
ar
X

iv
:1

20
2.

33
67

v3
  [

cs
.D

S]
  8

 M
ay

 2
01

2

Faster Approximate Multicommodity Flow

Using Quadratically Coupled Flows ∗

Jonathan A. Kelner †

MIT

kelner@mit.edu

Gary L. Miller

CMU

glmiller@cs.cmu.edu

Richard Peng ‡

CMU §

yangp@cs.cmu.edu

May 9, 2012

Abstract

The maximum multicommodity flow problem is a natural generalization of the maximum flow prob-
lem to route multiple distinct flows. Obtaining a 1 − ǫ approximation to the multicommodity flow
problem on graphs is a well-studied problem. In this paper we present an adaptation of recent advances
in single-commodity flow algorithms to this problem. As the underlying linear systems in the electrical
problems of multicommodity flow problems are no longer Laplacians, our approach is tailored to gen-
erate specialized systems which can be preconditioned and solved efficiently using Laplacians. Given
an undirected graph with m edges and k commodities, we give algorithms that find 1 − ǫ approximate
solutions to the maximum concurrent flow problem and the maximum weighted multicommodity flow
problem in time Õ(m4/3poly(k, ǫ−1)) 1.

∗Partially supported by the National Science Foundation under grant number CCF-1018463.
†Partially supported by NFS Awards 0843915 and 1111109
‡Supported by a Microsoft Fellowship
§Part of this work was done while at Microsoft Research New England
1We use Õ(f(m)) to denote Õ(f(m) logc f(m)) for some constant c

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/16521236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1202.3367v3


1 Introduction

The multicommodity flow problem is a natural extension of the maximum flow problem. One of its
variations, maximum concurrent multicommodity flow, asks to route multiple demands simultaneously in
a network subject to capacity constraints. In this setting we’re given an undirected, capacitated graph
G = (V,E,u) where u : E → ℜ+, and k source-sink pairs (s1, t1) . . . (sk, tk). The goal is to find the
maximum λ such that there exist k flows f1 . . . fk where fi routes λ units of flow between si and ti, and the
total flow along each edge obey the following capacity constraint:

∑

i

|fi(e)| ≤ u(e) ∀e ∈ E

1.1 Related Work

The simplest version of the problem is with two commodities in an undirected graph. In this case the
problem was shown to be reducible to two single commodity maximum flow problems [RW66]. When there
are 3 or more commodities though, this connection no longer holds and all of the (almost) exact algorithms
for multicommodity flow problems involve solving a linear programming formulation. For these linear
programs, the method with the best asymptotic behavior is the interior point algorithm, which requires
solving O(m1/2) linear systems. By tracking inverses of these systems and making low rank updates, Vaidya
showed an algorithm with running time Õ(k5/2m3/2n) [Vai89]. This is not very far from the natural barrier
of Ω̃(k1/2m1/2n2) for this type of approach, which arises from the need to compute a dense matrix-vector
product involving the inverse in each iteration.

Subsequent work on multicommodity flow focused on obtaining 1 + ǫ approximate solutions in faster
time. This work initially focused on the case of small k, and the algorithms are based on solving multiple
minimum cost flow problems [LMP+91]. When combined with the minimum cost flow algorithm from
[DS08], these algorithms gave a running time of Õ(m1.5poly(k, ǫ−1)).

More recent approaches have favored using a less expensive inner loop to obtain better bounds when
k is large. Specifically multiplicative weights update method using single source shortest path routines as
oracles [GK98, Fle00]. The most recent among these approaches obtained a running time of Õ(nm/ǫ2) using
dynamic graph data structures[Mad10]. These methods give better performance the case where k is large.
However, when applied to instances with a smaller value of k these approaches encounter similar issues
to those encountered by path based single-commodity flow algorithms: the flow decomposition barrier at
Ω(nm). This barrier stems from the fact that if we decompose a flow into a list of paths of paths, the total
size of these paths can be Ω(nm).

An alternate approach to solving linear systems, has led to a possible way to circumvent both the dense
inverse and flow decomposition barrier. The graph-like nature of the underlying linear system, graph
Laplacians, allows one to find sparse approximations of it, which, when used to precondition iterative
solvers, led to speedups in solving such systems [Vai91]. This approach using graph Laplacians has been
extended greatly in subsequent works, leading to algorithms with nearly-linear running times [ST06]. Graph
Laplacians are closely connected with problems involving a single flow, such as maximum flow, minimum
cost flows and shortest path. To the best of our knowledge this connection was first observed in [DS08],
leading to, among others, a faster algorithm for minimum cost flow. This algorithm is used as a subroutine
in the Õ(m1.5poly(k, ǫ−1)) algorithm mentioned earlier.

1.2 Our Work

Recently, the running time for approximate maximum flow in undirected graphs has been improved to
Õ(m4/3) [CKM+11]. A natural question arising from this is whether this algorithm can also be extended
to multicommodity flow. Even though in the 2-commodity setting their algorithm can be invoked in a

1



black-box manner [RW66], a more general examination of this setting is helpful for understanding the
main components of our extensions.

In order to further simplify the 2-commodity case, we assume that each edge have unit capacity. That
is, we want to find two flows f1 and f2 that meet their respective demands, and satisfy the following capacity
constraint on each edge e.

|f1(e)|+ |f2(e)| ≤ 1

One way to visualize this constraint is by considering each flow assignment as a coordinate in the 2-D
plane. Then a point (f1(e), f2(e)) obeys this constraint if it’s inside the unit L1 ball, as shown in Figure
1. The Christiano et al. algorithm [CKM+11] produces a flow that approximately satisfies edge capacities
by solving a series of electrical problems. To form such electrical problems, they assign one resistor per
edge, leading to a quadratic term of the form f(e)2. Since f(e) ≤ 1 is equivalent to f(e)2 ≤ 1, they’re able
to bound the energy of each of these terms by 1. A natural generalization to two commodities would be to
bound the sum of the squares of the two flows, leading to an instance of what we define as Quadratically

Capacitated Flows. Specifically we would like the following to hold along each edge:

f1(e)
2 + f2(e)

2 ≤ 1

Note that the flow (f1(e), f2(e)) = (1, 0) has energy 1, so the RHS value of 1 is tight. This corresponds
to allowing any (f1(e), f2(e)) that’s within the unit L2 ball, and as shown in Figure 1. However, in the
2-commodity case it’s possible for flow settings that over-congest the edge to still satisfy this energy
constraint. In other words, it’s possible for a point to be in the unit L2 ball but outside the unit L1 ball.
For example, the flow (f1(e) =

√
2/2, , f2(e) =

√
2/2) also meets this energy constraint despite having a

congestion
√
2.

f1(e)

f2(e)

Figure 1: Unit l1 ball representing region of feasible flows (gray), with unit l2 ball being the quadratic
capacity constraint. The point (f1(e) =

√
2/2, f2(e) =

√
2/2) obeys this constraint, but exceeds the edge’s

capacity

One possible remedy to this problem is to introduce more intricate quadratic coupling between the two
commodities. However, we still need to set the constraint so that any flow whose total congestion is below
the capacity falls within this ellipse. This is equivalent to the ellipse containing the unit L1 ball, which
along with the fact that ellipses have smooth boundaries means we must allow some extra points. For
example, the modified ellipse in Figure 2 once again allows the returned solution to have large congestion.
In general, computing a single quadratically capacitated flow can lead to the edge being over-congested by
a factor of

√
k, giving a

√
k approximation.

2



As a result, instead of computing a single quadratically capacitated flow, we compute a sequence of
them and average the result. Note that although both (f1(e) =

√
2/2, , f2(e) =

√
2/2) and (f1(e) =√

2/2, , f2(e) = −
√
2/2) have congestion of

√
2, if we average them we’re left with a flow with congestion

only
√
2/2. If we’re only concerned with keeping the average congestion small, the flows computed in

previous iterations can give us some ’slack’ in certain directions. As it turns out, if we compute the
coupling matrix based on the flows returned so far, it’s possible to move the average gradually get closer
to the unit L1 ball. For example, the average of the two flows returned in Figure 2 is inside the unit L1

ball despite both falling outside of it.

f1(e)

f2(e)

Figure 2: Modified energy constraint after a flow of (
√
2/2,
√
2/2) has been added. Note that the point

returned is still outside of the unit l1 ball, but the average is within it.

The problem now becomes finding feasible quadratically capacitated flows. The Christiano et al. algo-
rithm [CKM+11] can be adapted naturally to this problem, providing that we can find flows that minimizes
a weighted sum of the energy terms. We define this generalization of electrical flows as quadratically

coupled flows. Just like their single commodity version, the minimum energy quadratically coupled flows
can also be computed by solving linear systems.

The remaining difficulty of the problem is now with solving these linear systems. Most of the combina-
torial preconditioning framework relies on the system being decomposable into 2-by-2 blocks corresponding
to single edges. For quadratically coupled flows, the resulting systems are only decomposable into 2k-by-2k
blocks. These systems are also encountered in stiffness matrices of finite element systems [BHV04], and
k-dimensional trusses [DS07, AT11]. To date a nearly-linear time solver that can handle all such systems
remains elusive.

Instead of solving these systems directly, we show, by more careful analysis of our algorithm that
generates the quadratically capacitated flow problems, that it suffices to consider a more friendly subset
of them. It can be shown that the

√
k factor deviation that occurs in the uncoupled electrical problem

is also the extent of our loss if we try to approximate these more friendly quadratically coupled flows
with uncoupled ones. However, in the quadratic case such losses are fixable using preconditioned iterative
methods, allowing us to solve the systems arising from quadratically coupled flows by solving a number of
graph Laplacians instead. This leads us our main result, which can be stated as:

Theorem 1.1 Given an undirected, capacitated graph G = (V,E,u) with m edges, along with k commodi-
ties and their demands d1 . . .di. There is an algorithm that computes an 1 − ǫ approximate maximum
concurrent flow in time:

Õ(m4/3poly(k, ǫ−1))

An overview of the main steps of the algorithm is shown in Section 3. Our approach also extends to
maximum weighted multicommodity flow, which we show in Appendix B.

