
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-022 September 10, 2013

Harvesting Application Information for
Industry-Scale Relational Schema Matching
Nate Kushman, Fadel Adib, Dina Katabi, and
Regina Barzilay

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/16521291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Harvesting Application Information for Industry-Scale
Relational Schema Matching

Nate Kushman Fadel Adib Dina Katabi Regina Barzilay
Massachusetts Institute of Technology

ABSTRACT
Consider the problem of migrating a company’s CRM or ERP database
from one application to another, or integrating two such databases
as a result of a merger. This problem requires matching two large
relational schemas with hundreds and sometimes thousands of fields.
Further, the correct match is likely complex: rather than a simple
one-to-one alignment, some fields in the source database maymap
to multiple fields in the target database, and others may haveno
equivalent fields in the target database. Despite major advances
in schema matching, fully automated solutions to large relational
schema matching problems are still elusive.

This paper focuses on improving the accuracy of automated large
relational schema matching. Our key insight is the observation that
modern database applications have a rich user interface that typi-
cally exhibits more consistency across applications than the under-
lying schemas. We associate UI widgets in the application with the
underlying database fields on which they operate and demonstrate
that this association delivers new information useful for matching
large and complex relational schemas. Additionally, we show how
to formalize the schema matching problem as a quadratic program,
and solve it efficiently using standard optimization and machine
learning techniques. We evaluate our approach on real-world CRM
applications with hundreds of fields and show that it improves the
accuracy by a factor of 2-4x.

1. INTRODUCTION
Modern enterprises store much of their important data usingweb-

based applications backed by relational databases. These include
both generic applications such as customer-relationship manage-
ment (CRM) and enterprise resource planning (ERP), as well as
customized applications that perform functions unique to an indi-
vidual industry (e.g., e-commerce, inventory management,or health-
record management applications). As a company’s business needs
change, it periodically migrates from using one application to using
a different application to perform the same function; for example
it may move from using Oracle’s CRM application to using SAP’s
CRM application. This change may result from an acquisition, or
just from the desire to shift from a legacy application to a more
modern one that includes new desired functionality. When a com-
pany moves from using one application to another (e.g., switching
from one CRM application to another), it needs to migrate allof its
data from the relational schema of the old application to therela-
tional schema of the new application. This process requiressolv-
ing aschema matchingproblem, which builds a mapping from the
fields of the old database to the fields of the new database. This
mapping is then used to migrate the data. Despite major advances
in schema matching [9, 22, 33, 23, 27, 25, 26, 15], matching large
relational schemas still requires a significant manual effort, causing

such migrations problems to cost hundreds of thousands or even
millions of dollars [37].

Automating this process is desirable yet challenging. A typical
CRM or ERP schema has a few hundred and sometimes thousands
of fields [35]. Industry-specific applications may have evenlarger
and more complex schemas. Matching large schemas is difficult
since any column could (in theory) match with any other column.
The problem is particularly acute for relational schemas because,
unlike XML and ontology schemas, one cannot make accuracy-
improving assumptions about the schema structure that constrain
the set of possible matches. As a result, evaluations of fully-automated
relational matching algorithms have typically been done over small
relational schemas with a handful [27, 26] to a few dozen columns [25,
15].

In addition to schema size, two other challenges further compli-
cate relational schema matching. First, some columns in thesource
database may map to multiple columns in the target database and
vice versa, creating many-to-many relations, which require deter-
mining not just the best match for each field, butall of the appro-
priate matches. Second, some columns in the source databasemay
have no matching columns in the target database and should be
mapped toNULL. Most past work on automated schema matching
focuses on one-to-one mappings [27, 25, 26], and only a few algo-
rithms directly address such complex mappings [25, 15]. We have
found however that, in large popular CRM applications [1, 2,3, 4],
the number of one-to-many and NULL mappings tends to exceed
the number of simple one-to-one mappings.

This paper focuses on improving the accuracy of automated match-
ing of large and complex relational schemas. Our key insightis the
recognition that large database applications are designedto make
the user interface (UI) and application dynamics intuitiveto lay
users. As a result, the UI and dynamics of two applications built for
the same purpose often exhibit more consistency than the schemas
themselves. To exploit this insight, we have built RSM (Rela-
tional Schema Matcher), a system that uses the consistency of the
user interface to improve the performance of automatic (andsemi-
automatic) schema matching algorithms. RSM takes as inputempty
installations of the source and target databases. It systematically
interacts with the user interface, while monitoring changes in the
underlying database. This allows RSM to associate UI widgets and
actions with the schema columns on which they operate.

RSM exploits this association to address the three practical chal-
lenges faced in large-scale relational schema matching:

• To improve matching accuracy in the face of large schemas, RSM
exploits UI information, instead of just using schema informa-
tion alone. For example, even when the schema column names
of two fields do not match, the UI labels for their associated wid-
gets often do.

• To identify potential one-to-many mappings, RSM recognizes
that if updates from two conceptually different web pages are
written into the same column in the source database, such a
column incorporates two concepts, and hence may map to two
columns in the target database (see Figure 2b).

• To identify potential NULL mappings, RSM recognizes that columns
that cannot be modified in any way from the UI are often special-
ized or extraneous, and likely to map to NULL.

To integrate this information into the matching process, RSM in-
troduces a new matching algorithm that formulates schema match-
ing as an optimization problem. Specifically, the intuitionunder-
lying schema matching is that two columns that match each other
are likely to show high similarity (e.g., have similar column names,
similar data types, and so on). To capture this intuition, RSM for-
mulates schema matching as a quadratic optimization, whoseob-
jective is to find the optimal match that maximizes the total simi-
larity between the source fields and their matched target fields. The
key feature of this formulation is that it incorporates not only local
similarity measures (e.g., lexical similarity of two columns or their
data types) but also global relational similarity measures(e.g., the
relational graph structure of the source and target schemas), and
jointly maximizes them within the same framework. RSM solves
this optimization efficiently by combining standard machine learn-
ing and optimization techniques.

RSM builds on previous work but differs from it in two main
ways. First, no past work has associated UI widgets and actions
with the affected schema fields and used that information in schema
matching. Existing approaches for matching web forms have used
limited information from the UI [34, 21]. Their techniques,how-
ever, do not apply to our problem because they assume a large num-
ber of web forms, each with only a handful of fields [34]. In con-
trast, we focus on matching two relational schemas with hundreds
of fields. Second, although past work has sometimes includedre-
lational information in the form of constraints [16] or as part of an
iterative matching algorithm [26, 27, 18], our algorithm integrates
both local and relational information into a joint optimization prob-
lem using the cosine similarity measure.

In our experiments, we compare RSM to Harmony, a state-of-art
system that combines multiple matching algorithms to boostper-
formance [28]. We test on two domains of differing complexity:
four CRM applications with (on average) 300 columns each, and
three publication tracking applications with about a dozencolumns
each. Similarly to past work, we evaluate matching accuracyusing
the F-measure.1 We have the following findings:

• Leveraging information from the UI allows RSM to achieve F-
measure gains of 2-4x over Harmony. Harmony is only able to
achieve an F-measure of 0.39 on a version of the CRM dataset
with only one-to-one mappings. Its F-measure falls to 0.18 when
NULLs are added and 0.12 when one-to-many mappings are in-
cluded. In contrast, RSM achieves an F-measure of 0.82 on the
one-to-one CRM dataset, and an F-measure of 0.50-0.54 on the
more complex datasets.

• Our optimization matching algorithm alone, without application
information, provides significant gains over Harmony, leading to
1.3x gains in F-measure.

