GC, we define an abstraction mapping

M3 = (S3, A 3) from TAR to GC. Define the function S3 from states(TAR) to
states(GC) by ignoring the message queues, and the testlink and istatus variables.
The derived variables accmin of TAR map to the (non-derived) variables accmin of
GC. Define the function A3 as follows. Let s be a state of TAR and r an action
of TAR enabled in s. The GC action TestNode(p) is simulated in TAR when p
receives the message that tells p either that this link is external or that p has no
external links.

* If r = ReceiveAccept((q,p)), then A 3(s,r) = TestNode(p).

* If r = SendTest(p) or ReceiveRejec((q,p)), then A3 (s,7r) = TestNode(p) if
there is no link (p, r), r : q, with latatus((p, r)) = unknown in s; otherwise,
A3(s, 7r) is empty.

Section 4.2.3: TAR Simulates GC

" If 7r = ReceiveTest((q,p),l,c), then A 3 (s, 7) = TestNode(p) if I < level(frag-
ment(p)), c = core(fragment(p)), testlink(p) = (p, q), and there is no link (p, r),
r # q, with lstatus((p,r)) = unknown in s; otherwise, A 3 (s, r) is empty.

" If 7r = ChannelSend((p, q), m) or ChannelRecv((p, q), m), then A 3 (s, 7) is
empty.

" For all other values of 7r, A3(s, r) = x.

The following predicates are true in every state of TAR satisfying (PGC 0 $3) A

PTAR. Recall that Pbc = (P5 oM o $2) A PGC- If PSC(S3(s)) is true, then the

GC predicates are true in S3(s), the COM predicates are true in S2(S3(3)), and the
HI predicates are true in S1(S 2 (S3(8))). Thus, these predicates are derivable from

PTAR, together with the HI, COM and GC predicates.

e TAR-K: If testlink(p) = (p, q), then lstatus((p, q)) # rejected.

Proof: By TAR-C(d) and TAR-C(e).

* TAR-L: If minlink(f) = nil and I is an external link of f, then lstatus(l) =

unknown.

Proof: By TAR-A(a), if lstatus(l) = branch, then I is internal. By TAR-B, if

lstatus(l) = rejected, then I is internal. 0

* TAR-M: If TEST(l, c) is in tarqueue((p, q)), then 1 > 1 and c # nil.

Proof: Let f = fragment(p) and g = fragment(q).

1. TEST(l, c) is in tarqueue((p, q)), by assumption.

Case 1: lstatus((p, q)) # rejected.

2. lstatus((p, q)) # rejected, by assumption.

3. c = core(f) and I = level(f), by Claim 2 and TAR-E(b).

4. testlink(p) = (p, q), by Claims 1 and 2 and TAR-D.

5. p E testset(f), by Claim 4 and TAR-C(b).

6. minlink(f) = nil, by Claim 5 and GC-C.
7. subtree(f) # {p}, by Claim 6 and COM-E.

8. core(f) # nil and level(f) # 0, by Claim 7 and COM-F.

9. level(f) > 1, by Claim 8 and COM-F.

10. c # nil and I > 1, by Claims 3, 8 and 9.

Case 2: lstatus((p, q)) = rejected.

147

Chapter 5: Minimum Spanning Tree

11. lstatus((p, q)) = rejected, by assumption.

12. c = core(g) and I = level(g), by Claim 11 and TAR-E(c).
13. testlink(q) = (q,p), by Claims 1 and 11 and TAR-D.

14. q E testset(g), by Claim 13 and TAR-C(b).

15. minlink(g) = nil, by Claim 14 and GC-C.
16. subtree(g) # {q}, by Claim 15 and COM-E.
17. core(g) # nil and level(g) # 0, by Claim 16 and COM-F

18. level(g) > 1, by Claim 17 and COM-F.

19. c # nil and I > 1, by Claims 12, 17 and 18.

e TAR-N: If TEST(l,c) is in tarqueue((q,p)) and c = core(fragment(p)), then

fragment(p) = fragment(q).

Proof:

1. TEST(l, c) is in tarqueue((q, p)), by assumption.

2. c = core(fragment(p)), by assumption.

3. c # nil, by Claim 1 and TAR-M.
4. If lstatus((q,p)) # rejected, then c = core(fragment(q)), by TAR-E(b).

5. If lstatus((q,p)) # rejected, then fragment(q) = fragment(p), by Claims 2, 3 and

4, and COM-F.
6. If lstatus((q, p)) = rejected, then fragment(q) = fragment(p), by TAR-B. El

* TAR-O: If minlink(f) # nil, then there is no protocol message for any link of

any node in nodes(f).

Proof:

1. minlink(f) # nil, by assumption.

2. testset(f) 0, by Claim 1 and GC-C.
3. testlink(p) = nil for all p E nodes(f), by Claim 2 and TAR-C(b).

4. There is no protocol message for any link (p, q), p E nodes(f), by Claim 3 and

TAR-D. E

e TAR-P: If TEST(l, c) is in tarqueue((q, p)), c = core(fragment(p)), testlink(p) =

(p, q), and lstatus((q,p)) # rejected, then a TEST(l', c') message is in tar-

queue((p, q)) and lstatus((p, q)) = unknown.

Proof:

1. TEST(l, c) is in tarqueue((q, p)), by assumption.

2. c = core(fragment(p)), by assumption.

3. testlink(p) = (p, q), by assumption.

148

Section 4.2.3: TAR Simulates GC

4. lstatus((q, p)) # rejected, by assumption.
5. fragment(p) = fragment(q), by Claims 1 and 2 and TAR-N.
6. No ACCEPT message is in tarqueue((q,p)), by Claim 5 and TAR-F.
7. The TEST(l, c) message in tarqueue((q, p)) is a protocol message for (q, p), by
Claim 4.
8. testlink(q) = (q,p), by Claim 7 and TAR-D.
9. lstatus((q, p)) # branch, by Claims 3, 8 and TAR-C(e).
10. lstatus((q, p)) = unknown, by Claims 4 and 9.
11. No REJECT message is in tarqueue((q,p)), by Claim 10 and TAR-G.
12. There is exactly one protocol message for (p, q), by Claim 3 and TAR-C(c).
13. A TEST(l', c') message is in tarqueue((p, q)) and lstatus((p, q)) # rejected, by

Claims 6, 7, 11 and 12.
14. lstatus((p, q)) # branch, by Claims 3 and 8 and TAR-C(e).
15. lstatus((p, q)) = unknown, by Claims 13 and 14.

Claims 13 and 15 give the result.

Lemma 17: TAR simulates GC via M 3 , PTAR, and P.c-

Proof: By inspection, the types of TAR, GC, M 3 , and PTAR are correct. By
Corollary 16, Pbc is a predicate true in every reachable state of COM.

(1) Let s be in start(TAR). Obviously, PTAR is true in s, and S3 (s) is in

start(GC).

(2) Obviously, A3 (s, r)|ext(GC) = 7rlext(TAR).

(3) Let (s', 7r, s) be a step of TAR such that Pbc is true of S 3 (s') and PTAR

is true of s'. Condition (3a) is only shown below for those predicates that are not

obviously true in s.

i) 7r is ChannelSend((p,q),m) or ChannelRecv((p,q),m). A 3 (s',7r) is
empty. (3a) and (3b) are obviously true.

ii) r is Start(p) or InTree(l) or NotlnTree(1).

(3c) A 3 (s', r) = 7r. If ir = InTree(l), then by TAR-J and TAR-A(a), i is

enabled in S 3 (s'). If ir = NotInTree(l), then by TAR-J and TAR-B, 7r is enabled in

S 3 (s'). Thus, S 3 (s')rS3(s) is an execution fragment of GC.

(3a) Obviously, PTAR is still true in s.

149

150 Chapter 5: Minimum Spanning Tree

iii) ir is SendTest(p). Let f = fragment(p) in s'.

Case 1: There is a link (p, q) with lstatus((p, q)) = unknown in s'.

(3b) A3(s', 7r) is empty. It is easy to see that S3(S') = S3(s).

(3a) By TAR-D and precondition that testlink(p) = nil, there is no protocol
message for any link of p in s'.

TAR-C(c): In s, there is exactly one protocol message for (p, q), namely the
TEST message in tarqueue((p, q)).

TAR-D: The TEST message added in s is a protocol message for (p, q), and is
not a protocol message for any other link. By the code, testlink(p) = (p, q).

TAR-E(a): By TAR-A(b), (p, q) 0 subtree(f). By COM-F, (p, q) 5 core(f).

Case 2: There is no link (p, q) with 1status((p, q)) = unknown in s'.

(3c) A 3 (s', 7r) = TestNode(p).

Claims about s':

1. p E testset(f), by precondition.
2. minlink(f) = nil, by Claim 1 and GC-C.
3. There is no external link of p, by Claim 2, TAR-L, and assumption.

By Claims 1 and 3, TestNode(p) is enabled in S3(s').

Claims about s:

4. p 0 testset(f), by code.
5. There is no external link of p, by Claim 3 and code.
6. accmin(f) does not change, by Claim 5.

By Claims 4, 5, and 6, the effects of TestNode(p) are mirrored in S3(s).

(3a) TAR-I: By assumption for Case 2, p has no unknown links in s', and the
same is true in s.

iv) 7r is ReceiveTest((q,p),1,c). Let f = fragment(p) in s'.

Section 4.2.3: TAR Simulates GC

Case 1: 1 < level(f), c = core(f), testlink(p) = (p,q), and there is no link
(p, r), r : q, with lstatus((p, r)) = unknown in s'.

(3c) Aa(s', 7r) = TestNode(p).

Claims about s':

1. c = core(f), by assumption.
2. testlink(p) = (p, q), by assumption.
3. There is no link (p, r), r # q, with lstatus((p, r)) = unknown, by assumption.
4. TEST(l, c) is in tarqueue((q, p)), by preconditions.

5. p E testset(f), by Claim 2 and TAR-C(b).
6. minlink(f) = nil, by Claim 5 and GC-C.
7. No link (p, r), r # q, is external, by Claims 6 and 3 and TAR-L.
8. (p, q) is not external, by Claims 2, 3 and 4 and TAR-N.

By Claims 5, 7 and 8, TestNode(p) is enabled in s'.

Claims about s:

9. p V testset(f), by code.
10. There is no external link of p, by Claims 7 and 8 and code.
11. accmin(f) does not change, by Claim 10.

By Claims 9, 10 and 11, the effects of TestNode(p) are mirrored in s.

(3a) TAR-B: The only case of interest is when lstatus((p, q)) changes from
unknown in s' to rejected in s. By TAR-N, f = fragment(q) in s' and the same is

still true in s. By TAR-A(b), (p, q) V subtree(f) in s', and the same is still true in

S.

TAR-D:

Claims about s':

1. TEST(l, c) is in tarqueue((q,p)), by precondition.

2. c = core(f), by assumption.

3. testlink(p) = (p, q), by assumption.

4. There is exactly one protocol message for (p, q), by Claim 3 and TAR-C(c).

5. There is no protocol message for any link (p, r), r # q, by Claim 3 and TAR-D.

Case A: lstatus((q,p)) = rejected. The TEST(l, c) message in tarqueue((q,p))

is the protocol message for (p, q) in s'. Since it is removed in s, by Claims 4 and

5 there is no protocol message for any link of p in s. Concerning q: by TAR-K,

151

152 Chapter 5: Minimum Spanning Tree

testlink(q) # (q,p); thus, the predicate is still true for q in s, even if lstatus((p, q))
is changed to rejected.

Case B: lstatus((q,p)) # rejected.

6. A TEST(l', c') is in tarqueue((p, q)) and lstatus((p, q)) = unknown, by Claims 1,
2, 3, assumptions for Case B, and TAR-P.
7. testlink(q) = (q,p), by Claim 1, assumption for Case B and TAR-D.

In s, the TEST(l', c') message in tarqueue((p, q)), which exists by Claim 6, be-
comes a protocol message for (q, p), since lstatus((p, q)) is changed to rejected. By
Claim 7, testlink(q) has the correct value. By Claims 4 and 5, the predicate is
vacuously true for p in s.

TAR-E(c): The only case of interest is when lstatus((p, q)) goes from unknown
in s' to rejected in s, while there is a TEST(l', c') message in tarqueue((p, q)). By
TAR-E(b), c' = core(f) and ' = level(f) in s'. By TAR-N, fragment(q) = f. Thus
c' = core(fragment(q)) and ' = level(fragment(q)).

TAR-I: By the assumption for Case 1 and code, p has no unknown links in s.

TAR-J: The TEST message in tarqueue((q,p)) is a protocol message for ei-

ther (p, q) or (q, p). Without loss of generality, suppose for (p, q). By TAR-
D, testlink(p) = (p,q), and by TAR-C(b), p E testset(f). Thus, by GC-C,
minlink(f) = nil, and by COM-C awake = true.

Case 2: 1 > level(f), or c # core(f), or testlink(p) # (p,q), or there is a link
(p, r), r # q, with lstatus((p, r)) = unknown in s'.

(3b) A 3(s', 7r) is empty. The only variables that are possibly changed are

lstatus((p, q)), tarqueue's, and testlink(p), none of which is reflected (directly) in
the state of GC. Thus accmin(f) does not change and S3 (s') = S3 (s).

(3a) TAR-B: As in Case 1.

TAR-C(b): If testlink(p) # nil in s, then by inspecting the code, the same is

true in s'. So the predicate is true in a because it is true in s'.

TAR-C(c): If I > level(f) in s', nothing affecting the predicate changes in going

from s' to s. Suppose I < level(f) in s'.

Section 4.2.8: TAR Simulates GC

Claims about s':

1. TEST(l, c) is in tarqueue((q, p)), by precondition.

Case A: c # core(f).

2. lstatus((q,p)) # rejected, by TAR-E(c).
3. The TEST(1, c) message in tarqueue((q, p)) is a protocol message for (q, p), by
Claim 2.

The ACCEPT message added in s is a protocol message for (q,p). There is no
change that affects the truth of the predicate for p.

Case B: c = core(f).

Case B.1: testlink(p) # (p,q).

4. There is no protocol message for (p, q), by TAR-D.

5. The TEST(l, c) message in tarqueue((q, p)) is a protocol message for (q, p), by
Claim 4.

The REJECT message added in s is a protocol message for (q, p). No change

affects the truth of the predicate for p.

Case B.2: testlink(p) = (p, q).

6. There is a link (p, r), r # q, with lstatus((p, r)) = unknown, by assumption for

Case B.2.
7. There is no protocol message for (p, r), by Claim 6 and TAR-D.

Case B.2.1: lstatus((q,p)) # rejected.

8. There is a TEST(l', c') message in tarqueue((p, q)) and status((p, q)) = unknown,
by assumptions for Case B.2.1 and TAR-P.
9. The TEST(l, c) message in tarqueue((q, p)) is a protocol message for (q, p), by
assumptions for Case B.2.1.

The TEST(l', c') message of Claim 8 becomes a protocol message for (q, p) in 3,
since lstatus((p, q)) is changed to rejected. Concerning p: testlink(p) = (p, r) in s,
and a TEST message is added to tarqueue((p, r)) and is the sole protocol message

for (p, r) by Claim 7.

Case B.2.2 lstatus((q,p)) = rejected.

153

Chapter 5: Minimum Spanning Tree

10. The TEST(l, c) message in tarqueue((q, p)) is the protocol message for (p, q), by

assumptions for Case B.2.2.

11. testlink(q) # (q,p), by assumption for Case B.2.2 and TAR-K.

The predicate is true for p in s because the TEST(l, c) message, which was the

sole protocol message for (p, q) by Claim 10, is removed in s; testlink(p) is now (p, r),
and (p, r) has exactly one protocol message, by inspecting the code. No change is

made that affects the truth of the predicate for q, by Claim 11.

TAR-D: If I > level(f) in s', nothing affecting the predicate changes in going

from s' to s. Suppose I < level(f) in s'.

Claims about s':

1. TEST(l, c) is in tarqueue((q, p)), by precondition.

Case A: c # core(f).

2. lstatus((q, p)) # rejected, by assumption for Case A and TAR-E(c).

3. testlink(q) = (q,p), by Claims 1 and 2 and TAR-D.

Then testlink(q) is still (q,p) in s, and there is an ACCEPT message in

tarqueue((p, q)). No change affects the truth of the predicate for p.

Case B: c = core(f).

Case B.1: testlink(p) # (p, q).

4. The TEST(l, c) message in tarqueue((q, p)) is a protocol message for (q, p), by

assumptions for Case B.1 and TAR-D.

5. testlink(q) = (q,p), by Claim 4 and TAR-D.

Then in s, there is a REJECT message in tarqueue((p, q)) and testlink(q) is still

(q, p). No change affects the truth of the predicate for p.

Case B.2: testlink(p) = (p,q).

6. There is a link (p, r), r # q, with lstatus((p, r)) = unknown, by assumption for

Case 2.

7. There is exactly one protocol message for (p, q), by TAR-C(c).

Case B.2.1: lstatus((q,p)) = rejected.

154A

Section 4.2.3: TAR Simulates GC

8. testlink(q) # (q,p), by TAR-K.

No changes affect the truth of the predicate for q. For p: The TEST(l, c) message

in tarqueue((q, p)) is the protocol message for (p, q). It is removed in s. A TEST

message is added to tarqueue((p, r)) in s, where lstatus((p, r)) = unknown, and
testlink(p) = (p, r) by code.

Case B.2.2: lstatus((q,p)) # rejected.

9. A TEST(l', c') message is in tarqueue((p, q)) and lstatus((p, q)) = unknown, by
Claim 1, the assumption for Case B.2.2 and TAR-P.
10. testlink(q) = (q,p), by Claim 8 and TAR-D.

For q: In s, since lstatus((q, p)) is changed to rejected, the TEST(l', c') message
in tarqueue((p, q)) (of Claim 9) becomes a protocol message for (q,p). This is OK
by Claim 10.

For p: The TEST(l', c') message of Claim 9 is the protocol message for (p, q).
The rest of the argument is as in Case B.2.1.

TAR-E: (a) Suppose a TEST message is added to tarqueue((p,r)). As in ir =

SendTest(p), Case 1. (c) As in Case 1.

TAR-F: The only case of interest is when an ACCEPT message is added to
tarqueue((p, q)) in s.

Claims about s':

1. TEST(l, c) is in tarqueue((q, p)), by precondition.

2. 1 < level(f), by assumption.

3. c # core(f), by assumption.

4. lstatus((q,p)) # rejected, by Claims 1 and 3 and TAR-E(c).

5. c = core(fragment(q)), by Claims 1, 4 and TAR-E(b).

6. 1 = level(fragment(q)), by Claims 1, 4 and TAR-E(b).

7. core(f) # core(fragment(q)), by Claims 3 and 5.
8. level(f) level(fragment(q)), by Claims 2 and 6.

Claims 7 and 8 are still true in s.

TAR-G: The only case of interest is when a REJECT message is added to

tarqueue((p, q)).

155

Chapter 5: Minimum Spanning Tree

Claims about s':

1. TEST(l, c) is in tarqueue((q, p)), by precondition.

2. c = core(f), by assumption.
3. testlink(p) # (p, q), by assumption.

4. If lstatus((q,p)) # rejected, then c = core(fragment(q)), by Claim 1 and TAR-
E(b).
5. If lstatus((q,p)) # rejected, then f = fragment(q), by Claim 4 and COM-F.
6. If lstatus((q,p)) = rejected, then f = fragment(q), by TAR-B.
7. f = fragment(q), by Claims 5 and 6.

Claim 7 is still true in s.

TAR-I: The only case of interest is when p is removed from testset(f). But
when that happens, there are no unknown links of p.

TAR-J: Suppose lstatus((p, q)) is changed to rejected. As in Case 1.

v) 7r is ReceiveAccept((q,p)). Let f = fragment(p) in s'.

(3c) A3 (s', 7r) = TestNode(p).

Claims about s':

1. ACCEPT is in tarqueue((q,p)), by precondition.

2. fragment(q) # f, by Claim 1 and TAR-F.

3. level(f) ; level(fragment(q)), by Claim 1 and TAR-F.
4. (p, q) is an external link of f, by Claim 2.

5. testlink(p) = (p, q), by Claim 1 and TAR-D.
6. p E testset(f), by Claim 5 and TAR-C(b).
7. minlink(f) = nil, by Claim 6 and GC-C.
8. lstatus((p, q)) # branch, by Claims 4 and 7 and TAR-L.

9. (p, q) is the minimum-weight link of p with lstatus unknown, by Claims 5 and 8
and TAR-C(d).
10. (p, q) is the minimum-weight external link of p, by Claims 7 and 9 and TAR-L.

By Claims 6, 10, and 3, TestNode(p) is enabled in s'.

Claims about s:

11. p g testset(f), by code.

12. (p, q) is the minimum-weight external link of p, by Claim 10.

156

Section 4.2.3: TAR Simulates GC

13. If wt(p, q) < wt(accmin(f)) in s', then accmin(f) = (p, q) in s, by Claims 11
and 12.

By Claims 11 and 13, the effects of TestNode(p) are mirrored in s.

(3a) TAR-D: In s', ACCEPT in tarqueue((q, p)) is a protocol message for (p, q).
By TAR-C(c) and TAR-D, it is the only protocol message for any link of p in s'.
Thus in s, there is no protocol message for any link of p, and the predicate is
vacuously true in s for p. No other node is affected.

TAR-I: By Claims 3 and 4, it is OK to remove p from testset(f).

vi) 7r is ReceiveReject((q,p)). Let f = fragment(p) in s'.

Case 1: There is a link (p, r), r =f q, with lstatus((p, r)) = unknown.

(3b) A 3 (s', 7r) is empty. Obviously S 3(s') = S3 (s).

(3a) Claims about s':

1. REJECT is in tarqueue((q,p)), by assumption.

2. The REJECT in tarqueue((q, p)) is a protocol message for (p, q), by Claim 1.

3. testlink(p) = (p, q), by Claim 2 and TAR-D.
4. There is only one protocol message for (p, q), by Claim 3 and TAR-C(c).
5. There is no protocol message for any other link of p, by Claim 3 and TAR-D.

6. p E testset(f), by Claim 3 and TAR-C(b).

TAR-B: Suppose lstatus((p, q)) goes from unknown in s' to rejected in s. By
TAR-G, f = fragment(q) in s'. By TAR-A(b), (p, q) g subtree(f) in s'. Both facts

are still true in s.

TAR-C(b): By Claim 6.

TAR-C(c): In s, testlink(p) = (p, r), and the TEST message is the sole protocol

message for (p, r) by Claim 5.

TAR-D: In s, the REJECT message is removed and a TEST message is added to

tarqueue((p, r)) with lstatus((p, r)) = unknown. So there is a protocol message for
(p, r) and no other link of p by Claims 4 and 5. By code, testlink(p) = (p, r).

15T

Chapter 5: Minimum Spanning Tree

TAR-E(a): Suppose a TEST messge is added to some tarqueue((p, r)). As in
7r = Send Test(p), Case 1.

TAR-E(c): The only case of interest is when lstatus((p, q)) goes from un-
known in s' to rejected in s. But by Claims 2 and 4, there is no TEST message
in tarqueue((p, q)) in s' if lstatus((p, q)) = unknown.

TAR-I: By Claim 6, the predicate is vacuously true.

TAR-J: Suppose lstatus((p, q)) is changed from unknown to rejected. Similar
to 7r = Receive Test((q, p), 1, c), Case 1, with REJECT being the protocol message for

(p, q).

Case 2: There is no link (p, r), r # q, with lstatus((p, r)) = unknown.

(3c) A 3 (s', 7r) = TestNode(p).

Claims about s':

1. REJECT is in tarqueue((q,p)), by precondition.

2. testlink(p) = (p, q), by Claim 1 and TAR-D.
3. p E testset(f), by Claim 2 and TAR-C(b)
4. minlink(f) = nil, by Claim 3 and GC-C.
5. fragment(q) = f, by Claim 1 and TAR-G.
6. (p, q) is not external, by Claim 5.
7. There is no external link (p, r), r # q, of p, by Claim 4, TAR-L, and assumption
for Case 2.

By Claims 3, 6 and 7, TestNode(p) is enabled in s'.

Claims about s:

8. p V testset(f), by code.

9. There is no external link of p, by Claims 6 and 7 and code.
10. accmin(f) does not change, by Claim 9.

By Claims 8, 9 and 10, the effects of TestNode(p) are mirrored in s.

(3a) TAR-B: Same as Case 1.

158

Section 4.2.3: TAR Simulates GC

TAR-D: In s, testlink(p) = nil. We must show there is no protocol message
for any link of p. In s', the REJECT message in tarqueue((q,p)) is the sole protocol
message for any link of p, as in Case 1. The REJECT message is removed in s and
no protocol message is added.

TAR-E(c): As in Case 1.

TAR-I: By assumption for Case 2 and code, there are no unknown links of p
in s.

TAR-J: As in Case 1.

vii) 7 is ComputeMin(f).

(3c) A3 (s', 7r) = 7r. Since accmin(f) = nil in s because minlink(f) = nil in s,
it is easy to see that 7 is enabled in S3 (s') and that its effects are mirrored in S 3(s).

(3a) TAR-H: By GC-A, accmin(f) = I is an external link of f in s'. Since

minlink(f) = nil in s', lstatus(l) # branch by TAR-A(a). Also, by COM-B,
rootchanged(f) = false in s'. Thus in s, rootchanged(f) = false and lstatus(min-
link(f)) # branch.

viii) 7r is ChangeRoot(f).

(3c) A 3 (s', 7) = 7r. It is easy to see that 7r is enabled in S 3 (s') and that its

effects are mirrored in S 3 (s).

(3a) Only TAR-A(a), TAR-H and TAR-J are affected. Obviously TAR-A(a)

and TAR-H are still true in s. For TAR-J: by precondition awake = true in s', and

is still true in s.

ix) 7r is Merge(fg).

(3c) A3(S', 7r) = 7r. After noting that accmin(h) = nil in s because testset(h) =

nodes(h) in s, it is easy to see that 7r is enabled in S3 (s') and that its effects are

mirrored in S 3 (s).

(3a) TAR-A(b): The predicate is true for h by TAR-H.

TAR-B: The predicate is true for h by TAR-H.

TAR-C: By GC-C, no r in nodes(f) or nodes(g) is in testset(f) or testset(g) in

s'. By TAR-C(b), testlink(r) = nil for all such r. So the predicate is vacuously true

in h.

159

Chapter 5: Minimum Spanning Tree

TAR-E(a): By TAR-0, there is no TEST message in tarqueue((p,q)) or in

tarqueue((q, p)), where (p, q) = minlink(f), in s'. Since (p, q) = core(h) in s, done.

TAR-E(b): By TAR-0, there is no TEST(l, c) message in tarqueue((p, q)) with

lstatus((p, q)) # rejected in s', for any p in nodes(f) or nodes(g). Thus, the same is

true in s for any p in nodes(h), and the predicate is vacuously true in s for h.

TAR-E(c): If TEST(l, c) is in tarqueue((p, q)) and Istatus((p, q)) = rejected in

s', then it is a protocol message for (q,p) in s'. By TAR-O, fragment(q) is neither

f nor g in s'. So the predicate is still true in s.

TAR-F: If ACCEPT is in tarqueue((p, q)) in s', it is a protocol message for (q, p)

in s'. By TAR-0, fragment(q) is neither f nor g in s'. If fragment(p) is neither

f nor g in s', then the predicate is still true in s. Without loss of generality,
suppose fragment(p) = f in s'. By TAR-F, level(f) level(fragment(q)) in s'.

Then fragment(p) = h # fragment(q) in s, and level(h) (in s) > level(f) (in s')

level(fragment(q)) (in s' and s).

TAR-H: By code, rootchanged(h) = false. Since minlink(h) = nil by code,
istatus (minlink(f)) # branch.

TAR-I: For nodes in h, the predicate is vacuously true since testset(h) =

nodes(h). For nodes not in h, the predicate is still true since the level of every

node formerly in nodes(f) or nodes(g) is increased.

x) 7r is Absorb(fg).

(3c) A3(s',ir) = w. It is easy to see that 7r is enabled in S3(s'). Below we show

that accmin(f) is the same in s as in s', which together with inspecting the code,
shows that the effects of ir are mirrored in S3(s).

Let (q,p) = minlink(g). If p E testset(f) in s', then every node in nodes(g) in

s' is added to testset(f) in s. No change is made to any of the criteria for defining

accmin(f).

Suppose p testset(f) in s'. If minlink(f) # nil in s', then the same is true in

s, and accmin(f) = nil in s' and s. Suppose minlink(f) = nil in s'.

Claims about s':

1. level(f) < level(g), by precondition.

2. p E nodes(f), by precondition.

160

Section 4.2.3: TAR Simulates GC

3. p V testset(f), by assumption.
4. minlink(f) = nil, by assumption.

5. q E nodes(g), by COM-A.
6. f # g, by Claim 1.
7. accmin(f) = (r, t), for some r and t, by Claims 2 through 6.
8. fragment(t) # g, by Claims 1 and 7 and GC-A.

9. (r, t) # (p, q), by Claims 5 and 8.
10. wt(r, t) < wt(p, q), by Claims 2, 3, 5, 6, 7, and 9 and GC-A.
11. wt(p, q) <; wt(u, v) for any external link (u, v) of g, by COM-A.

12. wt(r, t) < wt(u, v) for any external link (u, v) of g, by Claims 10 and 11.

By Claims 7, 8 and 12, accmin(f) = (r, t) in s.

(3a) TAR-A(b): The predicate is true in s for f by TAR-H.

TAR-B: The predicate is true in s for f by TAR-H.

TAR-C(b): By GC-C, since minlink(g) # nil, testset(g) = 0 in s'. By TAR-
C(b), testlink(p) = nil in s' for all p E nodes(g). There is no change for p E nodes(f)

in s' in going from s' to s. Thus the predicate is true in s for f.

TAR-C(e): Suppose (q, p) = minlink(g) in s' and 1status((p, q)) becomes branch

in s. By TAR-H, lstatus((q, p)) = branch in s'. As in TAR-C(b), testlink(q) # (q, p),
so the predicate is still true in s.

TAR-E(a): OK because core(f) does not change.

TAR-E(b): Let (q,p) = minlink(g) in s'. If we can show lstatus((p,q)) #
rejected in s', we'd be done. If lstatus((p, q)) = rejected in s', then fragment(p) =

fragment(q). This contradicts level(g) < level(f), which implies that g # f.

TAR-E(c): Suppose TEST(l, c) is in tarqueue((p, q)) and Istatus((p, q)) = re-

jected in s', for some link (p, q) in L(G). This is a protocol message for (q, p).

By TAR-0, fragment(q) # g in s'. Thus fragment(q) is the same in s' and s, and

c = core(fragment(q)) and I = level(fragment(q)) in s.

TAR-F: Suppose ACCEPT is in tarqueue((p, q)) in s', for some link (p, q) in

L(G). This is a protocol message for (q,p). By TAR-0, fragment(q) # g in s'. By

TAR-F, fragment(p) # fragment(q) in s'. By preconditions, level(g) < level(f), so

it cannot be the case that fragment(p) = g and fragment(q) = f.

161

162 Chapter 5: Minimum Spanning Tree

Suppose fragment(p) = g. Since level(fragment(p)) in s is greater than it is in
s', and since fragment(q) # f in s', the predicate is still true in s.

Suppose fragment(q) = f. Since fragment(q) is the same in s as in s', and since
fragment(p) # g in s', the predicate is still true in s.

If fragment(p) # g and fragment(q) # f in s', the predicate is obviously still
true in s.

TAR-G: Suppose REJECT is in tarqueue((p, q)) in s', for some link (p, q) in
L(G). This is a protocol message for (q,p). By TAR-0, fragment(q) # g in s'. By
TAR-G, fragment(p) # g in s', since otherwise fragment(p) = fragment(q) = g in
s'. So the predicate is still true in s.

TAR-H: Let (q, p) = minlink(g). Since level(f) > level(g) by COM-A, (p, q) #
minlink(g). So it is OK to set lstatus((p, q)) to branch.

TAR-I: First note that if there is some node r E nodes(f) - testset(f) in s'
with an unknown link, then by TAR-I there is an external link (t, u) of f, and
level(f) < level(fragment(u)). Thus fragment(u) # g, so in s, the predicate is still
true for nodes that were in nodes(f) in s'.

To show that the predicate is true in s for nodes that were in nodes(g) in s': we
only need to consider the case when p V testset(f) in s', i.e., when nodes formerly in
nodes(g) are not added to testset(f). Since levekf) > level(g), minlink(f) # (p, q),
by COM-A. Thus, by TAR-A(a) and TAR-B, lstatus((p, q)) = unknown, and the
argument in the previous paragraph holds.

To show that the predicate is true in s for nodes that are not in either nodes(f)
or nodes(g) in s', it is enough to note that the only relevant change is that the level
of every node formerly in nodes(g) is increased. 0

Let PTAR = (P c o 3) A PTAR-

Corollary 18: PTAR is true in every reachable state of TAR.

Proof: By Lemmas 1 and 17. 0

Section 4.2.4: DC Simulates GC

4.2.4 DC Simulates GC

This automaton focuses on how the nodes of a fragment cooperate to find the
minimum-weight external link of the fragment in a distributed fashion. The variable
minlink(f) is now a derived variable, depending on variables local to each node,
and the contents of message queues. There is no action ComputeMin(f). The two
nodes adjacent to the core send out FIND messages over the core. These messages
are propagated throughout the fragment. When a node p receives a FIND message,
it changes the variable destatus(p) from unfind to find, relays FIND messages, and
records the link from which the FIND was received as its inbranch(p). Then the node
atomically finds its local minimum-weight external link using action TestNode(p) as
in GC, and waits to receive REPORT(w) messages from all its "children" (the nodes
to which it sent FIND). The variable findcount(p) records how many children have
not yet reported. Then p takes the minimum over all the weights w reported by its
children and the weight of its own local minimum-weight external link and sends
that weight to its "parent" in a REPORT message, along inbranch(p); the weight and
the link associated with this minimum are recorded as bestwt(p) and bestlink(p), and
dcstatus(p) is changed back to unfind. When a node adjacent to the core has heard
from all its children, it sends a REPORT over the core. This message is not processed
by the recipient until its dcstatus is set back to unfind. When a node p adjacent to
the core receives a REPORT(w) over the core with w > bestwt(p), then minlink(f)

becomes defined, and is the link found by following bestlinks from p.

The ChangeRoot(f) action is the same as in GC. When two fragments merge, a

FIND message is added to one link of the new core. A new action, AfterMerge(p, q),
adds a FIND message to the other link of the new core. When an Absorb(f, g)

action occurs, a FIND message is directed toward the old g along the reverse link of

minlink(g) if and only if the target of minlink(g) is in testset(f) and its dcstatus is

find.

This algorithm (as well as the original one) correctly handles "leftover" REPORT

messages. Recall that a REPORT message is sent in both directions over the core

(p, q) of a fragment f. Suppose the root p receives its REPORT message first, and

the other REPORT message, the "leftover" one, which is headed toward q, remains

in the queue until after f merges or is absorbed. Since the queues are FIFO relative

to REPORT and FIND messages, the state of q remains such that when the leftover

REPORT message is received, the only change is the removal of the message.

Define automaton DC (for "Distributed ComputeMin") as follows.

163

164 Chapter 5: Minimum Spanning Tree

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

e subtree(f), a subgraph of G;

* core(f), an edge of G or nil;

e level(f), a nonnegative integer;

* rootchanged(f), a Boolean; and

* testset(f), a subset of V(G).

For each node p, there are the following variables:

" destatus(p), either find or unfind;

" findcount(p), a nonnegative integer;

e bestlink(p), a link of G or nil;

" bestwt(p), a weight or oo; and

" inbranch(p), a link of G or nil.

For each link (p, q), there are associated three variables:

* dcqueue,((p, q)), a FIFO queue of messages from p to q waiting at p to be sent;

@ dcqueuepq((p, q)), a FIFO queue of messages from p to q that are in the com-
munication channel; and

* dcqueueq((p, q)), a FIFO queue of messages from p to q waiting at q to be

processed.

The set of possible messages M is {REPORT(w) : w a weight or oo} U {FIND}.

The state also contains Boolean variables, answered(l), one for each I E L(G),
and Boolean variable awake.

In the start state of DC, fragments has one element for each node in V(G); for

fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) = 0,
rootchanged(f) is false, and testset(f) is empty. For each p, dcstatus(p) = unfind,
findcount(p) = 0, bestlink(p) is the minimum-weight external link of p, bestwt(p) is

Section 4.2.4: DC Simulates GC

the weight of bestlink(p), and inbranch(p) = nil. The message queues are empty.

Each answered(l) is false and awake is false.

The derived variable dcqueue((p,q)) is defined to be dcqueueq((p, q)) dc-

queuepq((p, q)) || dcqueue,((p, q)).

A REPORT(w) message is headed toward p if either it is in dcqueue((q,p)) for
some q, or it is in some dcqueue((q,r)), where q E subtree(r) and r E subtree(p). A

FIND message is headed toward p if it is in some dcqueue((q, r)) and p is in subtree(r).

A message is said to be in subtree(f) if it is in some dcqueue((q, p)) and p E nodes(f).

Now minlink(f) is a derived variable, defined as follows. If nod es(f) = {p}, then

minlink(f) is the minimum-weight external link of p. Suppose nodes(f) contains

more than one node. If f has an external link, if dcstatus(p) = unfind for all

p E nodes(f), if no FIND message is in subtree(f), and if no REPORT message is
headed toward mw-root(f), then minlink(f) is the first external link reached by

starting at mw-root(f) and following bestlinks; otherwise, minlink(f) = nil.

Also accmin(f) is a derived variable, defined as in TAR as follows. If

minlink(f) # nil, or if there is no external link of any p E nodes(f) - testset(f),
then accmin(f) = nil. Otherwise, accmin(f) is the minimum-weight external link

of all p E nodes(f) - testset(f).

Note below that ReceiveFind((q,p)) is only enabled if AfterMerge(p,q) is not

enabled; without this precondition on ReceiveFind, p could receive the FIND before

sending a FIND to q, and thus q's side of the subtree would not participate in the

search.

Input actions:

e Start(p), p E V(G)
Effects:

awake := true

Output actions:

* In Tree((p, q)), (p, q) E L(G)

Preconditions:
awake = true

(p, q) E subtree(fragment(p)) or (p, q) = minlink(fragment(p))

answered((p, q)) = false

165

166 Chapter 5: Minimum Spanning Tree

Effects:
answered((p, q)) := true

* NotnTree((p,q)), (p,q) E L(G)
Preconditions:

fragment(p) = fragment(q) and (p, q) ' subtree(fragment(p))
answered((p, q)) = false

Effects:
answered((p, q)) := true

Internal actions:

* ChannelSend((p,q),m), (p, q) E L(G), m E M
Preconditions:

m at head of dcqueue,((p, q))
Effects:

dequeue(dcqueue,((p, q)))
enqueue(m, dcqueuepq((p, q)))

e ChannelRecv((p,q), m), (p, q) E L(G), m E M
Preconditions:

m at head of dcqueuepq((p, q))
Effects:

dequeue(dcqueuep,((p, q)))
enqueue(m, dcqueueq((p, q)))

e TestNode(p), p E V(G)
Preconditions:

- let f = fragment(p) -
p E testset(f)
if (p, q), the minimum-weight external link of p, exists

then level(f) <; level(fragment(q))
dcstatus(p) = find

Effects:
testset(f) := testset(f) - {p}
if (p, q), the minimum-weight external link of p, exists then

if wt(p, q) < bestwt(p) then
bestlink(p) := (p, q)
bestwt(p) := wt(p, q)

execute procedure Report(p)

Section 4.2.4: DC Simulates GC

e ReceiveReport((q, p),w), (q, p) E L(G)
Preconditions:

REPORT(w) message at head of dcqueue,((q, p))

Effects:
dequeue(dcqueue,((q, p)))

if (p, q) # inbranch(p) then
findcount(p) := findcount(p) - 1

if w < bestwt(p) then
bestwt(p) := w

bestlink(p) := (p, q)

execute procedure Report(p)]
else

if dcstatus(p) = find then enqueue(REPORT(w), dcqueuep((q, p)))

* ReceiveFind((q,p)), (q,p) E L(G)

Preconditions:
FIND message at head of dcqueue,((q,p))

AfterMerge(p, q) not enabled

Effects:

dequeue(dcqueue,((q, p)))
dcstatus(p) := find

inbranch(p) := (p, q)

bestlink(p) := nil

bestwt(p) := oo

- let S = {(p, r) : (p, r) E subtree(fragment(p)), r # q} -

findcount(p) := |S|
enqueue(FIND, dcqueue,(l)) for all I E S

e Procedure Report(p), p E V(G)
if findcount(p) = 0 and p V tests et(fragment(p)) then

dcstatus(p) := unfind

enqueue(REPoRT(bestwt(p)), dcqueuep(inbranch(p)))]

* ChangeRoot(f), f E fragments

Preconditions:

awake = true

rootchanged(f) = false

minlink(f) # nil

Effects:

167

Chapter 5: Minimum Spanning Tree

rootchanged(f) := true

" Merge(f, g), f, g E fragments

Preconditions:

f # g
rootchanged(f) = rootchanged(g) = true

minedge(f) = minedge(g)

Effects:

add a new element h to fragments

subtree(h) := subtree(f) U subtree(g) U minedge(f)

core(h) := minedge(f)

level(h) := level(f) + 1

rootchanged(h) := false

testset(h) := nodes(h)

- let (p, q) = minlink(f) -

enqueue(FIND, dcqueue,((p, q)))

delete f and g from fragments

" AfterMerge(p,q), p, q E V(G)

Preconditions:

(p, q) = core(fragment(p))

FIND message in dcqueue((q,p))

no FIND message in dcqueue((p, q))

dcstatus(q) = unfind

no REPORT message in dcqueue((q,p))

Effects:

enqueue(FIND, dcqueuep((p, q)))

* Absorb(f,g), f,g E fragments

Preconditions:

rootchanged(g) = true

level(g) < level(f)

- let (q, p) = minlink(g) -

fragment(p) = f
Effects:

subtree(f) := subtree(f) U subtree(g) U minedge(g)

if p E testset(f) then [

testset(f) := testset(f) U nodes(g)

if dcstatus(p) = find then [

168

Section 4.2.4: DC Simulates GC 169

enqueue(FIND, dcqueue,((p, q)))

findcount(p):= findcount(p) + 1]]
delete g from fragments

Define the following predicates on states(DC), using these definitions.