3



2 Preliminaries

The maximum concurrent multicommodity problem concerns the simultaneous routing of various com-
modities in a capacitated network. For our purposes, the graph is an undirected, capacitated graph
G = (V,E,u) where u : E → R+ is the capacity of each edge. If we assign an arbitrary orientation to the
edges, we can denote the edge-vertex incidence matrix B ∈ ℜm×n as:

B(e, u) =







1 if u is the head of e
−1 if u is the tail of e
0 otherwise

(2.1)

Then, for a (single commodity) flow f, the excess of the flow at each vertex is given by the length n vector
BT f.

Throughout the paper we let k be the number of commodities routed. It can be shown that it suffices
to solve the k-commodity flow problem for fixed vertex demands d1,d2 . . .dk one for each commodity.
The goal of finding a flow that concurrently routes these demands in turn becomes finding fi for each
commodity such that:

BT fi = di (2.2)

The other requirement for a valid flow is that the flows cannot exceed the capacity of an edge. Specif-
ically we need the following constraint for each edge e:

∑

1≤i≤k

|fi(e)| ≤ u(e) (2.3)

2.1 Notations for k-Commodity Flow and Vertex Potentials

The extension of a single variable indicating flow/vertex potential on an edge/vertex to k variables creates
several notational issues. We use a length km vector f ∈ ℜkm to denote a k-commodity flow, and allow for
two ways to index into it based on commodity/edge respectively. Specifically, for a commodity i, we use
fi to denote the length m vector with the flows of commodity i along all edges and for an edge e, we use
f(e) to denote the length k vector containing the flows of all k commodities along this edge.

This definition extends naturally to vectors over all (vertex, commodity) pairs as well. We let d ∈ ℜnk

be the column vector obtained by concatenating the length k demand vector over all n vertices. If the
edges are labeled e1 . . . em and the vertices v1 . . . vn, then f and d can be written as:

fT =
[

f(e1)
T , f(e2)

T , . . . , f(em)T
]

(2.4)

dT =
[

d(v1)
T , f(v2)

T , . . . ,d(vn)
T
]

(2.5)

We can also define larger matrices that allows us to express these conditions across all k commodities,
and their interactions more clearly. The edge-vertex incidence matrix that maps between d and f is the
Kronecker product between B and the k × k identity matrix Ik.

Γ =B⊗ Ik (2.6)

4



and f meeting the demands can be written as:

ΓT f = d (2.7)

Note that flows of two commodities passing in opposite directions through the edge do not cancel each
other out.

By obtaining crude bounds on the flow value using bottle neck shortest paths and binary searching in
the same way as in [CKM+11], the maximum concurrent multicommodity flow problem can be reduced to
O(log n) iterations of checking whether there is a k-commodity flow f that satisfies the following:

||f(e)||1 =

k
∑

i=1

|fi(e)| ≤u(e) ∀e ∈ E

Γf =d

2.2 Quadratic Generalizations

We define two generalizations of electrical flows to multiple commodities. Our main goal is to capture
situations where the amount of flows of one type allowed on an edge depends inversely on the amount of
another flow, so the flows are “coupled.” To do so, we introduce a positive-definite, block-diagonal matrix
P ∈ ℜkm×km such that P =

∑

eP(e) and each P(e) is a k × k positive definite matrix defined over the k
entries corresponding to the flow values on edge e.

For each edge the k flows along an edge e, f(e) we get a natural quadratic penalty or energy dissipation
term:

Ef(P, e) = f(e)TP(e)f(e) (2.8)

Summing these gives the total energy dissipation of a set of flows, denoted using E .

Ef(P) =
∑

e

Ef(P, e)

=fTPf (2.9)

In the Quadratically Coupled Flow problem, we aim to find a flow f that satisfies all of the demand
constraints and minimizes the total energy dissipation, namely:

min Ef(P) (2.10)

subject to: ΓT f = d (2.11)

The minimum is denoted by E(P). We can define the related potential assignment problem, where
the goal is to assign potentials to the vertices to separate the demands. Note that due to there being k
commodities, a potential can be assigned to each (flow, vertex) pair, creating φ ∈ ℜkn. This vector can
also be viewed as being composed of n length k vectors, with the vector at vertex u being φ(u). Given an
edge e = (u, v) whose end points connects vertices with potentials φ(u) and φ(v), the difference between its
end points is φ(u)−φ(v). In order to map this length nk vector into the same support as the k-commodity

5



flows along edges, we need to multiply it by Γ, and we denote the resulting vector as y:

y =Γφ (2.12)

The energy dissipation of an edge with respect to φ can in turn be defined as:

Eφ(P, e) =yP(e)−1y (2.13)

Note that this definition relies on P(e) being positive definite and therefore invertible on the support
corresponding to edge e. This can in turn be extended analogously to the energy dissipation of a set of
potentials as:

Eφ(P) =
∑

e

Eφ(P, e)

=φTΓTP−1Γφ (2.14)

We further generalize the definition of a Laplacian to k commodities:

L = ΓTP−1Γ (2.15)

Thus, the energy dissipation of a set of potentials also equals to φTLφ. Which leads to the following
maximization problem, which is the dual of the quadratically coupled flow problem.

max (dTφ)2 (2.16)

subject to: Eφ(P) ≤ 1 (2.17)

We denote the optimum of this value using Ceff (P) and will show in Section 4.1 that Ceff (P) = E(P).
Another coupled flow problem that’s closer to the maximum concurrent flow problem is one where we

also bound the saturation of them w.r.t. P, where saturation is the square root of the energy dissipation.

saturationf(P, e) =
√

f(e)TP(e)f(e) (2.18)

Finding a flow with bounded saturation per edge will be then called the Quadratically Capacitated

Flow problem.

3 Overview of Our Approach

A commonality of the algorithms for flow with Laplacian solves as an inner loop [DS08, CKM+11] is that
they make repeated computations of an optimum electrical flow in a graph with adjusted edge weights. The
main problem with extending these methods to k-commodity flow is that the Laplacian for k-commodity
electrical flow L is no longer symmetrically diagonally dominant. Our key observation in resolving this
issue is that when the energy matrices P(e) are well-conditioned, we can precondition P with a diagonal
matrix. Then using techniques similar to those in [BHV04], we can solve systems involving L using a small
number of Laplacian linear system solves. Our algorithm for k-commodity flow has the following layers
with a description in Figure 3 as well.

6



1. We adapt the algorithm from [LMP+91] to use flows with electrical capacity constraints associated
with the k commodities instead of minimum cost flow as its oracle call. At the outermost level, the
approximately multi-commodity flow algorithm, repeatedly computes a positive definite matrix P(e)
for each edge based on the flows on it so far on that edge, and boost their diagonal entries to keep
their condition number at most poly(k). The outermost level then calls an algorithm that computes
quadratically capacitated flow that is:

saturation
f̃
(P, e) ≤ max

f,||f(e)||1≤u(e)
saturationf(P, e) (3.19)

After repeating this process poly(k) times, averaging these flows gives one where ||̃f(e)||1 ≤ (1+ǫ)u(e)
on all edges. We give two methods for computing P in Sections 6 and 7.

2. We use an algorithm that’s a direct extension of the electrical flow based maximum flow algorithm
from [CKM+11] to minimize the maximum saturation of an edge. This stage of the algorithm in turn
solves Õ(m1/3) quadratically coupled flows where the energy coupling on an edge is P̃(e) = weP(e).
Note that since P(e) was chosen to be well conditioned and we is a scalar, the P̃(e)s that we pass
onto the next layer on remains well-conditioned. This is presented in Section 5.

3. In turn the Quadratically Capacitated Flow Algorithm makes calls to an algorithm that computes
a quadratically coupled flow. The almost-optimal quadratically coupled flow is obtained by linear
solves involving L. Specifically, we show that preconditioning each P (e) with a diagonal matrix
allows us to decouple the k-flows, at the cost of a mild condition number set in the outermost layer.
Then using preconditioned Chebyshev iteration, we obtain an almost optimal quadratically coupled
flow using poly(k, ǫ−1) Laplacian solves on a matrix with m non-zero entries. Properties of the
k-commodity electrical flow, as well as bounds on the error and convergence of the solves are shown
in Section 4.

4 Approximate Computation of Quadratically Coupled Flows

4.1 Quadratically Coupled Flows and Vertex Potentials

Let x̄ be the vector such that Lx̄ = d. It can be shown that E(P, φ) is maximized when φ is a multiple of
x̄. Then the scaling quantity λ̄ as well as the optimum set of potential φ̄ are:

λ̄ =
√

dTL+d (4.20)

φ̄ =
1

λ̄
x̄

=
1

λ̄
L+d (4.21)

Note that d satisfies 1Ti d = 0 for all 1 ≤ i ≤ k. Also, since P is positive-semidefinite, the null space of
L is precisely the space spanned by the k vectors 1i. Therefore d lies completely within the column space
of L and we have LL+d = d. The value of dT φ̄ is then:

dT φ̄ =dT 1

λ̄
L+d

=λ̄ (4.22)

7



MaxConcurrentFlow

Constraint on desired flow: For each e, total flow |fe| ≤ 1.
Repeatedly updates energy matrices using matrix multiplicative weights. Makes poly(k) oracle calls
to:

QuadraticallyCapacitatedFlow

Constraint on desired flow: For each e, saturationf(P, e) =
√

f(e)TP(e)f(e) ≤ 1.
Repeatedly updates energy matrices using (scalar) multiplicative weights. Makes Õ(m1/3) oracle
calls to:

QuadraticallyCoupledFlow

Constraint on desired flow: Minimize total dissipated energy Ef(P) =
∑

e f(e)
TP(e)f(e).

