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ON THE BIRATIONAL AUTOMORPHISMS OF

VARIETIES OF GENERAL TYPE

CHRISTOPHER D. HACON, JAMES MCKERNAN, AND CHENYANG XU

In memory of Eckart Viehweg

Abstract. We show that the number of birational automorphisms
of a variety of general type X is bounded by c · vol(X,KX), where
c is a constant which only depends on the dimension of X .
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1. Introduction

Throughout this paper, unless otherwise mentioned, the ground field
k will be an algebraically closed field of characteristic zero.

Theorem 1.1. If n is a positive integer, then there is a constant c such
that the birational automorphism group of any projective variety X of
general type of dimension n has at most c · vol(X,KX) elements.

For curves, this is a weak form of the classical Hurwitz Theorem
which says that if C is a curve of genus g ≥ 2 with automorphism
group G, then |G| ≤ 84(g − 1). Note that vol(C,KC) = 2g − 2 and so
this bound may be rephrased as |G| ≤ 42 · vol(C,KC).
This problem has been extensively studied in higher dimensions, see

for example, [1], [3], [8], [10], [16], [30], and [31], for surfaces, [9], [26],
[28], [32], and [33], in higher dimensions, and [5], for surfaces in char-
acteristic p.
Xiao, [31], proved that if S is a smooth projective surface of general

type, with automorphism group G, then |G| ≤ (42)2 vol(S,KS) (if S
is minimal, then vol(S,KS) = K2

S; for the general definition of the
volume, see [21, 2.2.31] or (2.3.1)). Xiao shows that we have equality
if and only if S is a quotient of C × C, where C is a curve whose
automorphism group has cardinality 42(2g−2), by the action of a very
special subgroup of the automorphism group of C × C.

Question 1.2. Find an explicit bound for the constant c appearing in
(1.1).

If C is a curve with automorphism group of maximal size, that is,
|Aut(C)| = 84(g − 1) and

X = C × C × · · · × C,

then Aut(X) = n!(42)n(2g−2)n and vol(X,KX) = n!(2g−2)n, so that
c ≥ 42n. If we consider the example of the Fermat hypersurface

X = (Xm
0 +Xm

1 + · · ·+Xm
n+1 = 0) ⊂ Pn+1,

then Aut(X) ≥ (n+ 2)!mn+1 and vol(X,KX) = m(m− n− 2)n. If we
take m = n+ 3 then the ratio

Aut(X)

vol(X,KX)
≥ (n+ 2)!(n+ 3)n,

exceeds 42n for n sufficiently large (indeed, n ≥ 5 suffices), so that c is
eventually greater than 42n. In fact, c grows faster than nn, so that c
grows faster than any exponential function.
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It is all too easy to give examples which show that (1.1) fails spectac-
ularly in characteristic p. Consider the finite field Fq2 with q

2 elements,
where q = pk is a power of a prime p. Note that the function

Fq2 −→ Fq2 given by b −→ b̄ = bq,

is an involution which plays the role of complex conjugation in char-
acteristic p. Suppose that V = Fm

q2 is the standard vector space of
dimension m over the field Fq2. Then there is a sesquilinear pairing

V × V −→ Fq2 given by (a, b) −→
∑

i

aib̄i.

Let Um(q) denote the group ofm×m unitary matrices over the field Fq2,
so that Um(q) is the group of linear maps of V preserving the pairing.
Recall that Um(q) is a finite simple group of Lie type, see for example
[13], whose notation we follow. Note that the Fermat hypersurface

X = (Xq+1
0 +Xq+1

1 + · · ·+Xq+1
n+1 = 0) ⊂ Pn+1,

is the projectivisation of the null cone of the pairing, so that Aut(X) ⊃
Un+2(q). We have

|Un+2(q)| =
1

(n+ 2, q + 1)
q(

n+2

2 )
n+2
∏

i=2

(qi − (−1)i),

see, for example, the table on page 8 of [13]. Note that both the order
of the automorphism group and the volume of the Fermat hypersurface
are polynomials f and g in q. f has degree

(

n+ 2

2

)

+

(

n+ 3

2

)

− 1,

and g has degree
(n+ 1).

If n = 1, the genus is a quadratic polynomial in q and the order of the
automorphism group is bounded by a polynomial of degree 4 in g.

Question 1.3. Fix a positive integer n. Can we find positive integers c
and d such that if X is any n-dimensional smooth projective variety of
general type over an algebraically closed field of arbitrary characteristic,
then

|Aut(X)| ≤ c · vol(X,KX)
d?

It is known that if n = 1 then we may take c = 216 and d = 4 (cf.
[25]).
We now explain how to derive (1.1) from a result about the quotient.

If Y is a variety of general type, then the automorphism group G =
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Aut(Y ) is known to be finite, see [22]. If f : Y −→ X = Y/G is
the quotient map, then there is a Q-divisor ∆ on X such that KY =
f ∗(KX + ∆). We call any such log pair (X,∆) a global quotient, cf.
(2.2.1). As

vol(Y,KY ) = |G| · vol(X,KX +∆),

the main issue is to bound vol(X,KX +∆) from below:

Theorem 1.4. Fix a positive integer n. Let D be the set of log pairs
(X,∆), which are global quotients, where X is projective of dimension
n.

(1) the set

{ vol(X,KX +∆) | (X,∆) ∈ D },

satisfies the DCC.

Further, there are two constants δ > 0 and M such that if (X,∆) ∈ D

and KX +∆ is big, then

(2) vol(X,KX +∆) ≥ δ, and
(3) φM(KX+∆) is birational.

DCC is an abbreviation for the descending chain condition. Note
that, by convention, φM(KX+∆) = φ⌊M(KX+∆)⌋ (cf. (2.1)). Note also
that the set of volumes of smooth projective varieties of fixed dimension
is a discrete set (cf. [29], [15] and [27]). The situation for log pairs is
considerably more subtle.

Remark 1.5. [29], [15] and [27] show that if we fix a positive integer
n, then the set

{ vol(X,KX) |X is a smooth projective variety of dimension n },

is discrete. However, the corresponding statement fails for kawamata
log terminal surfaces, whence also for surface with reduced boundary
with simple normal crossings. See [19] for an example.

However we do have:

Conjecture 1.6 (Kollár, cf. [17], [1]). Fix n ∈ N and a set I ⊂ [0, 1]
which satisfies the DCC.
If D is the set of simple normal crossings pairs (X,∆), where X is

projective of dimension n, and the coefficients of ∆ belong to I, then
the set

{ vol(X,KX +∆) | (X,∆) ∈ D },

satisfies the DCC.
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Alexeev, cf. [1] and [2], proved (1.6) for surfaces. Note that if (X,∆)
is a global quotient, then the coefficients of ∆ belong to the set I =

{
r − 1

r
| r ∈ N }, so that (1.4) is a special case of (1.6).

We hope to give an affirmative answer to (1.6), using some of the
techniques developed in this paper. Let

I = {
r − 1

r
| r ∈ N }.

Assuming an affirmative answer to (1.6) for this particular set, it is
interesting to wonder what is the smallest possible volume. Let

(X,∆) = (Pn,
1

2
H0 +

2

3
H1 +

6

7
H2 + · · ·+

rn+1

rn+1 + 1
Hn+1),

where H0, H1, . . . , Hn+1 are n+2 general hyperplanes and r1, r2, . . . are
defined recursively by:

r0 = 1 and rn+1 = rn(rn + 1).

Note that (X,∆) ∈ D. It is easy to see that the volume of KX +∆ is

1

rnn+2

.

Question 1.7. Find an explicit bound for

δ = min{ vol(X,KX +∆) | (X,∆) ∈ D }.

The most optimistic answer to (1.7) would be

δ =
1

rnn+2

.

Note that c ≥ 1
δ
. When n = 1, we have

δ =
1

r3
=

1

42
,

and the reciprocal is precisely the constant c = 42. On the other hand,
one can check that rn grows roughly like

a2
n

,

for some constant a > 1, so that in general there is a huge difference
between rn and cn. In fact it is easy to check that

rn+1 =

n
∏

i=0

(ri + 1),

see §8 of [18] for more details.



6 CHRISTOPHER D. HACON, JAMES MCKERNAN, AND CHENYANG XU

Theorem 1.8 (Deformation invariance of log plurigenera). Let π : X −→
T be a projective morphism of smooth varieties. Suppose that (X,∆)
is log canonical and has simple normal crossings over T .

(1) If KX + ∆ is kawamata log terminal, and either KX + ∆ or
∆ is big over T , and m is any positive integer such that m∆
is integral, then h0(Xt,OXt

(m(KXt
+ ∆t))) is independent of

t ∈ T .
(2) κσ(Xt, KXt

+∆t) is independent of t ∈ T .
(3) vol(Xt, KXt

+∆t) is independent of t ∈ T .

For the definitions of κσ and simple normal crossings over T , see
(2.1). We will prove a similar but stronger statement (4.2) which im-
plies (1.8). Obviously, (1.8) is a generalisation of Siu’s theorem on
invariance of plurigenera, cf. [24]. We recently learnt that (1) of (1.8)
holds even without the assumption that KX + ∆ is big, see Theorem
0.2 of [6]. We use (1.8) to prove:

Theorem 1.9. Fix a set I ⊂ [0, 1] which satisfies the DCC. Let D be
a set of simple normal crossings pairs (X,∆), which is log birationally
bounded (cf. (2.4.1)), such that if (X,∆) ∈ D, then the coefficients of
∆ belong to I.
Then the set

{ vol(X,KX +∆) | (X,∆) ∈ D },

satisfies the DCC.

