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Abstract

A system is developed to group news stories together according to topic. Several
clustering algorithms can be used to group related stories into clusters. The clustering
algorithms used require two types of metrics: metrics that, given a story and a set
of clusters, can find the most topical cluster for that story; or metrics that can help
decide whether or not a given story is on the same topic as a cluster. These metrics
are derived by combining simple similarity metrics that compare stories and groups
of stories. Finally, methods are proposed for evaluating the story groupings, and
experimental results are reported based on these methods.
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Chapter 1

Introduction

The recent explosion in textual information has created a need for methods to auto-

matically organize text documents. New technologies such as the World-Wide Web

and advances in speech-recognition have fueled a significant growth in the range of

textual information. This growth has engendered a drive for techniques to organize

and classify large amounts of text. For these reasons, this work addresses the problem

of automatically organizing text documents into groups related by topic.

The problem is addressed in the context of the government-sponsored Topic De-

tection and Tracking (TDT) research effort. TDT is involved with the identifica-

tion of broadcast news stories (both in text and audio) that share the same topic.

TDT consists of three separate tasks: segmentation, tracking, and detection. This

work focuses on the detection task, which consists of grouping together stories re-

lated by topic. Hence, the following is a discussion of the theory and design of a

high-performance topic detection system.

This thesis is organized into six chapters. The problem is surveyed and the ba-

sic system design is outlined in Chapter 1. The clustering algorithms described in

Chapter 2 create clusters of topic-similar stories. Chapter 3 describes metrics for

comparing stories with one another and for comparing stories with clusters. Chapter

4 develops the two classes of metrics used in the clustering and shows how to combine

the similarity metrics described in Chapter 3 to create clustering metrics. Chapter

5 discusses methods for evaluating the clustering, and then provides the results of
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experiments conducted using the designed system. A brief summary and conclusions

are provided in Chapter 6.

1.1 Overview

1.1.1 What are TDT and Detection?

The TDT initiative is a performance-driven DARPA-sponsored research effort. It is

aimed at advancing the state-of-the-art in technologies that find pieces of informa-

tion that are on the same topic. Many sites compete in formal evaluations that are

intended to compare the performance of various research systems. The evaluations

provide a basis for comparing the participating sites' system performance.

The goal of a TDT system is to be able to accurately find topics of interest and

track their course through news stories. For the purposes of this task, a topic is

defined as "a seminal event or activity, along with all directly related events and

activities" [16]. The systems that best match the human annotators' judgements

about the corpus receive the best scores in the evaluations.

TDT ultimately hopes to address all written and spoken news broadcasts, re-

gardless of language. Therefore, the eventual system will draw from a large body of

research on many aspects of speech and language processing. Although the focus is

currently limited to English news broadcasts, TDT will incorporate Mandarin and

Spanish broadcasts in 1999.

The TDT research initiative is divided into three separately evaluated tasks. The

segmentation task involves finding the boundaries between stories in the audio news-

casts. The tracking task requires a system to find the stories that are on the same

topic as a small set of training stories (see [10]). Finally, the detection task involves

the unsupervised grouping of stories on the same topic.

The detection task is constrained in a number of ways. First, each story may only

be included in exactly one cluster. This constraint implies that each story contains

information primarily only on one topic. Although many stories contain information
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on multiple topics, this assumption is still necessary to simplify an otherwise ex-

traordinarily complex problem. Second, the detection must be performed in a causal

manner; i.e., the stories must be processed sequentially and clustering decisions must

be made within a specified time interval. Therefore, early incorrect decisions can

hurt performance more than later mistakes. This also means that the order stories

are processed in can significantly affect system performance.

1.1.2 Motivation

Topic detection is an important area of research for several reasons. First, as the

sheer amount of information grows in today's society, the need for improved meth-

ods to organize and browse that information expands. Topic detection produces a

particularly useful model for grouping related information. Once the information is

grouped, it is much easier to index and retrieve specific data items.

The applications for topic detection technology are far-reaching. Efficient infor-

mation retrieval systems use similar clustering methods to narrow the search space for

large data sets [6]. Clustering also provides a means for producing related documents

even if a query is poorly or abstractly formulated. In other words, if a user is inter-

ested in a particular document, it is likely that the user would also be interested in

other documents from the same cluster. This concept is also known as the clustering

hypothesis [23].

Topic detection is useful for finding novel events or topics - it can initiate a

response if news "breaks". New topics are indicated simply by a new cluster in the

system. Finding novel topics can be important if the document stream contains a

large amount of redundant information. A detection system could alert a human

analyst to a new topic that has surfaced. The analyst could then determine whether

or not the new topic is important and act accordingly.

Finally, topic detection can be seen as an efficiency tool. For example, if an analyst

is not given prior knowledge about which stories are interesting, he could save effort

by discarding entire clusters of stories by judging a few stories from that cluster to

be uninteresting. Therefore, a detection system saves the labor cost of looking at
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redundant or similar information.

1.1.3 Differences from Document Clustering

Although it may be tempting to dismiss topic detection as a trivial extension to tra-

ditional document clustering, there are a few key differences between the two. First,

a topic detection system utilizes source-specific information external to typical doc-

ument clustering schemes. For example, systems are privy to information regarding

what news source produced the story, as well as the time and date that the story ran.

This information can be used extensively to augment the performance of a detection

system.

Secondly, the constraints of the problem are somewhat different than that of the

traditional clustering problem. Ordinary document clustering generally involves two

steps: clustering documents already in the system in a retrospective manner and

perhaps incrementally adding new documents to the existing structure in such a way

as to minimally disrupt the rest of the clusters. The TDT detection task clusters all

stories in a causal way - the clusters are constantly changing and detection decisions

must be made immediately.

Perhaps the most important difference between topic detection and document

clustering is the relationship between clustered documents. Because the definition

of a topic in TDT includes "directly related events and activities," different threads

in a TDT topic may contain very different material. In document clustering, the

goal is generally to group documents together that would be produced by a single

query. This goal differs from that of grouping documents together that share the same

topic, because different queries may be required for topics in news stories that tend to

change over time. For example, traditional document clustering might cluster stories

regarding the subpoena of Secret Service agents and stories about the impeachment

of President Clinton into separate clusters. Detection, on the other hand, is expected

to treat those as one topic regarding the Monica Lewinsky scandal. This requires

detecting the common elements, if there are any in the text, or tracking and adapting

to the diverging threads as they evolve.
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1.2 Goals

The research effort is undertaken with two main goals in mind. One goal of the re-

search is to produce a system that performs well in the TDT evaluation. Secondly, the

designed system should be useful as a component technology, and it should perform

well under a variety of circumstances.

1.2.1 Win the Evaluation

First and foremost, the object of the game is to win. While this is not in itself

a particularly useful way of metering the success or failure of this venture, strong

performance in the evaluation is evidence that the technologies developed for detection

are effective.

1.2.2 Design a Useful System

Another important goal of this work is to generate a usable and useful system that

could be used for the applications described above. Although our goal is to create

a component technology whose performance can be measured independently of the

application, good performance in a number of settings would show that the technology

is more broadly applicable. A good system should perform well under a variety of

circumstances, although this is not a requirement for TDT.

1.3 System Design

A block diagram of the topic detection system is given in figure 1-1. This shows the

main components of the system: the clustering algorithm, preprocessing, similarity

metrics, and metric combinations for selection and thresholding.
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Clustering algorithm

Selection Thresholding
metrics metrics

Similarity metrics

Preprocessing

Stories

Figure 1-1: Block diagram of the detection system
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1.3.1 Clustering

The clustering process uses clustering metrics to produce clusters of similar-topic sto-

ries. The clusters can then be compared with new stories to determine which cluster

the story best fits within, if any. Clustering, by definition, enforces mutually exclu-

sive clusters as required by the task constraints; therefore, it is the most appropriate

framework for building groups of similar-topic stories.

We examine a number of useful clustering algorithms for causally clustering stories,

as well as those that allow the system to look ahead at future stories. These clustering

algorithms are discussed extensively in Chapter 2.

1.3.2 Preprocessing and Similarity Metrics

For clustering, we require a method for determining whether or not two stories are

related by topic. Hence, similarity metrics can be used as the basic building blocks

for clustering metrics. Although similarity metrics differ significantly, all require the

critical first step of preprocessing.

Preprocessing

Preprocessing involves converting all the different possible sources of data to a com-

mon format that subsequent processing steps can deal with. The system preprocesses

each source differently. This is discussed in detail in Chapter 3.

Audio sources require the most amount of preprocessing. First, a speech recognizer

is used on the data to acquire a text transcript of the stories along with confidence

scores for each word. The confidence scores can be used to filter or deemphasize words

that the speech recognizer is unsure of. Segmentation is also required to determine

the boundaries between stories in audio, although the system described herein uses

the high-quality manual segmentation. As an alternative to speech-recognized text,

the manually transcribed closed-captioned text associated with the source may be

used.
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Similarity Metrics

One could conceive of a vast number of metrics to compare a story with another single

story or with a cluster of stories. In Chapter 3, we describe two types of similarity

metrics. First, we discuss vector-space metrics, which are based on modelling the sto-

ries as vectors in a large-dimensional space. We also consider probabilistic similarity

metrics, which formulate the similarity problem in terms of probability models.

1.3.3 Combining Similiarity Measures

The clustering algorithm used requires specific types of metrics that can be generated

by combining similarity metrics and other information in different ways. We are

concerned with finding appropriate metrics for two main clustering tasks. The first,

selection, is concerned with finding the most similar cluster to a story. The second

task is thresholding, which is the more complicated decision of whether a story is

relevant to a given cluster. Metric combinations are discussed in detail in Chapter 4.

1.4 The Evaluation

Once a system generates a group of clusters, its performance must be evaluated.

Unfortunately, there is no obvious way to evaluate a clustering without a clear notion

of how the clusters may eventually be used. Therefore, we shall consider a number

of methods for evaluating partitions including the official TDT evaluation metric, a

metric based on detecting the first story in a topic, and a metric based on the utility

of clustering to a human analyst. We provide the results of using different metrics

and justify the effectiveness of our topic detection system.
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Chapter 2

Clustering

One major component of the system is the clustering algorithm. The clustering

algorithm uses the metrics developed in Chapter 4 to form clusters of stories related

by topic. Methods for evaluating the clusters generated by the algorithm are presented

in Chapter 5.