Solves 1 linear system using:

PreconCheby

Solves non-Laplacian system by preconditioning with k n × n Laplacians. Solves these
using k calls to nearly-linear time Laplacian solvers.

Figure 3: The high-level structure of the algorithm and the approximate number of calls made to each
routine (for fixed ǫ).

The optimal quadratically coupled flow can be obtained from the optimal vertex potentials as follows:

f̄ =P−1Γx̄

=λ̄P−1Γφ̄ (4.23)

We can prove the following generalizations of standard facts about electrical flow/effective resistance
for multicommodity electrical flows.

Fact 4.1 1. f̄ satisfies the demands, that is ΓT f̄ = d.

2. E(P, f̄) = dTL+d

3. For any other flow f that satisfies the demands, E(P, f) ≥ E(P, f̄).

Proof

Part 1

ΓT f̄ =λ̄ΓTPΓφ̄

=λ̄L 1
λ̄
L+d

=d (4.24)

Part 2

8



E(P, f̄) =f̄
T
Pf̄

=dTL+d(P−1Γφ̄)TP(P−1Γφ̄)

=dTL+dφ̄TΓTP−1PP−1Γφ̄

=dTL+dφ̄TLφ̄
=dTL+d Since φ̄TLφ̄ = 1 (4.25)

Part 3
Let f be any flow satisfying ΓT f = d. Then we have:

E(P, f) ≥(fTPf)(φ̄TΓTP−1Γφ̄) Since φ̄TLφ̄ = 1

=||P1/2f||22||P−1/2Γφ̄||22
≥(fTΓφ̄)2 By Cauchy-Schwarz inequality

=(dT φ̄)2 Since f satisfies the demands

=E(P, f̄) By Part 2 (4.26)

�

4.2 Finding Almost Optimal Vertex Potentials

The main part of computing an almost optimal set of vertex potentials from 4.21 is the computation of
L+d. Since P is no longer a diagonal, the matrix L is no longer a Laplacian matrix. However, in certain
more restrictive cases that still suffice for our purposes we can use lemma 2.1 of [BHV04]:

Lemma 4.2 For any matrices V,G,H, if H � G � κH, then V HV T � G � κV HV T .

Proof Consider any vector x, we have:

xTV HV Tx =(V Tx)TH(V Tx)

�(V Tx)TG(V Tx) = xTV GV Tx (4.27)

and

xTV GV Tx =(V Tx)TG(V Tx)

�κ(V Tx)TH(V Tx) = κxTV HV Tx (4.28)

�

This lemma allows us to precondition P when each of P(e) is well-conditioned, specifically:

Lemma 4.3 If there exist a constant κ such that for all e, κλmin(P(e)) ≥ λmax(P(e)), then we can find a
Laplacian matrix L̃ such that L̃ � L � κL̃.

Proof Consider replacing P(e) with P̃(e) = λmin(P(e))I(e) where I(e) is the k - by - k identity matrix.
Then since P(e) � λmaxI(e) as well, we have:

9



P̃(e) � P(e) � λmax(P(e))I(e) =
λmax(P(e))

λmin(P(e))
P̃(e) (4.29)

Then applying Lemma 4.2 with V = ΓT , G = P and H = P̃ gives:

L̃ � L � κL̃ (4.30)

�

The following fact then allows us to solve linear equations on L by solving linear systems on L̃ instead:

Lemma 4.4 (preconditioned Chebyshev) [Saa96, Axe94] Given matrix A, vector b, linear operator B and
a constant κ such that B � A+ � κB and a desired error tolerance θ. We can compute a vector x such
that ||x−A+b||A ≤ θ||A+b||A using O(

√
κ log 1/θ) evaluations of the linear operators A and B.

Note that due to Γ being k copies of the edge-vertex incidence matrix, the matrix L̃ is actually k
Laplacians arranged in block-diagonal form. This allows us to apply SDD linear system solves to apply an
operator that is close to the pseudo-inverse of L̃, which we in turn use to solve systems involving L using
Lemma 4.4.

Lemma 4.5 [ST06, KMP10, KMP11] Given a Laplacian matrix of the form L = BTWB for some diag-
onal matrix W ≥ 0, there is a linear operator A such that

A � L+ � 2A

And for any vector x, Ax can be evaluated in time Õ(m) where m is the number of non-zero entries in
L.

We can now prove the main result about solving systems involving L.

Lemma 4.6 Given any set of energy matrices on edges P such that λmax(P(e)) ≤ κλmin(P(e)), a vector
d and error parameter δ. We can find an almost optimal set of vertex potentials x̃ such that:

||x̃− x̄||L ≤ δ||x̄||L (4.31)

In time Õ(mk2
√
κpoly(ǫ−1)).

Proof Applying Lemma 4.5 to each of the Laplacians that make up L̃, we can obtain a linear operator
A such that:

L̃+ � A � 2L̃+ (4.32)

Such that Ax can be evaluated in time Õ(mk).
Combining these bounds then gives:

A � 2L̃+ � 2κA (4.33)

Then the running time follows from Lemma 4.4, which requires an extra κ iterations, and the fact that
a forward multiply involving P costs O(mk2). �

Using this extension to the solver we can prove our main theorem about solving quadratically coupled
flows, which we prove in Appendix A.

10



Theorem 4.7 There is an algorithm QuadraticallyCoupledFlow such that for any δ > 0 and F >
0, any set of energy matrices P(e) such that I � P(e) � UI for a parameter U and κλmin(P(e)) ≥
λmax(P(e)), and any demand vector d such that the corresponding minimum energy flow is f̄, computes in
time Õ((

√
κk2 + kω)m log(U/δ)) a vector of vertex potentials φ̃ and a flow f̃ such that

1. f̃ satisfies the demands in all the commodities ΓT f̃ = d

2. E
f̃
(P) ≤ (1 + δ)Ef̄(P)

3. for every edge e, |Ef̄(P, e) − E
f̃
(P, e)| ≤ δEf̄(P)

4. The energy given by the potentials E(P, φ̃) is at most 1. and its objective, dT φ̃ is at least (1 −
δ)Ceff (P).

5 Approximately Solving Quadratically Capacitated Flows

We now show that we can repeatedly solve quadratically coupled flows inside a multiplicative weights rou-
tine to minimize the maximum saturation of an edge. Pseudocode of our algorithm is shown in Algorithm
1.

The guarantees of this algorithm can be formalized as follows:

Theorem 5.1 Given a graph G = (V,E) and energy matrices P(e) on each of the edges such that
κλminP(e) > λmaxP(e) and a parameter ǫ, QuadraticallyCapacitatedFlow returns one of the fol-
lowing in Õ(mk2κǫ−8/3) time:

• A k-commodity flow f̃ such that:

saturationf(P, e) ≤ 1 + 10ǫ

for all edges e and
Γf = d

• fail indicating that there does not exist a k-commodity flow f that satisfies all demands and have

saturationf(P, e) ≤ 1− ǫ

on all edges.

We first state the following bounds regarding the overall sum of potentials µ(t), the weight of a single
edgew(t)(e) and the effective conductance given by the reweighed energy matrices at each iteration, E(P(t)).

Lemma 5.2 The following holds when f̃ satisfies

∑

e

saturationf̃(P
(t−1), e) ≤ µ(t−1)

1.

µ(t) ≤ exp

(

ǫ

ρ

)

µ(t−1) (5.34)

11



Algorithm 1 Multiplicative weights update routine for approximately solving quadratically capacitated
flows

QuadraticallyCapacitatedFlow

Input: Weighted graph G = (V,E,w), energy matrix P(e) for each edge e, demands d1 . . .dk for each
commodity. Error bound ǫ.
Output: Either a collection of flows f such that saturationf(P, e) ≤ 1 + ǫ, or FAIL indicating that there
does not exist a solution f where saturationf(P, e) ≤ 1− 2ǫ.

1: ρ← 10m1/3ǫ−2/3

2: N ← 20ρ lnmǫ−2 = 200m1/3 lnmǫ−8/3

3: Initialize w(0)(e) = 1 for all e ∈ E
4: f← 0

5: N1 ← 0
6: for t = 1 . . . N do

7: Compute µ(t−1) =
∑

ew
(t−1)(e)

8: Compute reweighed energy matrices, P(t−1)(e) =
(

w(t−1)(e) + ǫ
mµ(t−1)

)

P(e)

9: Query QuadraticallyCoupledFlow with energy matrices P(t−1)(e) and error bound δ = ǫ
m , let

the flow returned be f̃
(t)

10: if E
f̃
(t)(P(t−1)) > µ(t−1) then

11: return fail

12: else

13: if saturation
f̃
(t)(P(t−1), e) ≤ ρ for all e then

14: f← f+ f̃
(t)

15: N1 ← N1 + 1
16: end if

17: for e ∈ E do

18: w(t)(e)← w(t−1)(e)
(

1 + ǫ
ρsaturationf̃

(t)(P(t−1), e)
)

19: end for

20: end if

21: end for

22: return 1
N1

f

2. w(t)(e) is non-decreasing in all iterations, and if saturation
f̃
(t)(P(t), e) ≤ ρ, we have:

w(t)(e) ≥ exp

(

ǫ

ρ
saturation

f̃
(t)(P(t), e)

)

w(t−1)(e) (5.35)

3. If for some edge e we have saturation
f̃
(t)(P, e) ≥ ρ, then Ceff (P(t)) ≥ Ceff (P(t−1)) exp

(

ǫ2ρ2

5m

)

The proof of Lemma 5.2 relies on the following facts about exp(x) when x is close to 1:

Fact 5.3 1. If x ≥ 0, 1 + x ≤ exp(x).