1.1. Sketch of the proof of (1.4). The proof of (1.4) is by induction
on the dimension n and the proof is divided into two steps. The first
step uses some ideas of Tsuji which are used to prove that some fixed
multiple of KX defines a birational map, for a variety X of general
type, see [29], [15] and [27]. In this step we establish that modified
versions of (2) and (3) of (1.4) are equivalent, given that (1.4)n−1 holds
(that is, (1.4) holds in dimension n− 1). Namely, consider

(2) vol(X, r(KX +∆)) > δ, and
(3) φMr(KX+∆) is birational.

We show that if (X,∆) is a global quotient of dimension n, then there
are constants δ > 0 and M such that for every positive integer r, (2)
implies (3), see (6.1).
It is clear that if some fixed multiple of r(KX+∆) defines a birational

map, then the volume of r(KX + ∆) is bounded from below, (2.3.2),
so that there are constants δ and M such that (3) implies (2). To go
the other way, we need to construct a divisor 0 ≤ D ∼Q mr(KX +∆),
where m is fixed, which has an isolated non kawamata log terminal
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centre at a very general point and is not kawamata log terminal at
another very general point, (2.3.4). As we know that log canonical
models exist by [7], we may assume that KX + ∆ is ample, so that
lifting divisors from any subvariety is simply a matter of applying Serre
vanishing. In this case, it is well known, since the work of Anghern and
Siu, [4], that to construct D we need to bound the volume of KX +∆
from below on special subvarieties V of X (specifically, any V which
is a non kawamata log terminal centre of (X,∆ + ∆0), where ∆0 is
proportional to KX +∆), see (2.3.5) and (2.3.6).
If V = X , there is nothing to prove, as we are assuming that

vol(X, r(KX + ∆)) > δ. Otherwise, the dimension of V is less than
the dimension of X , and we may proceed by induction on the dimen-
sion; as V passes through a very general point of X , V is birational
to a global quotient. In fact, we even know that vol(V, (KX +∆)|V ) is
bounded from below.
So from now on we assume that (2) implies (3). We may suppose

that the constant δ appearing in (2) is at most one. The next step is to
prove that (3) holds when r = 1 (that is, (3) of (1.4) holds). There are
two cases. If the volume of KX +∆ is at least one, then the volume of
KX+∆ is certainly bounded from below, and there is nothing to prove.
Otherwise, we may find r > 0 such that δ < 1 ≤ vol(X, r(KX +∆)) <
2n. But then φm(KX+∆) is birational, where m =Mr and, at the same
time, the volume of m(KX +∆) is bounded from above. In this case,
the degree of the image of φm(KX+∆) is bounded from above, and so
we know that the image belongs to a bounded family. In fact, one can
prove that both the degree of the image and the degree of the image
of ∆ and the exceptional locus have bounded degree, (3.1), so we only
need to concern ourselves with a log birationally bounded family of log
pairs, (2.4.1). This finishes the first step.
To finish the argument, we need to argue that the volume is bounded

from below if we have a log birationally bounded family of log pairs.
This is the most delicate part of the argument and is the second step.
We use some ideas which go back to Alexeev. Firstly, it is not much
harder to prove that the volume of global quotients satisfies the DCC.
The first part of the second step is to argue that we only need to worry
about log pairs (X,∆) which are birational to a single pair (Z,B),
rather than a bounded family of log pairs. For this we prove a version
of deformation invariance of log plurigenera for log pairs, see (1.8).
Deformation invariance fails in general (cf. [11, 4.10]); we need to as-
sume that the family has simple normal crossings over the base (which
roughly means that every component of ∆ is smooth over the base).
To reduce to this case involves some straightforward manipulation of
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a family of log pairs, see the proof of (1.9) in §5. We prove, cf. (4.2),
a version of (1.8) which is better suited to induction; to this end, we
first show that if we have a family of log pairs over a curve then we can
run the MMP in a family, (4.1).
So we are reduced to the most subtle part of the argument. We

are given a simple normal crossings pair (Z,B), a set I which satisfies
the DCC, and we want to argue that if (X,∆) is a simple normal
crossings pair such that there is a birational morphism f : X −→ Z
with f∗∆ ≤ B, then the volume of KX + ∆ belongs to a set which
satisfies the DCC, see (5.1). To fix ideas, let us suppose that Z is a
smooth surface (this is the case originally treated by Alexeev). We
are given a sequence of simple normal crossings surfaces (Xi,∆i) and
birational morphisms fi : Xi −→ Z.
We have that Φi = fi∗∆i ≤ B and the coefficients of Φi belong to I.

Note that we are free to pass to an arbitrary subsequence, so that we
may assume that Φi ≤ Φi+1. In particular, the volume of KZ + Φi is
not decreasing. The problem is that if we write

KXi
+∆i = f ∗

i (KZ + Φi) + Ei,

then Ei might have negative coefficients, so that the volume ofKXi
+∆i

is less than the volume of KZ + Φi. Suppose that we write Ei =
E+

i − E−
i , where E

+
i ≥ 0 and E−

i ≥ 0 have no common components.
Note that E+

i has no effect on the volume, as Ei is supported on the
exceptional locus. What bothers us is the possibility that the E−

i

involve exceptional divisors that live on higher and higher models.
Clearly, we should consider the limit Φ = limi Φi. However, this is

not enough, we need to take the limit of the divisors ∆i on various
models, and to work with linear systems on these models. It was for
just this purpose that the language of b-divisors was introduced by
Shokurov. Recall that a b-divisor D is just the choice of a divisor DX

on every model X , which is compatible under pushforward.
For us there are three relevant b-divisors. Since we want to work

on higher models without changing the volume, or the fact that the
coefficients lie in the set I, we introduce, (5.5), the b-divisor M∆i

associated to a log pair (Xi,∆i): given a model Y −→ Xi we just
throw in any exceptional divisor with coefficient one. We next take
the limit B of the sequence of b-divisors M∆i

; on Z we just recover
the divisor Φ. Finally, we define (5.2), a b-divisor L∆i

that assigns to
a model π : Y −→ Xi the positive part of the log pullback. Actually,
this is the most complicated of the three b-divisors, and it is the subtle
behaviour of the b-divisors L∆i

which complicates the proof.
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If we set ∆′
i = ∆i ∧ LΦi,Xi

, then,

vol(Xi, KXi
+∆′

i) = vol(Xi, KXi
+∆i),

see (2) of (5.3). If we knew that the coefficients of ∆′
i belong to a

set I ⊂ J that satisfies the DCC, then we would be done. In fact,
if LΦ ≤ B, then it is relatively straightforward to conclude that the
volume satisfies the DCC, see the proof of (5.1). Unfortunately, since
Xi −→ Z might extract arbitrarily many divisors, it is all too easy
to write down examples where the smallest set J which contains the
coefficients of every Φi does not satisfy the DCC (cf. (1.10)).
Therefore, our objective is to find a model Z ′ −→ Z and suitable

modifications ∆′
i of ∆i such that LΦ′ ≤ B′, where B′ is the limit of

M∆′

i
. We choose ∆′

i so that the difference ∆i − ∆′
i is supported only

on the strict transform of the exceptional divisors of Z ′ −→ Z. In this
case, it is not hard to arrange for the coefficients of ∆′

i to belong to a
set I ⊂ J that satisfies the DCC.
We construct Z ′ −→ Z by induction. For this, we can work locally

about a point p in Z. Suppose that p is the intersection of two com-
ponents B1 and B2 of Φ. If B1 and B2 appear with coefficient b1 and
b2 in Φ and π : Z ′ −→ Z blows up p, then working locally about p, we
may write

KZ′ + b1B
′
1 + b2B

′
2 + eE = π∗(KZ + b1B1 + b2B2),

where e = b1+b2−1. Here primes denote strict transforms and E is the
unique exceptional divisor. We suppose that LΦ ≤ B does not hold, so
that there is some valuation ν, with centre p, such that LΦ(ν) > B(ν).
Since e = b1 + b2 − 1, the larger b1 and b2, the further we expect to
be from the inequality LΦ ≤ B. We introduce the weight w, which
counts the number of components of Φ of coefficient one, that is, the
number of i such that bi = 1. In the case of a surface, the weight is 0,
1 or 2 and it clearly suffices to construct Z ′ −→ Z so that the weight
goes down.
In fact, the extreme cases are relatively easy. If the weight is two,

then we just take Z ′ −→ Z to be the blow up of p. The key point is
that then the base locus of the linear system

f ′
i∗|m(KXi

+∆i)| ⊂ |m(KZ + Φi)|,

contains p in its support for all m sufficiently large and divisible and
this forces the strict transform of E to be a component of E+

i as well.
Therefore we are free to decrease the coefficient of E in Φ′ away from
1. At the other extreme, if the weight is zero, then (Z,Φ) is kawamata
log terminal and we may find Z ′ −→ Z which extracts every divisor of
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coefficient greater than zero. In this case LΦ′(ρ) = 0 for every valuation
ρ whose centre on Z ′ is not a divisor and the inequality LΦ′ ≤ B′ is
trivial.
The hard case is when the weight is one, so that one of b1 and b2 is

one. Suppose that b2 = 1. If ν is a valuation such that LΦ(ν) > 0 then
ν corresponds to a weighted blow up. At this point it is convenient to
use the language of toric geometry. A weighted blow up corresponds
to a pair of natural numbers (v1, v2) ∈ N2. In fact, if

F = { v1 ∈ N | (1− b1)v1 < 1 },

then

{ (v1, v2) ∈ N2 | v1 ∈ F },

is the set of all valuations ν such that LΦ(ν) > 0. The crucial point
is that F is finite. For every element f1 ∈ F, we pick v2 ∈ N, which
minimises B(f1, v2) (this makes sense as I satisfies the DCC). We then
pick any simple normal crossings model Z ′ −→ Z on which the centre of
every one of these finitely many valuations is a divisor. Using standard
toric geometry, one can check that on Z ′ every valuation ν ′, whose
centre belongs to a component of Φ′ of coefficient one, satisfies the
property LΦ′(ν ′) ≤ B′(ν ′). It follows that the weight of (Z ′,Φ′) is zero
and this completes the induction. The details are contained in the
proof of (5.1).