• The UI provides gains across multiple domains. In the simpler
context of publication databases, RSM produces an F-measure
of 0.90, and gains of more than 0.24 over Harmony.

Although RSM can provide significant gains, it does have some
1F-measure is the harmonic mean of a test’s precision and recall,
and ranges from 0–1.

Figure 1: Example Showing UI Consistency. This example taken
from matching Centric with Opentaps shows how UI labels can be
more consistent than schema field names.

limitations. First, as with any automated schema matching sys-
tem, the matches it generates are not perfect. We assume its output
will be reviewed by a human who will generate the final match-
ing. However, the improved accuracy provided by RSM can sig-
nificantly reduce the required manual effort. Second, the machine
learning component of RSM’s matching algorithm does require a
pair of already matched databases as training data to tune the pa-
rameters of the algorithm. Critically, however, RSM requires only
one such matched database pair as training. We show in §5 that
this training data does not have to come from either the source or
target database, or even from a pair of databases in the same do-
main in order to obtain good results. In fact, when we evaluated
RSM on the publication domain, we used parameters learned from
training on the CRM domain, and found that performance is not
affected. Thus, in practice, consultants or administrators perform-
ing database migrations should be able to obtain training data from
previous migrations.

In summary, this paper makes the following contributions:

• It extracts previously unexploited information from the UIand
the dynamics of the overlaying applications and demonstrates
that this information is useful for matching large and complex
relational schemas.

• It formulates automatic schema matching as a quadratic program
that integrates both local information as well as global relational
information. Then it solves the quadratic program through stan-
dard optimization and machine learning techniques.

• It implements and evaluates the design on real-world applica-
tions, and presents results for fully-automated matching of rela-
tional schemas with hundreds of columns, showing significant
accuracy gains over existing approaches.

2. VALUE OF APPLICATION INFORMATION
Before presenting the details of RSM we first show that the ap-

plication UI and the application dynamics contain information that
improve schema matching effectiveness. To show this we asked
a consultant to manually generate a ground-truth match for two
large and popular CRM applications: Centric [2] and Opentaps [3].
While the examples and statistics in this section come from these
two applications, we have obtained similar results when performing
the same evaluation across the other CRM application pairs from
Table 5 as well as the publication applications discussed in§4.

As we extract information from the application to use in schema
matching, we use the termfeatureto refer to a property that helps
match columns in the source schema with the corresponding columns
in the target schema. For example, we can define a feature to be
“exact name match” which is true only if the column name in the
first schema matches the column name in the second schema. We

% Having Partial UI
Label Match

% Having Partial
Schema Name Match

Among
Ground-Truth

Matches
67% 48%

Among
Ground-Truth
Non-Matches

3.2% 4.2%

Table 1: Consistency of UI Labels. This table shows that in gen-
eral UI labels are more consistent than schema field names. For
example, among all fields that should be matched to each other,
67% have at least a partial UI label match, while only 48% havea
partial schema name match.

can measure how useful this feature is by computing how oftenthe
feature is satisfied among ground-truth matches vs. non-matches.
A perfect feature will be satisfied in 100% of the true matchesand
0% of the true non-matches. If a perfect feature exists, it can be
used to perform schema matching with 100% accuracy since all
one needs to do is to check the value of this feature for each pair of
columns in the two schemas. In practice, however, no featureis per-
fect. Features are hints that are correlated with the correct match.
Thus in addition to extracting features from the UI, RSM mustfig-
ure out how to integrate the features together in a way that takes
into account how well each one correlates with correct matches.
The details of how the features are extracted, and then integrated to
produce a matching are covered in section 3. We use the rest ofthis
section to describe the most important features and show that they
correlate well with correct matches.

2.1 UI Consistency
The most obvious source of matching information provided by

the application comes from the UI widget(s) associated witha database
field. More specifically, many database fields can be directlyup-
dated by entering data into a particular widget in a web form,and
the attributes of these web form widgets can provide information
useful for matching the associated database fields. For easeof ex-
position, in this section we assume that we know how to associate
each widget to database fields. In §3.1, we explain in detail how
we obtain this association.
(a) Consistency of UI Labels: The text label associated with each
widget is the first feature that one notices when trying to match
database fields via their associated UI widgets. For example, in
Figure 1 it is clear that the two city widgets should be associated
with each other because they both have the labelCity. It can also
be seen from the figure that in this example the UI labels are more
consistent than the underlying schema column names. But is this
true in general?

To answer this question we consider “Partial Text Match”, a
common metric used to generate match features from a pair of text
strings. The resulting feature is true if there is at least one “word”
matches between the two text strings. As with past work, we clean
the text strings by replacing non-alpha-numerical characters with
white spaces, ignoring articles (e.g., “the”, and “a”), andstemming
the words before matching [5].

We then use the Partial Text Match metric to generate two differ-
ent features, one from the UI labels associated with each database
field, and one from the schema column names themselves. Ta-
ble 1 compares the usefulness of these two features for predict-
ing ground-truth matches. The table shows that “Partial UI Label
Match” is true for 67% of the ground-truth matches, while “Par-
tial Schema Column Name Match” is true only for 48% of the
ground-truth matches. At the same time, only 3.2% of the truenon-

Among Ground-Truth
Matches

Among Ground-Truth
Non-Matches

Widget
Type

88% 37%

(a) Widget Type is a Weak Feature

Among SELECT True
Matches

Among SELECT
Non-Matches

SELECT Widget
Type

86% 16%

SELECT Partial
Text Match

84% 3%

SELECT Full
Text Match

29% 0.29%

(b) Performance by Widget Type

Table 2: Consistency of Other Widget Features. Table (a)
shows that “having the same widget type” is a weak feature since it
is satisfied by one third of the non-matches. In contrast, Table (b)
shows that focusing on some specific widget types makes the fea-
ture more useful. Also adding attributes increases the feature’s se-
lectivity of true matches relative to non-matches.

Update Features

Its value only set when row is first added
Its value is only ever updated to the current Date/Time
Its value is updated whenever the row is updated

Context Features

Update affected by Current User context
Update affected by IP address of http connection
The value of the update depends on the previous update
The value of the update depends on the previous action

Table 3: Features Extracted From Application Dynamics. This
lists features that are extracted for a database field based on the UI
actions that cause the field to be updated.

matches have a “Partial UI Label Match”, while 4.2% of the true
non-matches have a “Partial Schema Column Name Match”. This
analysis shows that in general UI labels are more consistentthan
schema column names, and hence incorporating them in schema
matching can improve accuracy.

(b) Consistency of Other Widget Information: The UI widgets
also have many other features besides just the UI labels thatcan be
leveraged for schema matching. Some of these are highlighted in
Table 2. For example, in Table 2(a) we can see that the widget type
is the same for almost all of the true matches. But since thereare
only a small number of widget types, the type is also the same for
about a third of the non-matches, making this feature a weak indi-
cator. We can however strengthen this indicator by combining the
widget type with additional attributes. For example, if we look just
at fields associated withSELECT (i.e., drop-down menu) widgets,
then we can compute a partial text match feature over the menu
values available for selection. Table 2b shows that this feature is
true for almost all of the correctSELECT-to-SELECT matches,
while it is true for only 3% of theSELECT-to-SELECT non-
matches. Further filtering theSELECT-to-SELECT matches for
at least one menu option with exact text match provides an even
higher signal-to-noise ratio.

