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ABSTRACT

Consider the problem of migrating a company’s CRM or ERPlukta
from one application to another, or integrating two suctabases
as a result of a merger. This problem requires matching tvgela
relational schemas with hundreds and sometimes thouséfidkle.
Further, the correct match is likely complex: rather tharnapte
one-to-one alignment, some fields in the source databasenmapy
to multiple fields in the target database, and others may have
equivalent fields in the target database. Despite majorrmeéa
in schema matching, fully automated solutions to largetiaial
schema matching problems are still elusive.

This paper focuses on improving the accuracy of automatgd la
relational schema matching. Our key insight is the obsemdhat
modern database applications have a rich user interfateyibia
cally exhibits more consistency across applications tharuhder-
lying schemas. We associate Ul widgets in the applicatidgh thie
underlying database fields on which they operate and denabast
that this association delivers new information useful fatching
large and complex relational schemas. Additionally, weashow
to formalize the schema matching problem as a quadraticg@nmog
and solve it efficiently using standard optimization and hiae
learning techniques. We evaluate our approach on readv@iRM
applications with hundreds of fields and show that it impsotre
accuracy by a factor of 2-4x.

1. INTRODUCTION

Modern enterprises store much of theirimportant data ustig
based applications backed by relational databases. Thelselé
both generic applications such as customer-relationslapage-
ment (CRM) and enterprise resource planning (ERP), as well a
customized applications that perform functions uniquerténali-
vidual industry (e.g., e-commerce, inventory manageneertealth-
record management applications). As a company’s busiressisn
change, it periodically migrates from using one applicatmusing
a different application to perform the same function; foamyle
it may move from using Oracle’s CRM application to using S&\P’
CRM application. This change may result from an acquisjtmn
just from the desire to shift from a legacy application to areno
modern one that includes new desired functionality. Wheara-c
pany moves from using one application to another (e.g. chivig
from one CRM application to another), it needs to migratekils
data from the relational schema of the old application toréia-
tional schema of the new application. This process requsiobs
ing aschema matchingroblem, which builds a mapping from the
fields of the old database to the fields of the new databases Thi
mapping is then used to migrate the data. Despite major adsan
in schema matching [9, 22, 33, 23, 27, 25, 26, 15], matchirggela
relational schemas still requires a significant manuakgféausing

such migrations problems to cost hundreds of thousandsesr ev
millions of dollars [37].

Automating this process is desirable yet challenging. Acgip
CRM or ERP schema has a few hundred and sometimes thousands
of fields [35]. Industry-specific applications may have elager
and more complex schemas. Matching large schemas is difficul
since any column could (in theory) match with any other caium
The problem is particularly acute for relational schemasabee,
unlike XML and ontology schemas, one cannot make accuracy-
improving assumptions about the schema structure thatradms
the set of possible matches. As aresult, evaluations gf&ultomated
relational matching algorithms have typically been doner@mall
relational schemas with a handful [27, 26] to a few dozenroolsi[25,
15].

In addition to schema size, two other challenges furtherpgtom
cate relational schema matching. First, some columns iadbece
database may map to multiple columns in the target databake a
vice versa, creating many-to-many relations, which rexdeeter-
mining not just the best match for each field, hlltof the appro-
priate matches. Second, some columns in the source datalagse
have no matching columns in the target database and should be
mapped tdNULL. Most past work on automated schema matching
focuses on one-to-one mappings [27, 25, 26], and only a fgoral
rithms directly address such complex mappings [25, 15]. Weh
found however that, in large popular CRM applications [13,24],
the number of one-to-many and NULL mappings tends to exceed
the number of simple one-to-one mappings.

This paper focuses on improving the accuracy of automatéchma
ing of large and complex relational schemas. Our key insgtite
recognition that large database applications are designethke
the user interface (Ul) and application dynamics intuitigelay
users. As a result, the Ul and dynamics of two applicatiorils flon
the same purpose often exhibit more consistency than tresrsach
themselves. To exploit this insight, we have built RSM (Rela
tional Schema Matcher), a system that uses the consistérag o
user interface to improve the performance of automatic &amdi-
automatic) schema matching algorithms. RSM takes as amppty
installations of the source and target databases. It sysieatly
interacts with the user interface, while monitoring changethe
underlying database. This allows RSM to associate Ul wilgetl
actions with the schema columns on which they operate.

RSM exploits this association to address the three practicd-
lenges faced in large-scale relational schema matching:

e Toimprove matching accuracy in the face of large schemak] RS
exploits Ul information, instead of just using schema infiar
tion alone. For example, even when the schema column names
of two fields do not match, the Ul labels for their associatéd w
gets often do.



e To identify potential one-to-many mappings, RSM recogsize
that if updates from two conceptually different web pages ar

written into the same column in the source database, such a Relation: contact
column incorporates two concepts, and hence may map to two Field: address_city

columns in the target database (see Figure 2b).

e Toidentify potential NULL mappings, RSM recognizes thdticons
that cannot be modified in any way from the Ul are often special
ized or extraneous, and likely to map to NULL.

To integrate this information into the matching process\VR%
troduces a new matching algorithm that formulates schentalma
ing as an optimization problem. Specifically, the intuitiomder-
lying schema matching is that two columns that match eacéroth
are likely to show high similarity (e.g., have similar colnmames,
similar data types, and so on). To capture this intuitionlVR6r-
mulates schema matching as a quadratic optimization, wbiose
jective is to find the optimal match that maximizes the tobalis
larity between the source fields and their matched targeisfidihe
key feature of this formulation is that it incorporates nolydocal
similarity measures (e.g., lexical similarity of two colasor their
data types) but also global relational similarity measifeeg., the
relational graph structure of the source and target scheraad
jointly maximizes them within the same framework. RSM selve
this optimization efficiently by combining standard ma&hiearn-
ing and optimization techniques.

RSM builds on previous work but differs from it in two main
ways. First, no past work has associated Ul widgets andrectio
with the affected schema fields and used that informationtiema
matching. Existing approaches for matching web forms haegl u
limited information from the Ul [34, 21]. Their techniqudsow-
ever, do not apply to our problem because they assume a lange n
ber of web forms, each with only a handful of fields [34]. In eon
trast, we focus on matching two relational schemas with reosl
of fields. Second, although past work has sometimes inclogled
lational information in the form of constraints [16] or asipaf an
iterative matching algorithm [26, 27, 18], our algorithnegrates
both local and relational information into a joint optimian prob-
lem using the cosine similarity measure.

In our experiments, we compare RSM to Harmony, a state{of-ar
system that combines multiple matching algorithms to bpest
formance [28]. We test on two domains of differing complgxit
four CRM applications with (on average) 300 columns each, an
three publication tracking applications with about a dozelnmns
each. Similarly to past work, we evaluate matching accutsayg
the F-measuré We have the following findings:

e Leveraging information from the Ul allows RSM to achieve F-

measure gains of 2-4x over Harmony. Harmony is only able to

At the schema level

Source Database Target Database

‘ Relation: person

Field: addrct

At the application level

City: City

State: State/Province | | - None --

= |

Figure1l: Example Showing Ul Consistency. This example taken
from matching Centric with Opentaps shows how Ul labels @an b
more consistent than schema field names.

limitations. First, as with any automated schema matchysy s
tem, the matches it generates are not perfect. We assumepis o
will be reviewed by a human who will generate the final match-
ing. However, the improved accuracy provided by RSM can sig-
nificantly reduce the required manual effort. Second, thehime
learning component of RSM’s matching algorithm does regjair
pair of already matched databases as training data to tengath
rameters of the algorithm. Critically, however, RSM regsionly
one such matched database pair as training. We show in 85 that
this training data does not have to come from either the goairc
target database, or even from a pair of databases in the same d
main in order to obtain good results. In fact, when we evaldat
RSM on the publication domain, we used parameters learoed fr
training on the CRM domain, and found that performance is not
affected. Thus, in practice, consultants or administsaparform-
ing database migrations should be able to obtain trainitefdam
previous migrations.

