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Abstract

We study the computational complexity of approximating2kte-qnorm of linear
operators (defined d#\|l..q = max.ollAvllq/llvll2) for g > 2, as well as connections
between this question and issues arising in quantum infiomtheory and the study
of Khot's Unique Games Conjecture (UGC). We show the folluyvi

1. For any constant even integgr> 4, a graphG is asmall-set expandef and
only if the projector into the span of the top eigenvectoriGsfadjacency matrix
has bounded 2» g norm. As a corollary, a good approximation to the2q
norm will refute theSmall-Set Expansion Conjecture a close variant of the
UGC. We also show that such a good approximation can be @uatairexp(?/9)
time, thus obtaining a ffierent proof of the known subexponential algorithm for
SMALL-SET EXPANSION.

2. Constant rounds of the “Sum of Squares” semidefinite @mogrg hierarchy
certify an upper bound on the-2 4 norm of the projector to low-degree poly-
nomials over the Boolean cube, as well certify the unsattisifia of the “noisy
cube” and “short code” based instances ofidde Games considered by prior
works. This improves on the previous upper bound of exfdg) rounds (for
the “short code”), as well as separates the “Sum of Squétesserre” hierar-
chy from weaker hierarchies that were known to requif€) rounds.

3. We show reductions between computing thes24 norm and computing the
injective tensor nornof a tensor, a problem with connections to quantum infor-
mation theory. Three corollaries ar@) the 2— 4 norm is NP-hard to approx-
imate to precision inverse-polynomial in the dimensi(i), the 2 — 4 norm
does not have a good approximation (in the sense above)sUBHEAT can be
solved in time expg/npoly log(n)), and(iii) known algorithms for the quantum
separability problem imply a non-trivial additive approwition for the 2— 4
norm.

*Microsoft Research New England.

TDepartment of Physics, Universidade Federal de Minas §eBaio Horizonte, Brazil

fDepartment of Computer Science & Engineering, UniversitWashington. Much of the work done while
visiting Microsoft Research New England.

$Department of Mathematics, Massachusetts Institute diff@ogy.

IMicrosoft Research New England.

IDepartment of Computer Science, Carnegie Mellon Univerdituch of the work done while the author
was an intern at Microsoft Research New England.

provided by DSpace@MIT


https://core.ac.uk/display/16521234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1205.4484v2

Contents
1 Introduction

2 Our Results

2.1 Algorithms . . . . . . . e e
2.1.1 Subexponential algorithm for “good” approximation. . . . . . ... ..
2.1.2 Polynomial algorithm for specificinstances . . . . . ... .. .. ..
2.1.3 Quasipolynomial algorithm for additive approxinoati. . . . . . ... . .

2.2 Reductions . . . . . . ..
2.2.1 Hypercontractivity and small set expansion . . . . . ...... . ... ..
2.2.2 Hypercontractivity and the injective tensor norm e

2.3 Relation to the Unique Games Conjecture . . . . . . . . . . cuu ...

3 The SoS hierarchy
3.1 Basic properties of pseudo-expectation . . . . . .. ... ...
3.2 Why s this SoS hierarchyuseful? . . . ... ... ... ... . ...

4 Overview of proofs
4.1 Subexponential algorithm for the 2-to-qnorm . . . . . . ... .. ... ...
4.2 Bounding the value of SoS relaxations . . . . . .. .. .. .. ... ...,
4.3 The 2-to-4 norm and small-setexpansion . . . .. . ... .. ... ...
4.4 The 2-to-4 norm and the injective tensornorm . . . . . . . ... .. L.
4.5 Definitionsand Notation . . . . . . . . . .. ... ...

5 The Tensor-SDP algorithm

6 SoS succeeds on Uniqgue Games integrality gaps
6.1 Proofsketchof Theorefl . . . . . . ... ... ... . ... . ... ......
6.2 Invariance Principle for FourthMoment . . . . . . . .. ... ... .. ....
6.3 Interlude: IndependentRounding . . . . . . . . ... ... .. . ..
6.4 Dictatorship Test for Small-Set Expansion . . . . . . . . ... ... .....
6.5 Dictatorship TestforUniqueGames . . . . . ... . ... ... . coeer oo ..
6.6 InfluenceDecoding . . . . . . . . . . . . ...
6.7 Certifying Small-Set Expansion . . . . ... . ... ... ... .. ...
6.8 Putting Things Together. . . . . . . . . . .. e
6.9 Refuting Instancesbasedon ShortCode . . . . .. .. ... .........

7 Hypercontractivity of random operators
8 The 2-to-q norm and small-set expansion

9 Relating the 2-to-4 norm and the injective tensor norm

9.1 Equivalentmaximizations. . . . . . . . . .. ... .. e
9.1.1 Injective tensor norm and separablestates . . . . . ... ... .. ..
9.1.2 Connectiontothe 2-to-4norm . . . . . . . . ... ...

9.2 Hardness of approximation for the 2-to-4 norm e e
9.2.1 Hardness of approximation for projectors . . . . . .. ...... ... ..

9.3 Algorithmic applications of equivalent formulations .. . . . .. ... ... ...
9.3.1 Approximation guarantees and the proof of Thea2edn. . . . . . . . ..
9.3.2 Gapinstances . . . . . . .. e

10 Subexponential algorithm for the 2-to-q norm
References

A More facts about pseudo-expectation

w N

g o s

0 O

10
10
10
11
11
12

13

14
14
16
18
19
20
20
22
22
22

23

26

30
30
30
32
33
37
38
40
41

42

44

48



B Norm bound implies small-set expansion

C Semidefinite Programming Hierarchies
C.1 Exampleof MaxCut . . . . . . . . . . .



1 Introduction

For a functionf : Q — R on a (finite) probability spac, the p-normis defined ag f||, =
(Eq fP)YP.1 The p — g norm||All,-q Of a linear operatoA between vector spaces of
such functions is the smallest numlwee 0 such that|Af|ly < cl[f]|p for all functions f

in the domain ofA. We also define th@ — q normof a subspace Mo be the maximum
of || fllg/IIfll, for f € V; note that forp = 2 this is the same as the norm of the projector
operator intov.

In this work, we are interested in the cgse< q and we will call suchp — g norms
hypercontractivé Roughly speaking, fop < g, a function f with large || f|l; compared
to || f|lp, can be thought of as “spiky” or somewhat sparse (i.e., mudhe@imass concen-
trated in small portion of the entries). Hence finding a fiorctf in a linear subspac¥
maximizing|| f|lq/|I fll> for someq > 2 can be thought of as a geometric analogue of the
problem finding the shortest word in a linear code. This probis equivalent to computing
the 2 —» g norm of the projectoP into V (since||Pf|l> < |If|l2). Also whenA is a nor-
malized adjacency matrix of a graph (or more generally a \adperator), upper bounds
on thep — g norm are known amixed-norm Nashor hypercontractive inequalitieand
can be used to show rapid mixing of the corresponding randatk (g.g9., see the surveys
[Gro75 SC97). Such bounds also have many applications to theoretaalpaiter science,
which are described in the surveyi11].

However, very little is known about the complexity of comipgtthese norms. This is
in contrast to the case @ — g norms forp > g, where much more is known both in terms
of algorithms and lower bounds, se&¢05 KNS08 BV11].

2 Our Results

We initiate a study of the computational complexity of apgmeating the 2— 4 (and
more generally 2— ¢ for q > 2) norm. While there are still many more questions than
answers on this topic, we are able to show some new algodtand hardness results, as
well as connections to both Khot’s unique games conjectdn®(? (UGC) and questions
from quantum information theory. In particular our paperegi some conflicting evidence
regarding the validity of the UGC and its close variant— timab set expansion hypothesis
(SSEH) of RS1(Q. (See also our conclusions section.)

First, we show in Theorer2.5that approximating the 2> 4 problem to within any con-
stant factor cannot be done in polynomial time (unless SATbeasolved in ex(n)) time)
but yet this problem is seemingly related to theide Games and SiaLL-Ser Expansion
problems. In particular, we show that approximating the-24 norm is $1aLL-Ser Ex-
paNsIoN- hard but yet has a subexponential algorithm which closated to the ABS1(
algorithm for Wvique Games and SiarL-Ser Expansion. Thus the computational filiculty
of this problem can be considered as some indirect evidemgportingthe validity of the
UGC (or perhaps some weaker variants of it). To our knowlettgs is the first evidence
of this kind for the UGC.

On the other hand, we show that a natural polynomial-timeralgn (based on an
SDP hierarchy) that solves the previously proposed hartanoes for WiQue Gawmes.

1 We follow the convention to usexpectationnorms forfunctions(on probability spaces) ancbunting
norms, denoted gpll, = (ZL, luilP)MP, for vectorsy € R™. All normed spaces here will be finite dimensional.
We distinguish between expectation and counting normsdaaecurrent normalization factors.

2We use this name because a bound of the fip#ifyq < 1 for p < g is often called ehypercontractive
inequality.



The previous best algorithms for some of these instancek &most exponential (
exp(exp(lo§® n)) ) time, and in fact they were shown to require super-patyiab time
for some hierarchies. Thus this result suggests that thaitim could potentially refute
the UGC, and hence can be construed as evideppesingthe UGC's validity.

2.1 Algorithms

We show several algorithmic results for the-24 (and more generally 2> ) horm.

2.1.1 Subexponential algorithm for “good” approximation

Forq > 2, we say that an algorithm provides@Q)-approximationfor the 2— g norm if
on input an operatoA, the algorithm can distinguish between the case [fAf#d .4 < Co
and the case th##\|o_.q > Co, whereo = omin(A) is the minimum nonzero singular value
of A. (Note that since we use the expectation nojiff|lq > [|Af]> > o|f|l> for every
function f orthogonal to the Kernel of.) We say that an algorithm providesgaod ap-
proximationfor the 2— g norm if it provides a ¢, C)-approximation for some (dimension
independent) constants< C. The motivation behind this definition is to capture the owti
of a dimension independemtpproximation factor, and is also motivated by Theorzh
below, that relates a good approximation for the=2 g norm to solving the SarL-Ser
ExpansioN problem.

We show the following:

Theorem 2.1. For everyl < ¢ < C, there is apoly(n) exp(?9)-time algorithm that com-
putes a(c, C)-approximation for the2 — q norm of any linear operator whose range is
R".

Combining this with our results below, we get as a corollasylbexponential algorithm
for the SuaLL-Ser Expansion problem matching the parameters AHS1('s algorithm. We
note that this algorithm can be achieved by the “Sum of SgI&BP hierarchy described
below (and probably weaker hierarchies as well, althougldideot verify this).

2.1.2 Polynomial algorithm for specific instances

We study a natural semidefinite programming (SDP) relaraio computing the 2- 4

norm of a given linear operator which we ca#nsor-SDP.3 While Tensor-SDP is very
unlikely to provide a poly-time constant-factor approxtioa for the 2— 4 normin general
(see Theoren2.5 below), we do show that it provides such approximation on weny

different types of instances:

— We show thatTensor-SDP certifies a constant upper bound on the ratio
lAlo=4/llAlo2 whereA : R" — R™Mis arandom linear operator(e.g., obtained
by a matrix with entries chosen as i.i.d Bernoulli variapl@sdm > Q(n?logn). In
contrast, ifm = o(n?) then this ratio isu(1), and hence this result is almost tight in
the sense of obtaining “good approximation” in the sensetimeed above. We find
this interesting, since random matrices seem like natoshnces; indeed for super-
ficially similar problems such shortest codeword, shotiztsice vector (or even the
1 — 2 norm), it seems hard tdfeciently certify bounds on random operators.

3We use the nam@ensor-SDP for this program since it will be a canonical relaxation of holynomial
program may,-1 (T, xX**) whereT is the 4-tensor such th&f, x**) = | AX|;. See Sectiod.5for more details.



— We show thaffensor-SDP gives a good approximation of the-2 4 norm of the
operator projecting a functioh : {+1}" — R into its low-degree component:

Theorem 2.2. Let#q be the liner operator that maps a function f+1}" - R of the
form f =3, fa/\((, to |ts Iow -degree part'f= 3 ,<d fove (whereyo(X) = [Ticy %i)-
ThenTensor-SDP(Pq) <

The fact thatPq has bounded 2> 4 norm is widely used in the literature relating to
the UGC. Previously, no general-purpose algorithm was kntondficiently certify
this fact.

2.1.3 Quasipolynomial algorithm for additive approximation

We also consider the generalization Tensor-SDP to a natural SDhhierarchy. This is

a convex relaxation that starts from an initial SDP and &ghktit by adding additional
constraints. Such hierarchies are generally paramatiebyea number (often called the
number of rounds where the 1 round corresponds to the initial SDP, and teround (for
discrete problems whermeis the instance size) corresponds to the exponential boute f
algorithm that outputs an optimal answer. Generally,rtheound of each such hierarchy
can be evaluated in°®" time (though in some case8™®2°0) time sufices BRS11). See
Section3, as well as the survey€['10, Lau03 and the papersgA90, LS91, RS09KPS1Q
for more information about these hierarchies.

We call the hierarchy we consider here t8am of Square$SoS) hierarchy. It is
not novel but rather a variant of the hierarchies studied éyemal authors including
Shor [Sho87, Parrilo [ParOQ Par03, Nesterov Nes0(Q and Lasserrellas0]. (Generally
in our context these hierarchies can be made equivalentviepahough there are some
subtleties involved; sed fu09 and AppendixC for more details.) We describe the SoS
hierarchy formally in Sectio. We show thaflensor-SDP’s extension to several rounds
of the SoS hierarchy gives a non-trivaadiditive approximation:

Theorem 2.3. Let Tensor-SDP@ denote the A@-time algorithm by extendingensor-
SDP to d rounds of the Sum-of-Squares hierarchy. Then fos,atiere is d= O(log(n)/&?)
such that

A3, < Tensor-SDPD(A) < ||, + ellAIZ_LIIAIA, ., .

The term||All5_,lIAlI3_, . is a natural upper bound di\3_,, obtained using Holder’s
inequality. Sincd|Al|>_,» is the largest singular value 8f and||Al|>_.« is the largest 2-norm
of any row of A, they can be computed quickly. Theorén3 shows that one can improve
this upper bound by a factor efusing run time exp(lo§(n)/£2)). Note however that in the
special case (relevant to the UGC) tiats a projector to a subspasg ||Allo_» = 1 and
IAl2— e = Vdim(V) (see Lemmad0.1), which unfortunately means that Theor@ does
not give any new algorithms in that setting.

Despite Theoren2.3 being a non-quantum algorithm for for an ostensibly non-
guantum problem, we actually achieve it using the result8mihdao, Christiandl and
Yard [BaCY11] about the quantum separability problem. In fact, it turaostbat the SoS hi-
erarchy extension dfensor-SDP is equivalent to techniques that have been used to approx-
imate separable stated3PS04. We find this interesting both because there are few pesitiv
general results about the convergence rate of SDP hieestciind because the techniques
of [BaCY1]], based on entanglement measures of quantum statesffarerti from typical
ways of proving correctness of semidefinite programs, aipeiticular diferent techniques



from the ones we use to analyZensor-SDP in other settings. This connection also means
that integrality gaps folfensor-SDP would imply new types of separable states that pass
most of the known tests for entanglement.

2.2 Reductions

We relate the question of computing the hypercontractivennaith two other problems
considered in the literature: themall set expansioproblem RS1Q RST103, and the
injective tensor nornguestion studied in the context of quantum information théelM 10,

BaCY11.

2.2.1 Hypercontractivity and small set expansion

Khot's Unique Games Conjectuifgkho0Z] (UGC) has been the focus of intense research
effort in the last few years. The conjecture posits the hardoésgproximation for a
certain constraint-satisfaction problem, and shows pmeno settle many open questions
in the theory of approximation algorithms. Many works haeet devoted to studying the
plausibility of the UGC, as well as exploring its implicat® and obtaining unconditional
results inspired or motivated by thisfert. Tantalizingly, at the moment we have very
little insight on whether this conjecture is actually tr@md thus producing evidence on
the UGC's truth or falsity is a centralffert in computational complexity. Raghavendra
and SteurerRS1( proposed a hypothesis closely related to the UGC calledSthall-
Set Expansiomypothesis (SSEH). Loosely speaking, the SSEH statesttimtiP-hard
to certify that a given grap® = (V, E) is asmall-set expandein the sense that subsets
with sizeo(]V|) vertices have almost all their neighbors outside the &%1[] showed that
SSEH implies UGC. While a reduction in the other directiomdd known, all currently
known algorithmic and integrality gap results apply to bpthblems equally well (e.g.,
[ABS10, RST10h), and thus the two conjectures are likely to be equivalent.

We show, loosely speaking, that a graph is a small-set exgpahdnd only if the pro-
jection operator to the span of its top eigenvectors hasdeii? — 4 norm. To make this
precise, ifG = (V, E) is a regular graph, then I&.,(G) be the projection operator into the
span of the eigenvectors Gfs normalized adjacency matrix with eigenvalue at legastnd
D (6) be minscysi<siv) P(uv)eelv ¢ Slu € S].

Then we relate small-set expansion to thee2l norm (indeed the 2> g norm for even
g > 4) as follows:

Theorem 2.4. For every regular graph GQ > 0 and even q,

1. (Norm bound implies expansiomor all § > 0,& > 0, [P>1(G)llz—q < &/6@ 2/
implies thatdg(5) > 1 -1 — £2.

2. (Expansion implies norm bound@here is a constant ¢ such that for alb- 0, ®g(5) >
1 - 4279 implies||P>(G)ll2-q < 2/ V3.

While one direction (bounded hypercontractive norm imngpBenall-set expansion) was
already knowrf, to our knowledge the other direction is novel. As a corollag/show that
the SSEH implies that there is no good approximation for the 2 norm.

4While we do not know who was the first to point out this fact éifll, within theoretical CS it was
implicitly used in several results relating the Bonami-Be&r-Gross hypercontractivity of the Boolean noise
operator to isoperimetric properties, with one examplad&’Donnell’'s proof of the soundness ¢f\J05]'s
integrality gap (seeiV05, Sec 9.1]).