2. If 0 ≤ x ≤ ǫ, then 1 + x ≥ exp((1− ǫ)x).

12



Proof of Part 1:

µ(t) =
∑

e

w(t)(e)

=
∑

e

w(t−1)(e)(1 +
ǫ

ρ
saturation

f̃
(t)(P, e)) By the update rule

=

(

∑

e

w(t−1)(e)

)

+
ǫ

ρ

(

∑

e

w(t−1)(e)saturation
f̃
(t)(P, e)

)

≤µ(t−1) +
ǫ

ρ
µ(t−1) By definition of µ(t−1) and total weighted saturation

=(1 +
ǫ

ρ
)µ(t−1) ≤ exp(

ǫ

ρ
)µ(t−1) By Fact 5.3.1 (5.36)

�(Part 1)

Proof of Part 2:

If saturation
f̃
(t)(P(t), e) ≤ ρ, then ǫ

ρsaturationf̃
(t)(P(t), e) ≤ ǫ and:

w(t)(e) =w(t−1)(e)

(

1 +
ǫ

ρ
saturation

f̃
(t)(P(t), e)

)

≤w(t−1)(e) exp

(

ǫ(1− ǫ)

ρ
saturation

f̃
(P, e)

)

By Fact 5.3.2 (5.37)

�(Part 2)

Proof of Part 3:

Let e be the edge where saturation
f̃
(P, e) ≥ ρ, then since P(t−1)(e) � ǫ

mµI by line 8, we have:

saturation
f̃
(P(t−1), e)2 ≥ ǫ

3m
µ(t−1)ρ2

≥ ǫρ2

3m
E(P(t−1), f̃) By assumption of the energy of the flow returned (5.38)

Invoking the guarantees proven in Theorem 4.7, we have:

saturation
f̄
(P(t−1), e)2 ≥saturation

f̃
(P(t−1), e)2 − |saturation

f̄
(P(t−1), e)2 − saturation

f̃
(P(t−1), e)2|

≥saturation
f̃
(P(t−1), e)2 − δE(P(t−1)) By Part 3

≥ ǫρ2

3m
E
f̃
(t)(P(t−1))− δE(P(t−1)) By Equation 5.38

≥ ǫρ2

3(1 + δ)m
E(P(t−1))− δE(P(t−1)) By Part 2

≥ ǫρ2

4m
E(P(t−1)) (5.39)

Then by the relation between φ̄ and f̄, we have that

Eφ̄(t−1)(P(t−1)(e)) ≥ ǫρ2

4m
Eφ̄(t−1)(P(t−1)) (5.40)

13



Then since w(t)(e) ≥ (1 + ǫ)w(t−1)(e), using the current set of optimal potential gives:

Eφ̄(t−1)(P(t)) ≤(1− ǫ2ρ2

4m
)E(P(t−1), φ̄) (5.41)

Which means that when ǫ < 0.01,
√

1 + ǫ2ρ2

5m φ̄(t−1) is a valid set of potentials for P(t) and therefore:

Ceff (P(t)) ≥(dT

√

1 +
ǫ2ρ2

5m
φ̄(t−1))2

≥ exp

(

ǫ2ρ2

5m

)

(dT φ̄(t−1))2

=exp

(

ǫ2ρ2

5m

)

Ceff (P(t−1)) (5.42)

�(Part 3)

Proof of Theorem 5.1:

Since
∑

e(w
(t−1)(e)+ ǫ

mµ(t−1)) = (1+ǫ)µ(t−1), if there exist a flow f such that saturationf(P, e) ≤ 1−2ǫ
for all e, we have that E

f̄
(t)(P̃) ≤ (1 − ǫ)µ(t−1). Then if the algorithm does not return fail, Theorem 4.7

means that f̃
(t)

satisfies:

E
f̃
(t) ≤(1 + δ)(1 − ǫ)µ(t−1)

≤µ(t−1) (5.43)
∑

e

w(t−1)(e)saturation
f̃
(t)(P(t−1), e)2 ≤

∑

e

w(t−1)(e) (5.44)

Multiplying both sides by µ(t−1) and applying the Cauchy-Schwarz inequality gives:

(

∑

e

w(t−1)(e)

)2

≥
(

∑

e

w(t−1)(e)

)(

∑

e

w(t−1)(e)saturation
f̃
(t)(P(t−1), e)2

)

≥
(

∑

e

w(t−1)(e)saturation
f̃
(t)(P(t−1), e)

)

(5.45)

Taking the square root of both sides gives:

∑

e

w(t−1)(e)saturation
f̃
(t)(P(t−1), e) ≤µ(t−1) (5.46)

Therefore inductively applying Lemma 5.2 Part1, we have:

14



µ(N) ≤µ(0) ·
(

exp(
ǫ

ρ
)

)N

=exp

(

ǫN

ρ

)

m

≤ exp

(

21 lnm

ǫ

)

(5.47)

We now bound N ′, the number of iterations t where there is an edge with saturation
f̃
(t)(P(t−1), e) ≥ ρ.

Suppose Ceff (P(0)) ≤ 1/2, then in the flow returned, no edge e has saturation
f̃
(0)(P(0), e) ≥ 1, which means

that the algorithm can already return that flow.
Then by the monotonicity of Ceff (P(t)) and Lemma 5.2 Part 3, we have:

Ceff (P(N)) ≥1/2 · exp
(

ǫ2ρ2N ′

5m

)

(5.48)

Combining this with Ceff (P(t)) ≤ µ(N) gives:

ǫ2ρ2N ′

5m
≤21 lnm

ǫ

N ′ ≤105m lnm

ρ2ǫ3

≤ǫN (5.49)

Then in all the N − N ′ ≥ (1 − ǫ)N iterations, we have saturation
f̃
(t)(P(t−1), e) ≤ ρ for all edges e.

Then we have:

saturation∑
t f̃

(t)(P, e) ≤
∑

t

saturation
f̃
(t)(P, e) Since P(e) defines a norm

≤ log(µ(t))/(
ǫ

ρ
) By Lemma 5.2 Part 2

=
1

1− ǫ
T ′ ≤ (1 + 2ǫ)T ′ (5.50)

�

6 Algorithm for Maximum Concurrent Multicommodity Flow

One of the main difficulties in directly applying the flow algorithm from [CKM+11] is that single commodity
congestion constraints of the form ||f(e)||1 ≤ ue are ’sharper’ than the L2 energy functions due to the sign
changes when each of the commodities are around 0.

As a result, we use the primal Primal-Dual SDP algorithm from [AK07] to generate the energy matrix.
Pseudocode of the outermost layer of our algorithm for maximum concurrent flow is shown in Algorithm
2.

Where the update routine, UPDATE is shown in Algorithm 3. Note that χi indicates the matrix that’s

1 in entry (i, i) and 0 everywhere else, and M̄
(t)

is used to store the sum of M(r) over 1 ≤ r ≤ t to we do

15



Algorithm 2 Algorithm for minimizing L1 congestion

MaxConcurrentFlow

Input: Capacitated graph G = (V,E,u) and demands d.
Algorithm for computing energy matrices based on a list of k flows, Energy and for minimizing the
maximum energy along an edge. Iteration count N and error tolerance ǫ.
Output: Either a flow f that meets the demands and ||f(e)||1 ≤ (1+10ǫ)µ(e) on all edges, or fail indicating
that there does not exist a flow f that meets the demands and satisfy ||f(e)||1 ≤ µ(e) on all edges.

1: ρ←
√
kǫ−1

2: ǫ1 ← ǫ
kρ = ǫ1/2

k3/2

3: ǫ′1 ← − ln(1− ǫ1)
4: N ← ρǫ′−2

1 log k = k7/2ǫ−3/2 log k

5: Initialize M̄
0
(e) = 0, W0(e) = I

6: for t = 1 . . . N do

7: for e ∈ E do

8: P(t−1)(e) = 1
u2

(

W(t−1)(e)/||W(t−1)||∞ + ǫI
)

9: end for

10: Query QuadraticallyCapacitatedFlow with matrix P(t−1)

11: if QuadraticallyCapacitatedFlow returns fail then

12: return fail

13: else

14: Let the flow returned be f̃
(t)

15: for e ∈ E do

16: (M̄
(t)
(e),W(t)(e))← Update(M̄

(t−1)
(e),W(t−1)(e), f̃

(t)
)

17: end for

18: end if

19: end for

20: return 1
N

∑N
t=1 f̃

(t)

not need to pass all of them to each invocation of Update.
We start off by bounding the condition number of P(t)(e).

Lemma 6.1

λmax(P
(t)(e)) ≤ 2kǫ−1λmin(P

(t)(e))

Proof Since W(e) is positive semi definite, we have P(t)(e) � ǫI. Also, by definition of i(t)(e), we have
that the maximum diagonal entry ofW(t−1)(e)/||W(t−1)(e)||∞ is 1. Therefore tr(P(t)(e)) ≤ k+tr(ǫI) ≤ 2k.
This in turn implies λmax(P

(t)(e)) ≤ 2k, which gives the required result. �

We first show that when a flow exist, QuadraticallyCapacitatedFlow returns a flow f̃
(t)
(e) with

low energy on each edge.

Lemma 6.2 If there is f̄ such that |̄f(e)|1 ≤ 1, then at each iteration t we have E
f̃
(t)(P(t−1), e) ≤ 1 + 2ǫ.

Proof

16



Algorithm 3 Matrix exponential based algorithm for generating energy matrix

Update

Input: M̄
(t−1)

(e),W(t−1)(e) from previous iterations, flow from iteration t, f̃
(t)
(e), Capacity u(e), Parameter

ǫ′1.
Output: Sum matrix from current iteration S, Energy matrix X.