In summary, this paper makes the following contributions:

e It extracts previously unexploited information from the &hd
the dynamics of the overlaying applications and demoregtrat
that this information is useful for matching large and coempl
relational schemas.

e It formulates automatic schema matching as a quadraticg@mog
that integrates both local information as well as globaltiehal
information. Then it solves the quadratic program throutgins
dard optimization and machine learning techniques.

e It implements and evaluates the design on real-world agplic
tions, and presents results for fully-automated matchingla-
tional schemas with hundreds of columns, showing significan
accuracy gains over existing approaches.

achieve an F-measure of 0.39 on a version of the CRM datasetz- VALUE OF APPLICATION INFORMATION

with only one-to-one mappings. Its F-measure falls to 0.h8mv

Before presenting the details of RSM we first show that the ap-

NULLs are added and 0.12 when one-to-many mappings are in- plication Ul and the application dynamics contain inforinatthat
cluded. In contrast, RSM achieves an F-measure of 0.82 on theimprove schema matching effectiveness. To show this wedaske
one-to-one CRM dataset, and an F-measure of 0.50-0.54 on thea consultant to manually generate a ground-truth matchwor t

more complex datasets.

e Our optimization matching algorithm alone, without apation
information, provides significant gains over Harmony, legdo
1.3x gains in F-measure.

e The Ul provides gains across multiple domains. In the simple

context of publication databases, RSM produces an F-measur

of 0.90, and gains of more than 0.24 over Harmony.

Although RSM can provide significant gains, it does have some

'F-measure is the harmonic mean of a test's precision and,reca
and ranges from 0-1.

large and popular CRM applications: Centric [2] and Open{&p
While the examples and statistics in this section come froese
two applications, we have obtained similar results whefopeiing
the same evaluation across the other CRM application pains f
Table 5 as well as the publication applications discussé&din

As we extract information from the application to use in sohe
matching, we use the terfeatureto refer to a property that helps
match columns in the source schema with the correspondingos
in the target schema. For example, we can define a feature to be
“exact name match” which is true only if the column name in the
first schema matches the column name in the second schema. We



% Having Partial Ul % Having Partial Among Ground-Truth Among Ground-Truth
Label Match Schema Name Match Matches Non-Matches
Amon -
Ground-Tgruth 67% 48% ‘%‘33“ 88% 37%
Matches (a) Widget Type is a Weak Feature
Among
Ground-Truth 3.2% 4.2% Among SELECT True]  Among SELECT
Non-Matches Matches Non-Matches
Table 1: Consistency of Ul Labels. This table shows that in gen- SELECT Widget 86% 16%
eral Ul labels are more consistent than schema field names. Fo | Type i
example, among all fields that should be matched to each,other _SrE'-tE,\%Tt hpa”'a' 84% 3%
67% have at least a partial Ul label match, while only 48% reave SE)EEC?FC =Tl
partial schema name match. Text Match 29% 0.29%
(b) Performance by Widget Type

can measure how useful this feature is by computing how often
feature is satisfied among ground-truth matches vs. nochest
A perfect feature will be satisfied in 100% of the true matciies
0% of the true non-matches. If a perfect feature exists, ntlua
used to perform schema matching with 100% accuracy since all
one needs to do is to check the value of this feature for edclofpa
columns in the two schemas. In practice, however, no feayoer-
fect. Features are hints that are correlated with the comeatch.
Thus in addition to extracting features from the Ul, RSM nfigst
ure out how to integrate the features together in a way thaista
into account how well each one correlates with correct nesch
The details of how the features are extracted, and thenratesdjto
produce a matching are covered in section 3. We use the rdgsof
section to describe the most important features and shavittég
correlate well with correct matches.

2.1 Ul Consistency

The most obvious source of matching information provided by
the application comes from the Ul widget(s) associated avidlatabase
field. More specifically, many database fields can be diragbky
dated by entering data into a particular widget in a web fand
the attributes of these web form widgets can provide infdiona
useful for matching the associated database fields. Foroéase
position, in this section we assume that we know how to aagoci
each widget to database fields. In 83.1, we explain in detail h
we obtain this association.

(a) Consistency of Ul Labels: The text label associated with each
widget is the first feature that one notices when trying toamat
database fields via their associated Ul widgets. For exaniple
Figure 1 it is clear that the two city widgets should be asseci
with each other because they both have the I&@b¢ly. It can also
be seen from the figure that in this example the Ul labels anemo
consistent than the underlying schema column names. Bhisis t
true in general?

To answer this question we consider “Partial Text Match”, a
common metric used to generate match features from a paxof t
strings. The resulting feature is true if there is at least ‘tmord”
matches between the two text strings. As with past work, wartl
the text strings by replacing non-alpha-numerical charactvith
white spaces, ignoring articles (e.g., “the”, and “a”), ateimming
the words before matching [5].

We then use the Partial Text Match metric to generate twediff
ent features, one from the Ul labels associated with eacbédate
field, and one from the schema column names themselves. Ta-
ble 1 compares the usefulness of these two features forgpredi
ing ground-truth matches. The table shows that “Partial btbél
Match” is true for 67% of the ground-truth matches, while rPa
tial Schema Column Name Match” is true only for 48% of the
ground-truth matches. At the same time, only 3.2% of theriare

Table 2: Consistency of Other Widget Features.  Table (a)
shows that “having the same widget type” is a weak featuiaesin

is satisfied by one third of the non-matches. In contrast|eTé)
shows that focusing on some specific widget types makes #ie fe
ture more useful. Also adding attributes increases theifestse-
lectivity of true matches relative to non-matches.

[ Update Features |
Its value only set when row is first added

Its value is only ever updated to the current Date/Time
Its value is updated whenever the row is updated
Context Features

Update affected by Current User context

Update affected by IP address of http connection

The value of the update depends on the previous update
The value of the update depends on the previous action

Table 3: Features Extracted From Application Dynamics. This
lists features that are extracted for a database field bas#tedJl
actions that cause the field to be updated.

matches have a “Partial Ul Label Match”, while 4.2% of theetru
non-matches have a “Partial Schema Column Name Match”. This
analysis shows that in general Ul labels are more consisteant
schema column names, and hence incorporating them in schema
matching can improve accuracy.