Example 1.10. Consider the behaviour of LΦ in a simple example.
We use the notation above. Note that e = b1 + b2 − 1 is an increasing
and affine linear function of b1 and b2, whence a continuous function
of b1 and b2. We are only concerned with the possibility that e > 0,
and in this case, LΦ,Z′ = b1B

′
1 + b2B

′
2 + eE, by definition. There are

two interesting points p1 = B′
1 ∩ E and p2 = B′

2 ∩ E lying over p, and
the coefficients of the divisors containing them are b1, e and b2, e. The
problem is that we can blow up along either point and keep going.
Suppose that

I = {
r − 1

r
| r ∈ N }.

Note that if b1 =
i
r
and b2 =

r−1
r

then

e = b1 + b2 − 1 =
i

r
+
r − 1

r
− 1 =

i− 1

r
.

So, the smallest set J which contains I and which is closed under the
operation of picking any two elements b1 and b2 and replacing them by
b1 + b2 − 1 (provided this sum is non-negative) is Q ∩ [0, 1]. Clearly,
this set does not satisfy the DCC.
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2. Preliminaries

2.1. Notation and Conventions. We will use the notations in [20]
and [21].
If D =

∑

diDi is a Q-divisor on a normal variety X , then the round
down of D is ⌊D⌋ =

∑

⌊di⌋Di, where ⌊d⌋ denotes the largest integer
which is at most d, the fractional part of D is {D} = D−⌊D⌋, and the
round up of D is ⌈D⌉ = −⌊−D⌋. If D′ =

∑

d′iDi is another Q-divisor,
then D ∧D′ :=

∑

min{di, d
′
i}Di.

The sheaf OX(D) is defined by

OX(D)(U) = { f ∈ k(X) | (f)|U +D|U ≥ 0 },

so that OX(D) = OX(⌊D⌋). Similarly we define |D| = |⌊D⌋|. If X
is normal, and D is a Q-divisor on X , the rational map φD associated
to D is the rational map determined by the restriction of ⌊D⌋ to the
smooth locus of X .
If X is a normal projective variety and D is a Q-Cartier divisor,

κσ(X,D) denotes the numerical Kodaira dimension, which is defined
by Nakayama in [23, V.2.5] as follows: let H be a divisor on X , we
define

σ(X,D;H) := max{ k ∈ N | lim sup
m→∞

h0(X,H +mD)

mk
> 0 },

and
κσ(X,D) := max{ σ(X,D;H) |H is a divisor }.

IfD is pseudo-effective, we define Nσ(X,D) as in [23, III.4] or [7, 3.3.1].
A log pair (X,∆) consists of a normal variety X and a Q-Weil divisor

∆ ≥ 0 such that KX +∆ is Q-Cartier. The support of ∆ =
∑

i∈I di∆i

is the sum D =
∑

i∈I ∆i. If (X,∆) has simple normal crossings then
a stratum of (X,∆) is an irreducible component of the intersection
∩j∈J∆j , where J is a non-empty subset of I (in particular, a stratum
is always a proper closed subset of X). If we are given a morphism
X −→ T , then we say that (X,∆) has simple normal crossings over T
if (X,∆) has simple normal crossings and both X and every stratum
of (X,∆) is smooth over T . We say that the birational morphism
f : Y −→ X only blows up strata of (X,∆), if f is the composition
of birational morphisms fi : Xi+1 −→ Xi, 1 ≤ i ≤ k, with X = X0,
Y = Xk+1, and fi is the blow up of a stratum of (Xi, Di), where Di is
the sum of the strict transform of D and the exceptional locus.
A log resolution of the pair (X,∆) is a projective birational morphism

µ : Y −→ X such that the exceptional locus is the support of a µ-ample
divisor and (Y,G) has simple normal crossings, where G is the support
of the strict transform of ∆ and the exceptional divisors. Note that the
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extra assumption that the exceptional locus is the support of a µ-ample
divisor is not standard. However it is convenient for our purpose, and
it can be always achieved after possibly choosing a higher model. If we
write

KY + Γ +
∑

aiEi = µ∗(KX +∆)

where Γ is the strict transform of ∆, then ai is called the coefficient of
Ei with respect to (X,∆). Note that −ai is the discrepancy of the pair
(X,∆), with respect to Ei, see [20, 2.25]. A non kawamata log terminal
centre is the centre of any valuation ν whose coefficient is at least one.
In this paper, we only consider valuations ν of X whose centre on

some birational model Y of X is a divisor. We say that a formal sum
B =

∑

aνν, where the sum ranges over all valuations of X , is a b-
divisor, if the set

FX = { ν | aν 6= 0 and the centre of ν on X is a divisor },

is finite. The trace BY of B is the sum
∑

aνBν , where the sum now
ranges over the elements of FY . In fact, to give a b-divisor is the same
as to give a collection of divisors on every birational model of X , which
are compatible under pushforward.

2.2. Log pairs.

Definition 2.2.1. We say that a log pair (X,∆) is a global quotient

if there is a smooth quasi-projective variety Y and a finite subgroup
G ⊂ Aut(Y ) such that X = Y/G and if π : Y −→ X is the quotient
morphism, then KY = π∗(KX +∆).

Note that if (X,∆) is a global quotient, then X is Q-factorial, (X,∆)
is kawamata log terminal, and the coefficients of ∆ belong to the set

{
r − 1

r
| r ∈ N },

(cf. [20, 5.15, 5.20]).

Lemma 2.2.2. If (X,∆) is a log pair and the coefficients of ∆ are less
than one, then

⌊m∆⌋ ≤ ⌈(m− 1)∆⌉,

for every positive integer m, with equality if the coefficients of ∆ belong

to the set {
r − 1

r
| r ∈ N }.

Proof. Easy. �
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2.3. The volume.

Definition 2.3.1. Let X be a normal n-dimensional irreducible pro-
jective variety and let D be a Q-divisor. The volume of D is

vol(X,D) = lim sup
m→∞

n!h0(X,OX(mD))

mn
.

We say that D is big if vol(X,D) > 0.

For more background, see [21]. We will need the following simple
result:

Lemma 2.3.2. Let X be a projective variety, D a divisor such that the
rational map φD : X 99K Pn is birational onto its image Z. Then, the
volume of D is greater than or equal to the degree of Z. In particular
the volume of D is at least 1.

Proof. This is well known, see for example (2.2) of [15]. �

Definition 2.3.3. Let X be a normal projective variety and let D be
a big Q-Cartier Q-divisor on X.
If x and y are two very general points of X then, possibly switching

x and y, we may find 0 ≤ ∆ ∼Q (1 − ǫ)D, for some 0 < ǫ < 1, where
(X,∆) is not kawamata log terminal at y, (X,∆) is log canonical at x
and {x} is a non kawamata log terminal centre, then we say that D is
potentially birational.

Lemma 2.3.4. Let X be a normal projective variety and let D be a
big Q-Cartier divisor on X.

(1) If D is potentially birational, then φKX+⌈D⌉ is birational.
(2) If X has dimension n and φD is birational, then (2n+1)⌊D⌋ is

potentially birational. In particular, φKX+(2n+1)D is birational
and KX + (2n+ 1)D is big.

Proof. Replacing X by a resolution, we may assume that X is smooth.
As D is big, we may write D ∼Q A+B where A is an ample Q-divisor
and B ≥ 0. Using A to tie break (cf. [18, 6.9]), we may assume that
(X,∆) is kawamata log terminal in a punctured neighbourhood of x.
As

⌈D⌉ − (∆ + ǫB + ⌈D⌉ −D) ∼Q ǫA,

is ample, Nadel vanishing implies that

H1(X,OX(KX + ⌈D⌉)⊗ J (∆ + ǫB + ⌈D⌉ −D)) = 0,

where J (∆ + ǫB + ⌈D⌉ − D) is the multiplier ideal sheaf. But then
we may find a section σ ∈ H0(X,OX(KX + ⌈D⌉)) vanishing at y but
not at x. In particular, as y is very general, we may also find τ not
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vanishing at y. But then some linear combination ρ of τ and σ is a
section which vanishes at x and not at y. This is (1).
Replacing D by ⌊D⌋, we may assume that D is Cartier. Let X ′ be

the image of φD. Let x
′ = φD(x) and y

′ = φD(y) and let ∆′ be the sum
of n general hyperplanes through x′ and n general hyperplanes through
y′. Let ∆ be the strict transform of ∆′. As x and y are general, φD is
an isomorphism in a neighbourhood of x and y. It follows that (X,∆)
is not kawamata log terminal at y, (X,∆) is log canonical at x and if
we blow up x then the coefficient of the exceptional divisor is one. It is
then easy to see that (2n+1)D is potentially birational and (2) follows
from (1). �

We will need the following result from [18]:

Theorem 2.3.5. Let (X,∆) be a kawamata log terminal pair, where
X is projective. Suppose that x and y are two closed points of X. Let
∆0 ≥ 0 be a Q-Cartier divisor on X such that (X,∆ + ∆0) is log
canonical in a neighbourhood of x but not kawamata log terminal at y,
and there is a non kawamata log terminal centre V which contains x.
Let H be an ample Q-divisor on X such that vol(V,H|V ) > 2kk, where
k = dimV .
Then, possibly switching x and y, there is a Q-divisor H ∼Q ∆1 ≥ 0

and rational numbers 0 < ai ≤ 1 such that (X,∆+ a0∆0+ a1∆1) is log
canonical in a neighbourhood of x but not kawamata log terminal at y,
and there is a non kawamata log terminal centre V ′ which contains x,
such that dimV ′ < k.

