
Algorithms and Approximation Schemes for

Machine Scheduling Problems

by

Sudipta Sengupta

Bachelor of Technology (1997)
Computer Science and Engineering

Indian Institute of Technology, Kanpur

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1999

@ 1999 Massachusetts Institute of Technology
All rights reserved

Author
.......... 1..1..........J.I

Department of Electrical Engineering
. r.................

and Computer Science
May 11, 1999

Certified by.................
James B. Orlin

Edward Pennell Brooks Professor of Operations Research
Sloan School of Management

Accepted by

Thesis Sy4pervisor

Arthur Smith
Chairman, Departmental Committee on Graduate Students

2

Algorithms and Approximation Schemes for Machine

Scheduling Problems

by

Sudipta Sengupta

Submitted to the Department of Electrical Engineering and Computer Science
on May 11, 1999, in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

We present our results in the following two broad areas: (i) Algorithms and Approximation
Schemes for Scheduling with Rejection, and (ii) Fixed-precision and Logarithmic-precision
Models and Strongly Polynomial Time Algorithms.

Most of traditional scheduling theory begins with a set of jobs to be scheduled in a
particular machine environment so as to optimize a particular optimality criterion. At times,
however, a higher-level decision has to be made: given a set of tasks, and limited available
capacity, choose only a subset of these tasks to be scheduled, while perhaps incurring some
penalty for the jobs that are not scheduled, i.e., "rejected". We focus on techniques for
scheduling a set of independent jobs with the flexibility of rejecting a subset of the jobs in
order to guarantee an average good quality of service for the scheduled jobs.

Our interest in this rejection model arises from the consideration that in actual manu-
facturing settings, a scheduling algorithm is only one element of a larger decision analysis
tool that takes into account a variety of factors such as inventory and potential machine dis-
ruptions. Furthermore, some practitioners have identified as a critical element of this larger
decision picture the "pre-scheduling negotiation" in which one considers the capacity of the
production environment and then agrees to schedule certain jobs at the requested quality of
service and other jobs at a reduced quality of service, while rejecting other jobs altogether.
Typically, the way that current systems handle the integration of objective functions is to
have a separate component for each problem element and to integrate these components
in an ad-hoc heuristic fashion. Therefore, models that integrate more than one element of
this decision process while remaining amenable to solution by algorithms with performance
guarantees have the potential to be very useful elements in this decision process.

We consider the offline scheduling model where all the jobs are available at time zero.
For each job, we must decide either to schedule it or to reject it. If we schedule a job, we
use up machine resources for its processing. If we reject a job, we pay its rejection cost.
Our goal is to choose a subset S of the jobs to schedule on the machine(s) so as to minimize
an objective function which is the sum of a function F(S) of the set S of scheduled jobs
and the total rejection penalty of the set S of rejected jobs. Thus, our general optimization

problem may be denoted as

min F(S)+z ej
.jES .

We consider four possible functions F(S), giving rise to the following four problems:
(i) sum of weighted completion times with rejection [F(S) = Ejs WiCj], (ii) maximum
lateness with rejection [F(S) = Lmax(S)], (iii) maximum tardiness with rejection [F(S) =
Tmax(S)], and (iv) makespan with rejection [F(S) = Cmax(S)]. For each of these problems,
we give hardness (NP-completeness) results, pseudo-polynomial time algorithms (based
on dynamic programming), and fully polynomial time approximation schemes (FPTAS).
For the problem of sum of weighted completion times with rejection, we present simple
and efficient polynomial time algorithms based on greedy methods for certain special cases.
Observe that the notion of an approximation algorithm (in the usual sense) does not make
much sense for maximum lateness with rejection since the optimal objective function value
could be negative. Hence, we give inverse approximation algorithms for this problem.
We also point out the application of the maximum tardiness with rejection problem to
hardware/software codesign for real-time systems.

We introduce a new model for algorithm design which we call the L-bit precision model.
In this model, the input numbers are of the form c * 2 ', where t > 0 is arbitrary and
c < c* = 2L. Thus, the input numbers have a precision of L bits. The L-bit precision
model is realistic because it incorporates the format in which large numbers are stored
in computers today. In this L-bit precision model, we define a polynomial time algorithm
to have running time polynomial in c* = 2L and n, where n is the size of the problem
instance. Depending on the value of L, we have two different models of precision. For the
fixed-precision model, L is a constant. For the logarithmic-precision model, L is O(log n).
Under both these models, a polynomial time algorithm is also a strongly polynomial time
algorithm, i.e., the running time does not depend on the sizes of the input numbers.

We focus on designing algorithms for NP-complete problems under the above models.
In particular, we give strongly polynomial time algorithms for the following NP-complete
problems: (i) the knapsack problem, (ii) the k- partition problem for a fixed k, and (iii)
scheduling to minimize makespan on a fixed number of identical parallel machines. Our
results show that it is possible for NP-complete problems to have strongly polynomial time
algorithms under the above models.

Thesis Supervisor: James B. Orlin
Title: Edward Pennell Brooks Professor of Operations Research
Sloan School of Management

Acknowledgments

I would first like to thank my advisor Prof. Jim Orlin for his constant encouragement,

support, and guidance. He made himself frequently available to help me identify new

research directions, clarify my ideas and explanations, and often add an entirely new

perspective to my understanding of the research problem.

I must also thank Daniel Engels and David Karger with whom I collaborated on

part of the work contained in the thesis. I would especially like to thank Daniel for

always being available as a sounding board for many of the ideas that developed into

this thesis.

Special thanks to Be for keeping the office well stocked with chocolates, cookies,

and candies. My former and present apartment mates, Pankaj, Debjit, and Evan,

have made MIT and Cambridge a much more fun and enjoyable place. A very special

thanks to Raj for being a friend, philosopher, and patient listener during hard times.

Most of all, I must thank my family - my parents, my brother, my late grand-

parents, and my grandmother. My parents, for instilling in me a love for books and

knowledge and for their encouragement and dedicated support towards my setting

and achieving higher goals in life; my brother, for his confidence in me and for always

looking up to me; my late grandparents, who would have been the happiest persons

to see my academic career developing; my grandmother, for her love and affection.

They laid the foundations on which this thesis rests.

To my parents

Contents

Abstract 3

Acknowledgements 5

1 Introduction 13

1.1 Scheduling with Rejection. 14

1.1.1 Introduction to Scheduling. 14

1.1.2 Motivation for Scheduling with Rejection. 15

1.1.3 Scheduling Notation. 16

1.1.4 Problem Definition. 17

1.1.5 Relevant Previous Work. 19

1.1.6 Results on Sum of Weighted Completion Times with Rejection. 20

1.1.7 Results on Maximum Lateness/Tardiness with Rejection. . . . 22

1.1.8 Results on Makespan with Rejection. 23

1.2 Fixed-precision and Logarithmic-precision Models and Strongly

Polynomial Time Algorithms. 24

1.2.1 Introduction. 24

1.2.2 The Knapsack Problem. 25

1.2.3 The k-Partition Problem. 25

9

1.2.4 Scheduling to Minimize Makespan on Identical Parallel Machines. 26

2 Sum of Weighted Completion Times with Rejection 27

2.1 Introduction. 27

2.2 Complexity of Sum of Weighted Completion Times with Rejection. . 28

2.3 Pseudo-polynomial Time Algorithms. 30

2.3.1 Dynamic Programming on the Weights w3. 31

2.3.2 Dynamic Programming on the Processing Times pJ. 32

2.3.3 Generalization to any fixed number of Uniform Parallel Machines. 34

2.4 Fully Polynomial Time Approximation Scheme. 36

2.4.1 Aligned Schedules. 36

2.4.2 The Algorithm . 39

2.4.3 Generalization to any fixed number of Uniform Parallel Machines. 40

2.5 Special Cases. 43

2.5.1 Equal Weights or Equal Processing Times. 43

2.5.2 Compatible Processing Times, Weights, and Rejection Costs. . 52

3 Maximum Lateness/Tardiness with Rejection 58

3.1 Introduction. 58

3.2 Application to Hardware/Software Codesign for Real-time Systems. . 59

3.3 Complexity of Maximum Lateness/Tardiness with Rejection. 60

3.4 Pseudo-polynomial Time Algorithms. 63

3.4.1 Dynamic Programming on the Rejection Costs e.... 63

3.4.2 Dynamic Programming on the Lateness of the jobs. 65

10

3.4.3 Generalization to any fixed number of Unrelated Parallel Ma-

chines. 67

3.5 Fully Polynomial Time Approximation Scheme for Maximum Tardiness

with Rejection. 70

3.5.1 Inflated Rejection Penalty. 70

3.5.2 The Algorithm . 72

3.6 Inverse Approximation for Maximum Lateness with Rejection. 75

3.6.1 Introduction to Inverse Approximation. 75

3.6.2 Inverse Approximation Scheme for 11 |(Lmax(S) + FS ej). . . . 77

3.6.3 Fully Polynomial Time Inverse Approximation Scheme for

1|| (Lmax(S) + sl ei). 78

4 Makespan with Rejection 81

4.1 Introduction. 81

4.2 Complexity of Makespan with Rejection. 82

4.3 Pseudo-polynomial Time Algorithm. 82

4.4 Fully Polynomial Time Approximation Scheme. 84

5 Fixed-precision and Logarithmic-precision Models and Strongly

Polynomial Time Algorithms. 88

5.1 Introduction. 88

5.2 The Knapsack Problem. 89

5.3 The k-Partition Problem . 93

5.4 Scheduling to Minimize Makespan on Identical Parallel Machines. . 95

Bibliography 99

11

List of Figures

2-1 Case 1 for Lemma 2.5.4. .

2-2 Case 2 for Lemma 2.5.4. .

47

48

2-3 Case 1 for Lemma 2.5.6. 50

2-4 Case 2 for Lemma 2.5.6. 51

3-1 Graph for f(x) = max(x, b) + (b - x/2) in the range 0 < x < b 62

12

Chapter 1

Introduction

In this chapter, we introduce and motivate the research problems considered in the

thesis, define the notation that will be used throughout the thesis, and summarize the

results that we have obtained. This thesis consists of results in the following broad

research areas:

* Algorithms and Approximation Schemes for Scheduling with Rejection

* Fixed-precision and Logarithmic-precision Models and Strongly Polynomial

Time Algorithms

In Section 1.1, we introduce and motivate the concept of scheduling with rejection

and summarize our results in this area. In Section 1.2, we introduce and motivate

the fixed-precision and logarithmic-precision models and state the problems for which

we have obtained strongly polynomial time algorithms under these models.

The rest of this thesis is organized as follows. Chapters 2, 3, and 4 contain our

results in the area of scheduling with rejection. In Chapter 2, we discuss our results

for the problem of sum of weighted completion times with rejection. In Chapter

3, we discuss our results for the problems of maximum lateness with rejection and

maximum tardiness with rejection. These two problems are very closely related to

each other and hence, we have combined our results for each of them into a single

13

chapter. In Chapter 4, we discuss our results for the problem of makespan with

rejection. Chapter 5 contains our results on strongly polynomial time algorithms

under the fixed-precision and logarithmic-precision models.

1.1 Scheduling with Rejection.

We begin with a short introduction to the area of scheduling in Section 1.1.1. In

Section 1.1.2, we introduce and motivate the problem of scheduling with rejection. In

Section 1.1.3, we introduce the scheduling notation that will be used throughout this

thesis. In Section 1.1.4, we give formal definitions for the scheduling with rejection

problems that we consider. In Section 1.1.5, we give pointers to some relevant previous

work in the area of scheduling with rejection. In Sections 1.1.6, 1.1.7, and 1.1.8,

we summarize our results for each of the following problems respectively: (i) sum

of weighted completion times with rejection, (ii) maximum lateness/tardiness with

rejection, and (iii) makespan with rejection.

1.1.1 Introduction to Scheduling.

Scheduling as a research area is motivated by questions that arise in production

planning, in computer control, and generally in all situations in which scarce resources

have to be allocated to activities over time. Scheduling is concerned with the optimal

allocation of scarce resources to activities over time. This area has been the subject

of extensive research since the early 1950's and an impressive amount of literature

has been created. A good survey of the area is [24].

A machine is a resource that can perform at most one activity at any time. The

activities are commonly referred to as jobs, and it is also assumed that a job requires

at most one machine at any time. Scheduling problems involve jobs that must be

scheduled on machines subject to certain constraints to optimize some objective func-

tion. The goal is to produce a schedule that specifies when and on which machine

14

each job is to be executed.

1.1.2 Motivation for Scheduling with Rejection.

Most of traditional scheduling theory begins with a set of jobs to be scheduled in a

particular machine environment so as to optimize a particular optimality criterion.

At times, however, a higher-level decision has to be made: given a set of tasks, and

limited available capacity, choose only a subset of these tasks to be scheduled, while

perhaps incurring some penalty for the jobs that are not scheduled, i.e., rejected. We

focus on techniques for scheduling a set of independent jobs with the flexibility of

rejecting a subset of the jobs in order to guarantee an average good quality of service

for the scheduled jobs.