(b) Consistency of Other Widget Information: The Ul widgets
also have many other features besides just the Ul labelsandbe
leveraged for schema matching. Some of these are hightighte
Table 2. For example, in Table 2(a) we can see that the wigiget t
is the same for almost all of the true matches. But since there
only a small number of widget types, the type is also the same f
about a third of the non-matches, making this feature a weaik i
cator. We can however strengthen this indicator by combitiie
widget type with additional attributes. For example, if wek just

at fields associated witBELECT (i.e., drop-down menu) widgets,
then we can compute a partial text match feature over the menu
values available for selection. Table 2b shows that thitufeas
true for almost all of the corre@ELECT- t o- SELECT matches,
while it is true for only 3% of theSELECT-t o- SELECT non-
matches. Further filtering tHfeELECT- t o- SELECT matches for

at least one menu option with exact text match provides an eve
higher signal-to-noise ratio.

2.2 Application Dynamics

At first, it might seem that application information is onlges
ful for matching columns that a user can directly update fthe
Ul. Databases, however, have many columns that are gedenate
tomatically by the application. Simple examples of autaoadity



| | App. Dynamics| Schema Nam¢q

Detect “Created By” 100% 21%
Detect “Modified By” 100% 28%
Detect “Creation Date” 100% 32%
Detect “Last Modified” 100% 18%

Table 4: Usefulness of Ul Dynamics. This table shows that
for certain types of fields the Ul dynamics can identify math
more consistently than schema names. Specifically, we aeéth
created-by/modified-by and creation-date/last-modifiate fields,

the Ul can generate features which will always match theggsfie
while using the schema name provides a match in at most 32% of
cases.

generated fields are “created/modified by” or “created/fiedidate”.
Such columns cannot be directly associated with a partiouild:
get in the Ul. How can we use the application to help us match su
fields?

For these types of fields, we exploit the dynamics of the appli
tion. Our system utilizes two aspects of the applicationasyits.
The firstis the set of actions that cause a field to be updatexdvé
explain in 83.1, we learn such actions by exploring the Ul abd
serving underlying changes in the database.) Table 3 shome s
examples of such features. These features would identiBated
date” as a field that is only set upon addition and is set tothent
date/time. Additionally, “modified date” would be recogmirzas a
field that is set every time a table is touched and is alway®sbe
current date/time.

The second category of dynamics relate to context. Here we
would like to recognize actions that are context sensitige,where
performing the same set of actions in a different contextlte® a
different update to the database. By recognizing fields ehatue
is dependent on the current user and which are updated wéresmev
table is modified, we can identify “created by” fields and “rified
by” fields.

Table 4 shows that this information is quite useful in preeti
Specifically, we can see that the Ul features always coyreet-
ognize the appropriate field, while utilizing the schemadfighmes
only provides a correct match 18-32% of the time. One can-simi
larly use application dynamics to identify other autonmaticgen-
erated fields, such as last login ip address and last logeitaae.

2.3 One-To-Many

As noted earlier, we often encounter a single field in the s®ur
database that maps to multiple fields in the target datalzask,
vice-versa. An example of this can be seen in Figure 2a, where
the target database has separate tables for contacts aadwisiée
the source database stores both of these in the same tablarwit
additional type field indicating whether a particular retoefers to
a contact or a user. In order to correctly match such oneanym
fields, we need a feature that indicates which fields in thecgou
database is likely to map to multiple fields in the target dasz.

As can be seen in Figure 2b, the Ul provides a strong hint of
when a field may be mapped one-to-many. Specifically, thedigur
shows that though the source schema has only one field tlassto
both users and contacts, at the Ul level, this field is updated
two different web pages, one for users and the other for ctsita
Said differently, while an application may condense thebase
by storing multiple concepts in the same table, it stillgrie avoid
confounding the two independent concepts at the Ul levelcaye
leverage this feature to identify possible one-to-many pirags.
Specifically, if a source field can be updated from multipféedent
web pages, or even multiple different widgets on the same web
page, it is likely that the field combines multiple conceptsis

vModify Primary Information

Organization Name "
Ticker Symbol ‘i

:Emnll Addresses

Account Overview

Name:* Email 1| Primary v

Ticker Symbol.

Email Address:

:Update a Contact
Phone Fax

~
?
AN

First Name

Last Name
Birthday
[Email Addresses

Email 1| Business «

Figure 3: Example Useful Relational Ul Feature. The Ul label
of Email Address here maps equally well to both the e-maiteskl
on the accounts page, and the e-mail address on the consaets p
Thus, to map this field correctly, we must recognize that thuzet
labeled “Ticket Symbol” will map only to the top page, and sisi
likely that the e-mail address widget also maps to that page.

indicates it may map to multiple fields in another databaseur
CRM data-set we find that this feature correctly detects 76% o
the widgets that should be mapped one-to-many, while onlyp5%
those that are not one-to-many have this feature. Whilentieians
that the feature is not perfect, recall that features ars laind only
need to be highly correlated with the true match.

24 NULLs

NULL mappings arise in two different cases. The majority eom
from fields that are simply unused. These may be vestigialdiel
which are no longer used by the current version of the appdica
fields reserved for future expansion, fields accessed ondyrhgd-
ule of the application the company does not have, fields used f
debugging, or specialized fields added by the company ukiag t
SQL interface. The remainder of the NULLs mappings come from
fields that simply do not have an analog in the other dataliame.
example one of the CRM applications has fields for “longitude
and “latitude” associated with each address, while thera@titM
applications do not.

We can use the Ul to recognize some (though not all) of these
NULLs. Specifically any field whose value cannot be modified by
any Ul action is likely to be a NULL mapping. This includes ot
entire tables that cannot be modified or augmented as wefi-as i
dividual fields whose value cannot be set to anything bedtues
default value. We find that in our CRM application about 50% of
the NULL mappings can be correctly recognized using thisifea
alone, which significantly reduces the confounding effétM0LL
mappings.

2.5 Relational Features

Individual columns should not be mapped independently cfiea
other. For example, columns that are in the same table irotlves
database are likely to map to columns in the same table irathett
database. We call features like this that leverage the szis¢mc-
ture relational features Just as one can extract relational features
from the schema structure, one can also extract relatieadlifes
from the Ul structure.

Consider the example in Figure 3 where the label “Email Ad-
dress” in the source application has a partial match witliEmneail
1” label which appears on two different web pages in the taage
plication, each associated with a distinct database fieltickivof
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Source Database Target Database

Relation: contacts
Field: namefirst
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Relation: contact
Field: first name

Users

Source Database

Target Database Contacts

1 ;
| Relation: contacts__,

Relation: contact: Field: namefirst
Field: first name,

! Relation: users

Relation: users
Field: namefirst

(a) Source/Target Schemas

: Field: namefirst 3

(b) Source/Target Uls

Figure2: OneToMany. We can take advantage of information from the Ul to detedtadtsingle field in one database may map to multiple
fields in another database. Specifically, we can see herApipditation 1 stores users and contacts in the contact,tadllereas Application

2 has two separate tables. Thus, contact.first_name matchestiple fields in Application 2. We can recognize that . first_name can
be updated from two distinct Ul pages, indicating that suoheto-many mapping is likely.

the two target fields should the source field be matched with? |
tuitively, we would like to match the “Email Address” souriield

with the top “Email 1” target field based on the fact that they a
both on a web page which also contains a widget with the label
“Ticker Symbol”. More generally, fields associated with géds

on the same web page in one application are likely to matckltsfi
with widgets on the same web page in the other applicatiofis Th
feature is analogous to the schema-level feature of twomodap-
pearing in the same table in both schemas. We found thantirni
on relational Ul featured increases the F-measure of RSM1. 0