A child q of p is completed if no node in subtree(q) is in tests et(fragment(p)),
and no REPORT is headed toward p in subtree(q) or in dcqueue((q, p)). Node p is up-

to-date if either subtree(fragment(p)) = {p}, or the following two conditions are met:

(1) following inbranches from p leads along edges of subtree(fragment(p)) toward and

over core(f), and (2) if p E tests et(fragment(p)), then dcstatus(p) = find. Given

node p, define C, to be the set {r : either r = p and p g tests et(fragment(p)), or r

is in subtree(q) for some completed child q of p}.

All free variables are universally quantified, except that f = fragment(p), in

these predicates. (The fact that an old REPORT message, in a link that was formerly

the core of a fragment, can remain even after that fragment has merged or been

absorbed, complicated the statement of some of the predicates.)

* DC-A: If REPORT(w) is in dcqueue((q, p)) and inbranch(p) # (p, q), then

(a) if (p, q) = core(f), then a FIND message is ahead of the REPORT in

dcqueue((q, p));

(b) (q, p) = inbranch(q);

(c) bestwt(q) = w;

(d) dcstatus(q) = unfind;

(e) every child of q is completed;

(f) q V testset(f); and

(g) if (p, q) # core(f), then dcstatus(p) = find, and q is a child of p.

e DC-B: If REPORT(w) is in dcqueue((q, p)) and inbranch(p) = (p, q), then

(a) either (p, q) = core(f) or p is a child of q; and

(b) if (p, q) # core(f), then dcstatus(p) = unfind.

* DC-C: If REPORT(w) is in dcqueue((q, p)) and (p, q) = core(f), then

(a) q is up-to-date;

(b) dcstatus(q) = unfind; and

(c) bestwt(q) = w.

* DC-D: If FIND is in dcqueue((q,p)), then

(a) if (p, q) # core(f) then p is a child of q and destatus(q) = find;

Chapter 5: Minimum Spanning Tree

(b) destatus(p) = unfind; and
(c) every node in subtree(p) is in testset(f).

" DC-E: If p E testset(f), then a FIND message is headed toward p, or dcstatus(p)
= find, or AfterMerge(q, r) is enabled, where p E subtree(r).

* DC-F: If (p, q) = core(f) and inbranch(q) # (q, p), then either a FIND is in
dcqueue((p, q)), or AfterMerge(p, q) is enabled.

" DC-G: If AfterMerge(p, q) is enabled, then every node in subtree(q) is in
testset(f).

* DC-H: If dcstatus(p) = unfind, then
(a) dcstatus(q) = unfind for all q E subtree(p); and
(b) findcount(p) = 0.

* DC-I: If destatus(p) = find, then
(a) p is up-to-date; and

(b) either a REPORT message is in subtree(p) headed toward p, or some q E
subtree(p) is in testset(f).

* DC-J: If dcstatus(p) = find and core(f) = (p, q), then a FIND message is in

dcqueue((p, q)), or dcstatus(q) = find, or a REPORT message is in dcqueue((q, p)).

" DC-K: If p is up-to-date, then
(a) findcount(p) is the number of children of p that are not completed;
(b) if bestlink(p) = nil, then bestwt(p) = oo, and there is no external link of

any node in C,.
(c) if bestlink(p) # nil, then following bestlinks from p leads along edges in

subtree(f) to the minimum-weight external link I of all nodes in C,; wt(l) =

bestwt(p), and level(fragment(target(l))) level(f).

* DC-L: If inbranch(p) # nil, then inbranch(p) = (p, q) for some q, and (p, q) E
subtree(f).

* DC-M: findcount(p) > 0.

* DC-N: If mw-minnode(f) is not in testset(f), then mw-minnode(f) is up-to-
date.

* DC-O: The only possible values of dcqueue((p, q)) are empty, or FIND, or
REPORT, or FIND followed by REPORT (only if (p, q) = core(f)), or REPORT

followed by FIND (only if (p, q) # core(f)).

170

Section 4.2.4: DC Simulates GC

Let PDC be the conjunction of DC-A through DC-O.

In order to show that DC simulates GC, we define an abstraction mapping

M4 = (S 4 , A 4) from DC to GC.

Define the function S 4 from states(DC) to states(GC) by ignoring the message
queues, and the variables dcstatus, findcount, bestlink, bestwt, and inbranch. The
derived variables minlink and accmin of DC map to the (non-derived) variables
minlink and accmin of GC.

Define the function A 4 as follows. Let s be a state of DC and 7r an action of

DC enabled in s. The GC action ComputeMin(f) is simulated in DC when a node

adjacent to the core, having already heard from all its children, receives a REPORT

message over the core with a weight larger than its own bestwt. Then the node

knows that the minimum-weight external link of the fragment is on its own side of

the subtree.

" Suppose 7r = ReceiveReport((q, p), w). If (p, q) = core(f) and dcstatus(p) = un-

find and w > bestwt(p), then A 4(s, 7r) = ComputeMin(fragment(p)). Otherwise

A 4 (s, Tr) is empty.

" If ,r = ChannelSend((q,p),m), ChannelRec((q,p),m), ReceiveFind((q,p)) or

AfterMerge(p,q), then A 4 (s,7r) is empty.

" For all other values of 7r, A 4 (s, 7r) = 7r.

The following predicates are true in any state of DC satisfying (PbCoS4)APDC.

Recall that Pbc = (PNOMoS2)APGC. If PEC(S4 (s)) is true, then the GC predicates

are true in S4(s), the COM predicates are true in S 2 (S 4 (s)), and the HI predicates

are true in S1(S 2 (S 4(s))). Thus, these predicates are deducible from PDC, together

with the GC, COM and HI predicates.

e DC-P: If REPORT(w) is at the head of dcqueue((q, p)) and (p, q) = core(f) and

dcstatus(p) = unfind, then

(a) if w < bestvt(p), then the minimum-weight external link I of f is closer to

q than to p, and wt(l) = W;

(b) if w > bestwt(p), then the minimum-weight external link I of f is closer to

p than to q, and wt(l) = bestwt(p); and

(c) if w = bestwt(p), then w = oo and there is no external link of f.

Proof:

171

Chapter 5: Minimum Spanning Tree

1. REPORT(w) is at head of dcqueue((q, p)), by assumption.

2. dcstatus(p) = unfind, by assumption.
3. (p, q) = core(f), by assumption.
4. q is up-to-date, by Claims 1 and 3 and DC-C(a).
5. dcstatus(q) = unfind, by Claims 1 and 3 and DC-C(b).
6. w = bestwt(q), by Claims 1 and 3 and DC-C(c).
7. q V testset(f), by Claims 4 and 5.
8. No FIND is in dcqueue((q,p)), by Claims 1 and 3 and DC-0.
9. p is up-to-date, by Claims 2, 3, 4 and 8 and DC-T.
10. p V testset(f), by Claims 2 and 9.
11. findcount(p) = 0, by Claim 2 and DC-H(b).
12. findcount(q) = 0, by Claim 5 and DC-H(b).
13. All children of p are completed, by Claims 9 and 11 and DC-K(a).
14. All children of q axe completed, by Claims 4 and 12 and DC-K(a).
15. If bestwt(p) = oo, then there is no external link of subtree(p), by Claims 9, 10
and 13 and DC-K(b) and (c).
16. If bestwt(p) # oo, then following bestlinks from p leads to the minimum-weight
external link I of subtree(p) and wt(l) = bestwt(p), by Claims 9, 10 and 13, and
DC-K(b) and (c).
17. If bestwt(q) = w = oo, then there is no external link of subtree(q), by Claims 4,
6, 7 and 14 and DC-K(b) and (c).
18. If bestwt(q) = w # oo, then following bestlinks from q leads to the minimum-
weight external link I of subtree(q) and wt(l) = w, by Claims 4, 6, 7 and 14 and
DC-K(b) and (c).

Claims 3 and 15 through 18 give the result, together with the fact that edge
weights are distinct. 0

e DC-Q: If a REPORT is at the head of dcqueue((q, p)) and is not headed toward
mw-root(f), then inbranch(p) = (p, q).

Proof: If (p, q) = core(f), then inbranch(p) = (p, q) by DC-A(a). Suppose

(p, q) # core(f), and, in contradiction, that inbranch(p) # (p, q). By DC-A(g),
dcstatus(p) = find, and by DC-I(a) p is up-to-date, i.e., following inbranches from p
leads toward and over core(f). Thus the REPORT in dcqueue((q,p)is headed toward

both endpoints of core(f), contradicting the hypothesis. O

e DC-R: If destatus(p) = find, then no REPORT is in dcqueue(inbranch(p)).

Proof: Let inbranch(p) = (p, q).

172

Section 4.2.4: DC Simulates GC

1. dcstatus(p) = find, by assumption.
2. p is up-to-date, by Claim 1 and DC-I(a).
3. Following inbranches from p leads toward and over core(f), by Claim 2.
4. Either (p, q) = core(f), or inbranch(q) : (q, p), or no REPORT is in dcqueue((p, q)),
by Claim 3 and DC-B(b).
5. If (p, q) = core(f), then no REPORT is in dcqueue((p, q)), by Claim 1 and DC-
C(b).
6. If inbranch(q) # (q, p), then no REPORT is in dcqueue((p, q)), by Claim 1 and
DC-A(d).
7. No REPORT is in dcqueue((p, q)), by Claims 4, 5 and 6.

9 DC-S: At most one FIND message is headed toward p.

Proof: Suppose a FIND message is headed toward p.
1. A FIND is in dcqueue((q, r)), by assumption.
2. p E subtree(r), by assumption.

3. dcstatus(r) = unfind, by Claim 1 and DC-D(b).
4. dcstatus(t) = unfind for all t E subtree(r), by Claim 3 and DC-H(a).

5. No FIND message is in dcqueue((t, u)), for any (t, u) E subtree(r), by Claim 4 and
DC-D(a).

If (q, r) = core(f), Claim 5 proves the result. Suppose (q, r) # core(f).

6. (q, r) # core(f), by assumption.

7. dcstatus(q) = find, by Claims 1 and 6 and DC-D(a).

8. dcstatus(t) = find for all t between q and the endpoint of core(f) closest to q, by

Claim 7 and DC-H(a).
9. No FIND message is in dcqueue((t,u)) for any (t,u) between core(f) and q, by

Claim 8 and DC-D(b).

Claim 9 completes the proof. 01

* DC-T: If (p, q) = core(f), no FIND is in dcqueue((p, q)), p is up-to-date, and

dcstatus(q) = unfind, then q is up-to-date.

Proof:

1. (p, q) = core(f), by assumption.

2. No FIND is in dcqueue((p, q)), by assumption.

3. p is up-to-date, by assumption.

4. dcstatus(q) = unfind, by assumption.

173

174 Chapter 5: Minimum Spanning Tree

5. No FIND is headed toward q, by Claims 1 and 2 and DC-D(a).
6. No FIND is in dcqueue((q, p)), by Claim 3 and DC-D(b) and (c).
7. AfterMerge(p, q) is not enabled, by Claim 6.
8. inbranch(q) = (q, p), by Claims 5 and 7 and DC-F.
9. q g testset(f), by Claims 4, 5 and 7 and DC-E.
10. q is up-to-date, by Claims 1, 8 and 9.

Lemma 19: DC simulates GC via M 4 , PDC, and Pbc.

Proof: By inspection, the types of DC, GC, M 4 , and PDC are correct. By Corol-
lary 16, Pbc is a predicate true in every reachable state of GC.

(1) Let s be in start(DC). Obviously, PDC is true in s, and S 4 (s) is in
start(GC).

(2) Obviously, A4(s, lr)ext(GC) = rlext(DC).

(3) Let (s', r, s) be a step of DC such that Pbc is true of S 4 (s') and PDc is
true of s'. For (3a) we verify below only those DC predicates whose truth in s is
not obvious.

i) 7r is Start(p), ChangeRoot(f), InTree(l), or NotInTree(1). A 4 (s', r) =

7r. Obviously S 4 (s')rS4 (s) is an execution fragment of GC and PDC is true in s.

ii) 7r is ChannelSend(1,m) or ChannelRecv(1,m). A 4 (s', 7r) is empty.

Obviously S 4 (s) = S 4(s') and PDC is true in s.

iii) .r is TestNode(p). Let f = fragment(p) in s'.

(3c) A 4 (s', r) = 7r. Obviously, 7r is enabled in S 4 (s'). To show the effects

are mirrored in S4 (s), we must show that accmin(f) is updated properly (which is
obvious) and that minlink(f) is unchanged. Since p E testset(f) in s', minlink(f) =
nil in s' by GC-C. If accmin(f) # nil, or if p has an external link in s', then

accmin(f) : nil in s, and minlink(f) is still nil in s. If some q # p is in testset(f)
in s', then by DC-E either a FIND is in subtree(f) or dcstatus(q) = find; since the

same is true in s, minlink(f) is still nil in s. Finally, if accmin(f) = nil, p has no

external link, and p is the sole element of testset(f) in s', then f has no external

link in s' or in s, and minlink(f) is still nil in s.

(3a) Two cases are considered. First we prove some facts true in both cases.

Claims about s':

Section 4.2.4: DC Simulates GC

1. destatus(p) = find, by precondition.
2. p E testset(f), by precondition.
3. If (p, u), the minimum-weight external link of p, exists, then level(f) <
level(fragment(u)), by precondition.
4. p is up-to-date, by Claim 1 and DC-I(a).
5. No FIND is headed toward p, by Claim 1 and DC-D(c).
6. If (p, r) = core(f), then no REPORT is in dcqueue((p, r)), for any r, by Claim 1
and DC-C(b).
7. If a REPORT is in dcqueue((p, r)), then inbranch(r) = (r, p), for any r, by Claim
1 and DC-A(d).
8. AfterMerge(r,t), where p E subtree(t), is not enabled, by Claim 1 and DC-H(a).
9. If bestlink(p) = nil, then bestwt(p) = oo and there is no external link of any node
r, where r is in the subtree of any completed child of p, by Claims 2 and 4 and
DC-K(b).
10. If bestlink(p) # nil, then following bestlinks from p leads to the minimum-weight

external link I of all nodes r, where r is in the subtree of any completed child of p;
wt(l) = bestwt(p) and level(f) <_ level(fragment(target(l))), by Claims 2 and 4 and
DC-K(c).

Case 1: findcount(p) # 0 in s'.

More claims about s':

11. findcount(p) # 0, by assumption.
12. findcount(p) > 0, by Claim 11 and DC-M.
13. Some child r of p is not completed, by Claims 4 and 12 and DC-K(a).

14. There is a child r of p such that either some node in subtree(r) is in testset(f),
or a REPORT is in subtree(r) or dcqueue((r,p)) headed toward p, by Claim 13.

DC-A(c): By Claim 7, changing bestwt(p) and removing p from testset(f) are

OK.

DC-C: By Claim 6, changing bestwt(p) is OK.

DC-D(c): By Claim 5, removing p from testset(f) is OK.

DC-G: By Claim 8 and the fact that dcstatus(p) is still find in s, removing p

from testset(f) is OK.

175

176 Chapter 5: Minimum Spanning Tree

DC-I(b): By Claim 14, removing p from testset(f) is OK.

DC-K: (b) By Claim 9 and code. (c) by Claims 3 and 10 and code.

DC-N: If p is mw-minnode(f), then by Claim 4, removing p from testset(p) is
OK.

Case 2: findcount(p) = 0 in s'. Let (p, q) = inbranch(p).

More claims about s':

15. findcount(p) = 0, by assumption.
16. If (p,q) = core(f) and inbranch(q) # (q,p), then a FIND is in dcqueue((p,q)),
by Claim 5 and DC-F.
17. All children of p are completed, by Claims 3 and 15 and DC-K(a).
18. If (p, q) # core(f), then dcstatus(q) = find, by Claim 1 and DC-H(a).
19. If REPORT is in dcqueue((q, p)), then (p, q) = core(f), by Claim 4 and DC-B(a).

20. No REPORT is in dcqueue((p, q)), by Claim 1 and DC-R.
21. If FIND is in dcqueue((p, q)), then (p, q) = core(f), by Claim 4 and DC-D(a).
22. Every node r # p in subtree(p) has dcstatus(r) = unfind, by Claims 1 and 17
and DC-I(b).
23. Every node r # p in subtree(p) has findcount(r) = 0 by Claim 22 and DC-H(b).

DC-A: By Claim 7 and the fact that inbranch(p) = (p, q), we need only consider
the REPORT added to dcqueue((p,q)). (a) by Claim 16. (b), (c) and (d) by code.
(e) by Claim 17. (f) by code. (g) by Claims 4 and 18.

DC-B for REPORT added to dcqueue((p,q)): If inbranch(q) = (q,p), then

(p, q) = core(f), by Claim 4.

DC-B for REPORT that might be in dcqueue((q, p)): by Claim 19.

DC-C: By Claim 4, inbranch(p) is the only relevant link; by Claim 20, the new

message is the only REPORT in that queue. (a) by Claim 4. (b) and (c) by code.

DC-D(a) and (c): By Claim 5, it is OK to change dcstatus(p) to unfind and

remove p from testset(f).

DC-E: The addition of a REPORT to dcqueue((p,q)) in s cannot cause After-

Merge(q,p) to go from enabled in s' to disabled in s, by Claim 1.

Section 4.2.4: DC Simulates GC

DC-F: Cf. DC-E.

DC-G: By Claim 8 and the addition of REPORT to dcqueue((p, q)), removing p
from testset(f) is OK.

DC-H: (a) By Claim 22 and code. (b) By Claim 23.

DC-I(b): Suppose r # q is some node such that p E subtree(r) and dcstatus(r) =
find in s'. By Claim 4, removing p from testset(f) is compensated for by adding
REPORT to dcqueue((p, q)).

DC-J: By Claim 4, the only link of p that can be part of core(f) is (p, q). If
(p, q) = core(f) and dcstatus(q) = find, then the fact that dcstatus(p) becomes
unfind in s is compensated for by the addition of REPORT to dcqueue((p, q)).

DC-K(b) and (c): As in Case 1.

DC-N: As in Case 1.

DC-O: By Claims 20, 21 and code.

iv) 7r is ReceiveReport((q,p),w). Let f = fragment(p) in s'.

(3b)/(3c) Case 1: (p, q) = core(f) and dcstatus(p) = unfind and w > bestwt(p)
in s'. A 4 (s', ir) = ComputeMin(f).

Let (r, t) be the minimum-weight external link of f in s'. (Below we show it

exists.)

Claims about s':

1. REPORT(w) is at the head of dcqueue((q,p)), by precondition.

2. (p, q) = core(f), by assumption.

3. dcstatus(p) = unfind, by assumption.

4. w > bestwt(p), by assumption.

5. No FIND is in dcqueue((q,p)), by Claim 1 and DC-0.

6. q is up-to-date, by Claims 1 and 2 and DC-C(a).

7. p is up-to-date, by Claims 2, 3, 5 and 6 and DC-T.

8. dcstatus(q) = unfind, by Claims 1 and 2 and DC-C(b).
9. bestwt(q) = w, by Claims 1 and 2 nad DC-C(c).

10. p = mw-root(f) (so (r, t) exists), by Claims 1, 2, 3 and 4 and DC-P(b).

11. minlink(f) = nil, by Claims 1 and 10.

177

Chapter 5: Minimum Spanning Tree

12.
13.
14.

15.
16.
17.
18.
19.

findcount(p) = 0, by Claim 3 and DC-H(b).
findcount(q) = 0, by Claim 8 and DC-H(b).
Every child of p is completed, by Claims 7 and 12 and DC-K(a).

Every child of q is completed, by Claims 6 and 13 and DC-K(a).

p V testset(f), by Claims 3 and 7.

q V testset(f), by Claims 6 and 8.
testset(f) = 0, by Claims 14 through 17.
accmin(f) = (r, t), by Claims 11 and 18.

By Claims 11, 18 and 19, ComputeMin(f) is enabled in s'.

Now we must show that the effects of ComputeMin(f) are mirrored in s. All

that must be shown is that minlink(f) and accmin(f) are updated properly.

More claims about s':

20. dcstatus(u) = unfind, for all u E subtree(p), by Claim 3 and DC-H(a).

21. dcstatus(u) = unfind, for all u E subtree(q), by Claim 8 and DC-H(a).

22. No REPORT is headed toward p in subtree(p), by Claim 14.
23. No REPORT is headed toward q in subtree(q), by Claim 15.
24. Only one REPORT is in subtree(p), by DC-O.
25. No FIND is in subtree(f), by Claim 18 and DC-D(c).

26. Following bestlinks from p leads to (r, t), by Claims 7, 10, 14 and 16 and DC-K(b)
and (c).

By Claims 10 and 20 through 26, minlink(f) = (r, t) in s. By Claim 19, this is

the correct value. Thus, accmin(f) = nil in s.

Case 2: (p,q) # core(f) or dcstatus(p) = find or w < bestwt(p) in s'. A 4 (3',7r)

is empty. We just need to verify that minlink(f) and accmin(f) are unchanged in

order to show that S4(s') = S 4 (s).

Subcase 2a: (p,q) # core(f) in s'.

Suppose (p, q) = inbranch(p) in s'. By DC-B(b), dcstatus(p) = unfind, so the

only effect is to remove the REPORT. By DC-B(a), p E subtree(q), so this REPORT

message is not headed toward mw-root(f) in s'. Thus minlink(f) is unchanged, and

accmin(f) is also unchanged.

Suppose (p, q) # inbranch(p) in s'.

178

Section 4.2.4: DC Simulates GC

Claims about s':

1. REPORT(w) is at the head of dcqueue((q,p)), by precondition.

2. (p, q) # inbranch(p), by assumption.

3. (p, q) # core(f), by assumption.

4. dcstatus(p) = find, by Claims 1, 2 and 3 and DC-A(g).
5. p is up-to-date, by Claim 4 and DC-I(a).

6. Following inbranches from p leads toward and over core(f), by Claim 5.

7. A REPORT message is headed toward mw-root(f), by Claims 1 and 6.

8. minlink(f) = nil, by Claim 7.
9. If core(f) = (p, t) for some t, then FIND is in dcqueue((p, t)), dcstatus(t) = find,
or REPORT is in dcqueue((t,p)), by Claim 4 and DC-J.

Claims about s:

10. subtree(f), core(f), nodes(f), and testset(f) do not change, by code.

11. REPORT is in inbranch(p), by code.

12. Following inbranches from p leads toward and over core(f), by Claims 6 and 10

and code.

13. If p # mw-root(f), then REPORT is headed toward mw-root(f), by Claims 11

and 12.
14. If p = mw-root(f), then FIND is in dcqueue((p,t)), dcstatus(t) = find, or REPORT

is in dcqueue((t, p)), where (p, t) = core(f), by Claim 9 and code.

15. minlink(f) = nil, by Claims 13 and 14.
16. accmin(f) does not change, by Claims 8, 10 and 15.

Claims 15 and 16 give the result.

Subcase 2b: (p, q) = core(f) and destatus(p) = find in s'. Since REPORT(W)

is at the head of dcqueue((q, p)), DC-A(a) implies that inbranch(p) = (p, q). The

only change is that the REPORT message is requeued. Obviously minlink(f) and

accmin(f) are unchanged.

Subcase 2c: (p,q) = core(f) and destatus(p) = unfind and w < bestwt(p) in

s'. As in Subcase 2b, inbranch(p) = (p, q). The only change is that the REPORT

message is removed. If w = bestwt(p), then by DC-P(c), there is no external link of

f in s' or in s. Thus minlink(f) and accmin(f) are both nil in s' and s.

179

Chapter 5: Minimum Spanning Tree

Suppose w < bestwt(p). By DC-P(a), q = mw-root(f). Thus the REPORT

message in dcqueue((q,p)) is not headed toward mw-root(f) in s', and no criteria
for minlink(f), or accmin(f) changes.

(3a) Case 1: (p, q) = inbranch(p) in s'.

Suppose dcstatus(p) = find. By DC-D(b), no FIND is in dcqueue((q,p)) in s',
so by DC-O, dcqueue((q,p)) contains just the one REPORT message in s'. Since the

only effect is to requeue the message, the DC state is unchanged.

Suppose dcstatus(p) = unfind. The only change is the removal of the REPORT

message from dcqueue((q,p)). By DC-B(a), either (p, q) = core(f), or p E subtree(q)

in s'. In both cases, the REPORT is not headed toward any node whose subtree it

is in.

DC-I(b): By remark above.

DC-J: Even though REPORT is removed from dcqueue((q,p)), destatus(p) =

unfind in s.

DC-K(a): By remark above, removing the REPORT does not affect the com-
pleteness of any node's child.

Case 2: (p,q) # inbranch(p). Let (p,r) = inbranch(p).

Claims about s':

1. REPORT(w) is at head of dcqueue((q, p)), by precondition.

2. (p, q) # inbranch(p), by assumption.

3. (p, q) 5 core(f), by Claims 1 and 2 and DC-A(a).
4. (q, p) = inbranch(q), by Claims 1 and 2 and DC-A(b).
5. w = bestwt(q), by Claims 1 and 2 and DC-A(c).

6. destatus(q) = unfind, by Claims 1 and 2 and DC-A(d).
7. Every child of q is completed, by Claims 1 and 2 and DC-A(e).

8. q 0 testset(f), by Claims 1 and 2 and DC-A(f).
9. dcstatus(p) = find, by Claim 3 and DC-A(g).
10. If REPORT is in dcqueue(p,t), then inbranch(t) = (t,p), for any t, by Claim 9

and DC-A(d).

180

Section 4.2.4: DC Simulates GC 181

11. p is up-to-date, by Claim 9 and DC-I(a).
12. inbranch(p) leads toward and over core(f), by Claim 11.
13. q is an uncompleted child of p, by Claims 1, 2 and 12.
14. findcount(p) > 1, by Claims 11 and 13 and DC-K(a).
15. Only one REPORT is in dcqueue((q,p)), by Claim 1 and DC-0.
16. q is up-to-date, by Claims 4, 8 and 12.
17. If REPORT is in dcqueue((p,t)), then (p,t) # core(f), for all t, by Claim 9 and
DC-C(b).
18. If bestwt(p) = 00, then there is no external link of p (if p ' testset(f)) or of any
node in the subtree of any completed child of p, by Claim 11 and DC-F(b) and (c).
19. If bestwt(p) # oo, then following bestlinks from p leads to the minimum-
weight external link 1 of all nodes in C,; wt(l) = bestwt(p); and level(f)

level(fragment(target(l))), by Claim 11 and DC-F(b) and (c).
20. If w = oo, then there is no external link of subtree(q), by Claims 5, 7, 8 and 16
and DC-K(b) and (c).
21. If w # oo, then following bestlinks from q leads to the minimum-weight external
link I of subtree(q); wt(l) = w, and level(f) level(fragment(target(l))), by Claims
5, 7, 8 and 16 and DC-F(b) and (c).

Subcase 2a: p E testset(f) or findcount(p) # 1 in s'.

More claims about s':

22. p E testset(f) or findcount(p) # 1, by assumption.

23. If findcount(p) # 1, then findcount(p) > 1, by Claim 14.

24. If findcount(p) # 1, then some child t # q of p is not completed, by Claims 11
and 23 and DC-K(a).
25. If findcount(p) = 1, then p E testset(f), by Claim 22.

DC-A(c): by Claim 10, any change to bestwt(p) is OK.

DC-C: By Claim 17, changing bestwt(p) is OK.

DC-F: Cf. DC-G.

DC-G: Removing REPORT from dcqueue((q, p)) does not cause AfterMerge(p, q)
to become enabled, by Claim 3.

DC-I(b): Let t be some node such that p E subtree(t) and dcstatus(t) = find in

s'. By Claims 24 and 25, either a REPORT message is in subtree(p) headed toward

Chapter 5: Minimum Spanning Tree

p (and hence toward t), or some node in subtree(p) (and hence in subtree(t)) is in
testset(f).

DC-J: The removal of the REPORT message is OK by Claim 3.

DC-K(a): Since findcount(p) is decremented by 1, we just need to show that the

number of uncompleted children of p decreases by 1: by Claim 1, q is not completed

in s'. By Claims 7, 8 and 15 and code, q is completed in s.

DC-K(b) and (c): by Claims 18, 19, 20 and 21 and code.

DC-M: By Claim 14 and code.

Subcase 2b: p V testset(f) and findcount(p) = 1.

26. p V testset(f), by assumption.

27. findcount(p) = 1, by assumption.
28. No FIND is headed toward p, by Claim 9 and DC-D(b).
29. If (p, r) = core(f) and inbranch(r) # (r, p),then FIND is in dcqueue((p, r)), by

Claim 28 and DC-F.
30. No REPORT is in dcqueue((p,r)), by Claim 9 and DC-R.
31. Every child of p but q is completed, by Claims 11, 13, 27 and DC-K(a).

32. No FIND is in dcqueue((p, t)), t # r, by Claims 7, 8 and 31 and DC-D(c).

33. If REPORT is in dcqueue((r,p)), then (p, r) = core(f), by Claim 9 and DC-B(a)

and (b).
34. If (p, r) # core(f), then dcstatus(r) = find, by Claims 9 and 12 and DC-H(a).

35. If FIND is in dcqueue((p,r)), then (p, r) = core(f), by Claim 12 and DC-D(a).

DC-A: By Claim 10 and the fact that inbranch(p) = (p, r)), we need only

consider the REPORT added to dcqueue((p, r)). (a) by Claim 29. (b), (c) and (d) by

code. (e) by Claim 31 for any child of p except q; by Claims 7, 8 and 15 and code

for q. (f) by Claim 8. (g) by Claims 12 and 34.

DC-B for REPORT added to dcqueue((p,r)): if inbranch(r) = (r,p), then by

Claim 12, core(f) = (p, r).

DC-B for REPORT in dcqueue((r,p)): By Claim 33, core(f) = (p, r).

DC-C: By Claim 12, inbranch(p) is the only relevant link; by Claim 30, the

new message is the only REPORT message in its queue. (a) by Claim 11. (b) and

(c) by code.

182

Section 4.2.4: DC Simulates GC

DC-D(a): By Claims 32 and 35, changing destatus(p) to unfind is OK.

DC-E: The addition of the REPORT to dcqueue((p,r)) in s cannot cause
AfterMerge(r,p) to go from enabled in s' to disabled in s, because dcstatus(p) =
find in s' by Claim 9.

DC-F: Cf. DC-E.

DC-H(a): By Claims 7 and 8, no node in subtree(q) is in testset(f). By Claim
31, no node in subtree(t), for any child t # q of p, is in testset(f). By Claim 23,
p g testset(f).

DC-H(b): By Claim 27 and code.

DC-I(b): Let t # p be such that p E subtree(t) and destatus(t) = find in s'. By
Claim 12, removing the REPORT from dcqueue((q, p)) is compensated for by adding
the REPORT to dcqueue((p, r)).

DC-J: By Claim 12, the only link of p that can be part of core(f) is (p, r). If
(p, r) = core(f) and dcstatus(q) = find in s', then changing dcstatus(p) to unfind in
s is compensated for by adding the REPORT to dcqueue((p,r)).

DC-K: As in Subcase 2a.

DC-M: Claim 27 and code.

DC-O: by Claim 30 and DC-O and code.

v) 7r is ReceiveFind((q,p)). Let f = fragment(p).

(3b) A 4 (s',7r) is empty. To show that S 4 (s') = S 4(s), we just need to show

that minlink(f) and accmin(f) are unchanged. Because of the FIND message,
minlink(f) = nil in s', and minlink(f) = nil in s since dcstatus(p) = find. Since

there is no change to minlink(f), nodes(f), testset(f), or subtree(f), accmin(f) is

unchanged.

(3a) Claims about s':

1. FIND is at head of dcqueue((q,p)), by precondition.

2. AfterMerge(p, q) is not enabled, by precondition.

3. If (p, q) # core(f), then p is a child of q, by Claim 1 and DC-D(a).

4. If (p, q) # core(f), then dcstatus(q) = find, by Claim 1 and DC-D(a).

183

Chapter 5: Minimum Spanning Tree

5. dcstatus(p) = unfind, by Claim 1 and DC-D(b).
6. Every node in subtree(p) is in testset(f), by Claim 1 and DC-D(c).
7. No REPORT is in dcqueue((p, r)) with inbranch(r) # (r, p), for all r, by Claim 6
and DC-A(f).
8. If REPORT is in dcqueue((p, r)), then (p, r) # core(f), for all r, by Claim 6 and
DC-C.
9. If REPORT is in dcqueue((q, p)), then (p, q) = core(f), by Claim 1 and DC-0.
10. If (r,p) E subtree(f), r # q, then r is a child of p, by Claim 3.
11. No REPORT is in dcqueue((r, p)), r # q, with inbranch(p) # (p, r)), by Claims 6
and 10 and DC-A(f).
12. No REPORT is in dcqueue((r,p)), r # q, with inbranch(p) = (p, r), by Claim 10

and DC-B(a).
13. If (p, r) E S, then r is a child of p, by Claim 10.
14. dcstatus(r) = unfind for all r E subtree(p), by Claim 5 and DC-H(a).
15. If (p, q) # core(f), then dcstatus(r) = find, for all r such that q E subtree(r),
by Claim 4 and DC-H(a).

16. dcqueue((p,r)) is either empty or contains only a REPORT for all r such that
(p, r) E S, by Claims 5 and 13 and DC-D(a) and DC-0.
17. If (p, q) # core(f), then following inbranches from q leads toward and over

core(f), by Claim 4 and DC-I(a).

DC-A(a): By Claim 7, we need not consider any REPORT in a link leaving p.
By Claim 11 we need not consider any REPORT in a link coming into p, except for

(q, p). Since inbranch(p) is set to (p, q) in s, removing FIND from dcqueue((q, p)) is
OK.

DC-B: By Claim 9 and 12, changing dcstatus(p) is OK.

DC-C: By Claim 8, changing dcstatus(p) and bestwt(p) is OK.

DC-D: (a) by Claim 13 and code. (b) by Claim 14. (c) by Claim 6.

DC-E: By Claim 12 and code (adding FIND messages and setting dcstatus(p)
to find), removing FIND from dcqueue((q,p)) is OK.

DC-F: As argued for DC-I(a), the only possible link of p that is part of core(f)

is (p, q). Since code sets inbranch(p) to (p, q), removing the FIND is OK.

DC-H(a): If (p, q) = core(f), then changing destatus(p) to find is OK. If (p, q) #
core(f), then Claim 15 implies that it is OK to change destatus(p) to find.

184

Section 4.2.4: DC Simulates GC

DC-I: (a) If (p, q) = core(f), then code gives the result, since inbranch(p) is set
to (p, q) and dcstatus(p) is set to find. If (p, q) # core(f), then Claim 17, the fact
that p is a child of q by DC-D(a), and code give the result. (b) by Claim 6.

DC-J: By Claims 1 and 2.

DC-K: (a) findcount(p) = ISI = number of children of p. None is complete, by
Claim 6. (b) and (c) are true by code, since no children are complete.

DC-L: by code and Claim 3.

DC-M: by code.

DC-O: Removing the FIND from dcqueue((q,p)) is OK. Adding FIND to dc-

queue((p, r)), (p, r) E S, is OK by Claim 16.

vi) ir is Merge(fg).

(3c) A 4 (s', 7r) = 7r. Obviously r is enabled in S 4 (s'). Effects are mirrored in

S4 (s) if we can show accmin(h) = minlink(h) = nil in s. Inspecting the code reveals
that in s, a FIND message is in subtree(h), so minlink(h) = nil, and nodes(h)

testset(h), so accmin(h) = nil.

(3a) Claims about s':

1. f # g, by precondition.
2. rootchanged(f) = true, by precondition.

3. rootchanged(g) = true, by precondition.
4. minedge(f) = minedge(g), by precondition.

5. minlink(f) # nil, by Claim 2 and COM-B.

Let (p, q) = minlink(f).

6. minlink(g) = (q,p), by Claims 1, 4 and 5.

7. No REPORT is headed toward root(f), by Claim 5.
8. No REPORT is headed toward root(g), by Claim 6.

9. No FIND is in subtree(f), by Claim 5.
10. No FIND is in subtree(g), by Claim 6.
11. dcstatus(r) = unfind for all r E nodes(f), by Claim 5.

12. dcstatus(r) = unfind for all r E nodes(g), by Claim 6.

13. (p, q) is the minimum-weight external link of f, by Claim 5 and COM-A.

14. (q, p) is the minimum-weight external link of g, by Claim 6 and COM-A.

15. testset(f) = 0, by Claim 5 and GC-C.

185

Chapter 5: Minimum Spanning Tree

16. testset(g) = 0, by Claim 6 and GC-C.
17. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) E
subtree(f), by Claims 9 and 11 and DC-A(a) and (f).
18. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) E
subtree(f), by Claims 10 and 12 and DC-A(a) and (f).
19. If REPORT is in dcqueue((r,t)) and (r,t) = core(f), then r = root(f), by Claim
7.
20. If REPORT is in dcqueue((r,t)) and (r,t) = core(g), then r = root(g), by Claim
8.
21. If REPORT is in dcqueue((r,t)) and (r,t) # core(f), then t is a child of r, for all

(r,t) E subtree(f), by Claim 17 and DC-B(a).
22. If REPORT is in dcqueue((r,t)) and (r,t) # core(g), then t is a child of r, for all

(r,t) E subtree(g), by Claim 18 and DC-B(a).
23. If REPORT is in dcqueue((r, t)), then (r, t) is not on the path between root(f)
and p, for all (r, t) E subtree(f), by Claims 5, 7, 13, 15 and 17 and DC-N.
24. If REPORT is in dcqueue((r,t)), then (r,t) is not on the path between root(g)
and q, for all (r, t) E subtree(g), by Claims 6, 8, 14, 16 and 18 and DC-N.
25. dcqueue((p, q)) is empty, by Claim 13 and DC-A(g), DC-B(a) and DC-D(a).
26. dcqueue((q,p)) is empty, by Claim 14 and DC-A(g), DC-B(a) and DC-D(a).
27. findcount(r) = 0 for all r E nodes(f), by Claim 11 and DC-H(b).
28. findcount(r) = 0 for all r E nodes(g), by Claim 12 and DC-H(b).

Claims about s:

29. subtree(h) is the old subtree(f) and subtree(g) and (p, q), by code.
30. core(h) = (p, q), by code.
31. testset(h) = nodes(h), by code.

32. dcqueue((p, q)) contains only a FIND, by Claim 25 and code.
33. No FIND is in any other link of subtree(h), by Claims 9, 10 and 29.
34. destatus(r) = unfind for all r E nodes(h), by Claims 11, 12 and 29.
35. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) E
subtree(h), by Claims 17, 18, 25, 26 and 29.
36. If REPORT is in dcqueue((r, t)), then t is a child of r, for all (r, t) E subtree(h),
by Claims 21 through 26 and 28.
37. AfterMerge(q, p) is enabled, by Claims 30, 32, 33 and 34.

38. dcqueue((q,p)) is empty, by Claim 26.
39. findcount(r) = 0 for all r E nodes(h), by Claims 27, 28 and 29.

DC-A: Vacuously true, by Claim 35.

186

Section 4.2.4: DC Simulates GC

DC-B: By Claims 34 and 36.

DC-C: By Claims 30, 32 and 38.

DC-D: The only FIND is in dcqueue((p, q)), by Claims 32 and 33. (a) by Claim
30. (b) by Claim 34. (c) by Claim 31.

DC-E: By Claim 32 for subtree(q); by Claim 37 for subtree(p).

DC-F: By Claims 32 and 37.

DC-G: By Claim 31.

DC-H: (a) by Claim 34. (b): by Claim 39.

DC-I: Vacuously true by Claim 34.

DC-J: Vacuously true by Claim 34.