Our interest in this rejection model arises primarily from two considerations. First,

it is becoming widely understood that in actual manufacturing settings, a scheduling

algorithm is only one element of a larger decision analysis tool that takes into account

a variety of factors such as inventory, potential machine disruptions, and so on and so

forth [15]. Furthermore, some practitioners [13] have identified as a critical element

of this larger decision picture the "pre-scheduling negotiation" in which one considers

the capacity of the production environment and then agrees to schedule certain jobs

at the requested quality of service (e.g., job turnaround time) and other jobs at a

reduced quality of service, while rejecting other jobs altogether.

Typically, the way that current systems handle the integration of objective func-

tions is to have a separate component for each problem element and to integrate these

components in an ad-hoc heuristic fashion. Therefore, models that integrate more

than one element of this decision process while remaining amenable to solution by

algorithms with performance guarantees have the potential to be very useful elements

in this decision process.

Secondly, our work is directly inspired by that of Bartal, Leonardi, Marchetti-

Spaccamela, Sgall and Stougie [1] and Seiden [20] who studied a multiprocessor

15

scheduling problem with the objective of trading off between schedule makespan

(length) and job rejection penalty. Makespan, sum of weighted completion times,

and maximum lateness/tardiness are among the most basic and well-studied of all

scheduling optimality criteria; therefore, it is of interest to understand the impact of

the "rejection option" on these criteria.

1.1.3 Scheduling Notation.

We will use the scheduling notation introduced by Graham, Lawler, Lenstra and

Rinnooy Kan [7]. We will describe their notation with reference to the models that

we consider.

Each scheduling problem can be described as a|017 where a denotes the machine

environment, # the side constraints, and y the objective function. The machine envi-

ronment a can be 1, P, Q or R, denoting one machine, m identical parallel machines,

m uniform parallel machines, or m unrelated parallel machines respectively. On iden-

tical machines, job j takes processing time p regardless of which machine processes

it. On uniform machines, job j takes processing time pj; = pj /si on machine i, where

p is a measure of the size of job j and si is the (job-independent) speed of machine

i. On unrelated machines, job j takes processing time pji on machine i, i.e., there is

no assumed relationship among the speeds of the machines with respect to the jobs.

When the number of machines under consideration is fixed, say m, we denote this by

appending an m to the machine environment notation, i.e., Pm, Qm, or Rm.

The side constraints # denote any special conditions in the model - it can be

release dates rj, precedence constraints -<, both or neither indicating whether there

are release dates, precedence constraints, both or neither. In this thesis, we consider

the offline scheduling model where all the jobs are available at time zero and are

independent, i.e., there are no precedence constraints. Hence, this field will usually

be empty.

Let each job j have a processing time pj and and a rejection cost e3 . Depending on

16

the problem under consideration, each job j may also have the following parameters:

due date dj and associated weight w3 . The set of scheduled jobs is denoted by S,

and the set of rejected jobs is denoted by 9 = N - S, where N = {1, 2,..., n} is the

original set of jobs. For job j, the completion time is denoted by C, the lateness is

denoted by L3 = Cj - dj, and the tardiness is denoted by T = max(O, Lj).

For any set S of scheduled jobs, the makespan of the schedule is denoted by

Cmax(S) = max Cj, the maximum lateness of the schedule is denoted by Lmax(S) =
j ES

max Lj, and the maximum tardiness of the schedule is denoted by Tmax(S) = max T.

Note that Tmax(S) = max(O, Lmax(S)).

1.1.4 Problem Definition.

We are given a set of n independent jobs N = {1, 2,... , n}, each with a positive

processing time p3 and a positive rejection cost e,. In the case of multiple machines,

we are given the processing time ppk of job j on machine k. Depending on the problem

under consideration, each job j may also have the following parameters: due date dj

and associated weight w3 . We consider the offline scheduling model, where all the

jobs are available at time zero. For simplicity, we will assume that the processing

times, rejection costs, due dates, and weights are all integers.

For each job, we must decide either to schedule that job (on a machine that can

process at most one job at a time) or to reject it. If we schedule job j, we use up

machine resources for its processing. If we reject job j, we pay its rejection cost e3.

For most of this thesis, we define the total rejection penalty of a set of jobs as the sum

of the rejection costs of these jobs. However, in Section 3.6.3, we consider a problem

where the the total rejection penalty of a set of jobs is the product (and not the sum)

of the rejection costs of these jobs.

Our goal is to choose a subset S C N of the n jobs to schedule on the machine(s)

so as to minimize an objective function which is the sum of a function F(S) of the

set of scheduled jobs and the total rejection penalty of the rejected jobs. We denote

17

the set of rejected jobs by S = N - S. Thus, our general optimization problem may

be written as

min F(S)+ ej
SCN

jES

In this thesis, we consider the following four functions for F(S). We give both

exact and approximation algorithms in each case.

Sum of Weighted Completion Times with Rejection: For this problem,

F(S) = E ES wjC. Thus, the objective function is the sum of the weighted

completion times of the scheduled jobs and the total rejection penalty of the

rejected jobs, and the optimization problem can be written as

Maximum Lateness with Rejection: For this problem, F(S) = Lmax(S) =

max Lj. Thus, the objective function is the sum of the maximum lateness

of the scheduled jobs and the total rejection penalty of the rejected jobs, and

the optimization problem can be written as

min Lmax(S)++ ejSCN
jE5

Maximum Tardiness with Rejection: For this problem, F(S) = Tmax(S)

max T. Thus, the objective function is the sum of the maximum tardiness

of the scheduled jobs and the total rejection penalty of the rejected jobs, and

the optimization problem can be written as

18

min Tmax(S)+ ej
SCN

jES

Makespan with Rejection: For this problem, F(S) = Cmax(S) = max C. Thus,
J ES

the objective function is the sum of the makespan of the scheduled jobs and the

total rejection penalty of the rejected jobs, and the optimization problem can

be written as

min Cmax(S)+ Ze]
SCN I

jES

Note that if the rejection cost ej for a job j is zero, we can reject job j and

solve the problem for the remaining jobs. Hence, we make the reasonable assumption

that every rejection cost is positive. This, together with the integrality assumption,

implies that e > 1 for all j.

Observe also that when we make the rejection costs arbitrarily large (compared to

the other parameters of the problem like processing times, weights, and due dates),

each of the above problems reduces to the corresponding problem without rejection.

We say that problem version with rejection can be restricted to the problem version

without rejection in this manner. Thus, the problem version with rejection is at least

as hard as the problem version where rejection is not considered. We will make use

of this simple fact in some of the hardness results that we prove.

1.1.5 Relevant Previous Work.

There has been much work on scheduling without rejection to minimize F(N) for a set

N of jobs and the choices for the function F mentioned in the previous section. For

the problem I I |E wf Cj (scheduling jobs with no side constraints on one machine to

minimize E w1Cj), Smith [21] proved that an optimal schedule could be constructed

19

by scheduling the jobs in non-decreasing order of p/wj ratios. More complex variants

are typically AP-hard, and recently there has been a great deal of work on the

development of approximation algorithms for them (e.g., [16, 8, 6, 2, 19, 18]). A p-

approximation algorithm is a polynomial-time algorithm that always finds a solution

of objective function value within a factor of p of optimal (p is also referred to as the

performance guarantee).

For the problem 1|| Lmax (scheduling jobs with no side constraints on one machine

to minimize the maximum lateness Lmax), Lawler [22] proved that an optimal schedule

could be constructed by scheduling the jobs in non-decreasing order of due dates d3 .

This rule is also called the Earliest Due Date (EDD) rule. An excellent reference for

the four problems mentioned in Section 1.1.4 when rejection is not considered is the

book by Peter Brucker [23].

To the best of our knowledge, the only previous work on scheduling models that

include rejection in our manner is that of [1, 20]. Bartal et. al. seem to have formally

introduced the notion. They considered the problem of scheduling with rejection in a

multiprocessor setting with the aim of minimizing the makespan of the scheduled jobs

and the sum of the penalties of the rejected jobs [1]. They give a (1 + #)(~ 2.618)-

competitive algorithm for the on-line version, where # is the golden ratio. Seiden

[20] gives a 2.388-competitive algorithm for the above problem when preemption is

allowed. Our work on makespan with rejection differs from the above in that we focus

on the offline model where all the jobs are available at time zero.

1.1.6 Results on Sum of Weighted Completion Times with

Rejection.

In Chapter 2, we consider the problem of sum of weighted completion times with

rejection for which the objective function is the sum of weighted completion times

of the scheduled jobs and the total rejection penalty of the rejected jobs. The one

machine version of this problem is denoted as 11 |(Es w3 C + Eg ej). If rejection

20

is not considered, the problem is solvable in polynomial time using Smith's rule:

schedule the jobs in non-decreasing order of p/wj. In Section 2.2, we show that

adding the option of rejection makes the problem weakly V'P-complete, even on one

machine. This result reflects joint work with Daniel Engels [3, 4]. In Section 2.3,

we give two pseudo-polynomial time algorithms, based on dynamic programming, for

11 |(Es w3C3 + Eg e3). The first runs in O(n E' wj) time and the second runs

in O(n E' pj) time. In Section 2.3.3, we generalize our algorithms to any fixed

number of uniform parallel machines and solve Qm| I(Es JCj + Eg e3).

We also develop a fully polynomial time approximation scheme (FPTAS) for 11-

(ES w3C + Eg ej) in Section 2.4. The FPTAS uses a geometric rounding technique

on the job completion times and works with what we call aligned schedules. In our

FPTAS, we constrain each job to finish at times of the form (1 + e/2n)', where (1 + 6)

is the factor of approximation achieved by the algorithm. This might introduce idle

time in a schedule, but we argue that the objective function value increases by a factor

of at most (1 + e). We also generalize our FPTAS to any fixed number of uniform

parallel machines and solve QmI I(Es wjC + E9 e3). This is joint work with David

Karger [4].

In Section 2.5, we consider two special cases for which simple greedy algorithms

exist to solve 1||(EswjCj+Eg e). In Section 2.5.1, we give an O(n2) time algorithm

for the case when all weights are equal, i.e., for 1|wj = wI(Es wjC + ES es). This

algorithm also works for the case when all processing times are equal, i.e., for 1|pj =

pl(Es wjCj+E ej). In Section 2.5.2, we define the concept of compatible processing

times, weights, and rejection costs and then give an O(n log n) time algorithm for this

case. The latter is joint work with Daniel Engels.

21

1.1.7 Results on Maximum Lateness/Tardiness with Rejec-

tion.

In Chapter 3, we consider the problem of maximum tardiness/lateness with rejection

for which the objective function is the sum of the maximum lateness/tardiness of the

scheduled jobs and the total rejection penalty of the rejected jobs. The one machine

versions of these two problems are denoted as I I(Lmax(S)+EZ ej) and 1| I(Tmax(S)+

Eg ej) respectively. In Section 3.2, we motivate the maximum tardiness with rejection

problem by pointing out applications to hardware/software codesign for real-time

systems. If rejection is not considered, the problems are solvable in polynomial time

on one machine using the Earliest Due Date (EDD) rule: schedule the jobs in non-

decreasing order of due dates d3 . In Section 3.3, we show that adding the option of

rejection makes the problems weakly .AP-complete, even on one machine. This result

reflects joint work with James Orlin. In Section 3.4, we give two pseudo-polynomial

time algorithms, based on dynamic programming, for 1 II(Lmax(S) + Eg ej) and

1| I(Tmax(S) + E e,). The first runs in O(n E' 1 e) time and the second runs

in O(n E'=, p3) time. We generalize the second algorithm in Section 3.4.3 to any

fixed number of unrelated parallel machines and solve RmI I(Lmax(S) + Eg ej) and

Rm| |(Tmax(S) + Eg e,).

We also develop an FPTAS for 1| I(Tmax(S) + ES e1) in Section 3.5. The FPTAS

uses a geometric rounding technique on the total rejection penalty and works with

what we call the inflated rejection penalty. In our FPTAS, we constrain the total

rejection penalty for each set of rejected jobs to be of the form (1 + e/2n)', where

(1 + e) is the factor of approximation achieved by the algorithm.

Observe that the notion of an approximation algorithm (in the usual sense) does

not hold much meaning for 1| |(Lmax(S) + Es ej) because the optimal objective

function value could be negative. In such a case, it makes sense to consider inverse

approximation algorithms for the problem. We introduce and motivate the notion of

an inverse approximation algorithm in Section 3.6. We then give an inverse approxi-

22

mation scheme for I I|(Lmax(S) + Eg ej) in Section 3.6.2 and a fully polynomial time

inverse approximation scheme (IFPTAS) for the problem I |(Lmax(S) + H1s e1) in

Section 3.6.3, where the total rejection penalty is the product (and not the sum) of

the rejection costs of the rejected jobs.