3. RSM'SDESIGN

Our system contains two main components. The first compo-
nent interacts with the database application in order taekboth
the application-based features and the schema-basedezallne
second component is the matching algorithm which combirees m
chine learning techniques with an optimization framewarkider
to utilize the extracted features to produce an optimal maitis
section covers the details of each of these componentsrin tur

3.1 Feature Extraction Engine

To include features extracted from the application’s Ul dwgel
namics into schema matching, we first need to associate Ul wid
gets and actions with the database fields that they operde@n
associate a textbox with the database column it writes, smciste
Ul dynamics with automatically generated fields like “cezhby”).
Once we have performed this association, we can generaatuade
for each pair of fields in the source and target databasesmpmza
features include “same Ul widget type”, or “Ul label simitgt. 2
As noted in the previous section, field pairs with higher deat
values have a higher probability of matching in the two schem
Some of these features come from the application while tee re
are extracted directly from the schema. Below we focus on how
we extract application and Ul features and associate themtie
right fields in the database. Extracting features from tihesa is
a standard process, which is done in the same manner as ioysev
work [26, 18, 33]. Table 6 in the Appendix lists all of the fes

2Note that the information we extract directly from the Ulchku
as the label, or widget type is associated with a single fielohie
database. However in order to perform the matching, we need t
compute the similarity of a pair of fields. So the raw Ul infation

is used to generate features over pair of fields. For exarbjple;
bels are used to generate a feature measuring the Ul lakitrsiyn
between two fields.

we extract.

Our feature extraction engine takes as input an empty tsistlin
lation of the source and target database applications. ifbial-
lation is different from the operational database applcatand,
hence RSM can safely perform updates and deletes in thigtest
stallation without interfering with the live applicatioill feature
extraction operations are done on the test installatiorhande can
be performed by a third party who does not have access tothal ac
database.

To perform the extraction, RSM interacts with the applicafi
at two levels: the Ul level and the database level. At the Mélle
it interacts through the application’s web interface usingrowser
plug-in. This plug-in can walk the DOM tréef a web page to
extract features from the web page itself, as well as type ant
click on any of the nodes in the DOM tree. At the database Jevel
each time the plug-in performs an action on the web interftee
system parses the query log to determine both which fieldsan t
database were read or updated, and the values of these Fedds.
the query log, it also extracts information indicating theles in
which records are added or deleted, and the values of theselse

The feature extraction system has three main components:

(&8 The Crawler: This component randomly walks the interface
clicking on Ul widgets and links in an attempt to find novel web
pages that it has never seen before. Periodically, the eraesets
itself to one of the pages it has seen before. This reset sethia
toward web pages that have not been fully explored to enbate t
all areas of the Ul are discovered. Additionally, it biasssclicks
towards widgets and links with text it has not seen before.

(b) The UI-DB Linker: This component takes all the web pages
discovered by the crawler that contain editable widgets (IN-
PUT, SELECT and TEXTAREA elements) and explores these pages
more deeply. This is done using two subcomponents. The fibst s
component updates the editable widgets. For SELECT, rauio a
check-box widgets such edits are straightforward. Fortextand
textarea widgets we must generate text which will be accelpye
the application. For example, the application may refusaepo
date an e-mail address unless it contains an “@” symbol. ,Thus
the update component generates text values in 5 differeyg:wig

by modifying the text that is already in the text-box, 2) byling

a value from some field in this database or another databpbyg, 3
pulling a value from some other web page, 4) by randomly gener

3The DOM tree is the hierarchical representation of the dbjiec
an HTML page.



ing text, or 5) by deleting the existing text and leaving tve-fHox
empty. The second subcomponent clicks on the various taitton
and links on the page to find the equivalent of Swbmit button.
More generally, it tries each of the buttons/links in turtikinfinds

one which results in some modification to the database. Oree t
Submit action (or sequence of actions) has been discovieestits
each of the widgets on the web page in various different ways t
determine both which fields in the database are modified, faad t
values to which they are modified. If, through this proceisdis-

Database 1 Database 2

-

covers web pages it has not seen before then these pageslare fe

back into the first sub-component, which will thoroughly lexp
them.

(c) TheFeatureGenerator: This component takes all of the infor-
mation acquired by the first two components and uses it torgene
a set of features for each potential match, i.e., for eaatgbdields
where the first field is from the source database and the sésond
from the target database. Two types of features are gedertbe
first type is widget-based features. To generate theseréstine
system utilizes information about which fields are updatéemnva
given widget is modified to match fields to widgets, and vieesa.
For each widget, it then extracts features, such as the ©l,lbm
the web page containing the widget, and associates thesgedea
with the relevant fields. The second type of features areiappl
tion dynamics features. These features are for auto-geekiialds
whose modification is not directly linked to a widget.

The feature value associated with matching a particularcgou
field, 4, with a particular target fieldj, measures the similarity be-
tween the two fields. For example, the “Widget type” featwe i
“1” if the two fields have the same widget type, and zero other-
wise. For all text comparisons we generate 4 types of festure
1) edit distance, 2) word edit distance, 3) TF-IDF weighteatdv
edit distance, and 4) unique word match. For schema text asmp
isons, word breaks are generated on all non-alpha-numbsac c
acters (e.g., underscore). All word comparisons are alse dn
stemmed words using the Porter stemmer [5]. These methods fo
computing similarity features are standard and match veha@bne
in past work [17].

3.2 Matching Algorithm

Automatic schema matching algorithms are based on the intu-
ition that two columns that match each other are likely tovsho
high similarity (i.e., they tend to have similar field namesni-
lar data types, and so on). We want to formalize this intnitie an
optimization problem that determines the match that mazesithe
similarity between the source fields and their matched tdigjds.

To do this, we need to compute a similarity score for the ciatéi
match of each field in the source database with each field itathe
get database. Many different features may contribute tostore,
such as how well the fields’ Ul labels match, as well as whetiner
widget types match. As we saw in 82, these features vary widel
how useful they are for predicting correct matches. Thusyaed
like to integrate them together in a way that appropriatetyoants
for the usefulness of each feature. To do this, we first nazmal
the features so that their values are between zero and @mewh
assign to each featurg a weightf; that accounts for its useful-
ness. Given these weights, we can formulate the matchirigerm
as an optimization whose objective is to find the match that-ma
imizes the total weighted similarity between the sourcel§ieind
their matched target fields. This optimization is parameger by
the feature weightg);'s.

In 83.2.1, we first describe how we model the matching as a
guadratic optimization problem, and then in §3.2.2 we dbscr
how we use machine learning techniques to learn the paresnete

Figure 4: Bipartite Match. Each node on the left side represents
a field in the source database, and each node on the rightegiee r
resents a field in the target database

(i.e., feature weight8,’s) of this quadratic program from training
data.