2.2.2 Hypercontractivity and the injective tensor norm

We are able to make progress in understanding both the cgritypdé the 2— 4 norm and
the quality of our SDP relaxation by relating the-2 4 norm to several natural questions
about tensors. An-tensor can be thought of as ainear form onR", and theinjective
tensor normj| - [lin; of a tensor is given by maximizing this form over all unit v@cinputs.
See Sectio® for a precise definition. When= 1, this norm is the 2-norm of a vector and
whenr = 2, it is the operator norm (or -2 2-norm) of a matrix, but for = 3 it becomes
NP-hard to calculate. One motivation to study this norm c®@fr@m quantum mechanics,
where computing it is equivalent to a number of long-stugiesblems concerning entan-
glement and many-body physicdlfi10]. More generally, tensors arise in a vast range of
practical problems involving multidimensional data_p9] for which the injective tensor
norm is both of direct interest and can be used as a subrdotin¢her tasks, such as tensor
decompositiondlVKKVO05].

It is not hard to show th<suA||‘2‘_>4 is actually equal tq|T|liyj for some 4-tensof = Ta.
Not all 4-tensors can arise this way, but we show that theine tensor norm problem for
general tensors can be reduced to those of the Toxn€ombined with known results about
the hardness of tensor computations, this reduction imhie following hardness result. To
formulate the theorem, recall that the Exponential Time dilgpsis (ETH) [PZ9§ states
that 3-SAT instances of lengthrequire time exp(n)) to solve.

Theorem 2.5(informal version) Assuming ETH, then for ang; § satisfying2e + 6 < 1,
the2 — 4 norm of an mx m matrix A cannot be approximated to withireap(log’(m))
multiplicative factor in time less than'?# (M time. This hardness result holds even with A
iS a projector.

While we are primarily concerned with the case(t{fL) approximation factor, we note
that poly-time approximations to within multiplicativedmr 1+ 1/n*°! are not possible
unlessP = NP. This, along with Theorer2.5, is restated more formally as Theoré
in Section9.2. We also whose there that Theor@ yields as a corollary that, assuming
ETH, there is no polynomial-time algorithm obtaining a gagaproximation for the 2-»

4 norm. We note that these results hold under weaker assamapthan the ETH; see
Section9.2 as well.

Previously no hardness results were known for the 2 norm, or anyp — gnorm with
p < g, even for calculating the norms exactly. However, hardinésgpproximation results
for 1 + 1/ poly(n) multiplicative error have been proved for other polyndnoigtimization
problems BTN98].

2.3 Relation to the Unique Games Conjecture

Our results and techniques have some relevance to the ugajues conjecture. Theo-
rem 2.4 shows that obtaining a good approximation for the-2 q norm is SiaLL-Ser
Exeansion hard, but Theoren2.1 shows that this problem is not “that much harder” than
Unique Games and SiaLL-Ser Expansion since it too has a subexponential algorithm. Thus,
the 2 —» q problem is in some informal sense “of similar flavor” to theiae GamEs/
SmaLL-Ser Exeansion. On the other hand, we actually are able to show in Thed2eén
hardnesgeven if only quasipolynomial) to this problem, whereasailgir result for Lkique
Gawmes or SvaLL-SeT Expansion would be a major breakthrough. So there is a sense in which
these results can be thought of as some “positive evidendaVor of at least weak variants

of the UGC. (We emphasize however that there are inheréintudiies in extending these



results for Wique Games, and it may very well be that obtaining a multiplicative agr
mation to the 2— 4 of an operator is significantly harder problem thatndue Games or
SmaLL-Ser Expansion.) In contrast, our positive algorithmic results show thathaps the
2 — g norm can be thought of as a path to refuting the UGC. In pdatione are able to
extend our techniques to show a polynomial time algorithmaggproximate the canonical
hard instances for dque Games considered in prior works.

Theorem 2.6. (Informal) Eight rounds of the SoS relaxation certifies ttas$ possible to
satisfy at most/100fraction of the constraints ofJnique Games instances of the “quotient
noisy cube” and “short code” types considered IR$09 KS09 KPS1Q BGH"11]

These instances are the same ones for which previous wasksedhthat weaker hier-
archies such as “SDF5herali Adams” and “Approximate Lasserre” requisgl) rounds to
certify that one cannot satisfy almost all the constraiktg(5, RS1Q KS09, BGH"11]. In
fact, for the “short code” based instances BfEH* 11] there was no upper bound known
better than exp(lod™ n) on the number of rounds required to certify that they areatot
most satisfiable, regardless of the power of the hierarchyg.us

This is significant since the current best known algorithmrsUxioue Games utilize
SDP hierarchiesRS11, GS11,° and the instances above were the only known evidence
that polynomial time versions of these algorithms do notteefthe uniqgue games con-
jecture. Our work also show that strong “basis independbigfarchies such as Sum of
Squaresipar0q Par03 and Lasserrel[as0] can in fact do better than the seemingly only
slightly weaker variant§.

3 The SoS hierarchy

For our algorithmic results in this paper we consider a sefmde programming (SDP)
hierarchy that we call thBum of Squareg$soS) hierarchy. We call the hierarchy we consider
here theSum of Square§SoS) hierarchy. This is not a novel algorithm and essdytial
the same hierarchies were considered by many other researndee the survey §u09).
Because dferent works sometimes used slighthyffdient definitions, in this section we
formally define the hierarchy we use as well as explain thdgtioh behind it. While there
are some subtleties involved, one can think of this hiesaeshequivalent in power to the
programs considered by Parrilo, Lasserre and others, wtid@ger than hierarchies such
“SDP+Sherali-Adams” and “Approximate Lasserre” considereddB(09 KPS1Q BRS11.
The SoS SDP is a relaxation for polynomial equations. Thatésconsider a system
of the following form: maximizePy(x) over x € R" subject toPiz(x) =0fori=1...mand
Po, ..., Pm polynomials of degree at modt’ Forr > 2d, ther-round SoS SDRptimizes
overxy,..., X that can be thought of as formal variables rather than acwalbers. For
these formal variables, expressions of the fd?(w) are well defined and correspond to a

5Both these works showed SDP-hierarchy-based algorithnishing the performance of the subexponen-
tial algorithm of [ABS1(]. [GS1] used the Lasserre hierarchy, whie}S11] used the weaker “SDFSherali-
Adams” hierarchy.

5The only other result of this kind we are aware of KV[N11], that show that Lasserre gives a better
approximation ratio than the linear programming Sheralafs hierarchy for the knapsack problem. We do
not know if weaker semidefinite hierarchies match this ratithough knapsack of course has a simple dynamic
programming based PTAS.

"This form is without loss of generality, as one can transimténequality constraint of the fori(x) > 0
into the equality constraint®{(x) — 4%)> = 0 wherey is some new auxiliary variable. It is useful to show
equivalences between various hierarchy formulationsatseAppendixC.



real number (which can be computed from the SDP solutiomragdsP is a polynomial of
degree at most These numbers obey theearity property which is thatf+Q)(x) = P(X)+
Q(x), and, most importantly, thgositivity property thatP?(x) > 0 for every polynomiaP
of degree at most/2. These expressions satisfy all initial constraints,(l?é(x) = 0 for

i = 1...m) and thevalueof the SDP is set to be the expressiBg(x). The above means
that to show that the SoS relaxation has value at mib$$ suficient to give any proof that
derives from the constrain(?iz(x) = 0}j=1.m the conclusion thalPy(X) < v using only the
linearity and positivity properties, without using any yrmbmials of degree larger tharin
the intermediate steps. In fact, such a proof always hastine f

k m
v=Po(¥) = D RO+ > PiQi(Y), (3.1)
i=1 i=1

whereRy,...,R« Qi,..., Qm are arbitrary polynomials satisfying dBg< r/2, degP;Q; <
r. The polynomialy; R (x)? is a SoS (sum of squares) and optimizing over such polynomi-
als (along with theQy, . .., Q) can be achieved with a semi-definite program.

Pseudo-expectation view. For maore intuition about the SoS hierarchy, one can imagine
that instead of being formal variables,, . .., x, actually correspond to correlated random
variablesXy, ..., X, overR", and the expressida(X) is set to equal the expectati®fiP(X)].
In this case, the linearity and positivity properties argiobsly satisfied by these expres-
sions, although other properties that would be obtained, if. ., x, were simply numbers
might not hold. For example, the property tHR(ix) = P(X)Q(X) if R = P - Q does not
necessarily hold, since its not always the case EHiXtY] = E[X]E[Y] for every three ran-
dom variablesX, Y, Z. So, another way to describe theound SoS hierarchy is that the
expression$(X) (for P of degree at most) satisfy some of the constraints that would have
been satisfied if these expressions corresponded to ekpastaver some correlated ran-
dom variablesXy, ..., Xn. For this reason, we will use the notatiitiy P(x) instead ofP(x)
where we refer to the functioni as a levelr pseudo-expectation functiongr r-p.e.f. for
short). Also, rather than describing, .. ., x, as formal variables, we will refer to them as
level+ fictitious random variablegor r-f.r.v. for short) since in some sense they look like
true correlated random variables up to thdirmoment.

We can now present our formal definition of pseudo-expesiand the SoS hierarchy:

Definition 3.1. Let E be a functional that maps |90Iynomli':lloverIRn of degree at most
into a real number which we denote By P(x) or IE P for short. We say th&E is alevel-r
pseudo-expectation function@lkp.e.f. for short) if it satisfies:

Linearity For every polynomiald®, Q of degree at most ande, g € R, E(aP + Q) =
aEP+BEQ.

Positivity For every polynomiaP of degree at most/2, E P2 > 0.

Normalization [E1 = 1 where on the RHS, 1 denotes the degree-0 polynomial thiagis t
constant 1.

Definition 3.2. Let Py, ..., Pm be polynomials oveR" of degree at most, and letr >
2d. The value of the-round SoS SDP for the program “mByg subject toPi2 = 0 for

8We use the name “Sum of Squares” since the positivity catitielow is the most important constraint
of this program. However, some prior works used this naméh®dual of the program we define here. As we
show in AppendixC, in many cases of interest to us there is no duality gap.



i = 1...m", is equal to the maximum of: Py where]fi ranges over all levet pseudo-
expectation functionals satisfyirig P2 Ofori=1..

The functionalE can be represented by a table of si#¥") containing the pseudo-
expectations of every monomial of degree at nro&tr some other linear basis for polyno-
mials of degree at mos}. For a linear functionaE, the mapP — E P? is a quadratic form.
Hence E satisfies the positivity condition if and only if the correspling quadratic form is
positive semidefinite. It follows that the convex set of lew@seudo-expectation function-
als overR" admits am®()-time separation oracle, and hence th®und SoS relaxation
can be solved up to accuraeyn time (mn- log(1/£))°®).

As noted above, for every random variablever R", the functionalE P := E P(X) is
a levely pseudo-expectation functional for evaryAsr — oo, this hierarchy of pseudo-
expectations will converge to the expectations of a trueleanvariable [as01, but the
convergence is in general not guaranteed to happen in arfumider of stepsdKL11].

Whenever there can be ambiguity about what are the variablése polynomialP
inside arr-p.e.f.E, we will use the notatioii P(x) (e..,Ex X2 is the same ak P where
P is the polynomialx — xg). As mentioned above, we call the input$o the polynomial
level-r fictitious random variablesr r-f.r.v. for short.

Remark 3.3. The main diference between the SoS hierarchy and weaker SDP hierarchies
considered in the literature such as SE#Perali Adams and the Approximate Lasserre
hierarchies RS09 KPS1( is that the SoS hierarchy treats all polynomials equallg an
hence is agnostic to the choice of basis. For example, thexippate Lasserre hierarchy
can also be described in terms of pseudo-expectationshésé fpseudo-expectations are
only defined for monomials, and are allowed some small evitrile they can be extended
linearly to other polynomials, for non-sparse polynomtabst error can greatly accumulate.

3.1 Basic properties of pseudo-expectation

For two polynomialsP andQ, we writeP < Qif Q = P+ X, RI? for some polynomials
Ri,...,Rm.

If P andQ have degree at mosfthenP < Q implies thatE P < IE Q everyr-p.e.f.E.
This follows using linearity and positivity, as well as the( too hard to verify) observation
thatifQ— P =3} Rf then it must hold that de®) < maxdeg®), degQ)}/2 for everyi.

We would like to understand how polynomials behave on lirdrspaces aR". A
mapP: R" — R is polynomialover a linear subspadé ¢ R" if P restricted toV agrees
with a polynomial in the cd@icients for some basis &f. Concretely, ifgy,...,gm iS an
(orthonormal) basis d¥, thenP is polynomialoverV if P(f) agrees with a polynomial in
(f,g1),...,(f,gm). We say thaP < Q holds over a subspadeif P — Q, as a polynomial
overV, is a sum of squares.

Lemma 3.4. Let P and Q be two polynomials ovBf" of degree at mostr, and let:BR" —
RX be a linear operator. Suppose that£Q holds over the kernel of B. TheBP < EQ
holds for any r-p.e.fE overR" that satisfiedt||B f||2 =

Proof. SinceP < Q over the kernel ofB, we can writeQ(f) = P(f) + 1Rlz(f) +

1(Bf) Sj(f) for polynomials Ry,...,Rn and Sy,...,S¢ over R". By positivity,
]Ef Rz(f) > 0 for alli € [m]. We claim that]Ef(Bf) Sj(f) = O for all j € [K] (which
would finish the proof). This claim follows from the fact tHEt(Bf)2 Oforallj e [K]
andLemma 3.%oelow. m]



Lemma 3.5(Pseudo Cauchy-SchwarZ)et P and Q be two polynomials of degree at most
r. Then,EPQ< VEP2. vE Q2 for any degree2r pseudo-expectation functionil.

Proof. We first consider the cageP?, E Q% > 0. Then, by linearity off, we may assume
thatE P2 = E Q2 = 1. Since PQ < P2+ Q2 (by expanding the squar® ¢ Q)?), it follows
thatEPQ < 3 EP? + JIEQ? = 1 as desired. It remains to consider the dB$& = 0. In
this case, @PQ < P? + o?Q? implies thatE PQ < - 1 E Q? for all @ > 0. ThusE PQ = 0,
as desired. ]

Lemma3.5 also explains why our SDP in Definitidh2is dual to the one in3.1). If
E is a levelr pseudo-expectation functional satisfyiiP?] = 0, then Lemma.5implies
thatE[P;Qi] = O for all Q; with degP;Q; <.

Appendix A contains some additional useful facts about pseudo-exti@ct func-
tionals. In particular, we will make repeated use of the fhett they satisfy another
Cauchy-Schwarz analogue: namely, for any level-2 f.r.f,'s, we have]Ef,g<f,g> <

\/]Ef”fllz \/]Egllgnz. This is proven in Lemma 4.

3.2 Why is this SoS hierarchy useful?

Consider the following example. Itis known thaffif {+1}‘ — R is a degreed polynomial
then

2
9"( E f(w)z) > E f(w)?*, (3.2)
we{+1})¢ wel{x1}"
(see e.g.(’D07]). Equivalently, the linear operatd®?yq on R*1’ that projects a function
into the degree polynomials satisfiefPqllo—4 < 994. This fact is known as the hypercon-
tractivity of low-degree polynomials, and was used in savitegrality gaps results such
as [KVV05]. By following the proof of 8.2) we show in Lemm&.1that a stronger statement
is true:
2 m
9"( E f(w)z) = E f(w)+ Z Qi()?, (3.3)
we{+1}¢ we{+1}¢ =
where theQ;’s are polynomials of degre€ 2 in the(é) variables{ (a)}%([g]) specifying
the codficients of the polynomiaf. By using the positivity constraints3.(3) implies that
(3.2) holds even in the 4-round SoS relaxation where we considecodficients of f to
be given by 4-f.r.v. This proves Theorel?, showing that the SoS relaxation certifies that
|Pdll2—a < 9V,

Remark 3.6. Unfortunately to describe the result above, we needed tthederm “degree”

in two different contexts. The SDP relaxation considers polynomialessions of degree
at most 4in the cogficients of f This is a diferent notion of degree than the degree
d of f itself as a polynomial oveR’. In particular the variables of this SoS program
are the({) coe”ﬁcients{fA(a)}aE([g]). Note that for every fixeds, the expressiorf(w) is

: . , . 2
a linear polynomial over these variables, and hence theeexmns(]Ewe{il}z f(w)z) and
E,e(z1)0 f(w)* are degree 4 polynomials over the variables.

While the proof of 8.3) is fairly simple, we find the result— that hypercontradiivi
of polynomials is éficiently certifiable—somewhat surprising. The reason i$ typer-
contractivity serves as the basis of the integrality gapslte which are exactly instances
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of maximization problems where the objective value is low this is supposedly hard
to certify. In particular, we consider integrality gaps 1drique Games considered be-
fore in the literature. All of these instances follow thenfrework initiated by Khot and
Vishnoi [KV05]. Their idea was inspired by xdoue Games hardness proofs, with the inte-
grality gap obtained by composing an initial instance witlyaglget. The proof that these
instances have “cheating” SDP solutions is obtained byiritif the completeness proof
of the gadget. On the other hand, the soundness propertyeajatiget, combined with
some isoperimetric results, showed that the instances tbave real solutions. This ap-
proach of lifting completeness proofs of reductions wagluseget other integrality gap
results as wellTul09]. We show that the SoS hierarchy allows us to lift a cersminndness
proof for these instances, which includes a (variant of)rita@riance principle of {10005,
influence-decoding a I&KMOO04], and hypercontractivity of low-degree polynomials. It
turns out all these results can be proven via sum-of-sqigpesarguments and hence lifted
to the SoS hierarchy.

4 Overview of proofs

We now give a very high level overview of the tools we use taobbur results, leaving
details to the later sections and appendices.