1: Find i(t−1)(e) = argmaxiW
(t−1)
ii (e)

2: M(t)(e)← 1
2ρ

(

(1 + 2ǫ)χi(t−1)(e) − 1
u(e)2

f(t)(e)(f(t)(e))T + ρI
)

Where χi has 1 in (i, i) and 0 everywhere else

3: M̄
(t)
(e)← M̄

(t−1)
(e) +M(t)(e)

4: W(t)(e) = exp(−ǫ′1M̄
(t)
(e))

5: return (M̄
(t)
(e),W(t)(e))

E
f̄(e)(W

(t−1)(e)) =f̄(e)TW(t−1)(e) f̄

=
∑

ij

f̄i(e)̄fj(e)W
(t−1)
ij (e)

≤
∑

ij

|̄fi(e)||̄fj(e)||W(t−1)
ij (e)|

≤||W(t−1)||∞(
∑

ij

|̄fi(e)||̄fj(e)|)

=||W(t−1)||∞
(

∑

i

|̄fi(e)|
)2

≤||W(t−1)(e)||∞u(e)2 (6.51)

Therefore we have:

E
f̃
(t)(P(t−1), e) ≤ 1

u(e)2

(

1

||W(t−1)(e)||∞
E
f̄(e)(W

(t−1)(e)) + E
f̄(e)(ǫI))

)

≤1 + 2ǫ (6.52)

Since E
f̄(e)(ǫI)) = ǫ||̄f(e)||22 ≤ ǫ||̄f(e)||21 ≤ u(e)2.

And the properties of f(t)(e) follows from the guarantees of Theorem 5.1. �

Using this width bound, we can now adapt the analysis in [AK07] to show that the sum of flows can
be bounded in the matrix sense.

Lemma 6.3 If in all iterations the flows returned satisfy f(t)(e)(f(t)(e))T � ρu2I, then we have the follow-
ing by the end of N iterations:

17



(

N
∑

t=1

1

u(e)2
f(t)(e)(f(t)(e))T

)

�(1 + 2ǫ)u2
N−1
∑

t=0

χi(t) +
ǫN

k
I

Proof

The proof is similar to the proofs of Theorems 10 and 1 in Section 6 of [AK07]. We have:

tr
(

W(t)(e)
)

= tr

(

exp(−ǫ′1
t
∑

r=0

M(r)(e))

)

≤ tr



exp(−ǫ′1
(t−1)
∑

r=0

M(r)(e)) exp(−ǫ′1M(t)(e))



 By the Golden-Thompson inequality

= tr
(

W(t−1)(e) exp(−ǫ′1M(t)(e))
)

≤ tr
(

W(t−1)(e)(I − ǫ1M
(t)(e))

)

Since exp(−ǫ′1A) � (I− ǫ′1A) when 0 � A � I

= tr(W(t−1)(e))− ǫ1 tr(W
(t−1)(e)M(t)) (6.53)

The construction of W(e) from line 4 of UPDATE means that W(e) is positive semi-definite. This in
turn implies that ||W(e)||∞ ≤ maxi Wii. Substituting gives:

tr
(

W(t−1)(e)M(t)(e)
)

= tr
(

W(t−1)(e) ·
(

(1 + 2ǫ)χi(t−1) − f(t)(e)(f(t)(e))T + ρI
)

/2ρ
)

=
1

2ρ

(

(1 + 2ǫ)||W(t−1)(e)||∞ −
1

u(e)2
(f(t)(e))TW(t−1)(e)f(t)(e)

)

+
1

2
tr(W(t−1)(e))

≤ 1

2ρ

(

(1 + 2ǫ)||W(t−1)(e)||∞ − ||W(t−1)(e)||∞(f(t)(e))TP(t−1)(e)f(t)(e)
)

+
1

2
tr(W(t−1)(e)) Since W

(t−1)(e)

u(e)2||W(t−1)(e)||∞
� P(t−1)(e)

≥1

2
tr(W(t−1)(e)) By Lemma 6.2 (6.54)

Combining these two gives:

tr
(

exp(−ǫ′1M̄
(N)

(e))
)

= tr
(

WN (e)
)

≤k
(

1− ǫ1
2

)N

≤k exp
(

−ǫ1
2
N
)

≤ exp

(

−(1− ǫ1)ǫ1
2

N

)

Since N = 10ρǫ′−2
1 log k (6.55)

Using the fact that exp(−λmax(A)) ≤ tr(− exp(A)), we get:

18



(1− ǫ1)ǫ1
2

NI �ǫ′1
N
∑

t=0

M(t)(e)

=ǫ′1

N
∑

t=0

(

(1 + 2ǫ)χi(t) −
1

u2
f(t)(e)(f(t)(e))T + ρI

)

/2ρ (6.56)

−ǫ′1ρNI �
N
∑

t=0

(

(1 + 2ǫ)χi(t) −
1

u2
f(t)(e)(f(t)(e))T

)

(6.57)

1

u2

(

N
∑

t=1

f(t)(e)(f(t)(e))T

)

�(1 + 2ǫ)
N−1
∑

t=0

χi(t) + ǫ′1ρNI (6.58)

Substituting in the setting of ǫ1 =
ǫ
kρ gives the desired result.

�

This in turns lets us bound the L1 congestion of the flow returned after T iterations.

Theorem 6.4 After N = Õ(k7/2ǫ−5/2 log k) iterations, MaxConcurrentFlow returns a flow f where
for each edge e, we have:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

N

N
∑

t=1

f(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ (1 + 3ǫ)u

Proof

We first bound the width of each update step. Note that by construction we have:

ǫ

u2k
(f(t)(e))T If(t)(e) ≤(1 + ǫ)

1

u2
(f(t)(e))T If(t)(e) ≤2kǫ−1 (6.59)

Then by the Cauchy-Schwarz inequality we have:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f(t)(e)

u(e)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1

≤k
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f(t)(e)

u(e)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=2kǫ−1 (6.60)

Which gives that ρ =
√
2kǫ−1 suffices as width parameter.

Let s be the vector corresponding to the signs of the entries of
∑N

t=1 f
(t)(e), aka. sT

∑N
t=1 f

(t)(e) =

||∑N
t=1 f

(t)(e)||1. Then:

19



∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

uN

∑

1≤t≤N

f(t)(e)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1

=

(

sT
1

N

N
∑

t=1

f(t)(e)

)2

=
1

u2N2

(

sT
N
∑

t=1

f(t)(e)

)2

≤ 1

N

N
∑

t=1

(

sT f(t)(e)
)2

By the Cauchy-Schwarz inequality

=
1

N
sT

(

N
∑

t=1

1

u2
f(t)(e)(f(t)(e))T

)

s

≤ 1

N
sT

(

N
∑

t=1

(1 + 2ǫ)χi(t) +
ǫN

k
I

)

s By Lemma 6.3

=1 + 3ǫ Since si = ±1 and sT s = k (6.61)

�

The running time of the algorithm can then be bounded as follows:

Lemma 6.5 Each iteration of the MaxConcurrentFlow runs in Õ(m4/3k5/2ǫ−19/6+mkω) time, giving
an overall running time of Õ(m4/3k6ǫ−17/3+mk7/2+ωǫ−5/2), where ω is the matrix multiplication exponent.

Proof The first term follows from the running time of QuadraticallyCapacitatedFlow proven in
Theorem 5.1 and κ(P(e)) ≤ O(

√
kǫ−1) from Lemma 6.1. For the second term, the bottleneck is the

computation of matrix exponentials. This can be done in poly(log k) matrix multiplies using [YL93],
giving the Õ(kω) bound in the each of the iterations. �

7 Alternative Outer Algorithm

We show a modified formulation of the capacity bounds as 2k constraints per edge that brings us back
to minimizing the maximum congestion. This gives a more combinatorial approach to minimizing the
maximum L1 congestion, although the algorithm is slightly more intricate. As the computation of energy
matrices only rely on the sum of flows so far (aka. history independent), we describe its computation in a
separate routine ENERGY and first state the overall algorithm in Algorithm 4.

We start with the following observation that the maximum among the sums given by all 2k choices of
signs to fi(e) equals congestion.

Observation 7.1
k
∑

i=1

|fi(e)| = max
s1,s2...sk∈{−1,1}k

∑

i

sifi(e)

We let S to denote the set of all 2k settings of signs. This allows us to reformulate the constraint of
||f(e)||1 ≤ u(e) as:

sT f(e) ≤ u(e) ∀s ∈ S (7.62)

20



Algorithm 4 Alternate Algorithm for Maximum Concurrent Multicommodity Flow

MaxConcurrentFlow1

Input: Capacitated graph G = (V,E,u) and demands d.
Algorithm for computing energy matrices based on a list of k flows, Energy and for minimizing the
maximum energy along an edge, QuadraticallyCapacitatedFlow. Width parameter ρ, iteration
count N and error tolerance ǫ.
Output: Either a flow f̃ that meets the demands and ||̃f(e)||1 ≤ (1+10ǫ)µ(e) on all edges, or fail indicating
that there does not exist a flow f that meets the demands and satisfy ||f(e)||1 ≤ µ(e) on all edges.

1: for t = 1 . . . N do

2: for e ∈ E do

3: P(t)(e) = Energy(
∑

1≤r<t f
(r)(e))

4: end for

5: Query QuadraticallyCapacitatedFlow with matrix P(t)

6: if QuadraticallyCapacitatedFlow returns fail then

7: return fail

8: end if

9: end for

10: return 1
N

∑N
t=1 f

(N)

This reduces the problem back to minimizing the maximum among all |S| = 2k dot products with
f(e). To solve this problem we can once again apply the multiplicative weights framework. We state the
convergence result in a more general form:

Theorem 7.2 If for all flows f(e), Energy(f(e)) returns a matrix

P(e) =
1

∑

s∈S w̃(s)

∑

s∈S

w̃(e)

u(e)2
ssT +

ǫ

u(e)2
I (7.63)

Where w̃(s) satisfies

exp

(

ǫsT f(e)

ρu(e)

)

≤w̃(s) ≤ (1 + ǫ) exp

(

ǫsT f(e)

ρu(e)

)

(7.64)

Then:

1. λmax(P(e)) ≤ 2kǫ−1λmin(P(e)).