DC-K: By Claims 31 and 34, none is up-to-date.

DC-M: By Claim 39.

DC-N: Vacuously true by Claim 31.

DC-O: By Claim 30.

vii) 7r is AfterMerge(p,q). Let f = fragment(p).

(3b) A 4 (s', 7r) is empty. We just need to show that accmin(f) and minlink(f)

do not change. The FIND message(s) imply that minlink(f) = nil in both s' and s.
Since there is no change to minlink(f), nodes(f), testset(f), or subtree(f), accmin(f)
does not change.

(3a) Claims about s':

1. (p, q) = core(f), by precondition.
2. FIND is in dcqueue((q,p)), by precondition.

3. No FIND is in dcqueue((p, q)), by precondition.
4. dcstatus(q) = unfind, by precondition.
5. No REPORT is in dcqueue((q,p)), by precondition.

6. Every node in subtree(q) is in testset(f), by Claims 1 through 5 and DC-G.
7. p E testset(f), by Claim 2 and DC-D(c).

187

Chapter 5: Minimum Spanning Tree

8. No REPORT is in dcqueue((p, q)), by Claim 7 and DC-C.

9. dcqueue((q,p)) consists solely of a FIND, by Claims 2 and 5 and DC-0.

10. dcqueue((p,q)) is empty, by Claims 3 and 8 and DC-0.

11. (p,q) E subtree(f), by Claim 1 and COM-F.

Claims about s:

12. (p, q) = core(f), by Claim 1.
13. Every node in subtree(q) is in testset(f), by Claim 6.

14. dcqueue((q,p)) consists solely of FIND, by Claim 9.

15. dcqueue((p, q)) consists solely of FIND, by Claim 10 and code.

16. dcstatus(q) = unfind, by Claim 4.

17. AfterMerge(p, q) is not enabled, by Claim 15.

18. AfterMerge(q, p) is not enabled, by Claim 14.

DC-D: (a) by Claim 12. (b) by Claim 16. (c) by Claim 13.

DC-E: By Claim 15 (FIND in dcqueue((p, q)) replaces AfterMerge(p, q) being

enabled).

DC-F: By Claim 15 (FIND in dcqueue((p, q)) replaces AfterMerge(p, q) being

enabled).

DC-G: vacuously true by Claims 17 and 18.

DC-O: By Claim 15.

viii) ir is Absorb(fg).

(3c) A 4 (s', 7r) = 7r. Obviously 7r is enabled in S4(s'). Effects are mirrored in

S4(s) if we can show that accmin(f) and minlink(f) do not change.

Case 1: p E testset(f) in s'. By GC-C, minlink(f) = nil in s'. By inspecting

the code, a FIND message is in subtree(f) in s, so minlink(f) = nil in s also.

Suppose accmin(f) = nil in s'. Then there is no external link of any q E

nodes(f)- testset(f) in s'. Since testset(f) does not change and no formerly internal

links become external, accmin(f) = nil in s also.

Suppose accmin(f) = (q, r) in s'. By GC-A, level(f) !5 level(fragment(r)). So

by precondition, fragment(r) # g. Since all of nodes(g) is added to testset(f), there

is no change to nodes(f) - testset(f). Thus accmin(f) is unchanged.

188

Section 4.2.4: DC Simulates GC

Case 2: p V testset(f) in s'.

Claims about s':

1. rootchanged(g) = true, by precondition.
2. level(g) < level(f), by precondition.
3. minlink(g) = (q,p) # nil, by precondition.
4. fragment(p) = f, by precondition.
5. dcstatus(r) = unfind for all r E nodes(g), by Claim 3.
6. No FIND message is in subtree(g), by Claim 3.
7. No REPORT message is headed toward mw-root(g), by Claim 3.
8. root(g) = mw-root(g), by Claim 3 and COM-A.
9. wt(l) > wt(q,p) for all external links I of g, by Claim 3 and COM-A.
10. If minlink(f) = (r,t), then level(fragment(t)) level(f), by COM-A.
11. If minlink(f) = (r,t), then g # fragment(t), by Claims 2 and 10.
12. If accmin(f) = (r,t), then level(fragment(t)) level(f), by GC-A.
13. If accmin(f) = (r, t), then g # fragment(t), by Claims 2 and 12.

If minlink(f) = nil in s', then obviously it is still nil in s. Suppose minlink(f) =

(r, t) in s'. By Claims 5, 6, 7, 8 and 11 (and code), minlink(f) = (r, t) in s as well.

If accmin(f) = (r, t)

Suppose accmin(f) = nil

since we just showed that

Suppose accmin(f) = nil

nodes(f) - testset(f) has

p V testset(f), yet it is in

by Claim 3 and COM-A.

in s', then it is unchanged in s by Claims 9 and 13.
in s'. If this is because minlink(f) # nil in s', then,
minlink(f) does not change, accmin(f) is still nil in s.
not because minlink(f) = nil, but because no node in
an external link. But by the assumption for this case,
nodes(f) by Claim 4, and (p, q) is an external link of p

(3a) We consider two cases. First we prove some facts true in both cases.

Claims about s':

rootchanged(g) = true, by precondition.

level(g) < level(f), by precondition.

minlink(g) = (q,p), by precondition.

p E nodes(f), by precondition.
No REPORT is headed toward root(g), by Claim 3.

No FIND is in subtree(g), by Claim 3.

1.
2.

3.
4.

5.
6.

189

Chapter 5: Minimum Spanning Tree

7. destatus(r) = unfind, for all r E nodes(g), by Claim 3.
8. (q, p) is the minimum-weight external link of g, by Claim 3 and COM-A.
9. testset(g) = 0, by Claim 3 and GC-C.
10. q is up-to-date, by Claim 9 and DC-N.
11. Following bestlinks from q leads toward and over core(g), by Claim 10.
12. If REPORT is in dcqueue((r, t)), then inbranch(t) = (t, r), for all (r, t) E
subtree(g), by Claims 6 and 7 and DC-A(a) and (f).
13. If REPORT is in dcqueue((r,t)) and (r,t) = core(f), then r = root(g), for all

(r, t) E subtree(g), by Claim 5.
14. If REPORT is in dcqueue((r, t)) and (r, t) :A core(f), then t is a child of r, for all

(r, t) E subtree(g), by Claim 9 and DC-B(a).
15. If REPORT is in dcqueue((r,t)), then (r,t) is not on the path between root(g)

and q, for all (r, t) E subtree(g), by Claims 3, 5, 8, 9 and DC-N.

16. No REPORT is headed toward q, by Claims 5, 14 and 15.

17. dcqueue((p, q)) and dcqueue((q, p)) are empty, by Claim 8 and DC-A(g), DC-

B(a) and DC-D(a).

Case 1: p g testset(f).

More claims about s':

18. p V testset(f), by assumption.

19. AfterMerge(r,t), where p E subtree(t), is not enabled, by Claim 18 and DC-G.

20. No FIND is headed toward p, by Claim 18 and DC-C(a).

DC-A: By Claim 12, vacuously true for any REPORT in old g. For a REPORT

that could be in some dcqueue((r, t)) with p E subtree(t): (e) by Claims 16 and 17.

DC-B: By Claim 16, change in location of core for nodes formerly in g is OK.

DC-D(a): by Claim 6, change in location of core for nodes formerly in g is OK.

By Claim 20, it is OK not to add nodes(g) to testset(f).

DC-G: By Claim 19, vacuously true.

DC-H(a): By Claim 7.

DC-K: Choose any up-to-date node r in nodes(f) in s. By Claims 7 and 11

and code, no node that is in nodes(g) in s' is up-to-date in s. Thus r is in nodes(f)

in s', and is up-to-date.

190

Section 4.2.4: DC Simulates GC

(a) If r = p, then findcount(p) is changed (incremented by 1) if and only if the
number of children of p that are not completed is changed (increased by 1). If r # p,
then neither findcount(r) nor the number of children of r that are not completed is
changed.

(b) Suppose bestlink(r) = nil in s. Then the same is true in s'. By DC-K(b),
bestwt(r) = oo and there is no external link of C, in s'. In going to s, there is no
change to bestwt(r), and no internal links become external.

(c) Suppose bestlink(r) # nil in s. Then the same is true in s'. Let I be the
minimum-weight external link of C, in s'. By DC-K(c), following bestlinks from r
leads to 1, wt(l) = bestwt(r), and level(h) ;> level(f), where h = fragment(target(l)),
in s'. By the precondition on level(g), h # g in s', and thus I is still external in s.

If p g Cr in s', then Cr is unchanged in s, and the predicate is still true. Suppose

p E Cr in s'. By COM-A, wt(p, q) is less than the weight of any other external link
of g, and thus wt(l) is less than the weight of any external link of g in s'. Thus
adding all the nodes of g to C, in going to s does not falsify the predicate.

DC-O: By Claim 6, the former core(g) is OK.

DC-N: Let I be the minimum-weight external link of f in s'. If I # (p, q), then
wt(l) < wt(p, q), and by Claim 8, wt(l) < wt(l') for any external link ' of g. Thus,
in s, I is still the minimum-weight external link of s, and DC-N is true in s.

Now suppose I = (p,q). By DC-N and Claim 18, p is up-to-date. But by DC-
K(b) and (c), bestlink(p) = (p, q) and level(f) 5 level(g), wich contradicts Claim

2.

Case 2: p E testset(f).

More claims about s':

21. p E testset(f), by assumption.

22. For all (r, t) such that p E subtree(r) and inbranch(t) = (t, r), no REPORT is in

dcqueue((r, t)), by Claim 21 and DC-A(e).

23. A FIND is headed toward p, or dcstatus(p) = find, or AfterMerge(r, t) is enabled,

where p E subtree(t), by Claim 21 and DC-E.

DC-A(e): by Claim 22, the addition of uncompleted child q to p is OK.

191

Chapter 5: Minimum Spanning Tree

DC-B: As in Case 1.

DC-D: As in Case 1.

DC-E: By Claim 23.

DC-G: By code, since all of nodes(g) is added to testset(f).

DC-H: By Claim 7.

DC-K: As in Case 1.

DC-M: By code, since findcount(p) is incremented.

DC-N: By code, since all of nodes(g) is added to testset(f).

DC-O: By Claim 17 and code. C

Let Pbc = (PGC OS4) A PDC.

Corollary 20: Pbc is true in every reachable state of DC.

Proof: By Lemmas 1 and 19. 0

4.2.5 NOT Simulates COM

This automaton refines on COM by implementing the level and core of a
fragment with local variables nlevel(p) and nfrag(p) for each node p in the fragment,
and with NOTIFY messages. When two fragments merge, a NOTIFY message is sent

over one link of the new core, carrying the level and core of the newly created
fragment. The action AfterMerge(p,q) adds such a NOTIFY message to the other
link of the new core. A ComputeMin(f) action cannot occur until the source of
minlink(f) has the correct nievel, and the target of minlink(f) has an nievel at least
as big as the source's. The preconditions for Absorb(f, g) now include the fact that

the level of fragment g must be less than the nievel of the target of minlink(g).

When an A bsorb(f, g) occurs, a NOTIFY message is sent to the old fragment g, over
the reverse link of minlink(g), with the nievel and nfrag of the target of minlink(g).

Define automaton NOT (for "Notify") as follows.

The state consists of a set fragments. Each element f of the set is called a

fragment, and has the following components:

192

Section 4.2.5: NOT Simulates COM

" subtree(f), a subgraph of G;

" minlink(f), a link of G or nil; and

* rootchanged(f), a Boolean.

For each node p, there are associated two variables:

" nlevel(p), a nonnegative integer; and

" nfrag(p), an edge of G or nil.

For each link (p, q), there are associated three variables:

" nqueuep((p, q)), a FIFO queue of messages from p to q waiting at p to be sent;

* nqueuepq((p, q)), a FIFO queue of messages from p to q that are in the com-
munication channel; and

" nqueueq((p, q)), a FIFO queue of messages from p to q waiting at q to be
processed.

The set of possible messages M is {NOTIFY(l, c) : I > 0, c E E(G)}. The state

also contains Boolean variables, answered(l), one for each I E L(G), and Boolean
variable awake.

In the start state of NOT, fragments has one element for each node in V(G); for

fragment f corresponding to node p, subtree(f) = {p}, minlink(f) is the minimum-

weight link adjacent to p, and rootchanged(f) is false. For each node p, nlevel(p) = 0
and nfrag(p) = nil. The message queues are empty. Each answered(l) is false and

awake is false.

We say that a message m is in subtree(f) if m is in some nqueue((q,p)) and

p E nodes(f). A NOTIFY message is headed toward p if it is in nqueue((q, r)) and

p E subtree(r). The following are derived variables:

9 For link (p, q), nqueue((p, q)) is defined to be nqueueq((p, q)) || nqueuepq((p, q))

|| nqueuep((p,q)).

* For fragment f, level(f) = max{l : nlevel(p) = 1 for p E nodes(f), or a

NOTIFY(l, c) message is in subtree(f) for some c}.

193

194 Chapter 5: Minimum Spanning Tree

e For fragment f, core(f) = nfrag(p) if nlevel(p) = level(f) for some p E nodes(f),
and core(f) = c, if a NOTIFY(level(f), c) message is in subtree(f).

As for the DC action ReceiveFind, ReceiveNotify((q, p), 1, c) is only enabled if

AfterMerge(p,q) is not enabled, in order to make sure that q's side of the subtree

is notified of the new information.

Input actions:

* Start(p), p E V(G)
Effects:

awake := true

Output actions:

e In Tree((p, q)), (p, q) e L(G)
Preconditions:

awake = true

(p, q) E subtree(fragment(p)) or (p, q) = minlink(fragment(p))

answered((p,q)) false

Effects:

answered((p, q)) := true

e NotIn Tree((p, q)), (p, q) E L(G)
Preconditions:

fragment(p) = fragment(q) and (p, q) V subtree(fragment(p))

answered((p, q)) false

Effects:

answered((p, q)) := true

Internal actions:

* ChannelSend((p, q), m), (p, q) E L(G), m E M
Preconditions:

m at head of nqueuep((p, q))

Effects:

dequeue(nqueue,((p, q)))

enqueue(m, nqueueq((p, q)))

* ChannelRec((p, q), m), (p, q) E L(G), m E M
Preconditions:

Section 4.2.5: NOT Simulates COM

m at head of nqueuepq((p, q))
Effects:

dequeue(nqueuepq((p, q)))
enqueue(m, nqueueq((p, q)))

e ReceiveNotify((q, p), l, c), (q, p) E L(G), I > 0, c E E(G)
Preconditions:

NOTIFY(l,c) at head of nqueuep((q,p))

AfterMerge(p, q) not enabled

Effects:

dequeue(nqueue,((q, p)))

nlevel(p) := l

nfrag(p) := c
- let S = {(p, r) : (p,r) E subtree(fragment(p)), r # q} -

enqueue(NOTIFY(l,c), nqueuep(k)) for all k E S

* ComputeMin(f), f E fragments

Preconditions:

minlink(f) = nil

(p, q) is the minimum-weight external link of f
nlevel(p) = level(f)

level(f) ; nlevel(q)

Effects:
minlink(f) := I

* ChangeRoot(f), f E fragments
Preconditions:

awake = true

rootchanged(f) = false

minlink(f) # nil

Effects:

rootchanged(f) := true

* Merge(f, g), f, g E fragments

Preconditions:

f # g
rootchanged(f) = rootchanged(g) = true

minedge(f) = minedge(g)

Effects:
add a new element h to fragments

195

Chapter 5: Minimum Spanning Tree

subtree(h) := subtree(f) U subtree(g) U minedge(f)
minlink(h) nil
rootchanged(h) := false

- let (p,q) = minedge(f) -

enqueue(NOTIFY(nlevel(p) + 1, (p, q)), nqueue,((p, q)))
delete f and g from fragments

* AfterMerge(p, q), p, q E V(G)
Preconditions:

(p, q) = core(fragment(p))

NOTIFY(nlevel(p) + 1, (p, q)) message in nqueue((q, p))
no NOTIFY(nlevel(p) + 1, (p, q)) message in nqueue((p, q))
nlevel(q) :p nlevel(p) + 1

Effects:
enqueue(NOTIFY(nlevel(p) + 1, (p, q)), nqueuep((p, q)))

e Absorb(f,g), f,g E fragments

Preconditions:

rootchanged(g) = true

- let (q, p) = minlink(g) -
level(g) < nlevel(p)
fragment(p) = f

Effects:
subtree(f) := subtree(f) U subtree(g) U minedge(g)
enqueue(NOTIFY(nlevel(p), nfrag(p)), nqueuep((p, q)))

delete g from fragments

Define the following predicates on states of NOT. (All free variables are uni-
versally quantified.)

" NOT-A: core(f) is well-defined. (I.e., the set of all c such that a NOTIFY(lev-

el(f), c) is in subtree(f) or some p E nod es(f) has nlevel(p) = level(f) and
nfrag(p) = c, has exactly one element.)

" NOT-B: If q E subtree(p), then nlevel(q) nlevel(p).

" NOT-C: If (p, q) = core(f), then nlevel(p) ;> level(f) - 1.

* NOT-D: If minlink(f) = (p, q), then nlevel(p) = level(f) nlevel(q).

* NOT-E: If nfrag(p) = core(fragment(p)), then nlevelp) = level(fragment(p)).

196

Section 4.2.5: NOT Simulates COM

e NOT-F: Either nlevel(p) = 0 and nfrag(p) = nil, or else nlevel(p) > 0 and
nfrag(p) E subtree(fragment(p)).

* NOT-G: If nlevel(p) < level(fragment(p)), then either a NOTIFY(level (frag-

ment(p)), core(fragment(p))) message is headed toward p, or else AfterMerge
(q,r) is enabled, where p E subiree(r).

* NOT-H: If a NOTIFY(l, c) message is in nqueue((q, p)), then

(a) nlevel(p) < 1;
(b) if (p, q) :A core(fragment(p)), then nlevel(q) > 1;
(c) if c = core(fragment(p))) then 1 = level(fragment(p));

(d) if NOTIFY(l', C') is ahead of the NOTIFY(l, c) in nqueue((q, p)), then ' < 1;

(e) p is a child of q, or (p, q) = core(fragment(p));

(f) if (p, q) = core(fragment(p)), then I = level(fragment(p));

(g) c E subtree(fragment(p)); and

(h) I > 0.

Let PNOT be the conjunction of NOT-A through NOT-H.

In order to show that NOT simulates COM, we define an abstraction mapping

M 5 = (S 5 ,A 5) from NOT to COM. Define the function S5 from states(NOT) to

states(COM) by simply ignoring the message queues, and mapping the derived vari-
ables level(f) and core(f) in the NOT state to the (non-derived) variables level(f)

and core(f) in the COM state. Define the function A5 as follows. Let s be a state

of NOT and r an action of NOT enabled in s.

* If ir = ChannelSend(k, m), ChannelRecv(k, m), ReceiveNotify(k, 1, c), or After-

Merge(p, q), then A5 (s, 7r) is empty.

* For all other values of 7r, A 5(s, 7r) = 7r.

The following predicates are true in any state of NOT satisfying (Pbog o S5) A

PNOT. Recall that PCOM = (Psi o S) A PCOM. If PCOM(S5(s)) is true, then the

COM predicates are true in Ss(s), and the S1 predicates are true in Si(S5(s)). Thus,
these predicates follow from PNOT, together with the HI and COM predicates.

" NOT-I: If p = minnode(f), then no NOTIFY message is headed toward p.

* NOT-J: For all p, at most one NOTIFY(l, c) message is headed toward p, for a

fixed 1.

Lemma 21: NOT simulates COM via M 5 , PNOT, and PCOM'

19T

198 Chapter 5: Minimum Spanning Tree

Proof: By inspection, the types of NOT, COM, M 5 , and PNOT are correct. By
Corollary 14, PcOM is a predicate true in every reachable state of COM.

(1) Let s be in start(NOT). Obviously PNOT is true in s and S5 (s) is in
start(COM).

(2) Obviously, As(s, r)|ext(COM) = irfext(NOT).

(3) Let (s', ir, s) be a step of NOT such that PCoM is true of Ss(s') and PNOT
is true of s'. Below, we only show (3a) for those predicates that are not obviously

true in s.

i) r is Start(p), InTree(l), NotInTree(1), or ChangeRoot(f). As(s', 7) =

7r. Obviously, S5 (s')irS5 (s) is an execution fragment of COM, and PNOT is true in
S.

ii) 7r is ChannelSend(1,m) or ChannelRecv(1,m). As(s', 7r) is empty.

Obviously, Ss(s') = Ss(s), and PNOT is true in s-

iii) r is ReceiveNotify((q,p),1,c). Let f = fragment(p).

(3b) A 5(s', 7r) is empty. To show that S5 (s) = S5 (s'), we only need to show
that level(f) and core(f) don't change. By NOT-H(a), nlevel(p) < I in s', and thus
nlevel(p) # level(f). So changing nlevel(p) is OK. Also, since nleve(p) and nfrag(p)
are set to I and c, removing the NOTIFY(l, c) from nqueue((q, p)) is OK.

(3a) NOT-A: By code.

NOT-B: By NOT-B, nlevel(q) nlevel(r) for all r such that q E subtree(r) in
s'. By NOT-H(b), if (p,q) # core(f), then nlevel(q) > I in s'. Since nlevel(p) = I in

s, the predicate is true.

NOT-C: Since this predicate is true in s' and fact that nlevel(p) increases.

NOT-D: As argued in (3b), nlevel(p) < 1 < level(f). By NOT-D, p #
minnode(f) in s', or in s. Suppose p = target(minlink(g)) in s', for some g. Since

nlevel(p) increases in going from s' to s, the predicate is still true in s.

NOT-E: By NOT-H(c), c = core(f) implies that I = level(f) in s'. So in s,
c = nfrag(p) = core(f) implies that I = nlevel(p) = level(f).

NOT-F: By NOT-H(g), c # nil, and by NOT-H(h), I > 0 in s'. Thus in s,
c = nfrag(p) : nil and I = nlevel(p) # 0.

Section 4.2.5: NOT Simulates COM

NOT-G: The NOTIFY(l, c) message removed from nqueue((q,p)) is replaced by

the NOTIFY(l, c) messages added to nqueue((p, r)), for all (p, r) E S.

NOT-H: Suppose NOTIFY(l, c) is added to nqueue(p, r) in s. (I.e., (p, r) E S.)

Claims about s':

1. NOTIFY(l, c) is at head of nqueue((q,p)), by precondition.

2. p E subtree(q) or (p, q) = core(f), by Claim 1 and NOT-H(e).
3. r E subtree(p), by Claim 2 and definition of S.
4. nlevel(r) 5 nlevel(p), by Claim 3 and NOT-B.
5. nlevel(p) < 1, by Claim 1 and NOT-H(a).

6. If NOTIFY(l', C') is in nqueue((p, r)), then ' < 1, by Claims 3 and 5 and NOT-
H(b).
7. nlevel(r) < 1, by Claims 4 and 5.

(a) by Claim 7. (b) by Claim 3. (d) by Claim 7. (e) by Claim 3. (f) vacuously

true by Claim 3. (c), (g) and (h) since the same is true for the NOTIFY(l, c) in

nqueue((q,p)) in s'.

iv) ir is ComputeMin(f).

(3c) A 5(s', 7r) = 7r. Obviously 7r is enabled in S5(s'), since by definition
nlevel(q) 5 level(fragment(q)). The effects are obviously mirrored in S 5 (s).

(3a) By the preconditions, NOT-D is true in s. No other predicate is affected.

v) 7r is Merge(fg).

(3c) As(s', 7r) = 7r. Obviously r is enabled in Ss(s'). To show that its effects are

mirrored in Se(s), we show that level(h) and core(h) are correct. Let minlink(f) =

(p, q) and I = level(f) in s'.

Claims about s':

1. minedge(f) = minedge(g), by precondition.

2. level(g) = 1, by Claim 1 and COM-A.

3. rootchanged(f) = true, by precondition.

4. minlink(f) # nil, by Claim 3 and COM-B.

5. nlevel(p) = 1, by Claim 4 and NOT-D.
6. nlevel(r) < I for all r E nodes(f), by definition of level(f).

7. If NOTIFY(m, c) is in subtree(f), then m < 1, by definition of level(f).

199

Chapter 5: Minimum Spanning Tree

8. rootchanged(g) = true, by precondition.
9. minlink(g) # nil, by Claim 8 and COM-B.
10. nlevel(q) = 1, by Claims 2 and 9 and NOT-D.
11. nlevel(r) 1 for all r E nodes(g), by definition of levelg).

12. If NOTIFY(m, c) is in subtree(g), then m < 1, by definition of level(g).
13. (p, q) is an external link of f, by COM-A.
14. nqueue((p, q)) and nqueue((q, p)) are empty, by Claim 13 and NOT-H(e).
Claims about s:

15. nlevel(r) < I + 1, for all r E nodes(h), by Claims 6 and 11 and code.
16. The only NOTIFY message in subtree(h) with level greater than I is the

NOTIFY(l + 1, (p, q)) message added to nqueue((p, q)), by Claims 7, 12 and 14 and
code.
17. level(h) = I + 1, by Claims 15 and 16.
18. core(h) = (p, q), by Claims 15 and 16.

Claims 17 and 18 give the result.

(3a) Only fragment h needs to be checked.

NOT-A: By Claims 15 and 16.

NOT-B: As argued in the proof of NOT-I, nlevel(r) = 1 for all r on the path
from core(f) to p, and all r on the path from core(g) to q. Since these are the only
nodes affected by the change of core, the predicate is still true in s.

NOT-C: By Claims 5, 10 and 17.

NOT-D: vacuously true since minlink(h) = nil by code.

NOT-E: By NOT-F and Claim 13, nfrag(r) # (p, q) for all r in nodes(f) or

nodes(g). So the predicate is vacuously true.

NOT-F: No relevant change.

NOT-G: If r is in nodes(g) in s', the predicate is true in s because of Claims 17

and 18 and the NOTIFY(l + 1, (p, q)) added to nqueue((p, q)) in s. If r is in nodes(f)

in s', then AfterMerge(q, p) is enabled in s, by code and Claims 5, 10, 14 and 18.

NOT-H for the NOTIFY(l + 1, (p, q)) added to nqueue((p, q)): (a) nlevel(q) <

I+1, by Claim 15. (b) By Claim 18. (c) By Claim 17. (d) Vacuously true by Claim

200

Section 4.2.5: NOT Simulates COM

14. (e) By Claim 18. (f) By Claims 17 and 18. (g) By code. (h) By COM-F, 1 > 0,
so I+1> 0.

NOT-H for any NOTIFY(l', c') message in subtree(f) in s' (similar argument for

g): (a), (d), (g) and (h) No relevant change.

(b) Suppose the message is in a link of core(f) = (r, t). Suppose p E subtree(t).
By NOT-I, the message is not in nqueue((rt)). As argued in the proof of NOT-I,
nlevel(t) = 1. If the message is in nqueue((t,r)), then, since ' < 1, the predicate is
true in s.

(c) By Claim 13 and NOT-H(g), c' # (p, q), so the predicate is vacuously true
in s.

(e) The only nodes for which the subtree relationship changes are those along

the path from core(f) to p. By NOT-I, there is no NOTIFY message in this path.

(f) Vacuously true, by Claim 18.

vi) 7r is AfterMerge(p,q). Let f = fragment(p).

(3b) A 5 (s') is empty. Obviously S 5(s') = S 5(s).

(3a) Let I = nlevel(p) + 1 and c = (p, q).

NOT-A: Obvious.

NOT-B, C, D, and E: No relevant changes.

NOT-G: The NOTIFY(l, c) message added to nqueue((p, q)) in s compensates

for the fact that AfterMerge(p, q) goes from enabled in s' to disabled in s.

NOT-H: Let c = (p, q) and I = revel(p) + 1. Consider the NOTIFY(l, c) added

to nqueue((p, q)).

1. (p, q) = core(f), by precondition.

2. NOTIFY(l, c) is in nqueue((q, p)), by precondition.

3. No NOTIFY(l, c) is in nqueue((p, q)), by precondition.

4. nlevel(q) # 1, by precondition.

5. 1 = level(f), by Claims 1 and 2 and NOT-H(f).

6. nlevel(q) < 1, by Claims 4 and 5.

7. If NOTIFY(l', c') is in nqueue((p, q)), then ' = 1, by Claims 1 and 5 and NOT-

H(d).

201

Chapter 5: Minimum Spanning Tree

8. If NOTIFY(l', c') is in nqueue((p, q)), then c' = c, by Claim 7 and NOT-A.
9. No NOTIFY is in nqueue((p, q)), by Claims 3, 7 and 8.
10. nlevel(p) > 0, by NOT-F.

(a) by Claim 6. (b) vacuously true, by Claim 1. (c) by Claim 5. (d) by Claim
9. (e) by Claim 1. (f) by Claim 5. (g) by Claim 1 and COM-F. (h) by Claim 10.

vii) ir is Absorb(fg).

(3c) A(s', r) = r.

Claims about s':

1. rootchanged(g) = true, by precondition.
2. level(g) < nlevel(p), by precondition.
3. fragment(p) = f, by precondition.
4. nlevel(p) level(f), by Claim 3 and definition of level.
5. nlevel(r) 5 level(g), for all r E nodes(g), by definition of level.
6. If NOTIFY(l, c) is in subtree(g), then I < level(g), by definition of level.
7. (q, p) is an external link of g, by COM-A.
8. nqueue((p, q)) and nqueue((q, p)) are empty, by Claim 7 and NOT-H(e).

By Claim 4, 7r is enabled in S5 (s'). The effects of r are mirrored in S5 (s)
if core(f) and level(f) are unchanged; by code and Claims 6, 7 and 8, they are
unchanged.

(3a) Let I = nlevel(p) and c = nfrag(p) in s'.

More claims about s':

9. f # g, by Claims 7 and 3.
10. level(f) > 0, by Claims 2 and 3 and COM-F.

11. core(f) E subtree(f), by Claim 10 and COM-F.

12. nfrag(r) # core(f), for all r E nodes(g), by Claim 11 and NOT-F.
13. nlevel(q) 5 level(g), by definition.
14. nfrag(p) E subtree(f), by Claims 2 and 10 and NOT-F.

NOT-A: by code and Claims 6, 7 and 8.

NOT-B: Same argument as for Merge(f, g).

NOT-D: No relevant changes.

202

Section 4.2.5: NOT Simulates COM

NOT-E: By Claim 12, vacuously true for nodes formerly in nodes(g).

NOT-F: No relevant changes.

NOT-G: Suppose nlevel(p) = level(f) in s'. By code, in s there is a
NOTIFY(level(f), c) message headed toward every node formerly in nod es(g).

Suppose nlevel(p) # level(f) in s'. By NOT-G, either a NOTIFY(level(f), c)

message is headed toward p in s', and thus is headed toward all nodes formerly in

nodes(g) in s, or AfterMerge(r,t) is enabled in s' with p E subtree(t), and thus in s,
AfterMerge(r, t) is still enabled and every node formerly in nodes(g) is in subtree(t).

NOT-H for the NOTIFY(l, c) added to nqueue((p, q)): (a) by Claims 2 and 12.

(b) by code. (c) by NOT-E. (d) vacuously true by Claim 8. (e) q is a child of p, by
Claim 11. (f) vacuously true, by Claim 11. (g) by Claim 14. (h) by Claims 2 and
10.

NOT-H for any NOTIFY(l', c') in subtree(g) in s': (a), (d), (g) and (h): no

relevant change. (b) and (e) same argument as for Merge(f, g). (c) vacuously true,

by Claim 11. (f) vacuously true, by code.

Let PjkOT = (PcoM o S 5) A PNOT-

Corollary 22: PKOT is true in every reachable state of NOT.

Proof: By Lemmas 1 and 21.

203

El

Chapter 5: Minimum Spanning Tree

4.2.6 CON Simulates COM

This automaton concentrates on what happens after minlink(f) is identified,
until fragment f merges or is absorbed, i.e., the ChangeRoot(f, g), Merge(f, g) and
A bsorb(g, f) actions are broken down into a series of actions, involving message-
passsing. The variable rootchanged(f) is now derived. As soon as ComputeMin(f)
occurs, the node adjacent to the core closest to minlink(f) sends a CHANGEROOT

message on its outgoing link that leads to minlink(f). A chain of such messages
makes its way to the source of minlink(f), which then sends a CONNECT(level(f))

message over minlink(f). The presence of a CONNECT message in minlink(f) means
that rootchanged(f) is true. Thus, the ChangeRoot(f) action is only needed for
fragments f consisting of a single node. Two fragments can merge when they
have the same minedge and a CONNECT message is in both its links; the result
is that one of the CONNECT messages is removed. The action AfterMerge(p, q)
removes the other CONNECT message from the new core. (A delicate point is that
ComputeMin(f) cannot occur until the appropriate AfterMerge(p,q) has, in order
to make sure old CONNECT messages are not hanging around.) Absorb(f, g) can

occur if there is a CONNECT(l) message in minlink(g), and minlink(g) points to a
fragment whose level is greater than 1.

Define automaton CON (for "Connect") as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

* subtree(f), a subgraph of G;

* core(f), an edge of G or nil;

* level(f), a nonnegative integer; and

* minlink(f), a link of G or nil.

For each link (p, q), there are associated three variables:

* cqueuep((p, q)), a FIFO queue of messages from p to q waiting at p to be sent;

* cqueuepq((p, q)), a FIFO queue of messages from p to q that are in the commu-

nication channel; and

e cqueueq((p, q)), a FIFO queue of messages from p to q waiting at q to be

processed.

204

Section 4.2.6: CON Simulates COM

The set of possible messages M is {CONNECT(l) : I > 0} U {CHANGEROOT}. The

state also contains Boolean variables, answered(l), one for each I E L(G), and
Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) = 0,
and minlink(f) is the minimum-weight link adjacent to p. The message queues are
empty. Each answered(l) is false and awake is false.

The derived variable cqueue((p,q)) is cqueueq((p,q)) || cqueuepq((p,q)) || c-
queuep((p, q)). For each fragment f, we define the derived Boolean variable
rootchanged(f) to be true if and only if a CONNECT message is in cqueue((p,q)),

for some external link (p, q) of f. Derived variable tominlink(p) is defined to be

the link (p, q) such that (p, q) is on the path in subtree(fragment(p)) from p to

minnode(fragment(p)).

Message m is defined to be in subtree(f) if m is in cqueue((q,p)) and p E
nodes(f).

Input actions:

* Start(p), p E V(G)

Effects:

awake := true

Output actions:

* In Tree((p, q)), (p, q) E L(G)
Preconditions:

awake = true

(p, q) E subtree(fragment(p)) or (p, q) = minlink(fragment(p))

answered((p, q)) = false

Effects:

answered((p, q)) := true

* NotInTree((p,q)), (p,q) E L(G)
Preconditions:

fragment(p) = fragment(q) and (p, q) V subtree(fragment(p))

answered((p,q)) = false

Effects:

answered((p, q)) := true

205

Chapter 5: Minimum Spanning Tree

Internal actions:

* ChannelSend((p, q), m), (p, q) E L(G), m E M
Preconditions:

m at head of equeuep((p, q))
Effects:

dequeue(cqueue,((p, q)))
enqueue(m, cqueuep,((p, q)))

* ChannelRecv((p,q),m), (p,q) E m E M
Preconditions:

m at head of cqueuepq((p, q))
Effects:

dequeue(cqueuepq((p, q)))
enqueue(m, cqueueq((p, q)))

@ ComputeMin(f), f E fragments

Preconditions:
minlink(f) = nil

I is the minimum-weight external link of subtree(f)
level(f) <; level(fragment(target(l)))
no CONNECT message is in cqueue(k), for any internal link k of f

Effects:

minlink(f) := 1
- let p = root(f) -

if p f minnode(f) then enqueue(CHANGEROOT,cqueuep(tominlink(p)))

else enqueue(CONNECT(level(f)), cqueuep(minlink(f)))

* Receive ChangeRoot((q, p)), (q,p) E L(G)

Preconditions:

CHANGEROOT at head of cqueuep((q,p))

Effects:

dequeue(cqueue, ((q, p)))

- let f = fragment(p) -
if p # minnode(f) then enqueue(CHANGEROOT,cqueue,(tominlink(p)))

else enqueue(CONNECT(level(f)), cqueue,(minlink(f)))

* ChangeRoot(f), f E fragments

Preconditions:

awake = true

206

Section 4.2.6: CON Simulates COM

rootchanged(f) = false

subtree(f) = {p}
Effects:

enqueue(CONNECT(O), cqueuep(minlink(f)))

* Merge(f, g), f, g E fragments
Preconditions:

CONNECT(l) in cqueue((p, q)), (p, q) external link of f
CONNECT(l) at head of cqueuep((q,p)), (q,p) external link of g

Effects:
dequeue(cqueue,((q, p)))
add a new element h to fragments

subtree(h) := subtree(f) U subtree(g) U minedge(f)
core(h) := minedge(f)

level(h) := level(f) + 1

minlink(h) := nil

delete f and g from fragments

* AfterMerge(p, q), p, q E V(G)
Preconditions:

fragment(p) = fragment(q)

CONNECT(l) at head of equeuep((q,p))
Effects:

dequeue(cqueue,((q, p)))

* Absorb(f,g), f,g E fragments

Preconditions:

- let p = target(minlink(g)) -

CONNECT(l) at head of equeue,(minlink(g))

I < level(f)
f = fragment(p)

Effects:
dequeue(cqueue,(minlink(g)))

subtree(f) := subtree(f) U subtree(g) U minedge(g)

delete g from fragments

Define the following predicates on states of CON. (All free variables are uni-

versally quantified.)

e CON-A: If awake = false, then cqueue((q,p)) is empty.

207

208 Chapter 5: Minimum Spanning Tree

e CON-B: If rootchanged(f) = false and minlink(f) # nil, then either subtree(f)
= {p}, or else minnode(f) # root(f) and there is exactly one CHANGEROOT

message in subtree(f).

e CON-C: If a CHANGEROOT message is in cqueue((q,p)), then minlink(f) # nil,
rootchanged(f) = false, p is a child of q, and minnode(f) E subtree(p), where
f = fragment(p).

* CON-D: If a CONNECT(l) message is in cqueue(k), where k is an external link
of f, then k = minlink(f), I = level(f), and only one CONNECT message is in
cqueue(k).

* CON-E: If a CONNECT(l) message is in equeue((p, q)), where (p, q) is an internal
link of f, then (p, q) = core(f), 1 < level(f), and only one CONNECT message
is in cqueue((p,q)).

* CON-F: If minlink(f) # nil, then no CONNECT message is in cqueue(k), for
any internal link k of f.

Let PCON be the conjunction of CON-A through CON-F.

In order to show that CON simulates COM, we define an abstraction mapping

M 6 = (S 6 , A 6) from CON to COM.

Define the function S6 from states(CON) to states(COM) by simply ignoring
the message queues, and mapping the derived variables rootchanged(f) in the CON
state to the (non-derived) variables rootchanged(f) in the COM state.

Define the function A 6 as follows. Let s be a state of CON and ir an ac-

tion of CON enabled in s. If the minimum-weight external link of f is adjacent
to core(f), then ComputeMin(f) causes ComputeMin(f), immediately followed by
ChangeRooi(f), to be simulated in COM. Otherwise, ChangeRoot(f) is simulated

when the source of minlink(f) receives a CHANGEROOT message.

* If 7r = ChannelSend((p,q),m), ChannelReev((p,q),m), or AfterMerge(p,q),
then A 6 (s, r) is empty.

* If 7 = ComputeMin(f) and mw-root(f) = mw-minnode(f) in s, then A 6(s, w)
= ComputeMin(f) t ChangeRoot(f), where t is identical to S6 (s) except that

minlink(f) equals the minimum-weight external link of f in t.

Section 4.2.6: CON Simulates COM 209

e If ir = ComputeMin(f) and mw-root(f) # mw-minnode(f) in s, then A 6 (s,7r)
= ComputeMin(f).

* If 7r = Receive ChangeRoot((q,p)) and p = minnode(fragment(p)) in s, then

A6(s, 7r) = ChangeRoot(fragment(p)).

* If 7r = Receive ChangeRoot((q,p)) and p # minnode(fragment(p)) in s, then
A 6 (s,w7r) is empty.

e For all other values of 7r, A 6 (s,7r) = 7r.

Recall that PCOM = (PHI o S1) A PCOM. If PCOM(S6(s)) is true, then the

COM predicates are true in S6(s), and the HI predicates are true in Si(S6(s)).

Lemma 23: CON simulates COM via M 6 , PCON, and PCOM.

Proof: By inspection, the types of CON, COM, M 6 , and PCON are correct. By
Corollary 14, PCOM is a predicate true in every reachable state of COM.

(1) Let s be in start(CON). Obviously PCON is true in s and S6(s) is in
start(COM).

(2) Obviously, A 6 (s, ir)|ext(COM) = 7rlext(CON).