2.2 Application Dynamics
At first, it might seem that application information is only use-

ful for matching columns that a user can directly update fromthe
UI. Databases, however, have many columns that are generated au-
tomatically by the application. Simple examples of automatically

App. Dynamics Schema Name

Detect “Created By” 100% 21%
Detect “Modified By” 100% 28%
Detect “Creation Date” 100% 32%
Detect “Last Modified” 100% 18%

Table 4: Usefulness of UI Dynamics. This table shows that
for certain types of fields the UI dynamics can identify matches
more consistently than schema names. Specifically, we see that for
created-by/modified-by and creation-date/last-modified-date fields,
the UI can generate features which will always match these fields,
while using the schema name provides a match in at most 32% of
cases.

generated fields are “created/modified by” or “created/modified date”.
Such columns cannot be directly associated with a particular wid-
get in the UI. How can we use the application to help us match such
fields?

For these types of fields, we exploit the dynamics of the applica-
tion. Our system utilizes two aspects of the application dynamics.
The first is the set of actions that cause a field to be updated. (As we
explain in §3.1, we learn such actions by exploring the UI andob-
serving underlying changes in the database.) Table 3 shows some
examples of such features. These features would identify “created
date” as a field that is only set upon addition and is set to the current
date/time. Additionally, “modified date” would be recognized as a
field that is set every time a table is touched and is always setto the
current date/time.

The second category of dynamics relate to context. Here we
would like to recognize actions that are context sensitive,i.e., where
performing the same set of actions in a different context results in a
different update to the database. By recognizing fields whose value
is dependent on the current user and which are updated whenever a
table is modified, we can identify “created by” fields and “modified
by” fields.

Table 4 shows that this information is quite useful in practice.
Specifically, we can see that the UI features always correctly rec-
ognize the appropriate field, while utilizing the schema field names
only provides a correct match 18-32% of the time. One can simi-
larly use application dynamics to identify other automatically gen-
erated fields, such as last login ip address and last login date/time.

2.3 One-To-Many
As noted earlier, we often encounter a single field in the source

database that maps to multiple fields in the target database,and
vice-versa. An example of this can be seen in Figure 2a, where
the target database has separate tables for contacts and users, while
the source database stores both of these in the same table with an
additional type field indicating whether a particular record refers to
a contact or a user. In order to correctly match such one-to-many
fields, we need a feature that indicates which fields in the source
database is likely to map to multiple fields in the target database.

As can be seen in Figure 2b, the UI provides a strong hint of
when a field may be mapped one-to-many. Specifically, the figure
shows that though the source schema has only one field that stores
both users and contacts, at the UI level, this field is updatedby
two different web pages, one for users and the other for contacts.
Said differently, while an application may condense the database
by storing multiple concepts in the same table, it still tries to avoid
confounding the two independent concepts at the UI level. Wecan
leverage this feature to identify possible one-to-many mappings.
Specifically, if a source field can be updated from multiple different
web pages, or even multiple different widgets on the same web
page, it is likely that the field combines multiple concepts.This

Figure 3: Example Useful Relational UI Feature. The UI label
of Email Address here maps equally well to both the e-mail address
on the accounts page, and the e-mail address on the contacts page.
Thus, to map this field correctly, we must recognize that the widget
labeled “Ticket Symbol” will map only to the top page, and so it is
likely that the e-mail address widget also maps to that page.

indicates it may map to multiple fields in another database. In our
CRM data-set we find that this feature correctly detects 70% of
the widgets that should be mapped one-to-many, while only 5%of
those that are not one-to-many have this feature. While thismeans
that the feature is not perfect, recall that features are hints and only
need to be highly correlated with the true match.

2.4 NULLs
NULL mappings arise in two different cases. The majority come

from fields that are simply unused. These may be vestigial fields
which are no longer used by the current version of the application,
fields reserved for future expansion, fields accessed only bya mod-
ule of the application the company does not have, fields used for
debugging, or specialized fields added by the company using the
SQL interface. The remainder of the NULLs mappings come from
fields that simply do not have an analog in the other database.For
example one of the CRM applications has fields for “longitude”
and “latitude” associated with each address, while the other CRM
applications do not.

We can use the UI to recognize some (though not all) of these
NULLs. Specifically any field whose value cannot be modified by
any UI action is likely to be a NULL mapping. This includes both
entire tables that cannot be modified or augmented as well as in-
dividual fields whose value cannot be set to anything besidesthe
default value. We find that in our CRM application about 50% of
the NULL mappings can be correctly recognized using this feature
alone, which significantly reduces the confounding effect of NULL
mappings.

2.5 Relational Features
Individual columns should not be mapped independently of each

other. For example, columns that are in the same table in the source
database are likely to map to columns in the same table in the target
database. We call features like this that leverage the schema struc-
ture relational features. Just as one can extract relational features
from the schema structure, one can also extract relational features
from the UI structure.

Consider the example in Figure 3 where the label “Email Ad-
dress” in the source application has a partial match with the“Email
1” label which appears on two different web pages in the target ap-
plication, each associated with a distinct database field. Which of

(a) Source/Target Schemas (b) Source/Target UIs

Figure 2: One To Many. We can take advantage of information from the UI to detect that a single field in one database may map to multiple
fields in another database. Specifically, we can see here thatApplication 1 stores users and contacts in the contact table, whereas Application
2 has two separate tables. Thus, contact.first_name matchesto multiple fields in Application 2. We can recognize that contact.first_name can
be updated from two distinct UI pages, indicating that such aone-to-many mapping is likely.

the two target fields should the source field be matched with? In-
tuitively, we would like to match the “Email Address” sourcefield
with the top “Email 1” target field based on the fact that they are
both on a web page which also contains a widget with the label
“Ticker Symbol”. More generally, fields associated with widgets
on the same web page in one application are likely to match to fields
with widgets on the same web page in the other application. This
feature is analogous to the schema-level feature of two columns ap-
pearing in the same table in both schemas. We found that turning
on relational UI featured increases the F-measure of RSM by 0.10.

3. RSM’S DESIGN
Our system contains two main components. The first compo-

nent interacts with the database application in order to extract both
the application-based features and the schema-based features. The
second component is the matching algorithm which combines ma-
chine learning techniques with an optimization framework in order
to utilize the extracted features to produce an optimal match. This
section covers the details of each of these components in turn.

3.1 Feature Extraction Engine
To include features extracted from the application’s UI anddy-

namics into schema matching, we first need to associate UI wid-
gets and actions with the database fields that they operate on(e.g.,
associate a textbox with the database column it writes, or associate
UI dynamics with automatically generated fields like “created by”).
Once we have performed this association, we can generate a feature
for each pair of fields in the source and target databases; example
features include “same UI widget type”, or “UI label similarity”. 2

As noted in the previous section, field pairs with higher feature
values have a higher probability of matching in the two schemas.
Some of these features come from the application while the rest
are extracted directly from the schema. Below we focus on how
we extract application and UI features and associate them with the
right fields in the database. Extracting features from the schema is
a standard process, which is done in the same manner as in previous
work [26, 18, 33]. Table 6 in the Appendix lists all of the features

2Note that the information we extract directly from the UI, such
as the label, or widget type is associated with a single field in one
database. However in order to perform the matching, we need to
compute the similarity of a pair of fields. So the raw UI information
is used to generate features over pair of fields. For example,UI la-
bels are used to generate a feature measuring the UI label similarity
between two fields.

we extract.
Our feature extraction engine takes as input an empty test instal-

lation of the source and target database applications. Thisinstal-
lation is different from the operational database application, and,
hence RSM can safely perform updates and deletes in this testin-
stallation without interfering with the live application.All feature
extraction operations are done on the test installation andhence can
be performed by a third party who does not have access to the actual
database.