2. If there exist a flow f̄ that meets all the demands and have ||̄f(e)||1 ≤ (1−3ǫ)u(e), MaxConcurrentFlow

with ρ = k and N = ρkǫ−2 returns a flow f̃ that meets the demands and satisfy ||̃f(e)||1 ≤ (1+3ǫ)u(e)
over all edges.

Proof of Part 1:

For λmin(P(e)), we have P(e) � ǫ
u(e)2

I and the condition number bound follows from λmin(I) = 1.

We can bound the maximum eigenvalue with the trance. Note that tr(ssT ) = k since the diagonal of
ssT is all 1. This gives:

21



λmax(P(e)) ≤ tr(P(e))

=
1

∑

s∈S w̃(s)

∑

s∈S

w̃(e)

u(e)2
tr ssT +

ǫ

u(e)2
tr I

=
1 + ǫ

u(e)2
k (7.65)

Therefore we get:

λmax(P(e))

λmin(P(e))
≤ 1 + ǫ

u(e)2
kǫ−1

≤2kǫ−1 (7.66)

�

Proof of Part 2:

We define the exact set of weights that w̃(s) are trying to approximate:

w(s)(t) = exp

(

ǫ

ρ

sT f(t)

u(e)

)

(7.67)

Also, let w̄(t) =
∑

s∈S w(s)(t). We have that at any iteration:

w̄(t) ≥max
s

w(s)(t)

=exp(max
s

f(t))

= exp(||f(t)||1) (7.68)

Therefore it suffices to upper bound the value of µ(t). First note that if there is a flow f̄ such that
||̄f(e)||1 ≤ (1− 3ǫ)u(e), then we have sT f̄(e) ≤ ||̄f(e)||1 ≤ u(e) for any s Squaring this and taking sum over
all s ∈ S gives:

f̄(e)TP(e)(t−1) f̄(e) =f̄(e)

(

1
∑

s∈S w̃(s)(t−1)

∑

s∈S

w̃(e)(t−1)

u(e)2
ssT +

ǫ

ku(e)2
I

)

f̄(e)

=
1

∑

s∈S w̃(s)(t−1)

∑

s∈S

w̃(s)(t−1)

∣

∣

∣

∣

∣

∣

∣

∣

sT f̄(e)

u(e)

∣

∣

∣

∣

∣

∣

∣

∣

2

+ ǫ

∣

∣

∣

∣

∣

∣

∣

∣

f̄(e)

u(e)

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤ 1
∑

s∈S w̃(s)(t−1)
(1− 3ǫ)2

∑

s∈S

w̃(s)(t−1) + ǫ

≤(1− 2ǫ)2 (7.69)

This means that there exist a flow f such that:

22



saturationf(P
(t−1), e) ≤ 1− 2ǫ

Therefore by Theorem 5.1, we have that for all edges e:

saturation
f̃
(t)(P(t−1), e) ≤ 1− ǫ

This has two consequences:

1.

ǫ

u(e)2
(̃f

(t)
)T Ĩf

(t) ≤1− ǫ Since P(e) � ǫ
u(e)2

I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f̃
(t)

u(e)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1

≤k
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f̃
(t)

u(e)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=
k

ǫ
By the Cauchy-Schwarz inequality (7.70)

Squaring both sides gives that ||̃f
(t)

||1
u(e) ≤

√
kǫ−1/2, which allows us to bound the width of the multi-

plicative updates.

2. Expanding out the first term in the formulation of P(e) gives:

∑

s∈S

w̃(s)(t−1)

(

sT w̃(e)

u(e)

)2

≤(1− ǫ)
∑

s∈S

w̃(s)(t−1) (7.71)

Multiplying both sides by
∑

s∈S w̃(s)(t−1) and applying Cauchy-Schwarz inequality gives:

∑

s∈S

w̃(s)(t−1)

∣

∣

∣

∣

sT w̃(e)

u(e)

∣

∣

∣

∣

≤
∑

s∈S

w̃(s)(t−1) (7.72)

Combining with the fact that w ≤ w̃ ≤ (1 + ǫ)w gives:

∑

s∈S

w(s)(t−1)

∣

∣

∣

∣

sT w̃(e)

u(e)

∣

∣

∣

∣

≤(1 + ǫ)
∑

s∈S

w(s)(t−1) (7.73)

Using Fact 5.3 we have:

23



w̄(t−1) =
∑

s∈S

w(s)(t−1) exp

(

ǫ

ρ

sT w̃(e)

u(e)

)

≤
∑

s∈S

w(s)(t−1) exp

(

ǫ

ρ

∣

∣

∣

∣

sT w̃(e)

u(e)

∣

∣

∣

∣

)

Since exp(x) is monotonic and x ≤ |x|

≤
∑

s∈S

w(s)(t−1) (1 + 2ǫ)ǫ

ρ

∣

∣

∣

∣

sT w̃(e)

u(e)

∣

∣

∣

∣

By Fact 5.3 Part 2 and
∣

∣

∣

s
T
w̃(e)
u(e)

∣

∣

∣ ≤ ρ

≤ ǫ

ρ
(1 + 2ǫ)(1 + ǫ)

∑

s∈S

w(s)(t−1)

≤ǫ(1 + 4ǫ)

ρ
w̄(t−1)

≤ exp(
ǫ(1 + 4ǫ)

ρ
)w̄(t−1) By Fact 5.3 Part 1 (7.74)

Applying this inductively along with the fact that w̄(0) = 2k gives:

w̄(t) ≤2k exp
(

ǫ(1 + 4ǫ)

ρ

)t

=exp

(

ǫ(1 + 4ǫ)t

ρ
+ k

)

(7.75)

Substituting in N = ρk
ǫ2

gives:

w̄N ≤ exp

(

ǫ(1 + 4ǫ)ρk

ρǫ2
+ k

)

=exp

(

(1 + 5ǫ)k

ǫ

)

=exp

(

ǫ

ρ
(1 + 5ǫ

)

N) (7.76)

Which gives 1
N |f(N)(e)|1 ≤ (1 + ǫ)u(e).

�

7.1 Efficient Estimation of the Energy Matrix

The algorithm as stated has an iteration complexity that’s O(k3/2ǫ−5/2), which is small enough for our
purposes.

However, a direct implementation of the generation of the energy matrix P(e) requires looping through
each of the 2k sign vectors s ∈ S and computing sT f, which takes time exponential in k.

To alleviate this problem, note that the requirement of Theorem 7.2 allows us to compute the matrix
for some set of weights w̃ where w(s) ≤ w̃ ≤ (1 + ǫ)w(s). Specifically we show the following:

Theorem 7.3 Given a flow f such that ||f||1 ≤ ρ′u, there is an algorithm Energy that computes a matrix
P where

24



P =
∑

s

w̃ssT (7.77)

exp

(

sT f

u

)

≤w̃ ≤ (1 + ǫ) exp

(

sT f

u

)

(7.78)

In Õ(k4ρ′ǫ−1) time.

Since we have the signs of each of the fi, we can easily find the value s that maximizes sT f. We let this
set of signs be s̄, then we have for all s ∈ S:

exp

(

sT f

u

)

= exp

(

s̄T f

u

)

exp

(

−(s̄− s)T f

u

)

(7.79)

The first term is a constant, therefore it suffices to get good approximations for the second term. To
do so we round each entry of f to the lowest integral multiple of ǫ

k and bound the error as follows:

Lemma 7.4 Let f̃ be f with each entry rounded towards 0 to the nearest multiple of ǫ
3ku. Then we have:

exp

(

−(s̄− s)T f

u

)

≤ exp

(

−(s̄− s)T f̃

u

)

≤(1 + ǫ) exp

(

−(s̄− s)T f

u

)

(7.80)

Also, ||̃f||1 ≤ ρ′u as well.

Proof of Theorem 7.3: Note that by the choice of s̄, s̄ifi ≥ 0 in each of commodity i. Therefore
(s̄− s)ifi is either 0 or 2fi. By the rounding rule we have:

|fi| −
ǫ

3k
u ≤|̃fi| ≤ |fi| (7.81)

Which gives us the bound on ||̃f||1. When combined with the fact that f̃i having the same sign as fi
gives:

(s̄− s)ifi −
2ǫ

3k
u ≤(s̄− s)i f̃i ≤ (s̄− s)ifi (7.82)

Summing this over the k commodities gives:

(s̄− s)T f− 2ǫ

3
u ≤(s̄− s)T f̃ ≤ (s̄− s)T f (7.83)

Exponentiating both sides of Fact 5.3 Part 2 gives exp(2ǫ3 ) ≤ (1 + ǫ), from which the result follows. �

After this rounding, the values of sT f̃ can only be multiples of ǫ
ku between [−ρ′u, ρ′u]. This allows

us to narrow down the number of possible values of exp( s
T f̃

u
) to one of O(ρ′kǫ−1) values. Further more,

25



notice that to calculate Pij it suffices to find the list of values of sT f̃

u
among all s such that si = sj and the

list where si 6= sj. Each of these calculations can be done in Õ(ρ′k2ǫ−1) time using the following lemma:

Lemma 7.5 Given a list of positive integer values a1, a2, . . . ak such that
∑

i ai = N , there is an al-
gorithm ConvolveAll that computes in Õ(Nk log2 N) time for each j ∈ [1, N ] the number of subsets
S ⊆ {1, 2, . . . k} such that

∑

i∈S ai = j.