1.1.8 Results on Makespan with Rejection.

In Chapter 4, we consider the problem of makespan with rejection for which the

objective function is the sum of the makespan of the scheduled jobs and the total

rejection penalty of the rejected jobs. The one machine version of this problem is

denoted as I I|(Cmax(S) + ES e3). If rejection is not considered, the problem is trivial

on one machine and A'P-complete on more than one machine. In Section 4.2, we give

a simple O(n) time algorithm for I |(Cmax(S) + ES ej). In Section 4.3, we give a

pseudo-polynomial time algorithm, based on dynamic programming, for the problem

on a fixed number of unrelated parallel machines, i.e., Rml |(Cmax(S) + ES ej).

We also develop a fully polynomial time approximation scheme (FPTAS) for

Rml |(Cmax(S) + ES ej) in Section 4.4. The FPTAS uses a geometric rounding

technique on the job completion times and works with aligned schedules. In our FP-

TAS, we constrain each job to finish at times of the form (1 + e/2n)', where (1 + e)

is the factor of approximation achieved by the algorithm.

23

1.2 Fixed-precision and Logarithmic-precision

Models and Strongly Polynomial Time Algo-

rithms.

1.2.1 Introduction.

We introduce a new model for algorithm design which we call the L-bit precision

model. In this model, the input numbers (for the problem) are of the form c * 2',

where t > 0 is arbitrary and c < c* = 2 L. Thus, the input numbers have a precision

of L bits. The L-bit precision model is realistic because it incorporates the format

in which large numbers are stored in computers today. One such format which is

becoming increasingly popular in the computer industry is the IEEE Standard for

Binary Floating-point Arithmetic [28, 29, 30].

In this L-bit precision model, we define a polynomial time algorithm to have run-

ning time polynomial in c* = 2 L and n, where n is the size of the problem instance.

Depending on the value of L, we have two different models of precision which we

describe below.

Fixed-precision Model: In this model, L is a constant, so that a polynomial time

algorithm has running time polynomial in n under this model, and is, hence, a

strongly polynomial time algorithm, i.e., the running time does not depend on

the sizes of the input numbers.

Logarithmic-precision Model: In this model, L is O(log n), where n is the size of

the problem instance. This implies that c* = 2 L is polynomial in n. Hence, a

polynomial time algorithm is also a strongly polynomial time algorithm under

this model.

We focus on designing algorithms for NP-complete problems under the above

models. In particular, we give strongly polynomial time algorithms for the following

24

.M'P-complete problems: (i) the knapsack problem, (ii) the k-partition problem for

a fixed k, and (iii) scheduling to minimize makespan on a fixed number of identical

parallel machines. This is joint work with James Orlin. Our results show that it

is possible for AVP-complete problems to have strongly polynomial time algorithms

under the above models.

1.2.2 The Knapsack Problem.

The knapsack problem is defined as follows:

Given sets A = {ai, a2 , ... , an} and C = {ci, c2 , ... , cn} of n numbers each

and a number b, find a set S C {1,2,... ,n} which maximizes EZEs cj

subject to the condition that EjEs aj < b.

We can interpret the above definition as follows. Suppose there are n items, with

item i having weight ci and volume ai. The items are to be placed in a knapsack with

(volume) capacity b. We want to find the subset S of items which can be put into

the knapsack to maximize the total weight of items in the knapsack.

In Section 5.2, we give an O(c*n2) time algorithm for this problem, where c* = 2L

and the ci's have L bits of precision (the ai's could be arbitrary). This is a strongly

polynomial time algorithm.

1.2.3 The k-Partition Problem.

The k-partition problem is defined as follows:

Given a set A = {a1, a2,..., an} of n numbers such that E" ai = kb, is

there a partition of A into k subsets A 1 , A 2 , ... , A. such that EaEAj ai = b

for all 1 < j < k ?

25

In Section 5.3, we give an O(kn(c*n)k) time algorithm for this problem, where

c* = 2 L and the ai's have L bits of precision. For a fixed k, this is a strongly

polynomial time algorithm.

1.2.4 Scheduling to Minimize Makespan on Identical Parallel

Machines.

We consider the problem of scheduling n jobs on any fixed number m of identical

parallel machines in order to minimize the makespan. Each job j has a processing

time p3 on any machine. In scheduling notation, this problem is denoted as PmI I-

Cmax.

The decision problem formulation of Pml |Cmax is defined as follows:

Given a set of n independent jobs, N = {J1,... , Jn}, with processing

times p3 , V 1 < j < n, a fixed number m of identical parallel machines,

and a number b, is there a schedule of the n jobs on the m machines such

that the makespan on each machine is at most b ?

In Section 5.4, we give an O(nm(c*n)m) time algorithm for this problem, where

c* = 2 L and the pi's have L bits of precision. For a fixed m, this is a strongly

polynomial time algorithm.

26

Chapter 2

Sum of Weighted Completion

Times with Rejection

2.1 Introduction.

In this chapter, we consider the problem of sum of weighted completion times with

rejection for which the objective function is the sum of weighted completion times

of the scheduled jobs and the total rejection penalty of the rejected jobs. The one

machine version of this problem is denoted as 1 I|(Es w C + E' ej). If rejection

is not considered, the problem is solvable in polynomial time using Smith's rule:

schedule the jobs in non-decreasing order of p/wj. In Section 2.2, we show that

adding the option of rejection makes the problem A'P-complete, even on one machine.

This result reflects joint work with Daniel Engels [3, 4]. In Section 2.3, we give

two pseudo-polynomial time algorithms, based on dynamic programming, for 11 1-

(Es w1C + Eg e3). The first runs in O(n E'_, w1) time and the second runs in

O(n E'i p1) time. In Section 2.3.3, we generalize our algorithms to any fixed number

of uniform parallel machines and solve Qml I(Es wjC + ES ej).

We also develop a fully polynomial time approximation scheme (FPTAS) for 1|-

(ES w Cj + Eg ej) in Section 2.4. The FPTAS uses a geometric rounding technique

27

on the job completion times and works with what we call aligned schedules. In our

FPTAS, we constrain each job to finish at times of the form (1 + e/2n)i, where (1 + e)

is the factor of approximation achieved by the algorithm. This might introduce idle

time in a schedule, but we argue that the objective function value does not increase

by more than a (1 + e) factor. We also generalize our FPTAS to any fixed number

of uniform parallel machines and solve QmI I(ES wj Cj + ES ej). This is joint work

with David Karger [4].

In Section 2.5, we consider two special cases for which simple greedy algorithms

exist to solve 1||(EswjCj+Zs e3). In Section 2.5.1, we give an O(n 2) time algorithm

for the case when all weights are equal, i.e., for 1|wj = wI(Es jCj + ES ej). This

algorithm also works for the case when all processing times are equal, i.e., for lip =

pl(Es wjCj+ES e3). In Section 2.5.2, we define the concept of compatible processing

times, weights, and rejection costs and then give an O(n log n) time algorithm for this

case. The latter is joint work with Daniel Engels.

2.2 Complexity of Sum of Weighted Completion

Times with Rejection.

In this section, we show that the problem PmI I(Es wjCj + ES ej) is NP-complete

for a fixed number of machines m > 1. For any fixed number of machine m > 1,

Pm| I(Es wjC + ES ej) is trivially seen to be NP-complete by restricting the prob-

lem to PmI I E wj C1 , a known NP-complete problem [5]. This problem is solvable in

polynomial time on one machine using Smith's rule when rejection is not considered.

However, we prove that adding the rejection option makes even the single machine

problem NP-complete.

The decision problem formulation of I I(Es w C + ES ej) is defined as follows:

Given a set of n independent jobs, N = {J1,... , Jn}, with process-

ing times pj, V 1 < j n, weights wj, V 1 < j < n, and rejec-

28

tion penalties ej, V 1 < j < n, a single machine, and a number K, is

there a schedule of a subset of jobs S C N on the machine such that

eS WJCW + JEjes=N-S ej <K?

We reduce the Partition Problem [5] to this problem proving that even on one ma-

chine, scheduling with rejection is APP-complete.

Theorem 2.2.1 1| (Es W303 + ES e3) is NP-complete.

Proof. I |I(Es wjC + ES e1) is clearly in NP. To prove that it is also ANP-hard, we

reduce the Partition Problem [5] to I I|(Es wjC + Eg ej). The Partition Problem

is defined as follows:

Given a set A = {a1, a 2, ... , a,} of n numbers such that n" ai = 2b, is

there a subset A' of A, such that EZaE ai = b?

Given an instance A = {a1, ... , a,} of the partition problem, we create an instance

of 111 |(Es wjC + ES e1) with n jobs, J1,... , Jn. Each of the n elements ai in the

Partition Problem corresponds to a job Ji in I I|(Es wj0j + Eg ej) with weight and

processing time equal to a; and rejection cost equal to bai + !a?, where b = E ai.

Since pj = wj, V 1 < j 5 n, the ordering of the scheduled jobs does not affect the

value of Ejes wjCi. Using this fact and substituting for the rejection penalty, we can

rewrite the objective function as follows:

(:w. C. + e= Za (ai+ ej
jES jeS jES (i<j,ieS) jES

a + aiaj + (ba + a)
aES (i<j,iJeS) jeS

1[(1 a)2 + Ea j2] + b Eaj + a, 2

.7ES jES ., jES

(aj)2 + b aj + -Eaj 2
es 21

.ESjES j=1

29

= (Zaj) + b(2b - aj) + a2
jeS jES j=1

Since En_ a2 is a constant, minimizing the objective function is equivalent to

minimizing the following function with x = EjEs a3

1x 2 + b(2b - x)

This function has a unique minimum of b2 at x = b, i.e., the best possible solution

has Eyes aj = b, and hence, is optimum if it exists. Therefore, if the optimum solution

to 1| I(Es 2wjC + ES e3) is equal to b2 + I El1 a2, then there exists a subset, A',

of A such that ZiEA, ai = b, i.e., the answer to the Partition Problem is 'Yes,' and

S is a witness. If the optimum solution to 11 |(Es w3 C + Eg e1) is greater than

b2 + Z _1 a2, then there does not exist a partition of A such that EA, a =b

i.e., the answer to the Partition Problem is 'No.' Conversely, if the answer to the

Partition Problem is 'Yes,' the optimum solution to 1| |(Es wjC + E> e3) is clearly

equal to 2b2 +} n -1 a2. If the answer to the Partition Problem is 'No,' the optimum

solution to 1| |(Es 0jC + Es e1) is clearly greater than b2 + j E aa.

2.3 Pseudo-polynomial Time Algorithms.

In this section, we give pseudo-polynomial time algorithms for solving I I(Es wj C +

Eg e3) and Qml I(Es wjC + Es ej) exactly. We first give an O(n En 1 w) time

algorithm (in Section 2.3.1) and then an O(n E 1p3) time algorithm (in Section

2.3.2), using dynamic programming, to solve I I|(Es w3jC + Eg ej). The first runs

in polynomial time when the weights are polynomially bounded and the processing

times are arbitrary, while the second runs in polynomial time when the processing

times are polynomially bounded and the weights are arbitrary. We then generalize our

dynamic programs in Section 2.3.3 to any fixed number of uniform parallel machines

30

and solve QmI I(Es WJC + ES e3). In Section 2.4, we show how to modify the

dynamic program of Section 2.3.2 to obtain an FPTAS for 1| |(Es wjC + ES ej).

We also generalize this FPTAS to any fixed number of uniform parallel machines and

solve QmI I(Es w3jC + ES e3).

2.3.1 Dynamic Programming on the Weights wj.

To solve our problem, we set up a dynamic program for a harder problem: namely, to

find the schedule that minimizes the objective function when the total weight of the

scheduled jobs is given. We number the jobs in non-decreasing order of p3/wj. This

is because for any given set S of scheduled jobs, the ordering given by Smith's rule

minimizes Eas wjC. Let 0,,j denote the optimal value of the objective function

when the jobs in consideration are j, j +1,..., n, and the total weight of the scheduled

jobs is w. Note that

WnPn if w = wn

2,n = en if w = 0 (2.1)

oo otherwise

This forms the boundary conditions for the dynamic program.

Now, consider any optimal schedule for the jobs j, j +1..... , n in which the total

weight of the scheduled jobs is w. In any such schedule, there are two possible cases

- either job j is rejected or job j is scheduled.

Case 1: Job j is rejected. Then, the optimal value of the objective function is clearly

wj+1 + ej, since the total weight of the scheduled jobs among j ... , n must

be w.

Case 2: Job j is scheduled. This is possible only if w > w3 . Otherwise, there is

no feasible schedule in which the sum of the weights of the scheduled jobs is w

and job j is scheduled, in which case only Case 1 applies. Hence, assume that

31

w > wj. In this case, the total weight of the scheduled jobs among j +1..... , n

must be w - w3 . Also, when job j is scheduled before all jobs in the optimal

schedule for jobs j + 1, j+ 2, ... , n, the completion time of every scheduled job

among j + 1,j + 2,...,n is increased by pj. Then, the optimal value of the

objective function is clearly 42-.,j+1 + wp3 .

Combining the above two cases, we have:

= w,0i+1 + ej if w < Wj (2.2)

min(#w,j+1 + ej, qw-wj,+1 + wpj) otherwise

Now, observe that the weight of the scheduled jobs can be at most En ws, and

the answer to our original problem is min{qw,1 0 w E _1 wj}. Thus, we need

to compute at most n E_ wj values #w,j. Computation of each such value takes

0(1) time, so that the running time of the algorithm O(n E'= 1 wj).