4.1 Subexponential algorithm for the 2-to-q norm

Our subexponential algorithm for obtaining a good appration for the 2— g norm is
extremely simple. Itis based on the observation that a sudespC R" of too large a dimen-
sion must contain a functioh such that|f|lq > || f|lo. For example, if dim{) > +/n, then
there must bd such thaf|f||s > ||f||>. This means that if we want to distinguish between,
say, the case th§V/|>—4 < 2 and||V||>—4 > 3, then we can assume without loss of general-
ity that dim(V) = O(+/n) in which case we can solve the problem in ép{/n)) time. To
get intuition, consider the case thats spanned by an orthonormal basfs. . ., 9 of func-
tions whose entries are all inl. Then clearly we can find cficientsay, ..., a9 € {1}
such that the first coordinate gf= }’ a; f1 is equal tad, which means that its 4-norm is at
least (1*/n)Y4 = d/n%4. On the other hand, since the basis is orthonormal, the 2+0by
equalsvd which is< d/n%4 for d > +/n.

Note the similarity between this algorithm and§S1Q's algorithm for SuaLL-Ser Ex-
PANSION, that also worked by showing that if the dimension of the tiggespace of a graph
is too large then it cannot be a small-set expander. Indesstly our reduction of SaLL-Ser
ExpansioN to the 2— g norm, we can reproduce a similar result £3[S10.

4.2 Bounding the value of SoS relaxations

We show that in several cases, the SoS SDP hierarchy givegydbounds on various in-
stances. At the heart of these results is a general apprdatifiiog” proofs about one-

dimensional objects into the SoS relaxation domain. Thugdraresform the prior proofs
that these instances have small objective value, into af pihad the SoS relaxation also
has a small objective The crucial observation is that mangfsrboil down to the simple
fact that a sum of squares of numbers is always non-negditittens out that this “sum of

squares” axiom is surprisingly powerful (e.g. implying asien of the Cauchy—Schwarz
inequality given by Lemma\.4), and many proofs boil down to essentially this principle.

10



4.3 The 2-to-4 norm and small-set expansion

Bounds on the — g norm of operators fop < g have been used to show fast convergence
of Markov chains. In particular, it is known that if the projer to the top eigenspace of
a graphG has bounded 2» 4 norm, then that graph issamall-set expanden the sense
that sets ob(1) fraction of the vertices have most of their edges exitdbie In this work
we show a converse to this statement, proving th& i§ a small-set expander, then the
corresponding projector has boundeds24 norm. As mentioned above, one corollary of
this result is that a good (i.e., dimension-independenpr@pmation to the 2—» 4 norm
will refute the Small-Set Expansion hypothesis &1(.

We give a rough sketch of the proof. Suppose thas a suficiently strong small-set
expander, in the sense that every Sewith |S| < 6|V(G)| has all but a tiny fraction of
the edgesy, v) with u € S satisfyingv ¢ S. Let f be a function in the eigenspace @f
corresponding to eigenvalues larger than, s89.0Sincef is in the top eigenspace, for the
purposes of this sketch let’'s imagine that it satisfies

¥xe V. E f(y) > 0.97(x), (4.1)
P

where the expectation is over a random neighpof x. Now, suppose thaE f(x)? = 1
but E f(x)* = C for someC > poly(1/6). That means that most of the contribution to
the 4-norm comes from the s&t of verticesx such thatf(x) > (1/2)CY4, but|S| <
5|V(G)|. Moreover, suppose for simplicity thd(x) e ((1/2)CY4, 2CY4), in which case
the condition(*) together with the small-set expansion condition that foshverticesy in
I'(S) (the neighborhood o) satisfy f(y) > C/4/3, but the small-set expansion condition,
together with the regularity of the graph imply tHE{S)| > 200S| (say), which implies
thatE f(x)* > 2C—a contradiction.

The actual proof is more complicated, since we can't assimedndition 4.1). In-
stead we will approximate it it by assuming tHais the function in the top eigenspace that
maximizeghe ratio|| f||4/|| fll,. See SectioB for the details.

4.4 The 2-to-4 norm and the injective tensor norm

To relate the 2» 4 norm to the injective tensor norm, we start by establiskiggivalences
between the 2» 4 norm and a variety of €ierent tensor problems. Some of these are
straightforward exercises in linear algebra, analogouysdweing that the largest eigenvalue
of MTM equals the square of the operator nornivbf

One technically challenging reduction is between the gnobbf optimizing a general
degree-4 polynomiaf(x) for x € R" and a polynomial that can be written as the sum
of fourth powers of linear functions of. Straightforward approaches will magnify errors
by poly(n) factors, which would make it impossible to rule out a PTAB thee 2 — 4
norm. This would still be enough to prove that apbly(n) additive approximation idlP-
hard. However, to handle constant-factor approximatiemeswill instead use a variant of
a reduction in HM10]. This will allow us to map a general tensor optimization e
(corresponding to a general degree-4 polynomial) to & 24 norm calculation without
losing very much precision.

To understand this reduction, we first introduce thex n? matrix Ay (defined in
Section9) with the property tha1|A||‘2‘_)4 = maszAg,gz, where the maximum is taken
over unit vectors that can be written in the form® y. Without this last restriction, the
maximum would simply be the operator normAy,. Operationally, we can think ok,
as a quantum measurement operator, and vectors of theXarimas unentangled states
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(equivalently we say that vectors in this form are tensodpob states, or simply “product
states”). Thus the ftierence betwee||fA||‘2‘_) 4 and|lA22[l2—2 can be thought of as the extent
to which the measuremenb , can notice the dierence between product states and (some)
entangled state.

Next, we define a matri®’ whose rows are of the fornx/(® y’')* \/H , Wherex', y’ €
R" range over a distribution that approximates the uniforntriistion. If A’ acts on a
vector of the formx ® y, then the maximum output 4-norm (oves-unit vectorsx, y) is
precisely||Allo_4. Intuitively, if A’ acts on a highly “entangled” vecta meaning that
(z, x® y) is small for all unit vectorsc, y, then||A’Z|4 should be small. This is becauge
will have small overlap with’ ® y’, and A is positive semi-definite, so itstediagonal
entries can be upper-bounded in terms of its operator norhresd arguments (detailed
in Section9.2) lead to only modest bounds @, but then we can use an amplification
argument to make the 2 4 norm of A’ depend more sensitively on that Af at the cost
of blowing up the dimension by a polynomial factor.

The reductions we achieve also permit us, in Sedi@nto relate ouifensor-SDP algo-
rithm with the sum-of-squares relaxation used by Doherdyril®, and Spedalieri)PS04
(henceforth DPS). We show the two relaxations are essignéqlivalent, allowing us to
import results proved, in some cases, with techniques fraamtym information theory.
One such result, fronHaCY 11, requires relatingh, 2 to a quantum measurement of the 1-
LOCC form. This means that there are twvalimensional subsystems, combined via tensor
products, and\; > can be implemented as a measurement on the first subsysteweby
a measurement on the second subsystem that is chosen @oeditin the results of the first
measurement. The main result 8CY 1] proved that such LOCC measurements exhibit
much better behavior under DPS, and they obtain nontrigipf@&imation guarantees with
only O(log(n)/£?) rounds. Since this is achieved by DPS, it also implies areuppund
on the error ofTensor-SDP. This upper bound isZ, whereZ is the smallest number for
which Az < ZM for some 1-LOCC measuremekt. While Z is not believed to befg-
ciently computable, it is at leaf 2[l>—,2, since any measuremeht has||M|j,—2 < 1. To
upper bound, we can explicitly construod, ;> as a quantum measurement. This is done by
the following protocol. Let, ..., ayn be the rows ofA. One party performs the quantum
measurement with outcome@za;qT}{Ql (wherea is a normalization factor) and transmits
the outcomae to the other party. Upon receiving messagthe second party does the two
outcome measuremeffiaia’, | —Baa’ } and outputs 0 or 1 accordingly, whe#és another
normalization factor. The measureme¥t, corresponds to the “0” outcomes. For this to
be a physically realizable 1-LOCC measurement, we reed/AT Allo—,» andg < ||AlI2_ ..
Combining these ingredients, we obtain the approximatigargntee in Theore3. More
details on this argument are in Sectia3.1

4.5 Definitions and Notation

Let U be some finite set. For concreteness, and without loss ofgédpewe can letl/ be
the set{1,...,n}, wheren is some positive integer. We writg,, f to denote the average
value of a functionf : ¢/ — R over a random point ifi{ (omitting the subscrip?{ when

it is clear from the context). We ldt,(2f) denote the space of functiofs U4 — R
endowed with the inner product,g) = Eq fg and its induced norniif| = (f, f)¥/2.
For p > 1, the p-normof a function f € Ly(%) is defined aglfll, = (E|f[P)YP. A
convexity argument showisf|l, < [Ifllq for p < g. If Alis a linear operator mapping
functions fromLy(U) to Lo(V), andp,q > 1, then thep-to-q norm of A is defined as
IAlp—q = MaXoxteL@n)llAfllg/lIfllp. If V € Lo(U) is a linear subspace, then we denote
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IVllp—g = maxsevll fllg/II fllp.

Counting norms. In most of this paper we uspectation normdefined as above, but in
some contexts theounting normswill be more convenient. We will stick to the convention
that functionsuse expectation norms whileectorsuse the counting norms. For a vector
v e €% andp > 1, thep counting normof v, denoted|ull,, is defined to beXicq luilP)"P.
The counting inner producbf two vectorsu,v € RY, denoted agu, v), is defined to be
Ziefu Ui Ui*.

5 TheTensor-SDP algorithm

There is a very natural SoS program for the—2 4 norm for a given linear operator
A: Lz((L() - LZ((V):

ALcoritam Tensor-SDP@ (A):
Maximize E||Af||} subject to

— fisad-f.r.v. overLy(U),
- Ef(IfI?- 1 =0.

Note that||Af||j11 is indeed a degree 4 polynomial in the variabjdgu)},c;. The
Tensor-SDP® algorithm makes sense fdr> 4, and we denote byensor-SDP its most
basic version wherd = 4. TheTensor-SDP algorithm applies not just to the2 4 norm,
but to optimizing general polynomials over the unit balllg{Z{) by replacingllAfllj‘1 with
an arbitrary polynomiaP.

While we do not know the worst-case performance offdrgsor-SDP algorithm, we do
know that it performs well on random instances (see Sedlipand (perhaps more relevant
to the UGC) on the projector to low-degree polynomials (seedfem2.2). The latter is a
corollary of the following result:

Lemma 5.1. Over the space of n-variate Fourier polynomfaswith degree at most d,
Ef*<9(E ),
where the expectations are overl}".

Proof. The result is proven by a careful variant of the standard ahidel proof of the hy-
percontractivity for low-degree polynomials (see e(@.[j07]). We include it in this part
of the paper since it is the simplest example of how to “liftiokvn proofs about functions
over the reals into proofs about the fictitious random véemhat arise in semidefinite
programming hierarchies. To strengthen the inductive thgxis, we will prove the more
general statement that férandg beingn-variate Fourier polynomials with degrees at most
d ande, it holds thatE f2¢2 < 9%° (E £2)(Eg?). (Formally, this polynomial relation is
over the linear space of pairs wivariate Fourier polynomialsf(g), wheref has degree at
mostd andg has degree at most) The proof is by induction on the number of variables.
If one of the functions is constant (so thdt = 0 or e = 0), thenE f24?> =

(E f2)(E ¢°), as desired. Otherwise, 1&}, 1, go, g1 be Fourier polynomials depending only

SAn n-variate Fourier polynomial with degree at makis a functionf: {+1}" — R of the form f =
2ag[n].|<y|<d ftl/\/(r Where)(tl(x) = l_[ieaf X.
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0N Xg,..., Xp—1 such thatf(x) = fo(X) + X, f1(X) andg(x) = go(X) + Xng1(X). The Fourier
polynomialsfy, f1, go, g1 depend linearly orf andg (becausefy(x) = %f(xl, e X1, 1)+
$(xe, ..., %-1, 1) and fy(X) = 3f(Xa, ..., %-1,1) = 3 (X4, ..., Xo-1, —1)). Furthermore,
the degrees ofy, f1, gg, andg, are at mostl, d — 1, e, ande — 1, respectively.

SinceE x, = E x3 = 0, if we expandE f%¢? = E(fo + %, f1)?(g0 + Xng1)? then the terms
wherex, appears in an odd power vanish, and we obtain

E f?¢°> = E f0g0+ f1g1+ fog1+ flgo+4foflgog1

By expandlng the square expressioR(d,f1 — gog1)?, we get 4E fofigogr < 2E fO g1
f1 go and thus
E 29> < E f2g3 + E 295 + 3E 2% + 3E f2g3. (5.1)

Applying the induction hypothesis to all four terms on thghtihand side of5.1) (using
for the last two terms that the degreefefandg; is at mosid — 1 ande - 1),

E 2% < 9% (E ) (Eg3) + 9% (E f2) (E42)
d+e

+3-9F 2 (B 1) (Eg]) +3- 92 (E 1) (E )
9% (Ef¢+E i) (Egs +Edi) -

SinceE fZ+E {2 = E(fo+X,f1)? = E f2 (usmg]Exn 0) and similarlyE g3 +E g% = E ¢?,
we derive the desired relatidn f2¢% < 9%° *(E f2)(Eg?). O

6 SoS succeeds on Unique Games integrality gaps

In this section we prove Theorei6, showing that 8 rounds of the SoS hierarchy can beat
the Basic SDP program on the canonical integrality gapsidered in the literature.

Theorem 6.1(Theorenm?.6, restated) For syficiently smalle and large k, and every a N,
let ‘W be an n-variable k-alphabeiinique Games instance of the type considered iR$09
KS09 KPS1( obtained by composing the “quotient noisy cube” instané¢ov05 with
the long-code alphabet reduction ¢fikMO04] so that the best assignmenti’s variable
satisfies at most anfraction of the constraints. Then, on inpl, eight rounds of the SoS
relaxation outputs at mod4t/100.

6.1 Proof sketch of Theorem6.1

The proof is very technical, as it is obtained by taking thready rather technical proofs of
soundness for these instances, and “lifting” each steptimtdSo0S hierarchy, a procedure
that causes additionalficulties. The high level structure of all integrality gaptansces
constructed in the literature was the following: Start wathasic integrality gap instance
of Unique Games where the Basic SDP outputs-10(1) but the true optimum is(1), the
alphabet sizeof U is (necessarilyR = w(1). Then, apply aralphabet-reduction gadget
(such as the long code, or in the recent woBKGH"11] the so called “short code”) to
transform{ into an instancel with some constant alphabet sizeThe soundness proof
of the gadget guarantees that the true optimurt¥aé small, while the analysis of previous
works managed to “lift” the completeness proofs, and arbaéthe instancé/{ survives a
number of rounds that tends to infinity asends to zero, where (A ¢) is the completeness
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value in the gap constructions, and exact tréideetween number of rounds aadlepends
on the paper and hierarchy.

The fact that the basic instan€éhas small integral value can be shown by appealing to
hypercontractivity of low-degree polynomials, and henaga be “lifted” to the SoS world
via Lemmab.1l The bulk of the technical work is in lifting the soundnessgirof the
gadget. On a high level this proof involves the following gmments:(1) The invariance
principle of [MOOO04, saying that low influence functions cannot distinguisitwaen the
cube and the sphere; this allows us to argue that functiaigptrform well on the gadget
must have an influential variable, af®) the influence decodingrocedure of KKMO04]
that maps these influential functions on each local gad¢eigood global assignment for
the original instancéA{.

The invariance principle poses a special challenge, sheeroof of MOOO05 uses so
called “bump” functions which are not at all low-degree paiynials’® We use a weaker
invariance principle, only showing that the 4 norm of a lofuance function remains the
same between two probability spaces that agree on the firgtni2emts. Unlike the usual
invariance principle, we do not move between Bernoullialles and Gaussian space, but
rather between two ffierent distributions on the discrete cube. It turns out tbatttie
purposes of thesenihue Games integrality gaps, the above fices. The lifted invariance
principle is proven via a “hybrid” argument similar to thegament of MOOO0Y, where
hypercontractivity of low-degree polynomials again playsimportant role.

The soundness analysis 6f{MO04] is obtained by replacing each local function with
an average over its neighbors, and then choosing a randamerititl coordinate from the
new local function as an assignment for the original uniquegs instance. We follow the
same approach, though even simple tasks such as indepeaddotnized rounding turn
out to be much subtler in the lifted setting. However, it Riout that by making appropriate
modification to the analysis, it can be lifted to completepgheof of Theoren?.6.