Proof Since the ordering is irrelevant, we may assume that a1 ≤ a2 ≤ . . . ak. Then there exist an index
i such that

∑

1≤j≤i aj and
∑

i+1≤j≤k−1 aj are both at most N/2. Suppose we have two lists containing the
number of sums for each value between 0 and N/2, then taking their convolution can be done in O(N logN)
multiplications involving k bit numbers ([CSRL01] chapter 30). The last entry of ak can be incorporated
similarly. This leads us to the following recurrence on T (N), the time required to compute the answer
when the total sum is N :

T (N) ≤ 2T (N/2) + Õ(Nk logN) (7.84)

Solving gives T (N) = Õ(Nk log2 N). �

Algorithm 5 Algorithm for computing approximate energy matrix

Energy

Input: A k commodity flow f. Capacity u, parameter ρ′ such that ||f||1 ≤ ρ′u. Error bound ǫ.
Output: Approximate energy matrix satisfying the guarantees of Theorem 7.3

1: Compute the set of signs that maximizes sT f, s̄
2: for i = 1 . . . k do

3: if fi ≥ 0 then

4: f̃i = u ǫ
k⌊

fi
k ǫ

−1⌋
5: else

6: f̃i = −u ǫ
k ⌊−

fi
k ǫ

−1⌋
7: end if

8: end for

9: for i = 1 . . . k do

10: for j = 1 . . . k do

11: for Each setting of si, sj do

12: For each l 6= i, j, create al = 2 f̃l
u
kǫ−1

13: b← ConvolveAll(a)
14: for −ρ′kǫ−1 ≤ l ≤ ρ′kǫ−1 do

15: Pij ← Pij + bl · si · sj · exp( ǫρ s̄T f

u
− l)

16: end for

17: end for

18: end for

19: end for

20: return P

The overall pseudocode for computing this energy matrix is shown in Algorithm 5. Summing over all
O(k2) entries gives the total running time. It’s worth noting that because the matrix entries consists of
differences of weights, the matrix that we obtain can have some entries that are very different than what

26



we would obtain if we use the exact values of w(s). Their similarity is obtained through the similarity of
w̃ and ŵ as they are weights on positive semi-definite outer products.

We can now bound the overall running time of the algorithm:

Corollary 7.6 MaxConcurrentFlow1 runs in Õ(k3/2ǫ−5/2) iterations, where each iteration takes time
Õ(m4/3k5/2ǫ−19/6 +mk5ǫ−3/2), for a total running time of Õ(m4/3k4ǫ−17/3 +mk13/2ǫ−4).

Proof The iteration count from 7.2 completes the proof. The first term follows from Theorem 5.1 and
κ(P(e)) ≤

√
kǫ−1/2, Theorem 7.2 Part 2 gives that ||f(t)||1 ≤ O(N), which gives || ǫρ f(t)||1 ≤ ǫN

ρ = Õ(k).

Letting ρ′ = Õ(k) in Theorem 7.3 then gives the second term in the bound. �

8 Comments/Extensions

We have shown an approach of dealing with the coupling of the k commodities by associating an energy
matrix with them. This allows us to approximate multicommodity flows in time Õ(m4/3poly(k, ǫ−1)).
We believe that our approach is quite general and extends naturally to other couplings between sets of
k flows/vertex labels, with the most natural generalization being Markov random fields [KS80, SZS+08].
Since reductions from multicommodity flow to Õ(kǫ−2) calls of minimum cost flows are known [LMP+91].
A stronger result would be an approximation of minimum cost flow that runs in Õ(m4/3poly(k, ǫ−1) time.
This problem is significantly harder due to it incorporating both L∞ and L1 constraints. Therefore, it’s
likely that a more intricate set of energy matrices is needed to proceed in this direction.

When viewed from the perspective of combinatorial preconditioning, we were able to solve multicom-
modity electrical flows by adding ǫ slack to the edges, thus ’fixing’ the condition number. For the purpose
of obtaining 1 ± ǫ approximations to combinatorial problems, this does not modify the solution by too
much. However, it is unlikely to be applicable inside algorithms whose dependency on ǫ is O(log(1/ǫ)), as
very little slack can be added onto the edges. As a result, we believe that obtaining fast solvers for the
class of matrices that arise from quadratically coupled flows is an interesting direction for future work.

References

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs. In
STOC, pages 227–236, 2007. 6, 6, 6

[AT11] Haim Avron and Sivan Toledo. Effective stiffness: Generalizing effective resistance sampling to finite
element matrices. CoRR, abs/cs/1110.4437, 2011. 1.2

[Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, New York, NY, 1994. 4.4

[BHV04] Erik G. Boman, Bruce Hendrickson, and Stephen A. Vavasis. Solving elliptic finite element systems in
near-linear time with support preconditioners. CoRR, cs.NA/0407022, 2004. 1.2, 3, 4.2

[CKM+11] Paul Christiano, Jonathan A. Kelner, Aleksander Ma̧dry, Daniel Spielman, and Shang-Hua Teng. Elec-
trical Flows, Laplacian Systems, and Faster Approximation of Maximum Flow in Undirected Graphs. In
Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), 2011. 1.2, 1.2, 2.1, 3, 2, 6,
A

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2nd edition, 2001. 7.1

[DS07] Samuel I. Daitch and Daniel A. Spielman. Support-graph preconditioners for 2-dimensional trusses.
CoRR, abs/cs/0703119, 2007. 1.2

[DS08] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow via interior point
algorithms. CoRR, abs/0803.0988, 2008. 1.1, 3

[Fle00] Lisa K. Fleischer. Approximating fractional multicommodity flow independent of the number of com-
modities. SIAM Journal on Discrete Mathematics, 13:505–520, 2000. 1.1

[GK98] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. In In Proceedings of the 39th Annual Symposium on Foundations of Com-
puter Science, pages 300–309, 1998. 1.1

27



[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD systems.
CoRR, abs/1003.2958, 2010. 4.5

[KMP11] Ioannis Koutis, Gary L. Miller, and Richard Peng. Solving sdd linear systems in time Õ(m logn log(1/ǫ)).
CoRR, abs/1102.4842, 2011. 4.5

[KS80] Ross Kindermann and J. Laurie Snell. Markov random fields and their applications. American Mathe-
matical Society, Providence, R.I., 1980, 1980. 8

[LMP+91] Tom Leighton, Fillia Makedon, Serge Plotkin, Clifford Stein, Eva Tardos, and Spyros Tragoudas. Fast
approximation algorithms for multicommodity flow problems. In JOURNAL OF COMPUTER AND
SYSTEM SCIENCES, pages 487–496, 1991. 1.1, 1, 8

[Mad10] Aleksander Madry. Faster approximation schemes for fractional multicommodity flow problems via dy-
namic graph algorithms. In STOC ’10: Proceedings of the 42nd ACM symposium on Theory of computing,
pages 121–130, New York, NY, USA, 2010. ACM. 1.1

[RW66] B. Rothschild and A. Whinston. Feasibility of two commodity network flows. Operations Research,
14(6):pp. 1121–1129, 1966. 1.1, 1.2

[Saa96] Yousef Saad. Iterative Methods for Sparse Linear Systems. http://www-
users.cs.umn.edu/˜saad/books.html, 1996. 4.4

[ST06] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems. CoRR, abs/cs/0607105, 2006. 1.1, 4.5

[SZS+08] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kolmogorov, Aseem Agarwala,
Marshall Tappen, and Carsten Rother. A comparative study of energy minimization methods for markov
random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30:1068–1080, 2008. 8

[Vai89] P. M. Vaidya. Speeding-up linear programming using fast matrix multiplication. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science, pages 332–337, Washington, DC, USA,
1989. IEEE Computer Society. 1.1

[Vai91] Preadeep M. Vaidya. Solving linear equations with symmetric diagonally dominant matrices by con-
structing good preconditioners. A talk based on this manuscript was presented at the IMA Workshop on
Graph Theory and Sparse Matrix Computation, October 1991. 1.1

[YL93] Shing-Tung Yau and Ya Yan Lu. Reducing the symmetric matrix eigenvalue problem to matrix multi-
plications. SIAM J. Sci. Comput., 14:121–136, January 1993. 6

A Obtaining Almost Optimal Electrical Flow from Potentials

This approximate solve then allows us to compute electrical flows in a way analogous to theorem 2.3 of
[CKM+11]. Pseudocode of the algorithm is shown in Algorithm 6.

The algorithm makes calls to MakeKirchoff, which converts a flow f̂ that doesn’t satisfy conservation
of flow at vertices in W to one that does without too much increase in congestion. Its properties are proven
in Lemma A.1.

We start by bounding the errors incurred by MakeKirchhoff

Lemma A.1 Given a capacitated graph G = (V,E,u), a set of demands d a flow f̂ such that ||ΓT f̂||∞ ≤ γ.
MakeKirchhoff(G,d, f̂) returns a flow f̃ such that:

1. ΓT f̃ = d.