(3) Let (s',7r, s) be a step of CON such that PCOM is true of S6(s') and PCON
is true of s'. Below we show (3a) only for those predicates that are not obviously
true in s.

i) 7r is Start(p), InTree(l) or NotlnTree(1). A 6 (s', 7r) = 7r. Obviously,
S 6 (s') 'rS6 (s) is an execution fragment of COM, and PCON is true in s.

ii) ir is ChannelSend((q,p),m) or ChannelRecv((q,p),m). A 6 (s',7r) is

empty. Obviously, S 6(s') = S 6(s), and PCON is true in s.

iii) 7r is ComputeMin(f).

Case 1: mw-root(f) # mw-minnode(f) in s'.

(3b) A6(S', 7r) = ir. Obviously S 6(s')irS6 (s) is an execution fragment of COM.

(3a) Claims about s':

1. minlink(f) = nil, by precondition.

210 Chapter 5: Minimum Spanning Tree

2. 1 is the minimum-weight external link of f, by precondition.
3. level(f) < level(fragment(target(l))), by precondition.
4. No CONNECT message is in cqueue(k), for any internal link k of f, by precondition.

5. p = mw-root(f), by assumption.

6. p # mw-minnode(f), by assumption.

7. awake = true, by Claim 1 and COM-C.
8. No CHANGEROOT mesage is in subtree(f), by Claim 1 and CON-C.

9. mw-minnode(f) E subtree(p), by Claim 5.
10. rootchanged(f) = false, by Claim 1 and COM-B.

Claims about s:

11. minlink(f) = 1, the minimum-weight external link of f, by Claim 2 and code.
12. level(f) level(fragment(target(l))), by Claim 3.
13. p = root(f), by Claims 5 and 11.
14. p # minnode(f), by Claims 6 and 11.
15. awake = true, by Claim 7.

16. Exactly one CHANGEROOT message is in subtree(f), by Claim 8 and code.

17. minnode(f) E subtree(p), by Claims 9 and 11.
18. rootchanged(f) = false, by Claim 10.
19. No CONNECT message is in cqueue(k), for any internal link k of f, by Claim 4.

CON-A is true by Claim 15. CON-B is true by Claims 13, 14, and
is true by definition of tominlink, Claims 17, 18 and 11. CON-D and
true since no relevant changes are made. CON-F is true by Claim 19.

16. CON-C
CON-E are

Case 2: mw-root(f) = mw-minnode(f) in s'.

(3b) A6 (s', 7r) = 7r t ChangeRoot(f), where t is identical to S 6(s') except that
minlink(f) equals the minimum-weight external link of f in t.

Claims about s':

1. minlink(f) = nil, by precondition.

2. 1 is the minimum-weight external link of f, by precondition.

3. level(f) level(fragment(target(l))), by precondition.
4. awake = true, by Claim 1 and COM-C.
5. rootchanged(f) = false, by Claim 1 and COM-B.

Section 4.2.6: CON Simulates COM

Claims about t:

6. minlink(f) is the minimum-weight external link of f, by definition of t.
7. awake = true, by Claim 4.

8. rootchanged(f) = false, by Claim 5.
Claims about s:

9. minlink(f) is the minimum-weight external link of f, by code.
10. A CONNECT message is in cqueue(minlink(f)), by code.
11. rootchanged(f) = true, by Claims 9 and 10.

By Claims 1, 2 and 3, ir is enabled in S6 (s'). By Claim 6 (and definition of t),
the effects of 7r are mirrored in t. By Claims 6, 7, and 8, ChangeRoot(f) is enabled

in t. By Claim 11 (and definition of t), the effects of ChangeRoot(f) are mirrored in

S 6 (s). Therefore, S 6 (s')7r t ChangeRoot(f)S6 (s) is an execution fragment of COM.

(3a) More claims about s':

12. No CHANGEROOT message is in subtree(f), by Claim 1 and CON-C.
13. No CONNECT message is in any cqueue(k), where k is an external link of f, by

Claim 1 and CON-D.
14. No CONNECT message is in any cqueue(k), where k is an internal link of f, by

precondition.
More claims about s:

15. awake = true, by Claim 4.

16. No CHANGEROOT message is in subtree(f), by Claim 12.

CON-A is true by Claim 15. CON-B is true by Claim 11. CON-C is true by

Claim 16. CON-D is true by Claims 9, 10, and 13 and code. CON-E is true because

no relevant changes are made. CON-F is true by Claim 14.

iv) 7r is ReceiveChangeRoot((q,p)). Let f = fragment(p).

Case 1: p # minnode(f) in s'.

(3c) A 6 (s', r) is empty. Below we show that rootchanged(f) is the same in s'

and s, which implies that S 6(s) = S6(s').

Claims about s':

1. A CHANGEROOT message is in cqueue((q,p)), by precondition.

211

212 Chapter 5: Minimum Spanning Tree

2. (p,q) E subtree(f), by Claim 1 and CON-C.
3. rootchanged(f) = false, by Claims 1 and 2 and CON-A.
Claims about s:

4. rootchanged(f) = false, by Claim 1 and code.

Claims 2 and 4 give the result.

(3a) Let (p, r) = tominlink(p).

More claims about s':

5. awake = true, by Claim 1 and CON-A.
6. minlink(f) # nil, by Claims 1 and 2 and CON-C.
7. minnode(f) E subtree(p), by Claims 1 and 2 and CON-C.
8. There is exactly one CHANGEROOT message in subtree(f), by Claims 2, 3 and 6

and CON-B.
9. r is a child of p and minnode(f) E subtree(r), by definition of tominlink(p).

More claims about s:

10. awake = true, by Claim 5.
11. There is exactly one CHANGEROOT message in subtree(f), by Claim 8 and code.

12. r is a child of p, by Claim 9.
13. minlink(f) # nil, by Claim 6.
14. (p, r) # core(f), by Claim 9.
15. minnode(f) E subtree(r), by Claims 7 and 9.

CON-A is true by Claim 10. CON-B is true by Claim 11 and assumption for
Case 1. CON-C is true by Claims 4,12,13,14 and 15. CON-D, CON-E and CON-F
are true because no relevant changes are made.

Case 2: p = minnode(f) in s'.

(3b) A6 (s', 7r) = ChangeRoot(f).

Claims about s'

1. A CHANGEROOT message is in cqueue((q, p)), by precondition.

Section 4.2.6: CON Simulates COM

(3a) More claims about s':

10. p is a child of q, by Claim 1 and CON-C.
11. Exactly one CHANGEROOT message is in
CON-B.
12. No CONNECT message is in any cqueue(k),
Claim 5.
13. No CONNECT message is in any cqueue(k),
Claim 4 and CON-F.

subtree(f), by Claims 5, 4, 10 and

where k is an external link of f, by

where k is an internal link of f, by

More claims about s:

14. awake = true, by Claim 3.
15. No CHANGEROOT message is in subtree(f), by Claims 1, 10 and 11 and code.

16. No CONNECT message is in any cqueue(k), where k is an internal link of f, by
Claim 13.

CON-A is true by Claim 14. CON-B is true by Claim 9. CON-C is true by
Claim 15. CON-D is true by Claims 7, 8, 12 and code. CON-E is true because no

relevant changes are made. CON-F is true by Claim 16.

v) ir is ChangeRoot(f).

213

2. p = minnode(f), by assumption.
3. awake = true, by Claim 1 and CON-A.
4. minlink(f) =f nil, by Claim 1 and CON-C.
5. rootchanged(f) = false, by Claim 1 and CON-C.
6. minlink(f) is an external link of f, by Claim 4 and COM-A.

By Claims 3, 4 and 5, ChangeRoot(f) is enabled in S 6 (s').

Claims about s:

7. A CONNECT message is in cqueue(minlink(f)), by code.

8. minlink(f) is an external link of f, by Claim 6.
9. rootchanged(f) = true, by Claims 7 and 8.

By Claim 9, the effects of ChangeRoot(f) are mirrored in S 6 (s).

So S6(s') ChangeRoot(f) S 6 (s) is an execution fragment of COM.

Chapter 5: Minimum Spanning Tree

(3b) A6 (s', r) = -.

Claims about s':

1. awake = true, by precondition.
2. rootchanged(f) = false, by precondition.
3. subtree(f) = {p}, by precondition.
4. minlink(f) # nil, by Claim 3 and COM-E.
5. minlink(f) is an external link of f, by Claim 4 and COM-A.

Claims 1, 2 and 4 imply that 7r is enabled in S6 (s').

Claims about s:

6. minlink(f) is an external link of f, by Claim 5.
7. A CONNECT message is in cqueue(minlink(f)), by code.

8. rootchanged(f) = true, by Claims 6 and 7.

Claim 8 implies that the effects of r are mirrored in S6 (s).

So S 6 (s')irS6 (s) is an execution fragment of COM.

(3a) More claims about s':

9. No CHANGEROOT message is in cqueue((q,p)), for any q, by Claim 3 and CON-C.
10. No CONNECT message is in any cqueue(k), where k is an external link of f, by
Claim 2.

11. No CONNECT message is in any cqueue(k), where k is an internal link of f, by
Claim 3.
More claims about s:

12. awake = true, by Claim 1 and code.
13. No CHANGEROOT message is in cqueue((q,p)), for any q, by Claim 9.

14. No CONNECT message is in any cqueue(n), where n is an internal link of f, by
Claim 11.

CON-A is true by Claim 12. CON-B is true by Claim 8. CON-C is true by
Claim 13. CON-D is true by Claims 6, 7 and 10 and code. CON-E is true because

no relevant changes are made. CON-F is true, by Claims 6 and 14.

vi) 7r is Merge(fg).

214

Section 4.2.6: CON Simulates COM

(3b) A 6 (s', r) = 7r.

Claims about s':

1. A CONNECT(l) message is in cqueue((p, q)), by precondition.
2. (p, q) is an external link of f, by precondition.
3. A CONNECT(l) message is in cqueue((q,p)), by precondition.

4. (q, p) is an external link of g, by precondition.

5. f # g, by Claims 2 and 4.
6. rootchanged(f) = true, by Claims 1 and 2.
7. rootchanged(g) = true, by Claims 3 and 4.
8. (p, q) = minlink(f), by Claims 1 and 2 and CON-D.
9. (q, p) = minlink(g), by Claims 3 and 4 and CON-D.
10. minedge(f) = minedge(g), by Claims 8 and 9.
11. If k # minlink(f) is an external link of f, then no CONNECT message is in
cqueue(k), by CON-D.
12. If k # minlink(g) is an external link of g, then no CONNECT message is in
cqueue(k), by CON-D.

By Claims 5, 6, 7 and 10, 7r is enabled in S6 (s'). By Claims 11 and 12 and
definition of h, rootchanged(h) = false in s, so the effects of r are mirrored in S6 (s).
Thus, S 6 (s')irS6 (s) is an execution fragment of COM.

(3a) More claims about s':

13. awake = true, by Claim 1 and COM-A.
14. No CHANGEROOT message is in subtree(f), by Claim 6 and CON-C.

15. No CHANGEROOT message is in subtree(g), by Claim 7 and CON-C.
16. No CONNECT message is in cqueue(k), for any internal link k of f, by Claim 8
and CON-F.
17. No CONNECT message is in cqueue(k), for any internal link k of g, by Claim 9
and CON-F.
18. Exactly one CONNECT message is in cqueue((p, q)), by Claims 1 and 2 and

CON-D.
19. Exactly one CONNECT message is in cqueue((q,p)), by Claims 3 and 4 and

CON-D.
20. 1 = level(f), by Claims 1 and 2 and CON-D.

Claims about s:

215

Chapter 5: Minimum Spanning Tree

21. awake = true, by Claim 13 and code.

22. minlink(h) = nil, by code.
23. No CHANGEROOT message is in subtree(h), by Claims 14 and 15 and code.

24. No CONNECT message is in cqueue(k), for any external link k of h, by Claims
11 and 12 and code.

25. Exactly one CONNECT message is in cqueue((p, q)) and (p, q) = core(h), by

Claim 18 and code.

26. 1 < level(h), by Claim 20 and code.

27. No CONNECT message is in cqueue((q,p)), by Claim 19 and code.
28. No CONNECT message is in any non-core internal link of h, by Claims 16 and

17 and code.

CON-A is true by Claim 21. CON-B is true by Claim 22. CON-C is true by
Claim 23. CON-D is true by Claim 24. CON-E is true by Claims 25, 26, 27 and

28. CON-F is true by Claim 22.

vii) ir is AfterMerge(p,q). A6(s',7r) is empty. Obviously, S6 (s) = S 6(s'),
and PCON is true in s.

viii) 7r is Absorb(fg).

(3b) A 6 (s', 7r) = 7r.

Claims about s':

1. (q,p) = minlink(g), by assumption.

2. A CONNECT(l) message is in cqueue(minlink(g)), by precondition.

3. 1 < level(f), by precondition.

4. f = fragment(p), by precondition.

5. minlink(g) is an external link of g, by Claim 1 and COM-A.

6. rootchanged(g) = true, by Claims 2 and 5.

7. 1 = level(g), by Claim 2 and CON-D.
8. level(g) < level(f), by Claims 7 and 3.
9. If a CONNECT message is in cqueue((p, q)), then (p, q) = minlink(f), by Claims

4 and 5 and CON-D.
10. If a CONNECT message is in cqueue((p, q)), then level(f) _< level(g), by Claim 9

and COM-A.
11. No CONNECT message is in cqueue((p,q)), by Claims 8 and 10.

12. No CONNECT message is in cqueue(k), for any external link k # minlink(g) of

g, by CON-D.

216

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 217

By Claims 6, 8, 4 and 1, 7r is enabled in S6 (s'). By Claims 11 and 12,
rootchanged(f) remains unchanged, and the effects of 7r are mirrored in S(s). Thus,
S 6 (s')rS6 (s) is an execution fragment of COM.

(3a) More claims about s':

13. awake = true, by Claim 2 and CON-A.
14. 1 > 0, by COM-F.
15. level(f) > 0, by Claims 7, 8 and 14.
16. Inodes(f)I > 1, by Claim 15 and COM-F.
17. No CHANGEROOT message is in subtree(g), by Claim 6 and CON-C.

18. No CONNECT message is in cqueue(k), where k is an internal link of g, by Claim
1 and CON-F.

Claim about s:

19. awake = true, by Claim 12 and code.

CON-A is true by Claim 19. CON-B is true since by Claims 16 and 17 no
relevant changes are made. CON-C is true since by Claim 11, 12 and 17 no relevant
changes are made. CON-D is true since by Claim 12 no relevant changes are made.
CON-E is true since by Claims 11 and 18 no relevant changes are made. CON-F is
true by Claim 18 and code.

Let P ON =(COM o S 6) A PCON-

Corollary 24: PCON is true in every reachable state of CON.

Proof: By Lemmas 1 and 23. 5

4.2.7 GHS Simultaneously Simulates TAR, DC, NOT and CON

This automaton is a fully distributed version of the original algorithm of [GHS].
(We have made some slight changes, which are discussed below.) The functions of

TAR, DC, NOT and CON are united into one. All variables that are derived in

one of these automata are also derived (in the same way) in GHS. In addition,
there are the following derived variables. The variable destatus(p) of DC is refined

by the variable nstatus(p), and has values sleeping, find, and found; initially, it is

sleeping. The awake variable is now derived, and is true if and only if at least one

218 Chapter 5: Minimum Spanning Tree

node is not sleeping. The fragments are also derived, as follows. A subgraph of G is
defined to have node set V(G) and edge set equal to all edges of G, at least one of
whose links is classified as branch and has no CONNECT message in it. A fragment is
associated with each connected component of this graph. Also, testset(f) is defined
to be all nodes p such that either testlink(p) :# nil, or a FIND message is headed
toward p (or will be soon).

The bulk of the arguing done at this stage is showing that the derived variables

(subtree, level, core, minlink, testset, rootchanged) have the proper values in the
state mappings. In addition, a substantial argument is needed to show that the
implementation of level and core by local variables interacts correctly with the
test-accept-reject protocol. (See in particular the definition of the TAR action
mapping for Receive Test, and the case for Receive Test in Lemma 25.) It would be
ideal to do this argument in NOT, where the rest of the argument that core and
level are implemented correctly is done, but reorganizing the lattice to allow this
consolidation caused graver violations of modularity.

The messages sent in this automaton are all those sent in TAR, DC, NOT
and CON, except that NOTIFY messages are replaced by INITIATE messages, which
have a parameter that is either find or found, and FIND messages are replaced by
INITIATE messages with the parameter equal to find.

Some minor changes were made to the algorithm as presented in [GHS]. First,
our version initializes all variables to convenient values. (This change makes it
easier to state the predicates.) Second, provision is made for the output actions
InTree(l) and NotInTree(l). Third, when node p receives an INITIATE message,
variables inbranch(p), bestlink(p) and bestwt(p) are only changed if the parameter
of the INITIATE message is find. This change does not affect the performance or
correctness of the algorithm. The values of these variables will not be relevant until
p subsequently receives an INITIATE-find message, yet the receipt of this message
will cause these variables to be reset. The advantage of the change is that it greatly
simplifies the state mapping from GHS to DC.

Our version of the algorithm is slightly more general than that in [GHS]. There,
each node p has a single queue for incoming messages, whereas in our description,
p has a separate queue of incoming messages for each of its neighbors. A node p
in our algorithm could happen to process messages in the order, taken over all the
neighbors, in which they arrive (modulo the requeueing), which would be consistent
with the original algorithm. But p could also handle the messages in some other

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 219

order (although, of course, still in order for each individual link). Thus, the set of
executions of our version is a proper superset of the set of executions of the original.

A small optimization to the original algorithm was also found. (It does not
affect the worst-case performance.) When a CONNECT message is received by p
under circumstances that cause fragment g to be absorbed into fragment f, an
INITIATE message with parameter find is only sent if testlink(p) / nil in our version,
instead of whenever nstatus(p) = find as in the original. As a result of this change,
if nstatus(p) = find and testlink(p) = nil, p need not wait for the entire (former)
fragment g to find its new minimum-weight external link before p can report to
its parent, since this link can only have a larger weight than the minimum-weight
external link of p already found.

The automaton GHS is the result of composing an automaton Node(p), for all

p E V(G), and Link(l), for all I E L(G), and then hiding actions appropriately to
fit the MST(G) problem specification.

First we describe the automaton Node(p), for p E V(G). The state has the
following components:

" nstatus(p), either sleeping, find, or found;

" nfrag(p), an edge of G or nil;

e nlevel(Q), a nonnegative integer;

" bestlink(p), a link of G or nil;

* bestwt(p), a weight or oo;

" testlink(p), a link of G or nil;

" inbranch(p), a link of G or nil; and

" findcount(p), a nonnegative integer.

For each link (p, q) E L,(G), there are the following variables:

* lstatus((p, q)), either unknown, branch or rejected;

* queuep((p, q)), a FIFO queue of messages from p to q waiting at p to be sent;

Chapter 5: Minimum Spanning Tree

* queuep((q,p)), a FIFO queue of messages from q to p waiting at p to be pro-
cessed; and

* answered((p, q)), a Boolean.

The set of possible messages M is {CONNECT(l) : I > 0} U {INITIATE(l, c, st) :
I > 0, c E E(G), st is find or found} U {TEST(l, c) : I > 0, c E E(G)} U {REPORT(w) :
w is a weight or oo} U {ACCEPT, REJECT, CHANGEROOT}.

In the start state of Node(p), nstatus(p) = sleeping, nfrag(p) = nil, nlevel(p) =

0, bestlink(p) is arbitrary, bestwt(p) is arbitrary, testlink(p) = nil, inbranch(p) is
arbitrary, findcount(p) = 0, lstatus(l) = unknown for all I E L,(G), answered(l) =

false for all I E L,(G), and both queues are empty.

Now we describe the actions of Node(p).

Input actions:

* Start(p)

Effects:
if nstatus(p) = sleeping then execute procedure Wake Up(p)

* ChannelRecv(l), 1 E L,(G), m E M
Effects:

enqueue(m, queue,(l))

Output actions:

* InTree(l), 1 E L,(G)
Preconditions:

answered(l) = false

lstatwu(l) = branch

Effects:
answered(l) := true

* NotInTree(l), 1 E L,(G)
Preconditions:

answered(l) = false

lstatus(l) = rejected

Effects:

answered(l) := true

220

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 221

* ChannelSend(l, m), I E L,(G), m E M
Preconditions:

m at head of queue,(l)

Effects:

dequeue(queue,(l))

Internal actions:

" ReceiveConnect((q, p), 1), (p, q) E L,(G)

Preconditions:

CONNECT(l) at head of queuep((q,p))

Effects:

dequeue(queue,((q, p)))

if nstatus(p) = sleeping then execute procedure Wake Up(p)

if I < nlevel(p) then [

lstatus((p,q)) := branch

if testlink(p) # nil, then
enqueue(INITIATE(nlevel(p), nfrag(p),find), queuep((p, q)))

findcount(p) := findcount(p) + 1]

else enqueue(INITIATE(nlevel(p), nfrag(p),found), queuep((p, q)))

else

if lstatus((p, q)) = unknown then enqueue(CONNECT(), queuep((q, p)))

else enqueue(INITIATE(nlevel(p) + 1, (p, q), find), queue,((p, q)))

" ReceiveInitiate((q, p), l, c, st), (p, q) E L,(G)

Preconditions:

INITIATE(l, c, st) at head of queuep((q, p))

Effects:

dequeue(queue,((q, p)))

nlevel(p) := I

nfrag(p) := c

nstatus(p) := st

- let S = {(p, r) : lstatus((p, r)) = branch, r # q} -

enqueue(INITIATE(l, c, st), queue,(k)) for all k E S

if st = find then [

inbranch(p) := (p, q)

bestlink(p) := nil

bestwt(p) := oo

execute procedure Test(p)

Chapter 5: Minimum Spanning Tree

findcount(p) := IS|]

@ ReceiveTest((q,p),l,c), (p,q) E L,(G)
Preconditions:

TEST(l, c) at head of queuep((q, p))
Effects:

dequeue(queue,((q, p)))
if nstatus(p) = sleeping then execute procedure Wake Up(p)
if 1 > nlevel(p) then enqueue(TEST(l, c), queuep((q, p)))
else

if c # nfrag(p) then enqueue(ACCEPT, queuep((p, q)))
else

if lstatus((p, q)) = unknown then lstatus((p, q)) := rejected
if testlink(p) # (p, q) then enqueue(REJECT, queue,((p, q)))
else execute procedure Test(p)]

e ReceiveAccept((q, p)), (p,q) E L,(G)
Preconditions:

ACCEPT at head of queuep((q,p))
Effects:

dequeue(queue,((q, p)))
testlink(p) := nil

if wt(p, q) < bestwt(p) then
bestlink(p) := (p, q)
bestwt(p) := wt(p, q)

execute procedure Report(p)

* ReceiveReject((q, p)), (p,q) E L,(G)
Preconditions:

REJECT at head of queuep((q, p))
Effects:

dequeue(queue,((q, p)))
if Istatus((p, q)) = unknown then lstatus((p, q)) := rejected

execute procedure Test(p)

* ReceiveReport((q, p),w), (p,q) E L,(G)
Preconditions:

REPORT(w) at head of queuep((q,p))
Effects:

dequeue(queue,((q, p)))

222

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 223

if (p, q) :# inbranch(p) then [
findcount(p) := findcount(p) - 1
if w < bestwt(p) then

bestwt(p):= w
bestlink(p) := (p, q)

execute procedure Report(p)
else

if nstatus(p) = find then enqueue(REPORT(W), queue,((q,p)))

else if w > bestwt(p) then execute procedure ChangeRoot(p)

e Receive ChangeRoot((q, p)), (p, q) E L,(G)
Preconditions:

CHANGEROOT at head of queuep((q,p))

Effects:

dequeue(queue,((q, p)))
execute procedure ChangeRoot(p)

Procedures

* Wake Up(p)
- let (p, q) be the minimum-weight link of p -

lstatus((p, q)) := branch
nstatus(p) := found
enqueue(CONNECT(O), queuep((p, q)))

* Test(p)

if 1, the minimum-weight link of p with lstatus(l) = unknown, exists then[
testlink(p) := I
enqueue(TEST(nlevel(p), nfrag(p)), queuep(l))]

else [
testlink(p) := nil
execute procedure Report(p)]

" Report(p)
if findcount(p) = 0 and testlink(p) = nil then

nstatus(p) := found

enqueue(REPoRT(bestwt(p)), queuep (inbranch(p)))

" ChangeRoot(p)

if lstatus(bestlink(p)) = branch then

Chapter 5: Minimum Spanning Tree

enqueue(CHANGEROOT, queuep(bestlink(p)))

else [
enqueue(CONNECT(nlevel(p)), queuep(bestlink(p)))

lstatus(bestlink(p)) := branch]

Now we describe the automaton Link((p, q)), for each (p, q) E L(G).

The state consists of the single variable queuepq((p, q)), a FIFO queue of mes-

sages. The set of messages, M, is the same as for Node(p). The queue is empty in

the start state.

Input Actions:

* ChannelSend((p, q), m), m E M

Effects:

enqueue(m, queuepq((P, q)))

Output Actions:

e ChannelReev((p,q), m), m E M

Preconditions:

m at head of queuepq((p, q))

Effects:

dequeue(queuepq((p, q)))

Now we can define the automaton that models the entire network. Define

the automaton GHS to be the result of composing the automata Node(p), for all

p E V(G), and Link(l), for all I E L(G), and then hiding all actions except for

Start(p), p E V(G), InTree(l) and NotInTree(l), I E L(G).

Given a FIFO queue q and a set M, define qM to be the FIFO queue obtained

from q by deleting all elements of q that are not in M.

Derived Variables:

e queue((p,q)) is queuep((p,q)) || queuepq((p,q)) || queueq((p,q)).

* tarqueuep((p, q)) is queuep((p, q))|MTAR, where MTAR is the set of all possible

messages in TAR; similarly for tarqueuep((p, q)) and tarqueueq((p, q)). Similar

224

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 225

definitions are made for the dcqueue's, nqueue's, and cqueue's, except that for

the dcqueue's, each INITIATE(l, c,find) message is replaced with a FIND mes-
sage, and for the nqueue's, each INITIATE(l, C, *) message is replaced with a

NOTIFY(l, c) message.

" awake is false if and only if nstatus(p) = sleeping for all p E V(G).

* For all p E V(G), dcstatus(p) = unfind if nstatus(p) = sleeping or found, and

dcstatus(p) = find if nstatus(p) = find.

* MSF is the subgraph of G whose nodes are V(G), and whose edges are all

edges (p, q) of G such that either (1) lstatus((p, q)) = branch and no CONNECT

message is in queue((p,q)), or (2) lstatus((q,p)) = branch and no CONNECT

message is in queue((p, q)).

* fragments is a set of elements, called fragments, one for each connected com-

ponent of MSF.

Each fragment f has the following components:

" subtree(f), the corresponding connected component of MSF;

e level(f), defined as in NOT;

" core(f), defined as in NOT;

* testset(f), the set of all p E nodes(f) such that one of the following is true: (1)
a FIND message is headed toward p, (2) testlink(p) :4 nil, or (3) a CONNECT

message is in queue((q, r)), where (q, r) = core(f) and p E subtree(q);

* minlink(f), defined as in DC;

" rootchanged(f), defined as in CON; and

e accmin(f), defined as in TAR and DC.

Define the following predicates on states(GHS). (All free variables are univer-

sally quantified.)

e GHS-A: If nstatus(p) = sleeping, then

(a) there is a fragment f such that subtree(f) = {p},

(b) queue((p, q)) is empty for all q, and

(c) lstatus((p, q)) = unknown for all q.

226 Chapter 5: Minimum Spanning Tree

* GHS-B: If CONNECT(l) is in queue((q,p)), lstatus((p, q)) # unknown, and no
CONNECT is in queue((p, q)), then

(a) the state of queue((q,p)) is CONNECT(l) followed by INITIATE(l + 1, (p, q),
find);

(b) queue((p, q)) is empty;

(c) nstatus(q) # find; and
(d) nlevel(p) = nlevel(q) = 1.

* GHS-C: If a CONNECT message is in queue(l), then no FIND message precedes
the CONNECT in queue(l), and no TEST or REJECT message is in queue(l).

e GHS-D: If INITIATE(l, c,find) is in subtree(f), then I = level(f).

* GHS-E: If INITIATE(l, c, st) is in queue((p, q)) and (p, q) = core(fragment(p)),
then st = find.

* GHS-F: If TEST(l, c) is in queue((q,p)), then nlevel(q) > 1.

* GHS-G: If ACCEPT is in queue((q,p)), then nlevel(p) 5 nlevel(q).

* GHS-H: If testlink(p) # nil, then nstatus(p) = find.

e GHS-I: If p is up-to-date, then nlevel(p) = level(fragment(p)).

e GHS-J: If p is up-to-date, p V testset(fragment(p)), and (p, q) is the minimum-
weight external link of p, then nlevel(p) nlevelq).

* GHS-K: If subtree(f) = {p} and nstatus(p) # sleeping, then rootchanged(f) =

true.

Let PGHS be the conjunction of GHS-A through GHS-K.

We now define M = (S., A,), an abstraction mapping from GHS to x, for
x = TAR, DC, NOT and CON. Sx should be obvious for all x, given the above
derived functions. We now define Ax(s, 7r) for all x, states s of GHS, and actions
7r of GHS enabled in s.

e 7r = InTree(l) or NotInTree(l). Ar(s,7r) = 1r for all x.

* 7r = Start(p). Let f = fragment(p).

Case 1: nstatus(p) = sleeping in s. For all x, Ax(s, ir) = Start(p) t,

ChangeRoot(f), where tx is the same as Sx(s) except that awake = true in tx.

Section 4.2.7. GHS Simultaneously Simulates TAR, DC, NOT, CON 227

Case 2: nstatus(p) # sleeping in s. A,(s,ir) = r for all x.

* 7r = ChannelRecv(k, m). For all x, Ax(s, r) is empty, with the following ex-
ceptions: If M = CONNECT(l) or CHANGEROOT, then ACON(S, -r) = 7r. If

M = INITIATE(l, c, st), then ANOT(s, 7r) = ChannelRecv(k, NOTIFY(l, c)), and

if st = find, then ADC(s, 7r) = ChannelRecv(k, FIND). If M = TEST, ACCEPT

or REJECT, then ATAR(S, r) = 7. If M = REPORT(w), then ADC(S, 7r) = r.

* 7r = ChannelSend(k, m). Analogous to ChannelRecv(k, m).

* 7r = Receive Connect((q,p), I). Let f = fragment(p) and g = fragment(q).
(Later we will show that the following four cases are exhaustive.)

Case 1: nstatus(p) = sleeping in s. If (p, q) is not the minimum-weight ex-
ternal link of p in s, then A,(s, r) = ChangeRoot(f) for all x. If (p,q) is the

minimum-weight external link of p in s, then, for all x, Ax(s, 7r) = ChangeRoot(f)
tx Merge(f, g), where t, is the state of x resulting from applying ChangeRoot(f) to
S'(s).

Case 2: nstatus(p) # sleeping, I = nlevel(p), and no CONNECT message is in

queue((p, q)) in s. If lstatus((p, q)) = unknown in s, then A.(s, r) is empty for all
x. If lstatus((p, q)) 5 unknown in s, then ATAR(S, 7) is empty, and A,(s,7r) =

AfterMerge(p, q) for all other x.

Case 3: nstatus(p) # sleeping, 1 = nlevel(p), and a CONNECT message is in

queue((p, q)) in s. Ax(s, r) = Merge(f, g) for all x.

Case 4: nstatus(p) # sleeping, and I < nlevel(p) in s. A,(s, r) = Absorb(f,g)

for all x.

* 7r = ReceiveInitiate((q, p), 1, c, st).

ATAR(s, 7r) = SendTest(p) if st = find, and is empty otherwise.

If st : find, then ADC(S, 7r) is empty; if st = find and there is a link (p, r)

such that lstatus((p, r)) = unknown in s, then ADC(S, 7) = ReceiveFind((q, p)); if

st = find and there is no link (p, r) such that lstatus((p, r)) = unknown in s, then

ADC(S, 7r) = ReceiveFind((q, p)) t TestNode(p), where t is the state of DC resulting

from applying ReceiveFind((q,p)) to SDC(s).

ANOT(S, 7r) = ReceiveNotify((q, p), 1, c).

Chapter 5: Minimum Spanning Tree

ACON(s,7r) is empty.

0 7r = Receive Test((q, p), 1, c). Let f = fragment(p).

Case 1: nstatus(p) = sleeping in s.

ATAR(S, 7r) = ChangeRoot(f) t ir, where t is the same as STAR(S) except that

rootchanged(f) = true and lstatus(minlink(f)) = branch in t.

A,(s, 7r) = ChangeRoot(f) for all other x.

Case 2: nstatus(p) : sleeping in s.

ATAR(S, 7r) = 7r if I < nlevel(p) or nlevel(p) = level(f) in s, and is empty

otherwise.

ADC(S, 7r) = TestNode(p) if I < nlevel(p), c = nfrag(p), testlink(p) = (p,q),
and lstatus((p, r)) # unknown for all r # q, in s, and is empty otherwise.

A,(s, 7r) is empty for all other x.

* 7r = ReceiveAccept((q, p)).

ATAR(s, 7r) =7

ADc(s, 7r) = TestNode(p).

Ax(s, 7r) is empty for all other x.

* 7r = ReceiveReject((q,p)).

ATAR(S,1r) = 7r.

ADC(s, 7r) = TestNode(p) if there is no r # q such that lstatus((p, r)) = un-

known in s, and is empty otherwise.

Az(s, 7r) is empty for all other x.

* ir = ReceiveReport((q, p), w). Let f = fragment(p).

Case 1: (p,q) = core(f), nstatus(p) # find, w > bestwt(p), and Istatus

(bestlink(p)) = branch in s.

ADC(S, 7r) = 7r.

228

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 229

A.(s, r) = ComputeMin(f) for all other x.

Case 2: (p,q) = core(f), nstatus(p) # find, w > bestwt(p), and istatus
(bestlink(p)) # branch in s.

ADC(S, 7r) = 7r tDC ChangeRoot(f), where tDC is the state of DC resulting
from applying 7r to SDC(s).

ACO N(s, 7r) = ComputeMin(f).

A.(s,7r) = ComputeMin(f) tx ChangeRoot(f) for all other x, where tx is the
state of x resulting from applying ComputeMin(f) to Sx(s).

Case 3: (p,q) # core(f) or nstatus(p) = find or w < bestwt(p) in s.

ADC(s,7r) = 1r.

A,(s, 7r) is empty for all other x.

* ir = Receive ChangeRoot((q, p)). Let f = fragment(p).

AcON(s,7r) = r.

For all other x, A,(s, 7r) = ChangeRoot(f) if lstatus(bestlink(p)) # branch in

s, and is empty otherwise.

For the rest of this chapter, let I be the set of names {TAR, DC, NOT, CON}.
The following predicates are true in any state of GHS satisfying AzEr(P' o Sx) A

PGHS. I.e., they are derivable from PGHS, together with the TAR, DC, NOT, CON,
GC, COM and HI predicates.

* GHS-L: If AfterMerge(p, q) is enabled for DC or NOT, then a CONNECT mes-

sage is at the head of queue((q,p)).

Proof: First we show the predicate for DC. Let f = fragment(p).

1. (p, q) = core(f), by precondition.

2. FIND is in dcqueue((q,p)), by precondition.

3. No FIND is in dcqueue((p, q)), by precondition.

4. dcstatus(q) = unfind, by precondition.

5. No REPORT is in dcqueue((q,p)), by precondition.

6. q E testset(f), by Claims 1 through 5 and DC-G.

7. testlink(p) = nil, by Claim 4 and GHS-H.

Chapter 5: Minimum Spanning Tree

8. A CONNECT is in queue((q,p)), by Claims 1, 3, 6 and 7.

9. (p, q) E subtree(f), by Claim 1 and COM-F.
10. No INITIATE(*,*,found) is in queue((q, p)), by Claim 1 and GHS-E.

11. No CHANGEROOT is in queue((q,p)), by Claim 1.

12. No ACCEPT is in queue((q,p)), by Claim 9 and TAR-F.

13. CONNECT precedes any FIND, TEST, or REJECT in queue((q,p)), by Claim GHS-

C.

Claims 5, 8, 10, 11, 12 and 13 give the result.

For NOT, we show that if AfterMerge(p, q) for NOT is enabled, then After-

Merge(p, q) for DC is enabled.

1. (p, q) = core(f), by precondition.

2. NOTIFY(nlevel(p) + 1, (p, q)) is in nqueue((q, p)), by precondition.

3. No NOTIFY(nlevel(p) + 1, (p, q)) is in nqueue((p, q)), by precondition.

4. nlevel(q) # nlevel(p) + 1, by precondition.

5. INITIATE(nlevel(p) + 1, (p, q),find) is in queue((q, p)), by Claims 1 and 2 and

GHS-E.
6. nlevel(p) + 1 = level(f), by Claim 5 and GHS-D.
7. No INITIATE(*,*,find) is in queue((p, q)), by Claims 3 and 6 and GHS-D.

8. q is not up-to-date, by Claims 4 and 6 and GHS-I.

9. dcstatus(q) # find, by Claim 8 and DC-I(a).

10. No REPORT is in queue((q,p)), by Claims 1 and 8 and DC-C(a).

By Claims 1, 5, 7, 9 and 10, AfterMerge(p, q) for DC is enabled. O

* GHS-M: If testlink(p) # nil or findcount(p) > 0, then no FIND message is

headed toward p, and no CONNECT message is in queue((q, r)), where (q, r) =

core(fragment(p)) and p E subtree(q).

Proof:

1. testlink(p) # nil or findcount(p) > 0, by assumption.

2. nstatus(p) = find, by Claim 1 and either GHS-H or DC-H(b).
3. destatus(t) = find for all t between q and p inclusive, by Claim 2 and DC-H(a).

4. No FIND message is headed toward p, by Claim 4 and DC-D(b).

5. No CONNECT is in queue((q, r)), or lstatus((r, q)) = unknown, or CONNECT is in

queue((r, q)), by Claim 3 and GHS-B(c).
6. (q, r) E subtree(fragment(p)), by COM-F.

7. lstatus((r, q)) # unknown, by Claim 6 and TAR-A(b).

230

Section 4.2.7. GHS Simultaneously Simulates TAR, DC, NOT, CON 231

8. If CONNECT is in queue((r, q)) then no CONNECT is in queue((q, r)), by Claim 6.
9. If no CONNECT is in queue((r, q)) then no CONNECT is in queue((q, r)), by Claims
5 and 7.

Claims 4, 8 and 9 give the result.

Lemma 25: GHS simultaneously simulates the set of automata {TAR, DC, NOT,
CON} via {M, : x E I}, PGHS, and {P : x 6 I}.

Proof: By inspection, the types are correct. By Corollaries 18, 20, 22 and 24, P'
is a predicate true in every reachable state of x, for all x.

(1) Let s be in start(GHS). Obviously PGHS is true in s and Sz(s) is in

start(x) for all x.

(2) Obviously, A,(s,7r)|ext(x) = 7rlext(GHS) for all x.

(3) Let (s', 7r, s) be a step of GHS such that AEI P'(Sx(s')) and PGHS(s')
are true. By Corollaries 18, 20, 22 and 24, we can assume the HI, COM, GC, TAR,

DC, NOT and CON predicates are true in s', as well as the GHS predicates. Below,
we show (3a), that PGHS is true in s (only for those predicates whose truth in s is

not obvious), and either (3b) or (3c), as appropriate, that the step simulations for

TAR, DC, NOT, and CON are correct.

i) 7r is InTree((p,q)). Let f = fragment(p) in s'.

(3a) Obviously, PGHS is true in s.

(3b)/(3c) A.(s', 7r) = 7r for all x.

Claims about s':

1. answered((p, q)) = false, by precondition.

2. lstatus((p, q)) = branch, by precondition.

3. nstatus(p) # sleeping, by Claim 2 and GHS-A(c).

4. awake = true, by Claim 3.

5. (p, q) E subtree(f) or (p, q) = minlink(f), by Claim 2 and TAR-A(a).

7r is enabled in S,(s') by Claims 1 and 2 for x = TAR, and by Claims 1, 4 and

5 for all other x. Obviously, its effects are mirrored in S.(s) for all x.

ii) 7r is NotInTree((p,q)). Let f = fragment(p) in s'.

232 Chapter 5: Minimum Spanning Tree

(3a) Obviously, PGHS is true in s.

(3b)/(3c) Ax(s, 7r) = ir for all x.

Claims about s':

1. answered((p, q)) = false, by precondition.

2. lstatus((p, q)) = rejected, by precondition.

3. nstatus(p) # sleeping, by Claim 2 and GHS-A(c).
4. awake = true, by Claim 3.
5. fragment(p) = fragment(q) and (p, q) # subtree(f), by Claim 2 and TAR-B.

7r is enabled in Sx(s') by Claims 1 and 2 for x = TAR, and by Claims 1, 4 and
5 for all other x. Obviously its effects are mirrored in Si(s) for all x.

iii) 7r is Start(p). Let f = fragment(p).

Case 1: nstatus(p) # sleeping in s'. A,(s', 7r) = 7r for all x. Obviously

Sx(s')irS,(s) is an execution fragment of x for all x, and PGHS is true in s.