In the following, we give a more technical description of teof. LetT;_, be
the n-noise graph or(+1}R. Khot and Vishnoi KVO05] constructed a unique gan#
with label-extended grapfi;_,. A solution to the level-4 SoS relaxation @ is 4-
f.rv. hover Lo({x1}R). This variable satisfieB(x)2 =, h(x) for all x € {+1}R and also
En(Eh)? < 1/R2. (The variableh encodes a (L assignment to the vertices of the label-
extended graph. A proper assignment assigns 1 only tdrdraction of these vertices.)
Lemma 6.7allows us to bound the objective value of the solutioim terms of the fourth
momentEy, E(P-,h)*, whereP., is the projector into the span of the eigenfunctions of
T1-, with eigenvalue larger than ~ 1/R’. (Note thatE(P-,h)* is a degree-4 polyno-
mial in h.) For the graphl,_,, we can bound the degree Bf ;h as a Fourier polyno-
mial (by about logR)). Hence, the hypercontractivity bountdefmma 5.} allows us to
bound the fourth momeriEy, E(P.;h)* < En(Eh?)2. By our assumptions oh, we have
En(E h2)? = En(E h)?2 < 1/R2. Plugging these bounds into the bound.efmma 6.7demon-
strates that the objective valuefofs bounded by IR%® (seeTheorem 6.1

Next, we consider a unique gam# obtained by composing the unique gafifewnith
the alphabet reduction oKKMOO04]. Suppose that’ has alphabe® = {0,...,k-1}. The
vertex set of W is V x QR (with V being the vertex set /). Let f = {fu}uev be a solution
to the level-8 SoS relaxation aff’. To bound the objective value df, we derive from it
a level-4 random variable over L»(V x [R]). (Encoding a function on the label-extended
graph of the unique gam®.) We defineh(u,r) = Inf<? f,, where¢ ~ logk and f, is

10A similar, though not identical, challenge arises BdH*11] where they need to extend the invariance
principle to the “short code” setting. However, their s@uatdoes not seem to apply in our case, and we use a
different approach.
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a variable ofL,(QR) obtained by averaging certain values fof(“folding”). It is easy to
show thath? < h (usingLemma A.) and En(E h)?2 < ¢/R (bound on the total influence
of low-degree Fourier polynomialsY.heorem 6.4influence decoding) allows us to bound
the objective value of in terms of the correlation df with the label-extended graph @
(in our caseT1_,). Here, we can use agairheorem 6.110 show that the correlation &f
with the graphT_, is very small. (An additional challenge arises becdudees not satisfy
h? =y, h, but only the weaker conditioh? < h. Corollary 6.5fixes this issue by simulating
independent rounding for fictitious random variables.) Tovp Theorem 6.9influence
decoding), we analyze the behavior of fictitious randomaldes on the alphabet-reduction
gadget of KKMOO04]. This alphabet-reduction gadget essentially correspdndthee-
noise graphTi_. on QR. Supposey is a fictitious random variables ovep(QR) satisfying
g° < g. By Lemma 6.7 we can bound the correlation gfwith the graphTi_, in terms
of the fourth moment oP. ,g. At this point, the hypercontractivity bounddmma 5.}

is too weak to be helpful. Instead we show an “invarianceqipie” result Theorem 6.2,
which allows us to relate the fourth momentRf, g to the fourth moment of a nicer random
variable and the influences gf

Organization of the proof. We now turn to the actual proof of Theoredri. The proof
consists of lifting to the SoS hierarchy all the steps useth@analysis of previous in-
tegrality gaps, which themselves arise from hardness tiethgc We start in Sectiof.2
by showing a sum-of-squares proof for a weaker versioriv@dQ05’s invariance princi-
ple. Then in Sectioi®.3 we show how one can perform independent rounding in the SoS
world (this is a trivial step in proofs involving true randovariables, but becomes much
more subtle when dealing with SoS solutions). In Sectiddsand 6.5 we lift variants of
the [KKMOO04] dictatorship test. The proof uses a SoS variant of influglsm®ding, which

is covered in Sectiof.6. Together all these sections establish SoS analogs of tinelsess
properties of the hardness reduction used in the previaudtse Then, in Sectiof.7 we
show that analysis of the basic instance has a sum of squarek (pince it is based on
hypercontractivity of low-degree polynomials). Finally$ection.8we combine all these
tools to conclude the proof. In Secti@?9 we discuss why this proof applies (with some
modifications) also to the “short-code” based instance®afH " 11].

6.2 Invariance Principle for Fourth Moment

In this section, we will give a sum-of-squares proof for aamatr of the invariance principle
of [MOOO0Y5. Instead of for general smooth functionals (usually carged from “bump
functions”), we show invariance only for the fourth momehturns out that invariance of
the fourth moment is enough for our applications.

Letk = 2' fort € N and letX = (X1,...,XR) be an independent sequehtcef or-
thonormal ensembleX, = (X 0,..., Xrk-1). Concretely, we choos¥;; = yi(x), where
Xo0,--->Xxk-1 IS the set of characters dﬂ‘z andx is sampled uniformly from]lftz)R. Every
random variable oveﬂFCZ)R can be expressed as a multilinear polynomial over the seguen
X. In this senseX is maximally dependent. On the other hand Yet (Y1,...,YR) be a
sequence of ensemblgs = (Yro,..., Yrk-1), WhereY, o = 1 andY, ; are independent, un-
biased{+1} Bernoulli variables. The sequengtis maximally independent since it consists

1An orthonormal ensemblis a collection of orthonormal real-valued random variaptene being the con-
stant 1. A sequence of such ensemblaadependenif each ensemble is defined over an independent proba-
bility space. (SeeNJOOO04 for details.)
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of completely independent random variables.

Let f be a 4-f.r.v. over the space of multilinear polynomials vddgree at most and
monomials indexed byk]R. Suppose}fifllfll4 < 1. (In the following, we mildly overload
notation and useX] to denote the sef0, ...,k — 1}.) Concretely, we can speciffy by the
set of monomial coicients{f, YaelKR, Jal<tr Where|cx| is the number of non-zero entries in
a. As usual, we define Inff = ¥ cqqr o, 20 fz Note that Inf f is a degree-2 polynomial
in f. (Hence, the pseudo-expectation of (Ilﬁj2 is defined.)

Theorem 6.2(Invariance Principle for Fourth Momentfor = = Es 3, (Inf; )2,

EEf*=EE f*+ k%0 yz.
f X fy + \/;

(Since the expressionEy f* and Ey f* are degree-4 polynomials ifi, their pseudo-
expectations are defined.)

Using the SoS proof for hypercontractivity of low-degredypomials (over the en-
sembleY), the fourth momentE; Ey f4 is bounded in terms of the second moment
]Ef]Ey f2.  Since the first two moments of the ensemblésand Y match, we have
Es Ey f2 = E; Ex f2. Hence, we can bound the fourth momentfobver X in terms
of the its second moment and

Corollary 6.3. N
EE E f4 = 200) ]E(]E £2)2 + KOO 7.

(The corollary shows that for small enoughthe 4-norm and 2-norm df are within a

factor of 2. This bound is useful because the worst-case ratio of thesesisk®’) >
200)))

Proof of Theorem 6.2 We consider the following intermediate sequences of enk=mb
ZO = (X1,..., X1, Vi1, ..., YR). Note thatZ@ = ¥ andZ® = X. Forr € N, we
write f = E;f + D, f, whereE, f is the part off that does not dependent on coordinate
andD, f = f —E; f. Forallr € N, the following identities (between polynomials fjhold

E f4*- E f*= E(Ef+D/f)*- E (Ef+D,f)*
zn Z(r-1) zo Z(r-1)

= E 4 f)(D, f)® + (D, f)* = E 4(E f)(D;f)® + (D, f)*.
zo Z(r-1)

The last step uses that the first two moments of the ensemblasd Y, match and that
E,; f does not dependent on coordinate
Hence,

4_ b _ 3 4_ 3 4
Ef-Ef ZZ]I%4(Erf)(Drf) +(Of)' = E 4E NN+ ()

It remains to bound the pseudo-expectation of the rightdtside. First, we consider
the termy, Ez« (D; f)*. The expressiofE ¢ (D; f)* is the fourth moment of a Fourier-
polynomial with degree at most ¢. (Here, we use that the ensembles in the sequé&hce
consist of characters dﬁ*z which are Fourier polynomials of degree at mtosFurthermore,
Inf, f = ]Ez(r)(Drf)z is the second moment of the this Fourier-polynomial. Hebgdyy-
percontractivity of low-degree Fourler—polynomlali‘,r ]Ez(r)(Drf)4 < 3, 20tO(Inf, )2,
Thus, the pseudo-expectation is at mBgty, E ¢ (D; f)* < 20007 = KOr,
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Next, we consider the teryi, E 7« (E; f)(Dr f)3. (The remaining two terms are analo-
gous.) To bound its pseudo-expectation, we apply Cauchy&az,

1/2 1/2

B EEND N’ < [“?Z g;:rgErf)?(Drf)z] -[II;Z E (D f) ] (6.1)
Using hypercontractivity of low-degree Fourier-polynatsi we can bound the second fac-
tor of (6.1) by E¢ ¥, Ezo (D, f)* = k%7, It remains to bound the first factor ¢6.1).
Again by hypercontractivityE >« (E; f)2(Dy )2 < kOO ||E, f|[2-|D |12 < KO f||2-ID, |2,
By the total influence bound for low-degree polynomials, a&edd., ||D, f||2 < £]|f|[2. Thus
S Ezo(E )?(Dr f)? < KPO||f||%. Using the assumptiolt¢||f||* < 1, we can bound the
first factor of(6.1) by kO,

We conclude as desired that

< kPO 7

—[Tt

Ef*—Ef*
X Y

6.3 Interlude: Independent Rounding

In this section, we will show how to convert variables thais$a f2 < f to variablesf satis-
fying f2 = f. The derived variable$ will inherit several properties of the original variables
f (in particular, multilinear expectations). This constioi corresponds to the standard in-
dependent rounding for variables with values between 0 afith& main challenge is that
our random variables are fictitious.

Let f be a 4-f.r.v. overR". Supposefi2 < fi (in terms of an unspecified jointly-
distributed 4-f.r.v.). Note that for real numbexsthe conditionx? < x is equivalent to
x € [0, 1].

Lemma 6.4. Let f be a4-f.r.v. overR" and let i€ [n] such that ?— < fi. Then, there exists
an4-f.rv. (f, fi) overR™?* such thatE; 7(f? - ;)?> = 0 and for every polynomial P which
is linear in f; and has degree at moé4t

ﬁz

P(f, f) = EP(f, ).
f, f

=

Proof. We define the pseudo-expectation functidﬁ@lﬁ— as follows: For every polynomial
Pin (f, f;) of degree at most 4, |€’ be the polynomial obtained by replacir@_@ by fi until
P’ is (at most) linear mf. (In other words, we reducde modulo the r(—:‘latlon‘2 = fi.) We
deflne]Eff P(f, i) = E¢ P'(f, ;). With this definition,E; f2 - )? = 0. The operator
]Ef’fi is clearly linear (sinceR + Q) = P’ + Q’). It remains to verify positivity. LeP
be a polynomial of degree at most 4. We will shm/yf—Pz(f fi) > 0. Without loss of
generalityP is linear in fi. We expres® = Q + fiR, whereQ andR are polynomials in
f. Then, P2’ = Q%+ 2fiQR+ fiR%. Using our assumptiofi? < f;, we get P2)'(f, f;) =
Q%+ 2fiQR+ fiR? = Q? + 2fiQR+ f2R? = P%(f, f;). It follows as desired that

ﬁp2=@qujo>§P%nm>o.
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Corollary 6.5. Let f be a4-f.r.v. overR" and let | C [n] such that ? < fiforalli € I.
Then, there exists ahf.r.v. (f, fi) overR™!'l such thatf fl(f - f;)2=0foralli €l and
for every polynomial P which is multilinear in the variablgf}ic; and has degree at most
4, _

E P(f, f)) = EP(f, f;).

f.fi f

6.4 Dictatorship Test for Small-Set Expansion

LetQ = {0,...,k— 1} and letT,_, be the noise graph ai with second largest eigenvalue
1-&. Let f be a 4-f.r.v. ovelLy(QR). Supposef? < f (in terms of an unspecified jointly-
distributed 4-f.r.v.). Note that for real numbexsthe conditionx’ < x is equivalent to
x € [0, 1].

The following theorem is an analog of the “Majority is Stadifeesult MOO04].

Theorem 6.6. SupposeE{(E )2 < 62 Lett = Ef X, (Inf9 £)2 for ¢ = Q(log(1/s)).
Then,

]E<faTl—ef> < 51+Q(8) + kO(|Og(1/6)) . T1/8

f

(Here, we assume that 5 and are suficiently small.)

The previous theorem is about graph expansion (measuredhebyuadratic form
(f,T1_)). The following lemma allows us to relate graph expansiotht® 4-norm of
the projection off into the span of the eigenfunctions Bf_, with significant eigenvalue.
We will be able to bound this 4-norm in terms of the influence$ ¢using the invariance
principle in the previous section).

Lemma 6.7. Let f be a4-f.rv. over L»(QF). Suppose ¥ < f (in terms of unspecified
jointly-distributed4-f.r.v. s). Then for all > 0,

1;E<f,T1_8f> < (IEE f)3/4(1;E1E(P>Af)4)1/4 + M}EE f.

Here, R, is the projector into the span of the eigenfunctions pf, Wwith eigenvalue larger
than .

Proof. The following relation between polynomials holds
(f,Tiefy <Ef - (Ps,f) + AE f2.
By Corollary 6.5 there exists a 4-f.r.vf( ) overL,(QR)x Lo(QF) such thatf2 =; f. Then,
]I;E]E fo(Poyf) = f]fE_]E f.(P.,f) (using linearity inf)

]E 2. (P> f) (using f2 =¢ f)

)3/4 (¢ ]E(P>,1f)"')1/4 (usingLemma A.5(Holder))
3

* B EP.DY)T (using P =1 f)
3/4

(]E
(ErEf)
(Er Ef)

(B E(Ps., f)“)l/4 (using linearity inf) O
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Proof of Theorem 6.6 By Lemma 6.7

11;5<f,T1_8f> < (]];E]E f)3/4(]E]E(P>1f)4)1/4 + /l]];E]E f2.

UsingCorollary 6.3

]E(f,Tl_sf> < 200). (]];E]E f)3/4(]];5(]E 2)2 + - KOO 4 A]];E]E f2,

Here, ¢ = log(1/4)/. Using the relatiorf? < f and our assumptioRi+ (E f)? < 62, we get
E¢ E f2 < Ef E f < (E¢(E f)?)Y? < 6 (by Cauchy—Schwarz). Hence,

B(F 1o ) < (UA)OWA63%6% + V- (1792099914 4 26
< (1//1)0(1/8)55/4 + (l/A)O(Iog K/eg3/4,1/8 L 1. 5.

To balance the terms (2)°(/2) 54 and A8, we choosel = ). We conclude the desired
bound,
]];(f’ Tl—s f> < 51+Q(8) + kO(lOg(l/(S)) . T1/8 ) O

6.5 Dictatorship Test for Unique Games

Let Q = 7 (cyclic group of ordek) and letf be a 4-f.r.v. ovel,(Q x Q). Here, f(a, X)
is intended to be A variable indicating whether symbalis assigned to the point

The following graphT;__ onQ x QR corresponds to the 2-query dictatorship test for
Unique Games [KKMOO04],

T,..fax)=E E f(a+cy-c-I).

ceQ y~1-£X

Here,y ~1_. X means thay is a random neighbor ofin the graphr;_, (thee-noise graph
onQR).

We definef(X) := Eceq f(c, X — ¢ - I). (We think of f as a variable ovelr,(QR).) Then,
the following polynomial identity (inf) holds

(£, T f) = (f, Tif).

Theorem 6.8. Suppose ¥ < f and E{(E f)? < 62 Letr = E¢ 3, (Inf&0 £)2 for ¢ =
Q(log(1/6)). Then,

B(E, TL ) < 170 4 | Oloo(wia) . 178

f —&

(Here, we assume that 6 andr are syficiently small.)

Proof. Apply Theorem 6.60 boundE;(f, T1_. f). Use that fact thaE f = E f (as polyno-
mials in f). m|

6.6 Influence Decoding

Let U be a unique game with vertex sétand alphabetR]. Recall that we represefif as
a distribution over triplesy v, ) whereu,v € V andn is a permutation ofRj]. The triples
encode the constraints ®f. We assume that the unique gafifas regular in the same that
every vertex participates in the same fraction of constsain

20



Let Q = Zy (cyclic group of ordek). We reducel{ to a uniqgue gaméy = W, (U)
with vertex setv x QR and alphabef. Let f = {f,}.v be a variable ovel,(Q x QR)V.
The unique gamé#’ corresponds to the following quadratic formfin

(Lwh = E (u,,ﬁwu””(n)’ﬂ-e £y
(uv’ 7" )~Ulu
Here, (1,0, ) ~ U | udenotes a random constraint@fincident to vertex, the graphr__
corresponds to the dictatorship test ofitbe Games defined inSection 6.5andfv(”)(a, X) =
f,(a, 7.X) is the function obtained by permuting the I&toordinates according o(where
a.X(i) = Xn(i))-
We definegy = Ey )~ fv(”). Then,

<f’(Wf> = ]E <gU’T1_‘9gU> . (62)
ueV

Bounding the value of SoS solutions. Let f = {f }yv be a solution to the leval-SoS re-
laxation for the unique gan®/. In particular,f is ad-f.r.v. overL,(QxQR)V. Furthermore,
E¢(E fu)? < 1/K? for all verticesu € V.

By applyingTheorem 6.80 (6.2), we can bound the objective value bf

1/8
B(F, W) < /K90 1 000k (E E ru) ,
f f ueVv

wherer, = %, (Inf(*? g)2, Gu(x) = Buun-au £, andf,(x) = Eceo f.(c, x— - T).
Since Inﬁg) is a positive semidefinite form,

2 2
< E_ Inf0{0) = E _ Inf€Of)
u= Z ((u,v,n)~‘L(|u ' v Z (uv,m)~Uu a(r) ¢

Let h be the leveld/2 fictitious random variable over,(V x [R]) with h(u,r) = InfS“’ fu.
Let G4, be the label-extended graph of the unique gahe Then, the previous bound
on 7y shows thatEyey 7y < R- IG/hll%. Lemma A.1shows that? < h. On the other
hand, 3, h(u,r) < £|f > < €||full> (bound on the total influence of low-degree Fourier
polynomials). In particularE h < ¢ Eyevl| full?/R. Sincef is a valid SoS solution for the
unigue gameW, we haveE+| f |9 < 1/k¥2forallu e V. (Here, we assume thdts even.)
It follows that En(E h)?/2 < (&)%2.

The arguments in this subsection imply the following thewore

Theorem 6.9. The optimal value of the level-d SoS relaxation for the umigameW =
Wek(U) is bounded from above by

. 1/8
1/kQ(.9) + KOlogK) (R- mhax]l;;HGruhllz) )

where the maximum~ is over all levelaifictitious random variables h over,V x [R])
satisfying B < h andEn(E h)%/2 < ¢/R9/2,

Remark 6.10. Since the quadratic forriGe.h||? has only nonnegative cfiisients (in the
standard basis), we can uSerollary 6.5to ensure that the level/2 random variablén
satisfies in additiom? =g, h.
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6.7 Certifying Small-Set Expansion

Let T1_. be a the noise graph dr1}R with second largest eigenvalue-Z.