First, a brief survey of clustering algorithms is presented, including those used

by others for topic detection. Then the goals and constraints for a TDT clustering

algorithms are outlined. A simple, causal clustering algorithm known as incremental

clustering is described, followed by methods to extend incremental clustering to look

ahead into future stories as allowed by the TDT evaluation.

2.1 Clustering Background

The following section contains some background information about clustering. First,

different methods are surveyed for the unsupervised clustering of data into groups.

This is followed by a discussion of clustering algorithms currently used for topic

detection.
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2.1.1 Clustering Data into Groups

Much has been written on the subject of clustering data into groups (e.g., [7], [11],

and [15]). Types of algorithms include single-pass clustering, agglomerative cluster-

ing, divisive clustering, fuzzy clustering, and neural network clustering. Single-pass

clustering involves processing the set of data items once and dealing with each item

one at a time. Agglomerative (bottom-up) clustering involves recursively merging

close clusters. Divisive (top-down) clustering involves recursively splitting the data

to generate clusters. Fuzzy clustering assigns data items to clusters in a probabilistic

way. Finally, neural network clustering involves using a neural network architecture

to group data items together [14].

2.1.2 Popular Detection Clustering Algorithms

Several clustering algorithms have been used for the TDT detection task. Incremental

clustering is used by a number of participating sites [2]. It is a single-pass algorithm

that produces mutually exclusive clusters. Incremental clustering is described in more

detail in section 2.3.

Hierarchical agglomerative clustering techniques such as group average clustering

(GAC) are also used for topic detection [2]. The algorithm involves recursively merg-

ing the closest clusters, where singleton stories are treated as clusters. This algorithm

and its application to detection are described in section 2.4.1.

Another algorithm in common use is the incremental k-means clustering algorithm

[2]. This algorithm involves assigning stories to clusters in an iterative fashion. The

k-means clustering algorithm is outlined in section 2.4.2.

One other unique clustering algorithm that is used is a novelty detection and

tracking approach [2]. The algorithm finds the novel stories (those containing new

words or phrases) and tracks their course through time. Although this algorithm has

some interesting properties, it does not enforce mutually exclusive clusters. We did

not consider this algorithm in our system design.
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2.2 Goals and Constraints

Not every clustering algorithm can be used for topic detection. Because of the large

number of algorithms that have been developed for the purpose of clustering, they

must be judged based on some standards. This section is divided into two parts: first,

the goals for the algorithms are discussed; then, the constraints of the problem are

given.

Clustering Goals

First, we would like to have a clustering algorithm that does not require a great deal of

computation. Many clustering algorithms are computationally expensive, especially

when many items need to be clustered. Because the corpus is large, computationally

expensive algorithms can consume an impractical amount of resources. Therefore,

the space and processing requirements of a clustering algorithm should be reduced to

a practical level.

One goal is that the algorithm adapt clusters over time. When a story is deemed

to be relevant to a cluster, the cluster can be adapted to account for the inclusion

of the new story. This important property can create a very powerful representation

for topics in the system, because it helps incorporate changes in the topic focus over

time.

The clustering algorithm should be stable. In other words, the clusters should not

migrate to different topics when new stories are added to the clusters. The stability

must be balanced with the the tendency to adapt, however, because these properties

compete with one another.

Clustering Constraints

First, according to the rules of TDT, the algorithm must be causal with a short look-

ahead - decisions about a particular story must be finalized using past stories and

a small number of later stories. This constraint eliminates algorithms that require

random access to the corpus.
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Second, the algorithm must be able to deal with a lack of prior knowledge about

the final clusters. For example, the system is unaware of which topics the annotators

have selected or the final number of clusters in a corpus. This constraint forces the

system to discover the size and number of clusters. This is important given that

human-annotated clusters can vary from one story to several hundred in size.

2.3 Incremental Clustering

One of the simplest clustering algorithms is the incremental clustering algorithm.

This algorithm processes stories one at a time and sequentially, and for each story it

executes a two-step process (shown in figure 2-1):

1. Selection: The most similar system cluster to the story is selected.

2. Thresholding: That story is compared to the cluster, and the system decides

whether to merge the story with the cluster or to start a new cluster.

Although the algorithm is simple, it is within the constraints of the topic detection

problem. It is a causal algorithm, as decisions are made once and in order. It

represents clusters in a flat way, and the quantity of clusters and their sizes are

determined dynamically as the corpus is processed.

There are also a number of drawbacks to this approach. Decisions can only be

made once, so early mistakes based on little information can be costly. Secondly,

the computational requirement grows as the stories are processed. At the end of the

corpus, the system may have several thousand clusters to compare each story with.

2.4 Utilizing Look-ahead

Although a simple causal algorithm such as incremental clustering is easy to imple-

ment and describe, the evaluation allows systems to look ahead at a given number of

stories before making decisions. We shall now examine various methods for exploiting

the look-ahead allowed in the evaluation.
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C1

C2

X -C3

Step 1: Find closest cluster
Step 2: Decide whether to merge

Figure 2-1: The two-step incremental clustering process (X = story, Cn = clusters)

2.4.1 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering is a method generally used for clustering with

infinte look-ahead. Although the algorithm is computationally expensive, it performs

better than any other algorithm in many applications. Agglomerative clustering

performs the following steps (see figure 2-2):

1. The stories are all initially treated as singleton clusters.

2. Find the minimum distance between any two clusters subject to the constraint

that at least one must be within the look-ahead period. Let this minimum

distance be between clusters i and j.

3. If the distance between i and j is greater than some threshold, stop clustering.

4. Merge cluster i with cluster j.

5. Goto (2).

One interesting characteristic of this particular algorithm is that the resulting

clusters are hierarchical in nature - stories that are essentially the same tend to

appear at the bottom of the hierarchy, and clusters on entirely separate topics tend

to be split among the top leaves in the hierarchy. This characteristic allows for an
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Figure 2-2: Hierarchical agglomerative clustering algorithm: find two closest clusters,
then merge them together

intuitive representation of scope in the clustering. Scope is a qualititave assessment

of the limit of how much information topics encompass.

Because systems are unaware of the scope of topics, conventional clustering meth-

ods encounter difficulties discerning whether the annotators worked on broad topics

with lots of tangentially related events (e.g., Asian economic crisis, Monica Lewin-

sky scandal) or narrower topics with a very specific focus (e.g., retirement of Marcus

Allen, a specific set of raids by Israel on Palestine). Because of this, the system at-

tempts to group stories according to roughly the same scope. Unfortunately, it often

fails on very broad and very narrow topics.

Generating a hierarchy is not very useful in the current TDT evaluation. To be

advantageous, it requires a postprocessing step to cut the tree in an appropriate way,

which would violate the evaluation condition. However, if a clustering threshold is

used to stop the clustering, this algorithm is an effective but expensive method for

exploiting look-ahead.

2.4.2 Incremental k-means Algorithm

Although it is similar, the following algorithm is not precisely a k-means algorithm

because the number of clusters k is not given beforehand. This algorithm involves
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Figure 2-3: k-means incremental clustering: poor initial clusters can be corrected

iterating through the data that the system is permitted to modify and making ap-

propriate changes during each iteration. More specifically:

1. Use the incremental clustering algorithm to process stories up to the end of the

currently modifiable window.

2. Compare each story in the modifiable window with the old clusters to determine

whether each should be merged with that cluster or used as a seed for a new

cluster.

3. Modify all the clusters at once according to the new assignments.

4. Iterate steps (2)-(3) until the clustering does not change.

5. Look at the next few stories and goto (1).

This algorithm (shown in figure 2-3) is able to restructure poor initial clusters but

still process the corpus in a causal fashion with look-ahead. Because all the clusters are

modified at once in step (3), the algorithm tends to be fairly stable. This algorithm

also allows the number of clusters k to be a free parameter. The computational

requirement is less imposing than the agglomerative clustering algorithm, especially

for a larger look-ahead.

2.5 Discussion of Clustering Algorithms

Incremental clustering is very simple and fits within the constraints of the TDT

evaluation. Because it is the least computationally intensive of the all the methods
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described above, it is most appropriate under limits of computing resources. For-

tunately, the TDT evaluation specification does not impose any computational con-

straint for the algorithms used. In addition, incremental clustering has the significant

drawback of order dependence; i.e., early decisions are more difficult because there are

fewer clusters to compare with. This can hurt the system performance dramatically,

because early incorrect decisions are generally costly.

Hierarchical agglomerative clustering performs slightly better than incremental

clustering; unfortunately, it requires a much larger amount of computation and is

unfeasible for a look-ahead of greater than a few dozen stories. Even for a very

small look-ahead, agglomerative clustering takes much more computation than simple

incremental clustering. Because of this problem, we reject agglomerative clustering

for the system design.

The k-means algorithm also performs better than incremental clustering, although

most of the improvement is gained from looking ahead a small number of stories.

With a greater look-ahead, the performance changes very little. For the system

described herein, we utilize the incremental k-means algorithm, because it requires

significantly less computation than agglomerative clustering, but still prevents early

incorrect decisions.

2.6 Chapter Summary

Although there are many clustering algorithms in common use, only a few are appeal-

ing to use for topic detection. Incremental clustering is computationally cheap and

yields very good performance; unfortunately, early incorrect decisions can hurt perfor-

mance substantially. Agglomerative clustering is an effective but expensive clustering

algorithm that can be used where computational limitations are not imposed and re-

search time is not an issue. Finally, the incremental k-means algorithm is somewhat

more computationally intensive than incremental clustering. This algorithm performs

well, and is a good balance of complexity versus accuracy.
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Chapter 3

Similarity Measures

This chapter discusses various methods for finding the topic similarity between dif-

ferent stories and groups of stories. The measures described herein are used as the

basis for the clustering metrics described in Chapter 4. Once measures of similarity

between stories have been developed, these measures can be combined into threshold-

ing and selection metrics useful for the clustering system. Therefore, the discussion

of the strengths and weaknesses of each metric is deferred until Chapter 4.

First, the basic preprocessing necessary for the stories to be represented consis-

tently in the system is discussed. Then, some vector-space methods for comparing

stories with other stories are described. Finally, clusters are defined, and basic prob-

abilistic metrics for comparing stories to clusters are outlined.