Theorem 2.3.1 Dynamic programming yields an O(n 1 w) time algorithm for

exactly solving I I|(Es wCj + EZ ej).

2.3.2 Dynamic Programming on the Processing Times pj.

In this section, we give another dynamic program that solves 1| |(Es wjCj + E> ej)

in O(n En 1 p) time.

As before, we set up a dynamic program for a harder problem: namely, to find

the schedule that minimizes the objective function when the total processing time of

the scheduled jobs, i.e., the makespan of the schedule is given. We number the jobs

in non-decreasing order of p1/wj (as in Section 2.3.1). Let 4p,, denote the optimal

value of the objective function when the jobs in consideration are 1,2,...,j, and the

makespan of the schedule is p. Observe that in this case, we are considering the

jobs 1,2,...,j, which is in contrast to the dynamic program of the previous section

where we considered the jobs j, j+ ... , n. The boundary conditions of this dynamic

32

program are given by

WiPi if p = p 1

4,1 ei if p = 0 (2.3)

oo otherwise

Now, consider any optimal schedule for the jobs 1,2,...,j in which the total

processing time of the scheduled jobs is p. In any such schedule, there are two

possible cases - either job j is rejected or job j is scheduled.

Case 1: Job j is rejected. Then, the optimal value of the objective function is

clearly 4pj-i + ej, since the total processing time of the scheduled jobs among

1,2,..., j- 1 must be p.

Case 2: Job j is scheduled. This is possible only if p pj. Otherwise, there is no

feasible schedule in which the makespan is p and job j is scheduled. Hence,

assume that p 2 p,. In this case, the completion time of job j is p, and the

total processing time of the scheduled jobs among 1, 2,. .. , j - 1 must be p - p3 .

Then, the optimal value of the objective function is clearly 4,-p ,-1 + wjp.

Combining the above two cases, we have:

,,3j-1 + ej if P < Pj(24= J i p~p3 (2.4)
min(4pj-1 + ej, 4-pj-1 + wjp) otherwise

Now, observe that the total processing time of the scheduled jobs can be at most

,=lp , and the answer to our original problem is min{#,,, | 0 p p

Thus, we need to compute at most n => p3 values q,,j. Computation of each such

value takes 0(1) time, so that the running time of the algorithm O(n E'=, p3).

Theorem 2.3.2 Dynamic programming yields an O(n E7 pj) time algorithm for

exactly solving 1| I(ZE6 wjC + ES ej).

33

2.3.3 Generalization to any fixed number of Uniform Parallel

Machines.

In this section, we generalize the dynamic program of Section 2.3.1 to any fixed

number m of uniform parallel machines and solve QmJ I(Es wgC + ES e3). The

dynamic program of Section 2.3.2 can also be generalized in a similar manner. For

uniform parallel machines, the processing time pi of job i on machine j is given by

= pj/sj, where pi is the size of job i and s is the speed of machine j.

We set up a dynamic program for the problem of finding the schedule that min-

imizes the objective function when the total weight of the scheduled jobs on each

machine is given. We number the jobs in non-decreasing order of pj/wj (as in Section

2.3.1). Note that for any given machine k, this orders the jobs in increasing order

of pgk/w. This is useful because given the set of jobs scheduled on each machine,

Smith's rule still applies to the jobs scheduled on each machine as far as minimiz-

ing Ej wjCj is concerned. This is where we make use of the fact that the parallel

machines are uniform.

Let #w 1,W2 ,...,wm,j denote the optimal value of the objective function when the jobs

in consideration are j,j + 1,... ,n, and the total weight of the scheduled jobs on

machine k is wk for all 1 < k < m. Note that

J WnPnk if 3 k such that wk = wn and w = 0 for i f k

#I, ,W2 ,...,Wm,n = en if wi = 0 for all i (2.5)

too otherwise

This forms the boundary conditions for the dynamic program.

Now, consider any optimal schedule for the jobs j,J +1,..., n in which the total

weight of the scheduled jobs on machine k is wk for all 1 < k < m. In any such

schedule, there are two possible cases - either job j is rejected or job j is scheduled.

34

Case 1: Job j is rejected. Then, the optimal value of the objective function is clearly

OW1,W2,...,Wm,+1 +ej, since the total weight of the scheduled jobs among J+1, ... , n

must be Wk on machine k.

Case 2: Job j is scheduled. Suppose job j is scheduled on machine k. This is possible

only if wk w3 . Otherwise, there is no feasible solution in which the sum of

the weights of the jobs scheduled on machine k is Wk and job j is scheduled on

machine k. Hence, assume that Wk wi. In this case, the total weight of the

scheduled jobs among j +1, ... , n must be wi on machine i for i $ k and wk - wj

on machine k. Also, when job j is scheduled on machine k before all jobs in the

optimal schedule on that machine, the completion time of every scheduled job

on that machine is increased by Pik. Then, the optimal value of the objective

function is clearly Ow ... Wk-wj,...,Wm,j+1 + Wkpik.

Combining the above two cases, we have:

4
OW1,2,...,Wm,3 = min(4Vw1 ,w2 7 ... ,wm, J-1 + ej,

min{(1 ,. .W-j,...,wm,j-1 + Wkpkk) I Wk wj and 1 < k < m})

Now, observe that the total weight of the scheduled jobs on any machine can be at

most => wj, and the answer to our original problem is min{41,w2 . Wm,1 I 0 Wi 5

E 1 wi and 1 < i < m}. Thus, we need to compute at most n(E_1 w)m values

4W1,72,...,?mV- Computation of each such value takes 0(m) time, so that the running

time of the algorithm is O(nm(E_ wo)"').

Theorem 2.3.3 Dynamic programming yields an O(nm(1 w) m) time algorithm

for exactly solving QmI I(Es w1Cj + ESg ej).

The dynamic program of Section 2.3.2 can be generalized to any fixed number m

of uniform parallel machines in a similar manner. The result is summarized in the

following theorem.

35

Theorem 2.3.4 Dynamic programming yields an O(nm ~L,(ZE' pj/sj)) time al-

gorithm for exactly solving Qml I (Es wiCj + Ejg ej).

2.4 Fully Polynomial Time Approximation Scheme.

In this section, we describe a fully polynomial time approximation scheme (FPTAS)

for sum of weighted completion times with rejection. We first introduce the concept

of aligned schedules in Section 2.4.1. In Section 2.4.2, we develop an FPTAS for 1||-

(ES wjCj +ES e1), using the idea of an aligned schedule. The algorithm runs in time

polynomial in n, , and the size (number of bits) of the processing times of the jobs.

We then generalize this FPTAS to any fixed number of uniform parallel machines in

Section 2.4.3 and solve QmI I (Es wjC + ES ej).

2.4.1 Aligned Schedules.

We "trim" the state space of the dynamic program of Section 2.3.2 by fusing states

that are "close" to each other. This fusion of "close" states is achieved by constraining

the jobs in any schedule to finish at times of the form T = (1 + e')i, for i > 0, and

e' > 0. We call such schedules c'-aligned schedules. Note that an e'-aligned schedule

may contain idle time. We will handle the zero completion time of the empty schedule

by defining -r 1 = 0.

We transform any given schedule F to an e'-aligned schedule by sliding the sched-

uled time of each job (starting from the first scheduled job and proceeding in order)

forward in time until its completion time coincides with the next time instant of the

form rg. The job is then said to be e'-aligned. Note that when we slide the scheduled

time of job i, the scheduled times of later jobs also get shifted forward in time by the

same amount as for job i. When the time comes to e'-align job j, its completion time

has already moved forward in time by an amount equal to the sum of the amounts

moved by the completion times of the jobs scheduled earlier than itself. This iden-

36

tification of a schedule with an e'-aligned schedule gives us the notion of "closeness"

of two schedules, i.e., two schedules are "close" if the same jobs are scheduled in

both, and they have the same "closest" e'-aligned schedule. We use the term geomet-

rZc rounding to refer to this technique of transforming any schedule to an e'-aligned

schedule because the rj's form a geometric progression and the completion time of

every scheduled job is, in some sense, rounded to one of the ri's.

The following lemma establishes an upper bound on the increase in the optimal

objective function value when we restrict our attention to e'-aligned schedules only.

Without any loss of generality, we can assume that the smallest processing time is

at least 1. Otherwise, we can divide each processing time p3 and rejection penalty

ej by the smallest processing time p < 1. This increases the size of each processing

time and rejection penalty by log I = - log p bits, and hence the running time of the
p

algorithm (see Theorem 2.4.3) by at most a polynomial additive factor of 2log.

Lemma 2.4.1 For any given schedule F with n jobs and any e' > 0, the completion

time of each job in F increases by a factor of at most (1 + e') when we c'-align

schedule F.

Proof. We establish, by induction on i, that in any given schedule, the completion

time Ci of the ith scheduled job increases by a factor of at most (1 + e') after the

schedule is e'-aligned. Note that if a job finishes at time t E (ri-1, ri] after all the jobs

before it have been e'-aligned, its completion time after being e'-aligned is T < (1+Ie')t.

Clearly, C1 increases by a factor of at most (1 + e'), since it is made to coincide with

the right end-point of the interval (rt- 1 , rt] it is initially contained in. Note that the

smallest T is ro = 1, so that we made use here of the assumption that the smallest

processing time is at least 1.

Now, assume by induction, that Ci increases by a factor of at most (1 + e')'. When

the turn comes to e'-align the (i + 1)th scheduled job, its completion time Ci+1 has

already increased by an amount equal to the amount moved by Ci, which is at most

[(1 + e')' - 1]C. When it is c'-aligned, Ci+1 further increases by a factor of at most

37

(1 + e'). Thus, the final value of Ci+ 1 is at most (1 + e')([(1 + e')' - 1]Ci + Ci+1). Since

Ci < Ci+1, this is at most (1 + e')i+1Ci+1-

Since the number of scheduled jobs is at most n, the result follows. I

Setting e' = ' gives us an (1 + e)-factor increase in the optimal objective function

value, as stated in the next lemma.

Lemma 2.4.2 For 1| |(Es w C + EZg e) and e' = e/2n for any e > 0, the optimal

objective function value increases by a factor of at most (1 + e) when we restrict our

attention to e'-aligned schedules only.

Proof. We first establish the inequality (1 + a)" 1 + 2x, which holds for any 0 <

x < 1, and any real m > 1. The left-hand side of the inequality is a convex function

in x, and the right-hand side is a linear function in x. Moreover, the inequality holds

at x = 0 and x = 1. Hence, it holds for any 0 < x < 1. Setting x= - and m = n, we

have

(+ -)n < (1 + e2n

Using Lemma 2.4.1 and the above inequality, we conclude that in any given sched-

ule, the completion time of a job increases by a factor of at most (1 + e) after the

schedule is e'-aligned. Thus, the sum of weighted completion times increases by a

factor of at most (1 + e) after the schedule is e'-aligned.

Now, consider an optimal schedule F in which the set of scheduled jobs is S. The

quantity Egg wjCj for the schedule F increases by a factor of at most (1 + e) after

the schedule r is e'-aligned. Also, the total rejection penalty of the jobs in 9 trivially

remains unchanged. Hence, the objective function value for schedule F increases by a

factor of at most (1 + c) when F is c'-aligned. This implies that the optimal objective

function value increases by a factor of at most (1 + e) when we restrict our attention

to e'-aligned schedules only. I

38

2.4.2 The Algorithm.

Let c' =--. For our FPTAS, we set up a dynamic program for a harder problem:

namely, to find the c'-aligned schedule that minimizes the objective function when

the completion time of the latest scheduled job is r, for a given i. We number the

jobs in ascending order of pj/wj (as in Section 2.3.2). Let #ij denote the optimal

value of the objective function when the jobs in consideration are 1, 2,..., j, and the

latest scheduled job (if any) in an e'-aligned schedule completes at time r; for i > 0.

Note that

wi r if pi E (ri- 1, ri]

ei if i = -1 (2.6)

oo otherwise

This forms the boundary conditions for the dynamic program.

Now, consider any optimal e'-aligned schedule for the jobs 1,2,..., j,5+1 in which

the latest scheduled job completes at time ri. In any such schedule, there are two

possible cases - either job j + 1 is rejected or job j + 1 is scheduled.

Case 1: Job j + 1 is rejected. Then, the optimal value of the objective function is

clearly 4ij + ej+1, since the last of the scheduled jobs among 1,2,... ,j must

finish at time ri.

Case 2: Job j + 1 is scheduled. This is possible only if Pj+1 ri. Otherwise, there is

no feasible c'-aligned schedule whose completion time is rT and in which job J+1

is scheduled, in which case only Case 1 applies. Hence, assume that Pj+1 Ti-

In this case, if there was a job scheduled before job J + 1, it must have completed

at time ri,, where i' is the greatest value of f satisfying (r - r) P3+1. Then,

the optimal value of the objective function is clearly 4', + Wj+lri.