Theorem 6.11. Let f be leveM fictitious random variables over ({+1}R). Suppose that
f2 < f (in terms of unspecified jointly-distributed levkfictitious random variables) and
thatE¢ (E )2 < 62. Then,

1§< f, Ty f) < 61+

Proof. By Lemma 6.7(applying it for the cas€ = {0, 1}), for everya > 0,

1§<f,T1_.gf> < (@E f)“(@ E(Ps.f)HY4 + ME]E f.

For the graphl,_., the eigenfunctions with eigenvalue larger thaare characters with
degree at most log(1)/s. Hence Lemma 5.1implies E(P-.f)* < (1/2)°%9)|f||*. Since
f2 < f, we have|f||* < (E f)2. HenceE; E(Ps, f)* < (1/2)°%9) 42, Plugging in, we get

];E< f,T1of) < (1/Q)°D54 4 a5,
To balance the terms, we choose: §€), which gives the desired bound. O

6.8 Putting Things Together

LetT,_, be athe noise graph ¢m1)R with second largest eigenvaluerl. Let?/ = U, rbe
an instance of Wioue Games with label-extended grapB, = T1_, (e.g., the construction
in [KV05]).

CombiningTheorem 6.9with d = 4) andTheorem 6.1X4ives the following result.

Theorem 6.12. The optimal value of the lev8-SoS relaxation for the unique garfi&’ =
W k(U Rr) is bounded from above by

1/kE¥e) 4 KOUogk) | R-0(m)

In particular, the optimal value of the relaxation is clogeli/k®) if logR > (logk)?/n.

6.9 Refuting Instances based on Short Code

Let U = (L{”R be an instance of &qoue Games according to the basic construction in
[BGH*11]. (The label-extended graph @i will be a subgraph off;_. induced by the
subset of{+1}R corresponding to a Reed—Muller code, that is, evaluatidrievo-degree
F>-polynomials.)

LetW’ = ‘W;’k((LI;LR) be the uniqgue game obtained by applying the short-codabfih
reduction of BGH"11].

The following analog offheorem 6.1holds.

Theorem 6.13. The optimal value of the lev8-So0S relaxation for the unique gari&” =
W;,k(ﬂ;,,R) is bounded from above by

1/KE) 4 KOMogh) . R0

In particular, the optimal value of the relaxation is clogel/k®) if logR > (logk)?/n.
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The proof ofTheorem 6.13s almost literally the same as the proof ieorem 6.12
In the following, we sketch the main arguments why the promésih’t have to change.
First, several of the results of the previous sections afiplyeneral graphs and instances
of Unique Games. In particular,Lemma 6.7applies to general graphs afdheorem 6.9
applies to general gadget-composed instances of uniquesggassuming a “Majority is
Stablest” result for the gadget. In fact, the only parts tkequire further justification are
the invariance principleTheorem 6.2 and hypercontractivity bound.émma 5.). Both
the invariance principle and the hypercontractivity boand about the fourth moment of
a low-degree Fourier polynomial (whose @bgents are fictitious random variables). For
the construction of fGH"11], we need to argue about the fourth moment with respect to a
different distribution over inputs. (Instead of the uniforntrilsition, [BGH*11] considers
a distribution over inputs related to the Reed—Muller cpdelowever, this distribution
happens to b&-wise independent fdk/4 larger than the degree of our Fourier polynomial.
Hence, as a degree-4 polynomial in Fourierfioents, the fourth moment with respect
to the BGH*11]-input distribution is the same as with respect to the unifaistribution,
which considered here.

7 Hypercontractivity of random operators

We already saw that thBensor-SDP algorithm provides non-trivial guarantees on the>2

4 norms of the projector to low-degree polynomials. In th@st®n we show that it also

works for a natural but very fierent class of instances, namely random linear operators.
LetA = Zi"z‘l e.aiT/ \/n, whereg is the vector with a 1 in thé" position, and each; is

chosen i.i.d. from a distributio® on R". Three natural possibilities are

1. Dsign: the uniform distribution ovef-1, 1}"
2. Dgaussian @ vVector ofnindependent Gaussians with mean zero and variance 1
3. Dynit: @ uniformly random unit vector oR".

Our arguments will apply to any of these cases, or even to gemeral nearly-unit vectors
with bounded sub-Gaussian moment (details below).

Before discussing the performance Tdnsor-SDP, we will discuss how the 2» 4-
norm of A behaves as a function ofandm. We can gain intuition by considering two
limits in the case ofDgaussian If N = 1, then||Allo_4 = ||all4, for a random Gaussian vector
a. For largem, ||al4 is likely to be close to 84, which is the fourth moment of a mean-zero
unit-variance Gaussian. By Dvoretzky's theoreRisP9, this behavior can be shown to
extend to higher values of. Indeed, there is a universal> 0 such that ifn < cyms?,
then w.h.pJ|Allo4 < 3Y4 + &. In this case, the maximum value |p&x|4 looks roughly the
same as the average or the minimum value, and we alsd|Badig > (34 — £)||x||» for all
x € R". In the cases aDsign and Dynit, the situation is somewhat more complicated, but
for largen, their behavior becomes similar to the Gaussian case.

On the other hand a simple argument (a variant of Corolléx®) shows that|/Alo_4 >
n'/2/mt/4 for any(not only random)mnxn matrix with all +1/ 4/n entries. A nearly identical
bound applies for the case when tlyeare arbitrary unit or near-unit vectors. Thus, in the
regime wheren > w(+/m), we always havélAl|2_4 > w(1).

The following theorem shows thaensor-SDP achieves approximately the correct an-
swer in both regimes.
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Theorem 7.1. Let &,...,ayn be drawn i.i.d. from a distribution® on R" with D ¢
{Z)Gaussian.@sign,@unit}, and Iet A = 2:21 Qa1T/\/ﬁ Then Whp TenSOI’—SDP(A) <

2
3+ cmax(Zr, ;) for some constant s 0.

From Theorenv.1and the fact thafAl5_, < Tensor-SDP(A), we obtain:

Corollary 7.2. Let A be as in Theorem.1. Thendc > 0 such that w.h.p.

V44cL ifn< ym
||A||zﬂ4<{ gz Y

] (7.2)
Craa ifn > 4/m

Before proving Theoreri.1, we introduce some more notation. This will in fact imply
that Theoreni.1 applies to a broader class of distributions. For a distidiouD on RN,
define they, norm||D]|,, to be the smallest > 0 such that

lw2){PNP/2
max E e o <2 (7.2)
veS(RN) a~D

or «o if no finite suchC exists. We depart from the normal convention by includingadr
of NP2 in the definition, to match the scale ofl[PTJ11. The y» norm (technically a
seminorm) is also called the sub-Gaussian norm of the loligioin. One can verify that for
each of the above examples (sign, unit and Gaussian veate($)) < O(1).

We also require thaD satisfies @oundednessondition with constanK > 1, defined
as

P _m[awaing > K max(L (m/N)Y4 | < e YN, (7.3)

Similarly, K can be taken to b®(1) in each case that we consider.
We will require a following result of ALPTJ1Q ALPTJ1]] about the convergence of
sums of i.i.d rank-one matrices.

Lemma 7.3 ([ALPTJ1T). Let 9 be a distribution onRN such thatE,.qy w0’ = |,
1Dy, < ¢ and (7.9) holds for®’ with constant K. Lets,...,vm be drawn i.i.d. from
2. Then with probability> 1 — 2 expc VN), we have

(L-a) <= vl <1+, (7.4)

i=1

=l

wheree = C(y + K)? max(N/m, vN/m) with ¢, C > 0 universal constants.

The N < m case (when theyN/m term is applicable) was proven in Theorem 1 of
[ALPTJ1]], and theN > m case (i.e. when the max is achieved Wym) was proven in
Theorem 2 of ALPTJ11]] (see also Theorem 3.13 ohLPTJ1Q).

Proof of Theoren7.1 DefineAz, = 2 3™ aal ® aa’. Forn? x n? real matricesX, Y,
define(X,Y) := TrXTY/n? = Ej jq XijYij. Additionally define the convex sef to be
the set ofn? x n? real matriceX = (X(i1,i2),(i3,i4))i1,i2,i3,i4e[n] with X > 0, Ei jern X, j).i.j) = 1
and X(ivip).(isis) = Klixayixe).(x@.ix@) fOF @Ny permutationr € S,. Finally, lethx(Y) :=

maxxex{X, Y). It is straightforward to show (c.f. Lemnta3) that

Tensor—SDP(A) = h)((Az’z) = r)r(w;(x(X, A2’2>. (7.5)
€
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We note that ifX were defined without the symmetry constraint, it would siyripé the
convex hull ofxx" for unit vectorsx € R" and Tensor-SDP(A) would simply be the
largest eigenvalue %, . However, we will later see that the symmetry constraintugial

to Tensor-SDP(A) beingO(1).

Our strategy will be to analyzéy,, by applying Lemmar.3 to the vectorsy; :=
7Y2(a ® &), wherez = Eaal ® aa, and /2 denotes the pseudo-inverse. First, ob-
serve that, just as thg, norm of the distribution oveg; is constant, a similar calculation
can verify that they; norm of the distribution oves; ® g is also constant. Next, we have
to argue thaE~1/2 does not increase the norm by too much.

To do so, we computE for each distribution ovea; that we have considered. LEthe
the operator satisfyin§(x® y) = y ® x for any x,y € R"; explicitly F = Pn((1, 2)) from
(9.9). Define

O = Za ®6 (7.6)
i-1

A= Ze.qT e (7.7)
i-1

Direct calculations (omitted) can verify that the casesanidom Gaussian vectors, random
unit vectors and randoml vectors yield respectively

YGaussian= | + F + @7 (7.8a)
n

Zunit = mZGaussian (7.8b)

Zsign = ZGaussiar 2A (7.8¢c)

In each case, the smallest nonzero eigenvalu® isfQ(1), sov = 2 Y2(g ® &) has
Y1 < O(1) and satisfies the boundedness conditiaf) (with K < O(1).

Thus, we can apply Lemmia3 (with N = rankZ < n? ande := cmax/ vm, n?/m))
and find that in each case w.h.p.

AZ,Z:%ZaaI@aaI5(1+s))25(1+3)(| +F+00") (7.9)
i=1

Sincehx(Y) > 0 wheneverY > 0, we havehy(Az2) < (1 + g)hx(X). Additionally,
hx(I+F +®®") < hx(1)+hy(F)+hy®®T), so we can bound each of three terms separately.
Observe that andF each have largest eigenvalue equal to 1, arfgh$b < 1 andhy(F) <
1. (In fact, these are both equalities.)

However, the single nonzero eigenvaluel@b’ is equal ton. Here we will need to use
the symmetry constraint ofi. Let X" be the matrix with entrieX; ;. iy = X s.i2)-

If X e X thenX = XI'. Additionally, (X, Y) = (X, YI). Thus
hx(@DT) = hy((@0")") < (@DT)" |22 = L.

This last equality follows from the fact thab®T)' = F.
Putting together these ingredients, we obtain the prodiettieorem. ]

It may seem surprising that the factor df“8emerges even for matrices with, say,
entries. An intuitive justification for this is that even ife columns ofA are not Gaussian
vectors, most linear combinations of them resemble Gaussidhe following Lemma
shows that this behavior begins as soom &sw(1).

25



Lemma7.4. Let A= 3, ea’/ Vn with E; |[gl3 > 1. Then||All—4 > (3/(1 + 2/n))Y4.

To see that the denominator cannot be improved in generséred that whem = 1 a
random sign matrix will have 2> 4 norm equal to 1.

Proof. Choosex € R" to be a random Gaussian vector such ﬂE),ajlle% =1. Then
E[AX; = EEn?(a 0" = " EE(a, %" = 3E|laill; > 3. (7.10)
| | |

The last equality comes from the fact tiaf, X) is a Gaussian random variable with mean
zero and variancﬁa;”%/n. On the other handgy ||x||‘2‘ =1+ 2/n. Thus, there must exist an
x for which [|AX[3/IIXI[3 > 3/(1 + 2/n). O

Remark 7.5. It is instructive to consider a variant of the above argum@&rgimpler upper
bound on the value ofensor-SDP(A) is given simply by||A2»|l. However, the presence
of the ®®T term means that this bound will beéfdy ann-dependent factor. Thus we
observe that the symmetry constraintsTehsor-SDP provide a crucial advantage over
the simpler bound using eigenvalues. In the language oftgmaimformation (see Sec-
tion 9.3), this means that the PPT constraint is necessary for th@@pmation to succeed.
See Sectiord.3.2for an example of this that applies to higher levels of thedrshy as
well.

On the other hand, when tlagare chosen to be randotemplexGaussian vectors, we
simply haveE aia’ ®aa = | +F. In this case, the upper boufidnsor-SDP(A) < ||Az2ll is
already sticient. Thus, only real random vectors demonstrate a sepafattween these
two bounds.

8 The 2-to-q norm and small-set expansion

In this section we show that a graph ismall-set expandeif and only if the projector
to the subspace of its adjacency matrix’s top eigenvaluesahaounded 2» ¢ norm for
evenqg > 4. While the “if” part was known before, the “only if” part isomel. This
characterization of small-set expanders is of generatéateand also leads to a reduction
from the S1arL-Set Expansion problem considered irjS1( to the problem of obtaining a
good approximation for the 2> g norms.

Notation. For a regular graplic = (V,E) and a subsef < V, we define thaneasure
of S to beu(S) = |S|/|V| and we defings(S) to be the distribution obtained by picking a
randomx € S and then outputting a random neighboof x. We define theexpansiorof
S, to be®(S) = Py eg(s)ly ¢ S|, wherey is a random neighbor of. Foré € (0,1), we
definedg(6) = Minscy:u(s)<s Pc(S). We often drop the subscri@ from ®g when it is
clear from context. We identif¢s with its normalized adjacency (i.e., random walk) matrix.
For everya € [-1, 1], we denote by ,(G) the subspace spanned by the eigenvectors of
G with eigenvalue at least. The projector into this subspace is denoRd(G). For a
distribution D, we letcp(D) denote the collision probability dd (the probability that two
independent samples frotare identical).

Our main theorem of this section is the following:

Theorem (Restatement ofheorem 2.3 For every regular graph G > 0 and even q,
1. (Norm bound implies expansiorifor all 6 > 0,& > 0, [|P51(G)llzng < &/6@2)/2
implies thatdg(5) > 1 -1 — £2.
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2. (Expansion implies norm boundhere is a constant ¢ such that for alb- 0, g (6) >
1 - 229 implies||P5(G)ll2—q < 2/ V4.

One corollary of Theorerd.4is that a good approximation to the-2 4 norm implies
an approximation of;(G) 2.

Corollary 8.1. If there is a polynomial-time computable relaxati®ryielding good approx-
imation for the2 — q, then theSmall-Set Expansion Hypothes§[RS1(is false.

Proof. Using [RST104, to refute the small-set expansion hypothesis it is endogtome
up with an éficient algorithm that given an input graghand stficiently smallé > 0, can
distinguish between th¥escase: dg(6) < 0.1 and theNo casedg(s’) > 1 — 2-¢l09(1/9)
for any¢’ > § and some constawt In particular for ally > 0 and constand, if 6 is small
enough then in th&lo casedg(6%4) > 1 — . Using Theoren?.4, in the Yescase we know
IV1/2(G)ll2—4 > 1/(1054), while in theNo case, if we choosg to be smaller them(1/2)
in the Theorem, then we know thi¥1,2(G)ll>—4 < 2/ V502, Clearly, if we have a good
approximation for the 2» 4 norm then, for sfiiciently smalls we can distinguish between
these two cases. ]

The first part of Theorerd.4 follows from previous work (e.g., se&y05]). For com-
pleteness, we include a proof in Appen&xThe second part will follow from the following
lemma:

Lemma 8.2. Set e= (4, ) := 2°9/4, with a constant &< 100. Then for everyl > 0 and
1>6 >0, if Gis a graph that satisfiesp(G(S)) < 1/(¢/S|) for all S withu(S) < ¢, then
Ifllq < 2l fll2/ V5 for all f € Vs(G).

Proving the second part of Theorem2.4from Lemma 8.2 We use the variant of the
local Cheeger bound obtained iatp1Q Theorem 2.1], stating thatdg(6) > 1—n then for
every f € L(V) satisfying| f|I2 < dlIflI3, IGfII5 < ¢l fll3. The proof follows by noting
that for every seg, if f is the characteristic function & then||f|l; = ||f||§ = u(S), and
cp(G(S)) = IG fII3/(u(S)ISD. O

Proof of LemmaB.2 Fix 2 > 0. We assume that the graph satisfies the condition of the
Lemma withe = 2°9/2, for a constant that we'll set later. LeG = (V, E) be such a graph,
and f be function inV.,(G) with ||f|l> = 1 that maximizes|f|lq. We write f = Zi":‘l aixi
wherey, ..., ym denote the eigenfunctions &f with valuesas, ..., Ay that are at least.
Assume towards a contradiction thHgflq > 2/ V6. We'll prove thatg = {Ql(cri//li))(i
satisfies|gllq > 10/|f|lq/A. This is a contradiction since (using € [, 1]) llgll2 < [Ifll2/4,
and we assumeflis a function inV.,(G) with a maximal ratio of| f|lq/I f|l2.

Let U C V be the set of vertices such th&{x)| > 1/ Vs for all x € U. Using Markov
and the fact thaE,eyv[ f(X)?] = 1, we know thap(U) = |U|/|V| < §, meaning that under our
assumptions any subsgtc U satisfiescp(G(S)) < 1/(€lS|). On the other hand, because
||f||g > 249/5692, we know thatU contributes at least half of the ternﬁllg = Exev f(X)9.
That is, if we definar to beu(U) Excy f(X)9 thena > ||f||3/2. We’'ll prove the lemma by
showing thatlgllg > 10a/A.

Let ¢ be a sticiently large constantc(= 100 will do). We defineJ; to be the set
{(x e U : f(X) € [c/Vs,c*1/V6)}, and letl be the maximal such thatU; is non-empty.

2Note that although we use the-2 4 norm for simplicity, a similar result holds for the-2 g norm for
every constant evequ
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Thus, the set8lo, ..., U, form a partition ofU (where some of these sets may be empty).
We leta; be the contribution otJ; to a. That is,e; = uj Exey, f(X)9, wherey; = u(U;).
Note thate = ag + - - - + ;. We’'ll show that there are some indicgs. . ., ij such that:

() ai, +---+ai, > a/(2cW).