Case 2: nstatus(p) = sleeping in s'.

(3b)/(3c) For all x, Ax(s', 7r) = r t. ChangeRoot(f), where tx is the same as

Sx(s') except that awake = true in tx. For all x, we must show that 7r is enabled

in Sx(s') (which is true because -r is an input action), that its effects are mirrored

in tx (which is true by definition of t,), that ChangeRoot(f) is enabled in tx, and

that its effects are mirrored in Si(s).

Let I be the minimum-weight external link of p. (It exists by GHS-A(a) and

the assumption that IV(G)| > 1.)

Claims about s':

1. nstatus(p) = sleeping, by assumption.

2. subtree(f) = {p}, by Claim 1 and GHS-A.
3. minlink(f) = 1, by Claim 2 and definition.
4. lstatus((p, q)) = unknown, for all q, by Claim 1 and GHS-A(c).

5. rootchanged(f) = false, by Claim 4 and TAR-H.

Claims about tz, for all x:

6. awake = true, by definition.

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 233

7. subtree(f) = {p}, by Claim 2.
8. rootchanged(f) = false, by Claim 5.
9. minlink(f) = 1, by Claim 3.

ChangeRoot(f) is enabled in tCON by Claims 6, 7 and 8. For all other x,
ChangeRoot(f) is enabled in t, by Claims 6, 8 and 9.

Claims about s:

10. CONNECT(0) is in queue(l), by code.

11. lstatus(l) = branch, by code.
12. rootchanged(f) = true, by Claims 10 and 11 and choice of 1.

For most of the other derived variables, it is obvious that they are the same in s'
and s. Although nstatus(p) changes, dcstatus(p) remains unchanged. Even though
status(l) changes to branch, MSF does not change, since a CONNECT message is

in queue(l).

For x = TAR, the effects of ChangeRoot(f) are mirrored in Si(s) by Claims
11 and 12. For x = CON, the effects of ChangeRoot(f) are mirrored in Si(s) by
Claim 10. For all other x, the effects of ChangeRoot(f) are mirrored in Si(s) by
Claim 12.

(3a) More Claims about s':

13. lstatus((q, p)) # rejected, for all q, by Claim 2 and TAR-B.
14. If lstatus((q,p)) = branch, then a CONNECT is in queue((q,p)), for all q, by

Claim 2.
15. testset(f) = 0, by Claim 3 and GC-C.
16. testlink(p) = nil, by Claim 15.
17. queue(l) is empty, by Claim 1 and GHS-A(b).

GHS-A is vacuously true since nstatus(p) = found in s.

GHS-B: vacuously true for CONNECT added to queue(l) by Claims 13 and 14;

vacuously true for any CONNECT already in queue(reverse(l)) by Claim 10; vacuously

true for any CONNECT already in queue((q,p)), for any q such that (p, q) # , by

Claim 4.

GHS-C is true by Claim 17 and code.

Chapter 5: Minimum Spanning Tree

GHS-H is vacuously true by Claim 16.

No change affects the others.

iv) 7r is ChannelRecv(k,m) or ChannelSend(k,m). Obviously PGHS(s)
is true, and the step simulations are correct.

v) .r is ReceiveConnect((q,p),1). Let f = fragment(p), and g = fragment(q)

in s'. We consider four cases. We now show that they are exhaustive, i.e., that

I > nlevel(p) is impossible. First, suppose (q, p) is an external link of g. By CON-

D, I = level(g) and (q,p) = minlink(g). By NOT-D, level(g) 5 nlevel(p). Second,
suppose (q,p) is an internal link of g = f. By CON-E, (p, q) = core(f), and

1 < level(f). But by NOT-C, nlevel(p) > level(f) - 1.

Case 1: nstatus(p) = sleeping. This case is divided into two subcases. First we

prove some claims true in both subcases. Let k be the minimum-weight external

link of p.

Claims about s':

1. CONNECT(l) is at head of queuep((q,p)), by precondition.

2. nstatus(p) = sleeping, by assumption.

3. subtree(f) = {p}, by Claim 2 and GHS-A.
4. rootchanged(f) = false, by Claim 2, GHS-A(c) and TAR-H.
5. minlink(f) = k, by Claim 3 and definition.

6. awake = true, by Claim 1 and CON-A.
7. No FIND is in queue((q,p)), by Claim 3 and DC-D(a).

8. f # g, by Claim 3.
9. (q, p) is an external link of g, by Claim 8.

10. minlink(g) = (qp), by Claims 1 and 9 and CON-D
11. level(g) level(f), by Claim 10 and COM-A.
12. 1 = level(g), by Claims 1 and 9 and CON-D.

13. level(f) = 0, by Claim 3 and COM-F.

14. 1 < 0, by Claims 11, 12 and 13.

15. 1 = 0, by Claim 14 and COM-F.

16. nlevel(p) = 0, by Claims 3 and 13.

Subcase 1 a: (p, q) # k. By Claim 2 and GHS-A(c), lstatus((p, q)) = unknown

in s', and the same is true in s. This fact, together with Claims 15 and 16, shows

that the only change is that the CONNECT(l) message is requeued.

234

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 235

(3a) PGHS can be shown to be true in s by an argument very similar to that
for ir = Stari(p), Case 2, since the only change is that the CONNECT(l) message is
requeued. Claim 7 verifies that GHS-C is true in s.

(3b)/(3c) For all x, A,(s', ir) = ChangeRoot(f). For x = CON, ChangeRoot(f)
is enabled in Sx(s') by Claims 6, 4 and 3; for all other x, it is enabled by Claims 6,
4 and 5.

Claims about s:

17. lstatus(k) = branch, by code.
18. CONNECT(O) is added to the end of queue(k), by code.

19. rootchanged(f) = true, by Claims 17 and 18 and choice of k.

For most of the other derived variables, it is obvious that they are the same in s'

and s. Although nstatus(p) changes, dcstatus(p) remains unchanged. Even though
lstatus(k) changes to branch, MSF does not change, since a CONNECT message is
in queue(k).

The effects of ChangeRoot(f) are mirrored in S,(s) by Claims 17 and 19 for
x = TAR, by Claim 18 for x = CON, and by Claim 19 for all other x.

Subcase 1b: (p,q) = k.

(3b)/(3c) For all x, A,(s', r) = ChangeRoot(f) t, Merge(f, g), where t, is the

result of applying ChangeRoot(f) to Sx(s'). ChangeRoot(f) is enabled in Sx(s') by
Claims 6, 4 and 3 for x = CON, and by Claims 6, 4 and 5 for all other x. Its effects

are obviously mirrored in t_,.

More claims about s':

20. k = (p, q), by assumption.
21. (p, q) is an external link of f, by Claim 8.

22. rootchanged(g) = true, by Claim 1 and Claim 9.

23. Only one CONNECT message is in queue((q, p)), by Claims 1 and 9 and CON-D.

24. lstatus((q, p)) = branch, by Claims 10 and 22 and TAR-H.

25. level(g) = 0, by Claims 12 and 15.

26. subtree(g) = {q}, by Claim 25 and COM-F.

27. nlevel(q) = 0, by Claims 25 and 26.

Chapter 5: Minimum Spanning Tree

28. No INITIATE message is in queue((p, q)) or queue((q,p)), by Claims 9 and 21
and NOT-H(e).
29. No CONNECT message is in queue((p, r)) for any r J q, by Claims 3 and 20 and
CON-D.
30. No CONNECT message is in queue((q, r)) for any r - p, by Claims 10 and 26
and CON-D.

Claims about t_,:

31. f A g, by Claim 8.
32. rootchanged(f) = true, by definition of t.,.

33. rootchanged(g) = true, by Claim 22.
34. minedge(f) = minedge(g) = (p, q), by Claims 5, 10 and 20.

35. If x = CON, then CONNECT(0) is in cqueue((p, q)), by definition of tx.

36. If x = CON, then CONNECT(0) is at the head of cqueue((q,p)), by Claims 1
and 15.

Merge(f, g) is enabled in t_ by Claims 34, 35 and 36 for x = CON, and by
Claims 31, 32, 33 and 34 for all other x.

As we shall shortly show, MSF has changed - the connected components
corresponding to f and g have combined. Let h be the fragment corresponding to
this new connected component.

Claims about s:

37. No CONNECT is in queue((q,p)), by Claim 23 and code.

38. lstatus((q, p)) = branch, by Claim 24 and code.
39. (p, q) E MSF, by Claims 37 and 38.
40. subtree(h) is nodes p and q and the edge between them, by Claims 3, 26 and 39.
41. INITIATE(1, (p, q),find) is in queue((p, q)), by code.

42. level(h) = 1, by Claims 16, 27, 28, 40 and 41.

43. core(h) = (p, q), by Claims 16, 27, 28, 40 and 41.

44. CONNECT(0) is in queue((p, q)), by code.

45. testset(h) = {p, q}, by Claims 41 and 44.

46. minlink(h) = nil, by Claim 45.
47. rootchanged(h) = false, by Claims 29, 30 and 40.

48. f and g are no longer in fragments, by Claims 3, 26, 40 and 43.

The effects of Merge(f,g) are mirrored in S,(s) by Claims 40, 42, 43, 45, 46,

47 and 48 for x = TAR; by Claims 40, 41, 42, 43, 45, 47 and 48 for x = DC; by

236

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 237

Claims 40, 41, 46, 47 and 48 for x = NOT; and by Claims 40, 42, 43, 46 and 48 for
x = CON.

(3a) GHS-A: vacuously true for p by code. By Claim 1 and GHS-A(c),
nstatus(q) # sleeping in s'; since the same is true in s, changing q's subtree does
not invalidate GHS-A(a).

GHS-B: Obviously, the only situation affected is the CONNECT added to

queue((p, q)).

(a) queue((p, q)) has the correct contents in s because of the code and the fact

that queue((p, q)) is empty in s' by Claim 2 and GHS-A(b).

(b) To show that queue((q, p)) is empty in s, we must show that it contains

only the CONNECT in s'. By Claim 1 and GHS-C, there is no TEST or REJECT

in queue((q,p)). By Claim 2 and GHS-H, testlink(p) = nil; thus, by TAR-D, no

ACCEPT is in queue((q, p)). By Claim 3, DC-A(g) and DC-B(a), there is no REPORT

in queue((q,p)). By Claim 3 and NOT-H(e), there is no NOTIFY in queue((q,p)).

By Claim 3 and CON-C, there is no CHANGEROOT in queue((q,p)). By Claim 1,
CON-D and CON-E, there is only one CONNECT in queue((q,p)).

(c) nstatus(p) # find in s by code.

(d) By Claims 16 and 27, nlevel(p) = nlevel(q) = 0.

GHS-C: No FIND is in queue((p, q)) in s' by Claim 3 and DC-D(a). No REJECT

is in queue((p, q)) in s' by Claim 3 and TAR-G. No TEST(l, c), for any I and c, is

in queue((p, q)) in s', because by Claims 25 and 13 and TAR-E(b) and TAR-E(c),
I = 0; yet by TAR-M, I > 1.

GHS-D: By Claim 42.

GHS-E: By code for the INITIATE added to queue((p, q)). By Claim 28, this is

the only relevant message affected.

GHS-H is true in s since nstatus(p) goes from sleeping to found, and testlink(p)

is unchanged.

GHS-I: By Claim 45, p and q are both in testset(h) in s. We now show that

nstatus(p) # find and nstatus(q) # find. Then by Claim 40, no node in subtree(h) is

Chapter 5: Minimum Spanning Tree

up-to-date, so the predicate is vacuously true (for h). By code, dcstatus(p) = found.
By Claim 10 and GC-C, testset(g) = 0 in s'; by Claim 26, no REPORT message is
in subtree(g) in s'. Thus, by DC-I(b), destatus(q) # find in s'.

GHS-J: vacuously true by Claims 40 and 45 for p and q. No relevant change
for any other node.

No change affects the rest.

Case 2: nstatus(p) # sleeping, I = nlevel(p), and no CONNECT message is in
queue((p, q)) in s'.

Subcase 2a: lstatus((p, q)) = unknown in s'. The only change in going from s'
to s is that the CONNECT message is requeued.

(3a) The only GHS predicates affected are GHS-B(a) and GHS-C. By TAR-
A(b), (p, q) # subtree(f). Thus, by DC-D(a), no FIND is in queue((q, p)) in s', and
the predicates are still true in s.

(3b)/(3c) Az(s',7r) is empty for all x. We now show that S.(s') = Si(s)
for all x, by showing that cqueue((q,p)) contains only the one CONNECT message
in s'. By TAR-A(b), (p, q) is not in MSF. Thus, by CON-C, no CHANGEROOT

is in cqueue((q,p)). By CON-D and CON-E, only one CONNECT message is in
cqueue((q, p)).

Subcase 2b: lstatus((p, q)) # unknown in s'.

(3b)/(3c) ATAR(s', r) is empty, and Ax(s', 7r) = AfterMerge(p, q) for all other
x.

Claims about s':

1. CONNECT is at head of queuep((q,p)), by precondition.
2. nstatus(p) # sleeping, by assumption.
3. nlevel(p) = 1, by assumption.

4. No CONNECT is in queue((p, q)), by assumption.
5. lstatus((p, q)) # unknown, by assumption.
6. If 1status((p, q)) = rejected, then fragment(p) = fragment(q), by TAR-B.

238

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 239

7. If lstatus((p, q)) = branch, then (p, q) E subtree(f), by Claim 4 and definition of

MSF.
8. (p, q) is an internal link of f, by Claims 5, 6 and 7.
9. (p, q) = core(f), by Claims 1 and 8 and CON-E.
10. INITIATE(nlevel(p) + 1, (p, q),find) is in queue((q, p)), by Claims 1, 3, 4 and 5
and GHS-B(a).
11. No INITIATE(nlevel(p) + 1, (p, q), *) is in queue((p, q)), by Claims 1, 3, 4 and 5
and GHS-B(b).
12. dcstatus(q) # find, by Claims 1, 4 and 5 and GHS-B(c).

13. No REPORT is in queue((q,p)), by Claims 1, 4 and 5 and GHS-B(a).

14. nlevel(q) = 1, by Claims 1, 4 and 5 and GHS-B(d).

AfterMerge(p, q) is enabled in S,(s') by Claims 9, 10, 11, 12 and 13 for x = DC;
by Claims 3, 9, 10, 11 and 14 for x = NOT; and by Claims 1 and 9 for x = CON.

Claims about s:

15. CONNECT(l) is dequeued from queuep((q,p)), by code.

16. FIND is in queue((p, q)), by code.

17. INITIATE(nlevel(p) + 1, (p, q),find) is in queue((p, q)), by code.

The only derived variables that are not obviously unchanged are testset(f),
level(f) and core(f). Claims 15 and 16 show that testset(f) is unchanged. Claims

10 and 17 show that level(f) and core(f) are unchanged.

The effects of AfterMerge(p, q) are mirrored in S,(s) by Claim 16 for x = DC;

by Claim 17 for x = NOT; and by Claim 15 for x = CON. It is easy to see that

STAR(S') = STAR(s)-

(3a) GHS-A: By Claim 2, adding a message to a queue of p does not invalidate

GHS-A(b).

GHS-B: By Claim 8 and CON-E, there is only one CONNECT message in

queue((q, p)) in s'. Since it is removed in s, the predicate is vacuously true for

a CONNECT in queue((q,p)). By Claim 4, the predicate is vacuously true for a

CONNECT in queue((p, q)).

GHS-C: By Claim 4, vacuously true for queue((p, q)).

Chapter 5: Minimum Spanning Tree

GHS-D: By Claim 10 and GHS-D, nlevel(p) +1 = level(f). This together with
Claim 9 gives the result.

GHS-E is true by code.

No change affects the rest.

Case 3: nstatus(p) # sleeping, I = nlevel(p), and a CONNECT message is in
queue((p, q)) in s'.

(3b)/(3c) A.(s', r) = Merge(f, g) for all x.

Claims about s':

1. CONNECT(l) is at head of queue((q,p)), by precondition.

2. 1 = nlevel(p), by assumption.
3. CONNECT(m) is in queue((p, q)), by assumption.

4. (p, q) is an external link of p, by Claims 1 and 3.
5. (q, p) is an external link of q, by Claims 1 and 3.
6. f # g, by Claim 4.
7. rootchanged(f) = true, by Claims 1 and 4.
8. rootchanged(g) = true, by Claims 3 and 5.
9. (q, p) = minlink(g), by Claims 1 and 5 and CON-D.
10. (p, q) = minlink(f), by Claims 3 and 4 and CON-D.
11. minedge(f) = minedge(g), by Claims 9 and 10.
12. m = level(f), by Claims 3 and 4 and CON-D.
13. nlevel(p) = level(f), by Claim 10 and NOT-D.
14. m = 1, by Claims 2, 12 and 13.

Merge(f, g) is enabled in SCON(s') by Claims 1, 3, 4, 5 and 14, and for all
other x by Claims 6, 7, 8 and 11.

15. Only one CONNECT message is in queue((q,p)), by Claim 1 and CON-D.
16. lstatus((q, p)) = branch, by Claims 8 and 9 and TAR-H.
17. lstatus((p, q)) = branch, by Claims 7 and 10 and TAR-H.
18. level(g) = 1, by Claims 1 and 5 and CON-D.
19. If INITIATE(l', c, *) is in subtree(f), then ' < 1, by Claims 12 and 14.
20. If INITIATE(l', c, *) is in subtree(g), then ' < 1, by Claim 18.
21. nlevel(r) 5 1 for all r E nodes(f), by Claims 12 and 14.

240

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 241

22. nlevel(r) < I for all r E nodes(g), by Claim 18.
23. No INITIATE message is in queue((q,p)) or queue((p, q)), by Claims 4 and 5 and
NOT-H(e).
24. No CONNECT is in queue((r,t)), where r E nodes(f), and (r,t) : (p,q), by
Claim 10 and CON-D and CON-F.
25. No CONNECT is in queue((r, t)), where r E nodes(g) and (r, t) # (q, p), by Claim
9 and CON-D and CON-F.
26. (p, q) # core(f), by Claim 4 and COM-F.
27. (p, q) # core(g), by Claim 5 and COM-F.

As we shall shortly show, MSF has changed - the connected components
corresponding to f and g have combined. Let h be the fragment corresponding to
this new connected component.

Claims about s:

28. No CONNECT is in queue((q,p)), by Claim 15 and code.
29. lstatus((q, p)) = branch, by Claim 16.
30. (p, q) E MSF, by Claims 28 and 29.
31. subtree(h) is the union of the old subtree(f) and subtree(g) and (p, q), by Claim
30.
32. INITIATE(l + 1, (p, q),find) is in queue((p, q)), by Claim 2 and 17 and code.

33. if INITIATE(l', c, *) is in subtree(h), then ' < I + 1, by Claims 19, 20, 23, 31 and

32.
34. nlevel(r) < I for all r E nodes(h), by Claims 21, 22 and 31.
35. level(h) = I + 1, by Claims 33 and 34.
36. core(h) = (p, q), by Claims 19, 20, 23, 31, 32, and 34.
37. CONNECT(l) is in queue((p, q)), by Claims 3 and 14

38. testset(h) = nodes(h), by Claims 31, 32 and 37.
39. minlink(h) = nil, by Claim 38.
40. rootchanged(h) = false, by Claims 24, 25 and 31.
41. f and g are no longer in fragments, by Claims 26, 27, 31 and 36.

The effects of Merge(f,g) are mirrored in Si(s) by Claims 31, 35, 36, 38, 39,
40 and 41 for TAR; by Claims 31, 35, 36, 38, 40 and 41 for DC; by Claims 31, 39,
40 and 41 for NOT; and by Claims 28, 31, 35, 36, 39, and 41 for CON.

(3a) GHS-A: Vacuously true for p by assumption. Vacuously true for q by
Claim 1 and GHS-A(b).

Chapter 5: Minimum Spanning Tree

GHS-B: Obviously, the only situation affected is the CONNECT in queue((p, q)).

(a) We must show that in s', queue((p, q)) consists only of a CONNECT(I) mes-

sage. (The code adds the appropriate INITIATE message.) By Claim 3 and GHS-
C, no TEST or REJECT is in queue((p,q)). By Claim 4, DC-A(g) and DC-B(a),
no REPORT is in queue((p, q)). By Claim 23, no NOTIFY is in queue((p, q)). By
Claim 4 and CON-C, no CHANGEROOT is in queue((p, q)). By Claims 3 and 14, a
CONNECT(l) message is in queue((p, q)), and by CON-E and CON-F, it is the only

CONNECT message in that queue.

(b) A very similar argument to that in (a) shows that in s', queue((q, p)) consists

only of a CONNECT(l) message. (Since it is removed in s, the queue is then empty.)

(c) If Inodes(f) > 1, then dcstatus(p) # find by Claim 10. Suppose
subtree(f) = {p}. Obviously, no REPORT message is headed toward p in s'. By

Claim 10 and GC-C, testset(f) = 0 in s'. Thus, by DC-I(b), dcstatus(p) # find in
s'. In both cases, nstatus(p) does not change in s.

(d) nlevel(p) = I in s' by assumption. nlevel(q) = I in s' by Claims 9 and 18

and NOT-D. These values are unchanged in s.

GHS-C: By the same argument as in GHS-B(a), adding the INITIATE message

is OK.

GHS-D: by Claim 35.

GHS-E: By code, for the INITIATE added. By Claim 23, there are no leftover

INITIATE messages affected by the change of core.

GHS-I: We show no r E nodes(h) in s is up-to-date. By Claim 38, r is in

testset(h). By the same argument as in GHS-B(c), dcstatus(r) # find.

GHS-J: Vacuously true by Claim 38.

No change affects the rest.

Case 4: nstatus(p) # sleeping, and I < nlevel(p) in s'.

(3b)/(3c) A,(s', wr) = Absorb(f, g) for all x.

Claims about s':

242

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 243

1. CONNECT(l) is at head of queue((q,p)), by precondition.
2. 1 < nlevel(p), by assumption.
3. lstatus((p, q)) = unknown, or a CONNECT is in queue((p, q)), by Claims 1 and 2

and GHS-B(d).
4. (q, p) is an external link of g, by Claims 1 and 3.
5. minlink(g) = (q,p), by Claims 1 and 4 and CON-D.
6. 1 = level(g), by Claims 1 and 4 and CON-D.
7. rootchanged(g) = true, by Claims 1 and 4.
8. nlevel(p) < level(f), by definition of level(f).

9. level(g) < level(f), by Claims 2, 6 and 8.
10. lstatus((q, p)) = branch, by Claims 5 and 7 and TAR-H.

11. If INITIATE(l', C, *) is in subtree(g), then ' < level(f), by Claims 6 and 9.

12. If INITIATE(l', C, *) is in subtree(f), then ' < level(f), by definition of level(f).

13. nlevel(r) < level(f), for all r E nodes(g), by Claims 6 and 9.
14. nlevel(r) < level(f), for all r E nodes(f), by definition of level(f).

15. No INITIATE message is in queue((q, p)) or queue((p, q)), by Claim 4 and NOT-

H(e).
16. No CONNECT message is in quee((r,t)), where r E nodes(g), (r,t) # (q,p), by

Claim 5 and CON-D and CON-F.
17. f # g, by Claim 4.

18. 1 > 0, by Claim 6 and COM-F.
19. level(f) > 0, by Claims 18 and 9.
20. core(f) # nil, by Claim 19 and COM-F.

21. core(f) E subtree(f), by Claim 20 and COM-F.

22. If subtree(g) = {q}, then core(g) = nil, by COM-F.

23. if subtree(g) # {q}, then core(g) E subtree(g), by COM-F.

24. Only one CONNECT message is in queue((q,p)), by Claims 1 and 4 and CON-D.

25. testset(g) = 0, by Claim 5 and GC-C.
26. testlink(r) = nil, for all r E nodes(g), by Claim 25.

27. If testlink(p) # nil, then p E tesiset(f), by definition.

28. If testlink(p) # nil, then nstatus(p) = find, by GHS-H.

29. If nstatus(p) = find, then no FIND message is headed toward p, by DC-D(b)

and DC-H(a).
30. lstatus((r, t)) # unknown, where (r, t) = core(f), by Claim 21 and TAR-A(b).

31. If CONNECT is in queue((r,t)), then no CONNECT is in queue((t,r)), where

(r, t) = core(f), by Claim 21.

32. If nstatus(p) = find and p E subtree(r), then nstatus(r) = find, for all r, by

DC-H(a).

Chapter 5: Minimum Spanning Tree

33. If nstatus(p) = find, then no CONNECT is in queue((r, t)), where (r, t) = core(f)

and p E subtree(r), by Claims 30, 31 and 32 and GHS-B(c).
34. If nstatus(p) = find and p E testset(f), then testlink(p) # nil, by Claims 29 and

33.

Absorb(f,g) is enabled in S,(s') by Claims 7, 9 and 5 for TAR and DC; by
Claims 7, 6 and 2, and 5 for NOT; and by Claims 1, 6 and 9, and 5 for CON.

As we shall shortly show, MSF has changed - the connected components

corresponding to f and g have combined. Let h be the fragment corresponding to

this new connected component. We shall show that h f, i.e., that the core of h

in s is non-nil, and is the same as the core of f in s'.

Claims about s:

35. No CONNECT message is in queue((q, p)), by Claim 24 and code.

36. lstatus((q,p)) = branch, by Claim 10.
37. (p, q) E MSF, by Claims 35 and 36.
38. subtree(h) is the union of the old subtree(f) and subtree(g) and (p, q), by Claim

37.
39. INITIATE(nlevel(p), nfrag(p), nstatus(p)) is in queue((p, q)), by code.

40. level(h) = old level(f), by Claims 11, 12, 13, 14, 15 and 38.
41. core(h) = old core(f), by Claims 11, 12, 13, 14, 15 and 38.
42. h = f, by Claim 41.

43. g V fragments, by Claims 38 and 41.

44. NOTIFY(nlevel(p), nfrag(p)) is added to queuep((p, q)), by code.

First, we discuss how testset(f) changes. If p E testset(f) in s' because of a

FIND or CONNECT message, then every node in nodes(g) in s' is in testset(f) in s

because of the same FIND or CONNECT message. If p E testset(f) in s' because

testlink(p) # nil, then a FIND message is added to queue((p, q)) in s, causing every

node formerly in nodes(g) to be in testsei(f). If p is not in testset(f) in s', then

no FIND message is headed toward p, and no CONNECT message is in queue((r, t)),

with p E subtree(r); thus, Claim 25 implies that in s, no node formerly in nodes(g)

is in testset(f).

By the previous paragraph, and inspection, the effects of A bsorb(f, g) are mir-

rored in S,(s) by Claims 36, 38, 42 and 43 for x = TAR; by Claims 27, 28, 34, 38,
42 and 43 for x = DC; by Claims 38, 42, 43 and 44 for x = NOT; and by Claims

35, 38, 42 and 43 for x = CON.

24A4A

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 245

(3a) GHS-A is vacuously true in s by assumption that nstatus(p) # sleeping in
s.

GHS-B: vacuously true for a CONNECT in queue((q,p)) by Claim 35. By Claim
4 and CON-D, if CONNECT is in queue((p,q)), then minlink(f) = (p,q). But by
Claim 9 and COM-A, this cannot be. Thus the predicate is vacuously true for a
CONNECT in queue((p, q)).

GHS-D: Suppose nstatus(p) = find in s'. By DC-I(a), p is up-to-date, and by
GHS-I, nlevel(p) = level(f).

GHS-E: Vacuously true by Claims 4, 21 and 41.

GHS-I: As argued in GHS-J, no node formerly in nodes(g) is up-to-date in s.

No change affects nodes formerly in nodes(f).

GHS-J: Let r be any node in nodes(f) in s'. If r is up-to-date, r g testset(f),
and (r, t) is the minimum-weight external link of r, then nlevel(r) < nlevel(t) by
GHS-J. By Claim 9, fragment(t) # g. Thus in s, (r,t) is still external. By DC-
L, inbranch(r) is in subtree(g) (or nil) for all r E nodes(g) in s'. By Claim 21,
core(f) E subtree(f) in s', and by Claim 41, core(f) is unchanged in s. Thus
following inbranches in s from any r formerly in nodes(g) does not lead to core(f),
so no r formerly in nodes(g) is up-to-date in s.

No change affects the rest.

vi) 7r is ReceiveInitiate((q,p),1,c,st). Let f = fragment(p).

(3b)/(3c) Case 1: st = find. ATAR(S', 7r) = Send Test(p).

If there is a link (p, r) such that lstatus((p, r)) = unknown in s', then ADC(S', r)
= ReceiveFind((q,p)); otherwise ADC(S', ,r) = ReceiveFind((q,p)) t TestNode(p),

where t is the state resulting from applying ReceiveFind((q,p)) to SDC(s').

ANOT(s', r) = ReceiveNotify((q, p),l,c).

ACON(s',7r) is empty.

Claims about s':

1. INITIATE(l, c,find) is at the head of queuep((q,p)), by precondition.

Chapter 5: Minimum Spanning Tree

2. (p, q) E subtree(f), by Claim 1 and DC-D(a).
3. minlink(f) = nil, by Claims 1 and 2.
4. If lstatus((p, r)) = rejected then fragment(p) = fragment(r), for all r, by TAR-B.
5. If lstatus((p,r)) = branch, then (p,r) E subtree(f), for all r, by Claim 3 and
TAR-A(a).
6. If (p, r) E subtree(f), then lstatus((p, r)) = branch for all r, by TAR-A(b).
7. If ISI = 0 and no lstatus((p,r)) is unknown, then p # mw-root(f), by definition
of mw-root and Claims 4, 5 and 6.
8. p E testset(f), by Claims 1 and 2.
9. dcstatus(p) = unfind, by Claim 1 and DC-D(b).
10. testlink(p) = nil, by Claim 9 and GHS-H.
11. 1 = level(f), by Claims 1 and 2 and GHS-D.
12. c = core(f), by Claims 1 and 11 and NOT-A.
13. No other FIND message is headed toward p, by Claims 1 and 2 and DC-S.
14. core(f) # nil, by Claim 2 and COM-F.

Let (r,t) = core(f).

15. (r,t) E subtree(f), by Claim 14 and COM-F.

Let p be in subtree(r).

16. If (p, q) # (r, t) then dcstatus(q) = find, by Claim 1 and DC-D(a).
17. If (p, q) # (r, t) then dcstatus(r) = find, by Claim 16 and DC-H(a).
18. If (p, q) # (r, t) then either no CONNECT is in queue((r, t)), or lstatus((t, r)) =
unknown, or a CONNECT is in queue((t, r)), by Claim 17 and GHS-B(c).

19. If (p, q) = (r, t) then either no CONNECT is in queue((r, t)), or lstatus((t, r)) =
unknown, or a CONNECT is in queue((t, r)), by Claim 1 and GHS-B(b).
20. Either no CONNECT is in queue((r, t)), or lstatus((t, r)) = unknown, or a

CONNECT is in queue((t, r)), by Claims 18 and 19.

21. lstatus((t, r)) # unknown, by Claim 15 and TAR-A(b).
22. If CONNECT is in queue((t,r)) then no CONNECT is in queue((r,t)), by Claim
15.
23. If no CONNECT is in queue((t, r)) then no CONNECT is in queue((r, t)), by Claims

20, 21 and 22.

24. No CONNECT is in queue((r, t)), by Claims 22 and 23.

25. If (p, q) # (r, t) then AfterMerge(p, q) is not enabled (for DC or NOT), since

(r,t) = core(f).
26. If (p, q) = (r, t) then AfterMerge(p, q) is not enabled (for DC or NOT), by
Claim 24 and GHS-L.

246

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 247

27. If there is no unknown link of p, then there is no external link of p, by Claims
4 and 5.
28. If (p, q) # (r,), then q is up-to-date, by Claim 16 and DC-I(a).

Send Test(p) is enabled in STAR(S') by Claims 8 and 10. ReceiveFind((q,p)) is
enabled in SDC(s') by Claims 1, 25 and 26. ReceiveNotify((q, p), 1, c) is enabled in

SNOT(s') by Claims 1, 25 and 26.

Claims about t: (only defined when there are no unknown links of p in s')

29. p E testset(f), by Claim 8.
30. There is no external link of p, by Claim 27.
31. destatus(p) = find, by definition of t.

TestNode(p) is enabled in t by Claims 29, 30 and 31.

Claims about s:

32. level(f) = 1, by Claim 11 and code.

33. core(f) = c, by Claim 12 and code.
34. No FIND message is headed toward p, by Claim 13 and code.

35. No CONNECT is in queue((t, r)), by Claim 24 and code.

36. There is no unknown link of p (in s') if and only if testlink(p) = nil (in s), by

Claim 10 and code.

37. There is no unknown link of p (in s') if and only if p g testset(f) (in s), by
Claims 34, 35 and 36.
38. If |SI > 0 (in s') then a FIND message is in subtree(f), by Claim 5 and code.

39. If |SI = 0 and there is no unknown link of p (in s'), then p # mw-root(f) (in s),
by Claim 7 and code.
40. If |SI = 0 and there is no unknown link of p (in s'), then either a REPORT

message is headed toward mw-root(f), or there is no external link of f (in s), by

Claims 28 and 39 and code.

41. If there is an unknown link of p (in s'), then nstatus(p) = find (in s), by code.

42. minlink(f) = nil, by Claims 38, 40 and 41.

The changes (or lack of changes) to the remaining derived variables are obvious.

The effects of Send Test(p) are mirrored in STAR(S) by Claims 11, 12, and 37

for the changes, and Claims 32, 33, 3 and 42 for the lack of changes. If there is

an unknown link of p in s', then the effects of ReceiveFind((q,p)) are mirrored in

SDC(s) by Claims 5, 6, 36 and 37 for changes, and Claims 3, 11, 12, 32, 33, 37 and

Chapter 5: Minimum Spanning Tree

42 for lack of changes. If there is no unknown link of p in s', then the effects of
ReceiveFind((q,p)) followed by TestNode(p) are mirrored in SDC(S) by Claims 5, 6,
36 and 37 for changes, and Claims 3, 11, 12, 32, 33 and 42 for lack of changes. The
effects of ReceiveNotify((q,p), 1, c) are mirrored in SNOT(S) by Claims 3, 4 and 42.

SCON(S') = SCON(s) by Claims 3, 11, 12, 32, 33, and 42.

Case 2: st # find.

ANOT(s', 7r) = R eceiveNotify((q, p), l, c). A.(s', 7r) is empty for all other x.

Claims about s':

1. INITIATE(l, c,found) is at the head of queue,((q,p)), by precondition.
2. (p, q) E subtree(f), by Claim 1 and NOT-H(e).

3. nlevel(p) < 1, by Claim 1 and NOT-H(a).
4. nlevel(p) < level(f), by Claims 1, 2 and 3.
5. p # minnode(f), by Claims 1 and 2 and NOT-I.
6. If lstatus((p, r)) = branch, then (p, r) E subtree(f), for all r # q, by Claim 5 and

TAR-A(a).
7. If (p, r) E subtree(f), then lstatus((p, r)) = branch, for all r # q, by TAR-A(b).
8. p is not up-to-date, by Claim 4 and GHS-I.
9. nstatus(p) # find, by Claim 8 and DC-I(a).
10. (p, q) # core(f), by Claim 1 and GHS-E.
11. AfterMerge(p, q) for NOT is not enabled, by Claim 10.

By Claim 9, dcstatus(p) = unfind in both s' and s, and thus minlink(f) is

unchanged. The changes, or lack of changes, to the remaining derived variables are

obvious.

By Claims 1 and 11, ReceiveNotify((q, p), 1, c) is enabled in SNOT(s'). Its effects

are mirrored in SNOT(S) by Claims 6 and 7.

It is easy to see that S,(s') = S,(s) for all other x.

(3a) GHS-A: By DC-D(a), (p, q) E subtree(f). So by GHS-A(a), nstatus(p) #

sleeping in s'. Since the same is true in s, the predicate is vacuously true.

248

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 249

GHS-B: Vacuously true for a CONNECT in queue((q,p)) by GHS-B(a) and
the fact that INITIATE is first in the queue. Vacuously true for a CONNECT in

queue((p, q)) by GHS-B(b) and the presence of INITIATE in queue((q, p)). The only

other situation to consider is the addition of an INITIATE message to queue((p, r)),

r # q, with lstatus((p, r)) = branch. As shown in (b)/(c), (p, r) E subtree(f). By
NOT-H(e), either (p, q) = core(f) or p is a child of q, so (p, r) # core(f). Thus by

CON-E, no CONNECT is in queue((p, r)), or in queue((r, p)).

GHS-C: Adding a FIND message does not falsify the predicate. Suppose a TEST

message is added to queue((p, r)). Then in s', st = find.

Case 1: (p, r) is an internal link of f. By TAR-A(b), (p, r) # subtree(f). By

COM-F, (p, r) # core(f). By CON-E, no CONNECT is in queue((p, r)).

Case 2: (p, r) is an external link of f. Since there is a FIND message in subtree(f)

in s', minlink(f) = nil. By CON-D, no CONNECT is in queue((p, r)).

GHS-D: Since it is true for the INITIATE in queue((q, p)) in s', it is true for any

INITIATE added in s.

GHS-E: As shown in GHS-B, (p, r) # core(f).

GHS-F: By NOT-H(a), nlevel(p) increases, so the predicate is still true for any

leftover TEST messages. The predicate is true by code for the TEST message added.

GHS-G: Case 1: An ACCEPT is in queue((p,r)). By NOT-H(a), nlevel(p) in-

creases, so the predicate is still true.

Case 2: An ACCEPT is in queue((r,p)). By TAR-D, testlink(p) = (p, r). By

GHS-H, nstatus(p) = find. But by Claim 9 (for both Case 1 and Case 2 of (3b)/(3c)),

nstatus(p) : find. So there is no ACCEPT in queue((r,p)), and the predicate is

vacuously true.

GHS-H is true by code.

GHS-I: Case 1: st = find. By code nlevel(p) = 1, and by Claim 32 in Case 1 of

(3b)/(3c), I = level(f).

Case 2: st # found. By NOT-H(a), nlevel(p) < 1. Thus nlevel(p) < level(f),

so by GHS-I, p is not up-to-date in s'. Since all inbranches remain the same in s

and nstatus(p) # find in s, p is still not up-to-date.

250 Chapter 5: Minimum Spanning Tree

GHS-J: Case 1: st = find. By Claim 37 in Case 1 of (3b)/(3c), p V testset(f)
in s if and only if there is no external link of p, so the predicate is vacuously true.

Case 2: st # find. As in GHS-I, Case 2, p is not up-to-date, so the predicate
is vacuously true.

vii) r is ReceiveTest((q,p),1,c). Let f = fragment(p).

Case 1: nstatus(p) = sleeping in s'.

(3b)/(3c) ATAR(s', r) = ChangeRoot(f) t 7r, where t is the same as STAR(S')

except that rootchanged(f) = true and lstatus(minlink(f)) = branch in t.

A,(s', r) = ChangeRoot(f) for all other x.

Claims about s':

1. TEST(l, c) is at the head of queuep((q,p)), by precondition.

2. nstatus(p) = sleeping, by assumption.
3. subtree(f) = {p}, by Claim 2 and GHS-A.
4. minlink(f) # nil, by Claim 3 and definition.
5. rootchanged(f) = false, by Claim 2, GHS-A(c) and TAR-H.
6. level(f) = 0, by Claim 3 and COM-F.
7. nlevel(p) = 0, by Claims 3 and 6.
8. 1 > 1, by TAR-M.
9. 1 > nlevel(p), by Claims 7 and 8.
10. 1 > level(f), by Claims 6 and 8.
11. awake = true, by Claim 1 and GHS-A(b).
Claims about s:

12. The TEST message is requeued, by Claim 9.
13. lstatus(minlink(f)) = branch, by code.
14. CONNECT(0) is in queue(minlink(f)), by code.
15. minlink(f) does not change (i.e., is still external), by Claims 13 and 14.
16. rootchanged(f) = true, by Claims 14 and 15.

ChangeRoot(f) is enabled in S,(s') by Claims 11, 3 and 5 for x = CON, and
by Claims 11, 4 and 5 for all other x.

TAR: Effects of ChangeRoot(f) are mirrored in t by its definition. 7 is enabled
in t by definition. Its effects are mirrored in STAR(S) by Claim 12.

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 251

For all other x, the effects of ChangeRoot(f) are mirrored in Sx(s) by Claim
16 for DC and NOT, and by Claim 14 for CON.

(3a) PGHS is true in s by essentially the same argument as in r = Start(p),
Case 2.

Case 2: nstatus(p) # sleeping in s'.

(3b)/(3c) ATAR(s',l) = ir if 1 < nlevel(p) or nlevel(p) = level(f) in s', and is
empty otherwise.

ADC(S', 7r) = TestNode(p) if I < nlevel(p), c = nfrag(p), testlink(p) = (p, q)
and lstatus((p, r)) # unknown for all r # q, in s', and is empty otherwise.

A.(s', 7r) is empty for all other x.

First we discuss what happens to testset(f) and minlink(f).