3.2.1 Schema Matching as an Optimization Problem

The formulation of schema matching into an optimizationbpro
lem is complicated by three factors: one-to-many mappitiys,
presence of relational features, and NULL mappings. If we ig
nore these complications, and assume that every field irothes
schema maps to exactly one field in the target database, the op
mization problem can be formulated as a standard bipartitefm
ing, as shown in Figure 4. Standard bipartite matching okl
can be efficiently and optimally solved with the Hungariagaal
rithm (Kuhn-Munkres) [24]. Formulated as a linear progrduis t
looks like:

argmax

Cij

Zcm‘ Z@f X Mi(yj;)
¥ f
Zcm =1
J
Zci,j =1

wherec; ; € {0, 1} and represent whether notlen the left side is
mapped to nodg on the right side. AdditionaIInyf;) represents
the value of featurg¢ between nodesand;, andf, represents the
weight of this feature. The; ; constraints ensure that a one-to-one
match is generated. In the rest of this section we discussvwmw
extend this model to handle one-to-many fields, relatiosaiufres
and NULL mappings.

subjectto Vi

1)

Vi

3.2.1.1 One-to-Many.

As discussed in 82.3, we can utilize information from the Ul
to detect when a given field on one side may to map to multiple
fields on the other side. We capture this information in ooedir
program by loosening the constraints on thg, which constrain
them to sum to 1. For example, if we determine from the Ul that
field ¢ on the left side can map t&; different fields on the right
side, then the constraint becom®&s)_ ¢; ; = P;.

This modified formulation can bJe trivially integrated intioet
Hungarian algorithm by simply duplicating the nodes thatweat
to map one-to-many. As demonstrated in Figure 2, we dupliaat
field if it can be updated from multiple different web pageseeen
multiple different widgets on the same web page. Specificalé
duplicate it once for each unique widget from which it can pe u
dated.

Note that this may cause unnecessary duplication, but such d



plication is harmless. Specifically, consider a modifiedsigar of a binary vector indicating the fields in database 1 that aréhen
Figure 2, in which the target database, just like the souatatdse, same web page @sandTj . as a vector indicating which fields in
stores users and contacts in one field that gets updated ftom t database 2 are on the same web paggethen the affinity measure
Ul web pages. In this a case, there would be no one-to-many map becomes simply the cosine similarity between these twoovect
ping. Our system, however, would duplicate both the sounce a  Formally, this is:
target fields. But such a duplication is benign since thenogt- S s x (Sin x Tj)
tion will match both the original fields and their duplicateseach £ Ol 2 D0k 2 LG

other. To see why this is true, recall that the duplicates hiden- Aij = \/ 7 3)

tical features to the original fields. Thus, if the optimalusion Z(Si,n)Q X Z(Tj,m)2
matches the original fields to each other, it will also madirttu- " "
plicates. We can simply prune out such double mappings at the In practice, many such relational featurgsexist; similar to the

end, ensuring that the superfluous duplications are hasmles local features, we would like to learn a weight paramétgifor
each one. Note, that each feature will have its dhamdT" matrix,

3.2.1.2 Relational Features. 59 andT'?, and so (3) becomes:

In §2.5 we motivated the idea that two fields in the sourcetzaa 5(9) (@)

that are associated with widgets on the same web page aetbke 2 Chl X ( ik X T )

match to fields in the target database that are also assbeidte igj) il 4)

widgets on the same web page. There are many examples of these \/Z S(9> \/E T<9

features, such as two fields whose widgets are near eachasther

the web page in one application are likely to match to fielditvh Additionally, instead of focusing on just local featureadgust

are near each other on the web page in the other applicatidn, a yg|ational features we would like to appropriately tradenthoff

two fields that are in the same table on one application aetylik  re|ative to each other. Thus, we integrate the relatioralies into

to match to fields ir_1 the same table on another applicationcaife our original optimization by incorporating (4) into (1) tbtin:
such features relational features.

Relational features cannot be directly integrated into apti-

mization the same way as the existing features (which welaall
- . - () (9)
cal features), because local features quantify the afftmityveen argmaxz cig| [ Do0eM |+ D 0sA
two fields indifferentdatabases, while relational features quantify R I g
the affinity between two fields in treamedatabase, e.g., these two subject tovi Z ci, =P (5

fields are in the same table, associated with the same webgtage
To utilize these relational features we need to use themm@how
generate a measure of the affinity between two fields in differ vj Z cij = Qj
databases. Specifically, we would like to encode into thevopa- '

tion our intuition that if two fields in database 1 are relatedome

way, they are likely to match to two fields in database 2 that ar 3.2.1.3 Optimizing.

related in that same way.

To see how this is done, let us focus on the relational feature
“being on the same web page”. We will encode this feature into
two binary matrices$ for database 1 andl for database 25, ;, is
1 if the widget associated with fieldin database 1 is on the same
page as field:, and similarly forT” and database 2. So if we look
just at field: in database 1, and fieldin database 2, theiis likely
to match toj if all of the other fields on the same pageiaare
matched to fields on the same pagejaso if we assume that we
have an existing matchingas defined above, then we can say that
the affinity betweer andj from this feature is proportional to:

While our original formulation, (1), was easy to optimizB) (s
more difficult to optimize. Specifically, the ; at the start of (5)
is multiplied by thecy,; inside of A; ; turning our linear program
into a quadratic program. Unfortunately, this quadratiogoam
is an instance of the quadratic assignment program whosg exa
solution is known to be NP-hard[12]; thus, we must resortrto a
approximation.

We use an iterative algorithm, similar in nature to past wark
18], except that each iteration of our algorithm improvesdlobal
objective score. Specifically, in each iteratiowe calculate a new
assignment;* (v). We initialize the algorithm by calculating:(0)

based on equatiofil) above, (i.e., we ignore the relational fea-
Si T; ’ .
; et (Sik X Tiat) @ tures), and for each iteration we calculate:
Said differently, if we look at each pair of fields ! wherek Zc’,; (V) X (ngk) X T<9)>
is in database 1 andis in database 2, anklis a match td, i.e., <9) — (6)
¢k, = 1, then we would like to increase the affinity between \/Z S(g) \/z T(g)
andj if ¢ is on the same page asandj is on the same page as

[. However, if we use this unnormalized summation, thenaihd

j happen to be on a web pages with many of widgets then they
will end up with a much higher affinity than two fields that are ¢*(v) =
on web pages with only a few widgets. Thus, we would like to
normalize this score by the number of widgets on the same page o D (9)

is not quite this simple, however, becausaweb page may have a argmaxz Cird Z OrMGT )+ (Z Oa A5 (v = 1)>
different number of widgets thajls web page. So instead we need
to normalize by a suitable average of these two numbers. ,Thus More generally, in each iteration we compute the value ofjtredratic
we choose to normalize by the product of the Euclidean norms. term using the optimal assignments from the previous it@rat
The reasoning behind this choice is as follows. If we vigy. as Thus, each iteration becomes a basic bipartite match probibich

Then for each iteration we compute the new assignment:

Chd g



we can again solve with the Hungarian algorithm. We find that i
practice this approximation converges in only a few iteradj and
provides good results.

3.2.1.4 NULL Mappings.

In our current formulation, every field in database 1 is alsvay
mapped to a field in database 2. This is the correct thing td do i
there are no NULL mappings. But this formulation will causeNR
to incorrectly map all fields that should map to NULL. Past kvor
has handled this problem by choosing a minimum match thtésho
and pruning out all matches below the threshold. Such aroappr
is suboptimal in our system due to the relational featureish vg-
lational features, fields are no longer matched indepehd&om
each other. Simply pruning out the weak matches at the ehdaotil
account for the fact that these incorrect matches have migmp-
erly impacted other matches during the iterations of therétym.