3.1 Story Preprocessing

Before similarities are calculated between stories, it is necessary to convert the sto-

ries into a consistent representation. This representation needs to incorporate prior

knowledge about the corpus to eliminate information that is irrelevant to the story's

topic. The representation also needs to keep as much relevant information as possible.

We shall refer to these representations as term vectors or feature vectors.
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3.1.1 Audio Conversion

Much information regarding a news story's topic can be gained by looking at the

story's words. Therefore, audio news is transcribed to generate a text represen-

tation. Although methods exist to compare the similarity of untranscribed audio

segments (see [17], [18]), they are beyond the scope of our exploration. Transcription

allows the system to use a generic method to handle both text and audio sources.

In TDT, transcripts are generated from audio in one of two ways: extraction of the

story's closed-captioned text (CCAP) or automatic speech recognition (ASR). Closed-

captioned text can easily be extracted from the television news programs that provide

it, although the text contains a significant number of errors. The speech-recognized

text is generated using a Large-Vocabulary Continuous Speech Recognition (LVCSR)

system and is provided by Dragon Systems for the 1998 TDT data [8]. The speech

recognition word error rate is approximately 23/

All transcripts are required to be segmented into stories. The story boundaries can

be found automatically or manually; however, we assume that the story boundaries

are provided manually. The automatic segmentation is currently not very accurate,

and it is the focus of the segmentation task of TDT.

3.1.2 Term Vectors

The system requires a method for consistently representing the story texts. This

section outlines options the system could use to represent text stories. These include

counting words, word stemming, removing stop words, associating synonymous words,

and finding the names of entities.

One convenient representation for stories consists of the counts for each different

word, regardless of the order in which the words occur. Although this representation

eliminates syntax, grammar, and word order, it maintains important defining details

about a topic (e.g., nouns, actions). However, it also counts equally the occurrence

of topic-irrelevant words within a story.

Often, simply counting words is insufficient to accurately capture the relationships
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between words. An improved method for generating word counts involves techniques

such as stemming, removing stop words, and using a thesaurus. Stemming is the

removal of suffixes from a word leaving the word stem. Stemming helps associate

different forms of semantically related words. For example, the words "bombing",

"bomber", and "bombs" all have the same stem "bomb". The stemming process

requires some additional processing beyond suffix removal, because certain words do

not stem properly when the suffix is removed. For example, the stem of "hoping"

is "hope", but simply removing the suffix "-ing" would generate "hop". Therefore,

several rules are typically used by a word stemmer [19]:

1. Restore the silent "e" after removing the suffixes from certain words.

2. Delete certain doubled consonants after suffix removal. For example, "stem-

ming" is transformed to "stemm" by suffix removal, then to "stem" by removing

the doubled consonant.

3. Substitute a "y" for "i" in the final position for certain words. For example,

"speedier" turns into "speedi" after suffix removal, then "speedy" after applying

this rule.

4. Use a dictionary for exceptions to the stemming rules given above.

Stop word removal involves ignoring words that usually offer no discriminating

power because they are common to most news stories (e.g., "the", "so", "because").

Stop word removal helps performance, because it eliminates words that are not helpful

in determining a story's topic. This is important because the occurrence of stop words

can vary substantially between different stories. This variation effectively adds a great

deal of "noise" to the story comparisons. To alleviate this problem, stop words can

simply be taken out based on a predefined list of words common to all topics [19].

Finally, a thesaurus can be used to broaden terms that are too narrow by com-

bining terms that are synonymous or closely related (e.g., "U.S.", "United States";

"bravery", "courage") [20]. A thesaurus can help factor out a story author's word
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choices. Although this technique is used successfully in other systems, the detection

system presented here does not use a thesaurus.

Stories can also be represented by the names of the entities mentioned within. For

many topics, names uniquely determine what stories belong (e.g., a story containing

"Timothy MacVeigh" and "Oklahoma City" would likely discuss the topic of the

1995 bombing of the Murrah Federal Building in Oklahoma City). Once the names

of story entities have been found, they can be used to either group sets of words

together (e.g., "United Nations", "James Earl Ray", "Cambridge, Massachusetts")

or simply to emphasize the terms corresponding to names. The subject of how to

find named entities is beyond the scope of this dissertation; however, in section 5.3.7

we present the results of some experiments using the BBN IdentiFinder, a Hidden

Markov Model (HMM) based named-entity extractor [4].

3.1.3 Term Weighting

One method for improving the story representations is to emphasize terms that are

better for distinguishing a story's topic. Larger weights should be associated with

terms that are more important, whereas smaller weights should de-emphasize those

terms that are likely to offer very little discriminating power. This section surveys a

number of methods for term weighting: confidence score weighting, inverse document

frequency (IDF) weighting, and time-based weighting.

A simple weight associated with ASR text involves the use of confidence scores

to emphasize terms that the speech recognizer believes it recognized correctly. A

confidence score is a number between 0 and 1 that reflects the belief that the speech

recognizer correctly identified the occurrence of each word. By de-emphasizing words

that were more likely to have been misrecognized, the system incorporates incorrect

words less into the story representations. In doing so, comparisons between stories

become more accurate.

Another term weighting scheme involves using an IDF weight [19]. The IDF

(inverse document frequency) weight is given by:
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IDFN log , (3.1)
dfi'

where N is the number of documents, and dfi is the number of documents that the

term i appears in. The counts in the term vector can now be weighted by IDF.

Terms that appear in most or all of the documents in a collection are then strongly

de-emphasized, whereas terms that appear in only a few stories are emphasized.

This technique is interesting because it is based on the story statistics rather than

individual word statistics.

Techniques specific to broadcast news can also be used for term weighting. For

example, when several stories are combined into a term vector, terms that occur in

old stories can be de-emphaszied in favor of terms from newer stories. This allows

the topic focus to change over time.

3.2 Comparing Stories to Stories

A vast number of measures for computing the similarity of a story to another story

have been developed. We shall reflect on a number of these measures and adopt the

ones that perform well. There are a number of traditional IR measures that are used

to measure the similarity between stories. These are based on traditional information

retrieval (IR) vector-space models: a cosine distance and an IDF-weighted cosine

distance.

3.2.1 The Cosine Distance

One class of IR metrics, based on a vector-space model for stories, has been used

in many topic detection systems that have been developed [2]. These metrics treat

the stories as vectors and attempt to compute the similarity between two stories as

the cosine of the angle between the two vectors. The vector components generally

correspond to the terms in the stories. More explicitly, let q be a vector with dimen-

sionality of the number of words in the corpus, and let [qi], be the jth component of
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vector q. Then, we let

[ ], = log(tfig + 1), (3.2)

where tfij is the term frequency (i.e., word count) corresponding to term j in story

i. A simple cosine distance between story k and story 1 can be expressed as

DkI cos(L(qq ) = qk q. (3.3)

This is one formulation for a cosine distance. The log function smooths the story

vectors, so that single words that occur a large number of times do not dominate the

score Dkl. Other research systems use different formulations for j', though they all

involve finding the cosine of the angle between two smoothed term frequency vectors

([1], [2]).

3.2.2 IDF-weighted Cosine Distance

The cosine distance can be combined with the IDF weight. First, let

N
[ ] = log(tfig + 1) -log , (3.4)

where dfy is the number of documents in the corpus containing the term j and N

is the total number of documents in the corpus. The vector q'i is the IDF-weighted

term vector. The following two formulations can then be used:

DkI = cos[Z(qk7, q1)], (3.5)

which is the cosine of the angle between two IDF-weighted term vectors; or

Dkl = cos[L(qjk,q1)] + cos[L(q, '1)] (3.6)
2

which is the symmetrized cosine of the angle between one regular and one IDF-

weighted term vector. Equation 3.5 counts the IDF weight twice, and therefore the
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score tends to be dominated by the weight. The distance in equation 3.6 counts the

IDF weight only once; therefore, the system utilizes equation 3.6 when the cosine

distance metric is called for. Note that we could have also found the cosine of the

angle between two vectors weighted by the square root of the IDF weight, although

this measure is very similar to the symmetrized measure described above.

3.2.3 Discussion of Story-Story Measures

The cosine distance metrics have a number of desirable properties. First, they are

inherently normalized - the score is guaranteed to be between zero and one. A score

of zero indicates that the stories have no words in common; a score of one indicates

that the stories are identical. The metrics are also symmetric; therefore, it does not

matter whether story A is compared to story B or vice versa.

Unfortunately, the cosine distance also requires the story words to overlap signif-

icantly to produce a good score. Therefore, it is not an effective metric for finding

stories that are tangentially related to a topic.

3.3 Clusters

Before we can consider measures that compare stories to clusters, we first show why

we should treat stories and clusters differently. The following section describes the

motivation for and implementation of story-cluster measures.

3.3.1 What is a Cluster?

A cluster is a collection of stories that the system believes share the same topic. There

are a few important notes about clusters:

1. Clusters are defined in a mutually exclusive way. Each story can belong to one

an only one cluster. This assumption is a simplifying one and in general does

not hold true, although it reduces the complexity of an otherwise unsolvable

problem. For example, a story regarding an election campaign might contain
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bits from a candidate's speech on a particular crime or disaster. Because the

clusters must be mutually exclusive, the system can group the story with one

and only one of the covered topics.

2. Clusters must be generated as the data is processed - the system has no a

priori knowledge of what the clusters should be. Because of this, the system

must adapt clusters over time. This is accomplished by merging a story with

its related cluster as soon as it is deemed relevant.

Because clusters and stories are fundamentally different, it is worthwhile to con-

sider a metric where clusters and stories are treated differently. In contrast, the

cosine distance metric and other similar metrics treat stories and clusters the same.

For example, a story could be compared to a cluster simply by substituting for a

story vector a vector created from the concatenated cluster stories (see section 3.4.

However, this symmetry seems unsatisfying in light of the fundamental differences

between stories and clusters.