(i) Forallj e [J], there is a non-negative functiay) : V — R such thatEycy g;(X)9 >
ew;, /(106%)92.

(iii)y ForeveryxeV, gi(X) +---+g3(X) < lg(X)|.

Showing these will complete the proof, since it is easy totBaefor two non-negative
functions and even, ¢’,g”, E(¢g'(X) + ¢’ (X))? > Eg’'(X)? + Eg”(X)9, and henckii) and
(iii) imply that

lgl} = Eg(9* > (/(10c2)92) ) o, . (8.1)
i
Using (i) we conclude that foe > (10c)9/ 4, the right-hand side oB(1) will be larger than
10a/A.

We find the indices$, . . ., i iteratively. We letl be initially the sef0..1} of all indices.

Forj=1,2,...we do the following as long as is not empty:

1. Letij be the largest index if.
2. Remove from? every index such thaty; < ¢, /271,

We let J denote the step when we stop. Note that our indiggs.,i; are sorted in
descending order. For every stgpthe total of then;’s for all indices we removed is less
thancmaij and hence we satisfy). The crux of our argument will be to shafi) and(iii) .
They will follow from the following claim:

Claim 8.3. Let SC V andgB > 0 be such thaiS| < § and|f(X)| > Bforall x € S. Then
there is a set T of size at leagBesuch thatEyt g(x)? > 82/4.

The claim will follow from the following lemma:

Lemma 8.4. Let D be a distribution witlep(D) < 1/N andg be some function. Then there
is a set T of size N such thBlcr g(X)? > (E g(D))?/4.

Proof. Identify the support oD with the set M] for someM, we letp; denote the probabil-

ity that D outputsi, and sort they's such thatp; > p,--- pu. We letg’ denoteE g(D); that
is, 8 = Zi“ﬂl pig(i). We separate to two caseslf.y pig(i) = B8/2, we define the distribu-
tion D’ as follows: we seP[D’ = i] to be p; fori > N, and we let ali < N be equiprobable
(that is be output with probabilityZ(i'\i1 pi)/N). Clearly,E |g(D’)| = Yi-n pig(i) = 8'/2, but

on the other hand, since the maximum probability of any etdrimeD’ is at most IN, it

can be expressed as a convex combination of flat distritgibear sets of siz8l, implying

that one of these sefssatisfiesEyct |g(X)| = 8//2, and henc&,ct g(X)? > p'2/4.

The other case is thiﬂ\ll pig(i) = B'/2. In this case we use Cauchy-Schwarz and argue

that N N
p2a< [Z p?) [Z g(i)z) : (8.2)

i=1 i=1
But using our bound on the collision probability, the rigtatnd side of §.2) is upper
bounded by 321, 9(1)? = Exeqny 9(X). O
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Proof of Claim8.3from LemmaB.4. By constructionf = Gg, and hence we know that for
everyx, f(X) = E,.xg(y). This means that if we ldD be the distributiorG(S) then

ElgD) = E Elgw) > E|E g@) = EIf(XI>5.

By the expansion property @, cp(D) < 1/(€S]) and thus by Lemma&.4 there is a seT
of sizegS| satisfyingEy.t g(X)? > 82/4. O

We will construct the functionss, ..., g; by applying iteratively Clain8.3. We do the
followingfor j=1,...,J:

1. LetT; be the set of sizelU;,| that is obtained by applying Clai&3to the function
f and the set;,. Note thatE,ct; g(X)? >ﬁi2j /4, where we leB; = ¢'/ V6 (and hence
for everyx e Uj, B < |[f(X)| < ¢B)).

2. Letg’j be the function on input that outputsy-|g(x)| if x € T; and 0 otherwise, where
y < 1is a scaling factor that ensures tlitr, ¢'(X)* equals exactlygizj /4.

3. We definegj(x) = max(0, ¢/ (X — Si<j gk(¥)}.

Note that the second step ensures #jax) < |g(x)I, while the third step ensures that
g1(X) + -+ +gj(x) < g(x) for all j, and in particulag(x) + - - - + g3(x) < g(X). Hence the
only thing left to prove is the following:

Claim 8.5. Eyev gj(X)% > ex;, /(10c)¥?
Proof. Recall that for every, «; = ui Exey, f(X)9, and hence (usindg(x) € [8i, ¢B;) for

x e Up):
wip? < @i < picip? . (8.3)
| |

Now fix T = Tj. SinceEyey g;(X)9 is at least (in fact equaly(T) Exer ¢;(X)9 and
u(T) = eu(U;,), we can used.3) andExer gj(X)® > (Exergj(X)?)¥2, to reduce proving the
claim to showing the following:

E g/(9? > (5)*/(10c%) = 57 /10. (8.4)

We know thatEyct g’j(x)2 = ﬁizj /4. We claim that §.4) will follow by showing that for
everyk < j,

E g,(x)* <1007 B2 /4, (8.5)
xeT j
wherei’ = ix —i;j. (Note that’ > 0 since in our construction the indicis. .., i, are sorted

in descending order.)

Indeed, 8.5) means that if we let momentarilly|| denote \/Exet g{(X)? then

(o)

lgill > g1l = 1 Zieej gl > gl = > llgwll > llgf i@ - >" 107) > 08lgfll . (8.6)
k<j i’=1

The first inequality holds because we can wjeasg’ — h;, whereh; = min{g], Dk<j 9k}
Then, on the one handly;|l > IIg’jII — |Ihjll, and on the other hangh;|| < [|Xk<;j g«ll since
g; > 0. The second inequality holds becallsgll < llg|l. By squaring §.6) and plugging

in the value 011|g’j||2 we get 8.4).
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Proof of (8.5). By our construction, it must hold that
0, /2 < e (8.7)

since otherwise the index would have been removed from tifeat the K" step. Since
Bi, :,Bijc'/, we can plug8.3) in (8.7) to get

G0 2 <
or _
Hiy S Hi; (Z/C)4| C_G .

Since[T;| = gUj| for all i, it follows that[Ty|/|T| < (2/c)* c°. On the other hand, we
know thatExcr, g, (X)* = 8% /4 = c2"/3ﬁ /4. Thus,

E g 00% < 2V 052 14 < (2412 B /4,

and now we just choosesufficiently large so that?/2* > 100. O

9 Relating the 2-to-4 norm and the injective tensor norm

In this section, we present several equivalent formulatiohthe 2-to-4 norm: 1) as the
injective tensor norm of a 4-tensor, 2) as the injectivedaemerm of a 3-tensor, and 3) as
the maximum of a linear function over a convex set, albeit asbere the weak membership
problem is hard. Additionally, we can consider maximizasi@ver real or complex vectors.
These equivalent formulations are discussed in Seétibn

We use this to show hardness of approximation (Theokebp for the 2-to-4 norm
in Section9.2, and then show positive algorithmic results (Theor2rg) in Section9.3
Somewhat surprisingly, many of the key arguments in thestioss are imported from the
guantum information literature, even though no quantunoritlyns are involved. It is an
interesting question to find a more elementary proof of tseltén Sectiord.3.

We will generally work with the counting norrigll, defined agixl, = (% 1% |P)L/P,
and the counting inner product, defined yy) := X'y, where* denotes the conjugate
transpose.

9.1 Equivalent maximizations
9.1.1 Injective tensor norm and separable states

Recall from the introduction the definition of the injectitensor norm: ifVy,...,V, are
vector spaces witll € Vi ® --- ® Vi, then||Tlliy; = maxKT,(x1 ® --- ® X)) © X1 €
S(V1),..., % € S(V;)}, whereS(V) denotes thd_,-unit vectors in a vector spacé. In
this paper we use the term “injective tensor norm” to meanitfextive tensor norm of
{> spaces, and we caution the reader that in other contexts & n@ore general meaning.
These norms were introduced by Grothendieck, and they dteefudiscussed in{ya04.
We will also need the definition of separable states from twrarinformation. For a
vector spac&/, defineL(V) to be the linear operators &f and defineD(V) = {p € L(V) :
p>=0,Trp =1} = conMwv* : v € S(V)} to be thedensity operatorenV. The trace induces
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an inner product on operatoréX, Y) = Tr X*Y. An important class of density operators
are theseparable density operatorkor vector space¥;, ..., V,, these are

SepW,.... V) = conv{vlv’i ®---Quy : Vi,ui € S(Vi)}.

If V=V; ==V, then let Sef{V) denote Sep(s,...,V;). Physically, density opera-
tors are the quantum analogues of probability distribj@nd separable density operators
describe unentangled quantum states; conversely, eathatgltes are defined to be the set
of density operators that are not separable. For readeifdiamith quantum information,
we point out that our treatmentftérs principally in its use of the expectation for norms and
inner products, rather than the sum.

For any bounded convex st define thesupport functiorof K to be

hk (X) := maxiKx, y).
yeK

Defineg e F" to be the vector with 1 in thé" position. Now we can give the convex-
optimization formulation of the injective tensor norm.

Lemma 9.1. Let V4,...,V,; be vector spaces with n= dimV;, and Te V1 ® --- ® V,.
Choose an orthonormal basis.e.., e, for V;. Define T,...,T, € V1®---®V,, by
T=3" Ti®eanddefine Me L(V1®---®V;_1) by M= Z”’ T;T'. Then

"T”ﬁ” = hSep(\/l ..... Vr_l)(M)- (9-1)

Observe that anyl > 0 can be expressed in this form, possibly by paddingp be
at least raniM. Thus calculating] - [li,; for r-tensors is equivalent in fliiculty to comput-
ing hseﬁ—l for p.s.d. arguments. This argument appeared beforgimlD], where it was
explained using quantum information terminology.

It is instructive to consider the= 2 case. In this cas&, is equivalent to a matriX and
ITlin; = ITll,2. Moreover SelIF™) = D(E™) is simply the convex hull ofv* for unit
vectorsv. ThushSepx(IFnl)(M) is simply the maximum eigenvalue & = TT". In this case,
Lemma9.1 merely states that the square of the largest singular vdldeis the largest
eigenvalue off T*. The general proof follows this framework.

Proof of Lemma&®.1

Tllnj = max T, 9.2
" ”m] X ES(VA).. o3 €S(V1) K X1 ®- ®Xr>| ( )

X1€S(V1),-. Xr—1€S(Vr_1) X €S(V}) Z< i» X1 Xr—1) - (&, X) (9.3)

) e Thxe: e 9.4

X ESVa) 3 ES(Vr1) "Z< > X1 X-1)&ll2 (9.4)

Therefore
Ny
T = max T-,)( R QX 2 9.5
L L SN | 2( X x-nell3 9.5)
Ny
x1€S(V1),.... %r~1€S(Vr-1) ; KTi, X -5 (9.6)
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Ny
X1€S(V1),.... Xr—1€S(Vr_1) ( ; iljsA1Aq Xy Xr) ( )

..... {i TiTi*) (9.8)

O

|
>

w
@®
]
<

=
<

=

=

In what follows, we will also need to make use of some propentif symmetric tensors.
Define Sk to be the group of permutations df|[and defineP,(r) € L((F")K) to be the
operator that permutdstensor copies of" according tor. Formally,

Par) = > (X)eel,- (9.9)

i1, reld] k=1

Then defineVXIF" to be the subspace of vectors I'f®" that are unchanged by eaBh(r).
This space is called theymmetric subspaceA classic result in symmetric polynomials
states thav'IF" is spanned by the vectofs® : v € IF"}.13

One important fact about symmetric tensors is that for thje¢densor norm, the vectors
in the maximization can be taken to be equal. Formally,

Fact9.2. If T € V'IF" then
- r
ITllinj = max KT.x*). (9.10)

This has been proven in severaffdrent works; see the paragraph above Eq. (3.1) of
[CKPOQ for references.

9.1.2 Connection to the 2-to-4 norm

LetA=3Y", aaiT, so thatay, ..., an € R" are the rows ofA. Define

As = Z a® e (R")® (9.11)
i=1

A3:Za;®a;®a ceR"®R"®R™ (9.12)
i=1

Aoa= ) aal @aal e L((R")®) (9.13)
i=1

The subscripts indicate that that is anr-tensor, andA, s is @ map fromr-tensors tos-
tensors.

Further, for a real tensdr € (R")®", define||T|linj¢) to be the injective tensor norm that
results from treating’ as a complex tensor; that is, MEX, X1 ® --- @ X ) : X1,..., % €
S(C")}. Forr > 3, |[Tllinji¢; can be larger thalfiT|j,; by as much asV2 [CKPO(.

Our main result on equivalent forms of the24 norm is the following.

Lemma 9.3.
4 2 2
||A||2_>4 = ”A4”inj = ||A3||inj = ||A4||inj[C] = ”A3”inj[C] = hSeﬁ(]Rn)(AZ,Z) = hSeﬁ(Cn)(Az,z)
B3For the proof, observe that" € V'IF" for anyv € F". To construct a basis for'IF" out of linear combina-

tions of diferentv®, letz, ..., Z, be indeterminates and evaluate th®ld derivatives of f1e; + - - - + z,6,)*"
atz; =---=2,=0.
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Proof.

A2, = max Z (&, %" (9.14)
= 4
= e (A X (9.15)
e {v,nXA,ES(R )I<A4 X1 ® X ® X3 ® Xu)| (9.16)

Here .16 follows from Fact9.2
Next one can verify with direct calculation (and using me&xn) (v, 2 = ||vll,) that

max (Aq, X% = Mmax (A2, xx" @ xxTy = max max (Ag, x®x®2°.  (9.18)
xeS(RM) XeS(R") zeS(R™

Now definez(i) := (g, 2» and continue.

m

_ Ya )2
Jnax max A3, X® X® 2)| = Jnax max Re i:l Z(iXa, X (9.19)
_ H . 2
= max max ReZ;‘ 2(iXai, X) (9.20)
_ \a. al
= max| .; 20)aia 12 (9.21)
m
= max max Re X, aXa, 9.22
max max, ;z(x aXa.y  (9.22)
= Asllinitey = lAsllin; (9.23)

From Lemmad.1, we thus havllAll5_; = Ngegrn (A2.2) = hsegcn (A22).

To justify (9.22), we argue that the maximum i8.Q1J) is achieved by taking all th&i)
real (and indeed nonnegative). The resulting maltiz(i)a; aiT is real and symmetric, so
its operator norm is achieved by takixg= y to be real vectors. Thus, the maximum in
lAsllinj ) is achieved for reak, y, zand as a resullAsllinjic; = lAsllin;-

Having now made the bridge to complex vectors, we can workwads to establish
the last equivalencelA4|linjjc;. Repeating the argument that led 01(7) will establish that

Aullinjc) = MaXes(cry Maes(cm) KA, X® X® 2 = ||A3"§1j[C]' O

9.2 Hardness of approximation for the 2-to-4 norm

This section is devoted to the proof of Theor2r, establishing hardness of approximation
for the 2-to-4 norm.

First, we restate Theore5 more precisely. We omit the reduction to whaAris a
projector, deferring this argument to Coroll&h®, where we will further use a randomized
reduction.

Theorem 9.4. (restatement of Theore?b) Letg be a 3-SAT instance with n variables and
O(n) clauses. Determining whetheris satisfiable can be reduced in polynomial time to
determining whethefA||>—4 > C or||All2—4 < ¢ where0 < ¢ < C and A is an nx m matrix.
This is possible for two choices of parameters:
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1. m= poly(n), and Gc > 1+ 1/npoly log(n); or,

2. m= exp(y/npolylog() log(C/c)).
The key challenge is establishing the following reduction.

Lemma 9.5. Let M € L(C" ® C") satisfy0 < M < |. Assume that either (case Y)
hsepan)(M) = 1 or (case N)hsepan(M) < 1 -6. Let k be a positive integer. Then
there exists a matrix A of sizé*nx n? such that in case YA+ = 1, and in case N,
IAIlo4 = (1 — 6/2)X. Moreover, A can be constructegfieiently from M.

Proof of Theoren®.4. Once Lemma.5is proved, Theoren2.5 follows from previously
known results about the hardness of approximaligg). Let¢ be a 3-SAT instance with
variables an®@(n) clauses. In Theorem 4 ofNN] (improving on earlier work of Gur03),
it was proved thatp can be reduced to determining whethfeppe nc)(M) is equal to 1
(“case Y”) or< 1-1/nlog®(n) (“case N”), wherec > 0 is a universal constant, amdl is an
efficiently constructible matrix with & M < |. Now we apply Lemm®.5with k = 1 to
find that exists a matrii of dimension polyf) such that in case YAll.4 = 1, and in case
N, |All,_.4 < 1-1/2nlog®(n). Thus, distinguishing these cases would determine whethe
is satisfiable. This establishes part (1) of Theoh

For part (2), we start with Corollary 14 oHM10], which gives a reduction from de-
termining the satisfiability o to distinguishing between (“case Yhsepmm)(M) = 1 and
(“case N")hsepmm)(M) < 1/2. Again 0< M < |, andM can be constructed in time poiyy
from ¢, but this timem = exp(+/npoly log(n)). Applying Lemma9.5in a similar fashion
completes the proof. m|

Proof of Lemm&.5. The previous section shows that comput|j#gl,_,4 is equivalent to
computinghsepan)(A22), for Az, defined as inq.13. However, the hardness results of
[Gur03 GNN, HM10] produce matriced that are not in the form of\;». The reduction
of [HM10] comes closest, by producing a matrix that is a sum of terntiseoformxx* @ yy*.
However, we need a sum of terms of the foxxi ® xx*. This will be achieved by a variant
of the protocol used inHM10].

Let Mg € L(C"®C") satisfy 0< M < |. Consider the promise problem of distinguishing
the casefisepp,n)(Mo) = 1 (called “case Y”) fromhsepan(Mo) < 1/2 (called “case N”). We
show that this reduces to finding a multiplicative approxiovafor ||All,_,4 for some realA
of dimensionn® for a constantr > 0. Combined with known hardness-of-approximation
results (Corollary 15 of fiM1Q]), this will imply Theorem2.5.