Combining the above two cases, we have:

39

ij+i = 4i, + e3+1 if pj +i (2.7)
min(ij + ej+1, i'j + wj+1ri) otherwise

Now, observe that for finding an e'-aligned schedule with the optimum objec-

tive function value, it is sufficient to assume that the completion time of the lat-

est scheduled job is at most (1 + e')" E- pj. The answer to our original prob-

lem is min{qoi,n I - 1 < i < L}, where L is the smallest integer such that TL >

(1 + =')" E"1 p3 . Thus, L is the smallest integer greater than or equal to , +n,
whence L = O(1 log E 1 p3). Thus, we need to compute at most n(L + 2) values

4ij. Computation of each such value takes 0(1) time, so that the overall time for the

dynamic program (FPTAS) is O(nL) = O(22 log En> p3). This is polynomial in the

input size, since we need E'= log pj bits to represent the processing times. We also

note that dividing each processing time and rejection penalty by the smallest process-

ing time p < 1 increases the running time of the algorithm by at most a polynomial

additive factor of log 1*

Theorem 2.4.3 Dynamic programming yields an (1 + c)-factor fully polynomial time

approximation scheme (FPTAS) for 1| I(Es w3 Cj + e1j), which runs in

O(" log En 1 p3) time.

2.4.3 Generalization to any fixed number of Uniform Parallel

Machines.

In this section, we generalize the dynamic program of Section 2.4.2 to any fixed

number m of uniform parallel machines and obtain an FPTAS for Qm| |(ES wjC +

ES e-). Let p3 denote the size of job j and si the speed of machine i for 1 < j < n

and 1 < i < m in the uniform parallel machine model. Then, the processing time of

job j on machine i is phi = pjlsi.

For our generalized FPTAS, we set up a dynamic program for the following

problem: namely, to find the c'-aligned schedule that minimizes the objective func-

40

tion when the completion time of the latest scheduled job on machine k is Ti, for

1 K k K m. We number the jobs in ascending order of p3/wj (as in Section 2.3.2).

Note that in the uniform parallel machine model, this numbers the jobs in increasing

order of Pjk/Wj on any machine k, so that the jobs still get scheduled according to

Smith's rule on any given machine. This is where we make use of the fact that the

parallel machines are uniform.

Let 4,1 , .2....,,, denote the optimal value of the objective function when the jobs

in consideration are 1,2,..., j, and the latest scheduled job (if any) in an c'-aligned

schedule on machine k completes at time Ti, for 1 < k K m. Note that

Jw1 tr, if 3 k such that P1k E (rik_,rik] and it = -1 V f $ k

di1i2,..im, = ei if it = -1 ViE

o otherwise

(2.8)

This forms the boundary conditions for the dynamic program.

Now, consider any optimal c'-aligned schedule for the jobs 1, 2, ... , j, j+1 in which

the latest scheduled job on machine k completes at time ri, for 1 < k K m. In any

such schedule, there are two possible cases - either job j + 1 is rejected or job j + 1

is scheduled.

Case 1: Job j + 1 is rejected. Then, the optimal value of the objective function is

clearly di1 ,i2 . im,J + ej+1, since the last of the jobs among 1,2,... j scheduled

on machine k must finish at time ri,.

Case 2: Job j +1 is scheduled. Suppose job j +1 is scheduled on machine k. This is

possible only if Pj+1,k Ti,. Otherwise, there is no feasible e'-aligned schedule

whose completion time on machine k is ri, and in which job j + 1 is scheduled

on machine k. Hence, assume that Pj+i,k < ri. In this case, if there was a

job scheduled before job j + 1 on machine k, it must have completed at time

rif, where i' is the greatest value of f satisfying (-ri, - rR) ;> Pj+1,k. Then, the

41

optimal value of the objective function is clearly #i1. ,im,j + Wj+17,i

Combining the above two cases, we have:

ii,i2,...,imJs+1 = min(#ii,i 2,...,iM,j + ei+1,

min{(.....,im,j + wj+17) I pj+1,k : ri, and 1 < k < m})

Now, observe that for finding an e'-aligned schedule with the optimum objec-

tive function value, it is sufficient to assume that the completion time of the latest

scheduled job on machine i is at most (1 + e')n E 1 pji = (1 + e'), En 1 pj/si for

1 <i < m. Hence, the largest value of ik, 1 < k < m, for which we need to compute

ii,i2 ,. .,mJ is Lk, where Lk is the smallest integer such that rL (1 + c) 1 p/sk.

Thus, LA is the smallest integer greater than or equal to -+=1 + n whence

LA = O(" log (E' 1 pJ/sk)).

The answer to our original problem is

min{4i1 ,i2,...,im,n | - 1 ik Lk and 1 <k K m}

Thus, we need to compute at most n(Li+2)(L 2 +2) ... (Lm+2) values #i,i2,...,imJ
Computation of each such value takes 0(m) time, so that the overall time for the dy-

namic program (FPTAS) is O(nmL1L 2 ... Lm) = O("'" fli 1 (log (> pj/si))).

This is polynomial in the input size for a fixed m, since we need E'l log p bits to

represent the job sizes.

Theorem 2.4.4 Dynamic programming yields an (1+e)-factor fully polynomial time

approximation scheme (FPTAS) for Qm| |(ESwjCj + Ese1), which runs in

O(n+m fli(log (E7 pj /si))) time.

42

2.5 Special Cases.

In this section, we consider two special cases for which simple greedy algorithms exist

to solve I I|(Es wCj + ES ej). In Section 2.5.1, we give an 0(n 2) time algorithm

for the case when all weights are equal, i.e., for 1|wj = wI(Es swC + ES ej). This

algorithm also works for the case when all processing times are equal, i.e., for 1 Ip =

pl(S wjCj+ES e3). In Section 2.5.2, we define the concept of compatible processing

times, weights, and rejection costs and then give an 0(n log n) time algorithm for this

case.

2.5.1 Equal Weights or Equal Processing Times.

In this section, we give a simple and efficient 0(n 2) time algorithm for exactly solving

11 |(Es wjC + ES e1) when all weights or all processing times are equal.

Our greedy algorithm, which we call SCHREJ, is as follows. We start with all

jobs scheduled, i.e., the set of scheduled jobs is S = {1, 2,... , n}. Note that we can

optimally schedule the jobs in any subset S using Smith's ordering. We then reject

jobs greedily until we arrive at an optimal schedule. Observe that when we reject a

previously scheduled job j, there is a change (positive or negative) in the objective

function. We determine a job k that causes the maximum decrease in the objective

function. If there is no such job, (i.e., each job, on being rejected, increases the

value of the objective function), then (as we will argue below) we have reached an

optimal solution. Otherwise, we remove job k from S (i.e., reject it), and iterate on

the remaining jobs in S. We describe the algorithm formally below.

43

Algorithm SCHREJ:

Sort the jobs in increasing order of pj/wj

Label them in sorted order from 1 to n

S+-11{1 2..., n}

5 +- 0 ;

for j = 1 to n do

A3 +- -[Wi El <i< pi + pi I ggin wi] + e;

repeat {

Ak +- min{A: j E S} ; /* this defines k *1

if (Ak < 0) then {

/* reject job k and solve the problem for jobs in S - {k} */
S <-S - {k}

9 +- U {k};

/* update the Aj values */

for] E S do

if (j < k) then

A+- Aj + pJwk;

else

A - A + wpk;

} until (Ak ; 0) or (S = 0);

Output the schedule in which jobs in S are scheduled in increasing

order of processing times p1 , and jobs in S are rejected ;

As this algorithms runs, we maintain the set S of currently scheduled jobs. During

an iteration of the repeat-loop, we consider only the jobs in the set S. The quantity

A3 is the change in the objective function value (or, the cost of our schedule) when

we (pay to) reject job j from the schedule in which all jobs in S are scheduled. For

notational convenience, we will denote this by As(S). Note that Aj as used in the

algorithm is the same as A3 (S). Let k E S be such that Ak(S) is minimum. We first

44

derive an expression for A3(S).

Lemma 2.5.1 During any iteration of SCHREJ, for any j E S, we have

A(S)=-[w E pi + p3 1 wi]+ e
i<j,ieS i>j,ieS

Proof. The first term on the right hand side is equal to -wjC 3 , where Cj is the

compeltion time of job j in the optimal schedule when all jobs in S are scheduled.

Note that when we reject job j, the completion time of each job scheduled after job j
is reduced by p3 . Since the completion times are weighted by the weights of the jobs,

there is a further decrease of pi Ei>3 ,iES wi in the objective function value. Finally,

there is an increase equal to the penalty ej in rejecting job j. I

Note that we initialize the A1 's in accordance with this expression before entering

the repeat-loop. When we reject a job k inside the repeat-loop i.e. remove it from S,

this expression allows us to update the A3 (S) to A (S - {k}) in 0(1) time for each

jE S - {k}. That is,

A3(S - {k}) = A(S)+PWk ifj<k (2.9)
Aj(S) + WjPk otherwise

Since every iteration of the repeat-loop rejects one job (except, possibly, the last

iteration) and there are n jobs initially in S, the repeat-loop runs for at most n

iterations. Each iteration takes O(n) time to compute k and update the Ax's. Hence,

the running time of the entire loop is O(n 2). Also, the initial sorting of the jobs takes

O(n log n) time and the initialization of the A/'s takes 0(n 2) time, so that algorithm

SCHREJ has running time 0(n 2).

For the proof, we label the jobs in increasing order of p3 /wj. For the case in

which the wi's are equal, this labels the processing times in increasing order, so that

P1 5 P2 5 -- 5 Pn.-

The following lemma is an immediate consequence of Lemma 2.5.1 and the update

45

rule for the A3 (S)'s.

Lemma 2.5.2 The value of Aj(S) increases across every iteration of SCHREJ, so long

as job j remains in S.

The following lemma argues that the algorithm can terminate when Ak(S) ;> 0.

Lemma 2.5.3 For a set S of jobs, if Aj(S) is non-negative for each j E S, then

there is an optimal schedule in which all the jobs in S are scheduled.

Proof. Consider any non-empty set of jobs R C S. Let us start with the schedule

in which all jobs in S are scheduled, and start rejecting the jobs in R one by one.

Clearly, the first rejection does not decrease the objective function value, since Aj(S)

is non-negative for each j E S. Also, on rejecting a job from S, the value of the As's

only increase, so that the same is true upon rejecting further jobs in R. Thus, the

objective function value does not decrease upon rejecting the jobs in R. This proves

the lemma. I

For the above lemmas, we have not used the fact that the weights wj are equal.

Hence, Lemma 2.5.3 serves as a test of termination of the algorithm even when the

weights are arbitrary. The fact that the w3 's are equal is used in the next lemma,

which proves that we are justified in moving job k from S to S (i.e. rejecting job k)

when AA(S) < 0.

Lemma 2.5.4 For a set S of jobs with equal weights, if Ak(S) (the minimum of

the Aj(S) for j E S, as computed in SCHREJ) is negative, then there is an optimal

schedule for the set of jobs in S in which job k is rejected.

Proof. The proof is by contradiction. Suppose that in every optimal schedule for S,

job k is scheduled. Consider any such schedule F in which the set of rejected jobs is

R. Clearly, R is non-empty, otherwise, since Ak < 0, we can get a better schedule by

rejecting job k. We show that we can improve the schedule F by rejecting job k and

46

instead scheduling one of the jobs in R (the one immediately preceding or following

job k according to the ordering given by Smith's rule) to obtain a schedule F'. We

will compare the objective function value for the schedules F and F' by starting from

a schedule in which all jobs are scheduled, and then rejecting the set of rejected jobs

for each schedule in a particular order. Let R1 be the set of jobs in R which precede

job k in job index order, and let R 2 be the set of jobs in R which follow job k in job

index order. We will consider two cases, depending on whether the set R 2 is empty

or not.

swap the status of these

jobs to get a new schedule

job i job k

: denotes jobs in the set Rl

Figure 2-1: Case 1 for Lemma 2.5.4

Case 1: Set R 2 is empty (see Figure 2-1). Let the last job in job index order in R1 be

i (i < k). Note that Ai(S) ;> Ak(S). Consider another schedule F' in which job

k is rejected, job i is scheduled, and the status of other jobs remains unchanged,

i.e., we swap the status of jobs k and i in the optimal schedule F to get this new

schedule F'. We compare the objective function value for these two schedules

by first rejecting the jobs in R1 - {i} for both schedules, and finally rejecting

job i for F and job k for F'. Note that for the set of jobs R1 - {i} rejected for

each schedule, the decrease in objective function value is the same for both F'

and F. At this point, the new value for Ai is Ai' = Ai(S) + Wi ECR1 -i} Pi

and the new value for Ak is Ak' = Ak(S) + wk EjeR,_{i; Pi. Since wi = Wki,

47

we still have Ai' > Ak' (actually, it suffices to have wi 2 Wk here). Hence, on

now rejecting job i for F and job k for F', the decrease (positive or negative)

in the objective function value is greater (or same) for F' than F. Thus, the

final objective function value for schedule F' is less than or equal to the final

objective function value for schedule F, and job k is rejected in schedule F'.