3.3.2 Previous Work in TDT

Comparing stories to clusters directly is not a new idea. One metric currently in use

for detection is a variant of the Kullback-Liebler (KL) distance between the story

and cluster distributions [2]. Given story Sk and cluster C1, the distance metric DkI

is the sum of the KL distance between Sk and Sk + C, and the KL distance between

CL and Sk + C1. This formulation is improved by smoothing the cluster distribution

with a corpus background distribution, subtracting a story-background distance, and

adding a time decay term. This new metric is given by

D = - Sk" log Un/|UI + decay, (3.7)
n |Sk| cin||IC1I|

where Skn is the story word count for word n, c' is the smoothed cluster count, un is

the background model word count, |S -- Enskn, IC = En cla, and IUI = En U.
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3.3.3 Probabilistic Measures

The cosine distance, while traditionally effective for IR, is somewhat ad hoc and

not obviously extensible. Probabilistic models, on the other hand, offer a formal

way of expressing the quantities computed. Moreover, as shown in section 3.3.4, the

probalistic models we propose show a satisfying similarity with the traditional vector-

space approach. Hence, the class of metrics we consider for comparing stories with

clusters is based on probability theory.

We consider two classes of probabilistic measures for comparing story S with

cluster C:

1. Estimate a model for the cluster, then find the probability that the story S was

generated from the cluster model C.

2. Estimate a model for the story, then find the probability that the cluster C was

generated from the story model S.

In the first case, we are trying to calculate p(CIS) where S is the story and C

represents the cluster. In the second, we calculate p(S is RIC), which is the probability

that S is relevant given the topic model.

The next sections discuss two probabilistic metrics: the BBN topic spotting metric

and the BBN IR metric [24].

BBN Topic Spotting Metric

A useful set of metrics for topic detection is the class of metrics that calculate P(C|S).

We shall analyze one particular example of such a metric, the BBN topic spotting

metric.

The BBN topic spotting metric is derived from Bayes' Rule:

p(C|S) = ,()- SC (3.8)
p(S)

where p(C) is the a priori probability that any new story will be relevant to cluster

C. If we assume that the story words s, are conditionally independent, we get:
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p(C|S) ~p(C) -I P(sn|IC) ,(3.9)
P(sn)

where p(sn|C) is the probability that a word in a story on the topic represented by

cluster C would be sn.

We model p(sn|C) with a two-state mixture model shown in figure 3-1, where one

state is a distribution of the words in all of the stories in the group, and the other

state is a distribution from the whole corpus. That is, we have a generative model

for the words in the new story.

To calculate the distributions of the states, we use the Maximum Likelihood (ML)

estimate, which is the number of occurrences of sn among the topic stories divided

by the number of words in topic stories. This estimate must be corrected for the

weakness that the unobserved words for the topic have zero probability. Therefore,

the model can be smoothed with a "back-off" to the General English model:

p'(snIC) =a -p(sn|C) + (1 - a) -p(Sn) (3.10)

The estimates for the general English state distribution and topic state distribu-

tions can be refined using the Expectation-Maximization (EM) algorithm [21]. This

process allows new words to be added to the distributions and emphasizes topic-

specific words. Therefore, the EM algorithm automatically assigns higher probabili-

ties to words that are specific to the topic.

General
p(GE) English

story p(SIC)
words

Topic

Figure 3-1: BBN topic spotting metric two-state model for a topic
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BBN IR Metric

The BBN IR metric is used successfully for the Text REtrieval Conference (TREC)

IR evaluation, where only one query is used at a time [12]. It looks at the problem in

the opposite way. Given a query Q (consisting of the words in the cluster), we want

to estimate the probability that any new story S is relevant to the query. But in this

case, we assume that the query was generated by a model estimated from the story:

p(S is RJQ) = p(S is R) - p(QlS. (3.11)
p(Q)

Assuming independence of words in the query, we have:

p(S is R|Q)~ p(S is R) - . (3.12)
np (qn)

Again, we use a two-state model (shown in figure 3-2), where one state is a unigram

distribution estimated from the story S, and the other is the unigram distribution

from the whole corpus.

This metric computes a product over the number of words in the cluster. There-

fore, this metric is not appropriately normalized for comparing a number of different

clusters to a single story, because the number of words in each cluster is different.

In addition, the IR metric performs poorly when the clusters become large, because

a single story cannot generate many stories in large cluster. Therefore, we did not

explore using this metric to compare a single story to one cluster.

General
p(GE) English

Cluster
words p(CIS)

Strtory

Figure 3-2: BBN IR metric two-state model for a story
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3.3.4 Discussion of Probabilistic Metrics

One intuitively satisfying note about these probabilistic models is that they share a

striking similarity to the cosine distance metric. Note that both equations 3.9 and

3.12 contain a product term over the words in either the story S or cluster C. Taking

the logarithm of the likelihood in both cases yields a sum over the words in either

S or C. However, the cosine distance is simply a sum over the words in common

between S and C. Therefore, we see that we have developed probabilistic measures

similar to the vector-space models; but they treat stories and clusters differently and

can be extended formally.

3.4 Extension of Story-Story Measures

If we assume that clusters are made up of relationships between stories, a number

of methods can utilize these relationships as the representation for clusters in the

system.

Many methods for scoring a story against a cluster can be found in the clustering

literature: average linkage, single linkage, and complete linkage [9]. Average linkage

scores the story as the average score between a story of interest and each cluster story.

In other words, if a cluster contains two stories A and B, the average linkage score

between the cluster and story S is simply the average of the similarity between A and

S and the similarity between B and S.

Single linkage and complete linkage are somewhat similar to each other. Single

linkage takes the best similarity score between the story and cluster stories. Complete

linkage takes the worst similarity score of those derived from comparing a story to

the individual cluster stories.

Another method for combining the scores is to simply calculate one score between

the story and the concatenation of all the stories in the cluster. For example, the

cluster model for five stories on a particular topic would be one story with all the

words from all five stories. The similarity score could be calculated between the story

and cluster model.
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Each of these techniques can be used for different interpretations of a cluster.

If the clusters are viewed as random variations of the same basic topic, then either

average linkage or story concatenation produce appropriate metrics for clustering. If

the clusters are considered to be part of a rapidly-evolving topic, the single-linkage

clustering algorithm should be chosen. Finally, if the clusters are limited in scope,

the complete linkage method should be used for scoring the clusters.

Because of the presence of multiple-topic stories, the single-linkage technique is

too unstable for our purposes. The complete-linkage is also inappropriate, because it

constrains how far the stories can stray from the original topic. Therefore, we shall

utilize the story concatenation method, because it is computationally simple and fits

our model for the clusters.

3.5 Chapter Summary

This chapter discussed simple metrics for comparing stories to stories and stories to

clusters. Preprocessing is an important step for generating a consistent representation

for the stories in the system. These representations are used by both vector-space and

probabilistic metrics. The cosine distance metric is among the class of vector-space

metrics and is useful for comparing two stories with each other in a symmetric way.

Probabilistic metrics provide a more formal way of comparing stories with clusters.

Similarity metrics are combined using techniques described in Chapter 4 to be used

for clustering.

Because we have not yet set criteria for evaluating different similarity metrics,

it seems somewhat premature to attempt to measure the relative performance of

different metrics. We therefore defer this discussion until the next chapter, where

goals for clustering metrics are carefully outlined. The relative merits of the different

metrics can then be evaluated and combined into metrics useful for clustering the

data.
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Chapter 4

Combining Similarity Metrics

Chapter 3 outlined various similarity measures between stories and clusters. These

measures are useful under different circumstances because they work in different ways.

We would like to combine the similarity measures to exploit their respective strengths

and weaknesses. Therefore, in this chapter we describe methods for combining differ-

ent similarity measures to produce good clustering metrics.

First, we outline the desirable characteristics for the two types of metrics useful

for developing a clustering system: selection metrics and thresholding metrics. For a

selection metric we suggest an intuitive probabilistic measure that performs well in

a simple experiment. For a thresholding metric we suggest a number of techniques

for combining similarity measures and evaluate these techniques based on their merit

and performance.

4.1 Clustering Measures Background

Previous work in topic detection involves the use of one metric for making all cluster-

ing decisions [2]; however, by breaking the clustering problem down, we can develop

different metrics for each clustering task. Recall that in Chapter 2 we describe in-

cremental clustering and incremental k-means algorithms. Both of these require two

basic types of metrics: a metric that finds the closest cluster to a story and a metric

that indicates whether or not a story should be merged with a cluster. At this point,
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it is worth specifying exactly what each type of metric should accomplish.

First, we use the notation D(S, C) to signify a distance metric comparing a story

S to a cluster C. Consider a story S and clusters C1 and C2, such that S is judged

to be on the same topic as C1 but not C2. Then a decision metric should minimally

obey the following rule:

D(S, C1 ) < D(S, C2). (4.1)

In other words, the metric D is appropriate for selecting the most topical cluster to

a given story.

We intentionally exclude metrics of the opposite sense that find the most topical

story to a given cluster. These metrics are inappropriate for the detection problem,

because the clustering must be done in a causal way. In other words, because the

system can randomly read and merge clusters but not stories, a metric that finds a

particularly relevant story to a given cluster is not very useful.

A different type of desirable metric is a quantitative assessment of the relevance

of a document to a cluster. This type of metric obeys the following relationship:

D(S, C) > T (4.2)

if and only if S is on the same topic as C, where T is some predefined threshold. In

other words, the metric indicates whether or not a single given story is relevant to a

single given cluster. The metric score can be compared to a threshold to produce a

decision regarding whether or not the story belongs in the cluster.

We shall refer to metrics that best satisfy equation 4.1 as selection metrics because

given a story they select the most topical cluster. Metrics that best satisfy equation

4.2 are referred to as thresholding metrics, because they are compared with a threshold

to yield a topicality judgement. These equations should be seen as goals rather

than absolutes, as the notion of stories and clusters being related by topic is a very

abstract one. In addition, this is not an exhaustive list of potentially desirable metric

characteristics; however, these goals are easily defined and measured, and they provide

a practical basis for a topic detection clustering algorithm.
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As an aside, we assume in this formulation that the two tasks of selection and

thresholding are independent of one another; however, this is not necessarily the

case. Given that the thresholding metric is always used with the cluster that is

closest to the story, the thresholding metric could incorporate that information. In

other words, the threshold T could be modified based on how many clusters are close

to S or how much further the second-closest cluster is from S. However, our system

does not attempt to exploit this information.

4.2 Selection Measures

Fortunately, one of the metrics discussed in Chapter 2 behaves similarly to the the

selection equation 4.1. As is shown in the following, the BBN topic spotting metric is

appropriate for the selection problem. Moreover, a simple experiment suggests that

this metric is more appropriate than the vector-space metric described in Chapter 2.