To perform the extraction, RSM interacts with the application,
at two levels: the UI level and the database level. At the UI level,
it interacts through the application’s web interface usinga browser
plug-in. This plug-in can walk the DOM tree3 of a web page to
extract features from the web page itself, as well as type into or
click on any of the nodes in the DOM tree. At the database level,
each time the plug-in performs an action on the web interface, the
system parses the query log to determine both which fields in the
database were read or updated, and the values of these fields.From
the query log, it also extracts information indicating the tables in
which records are added or deleted, and the values of these records.

The feature extraction system has three main components:

(a) The Crawler: This component randomly walks the interface
clicking on UI widgets and links in an attempt to find novel web
pages that it has never seen before. Periodically, the crawler resets
itself to one of the pages it has seen before. This reset is biased
toward web pages that have not been fully explored to ensure that
all areas of the UI are discovered. Additionally, it biases its clicks
towards widgets and links with text it has not seen before.

(b) The UI-DB Linker: This component takes all the web pages
discovered by the crawler that contain editable widgets (i.e. IN-
PUT, SELECT and TEXTAREA elements) and explores these pages
more deeply. This is done using two subcomponents. The first sub-
component updates the editable widgets. For SELECT, radio and
check-box widgets such edits are straightforward. For text-box and
textarea widgets we must generate text which will be accepted by
the application. For example, the application may refuse toup-
date an e-mail address unless it contains an “@” symbol. Thus,
the update component generates text values in 5 different ways: 1)
by modifying the text that is already in the text-box, 2) by pulling
a value from some field in this database or another database, 3) by
pulling a value from some other web page, 4) by randomly generat-

3The DOM tree is the hierarchical representation of the objects in
an HTML page.

ing text, or 5) by deleting the existing text and leaving the text-box
empty. The second subcomponent clicks on the various buttons
and links on the page to find the equivalent of theSubmit button.
More generally, it tries each of the buttons/links in turn until it finds
one which results in some modification to the database. Once the
Submit action (or sequence of actions) has been discovered,it edits
each of the widgets on the web page in various different ways to
determine both which fields in the database are modified, and the
values to which they are modified. If, through this process, it dis-
covers web pages it has not seen before then these pages are fed
back into the first sub-component, which will thoroughly explore
them.

(c) The Feature Generator: This component takes all of the infor-
mation acquired by the first two components and uses it to generate
a set of features for each potential match, i.e., for each pair of fields
where the first field is from the source database and the secondis
from the target database. Two types of features are generated. The
first type is widget-based features. To generate these features, the
system utilizes information about which fields are updated when a
given widget is modified to match fields to widgets, and vice-versa.
For each widget, it then extracts features, such as the UI label, from
the web page containing the widget, and associates these features
with the relevant fields. The second type of features are applica-
tion dynamics features. These features are for auto-generated fields
whose modification is not directly linked to a widget.

The feature value associated with matching a particular source
field, i, with a particular target field,j, measures the similarity be-
tween the two fields. For example, the “Widget type” feature is
“1” if the two fields have the same widget type, and zero other-
wise. For all text comparisons we generate 4 types of features:
1) edit distance, 2) word edit distance, 3) TF-IDF weighted word
edit distance, and 4) unique word match. For schema text compar-
isons, word breaks are generated on all non-alpha-numeric char-
acters (e.g., underscore). All word comparisons are also done on
stemmed words using the Porter stemmer [5]. These methods for
computing similarity features are standard and match what is done
in past work [17].

3.2 Matching Algorithm
Automatic schema matching algorithms are based on the intu-

ition that two columns that match each other are likely to show
high similarity (i.e., they tend to have similar field names,simi-
lar data types, and so on). We want to formalize this intuition as an
optimization problem that determines the match that maximizes the
similarity between the source fields and their matched target fields.
To do this, we need to compute a similarity score for the candidate
match of each field in the source database with each field in thetar-
get database. Many different features may contribute to this score,
such as how well the fields’ UI labels match, as well as whetherthe
widget types match. As we saw in §2, these features vary widely in
how useful they are for predicting correct matches. Thus, wewould
like to integrate them together in a way that appropriately accounts
for the usefulness of each feature. To do this, we first normalize
the features so that their values are between zero and one, then we
assign to each featuref , a weightθf that accounts for its useful-
ness. Given these weights, we can formulate the matching problem
as an optimization whose objective is to find the match that max-
imizes the total weighted similarity between the source fields and
their matched target fields. This optimization is parameterized by
the feature weights,θf ’s.

In §3.2.1, we first describe how we model the matching as a
quadratic optimization problem, and then in §3.2.2 we describe
how we use machine learning techniques to learn the parameters

Figure 4: Bipartite Match. Each node on the left side represents
a field in the source database, and each node on the right side rep-
resents a field in the target database

(i.e., feature weightsθf ’s) of this quadratic program from training
data.

3.2.1 Schema Matching as an Optimization Problem
The formulation of schema matching into an optimization prob-

lem is complicated by three factors: one-to-many mappings,the
presence of relational features, and NULL mappings. If we ig-
nore these complications, and assume that every field in the source
schema maps to exactly one field in the target database, the opti-
mization problem can be formulated as a standard bipartite match-
ing, as shown in Figure 4. Standard bipartite matching problems
can be efficiently and optimally solved with the Hungarian algo-
rithm (Kuhn-Munkres) [24]. Formulated as a linear program this
looks like:

argmax
ci,j

∑

i,j

ci,j

∑

f

θf ×M
(f)
i,j

subject to ∀i
∑

j

ci,j = 1

∀j
∑

i

ci,j = 1

(1)

whereci,j ∈ {0, 1} and represent whether nodei on the left side is
mapped to nodej on the right side. Additionally,M (f)

i,j represents
the value of featuref between nodesi andj, andθf represents the
weight of this feature. Theci,j constraints ensure that a one-to-one
match is generated. In the rest of this section we discuss howwe
extend this model to handle one-to-many fields, relational features
and NULL mappings.

3.2.1.1 One-to-Many.
As discussed in §2.3, we can utilize information from the UI

to detect when a given field on one side may to map to multiple
fields on the other side. We capture this information in our linear
program by loosening the constraints on theci,j , which constrain
them to sum to 1. For example, if we determine from the UI that
field i on the left side can map toPi different fields on the right
side, then the constraint becomes:∀i

∑

j

ci,j = Pi.

This modified formulation can be trivially integrated into the
Hungarian algorithm by simply duplicating the nodes that wewant
to map one-to-many. As demonstrated in Figure 2, we duplicate a
field if it can be updated from multiple different web pages, or even
multiple different widgets on the same web page. Specifically, we
duplicate it once for each unique widget from which it can be up-
dated.

Note that this may cause unnecessary duplication, but such du-

plication is harmless. Specifically, consider a modified version of
Figure 2, in which the target database, just like the source database,
stores users and contacts in one field that gets updated from two
UI web pages. In this a case, there would be no one-to-many map-
ping. Our system, however, would duplicate both the source and
target fields. But such a duplication is benign since the optimiza-
tion will match both the original fields and their duplicatesto each
other. To see why this is true, recall that the duplicates have iden-
tical features to the original fields. Thus, if the optimal solution
matches the original fields to each other, it will also mach their du-
plicates. We can simply prune out such double mappings at the
end, ensuring that the superfluous duplications are harmless.

3.2.1.2 Relational Features.
In §2.5 we motivated the idea that two fields in the source database

that are associated with widgets on the same web page are likely to
match to fields in the target database that are also associated with
widgets on the same web page. There are many examples of these
features, such as two fields whose widgets are near each otheron
the web page in one application are likely to match to fields which
are near each other on the web page in the other application, and
two fields that are in the same table on one application are likely
to match to fields in the same table on another application. Wecall
such features relational features.