This is a contradiction.

swap the status of these

jobs to get a new schedule

job k job i

[1
[U

ri [1
0 I!I

:denotes jobs in the set R I

: denotes jobs in the set R2

Figure 2-2: Case 2 for Lemma 2.5.4

Case 2: Set R 2 is non-empty (see Figure 2-2). Let the first job in job index order

in R 2 be i (i > k). Note that A;(S) 2! Ak(S). Consider another schedule F' in

which job k is rejected, job i is scheduled, and the status of other jobs remains

unchanged, i.e., we swap the status of jobs k and i in the optimal schedule F

to get this new schedule F'. We compare the objective function value for these

two schedules by first rejecting the jobs in R1 for both schedules, then the jobs

in R 2 - {i} for both schedules, and finally rejecting job i for F and job k for P'.

Note that for the sets of jobs R1 and R 2 - {i} rejected for each schedule, the

decrease in objective function value is the same for both P' and F. At this point,

the new value for Ai is Ai' = Ai(S) +wi EjER, Pi +Pi E jER 2 -{i} wi and the new

value for Ak is Ak' = Ak(S) + Wk Z jzR1 Pj + Pk E .R2-{i} w3. Since wi = Wk

48

F'
LI 0

0IN M M I
1 n

and pi Pk, we still have Ai' > Ak' (actually, it suffices to have Wk 5 wi here).

Hence, on now rejecting job i for F and job k for ', the decrease (positive

or negative) in the objective function value is greater (or same) for F' than F.

Thus, the final objective function value for schedule F' is less than or equal to

the final objective function value for schedule F, and job k is rejected in schedule

F'. This is a contradiction.

Note that we required the wi's to be in non-increasing order in Case 1 and in

non-decreasing order in Case 2 for the proof to carry through. These two together

require the wi's to be equal. I

We finally prove the correctness of algorithm SCHREJ.

Theorem 2.5.5 Algorithm SCHREJ outputs an optimal schedule for 1|w3 = w|

(ES w3 C + Eg e3) in 0(n 2) time.

Proof. The proof is by induction on the number of jobs. The basic idea of the proof is

that algorithm SCHREJ rejects only jobs which are safe to reject, and terminates when

all remaining jobs must be in the optimal schedule. Let J denote the set of jobs input

to the algorithm, and let f(J) be the optimum objective function value for the jobs

in J. By Lemma 2.5.3, the algorithm terminates correctly when Az(J) 0 for each

j E J. Now, consider the case when Ak(J) < 0, and we reject job k during the first

iteration of the repeat loop. By induction on the size of J, assume that the algorithm

finds an optimal schedule F for J - {k}. By Lemma 2.5.4, there exists an optimal

schedule]F0 p for J in which job k is rejected. Clearly, the set of scheduled jobs in

Fopt is also a valid schedule for J - {k}, so that f(J - {k}) < f(J) - ek. Also, the set

of scheduled jobs for F is a valid schedule for J, so that f(J) f(J - {k}) + ek. The

above two inequalities imply that f(J) = f(J - {k}) + ek. This proves the correctness

of algorithm SCHREJ.

It was shown earlier that the running time of the algorithm is O(n 2). I

Algorithm SCHREJ also works for the case when all the processing times are equal,

i.e., for I|p = p|(Es wj 3 + Eg e3). The structure of the proof is essentially the

49

same. The only change is in the proof of Lemma 2.5.4. We restate and prove the

version of this lemma when all the processing times are equal.

Lemma 2.5.6 For a set S of jobs with equal processing times, if Ak(S) (the minimum

of the A3 (S) for j E S, as computed in SCHREJ) is negative, then there is an optimal

schedule for the set of jobs in S in which job k is rejected.

Proof. The proof is by contradiction. Suppose that in every optimal schedule for S,

job k is scheduled. Consider any such schedule F in which the set of rejected jobs is

R. Clearly, R is non-empty, otherwise, since Ak < 0, we can get a better schedule by

rejecting job k. We show that we can improve the schedule F by rejecting job k and

instead scheduling one of the jobs in R (the one immediately preceding or following

job k according to the ordering given by Smith's rule) to obtain a schedule F'. We

will compare the objective function value for the schedules F and F' by starting from

a schedule in which all jobs are scheduled, and then rejecting the set of rejected jobs

for each schedule in a particular order. Let R1 be the set of jobs in R which precede

job k in job index order, and let R 2 be the set of jobs in R which follow job k in job

index order. We will consider two cases, depending on whether the set R1 is empty

or not.

swap the status of these

jobs to get a new schedule

job k job i

: denotes jobs in the set R 2

Figure 2-3: Case 1 for Lemma 2.5.6

50

Case 1: Set R1 is empty (see Figure 2-3). Let the first job in job index order in R 2 be

i (i < k). Note that Ai(S) Ak(S). Consider another schedule F' in which job

k is rejected, job i is scheduled, and the status of other jobs remains unchanged,

i.e., we swap the status of jobs k and i in the optimal schedule F to get this new

schedule F'. We compare the objective function value for these two schedules

by first rejecting the jobs in R 2 - {i} for both schedules, and finally rejecting

job i for F and job k for F'. Note that for the set of jobs R 2 - {i} rejected for

each schedule, the decrease in objective function value is the same for both F'

and F. At this point, the new value for Ai is Ai' = Ai(S) + pA LE'R2 -{i} Wj

and the new value for Ak is Ak' = Ak(S) + pk EjER2 -{i} 3 . Since pi = Pk,

we still have Ai' Ak' (actually, it suffices to have pi 2 PA here). Hence, on

now rejecting job i for F and job k for F', the decrease (positive or negative)

in the objective function value is greater (or same) for F' than F. Thus, the

final objective function value for schedule F' is less than or equal to the final

objective function value for schedule F, and job k is rejected in schedule F'.

This is a contradiction.

swap the status of these

jobs to get a new schedule

job i job k

: denotes jobs in the set RI

denotes jobs in the set R2

Figure 2-4: Case 2 for Lemma 2.5.6

Case 2: Set R1 is non-empty (see Figure 2-4). Let the last job in job index order in

51

R1 be i (i > k). Note that Ai(S) Ak(S). Consider another schedule F' in

which job k is rejected, job i is scheduled, and the status of other jobs remains

unchanged, i.e., we swap the status of jobs k and i in the optimal schedule F

to get this new schedule F'. We compare the objective function value for these

two schedules by first rejecting the jobs in R1 - {i} for both schedules, then

the jobs in R 2 for both schedules, and finally rejecting job i for F and job k for

F'. Note that for the sets of jobs R1 - {i} and R 2 rejected for each schedule,

the decrease in objective function value is the same for both F' and F. At this

point, the new value for Ai is Ai' = Ai(S) + wi E R{ -fi} pi + pi EjER2 W and

the new value for Ak is Ak' = Ak(S) + Wk EER1 {-_i} Pi + pk EjeR2 Wi. Since

pi = Pk and wi 2 Wk, we still have Ai' > Ak' (actually, it suffices to have

p; Pk here). Hence, on now rejecting job i for F and job k for F', the decrease

(positive or negative) in the objective function value is greater (or same) for F'

than F. Thus, the final objective function value for schedule F' is less than or

equal to the final objective function value for schedule F, and job k is rejected

in schedule F'. This is a contradiction.

Note that we required the p;'s to be in non-decreasing order in Case 1 and in

non-increasing order in Case 2 for the proof to carry through. These two together

require the pi's to be equal. I

We finally restate Theorem 2.5.5 for the case when all the processing times are

equal.

Theorem 2.5.7 Algorithm SCHREJ outputs an optimal schedule for 1|pj = p|

(Es wjCj + ES ej) in O(n 2) time.

2.5.2 Compatible Processing Times, Weights, and Rejection

Costs.

In this section, we given an O(n log n) time algorithm for 11 |(Es wjCj+ ES ej) when

the processing times, weights, and the rejection costs are compatible. We first define

52

what we mean by the term "compatible".

A set of n jobs is said to have compatible processing times, weights, and rejection

costs when an ordering of the jobs according to Smith's rule also orders the jobs

in non-decreasing order of both processing times and weights, and in non-increasing

order of rejection costs. That is, the jobs can be indexed such that

1. p1|w1 : P2/w2 ... Pn/Wn,

2 . P1 P2 !5 - - -Pn,

3. w 1 <w 2 < ... < w , and

4. ei > e2 > - - en .

We prove that the following simple greedy algorithm determines an optimal sched-

ule in polynomial time. We call the algorithm COMPAT. It first labels the jobs in com-

patible order. Job i is assigned a completion time of C; = p3 . The algorithm

schedules job i if and only if wiCi < ei. This makes intuitive sense because job i

makes a contribution of w;C; to the objective function when it is scheduled and a

contribution of ei to the objective function when it is rejected. The algorithm stops

when it has to reject a job.

53

Algorithm COMPAT:

Sort the jobs in compatible order ;

Label them in sorted order from 1 to n

S <- 0 ;

for j = 1 to n do {
if (j = 1) then

C1 <- P1;

else

C3- Ci-1 + p;

if (wjCj ej) then

/* schedule jobj */

S <- S U{};

else

/* break out of for loop */

break;

}
Output the schedule in which jobs in S are scheduled

in compatible order and all other jobs are rejected ;

It is easy to analyze the running time of algorithm COMPAT. Since every iteration

of the for-loop takes 0(1) time and the for-loop runs for at most n iterations, the

total running for the for-loop is 0(n). The initial sorting into compatible order takes

0(n log n) time, so that the overall running time for algorithm COMPAT is 0(n log n).

For the rest of this section, we assume that the jobs are labelled in compatible

order. Our proof of correctness shows why it makes sense to use Ci = _ pi as the

completion time of job i if it is scheduled. This does not seem correct at first glance

since it is possible for some jobs among {1, 2,..., i - 1} to get rejected in the optimal

schedule. However, we show that there exists an optimal schedule in which, for some

1 < k < n, all the jobs {1,2,..., k} are scheduled and all the jobs {k+1, k+2,..., n}

54

are rejected.

Lemma 2.5.8 Let the jobs be labelled in compatible order. Consider a schedule F in

which job k is rejected but job k + 1 is scheduled for some 1 < k < n. Let the schedule

F' be obtained from schedule F by rejecting job k + 1, scheduling job k, and keeping

the status of all other jobs unchanged. Then, the objective function value for schedule

F' is at most the objective function value for schedule F.

Proof. Let Si be the set of scheduled jobs which are less than k + 1 in compatible

order and let Let S2 be the set of scheduled jobs which are greater than k + 1 in

compatible order. Because the jobs are also labelled according to Smith's rule, we

can assume that they are scheduled in compatible order in schedule F.

When we reject job k + 1 from schedule F, the change in the objective function

value is

Ck1- Wk+1 E P - Wk+lPk+l - Pk+1 S:W
3ES1 jES2

When we now schedule job k to obtain schedule F', the change in the objective

function value is

-ek +wk E Pi +wkPk + Pk E wi
jES1 jES2

Thus, the total difference in the objective function value for schedule F' over that

for schedule F is the sum of the above two quantities and is equal to

(ek+1 - ek) + [(wk - Wk+1) 1 Pj] + (wkPk - Wk+lPk+1) + [(Pk - Pk+1) j) Wi]
jES1 jES 2

We have bracketed the above quantity into four parts. From the definition of

compatible order, it is easy to see that each bracketed term is non-positive. This

proves the lemma. I

We use the above lemma to show that there exists an optimal schedule in which

a contiguous sequence of jobs starting from the first one is scheduled and the rest are

55

rejected.

Lemma 2.5.9 Assume that the jobs are labelled in compatible order. Then, there

exists an optimal schedule in which, for some 1 < k < n, the first k jobs are scheduled

and the rest are rejected, i.e., a contiguous sequence of jobs starting from the first one

is scheduled and the rest are rejected.

Proof. The proof is by contradiction. Suppose that there is no optimal schedule with

the structure stated above. Consider any optimal schedule F. Then, by applying the

transformation described in Lemma 2.5.8 repeatedly, we can obtain a schedule F' in

which, for some 1 < k < n, the first k jobs are scheduled and the rest are rejected.

The schedule F' has an objective function value which is less than or equal to the

objective function value for the optimal schedule F. This contradicts our assumption

at the beginning of the proof. I

We finally prove the correctness of algorithm COMPAT.

Theorem 2.5.10 Algorithm COMPAT outputs an optimal schedule for 1| |(Z 5s wjC +

Z S e,) in O(n log n) time when the processing times, weights, and rejection costs are

compatible.

Proof. Because of Lemma 2.5.9, we can assume that the optimal schedule, for some

1 < k < n, schedules the first k jobs in compatible order and rejects the rest. Thus,

if job i is scheduled in the optimal schedule, its completion time C; must be A pi,

and it makes a contribution of wiCi to the objective function value. If job i is rejected

in the optimal schedule, it makes a contribution of ei to the optimal schedule. To

minimize the objective function value, we must clearly take the smaller contribution

for each job.

Also, it is easy to see that the algorithm can stop as soon as the first job is rejected.