Proof. By (6.9.1) of [18], we may assume that V is the unique non
kawamata log terminal centre which contains x, and we may apply
(6.8.1), (6.8.1.3) and (6.5) of [18]. �

Theorem 2.3.6. Let (X,∆) be a kawamata log terminal pair, where X
is projective of dimension n and let H be an ample Q-divisor. Suppose
γ0 ≥ 1 is a constant such that vol(X, γ0H) > nn. Suppose ǫ is a
constant with the following property:
For very general x in X and every 0 ≤ ∆0 ∼Q λH such that

(X,∆ + ∆0) is log canonical at x, if V is the minimal non kawamata
log terminal centre containing x, then vol(V, λH|V ) > ǫk, where k is
the dimension of V and λ ≥ 1 is a rational number.
Then mH is potentially birational, where

m = 2γ0 (1 + γ)n−1 and γ =
2n

ǫ
.
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Proof. Let x and y be two very general points of X . Possibly switching
x and y, we will prove by descending induction on k that there is a
Q-divisor ∆0 ≥ 0 such that:
(♭)k ∆0 ∼Q λH , for some 1 ≤ λ < 2γ0(1 + γ)n−1−k, where (X,∆+∆0)
is log canonical at x, not kawamata log terminal at y and there is a non
kawamata log terminal centre V of dimension at most k containing x.
As

vol(X, 2γ0H) > 2nn,

we may find 0 ≤ Φ ∼Q 2γ0H , such that (X,∆+Φ) is not log canonical
at either x or y. If

β = sup{α |KX +∆+ αΦ is log canonical at x },

is the log canonical threshold, then β < 1. Possibly switching x and y,
we may assume that (X,∆ + βΦ) is not kawamata log terminal at y.
Clearly ∆0 = βΦ satisfies (♭)n−1, so this is the start of the induction.
Now suppose that we may find a Q-divisor ∆0 satisfying (♭)k. We

may assume that V is the minimal non kawamata log terminal centre
containing x and that V has dimension k. By assumption,

vol(V, λγH|V ) > 2kk,

so that by (2.3.5), possibly switching x and y, we may find ∆1 ∼Q µH ,
where µ < λγ and constants 0 < ai ≤ 1 such that (X,∆+a0∆0+a1∆1)
is log canonical at x, not kawamata log terminal at y and there is a
non kawamata log terminal centre V ′ containing x, whose dimension is
less than k. As

a0∆0 + a1∆1 ∼Q (a0λ+ a1µ)H,

and
λ′ = a0λ+ a1µ ≤ (1 + γ)λ < 2γ0(1 + γ)n−1−(k−1),

a0∆0 + a1∆1 + max(0, 1 − λ′)B satisfies (♭)k−1, where the support of
B ∼Q H does not contain either x or y (we only need to add on B in
the unlikely event that λ′ < 1). This completes the induction and the
proof. �

2.4. Bounded pairs.

Definition 2.4.1. We say that a set X of varieties is birationally

bounded if there is a projective morphism Z −→ T , where T is of
finite type, such that for every X ∈ X, there is a closed point t ∈ T
and a birational map f : Zt 99K X.
We say that a set D of log pairs is log birationally bounded if

there is a log pair (Z,B), where the coefficients of B are all one, and a
projective morphism Z −→ T , where T is of finite type, such that for
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every (X,∆) ∈ D, there is a closed point t ∈ T and a birational map
f : Zt 99K X such that the support of Bt contains the support of the
strict transform of ∆ and any f -exceptional divisor.

Lemma 2.4.2. Fix a positive integer n.

(1) Let X and Y be two sets of varieties, such that if X ∈ X, then we
may find Y ∈ Y birational to X. If Y is birationally bounded,
then X is birationally bounded.

(2) Let X be a set of varieties of dimension n. If there is a constant
V such that for every X ∈ X, we may find a Weil divisor D
such that φD is birational and the volume of D is at most V ,
then X is birationally bounded.

(3) Let D and G be two sets of log pairs, such that if (X,∆) ∈ D,
then we may find (Y,Γ) ∈ G, and a birational map f : Y 99K X,
where the support of Γ contains the support of the strict trans-
form of ∆ and any f -exceptional divisor. If G is log birationally
bounded, then D is log birationally bounded.

(4) Let D be a set of log pairs of dimension n. If there are constants
V1 and V2 such that for every (X,∆) ∈ D we may find a Weil
divisor D such that φD : X 99K Y is birational, the volume of
D is at most V1, and if G denotes the sum over the components
of the strict transform of ∆ and the φ−1-exceptional divisors,
then G · Hn−1 ≤ V2, where H is the very ample divisor on Y
determined by φD, then D is log birationally bounded.

(5) If the set D of log pairs is log birationally bounded, then

X = {X | (X,∆) ∈ D }

is birationally bounded.

Proof. (1), (3) and (5) are clear.
We prove (4). Suppose that Y ⊂ Ps is a closed subvariety of dimen-

sion n and degree at most V1. Then by the classification of minimal
degree subvarieties of projective space, we may assume s ≤ V1+1− n.
By boundedness of the Chow variety, there are flat morphisms Z −→ T
and B −→ T such that if Y ⊂ Ps has dimension n (respectively n− 1)
and degree at most V1 (respectively V2), then Y is isomorphic to the
fibre Zt (respectively Bt) over a closed point t ∈ T . Passing to a strat-
ification of T and a log resolution of the generic fibres of Z −→ T ,
we may assume that the fibres of Z −→ T are smooth. In particular,
(Z,B) is a log pair.
Now suppose that (X,∆) ∈ D. By assumption there is a divisor D

such that φD : X 99K Y is birational. The degree of the image is at
most the volume of D, that is, at most V1. So there is a closed point
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t ∈ T such that Y is isomorphic to Zt. By assumption G ·Hn−1 ≤ V2
so that we may assume that G corresponds to Bt. But then D is log
birationally bounded. This is (4).
The proof of (2) is similar to and easier than the proof of (4). �

3. Birationally bounded pairs

§3 is devoted to a proof of:

Theorem 3.1. Fix a positive integer n and two constants A and δ > 0.
Then the set of log pairs (X,∆) satisfying

(1) X is projective of dimension n,
(2) (X,∆) is log canonical,
(3) the coefficients of ∆ are at least δ,
(4) there is a positive integer m such that vol(X,m(KX +∆)) ≤ A,

and
(5) φKX+m(KX+∆) is birational,

is log birationally bounded.

The key result is:

Lemma 3.2. Let X be a normal projective variety of dimension n and
let M be a base point free Cartier divisor such that φM is birational.
Let H = 2(2n+ 1)M .
If D is a sum of distinct prime divisors, then

D ·Hn−1 ≤ 2n vol(X,KX +D +H).

Proof. Possibly discarding φM -exceptional components of D, we may
assume that no component of D is φM -exceptional. If f : Y −→ X is
a log resolution of the pair (X,D) and G is the strict transform of D,
then

D ·Hn−1 = G · (f ∗H)n−1,

and
vol(Y,KY +G+ f ∗H) ≤ vol(X,KX +D +H).

Replacing (X,D) by (Y,G) andM by f ∗M we may assume that (X,D)
has simple normal crossings, and possibly blowing up more, that the
components of D do not intersect.
Since no component of D is contracted, we may find an ample Q-

divisor A and a Q-divisor B ≥ 0, such that

M ∼Q A+B,

where B and D have no common components. As KX + D + δB is
divisorially log terminal for any δ > 0 sufficiently small, it follows that

H i(X,OX(KX + E + pM)) = 0,
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for all positive integers p, i > 0 and any integral Weil divisor 0 ≤ E ≤
D. If we let

Am = KX +D +mH,

then
H i(D,OD(Am)) = 0,

for all i > 0 and m > 0 and so there is a polynomial P (m) of degree
n− 1, with

P (m) = h0(D,OD(Am)),

for m > 0. (2) of (2.3.4) implies that A1 = KX +D +H is big and so
[7] implies that KX +D +H has a log canonical model. In particular
there is a polynomial of Q(m) of degree n, with

Q(m) = h0(X,OX(2mA1)),

for any sufficiently divisible positive integer m. Note that the leading
coefficients of P (m) and Q(m) are

D ·Hn−1

(n− 1)!
and

2n vol(X,KX +D +H)

n!
.

If Di is a component of D, and Mi = (D −Di + (2n+ 1)M)|Di
, then

H0(X,OX(KX +D + (2n+ 1)M)) −→ H0(Di,ODi
(KDi

+Mi)),

is surjective, and so the general section of H0(X,OX(KX +D + (2n+
1)M)) does not vanish identically on any component ofD. Pick sections

s ∈ H0(X,OX(KX+D+(2n+1)M)) and l ∈ H0(X,OX((2n+1)M)),

whose restrictions to each component of D is non-zero. Let

t = s⊗2m−1 ⊗ l ∈ H0(X,OX(2mA1 − Am)).