Relational features cannot be directly integrated into ouropti-
mization the same way as the existing features (which we calllo-
cal features), because local features quantify the affinitybetween
two fields indifferentdatabases, while relational features quantify
the affinity between two fields in thesamedatabase, e.g., these two
fields are in the same table, associated with the same web page, etc.
To utilize these relational features we need to use them to somehow
generate a measure of the affinity between two fields in different
databases. Specifically, we would like to encode into the optimiza-
tion our intuition that if two fields in database 1 are relatedin some
way, they are likely to match to two fields in database 2 that are
related in that same way.

To see how this is done, let us focus on the relational feature:
“being on the same web page”. We will encode this feature into
two binary matrices,S for database 1 andT for database 2.Si,k is
1 if the widget associated with fieldi in database 1 is on the same
page as fieldk, and similarly forT and database 2. So if we look
just at fieldi in database 1, and fieldj in database 2, theni is likely
to match toj if all of the other fields on the same page asi are
matched to fields on the same page asj. So if we assume that we
have an existing matchingc as defined above, then we can say that
the affinity betweeni andj from this feature is proportional to:

∑

k,l

ck,l (Si,k × Tj,l) (2)

Said differently, if we look at each pair of fieldsk, l wherek
is in database 1 andl is in database 2, andk is a match tol, i.e.,
ck,l = 1, then we would like to increase the affinity betweeni
andj if i is on the same page ask andj is on the same page as
l. However, if we use this unnormalized summation, then ifi and
j happen to be on a web pages with many of widgets then they
will end up with a much higher affinity than two fields that are
on web pages with only a few widgets. Thus, we would like to
normalize this score by the number of widgets on the same page. It
is not quite this simple, however, becausei’s web page may have a
different number of widgets thanj’s web page. So instead we need
to normalize by a suitable average of these two numbers. Thus,
we choose to normalize by the product of the Euclidean norms.
The reasoning behind this choice is as follows. If we viewSi,∗ as

a binary vector indicating the fields in database 1 that are onthe
same web page asi, andTj,∗ as a vector indicating which fields in
database 2 are on the same web page asj then the affinity measure
becomes simply the cosine similarity between these two vectors.
Formally, this is:

Ai,j =

∑

k,l

ck,l × (Si,k × Tj,l)

√

∑

n

(Si,n)2 ×
√

∑

m

(Tj,m)2
(3)

In practice, many such relational features,g, exist; similar to the
local features, we would like to learn a weight parameterθg for
each one. Note, that each feature will have its ownS andT matrix,
S(g) andT (g), and so (3) becomes:

A
(g)
i,j =

∑

k,l

ck,l ×
(

S
(g)
i,k × T

(g)
j,l

)

√

∑

n

(S
(g)
i,n)2 ×

√

∑

m

(T
(g)
j,m)2

(4)

Additionally, instead of focusing on just local features, and just
relational features we would like to appropriately trade them off
relative to each other. Thus, we integrate the relational features into
our original optimization by incorporating (4) into (1) to obtain:

argmax
ci,j

∑

i,j

ci,j

∑

f

θfM
(f)
i,j

+

(

∑

g

θgA
(g)
i,j

)

subject to∀i
∑

j

ci,j = Pi

∀j
∑

i

ci,j = Qj

(5)

3.2.1.3 Optimizing.
While our original formulation, (1), was easy to optimize, (5) is

more difficult to optimize. Specifically, theci,j at the start of (5)
is multiplied by theck,l inside ofAi,j turning our linear program
into a quadratic program. Unfortunately, this quadratic program
is an instance of the quadratic assignment program whose exact
solution is known to be NP-hard[12]; thus, we must resort to an
approximation.

We use an iterative algorithm, similar in nature to past work[27,
18], except that each iteration of our algorithm improves the global
objective score. Specifically, in each iterationv we calculate a new
assignment,c∗(v). We initialize the algorithm by calculatingc∗(0)
based on equation(1) above, (i.e., we ignore the relational fea-
tures), and for each iteration we calculate:

A
(g)
i,j (v) =

∑

k,l

c∗k,l(v)×
(

S
(g)
i,k × T

(g)
j,l

)

√

∑

n

(S
(g)
i,n)2 ×

√

∑

m

(T
(g)
j,m)2

(6)

Then for each iterationv we compute the new assignment:

c∗(v) =

argmax
ci,j

∑

i,j

ci,j

∑

f

θfM
(f)
i,j

+

(

∑

g

θgA
(g)
i,j (v − 1)

)

More generally, in each iteration we compute the value of thequadratic
term using the optimal assignments from the previous iteration.
Thus, each iteration becomes a basic bipartite match problem, which

we can again solve with the Hungarian algorithm. We find that in
practice this approximation converges in only a few iterations, and
provides good results.

3.2.1.4 NULL Mappings.
In our current formulation, every field in database 1 is always

mapped to a field in database 2. This is the correct thing to do if
there are no NULL mappings. But this formulation will cause RSM
to incorrectly map all fields that should map to NULL. Past work
has handled this problem by choosing a minimum match threshold,
and pruning out all matches below the threshold. Such an approach
is suboptimal in our system due to the relational features. With re-
lational features, fields are no longer matched independently from
each other. Simply pruning out the weak matches at the end will not
account for the fact that these incorrect matches have also improp-
erly impacted other matches during the iterations of the algorithm.

The solution to this problem is to incorporate the thresholdinto
the optimization itself. Specifically, instead of just pruning out
weak matching nodes after the optimization has converged, we
prune at each iteration. Say that we would like to prune all matches
whose score is belowα. We start with a very low threshold in
the initial mapping so nothing is pruned out. We run the iterative
optimization algorithm from §3.2.1.3 until convergence. We then
increase the threshold slightly, and rerun until convergence. We
continue increasing the threshold and rerunning like this,until the
minimum score in the resulting match is greater thanα. We find
that in practice it works well to set our step size to one-tenth of
the difference between the initial threshold andα, ensuring the ap-
proximation algorithm is run no more than10 times. This iterative
pruning ensures that matches that do not meet the threshold are not
only eliminated, but also prevented from propagating wronginfor-
mation to other nodes in the final match.

3.2.2 Learning Feature Weights
So far we have described how to produce an optimal mapping

given a set of feature weights and a pruning thresholdα. Here, we
discuss how to learn those parameters. Specifically, we would like
to learn those parameters from training data that consists of a set
of database pairs for which we have the correct mapping (or “gold
mapping”) indicating the list of field pairs that do match together.

For purposes of parameter estimation only, we treat our prob-
lem as a standard binary classification problem [11]. The classifier
classifies each pair of fieldsi, j as a match or a non-match, wherei
comes from database 1, andj comes from database 2. If database
1 hasn fields and database 2 hasm fields, we generaten × m
training samples. If there areg matches in the gold data, theng
of these samples will be positive examples, and the rest of them of
them will be negative examples. Thus, intuitively, for eachfield i
in database 1 we generate one positive training sample for the pair
i and the fieldj to which it is mapped in the gold annotation, and
m−1 negative training samples for the matching ofi to every other
field in database 2 besidesj.

The major complication that arises from this treatment of the
problem is the handling of relational features. Since the classifier
treats eachi, j pair independently, its not entirely clear what to use
for ck,l when computingAi,j in equation (4) when computing the
relational features for each data point. Since we are only doing this
at training time, however, we can utilize the gold annotations which
specify the correct answer. Thus, we just use thec from the gold
annotations (i.e.ci,j is 1 if i is matched toj in the gold, and 0
otherwise) to compute each of the relational features. Thisallows
us to utilize an out-of-the-box classifier at training time.