Suppose wiCi > ei and consider any job j > i. Because of the labelling of the jobs

in compatible order, we have wi > wi and ej 5 ei. Hence, it follows that w3 C > e3 .

Thus, if job i is rejected, then job j must also be rejected.

56

It was shown earlier that the running time of algorithm COMPAT is O(n log n). I

57

Chapter 3

Maximum Lateness/Tardiness with

Rejection

3.1 Introduction.

In this chapter, we consider the problem of maximum tardiness/lateness with rejection

for which the objective function is the sum of the maximum lateness/tardiness of

the scheduled jobs and the total rejection penalty of the rejected jobs. The one

machine versions of these two problems are denoted as 11| (Lmax(S)+Eg e) and 1||-

(Tmax(S) + Eg e1) respectively. In Section 3.2, we motivate the maximum tardiness

with rejection problem by pointing out applications to hardware/software codesign

for real-time systems. If rejection is not considered, the problems are solvable in

polynomial time using the Earliest Due Date (EDD) rule: schedule the jobs in non-

decreasing order of due dates d3 . In Section 3.3, we show that adding the option

of rejection makes the problems N'P-complete. This result reflects joint work with

James Orlin. In Section 3.4, we give two pseudo-polynomial time algorithms, based

on dynamic programming, for 11 I(Lmax(S) + Es e) and 1| |(Tmax(S) + Eg e).

The first runs in O(n E', e,) time and the second runs in O(n E'=, p3) time. We

generalize the second algorithm in Section 3.4.3 to any fixed number of unrelated

58

parallel machines and solve RmI I(Lmax(S) + ES ej) and RmI I(Tmax(S) + Eg e3).

We also develop an FPTAS for I I|(Tmax(S) + Eq ej) in Section 3.5. The FPTAS

uses a geometric rounding technique on the total rejection penalty and works with

what we call the inflated rejection penalty. In our FPTAS, we constrain the total

rejection penalty for each set of rejected jobs to be of the form (1 + e/2n)', where

(1 + e) is the factor of approximation achieved by the algorithm.

Observe that the notion of an approximation algorithm (in the usual sense) does

not hold much meaning for 11 (Lmax(S) + Eg ej) because the optimal objective

function value could be negative. In such a case, it makes sense to consider inverse

approximation algorithms for the problem. We introduce and motivate the notion of

an inverse approximation algorithm in Section 3.6. We then give an inverse approxi-

mation scheme for 11 |(Lmax(S) + E3 e3) in Section 3.6.2 and a fully polynomial time

inverse approximation scheme (IFPTAS) for the problem 1| |(Lma,(S) + J~l ej) in

Section 3.6.3, where the total rejection penalty is the product (and not the sum) of

the rejection costs of the rejected jobs.

3.2 Application to Hardware/Software Codesign

for Real-time Systems.

Consider a real-time system where every job has to be scheduled with a (soft) deadline

constraint. The functionality of the job can be implemented either in hardware or in

software. Implementing a job in hardware is expensive but its speed of execution is

several orders of magnitude higher than when it is implemented in software. On the

other hand, implementing a job in software is much more economical, but due to the

much slower speed of execution in software, implementing most jobs in software may

cause too many jobs to complete after their deadline. Any hardware/software codesign

for a real-time system must make trade-offs between the following two conflicting

requirements:

59

e minimize the maximum tardiness of the the jobs implemented in software (this

is not a problem for the jobs implemented in hardware because of their much

higher speeds of execution), and

9 minimize the cost of hardware used for implementing the jobs in hardware.

We can look at a job implemented in hardware as a "rejected" job as far as software

implementation is concerned. The cost of implementing a job in hardware can thus

be modelled as a rejection cost ej for each job j. The efficient algorithms that we

come up with in this chapter can be used to come up with an optimal partition of the

jobs into the above two categories, i.e., implemention in hardware or software. Our

techniques can be used as a decision support and analysis tool in hardware/software

codesign for real-time systems.

3.3 Complexity of Maximum Lateness/Tardiness

with Rejection.

In this section, we show that the problems Pm |(Lmax(S) + Es e) and PmJ |-

(Tmax(S) + E3 e3) are NP-complete for any m > 1. Both the problems are solvable

on one machine in polynomial time using the Earliest Due date First (EDD) rule

when rejection is not considered. We show that adding the rejection option to even

the single machine problem in each case makes it NP-complete. In the discussion

below, we will work with the problem 1|| (Lmax(S) + E ej). The NP-completeness

proof for 1 I|(Tmax(S) + Eg ej) is exactly the same, since every job in our reduction

has a non-negative lateness which is, hence, equal to its tardiness.

The decision problem formulation of 1| |(Lmax(S) + Eg ej) is defined as follows:

Given a set of n independent jobs, N = {J 1,... , J,,}, with processing

times pj, V 1 < j < n, due dates dj, V 1 < j < n, and rejection penalties

ej, V 1 < j < n, a single machine, and a number K, is there a schedule of a

60

subset of jobs S C N on the machine such that Lmax(S)+ EjES=N-S e3 <

K?

We reduce the Partition Problem [5] to this problem, thus proving that even on one

machine, maximum lateness with rejection is AVP-complete.

Theorem 3.3.1 1| |(Lmax(S) + ES ej) is AP-complete.

Proof. I I|(Lmax(S) + ES ej) is clearly in AP. To prove that it is also AP-hard, we

reduce the Partition Problem [5] to 1| |(Lmax(S) + ES e3). The Partition Problem

is defined as follows:

Given a set A = {a1, a2 ,... , an} of n numbers such that " ai = 2b, is

there a subset A' of A such that EaEA ai = b?

Given an instance A = {a1,... , a} of the partition problem, we create an instance

of 1||(Lmax()+ES ej) with n+1 jobs, Jo,, J1 , ... , Jn. For i = 1, 2, ... , n, each of the

n elements ai in the Partition Problem corresponds to a job Ji in 1|| (Lmax(S)+EZ ej)

with processing time pi = a;, due date di = b, and rejection cost ei = a;/2, where

b = ai. The special job Jo has processing time equal to b, due date equal to

0, and rejection cost equal to oo.

Consider any optimal schedule for I |(Lmax(S) + ES e3). Since Jo has rejection

cost of oo and the smallest due date, it must be scheduled first. Let S and S be

the set of indices of the scheduled and rejected jobs respectively among J1, J2,..., J

and let x = EiESPi = EiESa2 . Observe that the makespan of the set of jobs

in S is x + b, and since every job in S has the same due date b, the maximum

lateness of this set of jobs is x. Also, the total rejection penalty of the rejected jobs

is EiE3 e; = EEs ai/2 = (2b - x)/2 = b - x/2. Then, the value of the objective

function for this schedule is

max(x, b) + (b - x/2)

61

This function has a unique minimum of jb at x = b (see Figure 3-1). Hence, the

best possible solution has EiES pi = b, and is optimum if it exists. Therefore, if the

optimum solution to 1 (Lmax(S) + Eg ej) is equal to 2b, then there exists a subset

A' = S of A such that iEA, ai = b, i.e., the answer to the Partition Problem is

'Yes,' and S is a witness. If the optimum solution to 1 |(Lmax(S) + ES e) is greater

than b, then there does not exist any partition A' of A such that iEA, ai = b,

i.e., the answer to the Partition Problem is 'No.' Conversely, if the answer to the

f(x)

2b - - - - - ------------ ---------------- ---------

3b/2 - ---~-~--------~-- - - -------------- r----~-----

b

b/2

b 2b X

Figure 3-1: Graph for f(x) = max(x, b) + (b - x/2) in the range 0 < x < b

Partition Problem is 'Yes,' the optimum solution to 11 l(Lmax(S) + ES e1) is clearly

equal to 2b. If the answer to the Partition Problem is 'No,' the optimum solution to

1| |(s Cj + ES eg) is clearly greater than 2b. 1

As mentioned before, the above proof also works for I |(Tmax(S) + ES es), thus

62

proving the following theorem.

Theorem 3.3.2 1 |(Tmax(S) + E3 e) is AP-complete.

As a corollary, it follows that Pm| (Lmax(S)+Z eg) and Pm| (Tmax(S)+Zs e3)

are both NP-complete for any m > 1.

Corollary 3.3.3 PmI I(Lmax(S) + E3 ej) and PmI I(Tmax(S) + ES ej) are both

NP-complete for any m > 1.

3.4 Pseudo-polynomial Time Algorithms.

In this section, we give pseudo-polynomial time algorithms for solving 1| (Lmax(S) +

Eg eg) and 11 I(Tmax(S) + Eg e1) exactly. We first give an O(n En_1 e1) time algo-

rithm (in section 3.4.1) and then an O(n E=1 pj) time algorithm (in Section 3.4.2),

using dynamic programming, to solve I I(Lmax(S)+7_', ej) and 1|| (Tmax(S)+ES e,).

The first runs in polynomial time when the rejection costs are polynomially bounded

and the processing times are arbitrary, while the second runs in polynomial time

when the processing times are polynomially bounded and the rejection costs are

arbitrary. We then generalize our second dynamic program in Section 3.4.3 to a

fixed number of unrelated parallel machines and solve RmI I(Lmax(S) + ES e3) and

RmI I(Tmax(S)+Eg e3). In Section 3.5, we show how to modify the dynamic program

of Section 3.4.1 to obtain an FPTAS for 1| |(Tmax(S) + _' ej).

3.4.1 Dynamic Programming on the Rejection Costs e;.

To solve our problem, we set up a dynamic program for the following problem: to find

the schedule that minimizes the maximum lateness when the total rejection penalty

of the rejected jobs is given. We number the jobs in non-decreasing order of due

dates dj. This is because the Earliest Due Date (EDD) rule minimizes the maximum

63

lateness for any given set of scheduled jobs. Let 4,,j denote the minimum value of

the maximum lateness when the jobs in consideration are J,j + 1, ... , n, and the total

rejection penalty of the rejected jobs is e. Note that

-oo if e = e"

#e,n= p, - dn if e=0 (3.1)

oo otherwise

This forms the boundary conditions for the dynamic program. Since max(-oo, x) = x

for any x, the symbol -oo is the identity element for the max operator. Hence, we

have assigned a lateness of -oo to the empty schedule. This should be treated as

a special symbol rather than a value of negative infinity, since otherwise, the empty

schedule will be the optimal schedule with an objective function value of negative

infinity.

Now, consider any schedule for the jobs j, j+ 1,..., n that minimizes the maximum

lateness when the total rejection penalty of the rejected jobs is e. We will refer to

this as the optimal schedule in the discussion below. In any such schedule, there are

two possible cases - either job J is rejected or job j is scheduled.

Case 1: Job j is rejected. This is possible only if e > ej. Otherwise, there is no

feasible solution with rejection penalty e and job j rejected, in which case only

Case 2 applies. Hence, assume that e > ej. Then, the value of the maximum

lateness for the optimal schedule is clearly qe-e, +1, since the total rejection

penalty of the rejected jobs among j+1,... , n must be e - ej.

Case 2: Job j is scheduled. In this case, the total rejection penalty of the rejected

jobs among J + 1,...,n must be e. Also, when job j is scheduled before all

jobs in the optimal schedule for jobs j + 1,J + 2,... , n, the lateness of every

scheduled job among J+1, J+2,..., n is increased by pj and the lateness of job

j is exactly p - d. Then, the value of the maximum lateness for the optimal

schedule is clearly max(4e,j+1 + PjI P - dj).

64

Combining the above two cases, we have:

e~J = max(e,J+1 + Pi, Pi - d) if e < ej (3.2)
min[#e-e7 ,j+i, max(de,j+1 + pj, pj - di)] otherwise

Now, observe that the total rejection penalty of the rejected jobs can be at most

E ej, and the answers to our original problems are

* min{(de,1 + e) | 0 < e < 1 e3 } for the problem 1| |(Lmax(S) + ES ej), and

* min{(max(0, q#e,1)+e) |0 e < En_1 ej} for the problem I |(Tmax(S)+ZE ej).

Thus, we need to compute at most n E_ ej table entries qe,j. Computation

of each such entry takes 0(1) time, so that the running time of the algorithm is

O(n E _j e).

Theorem 3.4.1 Dynamic programming yields an O(n En_1 ej) time algorithm for

exactly solving I (Lmax(S) + ES ej) and 1| |(Tmax(S) + ES e3).

3.4.2 Dynamic Programming on the Lateness of the jobs.

In this section, we give another dynamic program that solves 1| I(Lmax(S) + ES e1)

and 1| |(Tmax(S) + ES ej) in O(n En_1 p)-time.

As before, we set up a dynamic program for a slightly different problem: namely,

to find the schedule that minimizes the total rejection penalty of the rejected jobs

when an upper bound on the maximum lateness of the scheduled jobs is given. We

number the jobs in non-decreasing order of due dates d3 (as in Section 3.4.1). Let #ej

denote the minimum value of the total rejection penalty of the rejected jobs when the

jobs in consideration are j, j +1,... , n, and the maximum lateness of the scheduled

jobs is at most f. The boundary conditions of this dynamic program are given by

65

en if f = -oo

e,, = 0 if f > -d (3.3)

oo otherwise

Now, consider any schedule for the jobs JJ +1..., n that minimizes the total

rejection penalty of the rejected jobs when the maximum lateness of the scheduled

jobs is at most t. We will refer to this as the optimal schedule in the discussion below.