Consider the following commutative diagram

0 ✲ OX(Am −D) ✲ OX(Am) ✲ OD(Am) ✲ 0

0 ✲ OX(2mA1 −D)
❄

✲ OX(2mA1)
❄

✲ OD(2mA1)
❄

✲ 0,

where the vertical morphisms are injections induced by multiplying by
t.
Note that

H0(X,OX(Am)) −→ H0(D,OD(Am)),

is surjective. Hence every element of H0(D,OD(2mA1)) in the image
of H0(D,OD(Am)) lifts to H

0(X,OX(2mA1)). Therefore

P (m) ≤ h0(X,OX(2mA1))− h0(X,OX(2mA1 −D)).
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Note that

Q(m− 1) = h0(X,OX(2(m− 1)A1)) ≤ h0(X,OX(2mA1 −D)),

as h0(X,OX(2KX +D + 2H)) 6= 0. It follows that

P (m) ≤ Q(m)−Q(m− 1).

Now compare the leading coefficients of P (m) andQ(m)−Q(m−1). �

Proof of (3.1). Let (X,∆) be a log pair satisfying the hypotheses of
(3.1). If π : Y −→ X is a log resolution of (X,∆) which resolves the
indeterminacy of

φ = φKX+m(KX+∆) : X 99K Z,

and Γ is the strict transform of ∆ plus the sum of the exceptional
divisors, then (X,∆) is log birationally bounded if and only if (Y,Γ) is
log birationally bounded, by (3) of (2.4.2). On the other hand,

vol(Y,m(KY + Γ)) ≤ vol(X,m(KX +∆)) ≤ A,

and φKY +m(KY +Γ) is birational.
Replacing (X,∆) by (Y,Γ), we may assume that

φ = φKX+m(KX+∆) : X −→ Z,

is a birational morphism. In particular, if we decompose ⌊KX +m(KX +∆)⌋
into its mobile part M and its fixed part E, so that

|KX +m(KX +∆)| = |M | + E,

then M is big and base point free. Let H be a divisor on Z such that
M = φ∗H , so that H is very ample.
Note that

vol(X,KX +m(KX +∆)) ≤ vol(X, (m+ 1)(KX +∆))

≤ 2nA.

On the other hand, let G be the sum of the components of the strict
transform of ∆ on Z. Pick B ∈ |⌊KX +m(KX +∆)⌋|. Let

α = max(
1

δ
, 2(2n+ 1)).

IfD0 is the sum of the components of ∆ and B which are not contracted
by φ, then

D0 ≤ α(B +∆).

Note that there is a divisor C ≥ 0 such that

α(B +∆) + C ∼Q α(m+ 1)(KX +∆).
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As φ is a morphism and M is base point free, (3.2) implies that

G ·Hn−1 ≤ D0 · (2(2n+ 1)M)n−1

≤ 2n vol(X,KX +D0 + 2(2n+ 1)M)

≤ 2n vol(X,KX + α(B +∆) + 2(2n+ 1)(M + E +∆))

≤ 2n vol(X,KX +∆+ α(m+ 1)(KX +∆) + 2(2n+ 1)(m+ 1)(KX +∆))

≤ 2n(1 + 2α(m+ 1))n vol(X,KX +∆)

≤ 23nαn vol(X, (m+ 1)(KX +∆))

≤ 24nαnA.

Now apply (4) of (2.4.2). �

4. Deformation invariance of log plurigenera

Proposition 4.1. Let (X,∆) be a Q-factorial log pair. Suppose that
X −→ T is a projective morphism to a smooth curve T whose fibres
(Xt,∆t) are terminal, where every component of ∆ dominates T . Let
0 ∈ T be a closed point. Suppose that

• either ∆ or KX +∆ is big over T , and
• no component of ∆0 belongs to the stable base locus of KX0

+∆0.

Then we may find a log terminal model f : X 99K Y of (X,∆) over T ,
such that f is an isomorphism at the generic point of every component
of ∆0 and f0 : X0 99K Y0 is a weak log canonical model of (X0,∆0).

Proof. We first prove this result under the additional hypothesis that
KX +∆ is pseudo-effective over T .
Note that X is smooth in codimension two, as the fibres Xt of X −→

T are Cartier and smooth in codimension two. Hence

(KX +∆)|X0
= (KX +X0 +∆)|X0

= KX0
+∆0.

It follows from [7, 1.4.5] that the coefficient of any valuation µ with
respect to (X,X0 + ∆) is at most zero, if the centre of µ is neither a
component of ∆ nor a component of ∆0.
By [7, 1.2], we may run the (KX + ∆)-MMP over T , that is, we

may find a sequence g1, g2, . . . , gm−1 of divisorial contractions and flips
gk : Xk

99K Xk+1 starting at X = X1 and ending with a log terminal
model Y = Xm for the pair (X,∆) over T . Let ∆k denote the pushfor-
ward of ∆ under the induced birational map fk : X 99K Xk. We will
prove by induction on k that

(a) gk is an isomorphism at the generic point of any component of ∆k
0,

and
(b) gk0 : X

k
0 99K Xk+1

0 is a birational contraction.
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Suppose that (a–b)≤k−1 hold. Then fk
0 : X0 99K Xk

0 is a birational
contraction which does not contract any components of ∆0 and so
(Xk

0 ,∆
k
0) is terminal.

(b)≤k−1 implies that no component of ∆k
0 is a component of the stable

base locus of KXk
0
+∆k

0. Suppose that g
k is not an isomorphism at the

generic point of a divisor D contained in Xk
0 . Then D is covered by

curves C such that

(KXk
0
+∆k

0) · C = (KXk +∆k) · C < 0.

It follows that D is a component of the stable base locus of KXk
0
+∆k

0,

so that D is not a component of ∆k
0. Thus (a)k holds.

Suppose that G ⊂ Xk+1
0 is a prime divisor, which is not a component

of ∆k+1
0 . By the classification of log canonical surface singularities, we

may find a valuation ν with centre G on Xk+1 whose coefficient d with
respect to (Xk+1, Xk+1

0 +∆k+1) is at least zero. As Xk
0 is the pullback of

a divisor from T , gk is (KXk+Xk
0 +∆k)-negative and so the coefficient c

of ν with respect to (Xk, Xk
0+∆k) is at least d, with equality if and only

if gk is an isomorphism at the generic point of G. By (a)k the centre
of ν on Xk is not a component of ∆k

0. It follows that 0 ≤ d ≤ c ≤ 0,
so that c = d = 0 and gk is an isomorphism at the generic point of G.
Hence gk0 is a birational contraction, that is, (b)k holds. This completes
the induction and the proof that (a–b)≤m−1 hold.
As gk0 is a birational contraction which is (KXk

0
+ ∆k

0)-negative, for

k ≤ m − 1, it follows that f0 is a (KX0
+ ∆0)-negative birational

contraction. But then f0 is a weak log canonical model.
It remains to prove that KX + ∆ is pseudo-effective over T . Pick a

divisor A which is ample over T and let

λ = inf{ t ∈ R |KX +∆+ tA is π-pseudo-effective },

be the π-pseudo-effective threshold. It is proved in [7] that λ is rational.
By what we have already proved we may find a log terminal model
f : X 99K Y of KX +∆+ λA over T such that f0 : X0 99K Y0 is a weak
log canonical model of KX0

+ ∆0 + λA0. Let G = f∗(KX + ∆ + λA).
If λ > 0 then KX0

+ ∆0 + λA0 is big, so that G0 is big and nef. But
then Gn

0 > 0 is positive and so Gn
t = Gn

0 > 0 for every t ∈ T . As G
is nef over T , it is big over T , and so KX + ∆ + λA is big over T , a
contradiction. It follows that λ = 0 so that KX +∆ is pseudo-effective
over T . �

Theorem 4.2. Let X −→ T be a flat projective morphism of quasi-
projective varieties. Let (X,∆) be a log pair such that the fibres (Xt,∆t)
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are Q-factorial terminal, for every t ∈ T . Assume that every compo-
nent R of ∆ dominates T and that the fibres of the Stein factorisa-
tion of R −→ T are irreducible. Let m > 1 be any integer such that
D = m(KX +∆) is integral.
If either KX + ∆ or ∆ is big over T then h0(Xt,OXt

(Dt)) is inde-
pendent of t ∈ T .

Proof. Let R be a component of ∆, let S −→ T be the normalisation
of the Stein factorisation of R −→ T so that S −→ T is finite and S is
normal, and let

Y ✲ X

S
❄

✲ T,
❄

be the fibre square. As S −→ T is finite, S is irreducible and Y −→ S
is flat, Y is a quasi-projective variety. Y is normal by [14, 5.12.7].
Replacing X −→ T by Y −→ S finitely many times, we may assume
that the fibres of R −→ T are irreducible, for every component R of ∆.
Fix a closed point 0 ∈ T . Replacing T by the intersection of general
hyperplane sections containing 0, we may assume that T is a curve.
Replacing T by its normalisation and passing to the fibre square, we
may assume that T is smooth. As the fibres of X −→ T are Q-factorial
terminal, [11, 3.2] implies that X is Q-factorial.
It suffices to show that |D0| = |D|X0

. In particular we may suppose
that KX0

+∆0 is pseudo-effective. Further we are free to work locally
about 0. In particular we may assume that T is affine. [7, 1.2] implies
that the divisor Nσ(X0, KX0

+∆0), defined in (2.1), is a Q-divisor. In
particular

Θ0 = ∆0 −∆0 ∧Nσ(X0, KX0
+∆0),

is a Q-divisor. By assumption we may find a Q-divisor 0 ≤ Θ ≤ ∆
whose restriction to X0 is Θ0. If we set