The solution to this problem is to incorporate the threstiold
the optimization itself. Specifically, instead of just pinm out
weak matching nodes after the optimization has converged, w
prune at each iteration. Say that we would like to prune atthnes
whose score is below. We start with a very low threshold in
the initial mapping so nothing is pruned out. We run the tieea
optimization algorithm from §3.2.1.3 until convergencee Wien
increase the threshold slightly, and rerun until convecgenWe
continue increasing the threshold and rerunning like tnigil the
minimum score in the resulting match is greater thanwe find
that in practice it works well to set our step size to oneheoit
the difference between the initial threshold ancensuring the ap-
proximation algorithm is run no more than times. This iterative
pruning ensures that matches that do not meet the thresteftha
only eliminated, but also prevented from propagating wriorgr-
mation to other nodes in the final match.

3.2.2 Learning Feature Weights

So far we have described how to produce an optimal mapping
given a set of feature weights and a pruning thresholéiere, we
discuss how to learn those parameters. Specifically, wednia
to learn those parameters from training data that consistsset
of database pairs for which we have the correct mapping (@d“g
mapping”) indicating the list of field pairs that do matchetiger.

For purposes of parameter estimation only, we treat our-prob
lem as a standard binary classification problem [11]. Thestfi@r
classifies each pair of fieldsj as a match or a non-match, whére
comes from database 1, afpdomes from database 2. If database
1 hasn fields and database 2 has fields, we generate x m
training samples. If there arg matches in the gold data, then
of these samples will be positive examples, and the resteoi thf
them will be negative examples. Thus, intuitively, for edied 7
in database 1 we generate one positive training sample éqoafr
< and the fieldj to which it is mapped in the gold annotation, and
m— 1 negative training samples for the matching tf every other
field in database 2 besidgs

The major complication that arises from this treatment &f th
problem is the handling of relational features. Since tlassifier
treats each, j pair independently, its not entirely clear what to use
for ¢, when computingd; ; in equation (4) when computing the
relational features for each data point. Since we are orityghis
at training time, however, we can utilize the gold annotaiahich
specify the correct answer. Thus, we just usedfieom the gold
annotations (i.e.c;,; is 1 if 4 is matched toj in the gold, and 0
otherwise) to compute each of the relational features. alhisvs
us to utilize an out-of-the-box classifier at training time.

As in standard classification, we let the classifier run untibn-

Database One-to-one | One-to-Many [ NULL Total
Pair Matches Matches Matches | Matches
Centric-
Sugar 100 87 143 330
Sugar- 63 118 118 299
Opentaps
Opencrx-
Centric 75 67 168 310
Opentaps- 53 32 150 235
Opencrx
Centric- 69 44 165 278
Opentaps
Sugar- 71 o1 134 296
Opencrx

Table 5: CRM Applications. This shows the six CRM database
pairs used in our experiments along with the number of golttina
ings of each type. Note that for each pairing, the number efton
many matches and the number of NULL matches differ depending
on which database is considered the source and which isdzonsi
ered the target. So we report in the table the averages owéwth
directions.

verges to the feature weights and the pruning thresholdatet
most consistent with the gold mapping. We tried the two mogt p
ular classifiers, an SVM classifier [6] as well as a maximunagyt
classifier [30]. We found that the SVM worked better in allesis
thus the results we report in 85 are based on training witlste
classifier.

3.3 Implementation Details

Our implementation includes both a component for feature ex
traction and a component for the optimization algorithmr ®@ut
plementation of the feature extractor is fairly simple, amseed it
with the set of web pages containing editable widgets, aiigt afl
keywords for the submit buttons (in our case only “Save” addb-
mit”). The optimization algorithm is implemented using NByj7]
combined with a third party Hungarian algorithm library [2%he
SVM training is done using SVM Light [6].

4. EXPERIMENTAL SETUP

Our goal is to evaluate whether the use of application inferm
tion in database integration can allow it to work on industcgle
problems. Thus, we evaluate on four real world CRM databases
Centric [2], Sugar [1], Opentaps [3], and Opencrx [4].

(a) Dataset. For our evaluation dataset, we generate all six distinct
pairings of the four databases as shown in Table 5. We haed &ir
consultant to generate the gold matchings for each of thiéngai
We directed the consultant to focus on the core CRM functiyna
and ignore the extraneous functionality included with sahthe
applications. As shown in the table, the resulting gold imdtas
many one-to-many mappings and the number of NULL mappings
is even more than that of one-to-one mappings. While diffeag-
plications may have different ratios of these three matplesywe
believe that the existence of many complex NULL and onerte-o
mappings is representative of real world applications. drtipu-
lar, all four CRM applications have evolved over a long perid
time which has led both to many vestigial fields which are $ymp
unused, as well as many idiosyncratic datafields that auerto
an individual database (such as associating a longitudéaéindle
with all addresses).

We choose this evaluation dataset for two main reasond, wigs
could not use the benchmarks from past work because they have
included only very small relational schemas, or tree-baskid.



schemas, neither of which is representative of industrjescea
lational databases. Additionally, none of the existingdbenarks
included overlying applications. Secondly, we wanted tokaaith
real world applications to be as representative of the imgiset-
ting as possible. Given that CRM applications are one of tbetm
popular categories of large-scale database-backed afiptis in
use today, they presented a particularly relevant apmicaiomain
for testing our system.

(b) SVM Training. As we discussed in 81 our algorithm needs
only a single matched database pair for training. Thus, limfal
our evaluations we train using only a single matched da&apas.
More specifically, we evaluate the performance on each radtch
pair by training on just the single matched pair containimgydther
two databases (i.e., we never train on examples from thedest
databases and never use more than a single pairing fortgairior

example when testing on the Sugar to Centric mapping we would
train on just the Opentaps to OpenCRX mapping. We assume in

practice that database migration consultants would haigirig
data that comes from migrations they have done in the past.

(c) Domains. In order to ensure that our results apply to other
applications besides CRM, we also evaluate on a set of ttagerp
publication database systems. Two of these come from eliffer
research groups in our lab, and the third is the publiclylaké
Refbase [8]. We choose this domain because of ready avdilabi
of sample applications. The gold mappings were also gestbint

a consultant, and the evaluation was done the same way.

(d) Metrics. Similarly to past work, we report matching perfor-
mance in terms of the F-measure. The F-measure is a popudar me
sure of atest’s accuracy. Itis computed as the harmonic ofdhr
test’s precision (i.e., the percentage of correct matahésa test’s
output) and its recall (i.e., the percentage of total carneatches
discovered by the test). Specifically, for a given schemag feic
be the number of elements in the two schemas for which a maitch i
predicted and the predicted match is correct. .t #te total number
of predicted matches, and the total matches in the gold standard.
The precisionp is ¢/n, or the fraction of elements with correct
predictions, and the recatlis the fraction of matches in the gold
mapping that were correctly predicted,«mn, and the F-measure,
f, is the harmonic mean of the two:

f= 2pr

T optr )

F-measure balances precision and recall. An increase irdSune
indicates a better ability to predict correct matches asd iglentify
non-matches. We report the F-measure averaged over raultips
of all matching tasks in a domain.