4.2.1 BBN Topic Spotting as a Selection Metric

The BBN topic spotting metric satisfies some of the goals of a selection metric. The

selection problem can be formulated probabilistically as an attempt to find the most

probable cluster given a story. In other words, from a set of clusters C1 , C2 , . . .,C

we attempt to find k such that:

k = argmaxp(CilS). (4.3)

Assuming the clusters are a priori equally likely and combining with equation 3.9,

the equation simplifies to:

k = arg max fp(smI Ci). (4.4)

where sm are the story words. Therefore, the selection metric could be chosen such

that:
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Table 4.1: Comparison of selection metrics according to misclassification rates for
reclustered stories

D(S, C) = (sm C), (4.5)

where p(sm|C) is computed according to the two-state mixture model. D(S, C) is

therefore a justifiable metric for doing cluster selection.

4.2.2 Experimental Evidence

To test the effectiveness of the BBN topic spotting selection metric, we attempted

a simple experiment. From each of the TDT-1, TDT-2 Jan-Feb, and TDT-2 Mar-

Apr corpora (described in section 5.1), a data set of human-generated clusters was

extracted. Each cluster contained stories on one topic. Each story was removed from

the data set one at a time and reclassified among the clusters in the data set. The

story was reclassified according to the highest-scoring cluster. If the highest-scoring

cluster was not the cluster the story was drawn from, it was counted as an error.

We report results using both the cosine distance and the BBN topic spotting (i.e.,

probabilistic) selection metrics.

The misclassification rates for each data set are given in table 4.1. The table

indicates that the probabilistic selection metric reclassifies a larger percentage of

stories correctly for all data sets. This suggests that the probabilistic metric is a

more likely candidate for the selection problem than the cosine metric.
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Data set

TDT-1 TDT-2 TDT-2
(Jan-Feb) (Mar-Apr)

Cosine dist. 1.32% 3.95% 0.18%
Probabilistic 0.09% 1.66% 0.00%



4.3 Thresholding Measures

Designing an effective thresholding metric is a bit more tricky. We develop a number

of metrics for thresholding, leading up to a probabilistic binary classifier.

The thresholding metric is discussed in the context of binary classification -

given one story and one cluster, the story is either on the same topic as the cluster

or not. The merit and effectiveness of several possible thresholding metrics are then

evaluated.

4.3.1 Thresholding Metric Combinations

The goal of a thresholding metric is to determine whether or not a story should

be merged with a cluster. Such a metric is important for virtually any clustering

algorithm one could conceive, because it reveals whether or not a story belongs in

a cluster. Therefore, we develop the following methods for combining scores and

features from the system into an indicator about whether a story should or should

not be merged with a cluster.

Note that this is a binary classification problem. Given two sets of data ("on

topic" and "off topic"), the metric determines which set a new data point belongs to.

There are several pitfalls associated with this approach:

1. The data points change over time. One classifier might be useful when the

system contains few clusters, but another might be better after all the clusters

have been generated. Therefore, the classifier must generalize to different types

of clusters.

2. There is no obvious method for determining the threshold T. This is a difficult

problem, because T should be determined by optimizing a particular cluster

evaluation metric. However, because of the complicated steps between thresh-

olding and evaluating the final clustering, estimating T is a formidible task.

Therefore, for the purposes of this dissertation we ignore this problem and sim-

ply estimate the optimal T experimentally.
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4.3.2 Normalization and Single-Variable Classifiers

One type of thresholding metric is the so-called "normalized score," which is based

on normalizing a single metric. To be effective, the normalization must minimize the

effects of story and cluster size. The drawback of this approach is that the normalized

score is only generated by one similarity metric.

The cosine distance is naturally normalized - a score of 1 indicates that the

stories are identical, and a score of 0 indicates the stories shared no common words.

Therefore, the cosine distance metric is one metric that can be used for thresholding.

The BBN topic spotting metric is unfortunately not inherently well-normalized.

The score varies with the size of the story compared. Fortunately, there are a few

methods that can be used to normalize this metric.

For one normalization, we observe that the log probability produced by the topic

spotting metric is proportional to the number of words in the story. Therefore, one

possible normalization is to simply divide the log probability by the story length.

While this produces a reasonable score, it is an ad hoc normalization.

Another normalization is to assume (by the Central Limit Theorem) that the

log probabilities of a particular story Si for different clusters are roughly distributed

normally. This assumption can be made if we view the individual word probabilities

as independent random variables and assume that the story has a reasonably large

number of words. Then, let pi be an estimate of the mean of story log probabilities

for cluster C and o-2 be an estimate of the standard deviation. Then, the normalized

score for story Si is given by

D(S, C) =log p(SiC) - (4.6)

This normalization depends very little on the length of Si, because any factor

multiplying log p(SilC) would cancel after the normalization. This normalized score

is also a reasonable thresholding metric.
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4.3.3 Modeling Feature Distributions Parametrically

In this section, we treat the similarity metric scores as components in a feature vector

that can be used as input to a classifier. This approach allows a trained classifier to

decide what features are most important in the thresholding problem. Methods for

acquiring feature vectors are discussed, followed by a description of several different

parametric classifiers.

Feature Vectors

We need to consolidate the similarity metric comparisons into a feature vector that

can be used as an input for the classification problem. The simplest way to do this is

to combine scores from each comparison into a vector. We can then use the vectors

as feature inputs to a classifier.

Although similarity metric results probably contain the most information about

the story topic, other information could also affect the scores and/or the topicality of

a story. Examples include story length, cluster length, story age, number of unique

words, news source, etc. These quantities can also be used as components of the

feature vectors.

Training the Classifier

An important requirement for building a classifier is sufficient annotated training data.

Classifier training data consists of feature vectors and corresponding decision labels

that indicate whether or not the story is on the cluster topic. Acquiring training data

is a tricky subject for a few reasons. If we limit ourselves to using pure clusters (for

instance, taken from human-labeled data) to acquire feature vectors, then the decision

label for each can be diagnosed easily. Unfortunately, the implemented metric does

not always compare stories to pure clusters, because the detection system sometimes

makes clustering mistakes. If training data is created from impure clusters, then the

corresponding decision labels are difficult to ascertain. The optimal classification for

an impure cluster often even depends on the order in which the stories are processed.
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We generate the training data using the latter of these approaches. Judgements

about whether or not a story S should be merged with cluster Ci are based on

optimizing the evaluation metric. The following criteria are used:

" If the story S is not annotated...

- . . . and none of the stories in Ci are annotated, no judgement can be

made.

and some of the stories in Ci are annotated, the judgement is

automatically "should not be merged".

" If the story S is annotated for reference topic Rj .

- . . . and none of the stories in Ci are annotated for topic Rj, the judgement

is automatically "should not be merged".

- . . . and some of the stories in C, are annotated for topic R, the judgement

is based on choosing the maximum of the following:

* Evaluation score given Rj is mapped to Ci -+ "should be merged"

* Evaluation score given Rj is mapped to a singleton cluster containing

S -+ "should not be merged"

Probabilistic Binary Classification

We preface this discussion by discussing generic probabilistic binary classifiers. We

begin by describing two classes CO and C1 corresponding to merging and not merging

a story with a cluster. The techniques described below attempt to calculate p(g|Co)

and p(p|C1) according to models, where ' is the feature vector to be classified. We

use these quantities to acquire a score S corresponding to:

Sp(Co l) >
- = < T (4.7)

p(Cilh ) '

which can be written according to Bayes' Rule:
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S p(C ) -p CO) (4.8)
p(CI) -p(|C1)

This equation can be used with the class-conditional density estimates p(g|Ci) such as

those given by the Gaussian classifier, the Gaussian mixture model, and the k nearest

neighbor algorithm.

Single Gaussian Distribution

One method for modelling numerical features is to assume they are distributed accord-

ing to a Gaussian density [5]. Training points for each class i can be used to estimate

the parameters (mean ptj and covariance matrix Ei) for the two class-conditional

distributions. A likelihood ratio test can be used to decide what class the feature

vector belongs to. This simple technique can only provide quadratic discriminant

surfaces, which do not accurately reflect the division between the classes in general.

The class-conditional distributions are given by the Gaussian distribution:

p(g|Ci) = ' e (4.9)
(27r) |Eil2

Gaussian Mixture Model

The features can also be modelled according to a mixture of Gaussian distributions

using the Gaussian mixture model (GMM) approach [5]. A GMM involves estimating

the distributions for the classes based on a sum or mixture of Gaussian distributions.

Once the mixture distributions are estimated for each class, the class-conditional

densities can be compared using a likelihood ratio test to obtain a thresholding metric.

The GMM has greater flexibility in determining the discriminant surface; however,

it requires significant computation to train. It also requires an initial estimate of the

mixture distributions. Once the initial distributions are chosen, an Expectation-

Maximization (EM) algorithm can be used to refine the distributions. The EM al-

gorithm can be run for several iterations. Techniques such as cross-validation or

smoothing must be used to prevent the model from overfitting the data. Despite
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these complexities, the GMM allows a greater variation of discriminant surfaces than

a simple Gaussian model.

4.3.4 Modeling Feature Distributions Non-parametrically

The feature vectors can also be modelled non-parametrically. Examples of such ap-

proaches include the k nearest neighbor algorithm and decision trees.

k Nearest Neighbor Algorithm

The k nearest neigbor algorithm involves estimating the class-conditional density

using the k closest training vectors to the test vector y [3]. The algorithm finds

the volume V of the smallest sphere with center g that encloses ki training vectors

from class C2. The quantity Vi is then used to estimate the class-conditional density

according to:

k- 1
p~ s) = n ,' (4.10)

where an appropriate value for ki is approximately fni. The class-conditional densi-

ties can then be used with Bayes' Rule in the likelihood ratio test (equation 4.8) to

generate a score that can be compared to a threshold. Because of the variation in the

feature vector components, they should be normalized beforehand by subtracting the

mean and dividing by the standard deviation estimated from all the training data.

Decision Trees

Decision tree algorithms involve partitioning the feature space to build separate mod-

els for different regions. More explicitly, the decision tree recursively splits the feature

space into two separate regions according to a specific characteristic of the data. Each

of the new regions can use an independent classifier to model the data.

Although decision trees require a substantial amount of data to train, they allow

for a better model if one or more data features substantially affect the discriminant

surface. In other words, a decision tree models the dependencies within the feature
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vector better than other techniques.