We show testset(f) is unchanged, except that p is removed from testset(f) if
and only if I < nlevel(p), c = nfrag(p), testlink(p) = (p, q), and there is no link
(p, r), r # q, with lstatus((p, r)) = unknown. If testlink(p) does not change from
non-nil to nil (or vice versa), then obviously testset(f) is unchanged. The only
place testlink(p) is changed in this way is in procedure Test(p), exactly if there
are no more unknown links of p; Test(p) is executed if and only if I < nlevel(p),
c = nfrag(p), and testlink(p) = (p, q) in s'. Suppose testlink(p) is changed from
non-nil to nil. Since testlink(p) # nil in s', GHS-M implies that no FIND message is
headed toward p, and no CONNECT message is in queue((r, t)), where (r, t) = core(f)

and p E subtree(r). Thus in s, since testlink(p) = nil, p is not in testset(f).

Now we show that minlink(f) does not change. If destatus(p) does not change,
and no REPORT message is added to any queue, then obviously minlink(f) does not

change. Suppose dcstatus(p) changes, and a REPORT message is added to a queue (in

procedure Report(p)). Then I < nlevel(p), c = nfrag(p), testlink(p) = (p, q), there

are no more unknown links of p (so testlink(p) is set to nil), and findcount(p) = 0.

Claims about s':

1. testlink(p) = (p, q), by assumption.

252 Chapter 5: Minimum Spanning Tree

2. nstatus(p) = find, by Claim 1 and GHS-H.
3. minlink(f) = nil, by Claim 2.

4. If (p, r) = core(f), then a FIND message is in queue((p, r)), or dcstatus(r) = find,
or a REPORT message is in queue((r,p)), by Claim 2 and DC-J.
5. p is up-to-date, by Claim 2 and DC-I(a).

Claims about s:

6. If p # mw-root(f), then either there is no external link of f, or a REPORT is

headed toward mw-root(f), by Claim 5 and code.
7. If p = mw-root(f), then either a FIND is in queue((p, r)), or dcstatus(r) = find,
or a REPORT is in queue((r,p)), where core(f)= (p, r), by Claim 4 and code.

8. minlink(f) = nil, by Claims 6 and 7.

Claims 3 and 8 give the result.

TAR: First, suppose 1 > nlevel(p) and nlevel(p) # level(f).

Claims about s':

1. 1 > nlevel(p), by assumption.
2. nlevel(p) # level(f), by assumption.

3. p is not up-to-date, by Claim 2 and GHS-I.
4. nstatus(p) # find, by Claim 3 and DC-I(a).

5. testlink(p) = nil, by Claim 4 and GHS-H.
6. There is no protocol message for (p, q), by Claim 5 and TAR-D.
7. The TEST message in queue((q, p)) is a protocol message for (q, p), by Claim 6.
8. testlink(q) = (q,p), by Claim 7 and TAR-D.

9. There is exactly one protocol message for (q,p), by Claim 8 and TAR-C(c).
10. There is only one TEST message in tarqueue((q,p)), by Claim 9.

By Claims 6 and 10, the TEST is the only TAR message in tarqueue((q,p)).

Since the TEST message is requeued in GHS, tarqueue((q,p)) is unchanged. By
earlier remarks about testset(f) and minlink(f), and by inspection, the other derived

variables (for TAR) are unchanged. Thus, STAR(S') = STAR(S),

Second, suppose I > level(p) and nlevel(p) = level(f). Then the TEST mes-

sage is requeued in GHS and in TAR. By earlier remarks about testlink(f) and

minlink(f), and by inspection, STAR(s')rSTAR(S) is an execution fragment of TAR.

Third, suppose I < nlevel(p). Let g = fragment(q).

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 253

Claims about s':

1. TEST(l, c) is at the head of queuep((q, p)), by precondition.

2. 1 < nlevel(p), by assumption.
3. If lstatus((q,p)) # rejected, then c = core(g) and 1 = level(g), by Claim 1 and
TAR-E(b).
4. If lstatus((q,p)) = rejected, then c = core(f) and I = level(f), by Claim 1 and
TAR-E(c).
5. c # nil, by Claim 1 and TAR-M.

Next we show that c = core(f) if and only if c = nfrag(p). First, suppose
c = core(f).

6. c = core(f), by assumption.
7. If lstatus((q,p)) = rejected, then nlevel(p) = level(f), by Claims 2 and 4 and
definition of level(f).

8. If lstatus((q,p)) # rejected, then core(g) = core(f), by Claims 3 and 6.
9. If lstatus((q,p)) # rejected, then c E subtree(g) and c E subtree(f), by Claims 5,
6 and 8 and COM-F.
10. If lstatus((q,p)) # rejected, then f = g, by Claim 9 and COM-G.
11. If lstatus((q,p)) # rejected, then I = level(f), by Claims 3 and 10.
12. If lstatus((q,p)) # rejected, then nlevel(p) = level(f), by Claims 2 and 11 and
definition of level(f).

13. nlevel(p) = level(f), by Claims 8 and 12.

14. nfrag(p) = core(f), by Claim 13 and NOT-A.
15. nfrag(p) = c, by Claims 6 and 14.

Now suppose c = nfrag(p).

16. c = nfrag(p), by assumption.

17. c E subtree(f), by Claims 5 and 16 and NOT-F.
18. If lstatus((q,p)) # rejected, then c E subtree(g), by Claims 5 and 3 and COM-F.

19. If lstatus((q,p)) # rejected, then f = g, by Claims 17 and 18 and COM-G.

20. If lstatus((q,p)) : rejected, then c = core(f), by Claims 3 and 19.
21. c = core(f), by Claims 4 and 20.

7r is enabled in STAR(S') by Claim 1. We now verify that the effects are mirrored

in STAR(S). By the above argument, c # frag(p) if and only if c # core(f). Thus,

the body of Receive Test for TAR is simulated correctly. Consider procedure Test(p).

If it is executed, then c = nfrag(p) in s'. By Claim 21, nfrag(p) = core(f), and by

Chapter 5: Minimum Spanning Tree

NOT-E, nlevel(p) = level(f). Thus the TEST messages sent in procedure Test(p)
in GHS correspond to those sent in TAR. By the discussion at the beginning of
Case 2, testset(f) is updated correctly, and minlink(f) is unchanged. The changes
or lack of changes to the other derived variables are obvious.

DC: First, suppose 1 < nlevel(p), c = nfrag(p), testlink(p) = (p, q), and

lstatus((p, r)) # unknown for all r # q, in s'.

Claims about s':

1. TEST(l, c) is at the head of queuep((q, p)), by precondition.

2. 1 < nlevel(p), by assumption.

3. c = nfrag(p), by assumption.

4. testlink(p) = (p, q), by assumption.

5. lstatus((p, r)) : unknown, for all r # q, by assumption.
6. p E testset(f), by Claim 4 and TAR-C(b).

7. minlink(f) = nil, by Claim 6 and GC-C.
8. If lstatus((p, r)) = branch, then (p, r) E subtree(f), for all r # q, by Claim 7 and
TAR-A(a).
9. If lstatus((p, q)) = rejected, then fragment(r) = f, for all r # q, by TAR-B.

10. c = core(f), by Claims 1, 2 and 3 and the argument just given for TAR.

11. fragment(q) = f, by Claims 1 and 10 and TAR-N.
12. There is no external link of p, by Claims 8, 9, 11 and 5.
13. nstatus(p) = find, by Claim 4 and GHS-H.

TestNode(p) is enabled in SDc(s') by Claims 6, 12 and 13. Its effects are
mirrored in SDC(S) by the earlier discussion about testset(f) and minlink(f) and

by Claim 12. (The disposition of the rest of the derived variables should be obvious.)

Now suppose I > rlevel(p) or c # nfrag(p) or testlink(p) # (p, q) or there is a

link (p, r) with lstatus((p, r)) = unknown and r # q. Then SDC(s') = SDC(s) by

inspection and earlier discussion of testset(f) and minlink(f).

NOT and CON: We want to showS,(s') = S,(s) for x = NOT and CON.

The only derived variables for these two that are not obviously unchanged are

minlink(f) and rootchanged(f). (Because of the presence of the TEST message in

queue((q, p), GHS-A(b) implies that awake = true in s', so changes to nstatus(p) do

not change awake.) Since we already showed minlink(f) is unchanged, it is obvious

that rootchanged(f) is unchanged.

254

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 255

(3a) GHS-A is vacuously true by the assumption that nstatus(p) # sleeping.

GHS-B: First we show that if the hypotheses of this predicate are false for a
link in s', then they are still false in s. The only way they could go from false

to true is by lstatus((p, q)) going from unknown to rejected. But since TEST is in
queue((q, p)) in s', by GHS-C no CONNECT is in queue((q, p)) in s', or in s.

Now we show that the state changes do not invalidate (a) through (d) for a

link, assuming that the hypotheses are true for that link in s'.

Case A: TEST is requeued. No change affects the predicate.

Case B: ACCEPT or REJECT is added to queue((p, q)). We already showed

that no CONNECT is in queue((q,p)). Because of the TEST in queue((q,p)), the

preconditions of the predicate are not true for a CONNECT in queue((p, q)) in s'.

Case C: TEST is added to some queue((p, r)). Since status((p, r)) = unknown,
the preconditions are not true in s' for a CONNECT in queue((r,p)). Since the TEST

is added, testlink(p) = (p, q) in s'. By GHS-H, nstatus(p) = find in s'. So by

GHS-B(c), the preconditions are not true in s' for a CONNECT in queue((p,r)).

Case D: REPORT is added to queue(inbranch(p)). Let (p, r) = inbranch(p) in

s'. As in Case 3, the predicate is vacuously true for a CONNECT in queue((p, r)).
As in Case 3, nstatus(p) = find in s', so p is up-to-date by DC-I(a). By GHS-

I, nlevel(p) = level(f). Since by DC-L, (p,r) E subtree(f), there cannot be an

INITIATE(nlevel(p) + 1, *, *) message in queue((r, p)). By GHS-B(a), the precondi-

tions are not true for a CONNECT in queue((r,p)).

GHS-H: By code.

GHS-J: If p is removed from testset(f), then as in Claim 12 of (3b)/(3c) for

DC, there is no external link of p.

GHS-C: Case 1: REJECT is added to queue((p, q)). Then I < nlevel(p), c =

nfrag(p), and testlink(p) # (p, q)) in s'. As argued in Lemma 17, verifying (3c) of

Case 1 for -r = Receive Test, (p, q) is an internal link of f. By TAR-E(a), (p, q) #
core(f), so by CON-E, no CONNECT is in queue((p, q)).

Case 2: TEST is added to queue((p, r)). Then in s', I < nlevel(p), c = nfrag(p),

testlink(p) = (p, q), and lstatus((p, r)) = unknown.

Chapter 5: Minimum Spanning Tree

Case 2a: (p, r) is an internal link of f. By TAR-A(b), (p, r) subtree(f). By
COM-F, (p,r) # core(f). By CON-E, no CONNECT is in queue((p,r)).

Case 2b: (p, r) is an external link of f. By GHS-H, nstatus(p) = find. Thus
minlink(f) = nil. By CON-D, no CONNECT is in queue((p, r)).

GHS-G: Suppose ACCEPT is added to queue((p, q)). Then I < nlevel(p) in s'. As

argued in Lemma 17, verifying TAR-F for ir = Receive Test, I = level(fragment(q)).

By GHS-F, I < nlevel(q). So 1 = nlevel(q).

No changes affect the rest.

viii) 7r is ReceiveAccept((q,p)). Let f = fragment(p).

(3b)/(3c) ATAR(S',7r) = 7r. ADC(s', r) = TestNode(p). A.(s', 7r) is empty for
all other x.

An argument similar to that used in 7r = Receive Test((q, p), 1, c), Case 2, shows

that minlink(f) is unchanged.

TAR: Claims about s':

1. ACCEPT is at the head of queuep((q,p)), by precondition.

2. There is a protocol message for (p, q), by Claim 1.

3. testlink(p) = (p, q), by Claim 2 and TAR-D.
4. No FIND message is headed. toward p, by Claim 3 and GHS-M.

5. No CONNECT message is in queue((rt)), where (r,t) = core(f) and p E
subtree(r), by Claim 3 and GHS-M.

Claims about s:

6. testlink(p) = nil, by code.

7. No FIND message is headed toward p, by Claim 4.

8. No CONNECT message is in queue((r,t)), where (r,t) = core(f) and p E

subtree(r), by Claim 5 and code.

9. p g testset(f), by Claims 6, 7 and 8.

r is enabled in STAR(s') by Claim 1; its effects are mirrored in STAR(S) by

Claims 6 and 9, and discussion of minlink(f). (The disposition of the remaining

derived variables should be obvious.)

DC: More Claims about s':

256

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 257

10. p E testset(f), by Claim 3.
11. minlink(f) = nil, by Claim 10.
12. fragment(q) # f, by Claim 1 and TAR-F.
13. level(f) <; level(fragment(q)), by Claim 1 and TAR-F.
14. lstatus((p, q)) # branch, by Claims 11 and 12 and TAR-A(a).
15. (p, q) is the minimum-weight external link of p with 1status unknown, by Claims
3 and 14 and TAR-C(d).
16. If lstatus((p, r)) = rejected, then (p, r) is not external, for all r, by TAR-B.
17. If lstatus((p, r)) = branch, then (p, r) is not external, for all r, by Claim 11 and
TAR-A(a).
18. If (p, r) is external, then lstatus((p, r)) = unknown, for all r, by Claims 16 and
17.
19. (p, q) is the minimum-weight external link of p, by Claims 15 and 18.
20. nstatus(p) = find, by Claim 3 and GHS-H.

TestNode(p) is enabled in SDC(s') by Claims 10, 19 and 13, and 20. Its effects
are mirrored in SDC(S) by Claims 9, 19 and 6.

NOT and CON: It is easy to verify that Sz(s') = Sx(s) for x = NOT and

CON.

(3a) GHS-A: By Claim 20, vacuously true in s.

GHS-B: Suppose a REPORT message is added to queue((p, r)) in s. Let (p, r) =
inbranch(p). By Claim 20 and DC-I(a), p is up-to-date in s'. By GHS-I, nlevel(p) =
level(f). By DC-L, (p, r) E subtree(f), so no INITIATE(nlevel(p) + 1, *, *) can be in

queue((p, r)) or queue((r,p)). By GHS-B(a), the preconditions for a CONNECT in

queue((p, r)) or queue((r,p)) are not true in s', or in s.

GHS-H: By code, testlink(p) = nil.

GHS-J: By Claim 19 and GHS-G.

No changes affect the rest.

ix) 7r is ReceiveReject((q,p)). Let f = fragment(p).

(3b)/(3c) ATAR(S', r) = 7r.

258 Chapter 5: Minimum Spanning Tree

ADC(s', ir) = TestNode(p) if there is no r # q such that lstatus((p, r)) = un-

known in s, and is empty otherwise.

A,(s', 7) is empty for all other x.

An argument similar to that in 7r = Receive Test((q, p), 1, c), Case 2, shows that
minlink(f) is unchanged.

TAR: Claims about s':

1. REJECT is at the head of queuep((q, p)), by precondition.
2. There is a protocol message for (p, q), by Claim 1.

3. testlink(p) = (p, q), by Claim 2 and TAR-D.
4. No FIND message is headed toward p, by Claim 3 and GHS-M.
5. No CONNECT message is in queue((r,t)), where (r,t) = core(f) and p E

subtree(r), by Claim 3 and GHS-M.
6. nstatus(p) = find, by Claim 3 and GHS-H.
7. nlevel(p) = level(f), by Claim 6, DC-I(a) and GHS-I.
8. nfrag(p)= core(f), by Claim 7 and NOT-A.

Claims about s:

9. If there is no link (p, r) with lstatus((p, r)) = unknown (in s'), then testlink(p) =

nil (in s), by code.
10. No FIND message is headed toward p, by Claim 4.

11. No CONNECT message is in queue((r, t)), by Claim 5.

12. If there is no link (p, r) with lstatus((p, r)) = unknown (in s'), then p V testset(f)

(in s), by Claims 9, 10 and 11.

ir is enabled in STAR(S') by
Claims 9, 12, 7 and 8, and earlier

Claim 1. Its effects are mirrored in STAR(S) by

discussion of minlink(f).

DC: If there is a link (p, r) such that lstatus((p, r)) = unknown and r # q,
then it is easy to check that SDc(s') = SDC(S). Suppose there is no unknown link

(other than (p, q)).

More claims about s':

13. lstatus((p, r)) # unknown, for all r # q, by assumption.

14. minlink(f) = nil, by Claim 6.
15. If lstatus((p, r)) = branch, then (p, r) E subtree(f), for all r # q, by Claim 14

and TAR-A(a).

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 259

If lstatus((p, r)) = rejected, then fragment(r) = f, for all r : q,
fragment(q) = f, by Claim 1 and TAR-G.
There are no external links of p, by Claims 13, 15, 16 and 17.
p E testset(f), by Claim 3 and TAR-C(b).

TestNode(p) is enabled in SDc(s') by Claims 19,
mirrored in SDC(S) by Claims 9 and 12.

by TAR-B.

18 and 6. Its effects are

NOT and CON: It is easy to show that S,(s') = S,(s) for x = NOT and
CON.

(3a) GHS-A: Vacuously true by Claim 6.

GHS-B: Either a TEST or a REPORT message is added.

similar to that in 7r = Receive Test((q, p), 1, c), Case 2 of (a).

GHS-C: Only affected if a TEST is added. The argument

in 7r = Receive Test((q, p), l, c), Case 2 of (a).

The argument is very

is very similar to that

GHS-H: The argument is very similar to that in 7r = Receive Test((q,p), l, c),
Case 2 of (a).

GHS-I: Suppose p is removed from testset(f). By Claim 12, this only happens

when there are no more unknown links. By Claim 18, p has no external links if

there are no more unknown links.

No changes affect the rest.

x) 7r is ReceiveReport((q,p),w). Let f = fragment(p).

(3b)/(3c) Case 1: (p,q) = core(f), nstatus(p) # find and w >
s'. This case is divided into two subcases; first we prove some claims

subcases. Let (r, t) be the minimum-weight external link of f in s'.

show it exists.)

Claims about s':

1. REPORT(w) is at the head of queue((q, p)), by assumption.

2. (p,q) = core(f), by assumption.

3. nstatus(p) # find, by assumption.

bestwt(p) in

true in both
(Below, we

16.
17.
18.
19.

Chapter 5: Minimum Spanning Tree

4. w > bestwt(p), by assumption.
5. ReceiveReport((q,p), w) is enabled in SDC(s'), by Claim 1.
6. ComputeMin(f) (for GC) is enabled in S4(SDc(s')), by Claims 2, 3, 4 and 5 and
argument in proof of Lemma 19, Case 1 of verifying (3c) for ir = ReceiveReport.
7. minlink(f) = nil, by Claim 6.
8. accmin(f) nil, by Claim 6.
9. testset(f) = 0, by Claim 6.
10. ComputeMin(f) (for COM) is enabled in S2(S 4 (SDc(s'))), by Claim 6 and
argument in proof of Lemma 15, verifying (3c) for ir = ComputeMin.
11. level(f) 5 level(fragment(t)), by Claim 10.
12. accmin(f) = (r, t), by Claims 8 and 9 and GC-A.
13. r is up-to-date, by Claim 9, DC-N, and choice of (r, t).

14. nlevel(r) = level(f), by Claim 13 and GHS-I.
15. nlevel(f) 5 nlevel(t), by Claims 9 and 13 and GHS-J.
16. No CONNECT message is in either queue of core(f), by Claim 9.
17. No CONNECT message is in any internal queue of f, by Claim 16 and CON-E.
18. inbranch(p) = (p, q), by Claims 1 and 2 and DC-A(a).
19. p is up-to-date, by Claims 2, 9 and 18.
20. findcount(p) = 0, by Claim 3 and DC-H(b).
21. All children of p are completed, by Claims 19 and 20 and DC-K(a).
22. r E subtree(p), by Claims 1, 2, 3 and 4 and DC-P(b).
23. Following bestlinks from p leads along edges of subtree(f) to (r, t), by Claims 9,
19, 21 and 22, choice of (r, t), and DC-K(b) and (c).

The following remarks apply to both Subcase la and Subcase 1b: Compute-

Min(f) is enabled in S,(s') by Claims 7, 8 and 9 for x = TAR; by Claims 7, 14 and
15 (and definition of (r, t)) for x = NOT; and by Claims 7, 11 and 17 for x = CON.
7r is obviously enabled in SDc(s').

Subcase la: lstatus(bestlink(p)) = branch. ADC(S', X) = r. Ax(s',x) =

ComputeMin(f) for all other x.

More Claims about s':

24. lstatus(bestlink(p)) = branch, by assumption.

25. bestlink(p) E subtree(f), by Claims 7 and 24 and TAR-A(a).

26. p 5 r = mw-minnode(f), by Claims 23 and 25.

Claims about s:

260

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 261

27. The effects of 7r are reflected in SDC(S), by code.
28. The effects of ComputeMin(f) are reflected in S4(SDC(s)), by Claim 27 and

argument in proof of Lemma 19, Case 1 of verifying (3c) for 7r = ReceiveReport.
29. minlink(f) = (r, t), by Claims 28 and 12.
30. Following bestlinks from p leads to (r, t), by Claim 23.
31. tominlink(p) = bestlink(p), by Claims 30 and 24.
32. p # minnode(f), by Claims 29 and 24.
33. p = root(f), by Claims 2, 22 and 29.

By Claims 3, 4 and 17, procedure ChangeRoot(p) is executed in GHS. The
effects of ComputeMin(f) are reflected in S.(s) by Claims 29 and 12 for x = TAR;
by Claim 29 and choice of (r,t) for x = NOT; and by Claims 29, 31, 32, 33 and
choice of (r, t) for x = CON. The effects of 7r are reflected in SDC(S) by Claim 27.

Subcase 1b: lstatus(bestlink(p)) # branch.

ADC(S', 7r) = r tDC ChangeRoot(f), where tDC is the result of applying 7r to

SDC(s').

ACON(S', 7r) = ComputeMin(f).

For all other x, A.(s', ir) = ComputeMin(f) tx ChangeRoot(f), where tx is the

result of applying ComputeMin(f) to Sz(s').

More claims about s':

34. lstatus(bestlink(p)) # branch.

35. bestlink(p) = (r, t), by Claims 23, 34 and 7 and TAR-A(b).

36. p = r = mw-minnode(f), by Claim 35.
37. nstatus(q) # sleeping, by Claim 1 and GHS-A.
38. awake = true, by Claim 37.

39. rootchanged(f) = false, by Claim 7 and COM-B.

Claims about tz, x # CON:

40. If x = TAR, then minlink(f) = (r,t), by Claim 12.

41. If x = NOT, then minlink(f) = (r,t), by choice of (r,t).

42. If x = DC, then minlink(f) = (r, t), by Claims 6 and 12 and argument in proof

of Lemma 15, verifying (3c) for 7r = ComputeMin.

Chapter 5: Minimum Spanning Tree

43. awake = true, by Claim 38.
44. rootchanged(f) = false, by Claim 39.

The effects of 7r are mirrored in tDC and of ComputeMin(f) int TAn and tNOT

by definition. ChangeRoot(f) is enabled in t, by Claims 40, 43 and 44 for x = TAR;

by Claims 41, 43 and 44 for x = NOT; and by Claims 42, 43 and 44 for x = DC.

Claims about s:

45. minlink(f) = (r, t), by argument in proof of Lemma 19, Case 1 of verifying (3c)
for ,r = ReceiveReport.

46. lstatus(bestlink(p)) = branch, by code.
47. lstatus(minlink(p)) = branch, by Claims 35 and 45.

48. CONNECT is added to queue(bestlink(p)), by code.

49. rootchanged(f) = true, by Claims 45 and 48.

The effects of ChangeRoot(f) are mirrored in S,(s) by Claims 47 and 49 for
x = TAR; by Claim 49 for x = DC and NOT. The effects of ComputeMin(f) are
mirrored in SCON(s) by Claims 36, 14 and 45.

Case 2: (p,q) # core(f) or nstatus(p) = find or w < bestwt(p) in s'.

ADC(S', 7r) = 7r. A.(s', 7r) is empty for all other x.

Subcase 2a: (p, q) # core(f) in s'. Suppose (p, q) = inbranch(p) in s'. By DC-
B(b), destatus(p) = unfind. Thus, the only effect is to remove the REPORT message.

Thus SDC(S')rSDC(S) is an execution fragment of DC. As proved in Lemma 19,
Case 2a of verifying (3b) for ir = ReceiveReport, minlink(f) is unchanged. Thus

S,(s') = S,(s) for all x : DC.

Now suppose (p, q) # inbranch(p).

Claims about s':

1. REPORT is at head of queue((q,p)), by precondition.

2. (p, q) # core(f), by assumption.
3. (p, q) # inbranch(p), by assumption.

4. dcstatus(p) = find, by Claims 1, 2 and 3 and DC-A(g).
5. p is up-to-date, by Claim 4 and DC-I(a).

6. q is a child of p, by Claims 3 and 5.

262

Section 4.2.7 GHS Simultaneously Simulates TAR, DC, NOT, CON 263

7. findcount(p) > 0, by Claims 1, 5 and 6 and DC-K(a).
8. No FIND message is headed toward p, by Claim 7 and GHS-M.
9. No CONNECT is in queue((r,t)), where (r,t) = core(f) and p E subtree(r), by

Claim 7 and GHS-M.
10. p E testset(f) if and only if testlink(p) # nil, by Claims 8 and 9.

Obviously, r is enabled in SDC(s'). By Claim 10 and inspection, the effects
of 7r are mirrored in SDC(S). Since the proof of Lemma 19, Case 2a of verifying
(3b) for r = ReceiveReport, shows minlink(f) is unchanged, S,(s') = S,(s) for all
xz# DC.

Subcase 2b: (p, q) = core(f) and nstatus(p) = find in s'. Since REPORT(w) is

at the head of queue((q, p)), DC-A(a) implies that inbranch(p) = (p, q). Thus, the

only change is that the REPORT message is requeued. Obviously SDC(s')7rSDC(s)
is an execution fragment of DC, and Sx(s') = S,(s) for all x + DC.

Subcase 2c: (p,q) = core(f), nstatus(p) = find and w < bestwt(p) in s'. As

in Subcase 2b, inbranch(p) = (p, q). The only change is that the REPORT message

is removed. Thus SDC(s')irSDC(s) is an execution fragment of DC. As proved in

Lemma 19, Case 2c of verifying (3b) for r = ReceiveReport, minlink(f) is unchanged

in s. Thus S,(s') = Sx(s) for all x # DC.

(3a) Case 1: inbranch(p) # (p, q).

GHS-A: By DC-A(a), (p,q) # core(f). By DC-A(g), dcstatus(p) = find. The

predicate is vacuously true.

GHS-B: Only the addition of a REPORT message affects this predicate. The

argument is very similar to that in 7r = Receive Test((q, p), 1, c), Case 2, of (3a).

GHS-H: By code (in procedure Report(p)).

No change affects the rest.

Case 2: inbranch(p) = (p, q). If nstatus(p) = find or w < bestwt(p), then no

change affects any predicate. Suppose nstatus(p) # find and w > bestwt(p).

Chapter 5: Minimum Spanning Tree

GHS-A: By DC-B(a), subtree(p) # {p}. By GHS-A(a), nstatus(p) # sleeping,
so the predicate is vacuously true.

GHS-B: Let (p, r) = bestlink(p) in s'. If lstatus((p, r)) = branch, then no change
affects this predicate. Suppose lstatus((p, r)) # branch. As shown in (3b)/(3c),
Claim 35 of Case 1b, bestlink(p) is the minimum-weight external link of f. Thus
lstatus((r,p)) # rejected by TAR-B, and if lstatus((r,p)) = branch, then there is
a CONNECT in queue((r,p)). So the predicate is vacuously true for the CONNECT

added to queue((p, r)). If there is a leftover CONNECT in queue((r, p)), then the
predicate is vacuously true because of the new CONNECT in queue((p, r)).

GHS-C: Let (p, r) = bestlink(p) in s'. Since bestlink(p) is external (as shown

in (3b)/(3c)), no REJECT is in queue((p, r)) by TAR-G. Also since it is external,
lstatus((p, r)) # rejected by TAR-B. Suppose a TEST is in queue((p, r)). By TAR-

D, testlink(p) = (p, r), and by GHS-H, nstatus(p) = find, which contradicts the
assumption for this case. Also since the link is external, no FIND is in queue((p, r))

by DC-D(a).

No change affects the rest.

xi) 7r is ReceiveChangeRoot((q,p)).

(3b)/(3c) There are two cases. First we prove some facts true in both cases.

Claims about s':

1. CHANGEROOT is at the head of queue((q,p)), by precondition.

2. minlink(f) # nil, by Claim 1 and CON-C.
3. rootchanged(f) = false, by Claim 1 and CON-C.
4. p E subtree(q), by Claim 1 and CON-C.
5. minnode(f) E subtree(p), by Claim 1 and CON-C.
6. nlevel(minnode(f)) = level(f), by NOT-D.
7. testset(f) = 0, by Claim 2 and GC-C
8. minlink(f) is the minimum-weight external link of f, by Claim 2 and COM-A.
9. minnode(f) is up-to-date, by Claims 7 and 8 and DC-N.

10. p is up-to-date, by Claims 5, 7 and 9.
11. No REPORT message is headed toward mw-root(f), by Claim 2.

12. No REPORT message is headed toward p, by Claims 4 and 11.
13. dcstatus(p) = unfind, by Claims 7 and 12 and DC-I(b).

14. findcount(p) = 0, by Claim 13 and DC-H(b).

264

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON 265

15. All children of p are completed, by Claims 10 and 14 and DC-K(a).
16. Following bestlinks from p leads along edges in subtree(f) to the minimum-weight
external link of subtree(p), by Claims 7, 10 and 15 and DC-K(b) and (c).

Case 1: lstatus(bestlink(p)) + branch in s'.

ACON(s', 7) = r. Az(s', r) = ChangeRoot(f) for all other x.

More claims about s':

17. lstatus(bestlink(p)) # branch, by assumption.
18. bestlink(p) is not in subtree(f), by Claim 17 and TAR-A(b).
19. bestlink(p) = minlink(f), by Claims 5, 8, 16 and 18.
20. nstatus(q) # sleeping, by Claim 1 and GHS-A(b).
21. awake = true, by Claim 20.

Claims about s:

22. lstatus(bestlink(p)) = branch, by code.

23. CONNECT is in queue(bestlink(p)), by code.

24. MSF does not change, Claims 22 and 23.
25. bestlink(p) = minlink(f), by Claims 19 and 24.
26. rootchanged(f) = true, by Claims 23 and 25.

ChangeRoot(f) is enabled in Sx(s') by Claims 2, 3 and 21, for all x # CON.
The effects of ChangeRoot(f) are mirrored in Sz(s) by Claims 22, 25 and 26 for

x = TAR; and by Claim 26 for x = DC and NOT. 7r is enabled in SCON(s') by

Claim 1; its effects are mirrored in SCON(s) by Claims 6 and 19.

Case 2: lstatus(bestlink(p)) = branch in s'.

ACON(S', 7) = 7r. Az(s', r) is empty for all other x.

More Claims about s':

27. lstatus(bestlink(p)) = branch, by assumption.

28. lstatus(minlink(f)) # branch, by Claim 3 and TAR-H.

29. bestlink(p) is in subtree(f), by Claims 27 and 28 and TAR-A(a).

Chapter 5: Minimum Spanning Tree

30. p f minnode(f), by Claims 16 and 29.
31. bestlink(p) = tominlink(f), by Claims 8, 16 and 29.
32. nlevel(p) = level(f), by Claim 10 and GHS-I.

Obviously, all derived (and non-derived) variables are unchanged, except
cqueues. Thus, S,(s') = Sx(s) for all x # CON. 7r is enabled in SCON(s') by

Claim 1; its effects are mirrored in Sx(s) by Claims 30, 31 and 32.

(3a) GHS-A: By CON-C, (p,q) E subtree(f).

sleeping in s', so the predicate is vacuously true in s.
By GHS-A(a), nstatus(p) #

GHS-B: Essentially the same argument as in ir = R eceiveReport((q, p), w), Case
2 of (3a).

GHS-C: Essentially the same argument as in 7r = R eceiveReport((q, p), w), Case
2 of (3a).

No change affects the rest.

Let PGHS =xI(Px' o Sx) A PGHS-

Corollary 26: PGHS is true in every reachable state of GHS.

11

Proof: By Lemmas 1 and 25..

266

C1

Section 4.3.1: COM is Equitable for HI

4.3 Liveness

We show a path in the lattice along which liveness properties are preserved.
The path is HI, COM, GC, TAR, GHS. In showing the edge from GHS to TAR,
it is useful to know some liveness relationships between GC and DC, and between
COM and CON.

The reason for considering liveness relationships in other parts of the lattice is

to take advantage of the more abstract forms of the algorithm. For instance, the

essence of showing that the GHS algorithm will take steps leading to the simulation

of ComputeMin(f) in TAR is the same as showing that DC takes steps leading to

the simulation of ComputeMin(f) in GC. (These steps are the convergecast of

REPORT messages back to the core.) DC is not cluttered with variables and actions

that are not relevant to this argument, unlike GHS. Thus, we make the argument

for DC to GC, and then apply Lemma 7 for the GHS to TAR situation.

For the same reason, we show that the progression of CHANGEROOT messages

in CON leads to the simulation of ChangeRoot(f) in COM, and that the movement

of CONNECT messages over links in CON leads to Absorb and Merge in COM, and

then apply Lemma 7.

4.3.1 COM is Equitable for HI

The main idea here is to show that as long as there exist two distinct subgraphs,
progress is made; the heart of the argument is showing that some fragment at the

lowest level can always take a step. This requires a global argument that considers

all the fragments.

Lemma 27: COM is equitable for HI via M 1 .

Proof: By Corollary 14, (PHI o S1) A PCOM is true in every reachable state of

PCOM. Thus, in the sequel we will use the HI and COM predicates.

For each locally-controlled action p of HI, we must show that COM is equi-

table for p via M 1 .

i) p is Start(p) or NotInTree(l). Since p is enabled in Si(s) if and only

if it is also enabled in s, and since A1(s, p) includes p, for any state s, Lemma 5

shows that COM is equitable for p via M 1 .

ii) W is Combine(F,F',e). We show COM is progressive for W via M 1 ;

Lemma 6 implies COM is equitable for o via M 1 .

267

268 Chapter 6: Minimum Spanning Tree

Let T. be the set of all pairs (s, 4) of reachable states s of COM and inter-
nal actions 4 of COM enabled in s. For reachable state s, let vV(s) = (x, y, z),
where x is the number of fragments in s, y is the number of fragments f with
rootchanged(f) = false in s, and z is the number of fragments f with minlink(f)
= nil in s. (Two triples are compared lexicographically.)

(1) Let s be a reachable state of COM in E.. We now demonstrate that some
action @ is enabled in s with (s, @) E TV

Claims:

1. awake = true in Si(s), by precondition.
2. F # F' in Si(s), by precondition.
3. awake = true in s, by Claim 1 and definition of S1.
4. There exist f and g in fragments such that subtree(f) = F and subtree(g) = F'

in s, by Claim 2 and definition of S1.

5. f f- g in s, by Claims 2 and 4.

Let I = min{level(f') : f' E fragments} in s. (By Claim 4, fragments is not

empty in s, so I is defined.) Let L = {f' E fragments: level(f') = l}.

Case 1: There exists f' E L with minlink(f') = nil. Let p = ComputeMin(f').

We now show 4 is enabled in s. By Claim 5, the minimum-weight external link (p, q)
of f' exists. By choice of 1, level(f') ; level(fragment(q)). Obviously (s, 4) E T,

Case 2: For all f' E L, minlink(f') # nil.

Case 2.1: There exists f' E L with rootchanged(f') = false. Let 4 =

ChangeRoot(f'). 4 is enabled in s by Claim 3 and the assumption for Case 2.

Obviously (s,4) E TV.

Case 2.2: For all f' E L, rootchanged(f') = true.

Case 2.2.1: There exists fragment g' E L with level(f') > 1, where f' =

fragment(target(minlink(g'))). (By COM-G, f' is uniquely defined.) Let # =

A bsorb(f', g'). Obviously 4' is enabled in s, and (s, 4) E 'F.

Case 2.2.2: There is-no fragment g' E L such that level(f') > 1, where f' =
fragment(target(minlink(g'))). Pick any fragment fi such that level(fi) = 1. For

i > 1, define f, to be fragment(target(minlink(f;_1))).

More claims about s':

Section 4.3.1: COM is Equitable for HI

6. fi is uniquely defined, for all i > 1. Proof: If i = 1, by definition. Suppose it is
true for i - 1 > 1. Then it is true for i by COM-G, since minlink(fi) is well-defined
and non-nil.
7. minlink(f2) is the minimum-weight external link of fi, for all i > 1, by COM-A.
8. fi # fi-1, for all i > 1, by Claims 6 and 7 and definition of fi.
9. If minedge(fi) 5 minedge(fi-1) for some i > 1, then fi+1 is not among fi,..., fi,
by Claims 7 and 8, and since the edge-weights are totally ordered.
10. There are only a finite number of fragments, by COM-D and the fact that V(G)
is finite.

By Claims 9 and 10, there is an i > 1 such that minedge(f;) = minedge(f._1).

Let b = Merge(fi, f_1). Obviously b is enabled in s, and (s, b) E Tw.

(2) Consider a step (s', r, s) of COM, where s' is reachable and in E., (s', 7r)

X., and s E EW.

(a) v,(s) < v,(s'), because there is no action of COM that increases the
number of fragments; only a Merge action increases the number of fragments with
minlink equal to nil or rootchanged equal to false, and it simultaneously causes the
number of fragments to decrease.

(b) Suppose (s', 7r) E IQ,. Then v,(s) < v,(s'), since Absorb and Merge de-
crease the number of fragments, ComputeMin maintains the number of fragments
and the number of fragments with rootchanged = false and decreases the number

with minlink = nil, and ChangeRoot maintains the number of fragments and de-
creases the number with rootchanged = false.

(c) Suppose (s', r) V Tw, ?k is enabled in s', and (s', /) E Tp. Then / is

still enabled in s, since the only possible values of r are Start(p), InTree(l) and

NotInTree(l), none of which disables $. By definition, (s, $) E IW.

iii) p is InTree((p,q)). We show COM is progressive for V via Mi; Lemma

6 implies that COM is equitable for W via M 1 .

Let T, be the set of all pairs (s, /) of reachable states a of COM and actions

4 of COM enabled in s such that 4 is either an internal action or is 'p.

For reachable state s, let v,(S) = VCombine(F,F',e)(s).

269

Chapter 6: Minimum Spanning Tree

(1) Let s be a reachable state of COM in E.. We now demonstrate that some
action 0 is enabled in s with (s, P) E TIw .

If (p,q) E F for some F in S1(s), then (p,q) E subtree(fragment(p)) in s. Let
= In Tree((p, q)).

Suppose (p, q) is the minimum-weight external link of some F in Si(s).
Then there is more than one fragment. Essentially the same argument as in
o = Combine(FF',e) shows that some Absorb(f',g'), or Merge(fi,fai), or
ChangeR oot(f'), or ComputeMin(f') is enabled in s.

(2) As in 'p = Combine(F, F', e), after noting that 7r : In Tree((p, q)). 0

4.3.2 GC is Equitable for COM

The main part of the proof is showing that eventually every node is removed
from testset(f), so that eventually ComputeMin(f) can occur. As in Section 4.3.1,
a global argument is required, because a node might have to wait for many other
fragments to merge or absorb until the level of the fragment at the other end of p's
local minimum-weight external link is high enough.

Lemma 28: GC is equitable for COM via M 2.

Proof: By Corollary 16, (PeOM o S2) APGC is true in every reachable state of GC.
Thus, in the sequel we will use the HI, COM, and GC predicates.

For each locally-controlled action ' of COM, we must show that GC is equi-
table for 'p via M 2.

i) 'p is not ComputeMin(f) for any f. Since ' is enabled in s if and only if
'p is enabled in S2(s), and since A2 (s, p) includes W, for all s, Lemma 5 shows that
GC is equitable for ' via M 2.

ii) W is ComputeMin(f). We show GC is progressive for p via M 2 ; Lemma

6 implies that GC is equitable for 'p via M 2.

Let 41, be the set of all pairs (s, 7r) of reachable states s of GC and internal

actions 7 of GC enabled in s. For reachable state s, let v,(s) be a quadruple with

the following components:

1. the number of fragments;
2. the number of fragments with rootchanged = false;

270

Section 4.3.2: GC is Equitable for COM

3. the number of fragments with minlink = nil; and
4. the sum of the number of nodes in each fragment's testset.

(1) Let s be a reachable state of GC in E,. So ComputeMin(f) is enabled in

S 2(S). We now show that some 4 is enabled in s with (s, @) E TV.