DefineP to be the projector onto the subspace@f)f* that is invariant undeP,((1, 3))
andPn((2,4)) (see Sectio®.1for definitions). This can be obtained by applyiRg((2, 3))
to v2C" ® v2C", where we recall thav?>C" is the symmetric subspace @)®?. SinceP
projects onto the vectors invariant under the 4-elemeniggenerated by, ((1, 3)) and
Pn((2, 4)), we can write it as

_ T+ Pn(@.3)) I +Pn((24)

= 9.24
An alternate definition oP is due to Wick’s theorem:
P= ]Eb[aa* ® bb*®aa’ ® bb'], (9.25)
a,

where the expectation is taken over complex-Gaussianfigtd vectors, b € C" normal-
ized so thatE|jall3 = E|Ibl2 = n/ V2. Here we use the notatighto mark the separation
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between systems that we will use to define the separables Saf#?, n). We could equiv-
alently writeP = Egp[(aa* ® bb*)é’z]. We will find that 9.24) is more useful for doing
calculations, while .25 is helpful for convertingMg into a form that resemble&; » for
some matrixA.

Define M1 = (vVMo® VMg)P (VMo ® VMp), where VM is taken to be the unique
positive-semidefinite square root bfy. Observe that

_ - x 1 _ ®2
My = E[Uabva,b‘g’ v&bvab] = E[Va,b]’ (9.26)

where we defineap := VMp(a® b) andV,p = va,bu;b. We claim thathsed M1) gives a
reasonable proxy fdnsed Mo) in the following sense.

Lemma 9.6.
=1 incase Y
hsephz’nz)(Ml) {< 1-6/2 incaseN ®-27)

The proof of Lemmed.6 is deferred to the end of this section. The analysis is very
similar to Theorem 13 ofH{M10], but the analysis here is much simpler becalkeacts
on only two systems. However, it is strictly speaking not assmuence of the results in
[HM10], because that paper considered a slightfjedént choice oM.

The advantage of replacingg with M; is that (thanks to9.25) we now have a matrix
with the same form a8y, in (9.13), allowing us to make use of Lemn®a3. However, we
first need to amplify the separation between cases Y and N.iSlaichieved by the matrix
My = M?k. This tensor product ieot across the cut we use to define separable states; in
other words: i

M2=_E_[(Vab ® - ® Van)*]. (9.28)

Now Lemma 12 fromfiM10] implies thathgepgac ny (M2) = hsephz’nz)(Ml)k. This is either
1 or< (3/4)%, depending on whether we have case Y or N,

Finally, we would like to relate this to the-2 4 norm of a matrix. It will be more con-
venient to work withM1, and then take tensor powers of the corresponding matrielNa
applying Lemmad.3 would relatehsedM1) to ||All,—4 for an infinite-dimensionaA. In-
stead, we first replace the continuous distributioraqnesp. b) with a finitely-supported
distribution in a way that does not chanfgaa* ® aa* (resp. Ep bb* ® bl*). Such distri-
butions are called complex-projective (2,2)-designs angum (state) 2-designs, and can
be constructed from spherical 4-designsR#' [AE07]. Finding these designs is chal-
lenging when each vector needs to have the same weight, otifgourposes we can use
Carathéodory’s theorem to show that there exist ve@ors. , z,, with m = n? such that

]E[aa* ®ad] = Z ZZ ®ZZ. (9.29)

ie[m]

In what follows, assume that the average oady used in the definitions dP, M1, M» is
replaced by the sum ovext, ..., z, By (9.29 this change does noffact the values of
P, M1, Ma.

Fori, j € [m], definew;j := vVMo(z ® zj), and lete; := & ® ej. Now we can apply
Lemma9.3to find thathsedM1) = lIAlll5_ 4, Where

A= ) e juf).

ijefm]
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The amplified matrixV; similarly satisfieshggppax oy (M2) = ||A2||‘2"_>4, where

. k *
Ay = A‘f = § (al,jl ® ak,jk)(wil.jl ®---® wik,jk) .
I1,0esiks J 15eeen JKELM]

The last step is to relate the complex mathixto a real matrixAz with the same 2> 4
norm once we restrict to real inputs. This can be achievedplacing a single complex
entrya + i with the 6x 2 real matrix

1 1
1 -1
1124 0| (@ -B
Wl oG 7
o 2v4
0 21/4

A complex inputx + iy is represented by the column vec % . The initial 2x 2 matrix

maps this to the real representation @f{ig)(x + iy), and then the fixed & 2 matrix maps
this to a vector whose 4-norm equils + i8)(x + iy)|*.
i

We conclude with the proof of Lemn®a6, mostly following [HM10].

Proof. Case Y is simplest, and also provides intuition for the cb®iaf theM; construction.
Since the extreme points of SepK) are of the formxx* ® yy* for x,y € S(C"), it follows
that there exist, y € S(C") with (x® y, M(x® y)) = 1. SinceM < I, this implies that
M(X®y) = (X®y). Thus VMp(X® y) = (X®y). Let

Z=XQYQXQUY.

Thenzis an eigenvector of both/My ® VMg andP, with eigenvalue 1 in each case. To
see this forP, we use the definition in(24). Thus{(z, M;2) = 1, and it follows that
hseppzn2(M1) > 1. On the other handyl; < I, implying thathgepez n2y(M1) < 1. This
establishes case Y.

For case N, we assume thagepan)(Mo) < 1 -6 for any x,y € S(C"). The idea of
the proof is that for any, y € S(C”Z), we must either havg, y close to a product state, in
which case theyMy step will shrink the vector, or if they are far from a produttte and
preserved byyMgy ® My, then theP step will shrink the vector. In either case, the length
will be reduced by a dimension-independent factor.

We now spell this argument out in detail. Choosg € S(C”z) to achieve

$:=(X® y, M1(X® )} = hseppe ) (Ma). (9.30)
Let X, Y € L(C") be defined by

VMox =: Z X je®e and Moy =: Z Y. 6 ® € (9.31)

ijeln] ijeln]

Note that(X, X) = {(x, Mgx) < 1 and similarly forY, Y). We wish to estimate

S= Z Xir i Yier XijYuler @ € ® & ® &, P(6 ® €] ® & ® &) (9.32)
i kLT K eln]
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Using 0.24) we see that the expression inside ¢hé is

0iir0,j Ok k OLl + Oik 0j,jOkirOL + OiirOj1rOkk Olj» + OikOjlrOkirOl,j
4

(9.33)

Rearranging, we find

COCXKYY) + OCYOKY) + LYY, XX + (YTY, X X)
= ) .

Using the AM-GM inequality we see that the maximum of thisreggion is achieved when
X =Y, in which case we have

(9.34)

XX+ (XX, XFX) _LHXEX XX
- 2 = 2 '

(9.35)

Let the singular values of beo1 > --- > 0. Observe thalall% = (X X) < 1, and thus
ol = (XX, X*X) < 2. On the other hand,

ol = Jmax |(a, Xby? (9.36)
— 2
= agnsa(tgn) Ka® b, y/Mox)| (9.37)
= max |< \VMg(a® b), ¥ (9.38)
abeS(C"
= <J_ (a®b), YMo(a® b)) (9.39)
a,b S(C
= &Qg()t(n)(a® b, Mg(a® b)) (9.40)
= hseppn(Mo) < 1 -6 (9.41)
O

Remark: It is possible to extend Lemm@.5 to the situation when case Y has
hsedM) > 1 - ¢’ for some constant’ < 6. Since the details are somewhat tedious, and
repeat arguments idM10], we omit them here.

9.2.1 Hardness of approximation for projectors

Can Theoren2.5give any super-polynomial lower bound for the SSE probleweifaissume
the Exponential-Time Hypothesis for 3-SAT? To resolve thiestion using our techniques,
we would like to reduce 3-SAT to estimating the-2 4 norm of the projector onto the
eigenvectors of a graph that have large eigenvalue. We daoot how to do this. However,
instead, we show that the mat#xconstructed in Theore5can be taken to be a projector.
This is almost WLOG, except that the resulting=24 norm will be at least 8.

Lemma 9.7. Let A be a linear map fronRX to R" and0 < ¢ < C , & > 0 some numbers.
Then there is = O(n?/£2) and a map Afrom RX to R™ such thatrmin(A’) > 1 — & and (i)
if || All—4 < € then||A'lo—4 < 3Y4 + &, (ii) [|All2—4 > C then||A'[l2—4 > Q(C/c).

Proof. We letB be a random map fromk to RO("/5*) with entries that are i.i.d. Gaussians
with mean zero and variance ¥k. Then Dvoretzky's theoremPjs99 implies that for

everyf € R¥, ||Bf|ls € 3V/4(1+6)||f|l.. Consider the operatd¥ = (g) that mapsf into the
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concatenation oA f andB f. Moreover we take multiple copies of each coordinate so that
the measure of output coordinatesASfcorresponding t@\ is o = §/c*, while the measure
of coordinates corresponding Bis 1— a.

Now for every functionf, we get that|A' f||; = el|Af|; + (1 — @)IBf||Z. In particular,
since||Bf|l} € 3(1+ 6)If[l3, we get that iff is a unit vector anglAf||S < c* then||A {1} <
6% + 3(1+ ¢), while if |Af[I} > C*, then||A’ || > 6(C/c)*.

Also note that the random operatBrwill satisfy that for every functionf, ||Bf|l, >
(1-9)lIfll2, and hencdA’ f|| = (1-a)(1-96)||f|l. Choosing = ¢/2 concludes the proof.o

It turns out that for the purposes of hardness of good apmratkdn, the case th# is
a projector is almost without loss of generality.

Lemma 9.8. Suppose that for some> 0,C > 1 + ¢ there is apoly(n) algorithm that on
input a subspace ¥ R" can distinguish between the ca@ ||I1y|>_.4 > C and the case
(N) |TIy|loa < 3Y4 + &, wherelly denotes the projector onto V. Then thergis Q(e)
and apoly(n) algorithm that on input an operator ARX — R" with omin(A) > 1 -6 can
distinguish between the caf¥) |Allo_4 > C(1 + 6) and(N) [|All.—4 < 3Y4(1 + 6).

Proof. First we can assume without loss of generality tHb > = omax(A) < 1+, since
otherwise we could rule out cag). Now we letV be the image oA. In the casé€N) we
get that that for every € R¥

ATy < 3Y4L+ 6)IIfll2 < 3Y4(L + 6)lIAFll2/omin(A) < 341 + OE)IATIL

implying |IITy|l2—4 < 3Y4 + O(¥). In the casgY) we get that there is some such that
[[Aflla = C(1 + 0)|fll2, but since|Af|l2 < omaxdA)llfll2, we get that|Af|ls > C, implying
[TIyl2—4 > C. o

Together these two lemmagfectively extend Theorer@.5 to the case wher is a
projector. We focus on the hardness of approximating toiwahconstant factor.

Corollary 9.9. For any £, > O, if ¢ is a 3-SAT instance with n variables andnp
clauses, then determining satisfiability @#fcan be reduced to distinguishing between
the cases||All.4 < 3Y* + ¢ and ||All>a > ¢), where A is a projector acting on
m = exp(v/npoly log(n) log(¢/<)) dimensions.

Proof. Start as in the proof of Theore@5, but in the application of Lemma.5, take
k = O(log(¢/¢)). This will allow us to takeC/c = Q(¢/¢) in Lemma9.7. Translating into a
projector with Lemma.8, we obtain the desired result. m|

9.3 Algorithmic applications of equivalent formulations

In this section we discuss the positive algorithmic resiligg come from the equivalences
in Section9.1L Since entanglement plays such a central role in quantunhanés, the
set Sep(C") has been extensively studied. However, because its hesdras long been
informally recognized (and more recently has been expliestablished Gur03 Liu07,
HM10, GNN]), various relaxations have been proposed for the set. eTtedaxations are
generally diciently computable, but also have limited accuracy; §&1[] for a review.

Two of the most important relaxations are the PPT conditiad kaextendability. For
an operatoX € L((C")®") and a seS C [r], define thepartial transpose Xs to be the result
of applying the transpose map to the syst&@ngormally, we define

r
X ®---@X)"® = (X) fil(X)
k=1
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M ifk¢S

(M) = {MT ifkes
and extend’s linearly to all of L((C™®"). One can verify that iX € Seg(C") thenX™s > 0
for all S C [r]. In this case we say that is PPT, meaning that it has Positive Partial
Transposes. However, the converse is not always trua.>If2 orr > 2, then there are
states which are PPT but not in SejH{H94).

The second important relaxation of Sep is callazktendability. To define this, we need
to introduce the partial trace. F& C [r], we define Tg to be the map fronk((C")®") to
L((C")®~1S) that results from applying Tr to the systemsInFormally

Trs ® Xk = nTer ®Xk,
k=1

keS k¢S

and Tk extends by linearity to all of ((C™)%").

To obtain our relaxation of Sep, we say that D(C" ® C") is r-extendable if there
exists asymmetric extensioor € D(C" ® V'C") such that T r+1;0 = p. Observe that
if p € SeF(C"), then we can write) = 3; XX ®yiy', and sor = Y XX ® (yiy)® is a
valid symmetric extension. Thus the setkedxtendable states contains the set of separable
states, but again the inclusion is strict. Indeed, incrggkigives an infinite hierarchy of
strictly tighter approximations of S&C"). This hierarchy ultimately converge® PS04,
although not always at a useful rate (see Example IV.1C&fJIR07]). Interestingly this
relaxation is known to completely fail as a method of apprating Sep(R") [CFS01, but
our Lemma.3is evidence that thosefficulties do not arise in the-2 4-norm problem.

These two relaxations can be combined to optimize over synomextensions that
have positive partial transpos€é3fS04. Call this thelevel-r DPS relaxation It is known
to converge in some cases more rapidly thaextendability aloneNJOPQ9, but also is
never exact for any finite[DPS04. Like SoS, this relaxation is an SDP with siz&". In
fact, for the case of the 2 4 norm, the relaxations are equivalent.

Lemma 9.10. When the level-r DPS relaxation is applied tg-Athe resulting approxima-
tion is equivalent tdfensor-SDP®+2)

Proof. Suppose we are given an optimal solution to the lev@PS relaxation. This can
be thought of as a density operatere D(C" ® v'C") whose objective value id =

projector ontov2C™. ThenAg, = &) A1), Thus, we can replace by o := (&), ®
I;?"l)o-(l'[g,)m@) 18"-1) without changing the objective function. However, unless= o,
we will have Tro” < 1. In this case, eithes” = 0 andAd = 0, oro’/ Tro’ is a solution
of the DPS relaxation with a higher objective value. In gitbase, this contradicts the
assumption thafl is the optimal value. Thus, we must hawe= ¢’, and in particular
suppo € V2C" ® (C")® 1. Since we had supp C C"® V'C" by assumption, it follows
that

suppo € (V2C" e (CN Y N (C" e vIC") = vITIc"

Observe next that! is also a valid and optimal solution to the DPS relaxatior] sm
o’ = (o +0")/2is as well. Sincer’ is both symmetric and Hermitian, it must be a real
matrix. Replacingr with o, we see that we can assume WLOG tinas real.

Similarly, the PPT condition implies that™ > 0. (Recall that the first system is
A and the rest ar®,,...,Bx.) Since the partial transpose doesn’t change the objective
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function, o’ = (o + o™4)/2 is also an optimal solution. Replaciegwith o, we see that
we can assume WLOG that = o"A. Let@ e (R")®¥+2 denote the flattening af; i.e.
(X®y, &) = (x,oy) for all x,y € (R")'*L. Then the fact that- = o'~ means that* is
invariant under the action &,((1, r + 1)). Similarly, the fact that supp € v'+'R" implies
thate* € VI*I1R" ® v/*1R". Combining these two facts we find thate v¥+2R".

Now that is fully symmetric under exchange of alt 2 2 indices, we can interpret it
as a real-valued pseudo-expectatién for polynomials of degreer2+ 2. More precisely,
we can define the linear magogf that sends homogeneous degree-2 polynomials to
VvZ+2RN py jts action on monomials:

cogf (f--- fam) := NG ® - - - ® €5, (9.42)

whereli$m?) := ﬁ Y reSy., Pn(7). For a homogenous polynomi€(f) of even degree
2r’ < 2r + 2 we definecogf by

cogf (Q(F)) := coeff (Q(F) - IFIIZ+*2").

For a homogenous polynomig)(f) of odd degree, we seogf(Q) := 0. Then we can
extendcogf by linearity to all polynomials of degree 2r + 2. Now define

E[Q] :=( cogf(Q). .

We claim that this is a valid pseudo-expectation. For noizatibn, observe thdE[1] =
(cogf (I fll5+2), @) = Tro- = 1. Similarly, theTensor-SDP constraint ofE[(]| f[|5 - 1)?] = 0
is satisfied by our definition ofogf. Linearity follows from the linearity ofcogf and
the inner product. For positivity, consider a polynom(f) of degree< r + 1. Write
Q = Qo+ Qe, WhereQ, collects all monomials of odd degree a@dcollects all monomials
of even degree (i.68Q¢, Qo = (Q(f) = Q(-f))/2). ThenE[Q?4] = E[Q?] + E[Q?], using the
property that the pseudo-expectation of a monomial of odgegeis zero.

Consider firsﬂE[Qg]. Letr’ = ZL%H (i.e. r"isr + 1 rounded down to the nearest

even number), so tha. = Zir;/OZ Q2i, where Qo is homogenous of degrea. 2Define

Q= X2 Qallfll; 2. Observe that, is homogenous of degreé < r + 1, and that
[E[Q2] = E[(QL)4. Next, definecogf” to map homogenous polynomials of degrénto
VI'R" by replacing 2 + 2 in (9.42 with r’. If r’ = r + 1 then define’ = o, orifr’ = r
then definer’ = Trao. Thuso’ acts onr’ systems. Defing’ € v¥'R" to be the flattened
version ofo”’. Finally we can calculate

E[QZ] = E[(Q)?] = ( coeff’(Qb) ® coef’ (Qp), ') = { coeff’ Qp, o' coeff’ Q) > O.