As in standard classification, we let the classifier run untilit con-

Database
Pair

One-to-one
Matches

One-to-Many
Matches

NULL
Matches

Total
Matches

Centric-
Sugar

100 87 143 330

Sugar-
Opentaps

63 118 118 299

Opencrx-
Centric 75 67 168 310

Opentaps-
Opencrx

53 32 150 235

Centric-
Opentaps

69 44 165 278

Sugar-
Opencrx

71 91 134 296

Table 5: CRM Applications. This shows the six CRM database
pairs used in our experiments along with the number of gold match-
ings of each type. Note that for each pairing, the number of one-to-
many matches and the number of NULL matches differ depending
on which database is considered the source and which is consid-
ered the target. So we report in the table the averages over the two
directions.

verges to the feature weights and the pruning threshold thatare
most consistent with the gold mapping. We tried the two most pop-
ular classifiers, an SVM classifier [6] as well as a maximum entropy
classifier [30]. We found that the SVM worked better in all cases;
thus the results we report in §5 are based on training with theSVM
classifier.

3.3 Implementation Details
Our implementation includes both a component for feature ex-

traction and a component for the optimization algorithm. Our im-
plementation of the feature extractor is fairly simple, andwe seed it
with the set of web pages containing editable widgets, and a list of
keywords for the submit buttons (in our case only “Save” and “Sub-
mit”). The optimization algorithm is implemented using NumPy[7]
combined with a third party Hungarian algorithm library [24]. The
SVM training is done using SVM Light [6].

4. EXPERIMENTAL SETUP
Our goal is to evaluate whether the use of application informa-

tion in database integration can allow it to work on industry-scale
problems. Thus, we evaluate on four real world CRM databases:
Centric [2], Sugar [1], Opentaps [3], and Opencrx [4].

(a) Dataset. For our evaluation dataset, we generate all six distinct
pairings of the four databases as shown in Table 5. We have hired a
consultant to generate the gold matchings for each of the pairings.
We directed the consultant to focus on the core CRM functionality
and ignore the extraneous functionality included with someof the
applications. As shown in the table, the resulting gold match has
many one-to-many mappings and the number of NULL mappings
is even more than that of one-to-one mappings. While different ap-
plications may have different ratios of these three match types, we
believe that the existence of many complex NULL and one-to-one
mappings is representative of real world applications. In particu-
lar, all four CRM applications have evolved over a long period of
time which has led both to many vestigial fields which are simply
unused, as well as many idiosyncratic datafields that are unique to
an individual database (such as associating a longitude andlatitude
with all addresses).

We choose this evaluation dataset for two main reasons. First, we
could not use the benchmarks from past work because they have
included only very small relational schemas, or tree-basedXML

schemas, neither of which is representative of industry scale re-
lational databases. Additionally, none of the existing benchmarks
included overlying applications. Secondly, we wanted to work with
real world applications to be as representative of the industry set-
ting as possible. Given that CRM applications are one of the most
popular categories of large-scale database-backed applications in
use today, they presented a particularly relevant application domain
for testing our system.

(b) SVM Training. As we discussed in §1 our algorithm needs
only a single matched database pair for training. Thus, in all of
our evaluations we train using only a single matched database pair.
More specifically, we evaluate the performance on each matched
pair by training on just the single matched pair containing the other
two databases (i.e., we never train on examples from the tested
databases and never use more than a single pairing for training). For
example when testing on the Sugar to Centric mapping we would
train on just the Opentaps to OpenCRX mapping. We assume in
practice that database migration consultants would have training
data that comes from migrations they have done in the past.

(c) Domains. In order to ensure that our results apply to other
applications besides CRM, we also evaluate on a set of three paper
publication database systems. Two of these come from different
research groups in our lab, and the third is the publicly available
Refbase [8]. We choose this domain because of ready availability
of sample applications. The gold mappings were also generated by
a consultant, and the evaluation was done the same way.

(d) Metrics. Similarly to past work, we report matching perfor-
mance in terms of the F-measure. The F-measure is a popular mea-
sure of a test’s accuracy. It is computed as the harmonic meanof the
test’s precision (i.e., the percentage of correct matches in the test’s
output) and its recall (i.e., the percentage of total correct matches
discovered by the test). Specifically, for a given schema pair, let c
be the number of elements in the two schemas for which a match is
predicted and the predicted match is correct. Letn the total number
of predicted matches, andm the total matches in the gold standard.
The precisionp is c/n, or the fraction of elements with correct
predictions, and the recallr is the fraction of matches in the gold
mapping that were correctly predicted, orc/m, and the F-measure,
f , is the harmonic mean of the two:

f =
2pr

p + r
(7)

F-measure balances precision and recall. An increase in F-measure
indicates a better ability to predict correct matches and also identify
non-matches. We report the F-measure averaged over multiple runs
of all matching tasks in a domain.

(e) Compared Systems. We compare the following three systems:

• RSM-full: The full version of our system as described in sec-
tion §3.

• RSM-schema-only: The same as the full version of our system
except that it does not use any of the features generated fromthe
UI.

• Harmony: Harmony [28] is the schema matching component of
the OpenII [33] data integration system. It uses a vote merger to
combine several different match voters each of which identifies
match correspondences using a different strategy. In addition, it
includes a structural match component that is an implementation
of similarity flooding [27]. In our evaluation, we configure Har-
mony to use all of its match voters. In order to output a matching,
Harmony requires the user to set a threshold score, whereby all
matches above this threshold are included. To determine a suit-

Figure 5: Basic One-to-One CRM Averages. This shows the
results for the basic CRM one-to-one dataset averaged across all six
database pairs. We can see that RSM-full achieves a 2x f-measure
gain over Harmony, and a 1.6x gain over RSM-schema-only.

0.86

0.69

0.89

0.71

0.94

0.68

0.42 0.42

0.26

0.4

0.52

0.29

0.61
0.54

0.33

0.41

0.77

0.42

0

0.2

0.4

0.6

0.8

1

Sugar-

Opentaps

Sugar-

Opencrx

Centric-

Sugar

Centric-

Opentaps

Opentaps-

Opencrx

Opencrx-

Centic

Fmeasures

Harmony RSM-schema-only RSM-full

Figure 6: CRM One-to-one By Database Pair. This shows the F-
measure for the one-to-one CRM dataset broken down by database
pair. For each pair there are two scenarios depending on which
database is the source and we report the average over these two
scenarios. From this we can see that RSM-full generates gains of
between 1.7x and 3.5x over Harmony and between 1.2x and 2.7x
over RSM-schema-only.

able threshold, we tried two different approaches. First, we set
the threshold to zero as previous work has done [28, 14]. Second,
we first run Harmony on a given pairing and find the threshold
that produces the optimal F-measure on this pair; consequently,
we use this threshold when testing Harmony on the other pair
of databases. The pairs are chosen in exactly the same manner
as the test and train sets for RSM. We found that the second ap-
proach gave better results in all test scenarios; thus, our results
in §5 are reported according to this method.

5. RESULTS
As we discussed earlier, real world database integration brings

both the challenge of scale as well as two additional challenges:
many-to-one mappings and NULL mappings. Thus, in addition
to evaluating in the basic one-to-one scenario we also separately
evaluate with NULL mappings, and with many-to-one mappings.
We find that RSM-full provides significant improvement in allthree
scenarios, leading to an F-measure gain of 2-4x over Harmony, and
1.6-2.2x over RSM-schema-only.