4.3.5 Evaluating the Thresholding Metrics

The performance of a thresholding metric is difficult to assess. Experimentally, the

thresholding metric can be evaluated by considering the errors the classifier makes at

different values for the threshold. Because the threshold can vary, we must specify

the threshold at which the classifier should be evaluated. Unfortunately, this depends

substantially on the clustering.

Each of the thresholding algorithms given above seem theoretically reasonable.

Therefore, the best thresholding algorithm is judged based on its performance when

used as part of a clustering system. Moreover, we measure performance based on the

official evaluation metric, because it is the quantity we are trying to optimize for.

Because of the computational complexity of implementing the GMM, we eliminated

it from our analysis.

Each thresholding metric was trained on the same data set. The system perfor-

mance was measured at the optimal threshold, which was estimated by minimizing

the official evaluation cost metric (because lower evaluation scores are better). The

results of using each classifier with the incremental k-means clustering algorithm are

shown in table 4.2. The first score is a cost function where mistakes are weighted by

story; the second is weighted by topic and is used for the official evaluation. Section

5.2.3 offers more detail on the evaulation metric..

First, we analyze the single-score metrics. The cosine distance metric performs

well in generating small homogeneous clusters. It fails on larger topics where the

focus changes substantially over time, as indicated by the poor story-weighted score.

The two normalized topic spotting (Tspot) metrics work much better on large topics,

probably because large topics provide more data to accurately estimate the cluster

model. Unfortunately, due to data sparsity, the topic spotting metrics perform rather

poorly on smaller clusters, although the length-normalized metric performs quite a

bit worse than the mean- and variance-normalized metric.

In light of these observations, we can construct a feature vector classifier that
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T1

TI

T2 Distance

Figure 4-1: Simplified decision tree involving dividing the score feature space into
four quadrants (T1 and T2 are thresholds for the scores)

performs well on both small and large clusters. One such classifier is the k-nearest

neighbor algorithm. The k-nearest neighbor algorithm tends to produce very low rates

of misclassification when cross-validated with data. Unfortunately, the performance

gains on the evaluation metric are not as substantial.

Finally, decision trees can be used for the binary classification problem. We use

a simple decision tree based on the score feature vector which finds single thresholds

for each score and makes a hard decision for each quadrant (see figure 4-1). In

other words, the final decision is a simple combination of the two single-dimension

decisions. In the table 4.2, DTree 1 is a classifier based on the cosine distance and

length-normalized topic-spotting metric; DTree 2 is based on the cosine distance and

mean- and variance-normalized topic-spotting metric. The latter works very well,

and this is what the final evaluation system used.

A more satisfying decision tree approach would be to automatically train a decision

tree based on a larger feature vector. Unfortunately, due to time and complexity

restrictions, we did not utilize this approach in our system.
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System Story-weighted CD Topic-weighted CD

Cosine dist 0.0080 0.0025
Length-normed Tspot 0.0047 0.0031

Mean/sd-normed Tspot 0.0027 0.0014
KNN (Cosine+Tspot) 0.0047 0.0026

DTree 1 0.0027 0.0022
DTree 2 0.0025 0.0013

Table 4.2: Official evaluation results using different thresholding metrics on TDT-2
Mar-Apr CCAP+NWT data

4.4 News Sources and Score Biases

An important consideration when dealing with different sources is the proper nor-

malization for each source. For example, ASR sources tend to make consistent errors

especially on out-of-vocabulary (OOV) words. Therefore, the lower scores of com-

paring ASR sources to newswire stories should be considered when making decisions.

Likewise, newswire sources tend to be very accurate but also contain more information

than a newscast, affecting the scores.

A system can consider the source when making decisions about what the threshold

should be in a particular setting. For example, we could add a bias to the threshold

for closed-captioned (CCAP) data, because the error rate is higher than newswire

data. The experimental results of clustering with added biases to the audio source

thresholds are shown in table 4.3. Although the scores improve slightly with this

technique, the biases do not always generalize to other data sets, and the performance

improvement is relatively small.

4.5 Chapter Summary

There are many possible methods for combining similarity metrics to make appropri-

ate selection and thresholding metrics for clustering. We advocate a simple selection

metric based on the BBN topic spotting metric for finding a relevant custer to a

given story. There are many methods that can be used for thresholding: single-
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CCAP+NWT results
System Story-weighted CD Topic-weighted CD

Unbiased 0.0027 0.0013
Biased 0.0024 0.0012

ASR+NWT results
System Story-weighted CD Topic-weighted CD

Unbiased 0.0028 0.0022
Biased 0.0026 0.0022

Table 4.3: Official evaluation results generated by biasing thresholds for audio sources
on TDT-2 Mar-Apr data

variable classifiers, parametric classifiers, and non-parametric classifiers. However, a

simplified decision tree based on the cosine metric and mean- and variance-normalized

topic spotting metric seems to perform well for the thresholding problem. Finally, the

news source and other information can be considered when determining the metric

threshold.
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Chapter 5

Evaluation and Results

Thus far, we have described a system for the clustering of news stories into topics,

but one important consideration in designing the system is evaluating how well it per-

forms. This chapter describes methods for evaluating topic groupings and compares

our experimental results to those from other research systems.

First, we describe the corpora that are used for experimentation in TDT. Then

we discuss different evaluation metrics and their respective strengths and weaknesses.

Finally, we give our results as evidence to the effectiveness of our topic detection

system.

5.1 Corpora

The Linguistic Data Consortium (LDC) has released two corpora for the purpose

of expanding research in TDT. The first corpus (TDT-1), originally used for a pilot

evaluation conducted in 1996-1997, consists of 15,683 stories from newswire sources,

collected over the course of one year [21.

The second corpus, referred to as the TDT-2 corpus, consists of about 60,000

stories collected over a six-month period from both newswire and audio sources [13].

The TDT-2 corpus is subdivided into three two-month sets: a training set (Jan-

Feb), a development test set (Mar-Apr), and an evaluation set (May-Jun). Because

a detection system is not trained, there is little functional difference between the
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training set and development test set. Both sets can be used freely in the research

and system design, but the evaluation set is withheld until the systems are evaluated.

The data is annotated at LDC by human annotators who listen to the audio data

or view the text transcripts. The annotators are given a set of predefined topics to

look for. For each story, an annotator determines which of the topics are relevant

to the story. A judgement of "YES" indicates that over 10% of the story is relevant

to the topic. A judgement of "BRIEF" indicates that less than 10% of the story is

on topic. If the story is not on topic, it is judged "NO" [16]. The annotations are

checked for consistency, and ambiguous judgements are arbitrated. After undergoing

this procedure, most stories are not labeled, and some stories are labeled for multiple

topics. Only about 3-20% of the stories are labeled into 30-40 topics per data set.

The data is divided into segments called files. Each file contains the equivalent

of a half-hour newscast or about 50-100 newswire stories. The allowable look-ahead

is expressed in terms of files: the system can look either 1, 10, or 100 files into the

future, including the current file.

5.1.1 Data Sources

The TDT-2 corpus data comes from a number of sources [13]. First, the newswire

(NWT) stories come from the New York Times Service and the Associated Press

Worldstream Service. Only stories from the New York Times newspaper are taken

from the New York Times Service, and only English stories are used from the Associ-

ated Press. The newswires contain some stories that are summaries or previews of a

wide variety of stories - these are labeled as "miscellaneous text" and are processed

but not scored. Also, newswire stories sometimes repeat exactly, or with a very slight

change in content.

A number of audio sources are used in the TDT-2 corpus [13]:

* Cable News Network (CNN) Headline News: About four television

broadcasts are recorded every day. The closed-captioning is reasonably accu-

rate, though deletion-type errors are common (where words, phrases, sentences,
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and even stories are not transcribed) and misspellings occur several times in a

broadcast. Stories that are not transcribed are labeled "untranscribed text",

though are still considered in the scoring.

" ABC World News Tonight: This television program is broadcast once per

day. The closed-captioning is significantly better than the CNN transcripts,

though deletion errors are still common. An auxilliary set of higher-quality

transcripts is also created by the Federal Documents Clearing House (FDCH).

" Public Radio International "The World": Broadcast once each day five

days a week, this one-hour radio program features both American and non-

American English speakers. Therefore, the ASR text is more prone to errors.

Closed-captioning transcripts are acquired through an LDC contractor and are

between standard closed-captioning and FDCH transcripts in quality.

" Voice of America: The Voice of America produces two radio programs used

in the TDT-2 corpus: VOA Today, which is broadcast for an hour every day,

and World Report, which is broadcast for an hour five days a week. Manual

transcripts are provided by the Voice of America.

5.1.2 Discussion about the Data and Annotations

The human annotators missed about 6% of stories that were really on topic in the

TDT-2 Mar-Apr set. Although the annotations are fairly accurate after they are

rechecked, it should be noted that definitions of topics can become very specific

over time. For example, a topic about the national tobacco settlement has very

specific rules associated with it regarding what court cases are included and excluded.

Therefore, we note that specific rules about what should and should not be included

are impossible for an automatic system to learn.

We now return to the assumption made in Chapter 1 that multiple-topic stories

belong to only one cluster. A judgement of "YES" indicates that as little as 10% of

a story need be on the topic. This means that 90% of a story could potentially be on
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some other topic. For example, a story talking about President Clinton's 1999 State

of the Union adress might also refer to his impeachment trial. It is unreasonable to

expect a system to be able to correctly cluster a story based on the 10% of a story

that happened to be on the same topic as the one chosen by the annotators. The

system is not required to correctly cluster stories marked "BRIEF" for a particular

topic.

Furthermore, we note the presence of unannotated topics affects performance sig-

nificantly. The evaluation acknowledges this problem by eliminating stories that are

marked "YES" for more than one annotated topic. But it does not acknowledge the

thousands of unmarked topics for which a story could also be considered a "YES".

For example, a group of stories in the Jan-Feb data talked about a set of Thai auto

worker riots. The system, although it clustered these together, did not cluster them

with the labeled "Asian economic crsis" topic for which about half the riot stories

were labeled. Either:

1. The annotations are correct, but the worker riot topic is an unlabeled topic that

is confounding the system (figure 5-1), or

2. The annotations are wrong, and the Thai worker riots are really part of the

Asian economic crisis (figure 5-2), a topic that happens to have an extremely

large scope.

Because of these problems, it is unreasonable to expect a system to perform perfectly.