A similar argument establishes thﬁth] > 0 as well. This establishes that any optimal
solution to the DPS relaxation translates into a solutiotheflensor-SDP relaxation.

To translate @ensor-SDP solution into a DPS solution, we run this construction in
reverse. The arguments are essentially the same, excépteimo longer need to establish
symmetry across allr2+ 2 indices. m]

9.3.1 Approximation guarantees and the proof of Theoren®.3

Many approximation guarantees for tkextendable relaxation (with or without the addi-
tional PPT constraints) required tHalbe polyf), and thus do not lead to useful algorithms.
Recently, BaCY 1] showed that in some cases itfisced to takek = O(logn), leading
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to quasi-polynomial algorithms. It is far from obvious thiaeir proof translates into our
sum-of-squares framework, but nevertheless Lefrh@implies thafTensor-SDP can take
advantage of their analysis.

To apply the algorithm offaCY11], we need to upper-bount, » by an 1-LOCC mea-
surement operator. That is, a quantum measurement thatecampbemented by one-way
Local Operations and Classical Communication (LOCC). SQueteasurement should have
a decomposition of the fory; Vi ® Wi where eaclvi, W; > 0, 3; Vi < I, and eactW; < .
Thus, for complex vectorsy, . .., vm, w1, . .., wy satisfying 3; vivf < In andVi, wiw < Iy,
the operato}’; viv] ® wiw; is a 1-LOCC measurement.

To upper-boundd, > by a 1-LOCC measurement, we note tb;af < ||a;||§|n. Thus, if
we defineZ := || 3 aiaiTllz_,z max |laill?, thenAy»/Z is a 1-LOCC measurement. Note that
this is a stricter requirement than merely requirlg/Z < I2. On the other hand, in some
cases (e.gg; all orthogonal), it may be too pessimistic.

In terms of the original matribdA = 3 eiaiT, we have majlall, = ||Allbe. Also

Il 2 aa llosz = AT Allo_o = IIANI5_, . Thus

Z = AN

Recall from the introduction thaZ is an upper bound onAll‘z‘_,4, based on the fact
that||Xls < +VIIXlolIXl. for any x. (This bound also arises from using interpolation of
norms [te54.)

We can now apply the argument d84CY11 and show that optimizing ove®(r)-

extendable states will approximei,pell‘z‘_,4 up to additive error. WZ. Equivalently, we

can obtain additive errarZ usingO(log(n)/£?)-roundTensor-SDP. Whether the relaxation
used is the DPS relaxation or our SoS-basaasor-SDP algorithm, the resulting runtime

is expO(log(n)/?)).

9.3.2 Gap instances

SinceTensor-SDP is equivalent than the DPS relaxation for separable statgsgap in-
stance forTensor-SDP would translate into a gap instance for the DPS relaxationis T
would mean the existence of a state that passek-#xtendability and PPT test, but never-
theless is far from separable, wif » serving as the entanglement witness demonstrating
this. While such states are already knovidP[504 BS1(, it would be of interest to find
new such families of states, possibly witlifdrent scaling of andn.

Our results, though, can be used to give an asymptotic sapacd the DPS hierarchy
from ther-extendability hierarchy. (As a reminder, the DPS hiergrdémands that a state
not only have an extension ta-1 parties, but also that the extension be PPT across any cut.)
To state this more precisely, we introduce some notatiofinB®PS$ to be the set of states
"B for which there exists an extensipfi®rB with support inC"® v'C" (i.e. a symmetric
extension) such thatis invariant under taking the partial transpose of any syst@efine
Ext, to be the set of states @kB with symmetric extensions taB; . .. B; but without any
requirement about the partial transpose. Bashs andhgy, can be computed in tineP®),
although in practicéngy;, (M) is easier to work with, since it only requires computing the
top eigenvalue oM ® 12"~ restricted taC" ® v'C" and does not require solving an SDP.

Many of the results about the convergence of beSSep (such adJPS04 CKMRO7,
KMO09, BaCY11) use only the fact that DRSC Ext;. A rare exception isNOP09, which
shows that DPSis at least quadratically closer to Sep than B8} in the regime where
r > n. Another simple example comes frdvh = ®®*, where® is the maximally entangled
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staten /2 3" | e®e. Then one can readily compute tiegM) = hpps (M) = 1/n, while
ther-extendible state
/")‘AB]_...Br — li(q)q)*)AB ® ® (I_)Bj (9 43)
r XY \n '
i=1 Jelr\{i}

achieveshgy, (M) > 1/r. (In words, 0.43 describes a state whereand a randomly
choserB; share the stat®®*, while the otheiB; systems are described by maximally mixed
states.) This proves that tmeextendable hierarchy cannot achieve a good multiplieativ
approximation ohsed M) for all M without takingr > Q(n).

Can we improve this wherM is in a restricted class, such as 1-LOCC? Here
[BRSAdW1] show that the Khot-Vishnoi integrality construction carelg an n?-
dimensionalM for which hsedM) < O(1/n), but TrM® > Q(1/ log?(n)). Combined with
(9.43 this implies thathgx;, (M) > Q(1/r log?(n)). On the other hand, Theoref12and
Lemma9.10implies thathppg,(M) < O(1/n). Additionally, theM from Ref. BRSdW1]
belongs to the class BELL, a subset of 1-LOCC, given by measents of the form
2ij PijA ® Bj, with 0 < pij < 1and}; A = X;Bj = |. As aresult, we obtain the
following corollary.

Corollary 9.11. There exists an‘dimensional Me BELL such that

hext, (M) <O(r|092(n))
hpps, (M) n

10 Subexponential algorithm for the 2-to-q norm

In this section we prove Theoregnl:

Theorem (Restatement ofheorem 2.} For everyl < ¢ < C, there is gpoly(n) exp(?/9)-
time algorithm that computes @&, C)-approximation for the2 — q norm of any linear
operator whose range iR".

and obtain as a corollary a subexponential algorithm fasxi5Ser Expansion. The
algorithm roughly matches the performance A8E1(’s for the same problem, and in
fact is a very close variant of it. The proof is obtained by @iymoticing that a subspace
V cannot have too large of a dimension without containing dovac(that can be easily
found) such thatlvllqy > Ilvll2, while of course it is always possible to find such a vector
(if it exists) in time exponential in diny). The key observation is the following basic fact
(whose proof we include here for completeness):

Lemma 10.1. For every subspace ¥ R", ||V|2_ > vVdim(V).

Proof. Let f1,...,f%be an orthonormal basis ff, whered = dim(V). For everyi € [n],

let ' be the functio_nz?=1 £l Note that thé™ coordinate o' is equal tox{_, (') (*)
which also equalﬁg'ng since thef!’s are an orthonormal basis. Also the expectatioffpf
over.i is Z?zl ]].Eie[n](fi’)2 = Z‘J?'=1||fi||§ = d since these are unit vectors.. Thus we get that
Eillg'lo > Eigi =d = ]Ei||g||§. We claim that one of thg'’s must satisfylg'|le > Vdilg'|lo.
Indeed, suppose otherwise, then we'd get that

d = Ellg'll3 > Eillg'l% /d
. . . . 2 L
meaningEillg'lI2, < d2, butEillg'|2, > (Eillg'lle)” = d®>— a contradiction. O
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Corollary 10.2. For every subspace ¥ R", ||V|l2—q > Vdim(V)/n'/d

Proof. By looking at the contribution to thg"™-norm of just one coordinate one can see
that for every functiorf, || fllq > (Iflld/n)¥9 = ||f]l/n%. O

Proof of Theorem 2.1 from Corollary 10.2 LetA: R™ — R" be an operator, and let
1 < ¢ < C be some constants awd = omin(A) be such thatAfll, > ol|f], for every f
orthogonal to the kernel gk. We want to distinguish between the case {f#dib_.q < c and
the case thatAllo—.q > C. If o > cthen clearly we are not in the first case, and so we are
done. LeW be the image oA. If dim(V) < C2n?9 then we can use brute force enumeration
to find out if suchw exists in the space. Otherwise, by Corolld§.2we must be in the
second case. ]
Note that by applying Theore@i3we can replace the brute force enumeration step by
the SoS hierarchy, sind®/|l._» < 1 automatically, and unle$¥/|j>—,.. < Cn'/9 we will be
in the second case.
A corollary of Theoren®.1is a subexponential algorithm fomSLL-SET ExPANSION

Corollary 10.3. For every0.4 > v > 0 there is anexpn'/©°9(/")) time algorithm that
given a graph with the promise that either ®5(5) > 1 — v or (i) ®g(6%) < 0.5 decides
which is the case.

Proof. Forqg = O(log(1/v)) we find from Theoren2.4that in case (i)|[V>o.4llo—q < 2/ Ve,
while in case (ii)l[Vso4ll2-q > 0.1/6*-2/9. Thus it sifficies to obtain a (2Vs, 0.1/6%%/9)-
approximation for the 2-» g norm to solve the problem, and by Theor@m this can be
achieved in time expP(°9/")) for sufficiently smalls. O

Conclusions

This work motivates further study of the complexity of appmoating hypercontractive
norms such as the2 4 norm. A particulary interesting question is what is the pterity

of obtaining a good approximation for the2 4 norm and what'’s the relation of this prob-
lem to the SaLL-SeT Expansion problem. Our work leaves possible at least the following
three scenarios(i) both these problems can be solved in quasipolynomial timenbt
faster, which would mean that the UGC as stated is essentzde but a weaker variant
of it is true, (ii) both these problems aiéP-hard to solve (via a reduction with polyno-
mial blowup) meaning that the UGC is true, &fiig the SiaLL-Ser Expansion and WNIQUE
Games problems are significantly easier than the2 4 problem with the most extreme
case being that the former two problems can be solved in paljal time and the latter
is NP-hard and hence cannot be done faster than subexponemt&l Tihis last scenario
would mean that one can improve on the subexponential ghgoifior the 2— 4 norm for
general instances by using the structure of instancesigrisim the SiaLL-Ser ExpaNsioN
reduction of Theoren2.4 (which indeed seem quite fiérent from the instances arising
from the hardness reduction of Theor@m). In any case we hope that further study of the
complexity of computing hypercontractive norms can lead better understanding of the
boundary between hardness and easiness¥aiubl Games and related problems.
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A More facts about pseudo-expectation

In this section we note some additional facts about psengeetation functionals that are
useful in this paper.

Lemma A.1. The relation B < P holds if and only iD < P < 1. Furthermore, if B < P
and0< Q< P, then @ < Q.

Proof. If P > 0, thenP < 1 impliesP? < P. (Multiplying both sides with a sum of squares
preserves the order.) On the other hand, suppdse P. SinceP? > 0, we also hav® > 0.
Since 1- P = P — P2 + (1 — P)?, the relationP? < P also impliesP < 1.

For the second part of the lemma, suppBée< P and 0< Q < P. Using the first part
of the lemma, we hav® < 1. It follows that 0< Q < 1, which in turn impliesQ? < Q
(using the other direction of the first part of the lemma). m]

Fact A.2. If f is a d-f.rv. overRY and {P,},cy are polynomials of degree at most Kk,
theng with g(v) = P,(f) is a level{d/k) fictitious random variable oveR™. (For a poly-
Qomial Q of degree at most/l, the pseudo-expectation is defined]ﬁ@sQ({g(v)}veﬂ) =

Et QUPu(f)lvers) )

Lemma A.3. For f,g € Lo(U),
(f,9) < 3IFI1” + 3ligll®
Proof. The right-hand side minus the LHS equals the square pol)adcgnf -g,f—-9g) O

Lemma A.4 (Cauchy-Schwarz inequality)f (f, g) is a level2 fictitious random variable

overRY x RY, then
B(f,g) < \/EnfnZ- \/Engnz.
f.g f g

Proof. Let f = f//E¢lIfl2 andg = g/ \/E,llgll2. Note Ef|f|]? = Egllgl2 = 1. Since by
LemmaA.3, (f, g} < 2| |12 + /2||g]I2, we can conclude the desired inequality,

1E<fg>— \/lEnfnz \/Engn E(f, ) \/lEnfnZ \/Engnz (% B2+ 4 1E||g||2) O
9

=1
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Corollary A.5 (Holder’s inequality) If (f,g) is a4-f.r.v. overRY x RY, then

1/4 3/4
~ 3 ~ 4 ™ 4
E u]gu f(u)g(u)® < (1fE|| f ||4) (lgllglu) .

Proof. UsingLemma A.4twice, we have

12 12 1/4 3/4
R 3 ¢|E 2112 Fi 4 ~ e ~
£ E 1) <(g E (0 g(u)) (]gngm) <(1fE||f||4) (u;ngm) .

B Norm bound implies small-set expansion

In this section, we show that an upper bound or»2q norm of the projector to the top
eigenspace of a graph implies that the graph is a small-geineber. This proof appeared
elsewhere implicitly K05, O’D07] or explicitly [BGH*11] and is presented here only for
completeness. We use the same notation from Se8ti6iix a graphG (identified with its
normalized adjacency matrix), arde (0, 1), letting V., denote the subspace spanned by
eigenfunctions with eigenvalue at least

If p,qsatisfy ¥p+1/q = 1 then||Xilp = max,,j,<1 KX »)I. IndeedKx, y)| < [IXlIpllyllq
by Holder’s inequality, and by choosing = sign(x)|x|°~t and normalizing one can see
this equality is tight. In particular, for every € L(U), |IXlqg = MaXjyiiqqu<1 K% »)| and
I¥llg/q-1) = maXx,<1 KX, y)|. AS a consequence

Allog = max||AxX|q = max A = max KATy, ¥ = IATle/e1m
IAll2—q ||X||2<1|| Xlq ||x||2<1,||y||q/(q,1)<1|< X y)l Witiat KAy, X = [IA llg/(g-1)-2

Note that ifA is a projection operato’ = AT. Thus, part 1 of Theorerf.4 follows
from the following lemma:

Lemma B.1. Let G= (V, E) be regular graph and. € (0, 1). Then, for every & V,
O(S) > 1 - A= [IVallZ) q1)21(S)F V0

Proof. Let f be the characteristic function & and writef = f’ + f”” wheref’ € V, and
f” = f — f’ is the projection to the eigenvectors with value less thabet u = u(S). We
know that

O(S) =1 (f.Gfy/IfI5=1-(f.Gf)/u, (B.1)
ANd [ fllgq-1) = (E v @) & -
We now write

@19, meaning thal /|| < [IVallg/(g-1)-21 /9.

(£,GHy=(f,GF") + (£, Gy <IFI5+ A5 < VI q-nymal T3/ qer) + A
< IVIBLg2 D9+ 4. (B.2)

Plugging this into B.1) yields the result. m]

C Semidefinite Programming Hierarchies

In this section, we compareftirent SDP hierarchies and discuss some of their properties.
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C.1 Example of Max Cut

In this section, we compare the SoS hierarchy and Lassemrarbhy at the example of Max
Cut. (We use a formulation of Lasserre’s hierarchy simitattie one in $ch0§.) It will
turn out that these fterent formulations are equivalent up to (small) constactofg in the
number of levels. We remark that the same proof with syrtantidifications shows that
our SoS relaxation of Unique Games is equivalent to the sparding Lasserre relaxation.
Let G be a graph (an instance of Max Cut) with vertex et {1,...,n}. The level-
d Lasserre relaxation faB, denoted lasgG), is the following semidefinite program over
vectors{vs}sc(n], |s|<d»

lasg(G): maximize Z lloi — vjlI?
(i,)eG
subject to {vs,v1) = {vs,v7/)  for all sets wWithSAT = S'AT’,

2
llwoll” =

The leveld SoS relaxation fof5, denoted sQgG), is the following semidefinite pro-
gram overd-p.e.f.E (andd-f.r.v. x overRY),

sog(G): maximize E Z (% — X)?
X &
(i.)<G
subject to 1@(&? -1?=0 forallieV.

From Lasserre to S0S. Supposdus} is a solution to lasgG). For a polynomialP over
RY, we obtain a multilinear polynomid@’ by successively replacing squanésby 1. (In
other words, we redude modulo the ideal generated by the polynomv&ﬁs 1withi e V.)
We define al-p.e.f. E by settlng]E P = >|si<d Cs{ve, vs), Where{cs}isi<q are the cofficients

of the polynomialP” = }'is<q Cs [1ies X obtained by makind? multilinear. The functional

E is linear (using P + Q) = P’ + Q') and satisfies the normalization condition. We also
haveE(x? - 1)? = 0 since - 1)> = 0 modulox? — 1. SinceEx(x — X;)? = |lvi — v;l|? for all

I, ] €V (using(vg, vij) = (vi,vj)), our solution for sagG) has the same objective value as
our solution for lasg(G). It remains to verify positivity. LeP? be a polynomial of degree
at mostd. We may assume th& is multilinear, so thaP = ¥.<q CsXs ThereforeP? =

2s.T CSCT Xs X1 andEP? = Y51 CsCr(vp, usaT)- Usmg the propertfvg, vsat) = {vs, 1),

we concludeE P? = Y7 cscr(vs, or) = | Ts Csusll® >

From SoS to Lasserre. LetE be a solution to s¢G). We will construct a solution for
lasgy/2(G) (assuminglis even). Let = d/2. Fora € N", letx* be the monomia] ¢ X
The polynomials{x®}j,<¢ form a basis of the space of degr#epolynomials overR".
SinceEP? > 0 for all polynomialsP of degree at most’, the matrix Ex“>e8)|a| Bi<d’ 1S
positive semidefinite. Hence, there exists vectgrior a with || < d’ such thatE x* %8 =
(va,vp). We claim that the vectors, with @ € {0,1)" and|e| < d form a solution for
lassi(G). The main step is to show thata,v[;) depends only o + 8 mod 2. Since
(Vg Ug) = E x** | it is enough to show thak satisfiesE x* = Ex’ ™42 Hence, we want
to showE x2P = E P for all polynomials (with appropriate degree). Indeed/leynma 3.5
E(x?-1)-P< VE(2 - 12 VEP2 = 0.
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