5.1 One-to-One
The simplest matching scenario is one in which each field in the

source database matches to exactly one field in the target database,
and vice versa. In this section, we evaluate RSM’s performance in
such one-to-one scenarios.
Method. To create a one-to-one scenario from our dataset, we
simply remove all database fields that match to NULL in the gold
match, and for each field matched one-to-many we include only

Figure 7: NULL Mapping CRM Averages. This shows the av-
erage results for the CRM dataset when NULL mappings are in-
cluded. We can see that RSM-full achieves additional gains from
its ability to use the UI to detect fields that are likely to mapto
NULL. Specifically, its gains have improved to 2.7x over Harmony
and 2.2x over RSM-schema-only.

one of its matches.
Results. We can see from Figure 5 that in this scenario RSM-full
correctly matches over 80% of the fields, resulting in an average
gain of 2x over Harmony, and an average gain of 1.6x over RSM-
schema-only. When we break this down by database pair in Fig-
ure 6, we can see that on a per pair basis, RSM-full’s gains over
Harmony vary between 1.6x and 3.4x. This wide variation in the
gain comes largely from differences in the quality of the underlying
schema names. For example, both Sugar and OpenCRX have rela-
tively clean schemas with most of their table names containing full
words with underscores between them, e.g., “first_name”. Insuch
cases, the use of UI features provides less benefit. However,when
even just one of the two schemas has low quality names, the UI can
provide significant benefit. This can be seen by the more than 3x
F-measure gain achieved when testing on Sugar and Centric, since
the Centric schema tends to use short and non-descriptive column
names.

Finally, in one-to-one mode, RSM has the same precision and
recall since in this case there is no duplication and each source field
is mapped to exactly one field in the target database.

5.2 NULLs
As we discussed in §2.4 we find that many fields in the source

database do not map to anything in the target database. We call such
fieldsNULL fields. In this section we evaluate RSM’s performance
on these NULL fields.
Method. To test the effect of NULL matches we augment the one-
to-one CRM dataset used in the previous section with all database
fields that match to NULL.
Results. We can see from Figure 7 that when we include NULL
fields, RSM-full’s gains over both of the baselines increases. As
discussed in §2.4, this increased gain results from the factthat about
half of the NULL fields come from fields which are simply unused
in the source database. These NULL fields may be vestigial, re-
served for future use, or simply used only for debugging. These
fields are difficult for traditional techniques to handle because with-
out information from the UI, it is quite hard to detect which fields
are unused. RSM, however, is able to use the UI to identify the
fields that can be set via the user interface, giving it an indication
of used vs. unused fields, and improving matching performance.

5.3 One-to-Many
In addition to NULL mappings, practical scenarios also have

many-to-one mappings where a single field in the source database
may map to multiple fields in the target database. This section eval-

Figure 8: Many-to-One Mapping CRM Averages. This shows
the average results for the CRM dataset when many-to-one map-
pings are included. RSM-full improves its gains in this scenario
from its ability to use the UI to detect which fields are likelyto
map to multiple fields. This results in gains of 4.5x over Harmony,
and 1.6x over RSM-schema-only.

(a) One-to-One Mappings

(b) NULL Mappings

Figure 9: Publication Domain. This shows the average results for
testing on the basic one-to-one Publication dataset (a), aswell as
the Publication dataset with NULLs (b). These results were gener-
ated by training RSM on database pairs from the CRM dataset. We
can see that RSM works well even if trained on data from a differ-
ent domain as RSM-full still achieves gains of 1.3x over Harmony
and 1.1x over RSM-schema-only.

uates RSM’s performance on such one-to-many mappings.
Method. To test the effect of one-to-many mappings we augment
our original one-to-one dataset by includingall matches for fields
mapping one-to-many.
Results. As we can see from Figure 8, RSM-full again has higher
gains in this scenario than in the basic one-to-one scenario. This
increased gain results from the fact that without the use of the UI,
there is no good indication of which source database fields should
be mapped to multiple target database fields. As we discussed
in §2.3, however, the UI provides a very strong indication ofwhich
source fields may map to multiple target fields.

5.4 Publication Domain
So far all of the results that we have discussed come from the

CRM domain. In this section, we show that RSM’s improvements
also apply in other domains. Furthermore, we show that RSM need

not be trained on a database pair from the same domain, rathera
database pair from any rich UI domain is sufficient.
Method. We train RSM on a random database pair from the CRM
domain just as before, but we test it on the dataset from the pa-
per publication domain discussed in §4. We repeat for a different
choice of the CRM training pair and report the average results. We
test two scenarios: without NULLs where we remove all NULL
mappings, and with NULLs where we include the NULL map-
pings. Note that our publications dataset did not have any many-to-
one mappings so we did not test this scenario.
Results. We can see from Figure 9 that RSM provides substantial
gains in this scenario as well, confirming that its gains do general-
ize to other domains, and its training does not need to be domain
specific (as long as it is trained on a UI rich application likeCRM).
To further ensure that RSM does not need to be trained on database
pairs from the same domain, we also tested RSM on the publica-
tion dataset when it was trained on database pairs from this same
dataset. We found the results to be exactly the same as those in
Figure 9, confirming that training on the same domain does notim-
prove the results.

We do note, however, that it is important for RSM to be traineda
rich UI domain such as the CRM domain. Specifically it would not
be appropriate to train on the publications domain, which has only
a very simple UI, and then test on the CRM domain, which has a
much richer UI. This is because when RSM is trained on a simple
UI domain, any feature not exhibited by that domain would get
a weight of zero. This prevents RSM’s matching algorithm from
utilizing these features, even when testing on a rich UI domain in
which those features are present. In contrast, if RSM is trained on a
rich UI domain and it puts weight on features that do not appear in
the test domain (because it has a simpler UI), then the weights on
these unobserved features will simply be ignored, and thus cannot
have a negative impact on the resulting matching.

5.5 Computation Time
In this section, we show that RSM’s runtime is reasonable.

Method. We run RSM-full on the full dataset for each database
pair, and we time how long it takes during the training phase,as
well as how long it takes for the optimization to complete. Wealso
measure the runtime of Harmony on the same dataset.
Results. We find that in all cases RSM-full takes less than 1 minute
to solve the optimization for a single database pair, while Har-
mony’s runtime is approximately 30 seconds. Additionally,train-
ing RSM takes less than 30 seconds in all cases. Further, we note
that training can easily be performed offline thus not affecting RSM’s
runtime in practice. Lastly, our current implementation prioritizes
flexibility over performance, so a more performance focusedim-
plementation could further reduce these runtimes.

6. RELATED WORK
There is a rich literature on schema matching, which falls into

three areas:

(a) Automatic Matching Paradigms: RSM differentiates itself
from past work primarily based on the source of information used
for matching. Past work on automatic schema matching has utilized
three sources of information for matching: the schema, the data in-
stances in the database, and usage statistics [19, 29]. Schema-based
paradigms rely primarily on the structure of the schema or ontol-
ogy and the properties of its attributes [26, 27, 25]. Instance-based
techniques, on the other hand, observe that existing database entries
(instances) may convey additional information about the columns
or fields they belong to and thus may be used to aid the matching

process [36, 18]. Last, usage-based techniques exploit access pat-
terns extracted from query logs to improve the results of schema
matching [19, 29]. In contrast to all of this past work, RSM utilizes
information mined directly from the user interface of an overlying
application. This represents a fourth source of information that has
not been utilized by past work.

In addition to this new source of information, RSM also differs
from past work in the algorithm it uses for matching. The mostsim-
ilar past work has used machine learning to weight the importance
of various sources of match information, just as RSM does [21,
18, 16, 25, 15]. Other related techniques have employed iterative
algorithms to propagate similarity measures between neighboring
fields [18, 27]. While the algorithm used in RSMis similar in flavor
to those in prior work, it differs in that it models the matching prob-
lem as a quadratic program, which integrates both local and global
relational features. It then solves this quadratic programto produce
an optimal match.