(e) Compared Systems. We compare the following three systems:

e RSM-full: The full version of our system as described in sec-
tion §3.

e RSM-schema-only: The same as the full version of our system
except that it does not use any of the features generatectfireom
Ul

e Harmony: Harmony [28] is the schema matching component of
the Openll [33] data integration system. It uses a vote niege
combine several different match voters each of which idiesti
match correspondences using a different strategy. Iniaddit
includes a structural match component that is an implertienta
of similarity flooding [27]. In our evaluation, we configureaH
mony to use all of its match voters. In order to output a maighi

O Harmony
E RSM-schema-only
H RSM-full

Precision Recall Fmeasure

Figure 5: Basic One-to-One CRM Averages. This shows the
results for the basic CRM one-to-one dataset averagedsaaiiaix
database pairs. We can see that RSM-full achieves a 2x fureas

gain over Harmony, and a 1.6x gain over RSM-schema-only.

Fmeasures

OHarmony M RSM-schema-only B RSM-full

0.89 0.94

Centric-
Opentaps

Centric-
Sugar

Sugar-
Opentaps

Sugar-
Opencrx

Opentaps-
Opencrx

Opencrx-
Centic

Figure6: CRM One-to-one By Database Pair. This shows the F-
measure for the one-to-one CRM dataset broken down by dstaba
pair. For each pair there are two scenarios depending onhwhic
database is the source and we report the average over these tw
scenarios. From this we can see that RSM-full generates gdin
between 1.7x and 3.5x over Harmony and between 1.2x and 2.7x
over RSM-schema-only.

able threshold, we tried two different approaches. Firgt,set

the threshold to zero as previous work has done [28, 14].18gco

we first run Harmony on a given pairing and find the threshold
that produces the optimal F-measure on this pair; conséiguen

we use this threshold when testing Harmony on the other pair
of databases. The pairs are chosen in exactly the same manner
as the test and train sets for RSM. We found that the second ap-
proach gave better results in all test scenarios; thus, esults

in 85 are reported according to this method.

5. RESULTS

As we discussed earlier, real world database integratiorg®r
both the challenge of scale as well as two additional chgéen
many-to-one mappings and NULL mappings. Thus, in addition
to evaluating in the basic one-to-one scenario we also aeghar
evaluate with NULL mappings, and with many-to-one mappings
We find that RSM-full provides significant improvement inthllee
scenarios, leading to an F-measure gain of 2-4x over Harnamay
1.6-2.2x over RSM-schema-only.

5.1 Oneto-One

The simplest matching scenario is one in which each fielden th
source database matches to exactly one field in the targeial,
and vice versa. In this section, we evaluate RSM’s perfooaam
such one-to-one scenarios.

Method. To create a one-to-one scenario from our dataset, we

Harmony requires the user to set a threshold score, wheteby a simply remove all database fields that match to NULL in thelgol

matches above this threshold are included. To determiné-a su

match, and for each field matched one-to-many we include only
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Figure 7. NULL Mapping CRM Averages. This shows the av-
erage results for the CRM dataset when NULL mappings are in-
cluded. We can see that RSM-full achieves additional gaios f

its ability to use the Ul to detect fields that are likely to miap
NULL. Specifically, its gains have improved to 2.7x over Hany

and 2.2x over RSM-schema-only.

one of its matches.

Results. We can see from Figure 5 that in this scenario RSM-full
correctly matches over 80% of the fields, resulting in an ayer
gain of 2x over Harmony, and an average gain of 1.6x over RSM-
schema-only. When we break this down by database pair in Fig-
ure 6, we can see that on a per pair basis, RSM-full's gains ove
Harmony vary between 1.6x and 3.4x. This wide variation & th
gain comes largely from differences in the quality of theenhyng

schema names. For example, both Sugar and OpenCRX have rela-

tively clean schemas with most of their table names contgifuill
words with underscores between them, e.qg., “first_namesutrh
cases, the use of Ul features provides less benefit. Howetien
even just one of the two schemas has low quality names, tharJl ¢
provide significant benefit. This can be seen by the more tlan 3
F-measure gain achieved when testing on Sugar and Ceinige, s
the Centric schema tends to use short and non-descriptivenno
names.

Finally, in one-to-one mode, RSM has the same precision and
recall since in this case there is no duplication and eacttedield
is mapped to exactly one field in the target database.

52 NULLs

As we discussed in §2.4 we find that many fields in the source
database do not map to anything in the target database. Vgeicll
fieldsNULL fields In this section we evaluate RSM'’s performance
on these NULL fields.

Method. To test the effect of NULL matches we augment the one-
to-one CRM dataset used in the previous section with allbdesa
fields that match to NULL.

Results. We can see from Figure 7 that when we include NULL
fields, RSM-full's gains over both of the baselines increasas
discussed in §2.4, this increased gain results from thétfatabout
half of the NULL fields come from fields which are simply unused
in the source database. These NULL fields may be vestigial, re
served for future use, or simply used only for debugging. sEhe
fields are difficult for traditional techniques to handle &ese with-

out information from the Ul, it is quite hard to detect whichléis

are unused. RSM, however, is able to use the Ul to identify the
fields that can be set via the user interface, giving it anctithn

of used vs. unused fields, and improving matching performanc

5.3 Oneto-Many

In addition to NULL mappings, practical scenarios also have
many-to-one mappings where a single field in the source datab
may map to multiple fields in the target database. This seetial-

0.8 |
0.59 O Harmony
0.6 - 0.5 034 @ RSM-schema-only
W RSM-full

0.4 -

0.2 -

Precision Recall Fmeasure

Figure 8: Many-to-One Mapping CRM Averages. This shows

the average results for the CRM dataset when many-to-one map
pings are included. RSM-full improves its gains in this srém
from its ability to use the Ul to detect which fields are likety
map to multiple fields. This results in gains of 4.5x over Hany)

and 1.6x over RSM-schema-only.
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(b) NULL Mappings

Precision

Figure9: Publication Domain. This shows the average results for
testing on the basic one-to-one Publication dataset (ajelsas

the Publication dataset with NULLs (b). These results wereg
ated by training RSM on database pairs from the CRM dataset. W
can see that RSM works well even if trained on data from awiffe
ent domain as RSM-full still achieves gains of 1.3x over Hamgn
and 1.1x over RSM-schema-only.

uates RSM'’s performance on such one-to-many mappings.
Method. To test the effect of one-to-many mappings we augment
our original one-to-one dataset by includialy matches for fields
mapping one-to-many.

Results. As we can see from Figure 8, RSM-full again has higher
gains in this scenario than in the basic one-to-one scenditiis
increased gain results from the fact that without the uséeiil,
there is no good indication of which source database fieldsldh

be mapped to multiple target database fields. As we discussed
in 82.3, however, the Ul provides a very strong indicatiomvbich
source fields may map to multiple target fields.

5.4 Publication Domain

So far all of the results that we have discussed come from the
CRM domain. In this section, we show that RSM'’s improvements
also apply in other domains. Furthermore, we show that RS ne



not be trained on a database pair from the same domain, rather
database pair from any rich Ul domain is sufficient.