µ =
m

m− 1
,

then KX + µ∆ is big. Therefore, we may find Q-divisors A ≥ 0 and
B ≥ 0, where A is ample, the support of A is a prime divisor and X0

is not a component of B, such that KX + µ∆ ∼Q A + B. Possibly
passing to an open subset of T we may assume that the components
of B dominate T . Pick δ ∈ (0, 1/2) such that (Xt,∆t + δ(At + Bt)) is
terminal for every t ∈ T . If we let

H =
δ

m− 1− δ
A,
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then

D − Ξ ∼Q KX + Φ + δB + (m− 1− δ)(KX +Θ+H),

where Φ = (1− δµ+ δ)∆ and Ξ = (m− 1− δ)(∆−Θ).
As H0 is ample, no component of Θ0+H0 belongs to the stable base

locus of KX0
+Θ0 +H0. (4.1) implies that we may find a log terminal

model f : X 99K Y for (X,Θ + H), such that the induced birational
map f0 : X0 99K Y0 is a weak log canonical model of (X0,Θ0 +H0).
Let p : W −→ X and q : W −→ Y resolve f : X 99K Y , where p is

also a log resolution of (X,∆+ A+B). If we let

G = (m− 1− δ)f∗(KX + Θ+H),

then G is big and nef and

(m− 1− δ)p∗(KX +Θ+H) = q∗G+ F,

where F ≥ 0 is exceptional for q.
LetW0 be the strict transform of X0. As (X0,Φ0+δB0) is kawamata

log terminal, inversion of adjunction, [7, 1.4.5], implies that (X,X0 +
Φ+ δB) is purely log terminal. Therefore, if we write

KW +W0 = p∗(KX +X0 + Φ + δB) + E,

then ⌈E⌉ ≥ 0 is exceptional for p. Let

L = ⌈p∗(D − Ξ) + E − F ⌉.

Possibly passing to an open subset of T , we may assumeX0 isQ-linearly
equivalent to zero. In particular,

L−W0 ∼Q KW + C + q∗G,

where C is the fractional part of −p∗(D−Ξ)−E+F . Hence (W,C) is
kawamata log terminal and Kawamata-Viehweg vanishing implies that

H1(W,OW (L−W0)) = 0.

Let N = p∗(KX +Θ)−q∗f∗(KX +Θ). As H is ample, p∗H ≤ q∗f∗H ,
and so

mN = (1 + δ)N + (m− 1− δ)N ≥ F.

As Ξ ≤ m(∆−Θ) we have D−Ξ ≥ m(KX +Θ) and so it follows that

M = L− ⌊mq∗f∗(KX +Θ)⌋

= ⌈L−mq∗f∗(KX +Θ)⌉

≥ ⌈mN + E − F⌉

≥ ⌈E⌉.
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Let q0 : W0 −→ X0 denote the restriction of q to W0 and let L0 and M0

denote the restriction of L and M to W0. We have

|D0| = |m(KX0
+Θ0)| by definition of Θ0

⊂ |mf0∗(KX0
+Θ0)| since f0 is a birational contraction

= |mq∗0f0∗(KX0
+Θ0)|

⊂ |L0| as M0 ≥ 0

= |L|W0
since H1(W,OW (L−W0)) = 0

⊂ |D|X0
since ⌈E⌉ is exceptional for p.

Thus equality holds, as the reverse inequality holds automatically. �

Proof of (1.8). We first prove (1). Let 0 ∈ T be a closed point. Re-
placing T by an unramified cover, we may assume that the strata of
(X,∆) intersect X0 in strata of (X0,∆0). Since the only valuations of
non-negative coefficient lie over the strata of (X,∆), replacing (X,∆)
by a blow up, we may assume that (X,∆) is terminal. Thus (1) follows
from (4.2).
Now we prove (2). Pick m0 > 0 such that m0∆ is integral and an

ample divisor H such that H+m0∆ is very ample. Pick a prime divisor
A ∼ H +m0∆, such that (X,∆+A) has simple normal crossings over
T . If m ≥ m0 is any positive integer such that m∆ is integral, then

(X,∆′ =
m−m0

m
∆+

1

m
A)

is a simple normal crossings pair and it is kawamata log terminal. Fur-
ther

KX +∆′ ∼Q KX +∆+H/m,

and ∆′ is big over T . Thus (2) follows from (1).
Note that

vol(Xt, KXt
+∆t) = lim

ǫ→0
vol(Xt, KXt

+ (1− ǫ)∆t).

As (Xt, (1 − ǫ)∆t) is kawamata log terminal, (3) follows from (1) and
(2). �

5. DCC for the volume of bounded pairs

We prove (1.9) in this section. We first deal with the case that T is
a closed point.

Proposition 5.1. Fix a set I ⊂ [0, 1] which satisfies the DCC and a
simple normal crossings pair (Z,B), where Z is projective of dimension
n. Let D be the set of simple normal crossings pairs (X,∆), where X
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is projective, the coefficients of ∆ belong to I and there is a birational
morphism f : X −→ Z with Φ = f∗∆ ≤ B.
Then the set

{ vol(X,KX +∆) | (X,∆) ∈ D },

also satisfies the DCC.

Definition 5.2. Let (X,∆) be a log pair. If π : Y −→ X is a birational
morphism, then we may write

KY + Γ = π∗(KX +∆) + E,

where Γ ≥ 0 and E ≥ 0 have no common components, π∗Γ = ∆ and
π∗E = 0.
Define a b-divisor L∆ by setting L∆,Y = Γ.

Lemma 5.3. Let (X,∆) be a simple normal crossings pair, where X
is a projective variety.

(1) If Y −→ X is a birational morphism such that (Y,Θ = L∆,Y )
has simple normal crossings, and Γ−Θ ≥ 0 is exceptional, then

vol(X,KX +∆) = vol(Y,KY + Γ).

(2) If f : X −→ Z is a birational morphism such that (Z,Φ = L∆,Z)
has simple normal crossings and Θ = ∆ ∧ LΦ,X , then

vol(X,KX +∆) = vol(X,KX +Θ).

Proof. (1) is clear, as

H0(X,OX(m(KX +∆))) ≃ H0(Y,OY (m(KY + Γ))),

for all m.
For (2), suppose m is a sufficiently divisible positive integer. We

have

H0(X,OX(m(KX +∆))) ⊂ H0(Z,OZ(m(KZ + Φ)))

= H0(X,OX(m(KX + LΦ,X))),

and so

H0(X,OX(m(KX +∆))) = H0(X,OX(m(KX +Θ))). �

Lemma 5.4. Let (Z,Φ) be a simple normal crossings pair which is log
canonical.
If ν is a valuation such that LΦ(ν) > 0, then the centre of ν is a

stratum W of (Z,Φ) and there is a birational morphism Y = Yν −→ Z
such that ρ(Y/Z) = 1, Y is Q-factorial and the centre of ν is a divisor
on Y ; Yν is unique with these properties.
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Proof. This is a consequence of the existence of log terminal models,
which is proved in [7], and uniqueness of log canonical models. �

Definition 5.5. Let (X,∆) be a log pair. Define a b-divisor M∆ by
assigning to any valuation ν,

M∆(ν) =

{

multB(∆) if the centre of ν is a divisor B on X,

1 otherwise.

Definition 5.6. Let B be a b-divisor whose coefficients belong to [0, 1]
and let (Z,Φ = BZ) be a model with simple normal crossings. Let
Z ′ −→ Z be a log resolution, and let Σ be a set of valuations σ whose
centres are exceptional divisors for Z ′ −→ Z, such that LΦ(σ) > 0.
For every valuation σ ∈ Σ, let Γσ = (LΦ ∧B)Yσ

, where Yσ −→ Z is
defined in (5.4). Let

Θ =
∧

σ∈Σ

LΓσ ,Z′,

the minimum of the divisors LΓσ ,Z′.
The cut of (Z,B), associated to Z ′ −→ Z and Σ, is the pair (Z ′,B′),

where
B′ = B ∧MΘ,

so that the trace of B′ on Z ′ is Θ ∧BZ′ and otherwise B′ is the same
b-divisor as B.
We say that the pair (Z ′,B′) is a reduction of the pair (Z,B),

if they are connected by a sequence of cuts, that is, there are pairs,
(Zi,Bi), 0 ≤ i ≤ k, starting at (Z0,B0) = (Z,B) and ending at
(Zk,Bk) = (Z ′,B′), such that (Zi+1,Bi+1) is a cut of (Zi,Bi), for
each 0 ≤ i < k.

Lemma 5.7. Let B be a b-divisor whose coefficients belong to a set
I ⊂ [0, 1] which satisfies the DCC, and let (Z,Φ = BZ) be a model with
simple normal crossings.
Then there is a reduction (Z ′,B′) of (Z,B) such that

LΦ′ ≤ B′,

where Φ′ = B′
Z′.