2. For all edges e ∈ E, ||̂fe − f̃e||∞ ≤ mγ.

Proof Part 1 follows from the construction for each vertex u 6= r and 1Td = 0. To bound the extra
congestion, note that each edge in the tree is used in at most n < m paths that route at most γ units of
flow each. This gives an extra congestion of at most mγ and therefore Part 2. �

Proof of Theorem 4.7:

We start off by showing that λ̃ does not differ by much from λ̄ =
√

φ̄TLφ̄:

28



Algorithm 6 Algorithm for computing near-optimal electrical potential/flow pair

QuadraticallyCoupledFlow

Input: Graph G = (V,E) with corresponding edge-vertex incidence matrix B. Demand vector d Energy
matrices for the edges P along with bounds U , κ such that I � P � U · I and λmax(P(e)) � κλmin(P(e)).
Error bound δ.
Output: Approximate vertex potentials φ̃ and flow f̃ that satisfies the constraints of Theorem

1: Let L be an implicit representation of the matrix ΓPΓ
2: Use PreconCheby to find x̃ = L+d with error of ǫ = δ

5m6k2U4

3: λ̃←
√
x̃TLx̃

4: φ̃ = 1
λ x̃

5: Compute ohmic flow f̂ = P−1Γx̃
6: for i = 1 . . . k do

7: f̃i ←MakeKirchhoff(G,di, f̂i)
8: end for

9: return φ̃, f̃

Algorithm 7 Algorithm for making an arbitrary flow Kirchhoff

MakeKirchhoff

Input: Graph G = (W ⊆ V,E) with demands d. A Ohmic flow f.
Output: A flow that satisfies conservation of flow at all vertices in W

1: f̃← f

2: Pick any vertex r
3: compute a spanning tree, T
4: for each vertex u 6= r do

5: route du − (Γf̃)u units of flow from u to r along T
6: end for

7: return f̃

29



Lemma A.2

|λ̃− λ̄| ≤ǫλ̄

Proof

|λ̃− λ̄| =|||x̃||L − ||x̄||L|
≤||x̃− x̄||L Since || · ||L is a norm

≤ǫ||x̄||L = ǫλ̄ (1.85)

�(Lemma A.2)
Algebraic manipulations of this give:

Corollary A.3

(1− ǫ)λ̄ ≤λ̃ ≤ (1 + ǫ)λ̄ (1.86)

(1− 2ǫ)
1

λ̄
≤ 1

λ̃
≤ (1 + 2ǫ)

1

λ̄
(1.87)

This allows us to show that f̃ = λ̃P−1Γx̃ does not differ from f̄ = λ̄P−1Γx̄ by too much:

Lemma A.4

||̂f− f̄||P ≤
√

(f̃− f̄)TP(f̃− f̄)

≤4ǫλ̄2

=4ǫEf̄(P) (1.88)

Proof

||̂f− f̄||P =||P−1Γx̃−P−1Γx̄||P
=||x̃− x̄||L By definition of L
≤ǫ||x̄||L (1.89)

�(Lemma A.4)
This in turn gives bounds on the maximum entry-difference of f̂ and f̄:

Corollary A.5

||̃f− f̄||∞ ≤ ǫλ̄

Proof Follows from P � I and ||v||∞ ≤ ||v||2 for any vector v. �(Corollary A.5)
Since f̄ meets the demands at each vertex, the amount that f̂ does not meet the demand by is at most

ǫmkλ̄. Lemma A.1 gives that the difference along each edge after running MakeKirchhoff is at most
ǫm2k2λ̄. The following two bounds are immediate consequences of this:

1.

||̃f− f̄||P ≤||̃f− f̂||P + ||̂f− f̄||P
≤ǫUm2k2λ̄+ ǫλ̄ Since P � UI

≤2ǫU2m2k2λ̄ (1.90)

30



2.
∣

∣

∣

∣

√

E
f̃
(P)−

√

E
f̄
(P)

∣

∣

∣

∣

=
∣

∣

∣||̃f||P − ||̄f||P
∣

∣

∣

≤||̃f− f̄||P ≤ 2ǫU2m2k2λ̄ (1.91)

Which in turn implies that
√

E
f̃
(P) ≤ (1 + 5ǫU2m2k2)

√

E
f̄
(P) when ǫU2m2k2 < 0.01.

This enables us to derive the overall bound for the L2 energy difference of the two flows. We first need
one more identity about the pointwise difference |E

f̃
(P, e) − E

f̄
(P, e)|. Since P(e) is positive definite, we

may write it as Q(e)TQ(e). Then the difference in energy can be written as:

∣

∣E
f̃
(P, e) − E

f̄
(P, e)

∣

∣

=
∣

∣

∣
||Q(e)̃f(e)||22 − ||Q(e)̄f(e)||22

∣

∣

∣

=
∣

∣

∣
(Q(e)̃f(e) +Q(e)̄f(e))T (Q(e)̃f(e) −Q(e)̄f(e))

∣

∣

∣
By applying a2 − b2 = (a+ b)(a− b) entry-wise

≤||Q(e)̃f(e) +Q(e)̄f(e)||2||Q(e)̃f(e)−Q(e)̄f(e)||2 by the Cauchy-Schwarz inequality

=||̃f(e) + f̄(e)||P(e)||̃f(e)− f̄(e)||P(e) (1.92)

Since P is a block diagonal matrix divided by the edges, we have ||v||P =
∑

e ||v(e)||P(e) for any vector
v. Therefore:

||̃f(e) + f̄(e)||P(e) ≤||̃f+ f̄||P
≤
√

4E
f̃
(P) since (a+ b)2 ≤ 2(a2 + b2) and E

f̄
(P) ≤ E

f̃
(P) (1.93)

||̃f(e)− f̄(e)||P(e) ≤||̃f− f̄||P
≤(1 + 5ǫU2m2k2)λ̄ (1.94)

Combining them gives:

∣

∣E
f̃
(P, e)− E

f̄
(P, e)

∣

∣ ≤
(

5ǫU2m2k2λ̄
) (

(1 + 5ǫU2m2k2)λ̄
)

≤10ǫU2m2k2E
f̄
(P) When 5ǫU2m2k2 < 1 (1.95)

It can be checked that when δ < 0.1, setting ǫ = δ
2m2k2U satisfies the condition for the last inequality,

as well as bounding the last term by δ. For this setting, we have log(1/ǫ) ≤ O(log(Umk/δ)).
�(Theorem 4.7)

B Maximum Weighted Multicommodity Flow

The maximum weighted multicommodity flow problem is a related problem that maximizes
∑

i λiFi for a
series of weights λ ∈ ℜk

+, where Fi is the amount of flow of commodity i that’s routed between the demand
pairs. In this section we give an overview of how to extend our algorithm to this problem. However,
in order to simplify presentation we assume that the solves are exact. Errors from these solves can be
analyzed in steps similar to those in our algorithm for maximum concurrent flow.

In our notation, the problem can be formulated as finding flows f1 . . . fk such that Bfi = Fidi and
maximizing

∑

i λiFi. Furthermore it can be reduced to the decision problem of finding fi, Fi such that

31



∑

iFi = 1. Note that due to the undirected nature of the flow, we can allow Fi to be negative since
λi ≥ 0 means negating the flow of the ith commodity can only improve the overall objective. Once we
introduce the k additional variables F1 . . .Fk, the maximum weighted multicommodity flow problem can
be formulated as:

maximize:
∑

i

Fi

subject to:
k
∑

i=1

|fi(e)| ≤ u(e) ∀e ∈ E

BT fi = Fidi ∀1 ≤ i ≤ k

By binary search and appropriate scaling of di, it suffices to check whether there is a solution (f,F)
where 1TF = 1. Furthermore we can use D to denote the kn× k matrix with column i being di extended
to all kn vertex/commodity pairs. Then if we let F denote the vector containing all the flow values, the
corresponding quadratically coupled flow problem becomes:

minimize: E(P, f)

subject to: ΓT f = DF
1TF = 1

As before, we let L = ΓTPΓ and define the following quantities:

λ =
1

1T (DL+D)+1
(2.96)

F̄ =λ(DL+D)+1 (2.97)

φ̄ =L+DF̄ (2.98)

f̄ =P−1Γφ̄ (2.99)

Note that the matrix DL+D can be explicitly computed using k2 solves, and the resulting k-by-k
matrix can be inverted using direct methods in O(kω) time. The following lemmas similar to the ones
about quadratically coupled flows shown in Section 4 can be checked in an analogous way.

Lemma B.1

ΓT f̄ = DF̄

Proof

ΓT f̄ =ΓTP−1Γφ̄

=Lφ̄
=LL+DF̄
=DF̄ (2.100)

�

32



Lemma B.2

E(P, f̄) = E(φ̄) = λ

Proof

E(P, f̄) =f̄
T
Pf̄

=φ̄TΓTP−1PP−1Γφ̄

=φ̄TLφ̄
=F̄DTL+LL+DF̄
=F̄DTLDF̄
=λ21T (DL+D)+(DTLD)(DL+D)+1

=λ2 1

λ
= λ (2.101)

�

Lemma B.3 For any (f,F) pair that satisfies ΓT f = DF and 1TF = 1, we have:

E(P, f) ≥ λ

Proof Since E(φ̄) = λ by Lemma B.2, it suffices to show E(P, f)E(φ̄) ≥ λ2.

E(P, f)E(φ̄) =(fTPf)((Γφ̄)TP−1(Γφ̄)) By definition of f in Equation 2.99

≥(fTΓφ̄)2 By Cauchy-Schwarz inequality

=(FTDT φ̄)2 Since ΓT f = DF
=(FTDTL+DF̄)2 By definition of φ̄ in Equation 2.98

=(FT (λ1))2 By definition of F̄ in Equation 2.97

=λ2 Since 1TF = 1 (2.102)

�

Furthermore, Lemma 5.2, Part 3, which is crucial for showing an increase in the minimum energy of
the quadratically coupled flow, still holds. Specifically, Equations 5.40 and 5.41 adapts readily with the
φ. Therefore generalizing Theorem 5.1 and combining it with Theorem 6.4 gives an analogous result for
approximating the maximum weighted multicommodity flow problem:

Theorem B.4 Given an instance of the maximum weighted multicommodity flow problem with k com-
modities on a graph with m edges and an error parameter ǫ > 0. A solution with weight at least (1− ǫ) of
the maximum can be produced in Õ(m4/3poly(k, ǫ−1)) time.

33


	1 Introduction
	1.1 Related Work
	1.2 Our Work

	2 Preliminaries
	2.1 Notations for k-Commodity Flow and Vertex Potentials
	2.2 Quadratic Generalizations

	3 Overview of Our Approach
	4 Approximate Computation of Quadratically Coupled Flows
	4.1 Quadratically Coupled Flows and Vertex Potentials
	4.2 Finding Almost Optimal Vertex Potentials

	5 Approximately Solving Quadratically Capacitated Flows
	6 Algorithm for Maximum Concurrent Multicommodity Flow
	7 Alternative Outer Algorithm
	7.1 Efficient Estimation of the Energy Matrix

	8 Comments/Extensions
	A Obtaining Almost Optimal Electrical Flow from Potentials
	B Maximum Weighted Multicommodity Flow