The negative effect of unlabeled topics is shown by the experiment described in section

5.3.6.

5.2 Evaluation Metrics

This section describes a number of evaluation metrics that have been or could be used

for the topic detecion task of TDT. First, goals are outlined for the evaluation metric.

A few basic rules are described for preventing unreasonable demands on the system.

Finally, the current and proposed evaluation metrics are described and discussed.

60



5.2.1 Goals

An evaluation metric is designed to measure the performance of a detection system by

examining the clusters it generates. There are a number of important characteristics

that an evaluation metric should possess.

First, as the metric needs to be accepted by the scientific community, the metric

should represent a meaningful quantity. For example, a metric could reflect the cost

for using the clusters in a particular application. If a metric minimally satisfies this

criterion, then a well-performing system must be useful for some application.

Secondly, the metric needs to be computable regardless of how many stories in

the corpus are labeled. Since most stories in the TDT corpus are not annotated,

traditional clustering metrics such as cluster purity are not useful for measuring the

system performance.

Finally, the metric should be comparable across different corpora, so that com-

parisons can be made not only between systems, but also across data sets. Note that

though this is a desirable metric characteristic, it is less important for the purposes

of comparing systems in TDT.

5.2.2 Basic Evaluation Rules

The evaluation metrics share a number of characteristics that are important to prevent

several situations where it is not possible for the system to group a story correctly.

First, non-stories (e.g., commercials, previews, etc.) are treated as stories by the de-

tection system, but are ignored by the evaluation metric. Stories labeled as "BRIEF"

Asian economic Thai worker
crisis riots

Figure 5-1: Venn diagram of a labeled topic (Asian economic crisis) and unlabeled
topic (Thai worker riots) that overlap
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Figure 5-2: Venn diagram of a labeled topic (Asian economic crisis) and unlabeled
topic (Thai worker riots) that have different scope

for a particular topic are not scored for that topic. Stories labeled as "YES" for two

annotated topics are also ignored.

5.2.3 Currently Used Metrics

The evaluation metrics that have been used for topic detection measure one of two

quantities:

1. First story detection, which is a system's ability to correctly find the first story

on a new topic. This was used in the TDT Pilot Study.

2. Cost function based on precision and recall, which is an ad hoc quantity based

on a system's performance that assumes the reference clusters can be mapped

to the optimal corresponding system clusters. This is the basis for the TDT-2

evaluation metric.

First Story Detection

First story detection is a useful quantity if the main application of such a system

is the prompt detection of new topics. In this case, a metric measuring a system's

ability to detect the first story on a topic is an appropriate measure of performance.

We can meaningfully define quantities such as the probability of miss PM and the

probability of false accept PFA. Performance can be compared using some tradeoff

between these two quantities.

62



Cost Function Based on Precision and Recall

The current official evaluation metric is a weighted cost function. Let R be the set

of human-annotated topics and S be the set of system-generated clusters. Then, we

map each cluster in R to a corresponding cluster in S by minimizing the quantity

CD = PM CM -PT + PFA ' CFA ' (1 - PT), (5.1)

where PM and CM are the probability and cost of a miss, PFA and CFA are the

probability and cost of a false accept, and PT is the a priori probability of a topic.

The quantities CM and CFA are fixed by the evaluation such that CM = CFA 1-

The probability of miss PM is given by the number of stories in the reference cluster

that are not present in the system cluster divided by the size of the reference cluster.

The probability of false accept PFA is given by the number of stories in the system

cluster that are not present in the reference cluster divided by total number of stories

that are not present in the reference cluster. More explicitly, if Ri is the set of stories

in the reference topic that is mapped to the set Si corresponding to a system cluster,

then

|R- - Sj| |S - - Ri|
PM IR FA - , (5.2)

where I is the size of a set and Ri is the complement (i.e., all stories not present in

R2 ) of Ri. [16]

To get the final CD, we average the detection cost for each cluster either over the

topics (topic-weighted score) or the stories (story-weighted score). The topic-weighted

score counts each topic's contribution to the total cost equally. Unfortunately, if

a single story is missed in a relatively small topic, the final cost can be affected

dramatically. The story-weighted score counts each story's contribution to the total

cost equally. Although one story on a small topic is inconsequential in this case,

large topics tend to dominate the score. The official evaluation is based on the topic-

weighted score. [16]
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Discussion

The first story detection metric seems reasonable, because it represents a legitimate

application of the detection technology. It defines the quantities Pm and PFA in a

rigorous way and can compare the performance of systems for this application mean-

ingfully. Unfortunately, there are only a few (30-40) topic starts that are annotated

in the corpus. Therefore, there is not much data to evaluate the usefulness of the

first-story detector. In the TDT Pilot Study evaluation, the data sparsity was over-

come by creating several new corpora by incrementally eliminating the first story in

each topic.

Although the cost function based on precision and recall is the official evalua-

tion metric, it suffers from a number of important drawbacks. First, because of the

mapping of reference clusters to system clusters, the evaluation of the cost function

is analagous to the case where interesting topics are known in advance. It does not

measure the system's ability to discover what are the important features of the data.

In addition, there is no corresponding useful application that fits this metric.

Secondly, the cost function is based on mapping reference clusters to a small

percentage of the system clusters (roughly 1-5%). This makes the measurement of

the cost function very sensitive to variations in the labeled data. Because of this

sensitivity, small differences between systems can be attributed to random variation.

5.2.4 Another Possibile Evaluation Metric

Because of the drawbacks of the currently available evaluation metrics, most notably

the official measure, we consider an alternative that corrects some of the flaws.

BBN/YDZ Metric

One such metric is known as the BBN/YDZ (Yanguas, Doddington, and Zissman)

metric, based on the speaker clustering evaluation metric [22]. It proposes a strategy

for the application of the clustering system results based on the goal of finding all

interesting stories in the corpus. Namely, the metric assigns a value to finding an
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interesting story and a cost for looking at one story. The strategy is to look at a

random element of a cluster. If it is interesting, the strategy dictates that the entire

cluster should be examined; otherwise, the entire cluster should be discarded. The

metric calculates the expected value of using this strategy to analyze the data. The

metric is given by:

CBBN - Pt,c - (nt,cVH + ncCL) - (1 - Pt,c) ' CL (5.3)
t C

where t is summed over all labeled topics, c is summed over all system clusters, pt,c

and nt,c are the fraction and number of stories labeled t in cluster c, nc is the number

of stories in cluster c, CL is the cost of a look, and VH is value of a hit.

Discussion

While the BBN/YDZ metric measures the cost of using a particular strategy, it is

not the only strategy for finding interesting stories that could be used. For example,

the analyst could look at 10% of a cluster before deciding whether it is of interest.

However, without a defined application, it is difficult to evaluate a system on this

basis.

The BBN/YDZ metric has a number of desirable characteristics. It is derived

from an application, so the result represents a real quantity, although the merits

of any application can be debated. It can be computed for an arbitrary number of

labeled clusters. It takes into account the system clusters that do not map to reference

clusters. Unfortunately, the output of the metric is not comparable across different

data sets.

5.3 Results Summary

We present results of our experiments to demonstrate the system performance. First,

we provide a brief summary of the system used to generate these results. Then, we

compare the performance of our system to that of other systems designed within a
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similar constraint. Finally, we provide results showing the effects of changing the

evaluation conditions.

5.3.1 System Description

We summarize the detection system used to generate the following results. First, the

system preprocesses the stories by eliminating stop words, stemming, and creating

term vectors. These vectors are used as inputs to both the topic spotting and cosine

distance metrics. The topic spotting score is normalized by the mean and standard

deviation of scores, which are estimated robustly by comparing each story to back-

ground clusters. These background clusters are generated by automatically clustering

4000 outside stories.

We utilize the topic spotting metric for cluster selection. The simplified deci-

sion tree based on the IDF-weighted cosine distance and the mean- and variance-

normalized topic spotting score is used for thresholding. We cluster using the incre-

mental k-means approach, though we use a look-ahead of only one file. The optimal

decision tree thresholds are found by experimentation.

5.3.2 Performance Results

According to the December 1998 evaluation of topic detection systems, our sys-

tem outperformed many of the others. The results of the default conditions of the

evaluation are given in table 5.1. Henceforth, we use abbreviations for automatic

speech-recognized data (ASR), closed-captioned data (CCAP), and newswire text

data (NWT).

One concern with experiments conducted using the Jan-Feb and Mar-Apr data

is the dependence of the decision tree thresholds on the corpus and human-chosen

topics. We show in table 5.2 the dramatic difference between the thresholds chosen for

the Jan-Feb data versus the Mar-Apr data. By slightly tuning the metric thresholds,

we can improve the May-Jun set topic-weighted CD by 0.0003 points. Because this

improvement is relatively small, the decision tree thresholds were estimated fairly well
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Story-weighted results
Site PM PFA CD

BBN 0.0884 0.0022 0.0039
CIDR 0.3780 0.0018 0.0093
CMU 0.3575 0.0004 0.0076
Dragon 0.1563 0.0013 0.0044

IBM 0.11822 0.0008 0.0045
UIowa 0.5396 0.0009 0.0117
UMass 0.0831 0.0023 0.0039
UPenn 0.2919 0.0011 0.0069

Topic-weighted results
Site PM PFA CD

BBN 0.1220 0.0022 0.0047
CIDR 0.3257 0.0018 0.0084
CMU 0.2586 0.0004 0.0057

Dragon 0.1736 0.0013 0.0048
IBM 0.1629 0.0008 0.0042

UIowa 0.4214 0.0009 0.0095
UMass 0.2088 0.0023 0.0064
UPenn 0.2627 0.0011 0.0063

Table 5.1: Official TDT-2 evaluation results (based on May-Jun NWT+ASR data
with a 10 file look-ahead period). The official metric is the topic-weighted CD (lower
is better).
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Table 5.2: Optimal clustering thresholds for different data sets

for the evaluation.

We can also substantiate the performance of our system by examining its perfor-

mance on the other metrics mentioned above. Unfortunately, because no other sites

report results for the other metrics, it is difficult to compare the performance across

systems. We suggest that although the current metric has drawbacks, it generally

reflects the relative performance of systems. The next TDT evaluation is slated to

incorporate the YDZ/BBN metric in some form; that will reveal the performance of

different systems when tuned to new metric.