Proof. If W is a stratum of (Z,Φ), then define the weight w of W as
follows:
If there is a valuation ν, with centre W , such that B(ν) < LΦ(ν),
then let w be the number of components of Φ with coefficient 1 which
contain W . Otherwise, if there is no such ν, then let w = −1.
Define the weight of (Z,B) to be the maximum weight of the strata

of (Z,Φ).
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Suppose the weight of (Z,B) is −1. Then LΦ(ν) ≤ B(ν) for any
valuation ν whose centre is a stratum. If ρ is a valuation, whose centre
is not a stratum, we have 0 = LΦ(ρ) ≤ B(ρ) (cf. [20, 2.31]). In this
case we just take Z ′ = Z.
From now on we suppose that the weight w ≥ 0. Suppose that

(Z ′,B′) is a cut of (Z,B). Then B′ and B have the same coefficients,
except for finitely many valuations. In particular, the coefficients of B′

belong to a set I ′ ⊃ I which still satisfies the DCC. It suffices therefore
to prove that we can find a cut (Z ′,B′) of (Z,B) with smaller weight.
Now if (Z ′,B′) is a cut of (Z,B), then B′

Z′ ≤ LΦ,Z′. On the other
hand, if ν is any valuation whose centre is not a divisor on Z ′, then
B(ν) = B′(ν). It follows that the weight of (Z ′,B′) is at most the
weight of (Z,B). Therefore, as (Z,Φ) has only finitely many strata,
we may construct (Z ′,B′) étale locally about every stratum. Thus, we
may assume that Z = Cn and that Φ is supported on the coordinate
hyperplanes.
We will use the language of toric geometry, cf. [12]. Cn is the toric

variety associated to the cone spanned by the standard basis vectors
e1, e2, . . . , en in Rn. If ν is any valuation such that LΦ(ν) > 0, then
ν is toric and we will identify ν with an element (v1, v2, . . . , vn) of
Nn. Order the components of Φ so that the last w components have
coefficient one and let 0 ≤ c1, c2, . . . , cs < 1 be the initial coefficients,
so that n = s+ w. With this ordering, we have

LΦ(ν) = 1−
∑

i

vi(1− ci).

(Indeed both sides of this equation are affine linear in v1, v2, . . . , vn and
c1, c2, . . . , cs and it is easy to check we have equality when either ν is
the zero vector or when ν = ei, 1 ≤ i ≤ n.) Consider the finite set

F = { (v1, v2, . . . , vs) ∈ Ns |
∑

i

vi(1− ci) < 1 }.

Given a valuation ν = (v1, v2, . . . , vn), note that LΦ(ν) > 0 if and only
if (v1, v2, . . . , vs) ∈ F.
As I satisfies the DCC, for every f = (f1, f2, . . . , fs) ∈ F, we may

pick a valuation σ = (f1, f2, . . . , fs, vs+1, vs+2, . . . , vn), such that

B(σ) = inf{B(ν) | ν = (f1, f2, . . . , fs, us+1, us+2, . . . , un) }.

Let Σ be a set of choices of such valuations σ, so that Σ and F have
the same cardinality. Let Z ′ −→ Z be any log resolution of (Z,Φ)
such that the centre of every element of Σ is a divisor on Z ′. We may
assume that the induced birational map Z ′ −→ Yσ is a morphism, for
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every σ ∈ Σ. Let (Z ′,B′) be the cut of (Z,B) associated to Z ′ → Z
and Σ.
There are two cases. If w = 0, then Σ = F is the set of all valuations

of coefficient less than one. It follows that if ν is any valuation whose
centre on Z ′ is not a divisor, then LΦ′(ν) = 0, so that the weight of
(Z ′,B′) is −1, which is less than the weight of (Z,B).
Otherwise we may assume that w ≥ 1. Suppose that ν is a valuation

whose centre is not a divisor on Z ′ such that B′(ν) < 1 and LΦ′(ν) > 0.
Then B(ν) = B′(ν) and LΦ(ν) > 0 and so ν = (v1, v2, . . . , vn) is toric
and (v1, v2, . . . , vs) ∈ F. By construction, there is an element σ of Σ
with the same first s coordinates as ν such that B(σ) ≤ B(ν) < 1. The
cone spanned by the standard basis vectors e1, e2, . . . , en is divided into
m ≤ n subcones by σ (these are the maximal cones of Yσ), where m is
the number of non-zero entries of σ, and so ν is a non-negative linear
combination of σ and n− 1 vectors taken from e1, e2, . . . , en. It follows
that

(♯) ν =
∑

j 6=l

λjej + λσ,

for some index 1 ≤ l ≤ n and non-negative real numbers λ1, λ2, . . . , λn
and λ, where the lth entry of σ is non-zero.
If the centre of ν on Z ′ is contained in w components of Φ′ of coeffi-

cient one, then the centre of ν on Yσ is also contained in w components
of coefficient one of Γσ = (LΦ ∧B)Yσ

. By assumption, the exceptional
divisor of Yσ −→ Y has coefficient strictly less than one, and so the
centre of ν on Yσ must be contained in the strict transform of the last w
coordinate hyperplanes. But then, by standard toric geometry, l ≤ s.
Hence the lth entry of ν is non-zero. Comparing the coefficient of el in
(♯), we must have λ = 1, so that ν ≥ σ. In this case,

LΦ′(ν) ≤ LΓσ
(ν) by definition of B′,

≤ LΓσ
(σ) as ν ≥ σ,

≤ B(σ) since Γσ ≤ BYσ
,

≤ B(ν) by our choice of σ,

= B′(ν) by definition of B′.

It follows that the weight of (Z ′,B′) is indeed smaller than the weight
of (Z,B) and this completes the induction and the proof. �

Proof of (5.1). Suppose we have a sequence of log pairs (Xi,∆i) ∈ D,
such that vi ≥ vi+1, where vi := vol(Xi, KXi

+∆i). We will show that
the sequence v1, v2, . . . is eventually constant; to this end we are free to
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pass to a subsequence. Replacing I by Ī ∪ {1}, we may assume that I
is closed and 1 ∈ I.
By assumption there are projective birational morphisms fi : Xi −→

Z such that Φi = fi∗∆i ≤ B. Note that if ν is a valuation such that
M∆i

(ν) /∈ {0, 1}, then the centre of ν is a component of ∆i. On the
other hand, if M∆i

(ν) = 1 and M∆j
(ν) = 0 and the centre of ν is

not a component of ∆i, then the centre of ν is not a divisor on Xi

and it is a divisor on Xj . Therefore there are only countably many
valuations ν such that M∆i

(ν) 6= M∆j
(ν) for some i and j. Therefore,

as I satisfies the DCC, by a standard diagonalisation argument, after
passing to a subsequence, we may assume that M∆i

(ν) is eventually
a non-decreasing sequence, for all valuations ν. In particular, we may
define a b-divisor B by putting

B(ν) = lim
i→∞

M∆i
(ν).

Note that the coefficients of B belong to I. Let Φ = BZ .
Suppose that (Z ′,B′) is a cut of (Z,B) associated to a birational

morphism Z ′ −→ Z and a set of valuations Σ. Let f ′
i : Xi 99K Z

′ be
the induced birational map. Note that, if X ′

i −→ Xi is a birational
morphism and (X ′

i,∆
′
i = M∆i,X

′

i
) has simple normal crossings, then

vol(X ′
i, KX′

i
+ ∆′

i) = vi and the coefficients of ∆′
i belong to I, so that

(X ′
i,∆

′
i) ∈ D. Therefore, we are free to replace (Xi,∆i) by (X ′

i,∆
′
i).

In particular, we may assume that f ′
i is a birational morphism.

Given σ ∈ Σ, let Γi,σ = (LΦi
∧ B)Yσ

, where Yσ −→ Z is defined in
(5.4). Suppose we define a sequence of divisors

Θi =
∧

σ∈Σ

LΓi,σ ,Z′,

as in (5.6). Suppose that B is a prime divisor on Z ′ which is exceptional
over Z. Then the coefficient of B in Θi is the minimum of finitely
many affine linear functions of the coefficients of ∆i. It follows that
the coefficients of Θ1,Θ2, . . . belong to a set I ′ ⊃ I which satisfies the
DCC. Finally, let

∆′
i = ∆i ∧MΘi,Xi

,

so that we only change the coefficients of divisors which are exceptional
for Z ′ → Z. In particular, the coefficients of ∆′

i belong to I ′. On the
other hand,

∆i ∧ LΘi,Xi
≤ ∆′

i = ∆i ∧MΘi,Xi
≤ ∆i,

so that

vi = vol(Xi, KXi
+∆′

i),
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by (2) of (5.3). Finally, note thatM∆′

i
(ρ) is eventually a non-decreasing

sequence for any valuation ρ. In particular, we may define a b-divisor
B′ by putting

B′(ρ) = lim
i→∞

M∆′

i
(ρ),

as before.
Hence, (5.7) implies that we may find a reduction (Z ′,B′), of (Z,B)

and pairs (X ′
i,∆

′
i), whose coefficients belong to a set I ′ which satis-

fies the DCC, such that vi = vol(X ′
i, KX′

i
+ ∆′

i), there is a birational
morphism X ′

i −→ Z ′, and moreover LΦ′ ≤ B′. Replacing (Xi,∆i) by
(X ′

i,∆
′
i), I by I ′, and Z by Z ′, we may therefore assume that LΦ ≤ B.

Note that

vi = vol(Xi, KXi
+∆i)

≤ vol(Z,KZ + Φi)

≤ lim vol(Z,KZ + Φi)

= vol(Z,KZ + Φ),

as limΦi = Φ.
On the other hand, if we fix ǫ > 0, then (Z, (1−ǫ)Φ) is kawamata log

terminal. In particular, we may pick a birational morphism f : Y −→ Z
such that (Y,Ψ = L(1−ǫ)Φ,Y ) is terminal. If we let Θ = LΦ,Y and
Γ = BY , then

Ψ ≤ (1− η)Θ ≤ Θ ≤ Γ

for some η > 0. As Γ is the limit of Γi = M∆i,Y , it follows that
we may find i such that Ψ ≤ Γi. As (Y,Ψ) is terminal, we have
Ψi = LΨ,Xi

≤ ∆i. But then

vol(Z,KZ + (1− ǫ)Φ) = vol(Y,KY +Ψ)

≤ vol(Xi, KXi
+Ψi)

≤ vol(Xi, KXi
+∆i) = vi.