Let g be the directed graph defined as follows. There is one vertex of 9 for

each element of fragments in s. We now specify the directed edges of !. Let v and

w be two vertices of 9, corresponding to fragments f' and g'. There is a directed

edge from v to w in 9 if and only if there is a node p in testset(f') whose minimum-

weight external link is (p, q), fragment(q) = g', and level(f') > level(g'). We will call

fragment f' a sink if its corresponding vertex in g is a sink. (It should be obvious

that there is at least one sink.)

Case 1: There is a sink f' such that testset(f') # 0. Let 4 = TestNode(p) for

some p E testset(f'). Since f' is a sink, 4 is enabled in s. Obviously (s, 4) E Tv.

Case 2: For all sinks f', testset(f') = 0.

Case 2.1: There is a sink f' such that minlink(f') = nil. Let 4 =

ComputeMin(f'). Since ComputeMin(f) is enabled in S 2 (s), there are at least

two fragments, so there is an external link of f'. By GC-B, accmin(f') # nil. Thus

is enabled in s. Obviously (s, 0) E T V .

Case 2.2: For all sinks f', minlink(f') # nil.

Case 2.2.1: There is a sink f' such that rootchanged(f') = false. Let 4 =

ChangeRoot(f'). Since ComputeMin(f) is enabled in S 2 (s), minlink(f) = nil. By

COM-C then, awake = true. Thus 4 is enabled in s. Obviously (s, 4) E Tw.

Case 2.2.2: For all sinks f', rootchanged(f') = true. By COM-A, the following

two cases are exhaustive.

Case 2.2.2.1: There is a sink f' such that level(g') > level(f'), where g' =

fragment (target(minlink(f'))). Let 4 = Absorb(g',f'). Since f' is a sink, 4' is
enabled in s. Obviously (s, 4) E Iw.

Case 2.2.2.2: For all sinks f', level(g') = level(f'), where g' = fragment(target

(minlink(f'))). Let m = min{level(f') : f' is a sink}. Let f' be a sink with

level(f') = m, and let g' = fragment(target(minlink(f'))). If g' is not a sink, then

from the vertex in 9 corresponding to g' a sink is reachable (along the directed edges)

2T1

Chapter 6: Minimum Spanning Tree

whose corresponding fragment is a sink with level less than m, contradicting our
choice of m. Thus g' is a sink. Since the edge weights are totally ordered, by COM-
A there are two sinks f' and g' at level m such that minedge(f') = minedge(g').

Let 0 = Merge(f', g'). Obviously 0 is enabled in s, and (s, 4) E T'.

(2) Consider step (s', 7r, s) of GC, where s' is reachable and in E., (s', 7r) (X

and s E E,

(a) Obviously the external actions of GC do not change v.. This fact, together

with (b) below, shows that v,(s) < v,(s').

(b) Suppose (s', 7r) E Tw. If 7r = TestNode(p), then component 4 of v decreases

and the rest stay the same. If 7r = ComputeMin(f'), then component 3 of v
decreases and the rest stay the same. If 7r = ChangeRoot(f'), then component 2 of

v. decreases and the rest stay the same. If 7r = Merge(f', g') or A bsorb(f', g'), then

component 1 of v. decreases.

(c) Suppose (s',7r) Tp, iP is enabled in s', and (s', /) E Tp. Since the only

choice for 7 is an external action of GC, obviously # is enabled in s and (s, 0) E TI.

4.3.3 TAR is Equitable for GC

The substantial argument here is that a node p's local test-accept-reject proto-

col eventually finishes, thus simulating TestNode(p) in GC. Again, we need a global

argument: to show that the recipient of p' TEST message eventually responds to it,
we must show that the level of the recipient's fragment eventually is large enough.

This proof is where the state component of the set T in the definition of progressive

is used. The receipt of a TEST message will generally make progress, but if it is

requeued and the state is unchanged, no function on states can decrease; thus, we

exclude such a state-action pair from T.

Lemma 29: TAR is equitable for GC via M 3 .

Proof: By Corollary 18, (PGC oS3) A PTAR is true in every reachable state of TAR.

Thus, in the sequel we will use the HI, COM, GC, and TAR predicates.

For each locally-controlled action V of GC, we must show that TAR is equitable

for p via M 3 .

2T72

Section 4.3.3: TAR is Equitable for GC

i) 'p is not TestNode(p) for any p, or InTree(1) or NotInTree(1) for

any 1. Since ' is enabled in s if and only if 'p is enabled in S3 (s), and since A 3 (s, ')
includes W, for all s, Lemma 5 implies that TAR is equitable for ' via M 3 .

ii) 'p is TestNode(p). We show TAR is progressive for ' via M 3 ; Lemma 6

implies that TAR is equitable for 'p via M 3. In the worst case, we have to wait for

the levels to have the correct relationship. This requires a "global" argument.

Let T. be the set of all pairs (s, 7r) of reachable states a of TAR and internal

actions -r of TAR enabled in s, such that if 7r = Receive Test((q, r), 1, c), then in s

either level(fragment(r)) > 1, or there is more than one message in tarqueuer((q, r)).

For reachable state s, let v,(s) be a 10-tuple of:

1. the number of fragments in s,
2. the number of fragments f with rootchanged(f) = false in s,
3. the number of fragments f with minlink(f) = nil in s,
4. the number of nodes q such that q E testset(fragment(q)) in s,
5. the number of links 1 such that either lstatus(l) = unknown, or else lstatus(l) =
branch and there is a protocol message for 1, in s,
6. the number of links 1 such that no ACCEPT or REJECT message is in tarqueue(l)

in s,
7. the number of links I such that no TEST message is in tarqueue(l) in s,
8. the number of messages in tarqueueq((q, r)), for all (q, r) E L(G), in s,
9. the number of messages in tarqueueqr((q, r)), for all (q, r) E L(G), in s,
10. the number of messages in tarqueuer((q, r)), for all (q, r) E L(G), that are

behind a TEST message in s.

(1) Let a be a reachable state of TAR in E.. We show that there exists an

action 0 enabled in s such that (s, 0) E %w.

Let I = min{level(f) : f E fragments}.

Case 1: All fragments f at level I have rootchanged(f) = true. Then some

A bsorb(f, g) or Merge(f, g) is enabled in s, as argued in Lemma 27, Case 2.2.1 for

'p = Combine. Let # be one of these enabled actions.

Case 2: level(f) = I and rootchanged(f) # true, for some f E fragments.

Claims about s:

1. p E tests et(fragment(q)), by precondition of 'p.

273

Chapter 6: Minimum Spanning Tree

2. awake = true, by Claim 1 and GC-C and COM-C.

Case 2.1: minlink(f) # nil. Let # = ChangeRoot(f). By Claim 2 and assump-
tion for Case 2.1, 7P is enabled in s.

Case 2.2: minlink(f) = nil.

Case 2.2.1: testset(f) = 0.

3. Either there is no external link of f, or accmin(f) # nil, by GC-B and assumption
for Case 2.2.1.
4. fragment(p) # f, by Claim 1 and assumption for Case 2.2.1.
5. accmin(f) # nil, by Claims 3 and 4.

Let b = ComputeMin(f). It is enabled in s by Claim 5 and assumption for
Case 2.2.1.

Case 2.2.2: testset(f) # 0. Let q be some element of testset(f).

Case 2.2.2.1: testlink(q) = nil. Let # = SendTest(q). It is enabled in s by
assumptions for Case 2.2.2.1.

Case 2.2.2.2: testlink(q) # nil. By TAR-C(a), testlink(q) = (q, r), for some r.
There is a protocol message for (q, r), by TAR-C(c). So there is some message at the
head of at least one of the six queues comprising tarqueue((q, r)) and tarqueue((r, q)).
At least one of the following is enabled in s: Receive Test(k, ', c'), ReceiveAccept(k),
ReceiveReject(k), ChannelSend(k,m), and ChannelRecv(k,m), where k is either
(q, r) or (r, q), and m E M.

Suppose in contradiction that there is no # enabled in s such that (s,O) E
X.,. That is, by definition of xI., the only message in tarqueue((q, r)) (if any) is a
TEST(l', c') in tarqueuer((q, r)) with ' > level(fragment(r)); and the only message in
tarqueue((r, q)) (if any) is a TEST(l", c") in tarqueueq((r, q)) with I" > fragment(q)).

Suppose the protocol message for (q, r) is a TEST(l', c') in tarqueue((q, r)),
with lstatus((q,r)) 5 rejected. By TAR-E(b), ' = level(fragment(q)). Since

fragment(q) = f, ' = 1 by choice of f. But ' > level(fragment(r)), by defini-

tion of T., which contradicts the definition of 1.

Suppose the protocol message for (q, r) is a TEST(l", c") in tarqueue((r, q)), with

status((r, q)) = rejected. By TAR-E(c), I" = level(fragment(q)). But by definition

of W1, II" > level(fragment(q)).

2T7A

Section 4.3.3: TAR is Equitable for GC

(2) Let (s', 7r, s) be a step of TAR, where s' is reachable and is in E., (s', 7r) (

X., and S E EV.

(a) If (s', 7r) (T,, then r is either InTree(l), NotInTree(l), or Start(p), or

else 7r is Receive Test((q, r), 1, c) and in s, I > level(fragment(r)) and there is only

one message in tarqueuer((q, r)). In all cases, no component of v. is changed, so

v,(s) = vW(s').

Part (b) below finishes the proof that v,(s) 5 v,(s').

(b) Suppose (s',Er) E T,. We show v,(s) < v,,(s').

* Suppose ir = ChannelSend(l, m). Component 8 of v decreases and components

1 through 7 do not change.

* Suppose r = ChannelRecv(l, m). Component 9 of v. decreases and components

1 through 8 do not change.

* Suppose ir = Send Test(q). Let (q, r) be the minimum-weight link of q with

lstatus unknown in s'. By precondition, testlink(q) = nil in s'. By TAR-D,
there is no protocol message for (q, r) in s', so there is no TEST message in

tarqueue((q, r)) in s'. One is added in s. Thus component 7 of v. decreases

and components 1 through 6 do not change. If there is no link of q with lstatus

unknown, then q is removed from testset(fragment(q)). Thus component 4 of

v decreases and components 1 through 3 do not change.

e Suppose ir = Receive Test((q,r), l, c) and in s' either I < level(fragment(r)) or

there is more than one message in tarqueuer((q, r)).

Case 1: 1 < level(fragment(r)) and either c # core(fragment(r)) or testlink(r) #
(r, q) in s'.

Claims about s':

1. TEST(l, c) message is in tarqueue((q, r)), by precondition.

2. c # core(fragment(r)) or testlink(r) # (r, q), by assumption.

3. If c # core(fragment(r)), then Istatus((q, r)) # rejected, by TAR-E(c).

4. If testlink(r) # (r, q), then there is no protocol message for (r, q), by TAR-D.

5. If testlink(r) # (r,q), then lstatus((q,r)) # rejected, by Claim 4 and definition.

275

Chapter 6: Minimum Spanning Tree

6. The TEST(l, c) message in tarqueue((q, r)) is a protocol message for (q, r), by

Claims 2, 3 and 5.
7. testlink(q) = (q, r), by Claim 6 and TAR-D.

8. There is no ACCEPT or REJECT message in tarqueue((r, q)), by Claims 6 and 7
and TAR-C(c).

If lstatus((q, r)) is changed from unknown to rejected, then component 5 of v
decreases and components 1 through 4 are unchanged. Otherwise, an ACCEPT or

REJECT message is added to tarqueue((r,q)) in s, causing component 6 of v to

decrease by Claim 8, while components 1 through 5 stay the same.

Case 2: 1 < level(fragment(r)) and c = core(fragment(r)) and testlink(r) =

(r, q) in s'.

Claims about s':

1. TEST(l, c) is in tarqueue((q, r)), by precondition.

2. c = core(fragment(r)), by assumption.

3. testlink(r) = (r, q), by assumption.

Case 2.1: There is no link (r,t), t i q, with istatus unknown in s'. Then q
Is removed from testset(fragment(q)) in s, causing component 4 of v. to decrease

while components 1 through 3 do not change.

Case 2.2: There is a link (r, t), t # q, with lstatus((r, t)) = unknown in s'.

4. lstatus((r, q)) # rejected, by Claim 3 and TAR-K.

By Claim 4, Cases 2.2.1 and 2.2.2 are exhaustive.

Case 2.2.1: lstatus((r,q)) = unknown in s'. It is changed to rejected in s,
causing component 5 of v. to decrease and components 1 through 4 to stay the

same.

Case 2.2.2: lstatus(r,q)) = branch.

Case 2.2.2.1: The TEST(l, c) message in tarqueue((q, r)) is a protocol message

for (r, q).

5. The TEST(l, c) message in tarqueue((q, r)) is the only protocol message for (r, q),
by TAR-C(c).

276

Section 4.3.3: TAR is Equitable for GC

Since the only protocol message for (r, q) is removed in s, component 5 of v
decreases and components 1 through 4 stay the same.

Case 2.2.2.2: The TEST(l, c) message in tarqueue((q, r)) is not a protocol mes-
sage for (r, q).

6. lstatus((q, r)) # rejected, by assumptions for Case 2.2.2.2.

7. There is a TEST(l', c') message in tarqueue((r, q)) and Istatus((r, q)) = unknown,
by Claims 1, 2, 3, 6 and TAR-P.

But Claim 7 contradicts the assumption for Case 2.2.2.

Case 3: 1 > level(fragment(r)) and there is more than one message in

tarqueuer((q, r)) in s'. All TEST messages in tarqueuer((q, r)) are protocol mes-

sages for the same link, either (q, r) or (r, q). Since by TAR-D and TAR-C(c) there

is never more than one protocol message for any link, this TEST(l, c) message is

the only one. The TEST(l, c) message is put at the end of tarqueuer((q, r)) in s,
decreasing component 10 and not changing components 1 through 9.

" Suppose 7r = ReceiveAccept((q,r)). Since r is removed from testset(frag-

ment(r)), component 4 of v, decreases while components 1 through 3 stay

the same.

" Suppose 7r = ReceiveReject((q,r)). If there are no more unknown links, then

r is removed from testset(fragment(r)), decreasing component 4 of v, and not

changing components 1 through 3. Suppose there is another unknown link.

Claims about s':

1. REJECT is in tarqueue((q, r)), by precondition.

2. There is a link (r, t), t # q, with lstatus((r, t)) = unknown, by assumption.

3. testlink(r) = (r, q), by Claim 1 and TAR-D.

4. The REJECT in tarqueue((q, r)) is the only protocol message for (q, r), by Claim

3 and TAR-C(c).
5. lstatus((r, q)) # rejected, by Claim 3 and TAR-K.

By Claim 5, lstatus((r, q)) # rejected. If lstatus((r, q)) = unknown in s', it is

changed to rejected in s. If lstatus((r, q)) = branch in s', then it stays branch in s,
but there are no more protocol messages for (r, q) in s, by Claim 4. Thus component

5 of v. decreases while components 1 through 4 stay the same.

277

Chapter 6: Minimum Spanning Tree

* Suppose r = ComputeMin(f). Component 3 of oW decreases and components
1 and 2 are unchanged.

e Suppose r = ChangeRoot(f). Component 2 of v. decreases and component 1
is unchanged.

e Suppose 7r = Merge(f, g) or A bsorb(f, g). Component 1 of v decreases.

(c) Suppose (s', 7r) '', T is enabled in s', and (s',,) E TV. Then
b is still enabled in s and (s, E) E , since the only possibilities are: 7r =

InTree(l), NotInTree(l), or Start(p), or else 7r = Receive Test((q, r), l, c) and in s',
I > level(fragment(r)) and there is only one message in tarqueuer((q, r)).

iii) W is InTree((p,q)). We show TAR is progressive for W via M 3 ; Lemma
6 implies that TAR is equitable for W via M 3. We simply show that if (p, q) =
minlink(f), but lstatus((p, q)) is not yet branch, then eventually ChangeRoot(f)
will occur.

Let TV be all pairs (s, b) of reachable states s and actions 4 enabled in s such
that one of the following is true: (Let f = fragment(p) in s.)

* 0 = In Tree((p, q)), or

e (p, q) = minlink(f) in s, and y = ChangeRoot(f).

For reachable state s, let vV(s) be 1 if (p, q) = minlink(f) and ChangeR oot(f)
is enabled in s, and 0 otherwise.

(1) Let a be a reachable state of TAR in EV. We show that there exists an
action 4 enabled in a such that (s, 4) E TV. Let f = fragment(p) in s.

Claims about s:

1. awake = true, by precondition of W.
2. (p, q) E subtree(f) or (p, q) = minlink(f), by precondition of W.
3. answered((p, q)) = false, by precondition of p.
4. latatus((p, q)) # rejected, by Claim 2 and TAR-B.

By Claim 4, the following two cases are exhaustive.

278

Section 4.3.3: TAR is Equitable for GC 279

Case 1: lstatus((p, q)) = branch. Let b = In Tree((p, q)). It is enabled in s by
Claims 1 and 3 and assumption for this case, and (s, k) E IW'.

Case 2: lstatus((p, q)) = unknown.

5. minlink(f) = (p, q), by Claim 2 and TAR-A(a).

6. rootchanged(f) = false, by Claim 5 and TAR-H.

Let k = ChangeRoot(f). It is enabled in s by Claims 1, 5 and 6, and (s, #) E

(2) Let (s', r, s) be a step of TAR, where s' is reachable and is in E,, (s', 7r)

X., and s E EW.

(a) Suppose (s', 7r) V %P,. We show that no possibility for 7r can affect whether

or not ChangeRoot(f) is enabled, i.e., v,(s) = v,(s'). This together with (b) below

shows that vv(s) ; vW(s').

Case 1: ChangeRoot(f) is enabled in s'. No action sets awake to false. No

action (other than ChangeRoot(f)) sets rootchanged(f) to false. No action sets

minlink(f) to nil. f remains in fragments because 7r is not A bsorb(g, f), Merge(f, g)

or Merge(g, f), for any g, since rootchanged(f) = false.

Case 2: rootchanged(f) is not enabled in s'. By precondition of <p, awake is true

in s'. If rootchanged(f) = true in s', then the same is true in s, because the only

action that sets it to false is the Merge that created f. If minlink(f) = nil in s', then

(p, q) # minlink(f), so even if minlink(f) becomes nonnil (by ComputeMin(f)), v
remains 0.

(b) Suppose (s', ir) E T,. Since (s', 7r) (Xp, ir 5 In Tree((p, q)). Thus

minlink(f) = (p, q) in s' and ir = ChangeRoot(f). Obviously v goes from 1 to

0.

(c) Suppose (s', 7r) V xP', # is enabled in s', and (s', @) E ,. The same

argument as in (2a), Case 1, applies.

280 Chapter 6: Minimum Spanning Tree

iv) W is NotlnTree((p,q)). We show that TAR is progressive for p via

M 3 ; Lemma 6 implies that TAR is equitable for p via M 3 . The goal is to show
that if q E nodes(fragment(p)) and (p, q) V subtree(fragment(p)), then eventually
lstatus((p, q)) = rejected. This requires a global argument, as for TestNode(p),
because it could be that some unknown link will never be tested until only one
fragment remains.

Let , be X'TestNode(p) U {(s, Notln Tree((p, q))) : s reachable, NotInTree((p, q))
enabled in s}.

Let v,(s) = VTestNode(p)(S) for all reachable states s.

Let v, be the same as for TestNode(p).

(1) Let s be a reachable state of TAR in E.. We show that there exists an
action @ enabled in s such that (s, @) E 'F'p.

lstatus((p,q)) # branch, by TAR-A(a). If lstatus((p,q)) = rejected, then let
= NotInTree((p,q)).

Suppose Istatus((p, q)) = unknown in s. The rest of the argument is just like
that for TestNode(p), except for the following cases.

Case 2.1: ChangeR oot(f) is enabled in s because awake = true by the precon-
dition of p.

Case 2.2.1: We show that ComputeMin(f) is enabled in s by showing that
there are at least two fragments, as follows. If there is only one fragment, then f =
fragment(p), and p V testset(f) (since we assume testset(f) = 0). But since we also
assume lstatus((p, q)) = unknown, TAR-I gives as contradiction. Thus, there is an
external link of f, and by GC-B, accmin(f') # nil.

(2) Like TestNode(p), after noting that 7r cannot be NotIn Tree((p, q)). 5

4.3.4 DC is Progressive for an Action of GC

The main idea is to show that REPORT messages converge on the core. This
argument is local to one fragment.

Lemma 30: DC is progressive for ComputeMin(f) via M 4.

Section 4.3.4: DC is Progressive for an Action of GC

Proof: By Corollary 20, (PGC o S 4) A PDC is true in every reachable state of DC.
Thus, in the sequel we will use the HI, COM, GC and DC predicates.

Let T. be the set of all pairs (s, 0) of reachable states s of DC and actions ?k of

DC such that in s, a REPORT(w) is in some dcqueue((q,p)) and either q is a child of

p, or else destatus(p) = unfind and p = mw-root(f); and @ E { ChannelSend((q,p),
REPORT(w)), ChannelRecv((q,p), REPORT(w)), ReceiveReport((q,p),w)}.

For reachable state s, let v,(s) be a quadruple with the following components:

1. The number of nodes p E nodes(f) with dcstatus(p) = find.

2. The number of REPORT messages in dcqueueq((q,p)), for all (p, q) E subtree(f)

such that either q is a child of p or else p = mw-root(f) and dcstatus(p) = unfind.

3. The number of REPORT messages in dcqueueqp((q,p)) for all (p, q) E subtree(f)

such that either q is a child of p or else p = mw-root(f) and dcstatus(p) = unfind.

4. The number of REPORT messages in dcqueuep((q, p)) for all (p, q) E subtree(f)

such that either q is a child of p or else p = mw-root(f) and dcstatus(p) = unfind.

(1) Let s be a reachable state of DC in E.. We show that there exists an

action 4 enabled in s such that (s, 4) E I'.

Claims about s:

1. minlink(f) = nil, by precondition.

2. accmin(f) # nil, by precondition.

3. testset(f) = 0, by precondition.

4. There is an external link of f, by Claim 2 and GC-A.

5. No FIND message is in subtree(f), by Claim 3 and DC-D(c).

6. If dcstatus(p) = find, then a REPORT message is in subtree(p) headed toward p,
for any p E nodes(f), by Claim 3 and DC-I(b).

Suppose a REPORT(w) is in some dcqueue((q, p)) and q is a child of p. By

DC-B(a), inbranch(p) # (p,q). Obviously, (p,q) # core(f), so by DC-A(g),
destatus(p) = find. By Claim 5 and DC-O, the REPORT(w) is the only message in

dcqueue((q, p)). If it is in dcqueueq((q, p)), let 4 = ChannelSend((q, p), REPORT(w));

if it is in dcqueueqp((q,p)), let 4 = ChannelRecv((q,p), REPORT(w)); if it is in

dcqueuep((q,p)), let 4 = ReceiveReport(w). Obviously, 4 is enabled in s, and

(s, @) E 1Fp.

Suppose no REPORT is in any dcqueue((q, p)) with q a child of p. By

Claim 6, dcstatus(p) = unfind for all p E nodes(f). Then by Claims 1, 4

281

Chapter 6: Minimum Spanning Tree

and 5, a REPORT(w) is in dcqueue((q,p)), where (p,q) = core(f) and p =
mw-root(f). By Claim 5 and DC-O, the REPORT(w) is the only message in

dcqueue((q, p)). If it is in dcqueueq((q, p)), let # = ChannelSend((q, p), REPORT(w));
if it is in dcqueueqp((q,p)), let 4' = ChannelRecv((q,p), REPORT(w)); if it is in
dcqueuer((q,p)), let 4 = ReceiveReport(w). Obviously, # is enabled in s, and

(s, 0) E TV.

(2) Let (s', 7r, s) be a step of DC, where s' is reachable and is in E,, (s', 7) V X,
and s E E,. We note the following claims about s'.

1. testset(f) = 0, by precondition.

2. minlink(f) = nil, by precondition.
3. No FIND is in subtree(f), by Claim 1 and DC-D(c).

(a) To show v,(s) <; v,(s'), we show that v,(s) = v,(s') if (s', r) I F.; this

together with part (b) below gives the result. Suppose (s', 7r) V W .

TestNode(p) is not enabled, for p E nodes(f), by Claim 1. ChangeRoot(f),
Merge(f, g), Merge(g, f), and Absorb(g, f) are not enabled, for g E fragments,
by Claim 2. ReceiveFind((p, q)), AfterMerge(p, q), ChannelSend((p, q), FIND), and

ChannelRecv((p, q), FIND) are not enabled, for p E nodes(f), by Claim 3. Thus r is

none of the above actions.

If r = ChannelSend((q,p), REPORT(w)) or ChannelRecv((q,p), REPORT(w)),
for (q, p) E subtree(f), then v. is unchanged, since (s', r) g w.

Suppose i7 = ReceiveReport((q, p), w).

Case 1: p is a child of q. By DC-A(a), inbranch(p) = (p, q). By DC-B(b),
dcstatus(p) = unfind. So the only change is the removal of the message. Since

p is a child of q, p # mw-root(f), so v. is unchanged.

Case 2: (pq) = core(f) and p # mw-root(f). By DC-A(a), inbranch(p) = (p, q).

The only effect is that either the message is requeued (if dcstatus(p) = find), or the

message is removed (if dcstatus(p) = unfind); in both cases, v. is unchanged.

Case 3: (p, q) = core(f), p = mw-root(f), and dcstatus(p) = find. The only effect

is that the message is requeued, so v. is unchanged.

Suppose 7r = Merge(g, h). By precondition, minlink(g) = minlink(h) # nil in

s'. So f # g and f # h. Obviously v. is unchanged.

282

Section 4.3.5: CON is Progresive for Some Actions of COM

Suppose r = Absorb(g, h). By precondition, minlink(h) # nil in s', so f # h
by Claim 2. If f # g, then obviously v, is unchanged. Suppose f = g. As in
the proof of condition (3a) in Lemma 19 for viii) 7r = Absorb, Case 2, no REPORT

message is headed toward minnode(h) and dcstatus(r) = unfind for all r E nodes(h)
in s'. Thus v does not change.

The remaining actions (not mentioned above) obviously do not affect v.

(b) Suppose (s', 7r) E %,. We show v,(s) < v,(s'). If 4 = ChannelSend(l, m),
component 2 of v decreases and component 1 is unchanged. If 4 = Channel-
Recv(l, m), component 3 of v. decreases and components 1 and 2 are unchanged.

Suppose 4 = ReceiveReport((q, p), w).

Case 1: q is a child of p. By DC-B(a), inbranch(p) # (p, q). By DC-A(g),
dcstatus(p) = find. If findcount(p) = 1 in s', then component 1 of v. decreases.
Otherwise, component 4 decreases and components 1 through 3 are unchanged.

Case 2: q is not a child of p, p = mw-root(f), and destatus(p) = unfind. So
(p, q) = core(f). By DC-P, w > bestwt(p). But this contradicts (s', 7r) g X,.

(c) Suppose (s', 7r) (Tv, 4 is enabled in s', and (s', 4) E T.. We show that 4
is still enabled in s and (s, 4) e ,. Since the queues are FIFO, there is no way to
disable 4.

It remains to show that (s, 4) is still in T'.

One possible way (s, 4) could no longer be in T. is if the position of mw-root(f)
changes, i.e., if 7r is Merge(f,g), Merge(g, f), A bsorb(f, g), or A bsorb(g, f), for some
fragment g. But by Claim 2, minlink(f) = nil. Thus r cannot be Merge(f,g),
Merge(g, f), or Absorb(g, f). Suppose ir = Absorb(f, g). Let core(f) = (p, q), p =
mw-root(f), and q be the endpoint of core(f) closest to target(minlink(g)) in s'.

The minimum-weight external link of f has smaller weight than minlink(g), which

by COM-A is the minimum-weight external link of g. Thus mw-root(f) does not
change after A bsorb(f, g).

Another way is if the position of core(f) changes. This only happens if r is

Merge(f, g), Merge(g, f) or Absorb(g, f), which we showed is impossible.

The third way is if dcstatus(p) changes from unfind to find, where p = mw-
root(f). This only happens if 7r = ReceiveFind((q,p)) for some q. But by Claim 3,
no FIND is in subtree(f), and by DC-D(a), no FIND can be in an external link. [1

283

Chapter 6: Minimum Spanning Tree

4.3.5 CON is Progressive for Some Actions of COM

To show that CON is progressive for Merge and Absorb, we just show that

the CONNECT message on the minlink makes it across. For ChangeRoot, we show

that the chain of CHANGEROOT messages eventually reaches the minnode. These

arguments are all local to one fragment.

Lemma 31: CON is progressive for Merge(f,g), Absorb(f,g) and ChangeRoot(f)

via M 6 .

Proof: By Corollary 24, (PCoM o S 6) A PCON is true in every reachable state of

CON. Thus, in the sequel we will use the HI, COM, and CON predicates.

i) Wp is Merge(fg). Let (p, q) = minedge(f). Let T. be the set of all pairs

(s, b) of reachable states s of CON and actions b of CON enabled in s, such that

4 E { ChannelSend((q,p), CONNECT(l)), ChannelRecv((q, p), CONNECT(l)), Merge

(f,g)}.

For reachable state s of CON, let v,(s) = (x, y), where x is the number of

messages in cqueueq((q, p)) in s, and y is the number of messages in cqueueqp((q, p))

in s.

(1) Suppose s is a reachable state of CON in E.. We show that there is a 4
enabled in a such that (S, #) E IF.

Claims about s:

1. f - g, by precondition.

2. minedge(f) = minedge(g) = (p, q), by precondition.

3. rootchanged(f) = true, by precondition.

4. rootchanged(g) = true, by precondition.

5. A CONNECT(l) message is in cqueue(k), for some external link k of f, by Claim

3.
6. A CONNECT(l) message is in cqueue((p, q)), by Claims 2, 5 and CON-D.

7. A CONNECT(m) message is in cqueue(k), for some external link k of g, by Claim

4.
8. A CONNECT(m) message is in cqueue((q,p)), by Claims 2, 6 and CON-D.

9. 1 = level(f), by Claim 5 and CON-D.
10. m = level(g), by Claim 7 and CON-D.
11. level(f) level(g), by Claim 2 and COM-A.
12. level(g) ! level(f), by Claim 2 and COM-A.

284

Section 4.3.5: CON is Progresive for Some Actions of COM

13. level(f) = level(g), by Claims 11 and 12.
14. 1 = m, by Claims 9, 10 and 13.
15. No CHANGEROOT message is in cqueue((q,p)), by Claim 1 and CON-C.
16. Exactly one CONNECT message is in cqueue((q, p)), by Claims 7, 8 and CON-D.

If CONNECT(l) is in cqueueq((q,p)), then let 4 = ChannelSend((q,p), CON-
NECT(l)). If CONNECT(l) is in cqueuep((q,p)), then let 4 = ChannelRecv((q,p),

CONNECT(l)). If CONNECT(l) is in cqueuep((q,p)), then let 4 = Merge(f,g). It is

easy to see in all cases that 4 is enabled in s and (s, 4) E Tp.

(2) Suppose (s', 7r, s) is a step of CON, s' is reachable and in E., (s', 7r) X

and s E EW.

(a) The only actions that can increase v, are ComputeMin(g), and Change-

Root(g). (Even though ChannelSend((q, p), m) would increase y, it would simulta-

neously decrease x.) By Claim 2, ComputeMin(g) is not enabled in s'. By Claim 4,

ChangeRoot(g) is not enabled in s'.

(b) Suppose (s',7r) E 'h,. Since (s',7r) 0 Xp, ir # Merge(f, g). Obviously, the

other two choices for 4 decrease v,,.

(c) Suppose (s', ir) 0 'I,, @ is enabled in s' and (s', 7) E T,. We show V) is

enabled in s and (s, 4) E Tw. If # = ChannelSend or ChannelRecv, then it can only

be disabled by occurring. If 7P = Merge(f, g), then since s E EV, 4 is still enabled

in s (by the argument in part (1)). In all cases, (s, 4) E T .

ii) <p is Absorb(fg). Let (q,p) = minlink(g). Let xI', be the set of all pairs

(s, 4) of reachable states s of CON and actions 4 of CON enabled in s, such that

4' e { ChannelSend((q, p),CONNECT(l)), ChannelRecv((q,p), CONNECT(l)), Absorb

(f, g)}.

For reachable state s of CON, let v,(s) = (x, y), where x is the number of

messages in cqueueq((q,p)) in s, and y is the number of messages in cqueuep((q,p))

in s.

(1) Suppose s is a reachable state of CON in E.. We show that there is a 4
enabled in s such that (S,4') E IF

Claims about s:

1. level(g) < level(f), by precondition.

285

Chapter 6: Minimum Spanning Tree

2. (q, p) = minlink(g), by assumption.
3. f = fragment(p), by precondition.
4. rootchanged(g) = true, by precondition.

5. A CONNECT(l) message is in cqueue(k), where k is an external link of g, by Claim
4.

6. A CONNECT(l) message is in cqueue((q,p)), by Claims 2, 5 and CON-D.
7. No CHANGEROOT message is in cqueue((q,p)), by Claims 5 and 6 and CON-C.

If CONNECT(l) is in cqueueq((q,p)), then let 4 = ChannelSend((q,p), CON-
NECT(l)). If CONNECT(l) is in cqueueqp((q,p)), then let 4 = ChannelRecv((q,p),
CONNECT(l)). If CONNECT(l) is in cqueuep((q, p)), then let 4 = A bsorb(f, g). In all
cases, it is easy to see that V) is enabled in s and (s, 0) E TV.

(2) Suppose (s', r, s) is a step of CON, s' is reachable and in E., (s',) g XV,
and s E EV.

(a) The only actions that can increase v. are ComputeMin(g), and Change-
Root(g). (Even though ChannelSend((q, p), m) would increase y, it would simulta-
neously decrease x.) By Claim 2, ComputeMin(g) is not enabled in s'. By Claim 4,
ChangeRoot(g) is not enabled in s'.

(b) Suppose (s', r) E TV . Since (s', 7r) Xv, ir j A bsorb(f, g). Obviously, the
other two choices for 4k decrease o..

(c) Suppose (s', 7r) V TV, 4 is enabled in s' and (s', V) E ,. We show # is
enabled in s and (a, 4) E T,. If 4 = ChannelSend or ChannelRecv, then it can only
be disabled by occurring. If 4 = Absorb(f, g), then since s E E,, 4 is still enabled
in s (by the argument in part (1)). In all cases, (s, 0) E , by definition.

iii) p is ChangeRoot(f). Let , be the set of all pairs (s, 4) of reach-
able states a of CON and actions 4 of CON enabled in s, such that 4) E
{ Receive ChangeRoot((q, p)), ChannelSend((q,p),CHANGEROOT), ChannelRecv((q,p),f
CHANGEROOT): p E nodes(f)} U {ChangeRoot(f)}.

For reachable state s of CON, let v,(s) be a triple defined as follows. If there

is no CHANGEROOT message in subtree(f) in s, then vV(s) is (0, 0, 0). Suppose, in s,
there is a CHANGEROOT message in cqueue((q,p)), where p E nodes(f). Then v,(s)
is:

1. the number of nodes in the path in subtree(f) from p to minnode(f) in s (counting
the endpoints p and minnode(f));

286

Section 4.3.5: CON is Progresive for Some Actions of COM 287

2. the number of CHANGEROOT messages in cqueuer((r,t)), for all t E nodes(f) in

s; and
3. the number of CHANGEROOT messages in cqueuert((rt)), for all t E nodes(f) in

S.

(By CON-B and CON-C, there is only one CHANGEROOT message in subtree(f).

By COM-G, HI-A and HI-B, there is a unique path in subtree(f) from p to
mznnode(f). Thus, vp(s) is well-defined.)

(1) We show that if s is a reachable state of CON in E., then there is a #
enabled in s such that (s,) E

Claims about s:

1. rootchanged(f) = false, by precondition of p.

2. minlink(f) # nil, by precondition of p.

If Inodes(f)I = 1 (i.e., subtree(f) = {p}, for some p), then let 4 = Change-
Root(f). Obviously, 4 is enabled in s and (s, 4) E T.. Now suppose Inodes(f)I > 1.

3. minnode(f) # root(f), by Claims 1 and 2 and CON-B.
4. Exactly one CHANGEROOT message is in cqueue((q,p)), for some (p, q) E

subtree(f), by Claims 1 and 2 and CON-B.

5. (q,p) # core(f), by Claim 4 and CON-C.
6. No CONNECT message is in cqueue((q,p)), by Claim 5 and CON-E.

If the CHANGEROOT message is in cqueueq((q,p)), then let 4 = Channel-

Send((q,p), CHANGEROOT). If the CHANGEROOT message is in cqueueqp((q,p)),

then let 4' = ChannelRecv((q,p), CHANGEROOT). If the CHANGEROOT message is

in cqueuep((q,p)), then let 4 = Receive ChangeRoot((q, p)). In all three cases, 4 is

enabled in s because of Claims 4 and 6. By definition, (s, 4) E TI.

(2) Suppose (s', r, s) is a step of CON such that s' is reachable and in E.,

(s' 7r) (X, and S E Ev.

(a) We show that if (s', ir) g T., then v,(s) = v,(s'). Together with (b) below,

it implies that v,(s) <; v(s').

Since minlink(f) # nil in s', 7r # ComputeMin(f). Since rootchanged(f) =

false in s', 7r # Merge(f,g), Merge(g,f), or Absorb(g,f) for any g.

Chapter 6: Minimum Spanning Tree

Suppose r = Absorb(f, g). First we show that minnode(f) is unchanged. By
COM-A, levekh) > level(f), where h = fragment(target(minlink(f))); by precon-
dition of Absorb(f,g), h # g, and thus wt(minlink(f)) < wt(minlink(g)). Also by
COM-A, minlink(g) is the minimum-weight external link of g. Thus minlink(f)

does not change. Second, we show that no CHANGEROOT message is in subtree(g).

By precondition of Absorb(f,g), rootchanged(g) = true. Then by CON-C, no
CHANGEROOT message is in subtree(g).

No other value of ir, such that (s', 7r) V T., affects vo.

(b) Suppose (s', 7r) E %P,. We show v,(s) < v,(s').

If 7r = ChannelSend((q, p), CHANGEROOT), then the second component of v. de-

creases while the first remains the same. If r = ChannelRecv((q, p), CHANGEROOT),
then the third component of v. decreases while the first two remain the same.

Suppose 7r = Receive ChangeRoot((q,p)). By CON-C and CON-B there is ex-

actly one CHANGEROOT message in subtree(f). Since (s, 7r) V XV, p # minnode(f).

Thus, the first component of v,(s') is at least 1. The first component of v decreases

by 1 in s, by definition of tominlink(p). Thus v,(s) < v,(s').

(c) Suppose (s', 7r) V '', T is enabled in s', and (s', @) E . We show # is

enabled in s, and (s, 0) E .

Suppose 0 = ChangeRoot(f).

Claims about s':

1. rootchanged(f) = false, by precondition of 4.
2. minlink(f) # nil, by precondition of 4.
3. subtree(f) = {p}, by precondition of 4.
4. No CHANGEROOT message is in cqueue((q,p)) for any q, by Claim 3 and CON-C.

5. ComputeMin(f) is not enabled, by Claim 2.

6. Merge(f, g), Merge(g, f), and A bsorb(g, f) are not enabled for any g, by Claim

1.

7. Receive ChangeRoot((q,p)) is not enabled for any q, by Claim 4.

By Claims 5, 6 and 7, 7r is no action that can disable 4; hence, # is enabled in

s. By definition, (s, 0) E Tw.

288

Section 4.3.6: GHS is Equitable for TAR

Suppose 0 = Receive ChangeRoot((q, p)), ChannelSend((q,p), CHANGEROOT),
or ChannelRecv((q,p), CHANGEROOT). The only action that can disable @ is @
itself. Thus, 4' is enabled in s and (s, @) E TW.

4.3.6 GHS is Equitable for TAR

The interesting arguments are for showing GHS is equitable for Send Test(p),
and for ChangeRoot(f) when subtree(f) is a singleton node. For SendTest(p), we
show that an INITIATE-find message eventually reaches p. The big effort is for the

ChangeR oot(f). We must show that eventually every node will be awakened, either

by a Start action, or by the receipt of a CONNECT or TEST message. This requires

a global argument about the entire graph. This is another place in which the state

component of T in the definition of progressive is needed, since it is possible for a

message to be requeued, leaving the state unchanged.

Lemma 32: GHS is equitable for TAR via MTAR-

Proof: We show that GHS is equitable for each locally-controlled action V of

TAR via MTAR. First, a point of notation: let Receive((q,p), m) be a syn-

onym for Receive Connect((q, p), I) if m = CONNECT(l), a synonym for Receive-

Initiate((q, p), 1, c, st) if m = INITIATE(l, c, st), etc.

By Corollary 26, PGHS is true in every reachable state of GHS. Thus, in the

sequel we will use the HI, COM, GC, TAR, DC, NOT, CON and GHS predicates.

i) p is InTree(l) or NotInTree(l). By Lemma 5, we are done.

ii) V is ChannelSend((q,p),m). We show that GHS is progressive for y via

MTAR. Lemma 6 gives the result.