5.3.3 Effect of Using Different Data Sets

Unfortunately, we find substantial differences between the different data sets that

have been produced for TDT-2. Curiously, the Jan-Feb data has a few topics that

are very broad and a few that are very focused. This inconsistency is reflected in

the system's performance. The Mar-Apr data contains roughly 1/8 the number of

labeled stories than the Jan-Feb data. Therefore, the Mar-Apr set contains smaller

topics that are generally more consistent. Finally, the May-Jun set contains roughly

3 times the number of labeled stories as Mar-Apr. The May-Jun data set again has

more variation, with several smaller topics and many larger topics. The scores are

shown in table 5.3.

These results seem to suggest a correlation between the number of annotated sto-

ries and the cost function. The more stories that are labeled, the worse the system

performs on the official evaluation metric. This effect is shown in table 5.4. The degra-
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Topic-weighted results
Data set Cos thresh TSpot thresh CD

Jan-Feb CCAP+NWT -.95 -9.5 .0056
Mar-Apr CCAP+NWT -1.0 -8.0 .0013
Mar-Apr ASR+NWT -.85 -7.0 .0020
May-Jun ASR+NWT -.95 -7.5 .0042



Table 5.3: Official evaluation metric using
(1 file look-ahead)

the same algorithm on different data sets

Data set No. of labeled S Ave topic size Story-wtd CD Topic-wtd CD
Jan-Feb 3613 103.2 .0090 .0056
Mar-Apr 576 23.0 .0027 .0013
May-Jun 1312 38.6 .0035 .0044

Table 5.4: Results showing the correlation of CD with average topic size (using
CCAP+NWT data)

dation in performance could be attributed to the lack of consistency in determining

the human-annotated topics. The topics are determined separately for each data set

by randomly sampling stories and heuristically determining the topic to which the

sampled story belongs. Because the topics were determined months apart for each

data set, the criteria used could end up being fundamentally different for each data

set.

5.3.4 Effect of Manual Vs. Automatic Transcripts

The transcription method can have a significant effect on performance as well. ASR

transcripts tend to have a very high error rate of about 23%, but the errors are rel-
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Story-weighted results
Data set PM PFA CD

CCAP+NWT Jan-Feb 0.3498 0.0021 0.0090
ASR+NWT Mar-Apr 0.1083 0.0004 0.0026

CCAP+NWT Mar-Apr 0.1128 0.0004 0.0027
ASR+NWT May-Jun 0.0930 0.0022 0.0040

CCAP+NWT May-Jun 0.0582 0.0023 0.0035

Topic-weighted results
Data set PM PFA CD

CCAP+NWT Jan-Feb 0.1763 0.0021 0.0056
ASR+NWT Mar-Apr 0.0813 0.0004 0.0020

CCAP+NWT Mar-Apr 0.0435 0.0004 0.0013
ASR+NWT May-Jun 0.1292 0.0022 0.0047

CCAP+NWT May-Jun 0.1044 0.0023 0.0044



Story-weighted results
Data set PM PFA CD

ASR+NWT May-Jun 0.0930 0.0022 0.0040
CCAP+NWT May-Jun 0.0582 0.0023 0.0035
ASR+NWT Mar-Apr 0.1083 0.0004 0.0026

CCAP+NWT Mar-Apr 0.1128 0.0004 0.0027
Topic-weighted results

Data set PM PFA CD
ASR+NWT May-Jun 0.1292 0.0022 0.0047

CCAP+NWT May-Jun 0.1044 0.0023 0.0044
ASR+NWT Mar-Apr 0.0813 0.0004 0.0020

CCAP+NWT Mar-Apr 0.0435 0.0004 0.0013

Table 5.5: Official evaluation metric comparison of ASR+NWT and CCAP+NWT
data (1 file look-ahead)

atively consistent. CCAP transcripts have a smaller error rate, but the errors are

usually typographical errors and are often inconsistent. Even so, the combination of

the newswire stories (NWT) with the CCAP data produces significantly better clus-

ters than using newswire stories and ASR transcripts. These variations are illustrated

in table 5.5.

Interestingly, in the tracking task, there is very little degradation from using the

ASR text versus CCAP text. This can be attributed to the training data that tracking

systems are allowed combined with the consistency of the ASR errors. For example,

a story that talks about "Iraq" might contain many consistent references to "a rock",

because the two words are essentially homonyms. A detection system might split

such a cluster into stories about Iraq and stories about rocks.

5.3.5 Look-Ahead Periods

The effect of increasing the look-ahead period using the incremental k-means cluster-

ing algorithm is not significant. Table 5.6 shows the improvement made by increasing

the look-ahead period from 1 file to 10 files. We did not run experiments using a

100-file look-ahead period because this gain was insignificant, and the computation
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Story-weighted results
Look-ahead PM PFA CD

1 file 0.1007 0.0006 0.0026
10 files 0.1181 0.0002 0.0026

Story-weighted results
Look-ahead Pm PFA CD

1 file 0.0421 0.0006 0.0015
10 files 0.0598 0.0002 0.0014

Table 5.6: Official evaluation metric comparison of using different look-ahead periods
on the Mar-Apr CCAP+NWT data

Topic-weighted results
Data PM PFA CD

Full set 0.0435 0.0004 0.0013
Subset 0.0026 0.0003 0.0003

Table 5.7: Official evaluation metric results of using only the subset of human-
annotated data (Mar-Apr CCAP+NWT data set)

required for looking ahead 100 files was too substantial.

5.3.6 Subset Experiment

To show the effect of multi-topic stories that contain non-annotated topics, we con-

structed a simple experiment. We created a data subset that contained only the

stories in the Mar-Apr CCAP+NWT data set that were annotated "YES" for ex-

actly one topic. We ran the same clustering algorithm described above on the subset

data. The results, given in table 5.7, show that the subset performance is much bet-

ter. Part of this gain can be attributed to the eliminated multiple-topic stories that

confuse the system.

5.3.7 Named Entity Extraction

We used the BBN IdentiFinder, a program used to find names in broadcast news, to

add names into the term vectors [4]. The experiment consisted of simply adding the
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Story-weighted results
Data set PM PFA CD
Baseline 0.1168 0.0004 0.0028

Including names 0.1320 0.0003 0.0029

Topic-weighted results
Data set PM PFA CD
Baseline 0.0814 0.0004 0.0021

Including names 0.0873 0.0003 0.0021

Table 5.8: Effect of using names as part of the story term vectors (on Mar-Apr
ASR+NWT data)

names as separate terms to the story term vectors. The results of this experiment

are show in table 5.8. These results seem to indicate that the use of names does not

substantially improve the performance of our topic detection system.

5.4 Chapter Summary

This chapter contains the results of experiments run using the detection system.

There are a number of alternatives to the current evaluation metric, but they are

not currently useful because no other sites report results based on them. Finally, our

results show that our system performed quite well compared to many others.
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Chapter 6

Conclusions

In the preceding work, methods are developed for clustering news stories by topic.

Several different causal clustering algorithms are considered for this purpose. Some

similarity methods are discusussed, and a few are combined to form effective clustering

metrics. The clustering metrics are divided into the cluster selection and threshold-

ing problems, and different metrics are used for each. The results for a number of

comparative experiments are given.

6.1 Accomplishments

Topic detection is a unique and valuable area, and it is increasingly important as

the amount of textual information grows. The system developed herein performs

very well despite the difficult and poorly-defined problem. Furthermore, this system

contains several novel features.

While other systems use one single metric for clustering, our approach divides the

problem into selection and thresholding. By using separate metrics for each of these

problems, the system is able to exploit metrics that fit the problems posed by each.

Because of this, performance can be improved substantially.

The use of the probabilistic BBN topic spotting metric is a new and effective

technique for attacking the cluster selection problem. Because it uses a two-state

model for the cluster and calculates the likelihood of the cluster formally, it performs
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much better than the traditional vector-space models.

For cluster thresholding, the problem can be formulated similarly to the basic IR

problem. Using a binary classifier to determine the topicality of a story to a cluster

is a new approach to the thresholding problem. It appears promising because the

binary classifiers discussed can be formulated in a probabilistic way.

The incremental clustering algorithm lends itself well to clustering the stories in

a causal way. It is computationally simple, and it produces very good results. We

show more complicated clustering algorithms that can exploit the look-ahead granted

by the TDT evaluation as well, although the contribution of this work to clustering

is small.

New evaluation metrics seem to provide a more reasonable way of measuring the

performance of a topic detection system. Although the BBN/YDZ metric has been

used before for speaker clustering, its application to TDT is a new area.

Finally, our results show that the system performance is comparable or superior

to many other similar systems.

6.2 Future Work

Although our topic detection system performs quite well, a number of research avenues

are left unexplored:

" Preprocessing: We do not explore in depth the use of features that model higher-

order dependencies. An interesting study might be to examine further the

effects of using bigram or n-gram feature vectors. We also do not thoroughly

investigate the use of finding proper names to augment the feature vectors,

though we utilize some basic methods for incorporating that information. We

also did not explore the use of a thesarus for grouping related terms together.

" Similarity metrics: We explore many types of similarity metrics, though there

are many more that we do not attempt to use. Alternative similarity metrics

might be more effective, especially those that exploit cluster characteristics.
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" Metric combinations: Other selection metrics could be formulated, though the

selection metric proposed is the most effective of those described here. More

interestingly, one could propose a wide range of classifiers for thresholding,

especially those that use different information. For example, the feature vectors

for the binary classification problem could incorporate story age, news source,

story and cluster size, etc.

" Clustering: We use a simple clustering algorithm to cluster the stories. However,

one could use much more elaborate techniques to take advantage of the look-

ahead. One interesting possiblity might be to treat the clustering and metric

combinations jointly (i.e., use a "fuzzy" clustering algorithm). The individual

stories could then be assigned probabilistically to clusters.

" Evaluation metrics: Although the current evaluation metric is one method for

evaluating a system, different metrics may produce different results. Therefore,

one could examine the use of different evaluation metrics to find an application-

independent clustering algorithm. Moreover, once an application is designed,

optimizing the detection algorithm becomes more straightforward.

6.3 Final Thoughts

Topic detection is an important area of research with many intriguing applications.

Although our system is optimized for only one particular metric, it could be easily

and successfully modified for many different evaluation metrics. The probabilistic

methods provide a nice framework for developing and extending the models we use.

Finally, as this is a new and developing area, more research is needed to expand and

develop this technology.
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