(b) Large-Scale Schema Matching: One of the major challenges
in schema matching is developing matching techniques that can
scale to real-world applications [17, 32]. Much of the priorre-
search in this direction has focused on speeding up the matching
process [31, 10, 18]. In contrast, RSM is focused on improving
the matching accuracy for large-scale schemas. Furthermore, most
prior work on large matching problems is most effective for hierar-
chically structured schemas such as XML documents and ontolo-
gies, and is less effective on non-hierarchical relationalschemas.
For instance, COMA++ [9] partitions source and target schemas
into similar fragments and then matches elements in corresponding
fragments. While such partitioning into mutually exclusive frag-
ments works well for hierarchical schemas, the lack of structural
elements (beyond tables) in relational schemas renders such tech-
niques less effective in conventional RDBMSs.

(c) User Interface and User Interaction: Past research has lever-
aged the user interface in schema matching problems for two pur-
poses: matching web forms and integrating user feedback. Inweb
form matching, the goal is to simultaneously perform a jointmatch-
ing of the widgets on a large number of web forms [20, 21, 34,
13]. This work is based on the heuristic that field names which
appear together on one web form are less likely to match to each
other when appearing in different web forms. The effectiveness
of this technique, however, is dependent on the availability of a
sufficiently large number of databases (20-70) which each have a
relatively small number of attributes (3-7). Thus, even theauthors
themselves [34] assert that the employed techniques are ineffec-
tive for matching large-scale relational schemas where there is rel-
atively little training data, and hundreds of fields to match.

The other use of the UI in past work is to provide a GUI interface
to allow users to inspect and correct schema matchings [9, 28, 33,
22] or to involve them in the matching process by providing hints
for the matcher [10]. This work is complementary with ours in
that RSM is focused on improving theautomatedmatch quality.
Specifically, RSM can be utilized by these GUI tools to provide a
high quality initial match which will significantly reduce the effort
required by the user.

7. CONCLUSION
Automatic schema matching has made giant leaps over the past

fifteen years; however, fully automating the matching process re-
mains elusive for industry-size relational databases. In this paper,
we have proposed RSM, which provides an additional dimension
for improving this matching process by leveraging application in-
formation. We have shown that RSM achieves F-measures as high

as 0.82 for one-to-one matchings on databases with hundredsof
columns, and gains of 2-4x over Harmony, an existing state-of-the-
art approach. Furthermore, RSM develops methods to specifically
tackle many-to-one and null mappings, again through utilizing ap-
plication information. We have also shown that RSM is generic
and capable of achieving high matching accuracies on one domain
when given only training data from a different domain. In thefu-
ture, we would like to develop RSM into a system that is capable
of stipulating human feedback on specific matches through a user
interface, and of using this feedback to ramp up its matchingaccu-
racy.

8. REFERENCES
[1] http://www.sugarcrm.com/crm/.
[2] http://www.concursive.com/.
[3] http://www.opentaps.org/.
[4] http://www.opencrx.org/.
[5] http://tartarus.org/martin/PorterStemmer/.
[6] http://svmlight.joachims.org.
[7] http://numpy.scipy.org.
[8] http://www.refbase.net/.
[9] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm.

Schema and ontology matching with coma++. InSIGMOD,
2005.

[10] P. A. Bernstein, S. Melnik, and J. E. Churchill. Incremental
schema matching. InVLDB, 2006.

[11] C. M. Bishop. Pattern recognition and matchine learning,
2007.

[12] R. E. Burkard. Quadratic assignment problems. InEuropean
J. Operational Research, 1984.

[13] K. C.-C. Chang, B. He, and Z. Zhang. Toward large scale
integration: Building a metaquerier over databases on the
web, 2004.

[14] N. W. P. A. A. F. Chenjuan Guo, Cornelia Hedeler.
[15] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and

P. Domingos. imap: discovering complex semantic matches
between database schemas. InACM SIGMOD, 2004.

[16] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas
of disparate data sources: A machine-learning approach. In
SIGMOD, 2001.

[17] A. Doan and A. Y. Halevy. Semantic integration researchin
the database community: A brief survey.AI Magazine, 2005.

[18] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Ontology matching: A machine learning approach. In
Handbook on Ontologies in Information Systems, 2003.

[19] H. Elmeleegy, M. Ouzzani, and A. Elmagarmid.
Usage-based schema matching. InSIGMOD, 2011.

[20] B. He and K. C.-C. Chang. Statistical schema matching
across web query interfaces. InSIGMOD, 2003.

[21] B. He, K. C.-C. Chang, and J. Han. Discovering complex
matchings across web query interfaces: A correlation mining
approach, 2004.

[22] M. A. Hernandez, R. J. Miller, and L. M. Haas. Clio: a
semi-automatic tool for schema mapping.

[23] IBM. Ibm infosphere data architect.
[24] H. W. Kuhn. The hungarian method for the assignment

problem, 1955.
[25] J. Madhavan, P. Bernstein, K. Chen, A. Halevy, and

P. Shenoy. Corpus-based schema matching. InIn ICDE,
pages 57–68, 2003.

[26] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema
matching with cupid. InIn The VLDB Journal, 2001.

[27] S. Melnik, H. Garcia-molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm. 2002.

[28] P. Mork, L. Seligman, A. Rosenthal, J. Korb, and C. Wolf.
Journal on data semantics xi. chapter The Harmony
Integration Workbench. Springer-Verlag, 2008.

[29] A. Nandi and P. A. Bernstein. Hamster: Using search
clicklogs for schema and taxonomy matching.

[30] K. Nigam. Using maximum entropy for text classification. In
Workshop on Machine Learning for Information Filtering,
1999.

[31] E. Rahm, H.-H. Do, and S. Massmann. Matching large xml
schemas.SIGMOD Rec., 2004.

[32] A. Rosenthal, L. Seligman, and S. Renner. From semantic
integration to semantics management: case studies and a way
forward.SIGMOD Rec., 33:44–50, December 2004.

[33] L. Seligman, P. Mork, A. Halevy, K. Smith, M. J. Carey,
K. Chen, C. Wolf, J. Madhavan, A. Kannan, and D. Burdick.
Openii: an open source information integration toolkit, 2010.

[34] W. Su, J. Wang, and F. Lochovsky. Holistic schema matching
for web query interface. InEDBT 2006.

[35] I. SugarCRM. Sugar community edition schema diagrams
version 5.2, 2009.

[36] J. Wang, J.-R. Wen, F. Lochovsky, and W.-Y. Ma.
Instance-based schema matching for web databases by
domain-specific query probing. InVLDB, 2004.

[37] N. Yuhanna. Forrester report: Simpler database migrations
have arrived, 2011.

APPENDIX

Schema-based

Local

Number of matching words in column name
Do column names have a matching word
which is unique in both databases
Number of matching words in column name,
tf-idf weighted
Number of matching words in table name
Number of matching words between column
name and table name
Same Schema Type
Both Foreign Keys

Relational Same Table
UI-based

Local

Number of matching words in UI label
Do UI labels have unique matching word
Number of matching words in UI label, tf-idf
weighted
Do widget types match
Separate binary feature for each pair of widget
types
Does column have associated widget
Both have value set when row is added
Both have value only updated to current
Date/Time
Both have value updated whenever row is up-
dated
Both have update affected bycurrent usercon-
text

Relational Widgets are on the Same Page
Widgets are in the Same Section

Table 6: Features. The full list of features used in our implemen-
tation of RSM˙