Let T, be the set of all pairs (s, 0) of reachable states s of GHS and actions

of GHS enabled in s such that m' is the message at the head of queueq((q,p)) in

s, and V) = ChannelSend((q, p), m').

For reachable state s, let v,(s) be the number of messages in queueq((q,p))

ahead of the message at the head of tarqueueq((q, p)).

Verifying the progressive conditions is straightforward.

iii) V is ChannelRecv((q,p),m). We show that GHS is progressive for V

via MTAR. Lemma 6 gives the result.

289

Chapter 6: Minimum Spanning Tree

Let T, be the set of all pairs (s, 4) of reachable states s of GHS and actions
V) of GHS enabled in s such that m' is the message at the head of queueqp((q, p))
in s, and 4 = ChannelRecv((q,p),m').

For reachable state s, let v,(s) be the number of messages in queueqp((q, p))
ahead of the message at the head of tarqueueqp((q, p)).

Verifying the progressive conditions is straightforward.

iv) p is ReceiveTest((q,p),1,c), ReceiveAccept((q,p)), or Receive-

Reject((q,p)). We show that GHS is progressive for p via MTAR. Lemma 6
gives the result.

Let T. be the set of all pairs (s, ?P) of reachable states s of GHS and actions

4 of GHS enabled in a such that m' is the message at the head of queuep((q, p)) in

s, and 4 = Receive((q, p), m).

For reachable state s, let v,(s) be the number of messages in queuep((q, p))

ahead of the message at the head of tarqueue,((q,p)).

Verifying the progressive conditions is straightforward.

v) p is SendTest(p). We show that GHS is progressive for cp via MTAR.
Lemma 6 gives the result.

Let IF, be the set of all pairs (s, 7r) of reachable states a of GHS and actions 4
of GHS enabled in s such that one of the following is true: (Let f = fragment(p).)

* CONNECT(l) is in queue((q, r)), where (q, r) = core(f) and p E subtree(q), m is

any message in queue((q, r)) that is not behind the CoNNECT(l) in s, and # E
{ ChannelSend((q, r), m), ChannelReev((q, r), m), Receive((q, r), m)}.

* An INITIATE(l, c,find) message in queue((t, u)) is headed toward p and m is any

message in queue((t, u)) that is not behind the INITIATE(l, c,find) in s, and 4 E

{ ChannelSend((t, u), m), ChannelRecv((t, u), m), Receive((t, u), m)}.

For reachable state s, v,(s) is a 7-tuple with the following components.

If no CONNECT is in queue((q, r)), where (q, r) = core(f) and p E subtree(q) in

s, then components 1 through 3 are 0. Suppose otherwise. By CON-D and CON-E,

there is only one CONNECT message in queue((q, r)).

290

Section 4.3.6: GHS is Equitable for TAR

1. The number of messages in queueq((q, r)) that are not behind the CONNECT.

2. The number of messages in queueqr((q, r)) that are not behind the CONNECT.

3. The number of messages in queuer((q, r)) that are not behind the CONNECT.

If no INITIATE(l, c,find) is headed toward p, then components 4 through 6 are

0. By DC-S, there is at most one such message. Suppose such a message is in
queue((t, u)).

4. The number of nodes on the path in subtree(f) from u to p, including the
endpoints.
5. The number of messages in queuet((t,u)) that are not behind the INITIATE(l, c,
find).
6. The number of messages in queuetu((t, u)) that are not behind the INITIATE(l, c,
find).
7. The number of messages in queueu((t, u)) that are not behind the INITIATE(l, C,

find).

(1) Let s be a reachable state of GHS in E.. Thus, p E testset(f) and
testlink(p) = nil. By the definition of testset(f), either a FIND message is headed
toward p in some queue((q, r)), or a CONNECT message is in queue((q,r)), where

(q, r) = core(f) and p E subtree(q). In either case, let m be the message at the

head of queue((t, u)). Let 4 be ChannelSend((q, r), m) if m is in queueq((q, r)); let

be ChannelR ecv((q, r), m) if m is in queueqr((q, r)); let ?k be Receive((q, r), m) if

m is in queuer((q, r)). Obviously, 4 is enabled in s and (s, #) E TV.

(2) Let (s', r, s) be a step of GHS, s' be reachable and in E., (s', r) V X,,
and s E EW.

(a) We show that if (s', r) V %F,, then v,(s') = v,,(s); together with (b) below,
this is enough. We consider all the ways that v. could change.

Can a CONNECT be added to queue((q,r)), with (q,r) = core(f) by 7r? By
COM-F, (p,q) E subtree(f), so by TAR-A(b), lstatus((q,r)) = branch. Yet by
inspecting the code, we see that CONNECT is only added to a queue if its lstatus is

not branch, or if the source node is sleeping, in which case GHS-A(c) implies that

the lstatus is not branch.

Since we've assumed (s', ir) V xF., no CONNECT can be removed from the

relevant queue.

For a given fragment f, core(f) never changes.

291

Chapter 6: Minimum Spanning Tree

Can the identity of fragment(p) change? Since p E testset(f) by the precon-
dition of p, minlink(f) = nil in s' by GC-C. Thus no Absorb(g, f), Merge(f,g) or
Merge(g, f) is enabled in s'.

The number of messages in the same queue as the relevant CONNECT message
but not behind it cannot change, because the queues are FIFO (and (s', r) g

Can a relevant INITIATE message be added? The only way it can is if either

a CONNECT message in queue((q, r)) with (q, r) = core(f) and p E subtree(q) is

received, or if the same INITIATE message headed toward p is received. Since (s', ir)

T., r is neither of these actions.

Can the path from u to p change, where an INITIATE(l, c,find) is in queue((t, u))
headed toward p? By definition of headed toward and HI-A and HI-B, there is a

unique path from u to p in s'. Since HI-A and HI-B are also true in s and since the

minimum spanning tree is unique (by Lemma 10), the same unique path from u to

p exists in s.

The number of messages in the same queue as the relevant INITIATE message

but not behind it cannot change, because the queues are FIFO (and (s', 7r))

(b) It is easy to check that v.(s) < v,(s') if (s', 7r) E %F.

(c) No action / such that (s', b) E , can become disabled in s without

occurring, since the queues are FIFO.

vi) p is ComputeMin(f). We show that the hypotheses of Lemma 7 are

satisfied to get the result.

Let A = GHS, B = TAR, C = DC, D = GC, and p = ComputeMin(f) in the

hypotheses of Lemma 7.

(1) If e is an execution of GHS, then by Lemmas 1 and 25, MDC(e) is an

execution of DC.

(2) Let s be a reachable state of TAR. If p is enabled in STAR(S), then as

argued in Section 4.2.3 (TAR to GC), w is enabled in S3(STAR(S)). By the way

the S's are defined, S3(STAR(s)) = S4(SDC(s)), so p = V is enabled in S4 (SDc(s)).

(3) Suppose (s', 7r, s) is a step of GHS and s' is reachable. If p is not in

ATAR(S', i), then p is not in M 4 (MDC(s'irs)) by inspection.

292

Section 4.3.6: GHS is Equitable for TAR

(4) DC is progressive for p via M 4 , using T, and vP, by Lemma 30.

(5) Let # be such that (t, 0) E I, for some t. Possible values of b are
ChannelSend(l, REPORT(w)), ChannelRecv(l, REPORT(w)), and ReceiveReport(l, w).

Essentially the same arguments as in ii), iii) and iv) show that GHS is progressive

for V).

vii) p is ChangeRoot(f) and subtree(f) is not {p} for any p. We show

that the hypotheses of Lemma 7 are satisfied to get the result.

Let A = GHS, B = TAR, C = CON, D = COM, and p = ChangeRoot(f) in

the hypotheses of Lemma 7.

(1) If e is an execution of GHS, then by Lemmas 1 and 25, MCON(e) is an

execution of DC.

(2) Let s be a reachable state of TAR. Suppose p is enabled in STAR(S). As

argued in Section 4.2.3 (TAR to GC), 'p is enabled in S3(STAR(s)). As argued in

Section 4.2.2 (GC to COM), 'p is enabled in S2(S3(STAR(s))). By the way the S's

are defined, S2(S3(STAR(s))) = S6(SCON(s)), so p = ' is enabled in S6(SCON(s)).

(3) Suppose (s', ir, s) is a step of GHS and s' is reachable. If 'p is not in

ATAR(S', 7r), then p is not in M6(MCON(s'7rs)) by inspection.

(4) CON is progressive for p via M 6 , using I, and v,, by Lemma 31.

(5) Let 4 be such that (t, @) E T, for some t. Possible values of 4
are ChannelSend(l, CHANGEROOT), ChannelRecv(l, CHANGEROOT), and Receive-

ChangeRoot(l). Essentially the same arguments as in ii), iii) and iv) show that

GH S is progressive for $.

viii) ' is ChangeRoot(f), subtree(f) is {p} for some p. We show that

GHS is progressive for ' via MTAR. Lemma 6 gives the result.

Let , be the set of all pairs (s, 4) of reachable states s of GHS and internal

actions 4p of GHS enabled in s such that none of the following is true:

e 4' = Receive Connect((q,r), I) for some q, r and 1, and in s, nstatus(r) #
sleeping, I > nlevel(r), lstatus((r,q)) = unknown, and only one message is

in queuer((q, r)).

* 4 = Receive Test((q, r), 1, c) for some q, r, 1 and c, and in s, nstatus(r) #
sleeping, I > nlevel(r), and only one message is in queuer((q, r)).

293

Chapter 6: Minimum Spanning Tree

0 = ReceiveReport((q, r), w) for some q, r and w, and in s, inbranch(r) = (q, r),
nstatus(r) = find, and only one message is in queuer((q, r)).

For reachable state s, let v,(s) be the following tuple:

1. The number of fragments in s.
2. The number of fragments g with rootchanged(g) = false in s.
3. The number of fragments g with minlink(g) = nil in s.
4. The number of nodes q E V(G) such that q E testset(fragment(q)).
5. The summation over all q E V(G) of level(fragment(q)) - nlevel(q).
6. The summation over all q E V(G) of findcount(q).
7. The number of links (q, r) such that either lstatus((q, r)) = unknown, or else
lstatus((q, r)) = branch and there is a protocol message for (q, r).
8. The number of links (q, r) such that no ACCEPT or REJECT is in queue((q, r)).

9. The summation over all fragments g such that a CHANGEROOT is in some

queue((q, r)) of subtree(g) of the number of nodes in the path in subtree(g) from
r to minnode(g).

10. The number of fragments g such that AfterMerge(q, r) for DC is enabled for
some q E nodes(g).
11. The number of messages in queueq((q, r)), for all (q, r) E L(G).
12. The number of messages in queueqr((q, r)), for all (q, r) E L(G).
13. The number of messages in queuer((q, r)), for all (q, r) E L(G).
14. The number of messages in queuer((q, r)) that are behind a CONNECT or TEST,
for all (q, r) E L(G).

(1) Let s be a reachable state of GHS in E(. We now demonstrate that some
action ?k is enabled in s with (s, b) E T.

By preconditions of <p, awake = true, minlink(f) # nil and rootchanged(f) =
false in s. By GHS-K, ntatus(p) = true in s. But since awake = true, there is some
node q such that nstatus(q) # sleeping. Thus A, the set of all fragments g such that
nstatus(q) # sleeping for some q E nodes(g), is non-empty. Let 1 be the minimum
level of all fragments in A, and let Al = {g E A: level(g) = 1}.

The strategy is to use a case analysis as follows. For each case, we show
that there is some queue((q, r)) with some message m in it in S. Let b be
chosen as follows. If some message m' is at the head of queueq((q, r)), let

= ChannelSend((q, r), m'). If no message is in queueq((q, r)) and some mes-
sage m' is at the head of queueqr((q, r)), let 4 = ChannelSend((q, r), m'). If no
message is in queueq((q, r)) or queueqr((q, r)), then at least one message, namely m,

294

Section 4.3.6: GHS is Equitable for TAR

is in queuer((q, r)); let # = Receive((q,p), m'), where m' is the message at the head

of queuer((q, r)).

For each choice, # is obviously enabled in s. There are two methods to verify
that (s,O) E T.. Method 1 is to show that m is not CONNECT, TEST or REPORT.

Then, if 4 = Receive((q, r), m') and m' is CONNECT, TEST or REPORT, there is more

than one message in queuer((q, r)). Method 2 is to show that some variable in s

has a value such that even if 4' = Receive((q, r), m'), where m' is CONNECT, TEST

or REPORT, we have that (s, 4) E Tv.

Case 1: There is a fragment g E Al with testset(g) # 0. Let q be some element

of testset(g). By definition of testset(g), Cases 1.1, 1.2 and 1.3 are exhaustive.

Case 1.1: A CONNECT(l) message is in queue(r,t), where (r,t) = core(g) and

q E subtree(r) in s. We use Method 2. By COM-F, (r,t) E subtree(g), so by

TAR-A(b), lstatus((t, r)) = branch.

Case 1.2: An INITIATE(l, c,find) message is in some queue((r, t)) headed toward

q in s. By Method 1, we are done.

Case 1.3: testlink(q) # nil in s. By TAR-C(a), testlink(q) = (q,r) for some r.

By TAR-C(c), there is a protocol message for (q, r).

Case 1.3.1: The protocol message is an ACCEPT or REJECT in queue((r, q)).

By Method 1, we are done.

Case 1.3.2: The protocol message is TEST(l', c) in queue((q, r)). Thus status

((q, r)) # rejected. By TAR-E(b), l' = 1. If nstatus(r) = sleeping or I < nlevel(r),

we are done, by Method 2. Suppose nstatus(r) # sleeping and I > nlevel(r). By

definition of Al, I < level(fragment(r)), and thus nlevel(r) < level(fragment(r)).

By NOT-G, either a NOTIFY(level(fragment(r)) message is in some queue((t, u))

headed toward r, in which case we are done by Method 1, or AfterMerge(t, u) is

enabled for NOT, with r E subtree(u). In the latter case, by GHS-L, a CONNECT

is at the head of queue((u, t)); the same argument as in Case 1.1 gives the result.

Case 2: testset(g) = 0 for all g E Al.

Case 2.1: There is a fragment g in Al with minlink(g) = nil. Since g # f and

G is connected, there is an external link of g. Since testset(g) = 0, by DC-D(c) no

FIND message is in subtree(g).

295

296 Chapter 6: Minimum Spanning Tree

Suppose dcstatus(q) = unfind for all q E nodes(g). By definition of minlink(g),
a REPORT message is in some queue((q, r)) headed toward mw-root(g). We are done
by Method 2.

Suppose dcstatus(q) = find for some q E nodes(g). By DC-I(b), since
testset(g) = 0, a REPORT message is in some queue((r,t)) in subtree(q) headed
toward q. By DC-B(a), inbranch(t) # (t,r). We are done by Method 2.

Case 2.2: minlink(g) # nil for all g E Al.

Case 2.2.1: There is a fragment g in A1 with rootchanged(g) = false. By GHS-
K, if subtree(g) = {q} for some q, then nstatus(q) = sleeping. By definition of
At, subtree(g) # {q} for any q. By CON-B, a CHANGEROOT message is in some
queue((q, r)) in subtree(g). We are done by Method 1.

Case 2.2.2: rootchanged(g) = true for all g E At. By CON-D, a CONNECT

message is in queue(minlink(g)) for all g E A.

Case 2.2.2.1: There is a fragment g in At with minlink(g) = (q,r) and
level(fragment(r)) > 1.

If nlevel(r) > 1, we are done by Method 2. Suppose nlevel(r) < 1. Essentially
the same argument as in Case 1.3(b) gives the result.

Case 2.2.2.2: For all fragments g in A1 , level(fragment(target(minlink(g))))
1. By COM-A, level(fragment(target(minlink(g)))) = I for all g E Al.

Case 2.2.2.2.1: There is a fragment g in A1 such that minlink(g) = (q, r), and
fragment(r) V Al. By definition of A1 , nstatus(r) = sleeping, and we are done be
Method 2.

Case 2.2.2.2.2: For all fragments g in A, fragment(target(minlink(g))) E Al.
As argued in Lemma 27, Case 2.2.2 of verifying (1) for <p = Combine, there are two

fragments g and h in At such that minedge(g) = minedge(h) = (q, r). By TAR-H,
lstatus((r, q)) = lstatus((q, r)) = branch. By Method 2, we are done.

(2) Let (s', 7r, s) be a step of GHS, where s' is reachable and in E., (s', 7r) V XV,

and s E E,.

Section 4.3.6: GHS is Equitable for TAR

(a) We show that if (s', 7r) (xF,,, then v,(s) = v,(s'); together with part (b)
below, this gives the result. FW' is defined to include all the state-action pairs that
change the state. Thus, if (s', ir) (T., then s = s', and obviously v,(s) = vW(s').

(b) Suppose (s, -r) E %P,. The breakdown of cases in this argument is essentially
the same as in the proof of the safety step simulations in Lemma 25. The notation

"Component 12" in a case means that component 12 of v. decreases in going from

s' to s, and components 1 through 11 are unchanged.

" ir = ChannelSend((q, r), m). Component 11.

* 7r = ChannelReev((q, r), m). Component 12.

* 7r = ReceiveConnect((q,r), l).

Case 1: nstatus(r) = sleeping in s'. If (q, r) is not the minimum-weight external

link of r, then: component 2. Otherwise, component 1.

Case 2: nstatus(r) # sleeping, I = nlevel(r) and no CONNECT is in queue((r, q))

in s'.

Suppose lstatus((r, q)) = unknown. Since (s', 7r) E TV , another message is in

queue((q, r)). By CON-D, CON-E and GHS-C, the other message is not a CONNECT

or TEST. Component 14.

Suppose lstatus((r, q)) # unknown. Since DC simulates AfterMerge(r, q), nei-

ther AfterMerge(r, q) nor AfterMerge(q, r) is enabled in s. Component 10.

Case 3: ntatus(r) j sleeping, I = nlevel(r), and CONNECT is in queue((r, q))
in s'. Component 1.

Case 4: nstatus(r) # sleeping and 1 < nlevel(r) in s'. Component 1.

* ir = ReceiveInitiate((q, r), l, c, st). By NOT-H(a), I > nlevel(r). Component 5.

* 7r = Receive Test((q, r), 1, c). Let g = fragment(r).

Case 1: nstatus(r) = sleeping in s'. Component 2.

Case 2: nstatus(r) # sleeping in s'.

297

Chapter 6: Minimum Spanning Tree

Case 2.1: 1 < level(g), and either c # core(g) or testlink(r) # (r,q) in s'. If an
ACCEPT is added, then component 8. If a REJECT is added, then either component
7 or component 8.

Case 2.2: 1 < level(g), c = core(g), and testlink(r) = (r, q) in s'. If there is no
link (r, t), t # q, with lstatus((r, t)) = unknown, then component 4. If there is such
a link, then component 7.

Case 2.3: 1 > level(g) in s'. Since (s, r) E W, there is another message in
queuer((q,r)). By TAR-C(c) and GHS-C, the other message is not CONNECT or

TEST. Component 14.

e 7r = ReceiveAccept(langleq,r)). Component 4.

* 7r = ReceiveReject((q, r)). If there is no link (r, t), t # q, with lstatus((r, t)) =

unknown, then component 4. If there is such a link, then component 7.

* 7r = ReceiveReport((q,r),w).

Case 1: (q,r) = core(g), nstatus(r) # find and w > bestwt(r) in s'. If
lstatus(bestlink(r)) = branch, then component 3. Otherwise, component 2.

Case 2a: (q, r) # core(g) in s'. If inbranch(r) = (r, q), then component 13.
Otherwise, component 6.

Case 2b: (q,r) = core(g) and nstatus(r) = find in s'. The only change is
that the REPORT message is requeued. We show that there is no other message in
queue((q, r)), and thus (s', 7r) V xP,. First note that by COM-F, (q, r) E subtree(g).
By GHS-B, no CONNECT is in the queue. By DC-O, no INITIATE(*, *,found) is in

the queue. By GHS-E, no INITIATE(*, *,find) is in the queue. By TAR-E(a), no
TEST or REJECT is in the queue. By DC-0, no other REPORT is in the queue. By

TAR-F, no ACCEPT is in the queue. By CON-C, no CHANGEROOT is in the queue.

Case 2c: (q, r) = core(), nstatus(r) = unfind, and w < bestwt(p). Component

13.

* 7r = Receive ChangeRoot((q, r)). If lstatus(bestlink(r)) # branch, then compo-
nent 2. Otherwise, component 9.

(c) Suppose (s',ir) TVW, 0 is enabled in s', and (s',0) E T.' Since (s',7x) (
aF S = a'. Obviously, @ is enabled in s and (s, 4) E AW.

298

Section 4.4: Satisfaction

ix) p is Merge(fg). We use Lemma 7. The same argument as in vii), with
p = Merge(f, g) and (3) as below, gives the result.

(3) Let @ be such that (t, @) E 1,, for some t. Possible values of @ are
ChannelSend(k, CONNECT(l)), ChannelRecv(k, CONNECT(l)), and Merge(f, g). Es-
sentially the same arguments as in ii), iii) and iv) show that GHS is progressive
for 0.

x) <p is Absorb(fg). We use Lemma 7. The same argument as in vii), with
p = Absorb(f,g) and (3) as below, gives the result.

(3) Let 4 be such that (t, @) E xI,, for some t. Possible values of @ are

ChannelSend(k, CONNECT(l)), ChannelRecv(k, CONNECT(l)), and A bsorb(f, g). Es-
sentially the same arguments as in ii), iii) and iv) show that GHS is progressive
for 0.

4.4 Satisfaction

Theorem 33: GHS solves MST(G).

Proof: By Theorem 12, HI solves MST(G). By Lemmas 13 and 27 and Theorem

8, COM satisfies HI. By Lemmas 15 and 28 and Theorem 8, GC satisfies COM.
By Lemmas 17 and 29 and Theorem 8, TAR satisfies GC. By Lemmas 25 and

32 and Theorem 9, GHS satisfies TAR. Thus, since "satisfies" and "solves" are

defined using subsets of schedules, GHS solves MST(G). 5

299

300
4

I

Conclusion

This chapter summarizes the results of the thesis and suggests some avenues
for further research.

1. Summary

Chapter 2 of this thesis studied the transaction commit problem in a realistic

timing model. A randomized algorithm was presented, and proved correct.. The

algorithm is nonblocking, as long as less than half the processors fail, and it never

produces inconsistent decisions. The expected time of the algorithm, as measured

in asynchronous rounds, is constant. We proved a lower bound, showing that the

fault-tolerance of our algorithm is optimal. We also showed that no algorithm can

cause processors to terminate in a bounded expected number of their own steps,
even if processors are synchronous.

In Chapter 3, we showed that a system with asynchronous processors, and

asynchronous but reliable communication, can simulate a system with synchronous

processors, and asynchronous but reliable communication, in the presence of various

types of processor faults. The definition of simulation is such that the impossibility

result of [FLP] now implies the impossibility result of [DDS].

Chapter 4 consisted of a description of a modular drinking philosophers al-

gorithm (based on the algorithm of [CM]), and a modular proof of correctness.

The two modules were an arbitrary dining philosophers algorithm and explicit code

301

Chapter 6: Conclusion

to manipulate it. By substituting a time-efficient dining philosophers module, a
time-efficient drinking philosophers algorithm can be obtained.

In Chapter 5, the minimum spanning tree algorithm of [GHS] was proved cor-
rect, using a lattice-structured proof technique. The algorithm is an important one,
and had not previously had a rigorous proof. The proof technique is a general one
that enables modularity to be used in proving algorithms that do not break apart
easily.

2. Future Work

2.1. Partial Synchrony

In the area of partial synchrony, much work remains to be done in defining
other partially synchronous models and showing relationships between the models.
Real computer systems should provide inspiration for these models; one example
would be to suppose a probability distribution on the message delays.

2.1.1. Transaction Commit

One could consider strengthening the time lower bound for the transaction
commit problem. We proved that for every constant B, there is some adversary
and some set of inputs such that the expected number of processor steps is larger
than B. It may be possible to prove that there is some adversary and some set of
inputs such that in most or all of the executions (with that adversary and inputs),
processors take more than B steps.

Given any asynchronous agreement protocol that takes constant expected time,
we can create a constant expected time transaction commit protocol by resolving
the differences between the input-output relations of transaction commit and agree-
ment, as was done in the protocol of Chapter 2. Chor, Merritt and Shmoys [CMS]
have an asynchronous, constant expected time agreement protocol that tolerates
just under n/6 of the n processors crashing. It would be interesting to devise an
asynchronous constant expected time agreement protocol that tolerates just un-
der n/2 of the processors crashing, which would enable us to obtain a transaction
commit protocol with the same fault tolerance as the one in Chapter 2.

More generally, our approach to modeling partial synchrony - letting the
behavior of the system during a run affect the problem statement - could be
applied to other problems.

302

Section 2: Future Work

2.1.2. Simulating Synchronous Processors

The definition of simulation between systems could be extended to cover ran-
domized algorithms, and complexity measures. One could try to show that the
asynchronous model simulates the partially synchronous model with respect to these
extensions.

The original simulation, or new ones, could be applied to other problems, for
instance, the lower bounds in Chapter 2, which were shown for synchronous proces-
sors. (Of course, using the simulation here is only worthwhile if there is a simpler
proof of the result in the asynchronous model.)

2.2. Modular Decomposition

In the realm of modular decomposition, there are doubtless other forms of
modularity to be studied. The two studied in this thesis materialized by analyzing
specific algorithms; I would expect the analysis of more algorithms to suggest other
types.

2.2.1. Drinking Philosophers

The drinking philosophers algorithm of Chapter 4 only satisfies the weakest of
the concurrency definitions presented in that chapter. It would be interesting to see

how much concurrency can be achieved using a dining philosophers subroutine in a

modular way. Along the same lines, one could design an algorithm (not necessarily

using a dining philosophers algorithm) to achieve the maximal concurrency.

The time measure applied to the drinking philosophers algorithm is a func-

tion of the size of the entire resource graph; one should be able to find a better
time measure for the dynamic problem that more accurately reflects the size of the

"involved" graph.

More generally, there are many distributed algorithms, purporting to use other

algorithms as subroutines, that could profit from a careful, modular description

(e.g., parallel algorithms for computational geometry).

2.2.2. Minimum Spanning Tree

The work in Chapter 5 could be extended to discover what parts of the lattice

and existing proof for the [GHS] minimum spanning tree algorithm is applicable to

proofs of related algorithms. Some candidate algorithms include those in [A2] [CT]

303

Chapter 6: Conclusion

[G], which describe modifications of the algorithm of [GHS] designed to decrease
the running time. In particular, the algorithm in [G] might fit well into the current
lattice, because the main difference is how the levels of fragments are computed, a
facet of the algorithm which is encapsulated into a single high-level description in
the lattice.

We believe the lattice-structured proof technique could profitably be applied
to other algorithms that do not easily break apart into modules that can be studied
independently. In fact, work in [T] is applying this technique to prove the correctness
of a distributed deadlock recovery algorithm.

Our three techniques for verifying the liveness condition were all motivated by
particular situations in the lattice used to verify [GHS]. Presumably, other tech-
niques will be useful in other situations.

One could also investigate to what extent mechanical help (i.e., theorem-
proving programs) can help reduce the tedium of these sorts of proofs. Once the
algorithms in the lattice, the mappings between the algorithms, and the predicates
are been chosen (using one's intuition about the algorithm), it remains to check
that the predicates are invariants and that the mappings have the desired proper-
ties, which could probably be shunted off to a theorem-prover.

304

References

[Al] B. Awerbuch, "Complexity of Network Synchronization," JA CM vol. 32,
no. 4, pp. 804-823, 1985.

[A2] B. Awerbuch, "Optimal Distributed Algorithms for Minimum Weight

Spaning Tree, Counting, Leader Election and Related Problems," Proc.

1 9 th Ann. A CM Symp. on Theory of Computing, pp. 230-240, 1987.

[AG] B. Awerbuch and R. Gallager, "Distributed BFS Algorithms," Proc. 1 9 th

Ann. A CM Symp. on Theory of Computing, pp. 230-240, 1987.

[Be] M. Ben-Or, "Another Advantage of Free Choice: Completely Asynchronous

Agreement Protocols," in Proc. 2 nd Ann. A CM Symp. on Principles of

Distributed Computing, pp. 27-30,1983.

[Br] G. Bracha, "An O(log n) Expected Rounds Randomized Byzantine Gen-

erals Algorithm," Proc. 17'4 Ann. A CM Symp. on Theory of Computing,
pp. 316-326, 1985.

[CC] B. Chor and B. Coan, "A Simple and Efficient Randomized Byzantine

Agreement Algorithm," IEEE Trans. on Software Engineering, vol. SE-

11, no. 6, pp. 531-539, 1985.

[CL] B. Coan and J. Lundelius, "Transaction Commit in a Realistic Fault

Model," Proc. 5 th Ann. ACM Symp. on Principles of Distributed Com-

puting, pp. 40-51, 1986.

305

References

[CM] K. M. Chandy and J. Misra, "The Drinking Philosophers Problem," A CM
Trans. on Programming Languages and Systems, vol. 6, no. 4, pp. 632-646,
1984.

[CMS] B. Chor, M. Merritt, and D. Shmoys, "Simple Constant-Time Consensus
Protocols in Realistic Failure Models," Proc. 4 th Ann. A CM Symp. on
Principles of Distributed Computing, pp. 152-162, 1985.

[CT] F. Chin and H. F. Ting, "An Almost Linear Time and O(n log n + e)
Messages Distributed Algorithm for Minimum-Weight Spanning Trees,"

Proc. 2 6 t" Ann. IEEE Symp. on Foundations of Computer Science, pp.
257-266, 1985.

[D1] E. W. Dijkstra, "Solution of a Problem in Concurrent Programming Con-

trol," Comm. A CM, vol. 8, p. 569, 1965.

[D2] E. W. Dijkstra, "Hierarchical Ordering of Sequential Processes," Acta In-

formatica, vol. 1, pp. 115-138, 1971.

[DDS] D. Dolev, C. Dwork, and L. Stockmeyer, "On the Minimal Synchronism

Needed for Distributed Consensus," J. A CM, vol. 34, to appear.

[DLS] C. Dwork, N. Lynch, and L. Stockmeyer, "Consensus in the Presence of
Partial Synchrony," Proc. 3 'd Ann. A CM Symp. on Principles of Dis-

tributed Computing, pp. 103-118, 1984.

[DS] C. Dwork and D. Skeen, "The Inherent Cost of Nonblocking Commit-
ment," Proc. 2nd Ann. A CM Symp. on Principles of Distributed Comput-

ing, pp. 1-11, 1983.

[F] N. Francez, Fairness, Springer-Verlag, New York, 1986, Chapter 2.

[FLP] M. Fischer, N. Lynch, and M. Paterson, "Impossibility of Distributed Con-

sensus with One Faulty Process," J. A CM, vol. 32, no. 2, pp. 374-382,
1985.

[FLS] A. Fekete, N. Lynch, L. Shrira, "A Modular Proof of Correctness for a

Network Synchronizer," Proc. 2 nd International Workshop on Distributed

Algorithms, 1987.

[Ga] E. Gafni, "Improvements in the Time Complexity of Two Message-Optimal
Election Algorithms," Proc. 4 th Ann. A CM Symp. on Principles of Dis-

tributed Computing, pp. 175-185, 1985.

306

307

[GHS] R. Gallager, P. Humblet and P. Spira, "A Distributed Algorithm for
Minimum-Weight Spanning Trees," A CM Trans. on Programming Lan-
guages and Systems, vol. 5, no. 1, pp. 66-77, 1983.

[Gr] J. Gray, "Notes on Data Base Operating Systems," Research Report
RJ2188(300001)2/23/78, IBM Research Laboratory, San Jose, California,
1977.

[HM] J. Halpern and Y. Moses, "Knowledge and Common Knowledge in a Dis-
tributed Environment," Proc. 3 d Ann. A CM Symp. on Principles of Dis-

tributed Computing, pp. 50-61, 1984 (revised as of January 1986 as IBM-

RJ-4421).

[HO] B. Hailpern and S. Owicki, "Verifying Network Protocols Using Temporal
Logic," Proc. Trends and Applications 1980: Computer Networks, IEEE

Computer Society, pp. 18-28, 1980.

[K] R. Kurshan, "Reducibility in Analysis of Coordination," Proc. IIASA
Workshop on Discrete Event Systems, 1987.

[Lal] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed

System," Comm. A CM, vol. 21, pp. 558-565, 1978.

[La2] L. Lamport, "Specifying Concurrent Program Modules," ACM Trans. on

Programming Languages and Systems, vol. 5, no. 2, pp. 190-222, 1983.

[La3] L. Lamport, "What Good is Temporal Logic?" Proc. 9 th IFIP World Com-

puter Conference, Sept. 1983, pp. 657-668.

[Ly] N. Lynch, "Upper Bounds for Static Resource Allocation in a Distributed

System," JCSS, vol. 23, no. 2, pp. 254-278, 1981.

[LF] N. A. Lynch and M. J. Fischer, "On Describing the Behavior and Imple-

mentation of Distributed Systems," Theoretical Computer Science, vol. 13,
pp. 17-43, 1981.

[LM] N. Lynch and M. Merritt, "Introduction to the Theory of Nested Transac-

tions," to appear in Theoretical Computer Science. (Also available as tech-

nical report MIT/LCS/TR-367, Laboratory for Computer Science, Mas-

sachusetts Institute of Technology, 1986.)

References

[LPS] D. Lehmann, A. Pnueli, and J. Stavi, "Impartiality, Justice and Fairness:
The Ethics of Concurrent Termination," Proc. 81h International Collo-
quium on Automata, Languages and Programming, July 1981, pp. 264-277.

[LS] S. Lam and U. Shankar, "Protocol Verification via Projections," IEEE
Trans. on Software Engineering, vol. SE-10, no. 4, July 1984, pp. 325-342.

[LSP] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals Prob-
lem," A CM Trans. on Programming Languages and Systems, vol. 4, 1982.

[LT] N. A. Lynch and M. R. Tuttle, "Hierarchical Correctness Proofs for Dis-

tributed Algorithms," Proc. 6 4 Ann. ACM Symp. on Principles of Dis-

tributed Computing, pp. 137-151, 1987. (Also available as technical report

MIT/LCS/TR-387, Laboratory for Computer Science, Massachusetts In-
stitute of Technology, 1987.)

[MC] J. Misra and K. M. Chandy, "Proofs of Networks of Processes," IEEE
Trans. on Software Engineering, vol. SE-7, no. 4, July 1981.

[MCS] J. Misra, K. M. Chandy, and T. Smith, "Proving Safety and Liveness of

Communicating Processes with Examples," Proc. 1 "* Ann. A CM Symp.

on Principles of Distributed Computing, pp. 201-208, 1982.

[NDGO] V. Nguyen, A. Demers, D. Gries, and S. Owicki, "A Model and Temporal

Proof System for Networks of Processes," Distributed Computing, vol. 1,
pp. 7-25, 1986.

[NT] G. Neiger and S. Toueg, "Substituting for Real Time and Common Knowl-

edge in Asynchronous Distributed Systems," Proc. 6 1h Ann. A CM Symp.

on Principles of Distributed Computing, pp. 281-293, 1987. (Also available

as technical report TR86-790, Department of Computer Science, Cornell

University, 1986.)

[PF] G. L. Peterson and M. J. Fischer, "Economical Solutions for the Critical

Section Problem in a Distributed System," Proc. 9th Ann. A CM Symp. on

Theory of Comp., pp. 91-97, 1977.

[PSL] M. Pease, R. Shostak, and L. Lamport, "Reaching Agreement in the Pres-

ence of Faults," J. A CM, vol. 27, 1980.

[R] M. Rabin, "Randomized Byzantine Generals," Proc. 241h Ann. IEEE

Symp. on Foundations of Computer Science, pp. 403-409, 1983.

308

309

[RL] M. Rabin and D. Lehmann, "On the Advantages of Free Choice: A Sym-

metric and Fully Distributed Solution to the Dining Philosophers Prob-
lem," Proc. 8 " A CM Symp. on Principles of Programming Languages, pp.
133-138, 1981.

[Sk] D. Skeen, "Crash Recovery in a Distributed Database System," Ph.D.

Thesis, Department of Electrical Engineering and Computer Science, Uni-

versity of California, Berkeley, 1982. (Also available as technical report

UCB/BRL M82/45.)

[St) E. Stark, "Foundations of a Theory of Specification for Distributed Sys-

tems," Ph.D. Thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, Cambridge, 1984. (Also

available as technical report MIT/LCS/TR-342.)

[SR] F. Stomp and W. de Roever, "A Correctness Proof of a Distributed

Minimum-Weight Spanning Tree Algorithm," manu- script, April 1987.

[T] G. Troxel, "A Hierarchical Proof of an Algorithm for Deadlock Recovery

in a System Using Remote Procedure Calls," S.M. Thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, in progress.

[W1] J. Welch,"Simulating Synchronous Processors," Information and Compu-

tation, vol. 74, no. 2, pp. 159-171, 1987.

[W2] J. Welch, "Synthesis of Efficient Mutual Exclusion Algorithms," manu-

script, 1987.

310

I

I

Appendix

In this Appendix, we review the aspects of the model from [LT] that are relevant

to this paper.

An input-output automaton A is defined by the following four components. (1)
There is a (possibly infinite) set of states with a subset of start states. (2) There is
a set of actions, associated with the state transitions. The actions are divided into

three classes, input, output, and internal. Input actions are presumed to originate

in the automaton's environment; consequently the automaton must be able to react

to them no matter what state it is in. Output and internal actions (or, locally-

controlled actions) are under the local control of the automaton; internal actions

model events not observable by the environment. The input and output actions are

the external actions of A, denoted ext(A). (3) The transition relation is a set of
(state, action, state) triples, such that for any state s' and input action ir, there is

a transition (S', Ir, s) for some state s. (4) There is an equivalence relation part(A)

partitioning the output and internal actions of A. The partition is meant to reflect

separate pieces of the system being modeled by the automaton. Action 7r is enabled

in state s' if there is a transition (s', 7r, s) for some state s.

An execution e of A is a finite or infinite sequence So ris 1 ... of alternating

states and actions such that so is a start state, (si_1, 7ri, si) is a transition of A for

all i, and if e is finite then e ends with a state. The schedule of an execution e is

the subsequence of actions appearing in e.

We often want to specify a desired behavior using a set of schedules. Thus we

311

Appendix

define an external schedule module S to consist of input and output actions, and a
set of schedules scheds(S). Each schedule of S is a finite or infinite sequence of the
actions of S. Internal actions are excluded in order to focus on the behavior visible to
the outside world. External schedule module S' is a sub-schedule module of external
schedule module S if S and S' have the same actions and scheds(S') C scheds(S).

Automata can be composed to form another automaton, presumably modeling

a system made of smaller components. Automata communicate by synchronizing on
shared actions; the only allowed situations are for the output from one automaton

to be the input to others, and for several automata to share an input. Thus,
automata to be composed must have no output actions in common, and the internal

actions of each must be disjoint from all the actions of the others. A state of the

composite automaton is a tuple of states, one for each component. A start state

of the composition has a start state in each component of the state. Any output

action of a component becomes an output action of the composition, and similarly
for an internal action. An input action of the composition is an action that is input

for every component for which it is an action. In a transition of the composition
on action 7, each component of the state changes as it would in the component

automaton if x occurred; if r is not an action of some component automaton,
then the corresponding state component does not change. The partition of the

composition is the union of the partitions of the component automata.

Given an automaton A and a subset II of its actions, we define the automaton

Hider(A) to be the automaton A' differing from A only in that each action in II

becomes an internal action. This operation is useful for hiding actions that model

interprocess communication in a composite automaton, so that they are no longer

visible to the environment of the composition.

An execution of a system is fair if each component is given a chance to make

progress infinitely often. Of course, a process might not be able to take a step every

time it is given a chance. Formally stated, execution e of automaton A is fair if for

each class C of part(A), the following two conditions hold. (1) If e is finite, then no

action of C is enabled in the final state of e. (2) If e is infinite, then either actions

from C appear infinitely often in e, or states in which no action of C is enabled

appear infinitely often in e. Note that any finite execution of A is a prefix of some

fair execution of A.

The following result from [LT] is very useful: If e is a fair execution of a compo-

sition of automata, and A is one of the components, then eJA is a fair execution of

312

Appendix

A. (If e = sonrsi ... , we define ejA to be the sequence obtained from e by deleting

7risi if 7ri is not an action of A, and replacing the remaining si with A's component.)

The fair external behavior of automaton A, denoted Fbeh(A), is the external
schedule module with the input and output actions of A, and with set of schedules
{alext(A) : a is the schedule of a fair execution of A}.' A problem is (specified
by) an external schedule module. Automaton A solves the problem P if Fbeh(A)
is a sub-schedule module of P, i.e., the behavior of A visible to the outside world is
consistent with the behavior required in the problem specification. Automaton A
satisfies automaton B if Fbeh(A) is a sub-schedule module of Fbeh(B).

1 If a is a sequence from a set S and T is a subset of S, then alT is defined to
be the subsequence of a consisting of elements in T.

313