Method. We train RSM on a random database pair from the CRM
domain just as before, but we test it on the dataset from the pa
per publication domain discussed in 84. We repeat for ardiffe
choice of the CRM training pair and report the average res\le

test two scenarios: without NULLs where we remove all NULL
mappings, and with NULLs where we include the NULL map-
pings. Note that our publications dataset did not have amyra:

one mappings so we did not test this scenario.

Results. We can see from Figure 9 that RSM provides substantial
gains in this scenario as well, confirming that its gains doegal-

ize to other domains, and its training does not need to be toma
specific (as long as itis trained on a Ul rich application (i&@M).

To further ensure that RSM does not need to be trained onakgab
pairs from the same domain, we also tested RSM on the publica-
tion dataset when it was trained on database pairs from déinne s
dataset. We found the results to be exactly the same as those i
Figure 9, confirming that training on the same domain doegmot
prove the results.

We do note, however, that it is important for RSM to be traiaed
rich Ul domain such as the CRM domain. Specifically it would no
be appropriate to train on the publications domain, whichdray
a very simple Ul, and then test on the CRM domain, which has a
much richer Ul. This is because when RSM is trained on a simple
Ul domain, any feature not exhibited by that domain would get
a weight of zero. This prevents RSM’s matching algorithmrfro
utilizing these features, even when testing on a rich Ul dorra
which those features are present. In contrast, if RSM ingchdn a
rich Ul domain and it puts weight on features that do not appea
the test domain (because it has a simpler Ul), then the weigit
these unobserved features will simply be ignored, and tansat
have a negative impact on the resulting matching.

5.5 Computation Time

In this section, we show that RSM’s runtime is reasonable.
Method. We run RSM-full on the full dataset for each database
pair, and we time how long it takes during the training phase,
well as how long it takes for the optimization to complete. &\é&o
measure the runtime of Harmony on the same dataset.

Results. We find that in all cases RSM-full takes less than 1 minute
to solve the optimization for a single database pair, whik-H
mony’s runtime is approximately 30 seconds. Additionaitgin-

ing RSM takes less than 30 seconds in all cases. Further, ige no
that training can easily be performed offline thus not affetRSM’s
runtime in practice. Lastly, our current implementatioioptizes
flexibility over performance, so a more performance focused
plementation could further reduce these runtimes.

6. RELATED WORK

There is a rich literature on schema matching, which falts in
three areas:

(a) Automatic Matching Paradigms: RSM differentiates itself
from past work primarily based on the source of informatisedi
for matching. Past work on automatic schema matching hiizaati
three sources of information for matching: the schema, #te ith-

stances in the database, and usage statistics [19, 29InSedbased
paradigms rely primarily on the structure of the schema dolen
ogy and the properties of its attributes [26, 27, 25]. Instabased
techniques, on the other hand, observe that existing degaddries
(instances) may convey additional information about theroas

process [36, 18]. Last, usage-based techniques expl@sagat-
terns extracted from query logs to improve the results oéseh
matching [19, 29]. In contrast to all of this past work, RSMizgs

information mined directly from the user interface of anyieg

application. This represents a fourth source of infornmatiat has
not been utilized by past work.

In addition to this new source of information, RSM also diffe
from past work in the algorithm it uses for matching. The nsost-
ilar past work has used machine learning to weight the inanoe:
of various sources of match information, just as RSM does [21
18, 16, 25, 15]. Other related techniques have employedtiver
algorithms to propagate similarity measures between beighg
fields [18, 27]. While the algorithm used in RSMis similar iavibr
to those in prior work, it differs in that it models the matetiprob-
lem as a quadratic program, which integrates both local &by
relational features. It then solves this quadratic progi@produce
an optimal match.

(b) Large-Scale Schema Matching: One of the major challenges
in schema matching is developing matching techniques that c
scale to real-world applications [17, 32]. Much of the prier
search in this direction has focused on speeding up the imgtch
process [31, 10, 18]. In contrast, RSM is focused on impigvin
the matching accuracy for large-scale schemas. Furthermust
prior work on large matching problems is most effective fiarér-
chically structured schemas such as XML documents and@ntol
gies, and is less effective on non-hierarchical relatictdlemas.
For instance, COMA++ [9] partitions source and target scem
into similar fragments and then matches elements in casretipg
fragments. While such partitioning into mutually exclwesifrag-
ments works well for hierarchical schemas, the lack of stmad
elements (beyond tables) in relational schemas rendebstsah-
niques less effective in conventional RDBMSs.

(c) User Interfaceand User Interaction: Past research has lever-
aged the user interface in schema matching problems for two p
poses: matching web forms and integrating user feedbacken
form matching, the goal is to simultaneously perform a jaiatch-
ing of the widgets on a large number of web forms [20, 21, 34,
13]. This work is based on the heuristic that field names which
appear together on one web form are less likely to match tb eac
other when appearing in different web forms. The effecign
of this technique, however, is dependent on the availghilita
sufficiently large number of databases (20-70) which eacle bha
relatively small number of attributes (3-7). Thus, evendhéors
themselves [34] assert that the employed techniques affedne
tive for matching large-scale relational schemas whenetiserel-
atively little training data, and hundreds of fields to match

The other use of the Ul in past work is to provide a GUI integfac
to allow users to inspect and correct schema matchings [328
22] or to involve them in the matching process by providingtsi
for the matcher [10]. This work is complementary with ours in
that RSM is focused on improving treutomatedmatch quality.
Specifically, RSM can be utilized by these GUI tools to preva
high quality initial match which will significantly reducée effort
required by the user.

7. CONCLUSION

Automatic schema matching has made giant leaps over the past
fifteen years; however, fully automating the matching psscee-
mains elusive for industry-size relational databaseshigpaper,
we have proposed RSM, which provides an additional dimansio
for improving this matching process by leveraging appiaain-

or fields they belong to and thus may be used to aid the matching formation. We have shown that RSM achieves F-measures ks hig



as 0.82 for one-to-one matchings on databases with hundifeds
columns, and gains of 2-4x over Harmony, an existing st&tee
art approach. Furthermore, RSM develops methods to spbific
tackle many-to-one and null mappings, again through uiijzap-
plication information. We have also shown that RSM is gemeri
and capable of achieving high matching accuracies on onitiom
when given only training data from a different domain. In the
ture, we would like to develop RSM into a system that is cagpabl
of stipulating human feedback on specific matches througbea u
interface, and of using this feedback to ramp up its matchoty-
racy.
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APPENDIX

Schema-based
Number of matching words in column name|
Do column names have a maiching ward
which is unique in both databases
Number of matching words in column namg
tf-idf weighted
Number of mafching words In table name
Number of maiching words between column
name and table name
Same Schema Type
Both Foreign Keys
Same Table

Ul-based

Number of matching words in Ul Tabel
Do Ul Tabels have unique maiching word
Number of matching words In UT Tabel, tf-id
weighted
Do widget types match
Separate binary feature for each pair of widget
types
Does column have associated widget
Both have value set when row 1S added
Both have value only updaied to current
Date/Time
Both have value updated whenever row IS yp-
dated
Both have update affected byrrent useicon-
text
Widgets are on the Same Page
Widgets are in the Same Section

Local

Relational

Local

Relational

Table 6: Features. The full list of features used in our implemen-
tation of RSM’