Taking the limit as ǫ goes to zero, we get

vol(Z,KZ + Φ) ≤ vi ≤ vol(Z,KZ + Φ),

so that vi = vol(Z,KZ + Φ) is constant. �

Proof of (1.9). We may assume that 1 ∈ I. By assumption there is a
log pair (Z,B) and a projective morphism Z −→ T , where T is of finite
type, such that if (X,∆) ∈ D, then there is a closed point t ∈ T and a
birational map f : X 99K Zt such that the support of Bt contains the
support of the strict transform of ∆t and any f−1-exceptional divisor.
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Suppose that p : Y −→ X is a birational morphism. Then the coef-
ficients of Γ = M∆,Y belong to I and

vol(X,KX +∆) = vol(Y,KY + Γ),

by (1) of (5.3). Replacing (X,∆) by (Y,Γ), we may assume that f is
a morphism and we are free to replace Z and B by higher models.
We may assume that T is reduced. Blowing up and decomposing

T into a finite union of locally closed subsets, we may assume that
(Z,B) has simple normal crossings; passing to an open subset of T , we
may assume that the fibres of Z −→ T are log pairs, so that (Z,B)
has simple normal crossings over T ; passing to a finite cover of T , we
may assume that every stratum of (Z,B) has irreducible fibres over
T ; decomposing T into a finite union of locally closed subsets, we may
assume that T is smooth; finally passing to a connected component of
T , we may assume that T is integral.
Let Z0 and B0 be the fibres over a fixed closed point 0 ∈ T . Let

D0 ⊂ D be the set of simple normal crossings pairs (Y,Γ), where the
coefficients of Γ belong to I, Y is a projective variety of dimension n,
and there is a birational morphism g : Y −→ Z0 with g∗Γ ≤ B0.
Pick (X,∆) ∈ D. Let Φ = f∗∆. Let Σ be the set of all valuations ν

whose centre on X is a divisor which is exceptional over Zt such that
LΦ(ν) > 0. We may find a birational morphism f ′ : X ′ −→ Zt, such
that the centre of every element of Σ is a divisor on X ′, whilst f ′ only
blows up strata of (Zt,Φ). Suppose that g : W −→ X is a log resolution
which resolves the indeterminacy locus of the induced birational map
X 99K X ′. If we set ∆′ = M∆,X′ , then the coefficients of ∆′ belong to
I and

vol(X,KX +∆) = vol(W,KW +M∆,W ) ≤ vol(X ′, KX′ +∆′),

by (1) of (5.3). If ν is any valuation whose centre is an exceptional
divisor for W −→ X ′ but not for W −→ X , then the centre of ν is an
exceptional divisor for X −→ Zt and so LΦ(ν) = 0, by choice of f ′. It
follows that

M∆,W ≥ M∆′,W ∧ LΦ,W ,

and so (5.3) implies that

vol(W,KW+M∆,W ) ≥ vol(W,KW+M∆′,W∧LΦ,W ) = vol(X ′, KX′+∆′).

and hence the inequalities above are equalities. In particular

vol(X,KX +∆) = vol(X ′, KX′ +∆′).

Replacing (X,∆) by (X ′,∆′), we may assume that f only blow ups
strata of Φ.
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As (Z,B) has simple normal crossings over T and the strata of (Z,B)
have irreducible fibres, we may find a sequence of blow ups g : Z ′ −→ Z
of strata of B, which induces the sequence of blow ups determined by
f , so that X = Z ′

t. There is a unique divisor Ψ supported on the strict
transform of B and the exceptional locus of g, such that ∆ = Ψt. If
Y = Z ′

0 is the fibre over 0 of Z
′ −→ T and Γ is the restriction of Ψ to Y ,

then (Y,Γ) ∈ D0. (1.8) implies that vol(Y,KY +Γ) = vol(X,KX +∆).
It follows that

{ vol(X,KX +∆) | (X,∆) ∈ D } = { vol(X,KX +∆) | (X,∆) ∈ D0 }.

Now apply (5.1). �

6. Birational geometry of global quotients

Theorem 6.1 (Tsuji). Assume (1.4)n−1.
Then there is a constant C = C(n) > 2 such that if (X,∆) is a

global quotient, where X is projective of dimension n, and KX +∆ is
big, then φm(KX+∆) is birational for every integer m ≥ C + 1 such that

vol(X, (m− 1)(KX +∆)) > (Cn)n.

Proof. First note that (2.2.2) implies that

KX + ⌈(m− 1)(KX +∆)⌉ = ⌊m(KX +∆)⌋.

As we are assuming (1.4)n−1 there is a constant ǫ > 0 such that if
(U,Θ) is a global quotient, where KU +Θ is big and U is projective of
dimension k at most n− 1, then vol(U,KU +Θ) > ǫk. Let

C = 2(1 + γ)n−1 where γ =
4n

ǫ
.

By assumption there is a smooth projective variety Y of dimension n
and a finite group G ⊂ Aut(Y ) such that X = Y/G and if π : Y −→ X
is the quotient morphism, then KY = π∗(KX +∆). As KX +∆ is big,
Y is of general type. Replacing (X,∆) and Y by their log canonical
models, which exist by [7], we lose the fact that X and Y are smooth,
gain the fact that KX +∆ and KY are ample, and retain the condition
that KX +∆ is kawamata log terminal and KY is canonical.
We check the hypotheses of (2.3.6), applied to the ample divisor

KX +∆ and the constants ǫ/2 and γ0 =
m−1
C

≥ 1. Clearly

vol(X, γ0(KX +∆)) > nn.

Suppose that V is a minimal non kawamata log terminal centre of a
log pair (X,∆+∆0), which is log canonical at the generic point of V .
Further suppose that V passes through a very general point of X , and
0 ≤ ∆0 ∼Q λ(KX +∆), for some rational number λ ≥ 1.
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If Γ0 = π∗∆0, then every irreducible component of π−1(V ) is a non
kawamata log terminal centre of (Y,Γ0). Let V

′ be the normalisation of
π−1(V ). As H = KY +Γ0 is ample, Kawamata’s subadjunction formula
implies that for every η > 0, there is a divisor Φ ≥ 0 on V ′ such that

(KY + Γ0 + ηH)|V ′ = KV ′ + Φ.

Let W −→ V ′ be a G-equivariant resolution. As V passes through a
very general point of X , W is a union of irreducible varieties of general
type. If U = W/G is the quotient, then U is irreducible and we may
find a Q-divisor Θ such that KW = ψ∗(KU + Θ), where ψ : W −→ U
is the quotient map.
As (U,Θ) is a global quotient, vol(U,KU + Θ) > ǫk, where k is the

dimension of V . Therefore

|G| vol(V, (KX +∆+∆0)|V ) = vol(V ′, (KY + Γ0)|V ′)

≥ vol(V ′, KV ′)

≥ vol(W,KW )

= |G| vol(U,KU +Θ)

≥ |G|ǫk.

Thus

vol(V, (1 + λ)(KX +∆)|V ) > ǫk,

and so

vol(V, λ(KX +∆)|V ) >
( ǫ

2

)k

.

(2.3.6) implies that (m − 1)(KX + ∆) is potentially birational. (1) of
(2.3.4) implies that φKX+⌈(m−1)(KX+∆)⌉ is birational. �

7. Proof of (1.4) and (1.1)

Proof of (1.4). By induction on n. Assume (1.4)n−1. By (6.1) there
is a constant C = C(n) > 2 depending only on the dimension n such
that if (X,∆) is a global quotient, where X is projective of dimension
n and KX +∆ is big, then φm(KX+∆) is birational, for any m ≥ C + 1
such that

vol(X, (m− 1)(KX +∆)) > (Cn)n.

Note that the right hand side does not depend on m.
Fix a constant V > nn and let

DV = { (X,∆) ∈ D | 0 < vol(X,KX +∆) ≤ V }.
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Note that if k is a positive integer such that vol(X, k(KX+∆)) ≤ CnV ,
then vol(X, (k + 1)(KX + ∆)) ≤ 2nCnV . It follows that there is a
positive integer m ≥ C + 1 such that if (X,∆) ∈ DV , then

(Cn)n < vol(X, (m− 1)(KX +∆)) ≤ 2nCnV,

so that φm(KX+∆) is birational. (2) of (2.3.4) implies that φKX+(2n+1)m(KX+∆)

is birational. But then (3.1) implies thatDV is log birationally bounded,
and so (1.9) implies that the set

{ vol(X,KX +∆) | (X,∆) ∈ DV },

satisfies the DCC, which implies that (1) and (2) of (1.4) hold in di-
mension n.
In particular there is a constant δ > 0 such that if (X,∆) ∈ D, and

KX +∆ is big, then vol(X,KX +∆) ≥ δ. It follows that φM(KX+∆) is
birational, for any

M >
Cn

δ
+ 1,

and this completes the induction and the proof. �

Proof of (1.1). By (2) of (1.4) there is a constant δ > 0 such that if
(X,∆) is a global quotient, where X is projective of dimension n and
KX +∆ is big, then vol(X,KX +∆) ≥ δ. Let c = 1

δ
.

Let Y be a projective variety of dimension n of general type. By
[7], there is a log canonical model Y 99K Y ′. If G is the birational
automorphism group of Y , then G is the automorphism group of Y ′.
Replacing Y by a G-equivariant resolution of Y ′, we may assume that
G is the automorphism group of Y . Let π : Y −→ X = Y/G be
the quotient of Y . Then there is a divisor ∆ on X such that KY =
π∗(KX +∆). By definition, (X,∆) is a global quotient, X is projective
and KX +∆ is big. It follows that vol(X,KX +∆) ≥ δ. As

vol(Y,KY ) = |G| vol(X,KX +∆),

it follows that
|G| ≤ c · vol(Y,KY ). �
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