In any such schedule, there are two possible cases - either job j is rejected or job j
is scheduled.

Case 1: Job J is rejected. Then, the value of the total rejection penalty of the

rejected jobs for the optimal schedule is clearly Ot,j+1 + ej, since the maximum

lateness of the scheduled jobs among j+1,.... ,n is at most f.

Case 2: Job j is scheduled. In this case, the lateness of job j is p3 - d. Hence, if the

value of i is smaller than p, - d3 , there is no feasible solution with maximum

lateness f and job j scheduled, in which case only Case 1 applies. Therefore,

assume that f > p3 - d3 . Now, when job j is scheduled before all jobs in

the schedule for jobs j + 1,j + 2,... ,n, the lateness of every scheduled job

among J+1, j+2,. .. , n is increased by p3 . Thus, the maximum lateness of the

scheduled jobs among J+1,... , n can be at most f - p3 . Then, the value of the

total rejection penalty of the rejected jobs for the optimal schedule is

Combining the above two cases, we have:

f ,i+1 + e3 if f < p3 - (34)

min(#t,j+1 + ej, 4 O-p,,j+1) otherwise

We now obtain lower and upper bounds £min and £max respectively on the maxi-

mum lateness of any schedule. Since the maximum completion time of any job is at

most Ej1 p3 and the due dates are non-negative, we have imax < E=1 p3 . Also,

observe that a scheduled job] has the minimum possible lateness when it is the first

66

job to be scheduled. Thus, emin min(p - d) min(-d) = - max d- > -

since we can assume, without any loss of generality, that the maximum due date is

at most j=1 p3 . Thus, the possible number of finite values of the maximum lateness

£ for any schedule is at most fmax - £min 2 j=1 p3 . Note that in addition to this,

the value of t can also be -oo (for the empty schedule).

We can now see that the answers to our original problems are

a min{(f + 4/,1) min :5 f < t max or f = -oo} for the problem 11 I(Lmax(S) +

ES ej), and

* min{(max(O,t) + e,1) I £min < f imax or t = -oo} for the problem

I I|(Tmax(S) + ES e3).

Thus, we need to compute at most n(2 E'_1 pj) table entries 4tj. Computation

of each such entry takes 0(1) time, so that the running time of the algorithm is

O(n En 1 pi).

Theorem 3.4.2 Dynamic programming yields an O(n _ pj) time algorithm for

exactly solving 1| |(Lmax(S) + e) and 1| |(Tmax(S) + Eg e3).

3.4.3 Generalization to any fixed number of Unrelated Par-

allel Machines.

In this section, we generalize the dynamic program of Section 3.4.2 to any fixed

number m of unrelated parallel machines and solve RmI I(Lmax(S) + ES ej) and

RmI I(Tmax(S) + ES e,). Let pij denote the processing time of job i on machine j for

1 < i < n and 1 < j < m in the unrelated parallel machine model.

We set up a dynamic program for finding the schedule that minimizes the total

rejection penalty of the rejected jobs when the maximum lateness of the jobs scheduled

on each machine is given. We number the jobs in non-decreasing order of due dates

dj (as in Section 3.4.1). Note that given the set of jobs scheduled on a particular

67

machine, the EDD rule still applies as far as minimizing the maximum lateness on

that machine is concerned.

Let #4,h,...,em,3 denote the minimum value of the total rejection penalty of the

rejected jobs when the jobs in consideration are j,j + 1,...,n, and the maximum

lateness of the jobs scheduled on machine k is at most 4k for all 1 < k < m. The

boundary conditions of this dynamic program are given by

en if ii = -oo V i

,,...,m, = 0 if 3 k such that 4k Pnk - dn and i = -oo V i / k (3.5)

oo otherwise

Now, consider any schedule for the jobs j,j + 1,..., n that minimizes the total

rejection penalty of the rejected jobs when the maximum lateness of the jobs scheduled

on machine k is at most 4k for all 1 < k < m. We will refer to this as the optimal

schedule in the discussion below. In any such schedule, there are two possible cases

- either job j is rejected or job j is scheduled.

Case 1: Job j is rejected. Then, the value of the total rejection penalty of the

rejected jobs for the optimal schedule is clearly #4,,,em,J+1 + ej, since the

maximum lateness of the jobs scheduled on machine k among J + 1, ... , n is at

most 4k.

Case 2: Job j is scheduled. Suppose job j is scheduled on machine k. This is possible

only if pik is finite. In this case, the lateness of job j is Pik - dj. Hence, if the

value of 4k is smaller than Pik - dj, there is no feasible solution in which the

maximum lateness on machine k is 4a and job j is scheduled on machine k.

Therefore, assume that ek Pik - di. Now, when job j is scheduled on machine

k before all jobs among j + 1, + 2,... , n scheduled on machine k, the lateness

of every scheduled job among j + 1, j + 2,... , n on machine k is increased by

Pik. Thus, the maximum lateness of the jobs scheduled on machine k among

68

j + 1, ... ,n can be at most £k - Pjk. Then, the value of the total rejection

penalty of the rejected jobs for the optimal schedule is l,...,A-Pik,..,m+1

Combining the above two cases, we have:

, h, ... ,4m j = min(t 1,A,...m,j+1 + e3,

I k Pik - di and 1 < k < m})

Let fmin,k and £max,k denote the lower and upper bounds respectively on the max-

imum lateness of any schedule on machine k. By repeating the argument in the last

section for machine k, we have fmax,k < i Pjk and £min,k - Pik. We re-

strict the summation in each case to those jobs j that have a finite processing time

on machine k. Thus, the possible number of finite values of the maximum lateness ik

for any schedule on machine k is at most £max,k - £min,k 5 2 3=1 Pik. Note that in

addition to this, the value of 4 can also be -oo (for the empty schedule on machine

k).

We can now see that the answer to our original problems are

* min{(max(ti,f 2, ... ,eA) + i4,2 ,...,em,1) I fmink 5 f £ fmax,k or k = -oo, 1 <

k < m} for the problem RmlI (Lmax(S) + ES ej), and

* min{(max(0,, f 2, ... , m)+ 4e,, . .m,I) I emink < f ema,k or ek = -oo, 15

k < m} for the problem RmI |(Tmax(S) + ES e3).

Thus, we need to compute at most n fli (2 E"_1 p) = n2m = (g_ 1 pji) table

entries 4,42,...,m,3. Computation of each such entry takes 0(m) time, so that the run-

ning time of the algorithm is 0(nm2m 1 1(E" 1 pji)), which is pseudo-polynomial

when the number of machines m is fixed.

Theorem 3.4.3 Dynamic programming yields an 0(nm2m H 1 (En 1 pji)) time al-

gorithm for exactly solving Rm| I(Lmax(S) + ES ej) and Rm| I(Tmax(S) + ES e3).

69

3.5 Fully Polynomial Time Approximation Scheme

for Maximum Tardiness with Rejection.

In this section, we describe a fully polynomial time approximation scheme (FPTAS)

for 1 |(Tmax(S) + Eg ey). The algorithm runs in time polynomial in n, }, and the

size (number of bits) of the rejection costs of the jobs.

We "trim" the state space of the dynamic program of Section 3.4.1 by fusing

states that are "close" to each other. This fusion of "close" states is achieved by

considering the inflated rejection penalty instead of the actual rejection penalty for a

set of rejected jobs. We introduce this concept in the next section.

3.5.1 Inflated Rejection Penalty.

The actual rejection penalty for a set R of rejected jobs is E iR ei. The definition

of inflated rejection penalty involves a geometric rounding technique which we state

first. For any e' > 0 and x > 1, the quantities [x]E and [xj denote x rounded up

and rounded down respectively to the nearest power of (1 + e'). Thus, if (1 + e')k-1 <

X < (1 + c')k, then FX]Et = (1 + e')k and [XJ/ = (1 + eI)k-1. If x is an exact power of

(1 + e'), then [x]. = Lx]e x. Note that [xl < (1 + e')x for any x > 1. We will

use this property in Lemma 3.5.1.

Let R = {ii,i2,...,ik}, where i1 < < ik and k > 0. We define the

c'-inflated rejection penalty f,,(R) of the set R of jobs with respect to any e' > 0 as

[eg, + fe (R - {ii})]i if k > 1
fE'(R) = (3.6)0 if R is empty

As an illustrative example, let R = {1, 2, 5}. Then, fe (R) = [e1+ [e2 + Fes51l EI.

Note how we start with the largest indexed job in the set R and consider the jobs in

decreasing order of job index. At every step, we add the rejection cost of the next job

and then round up. We will see later why this particular order of rounding is useful.

70

Since we are rounding up at each stage, it is easy to see that fei(R) E3 R ej for

any set R of jobs and any e' > 0. Hence, the reason for the term "inflated". We now

prove a lemma which establishes an upper bound on the inflated rejection penalty in

terms of the actual rejection penalty.

Lemma 3.5.1 For any set R of jobs and any e' > 0,

fe,(R) (1 + e')IRI E e
jER

Proof. The proof is by induction on the size of R. If R is empty, then both sides

of the inequality are equal to zero, and the result is trivially true. For the inductive

step, assume that |R| > 1, and let i be the smallest index job in R. By the induction

hypothesis, we know that fe,(R - {i}) 5 (1 + e')IRl-1 EjER-Ji e3 . Hence,

fe,(R) = ei + fe,(R -i)e

(1 + e')(ei + fe,(R - {i})) since ei > 1

(1 + e')(e, + (1 + e')|Rl1 e) by induction hypothesis
jER-{i}

= (1le')ei + (I + ')J
jER-{i}

_ (1+ eI)IR\e + (1 + |I)IR| E
.ER-{i}

= (1+e/)IRI E ej

This completes the proof. I

Now, let e' = e/2n, where (1 + e) is the desired factor of approximation for

the FPTAS. Since R has at most n jobs, we have fE,(R) 5 (1 + e/2n)" EjER eR <

(1 + e) EjER e. We put this down in the following lemma.

71

Lemma 3.5.2 For any e > 0, let e' = '. Then, for any set of jobs R,

fe,(R) :!; (1 + e e
jER

This implies that if we work with the inflated rejection penalty instead of the

actual rejection penalty, we will overestimate the rejection penalty by a factor of at

most (1+ e). Working with the inflated rejection penalty has the following advantage.

Since the inflated rejection penalty for any set of jobs is of the form (1 + e')k, we can

store the exponent k instead of the actual value in the state of the dynamic program

of Section 3.4.1. This reduces the number of states of the dynamic program so much

so that we get an FPTAS out of it. We elaborate on this in the next section.

3.5.2 The Algorithm.

In this section, we arrive at an FPTAS for 1| |(Tmax(S) + E ej) by setting up a

dynamic program for the following problem: to find the schedule that minimizes the

maximum lateness when the inflated rejection penalty of the rejected jobs is given.

As before, we number the jobs in ascending order of due date d3 . Let Ok,j denote

the minimum value of the maximum lateness when the jobs in consideration are

j, j+ 1 ... , n, and the inflated rejection penalty of the rejected jobs is -rk = (1+ ')k,

where c' = e/2n. We will accommodate the zero inflated rejection cost (for the case

when all the jobs are scheduled) by having T 1 = 0 for this case.

Note that

-oo if rk = [e1 e

#k,= p, - d, if k =-1 (3.7)

oo otherwise

This forms the boundary conditions for the dynamic program.

72

Now, consider any schedule for the jobs j, j+1,.. ., n that minimizes the maximum

lateness when the inflated rejection penalty of the rejected jobs is rk = (1 + e')k. We

will refer to this as the optimal schedule in the discussion below. In any such schedule,

there are two possible cases - either job j is rejected or job j is scheduled.

Case 1: Job j is rejected. This is possible only if rk > [ej1,i. Otherwise, there is no

feasible solution with inflated rejection penalty rk and job j rejected, in which

case only Case 2 applies. Hence, assume that rk [es]<,. Then, the value of

the maximum lateness for the optimal schedule is 4k',j+1, where (1 + C')k' is

the inflated rejection penalty of the rejected jobs among j + 1, ... , n. From the

definition of inflated rejection penalty, the possible values of k' must be such

that [ej + (1 + E')k'], = (1 + 6')k. Thus, the largest value of k' (call it k) is

given by (1 + c')k = L(1 + 6')k - ejji. But, k' may also take values smaller

than k. Hence, the value of the maximum lateness for the optimal schedule is

min- _k',J+1-
-1<k!<k

Case 2: Job j is scheduled. In this case, the inflated rejection penalty of the rejected

jobs among j+.1,... , n must be (1 + c')k. Also, when job j is scheduled before

all jobs in the optimal schedule for jobs j+1, j+2,... , n, the lateness of every

scheduled job among j +1, J+2,... , n is increased by p3 and the lateness of job

j is exactly p, - dj. Then, the value of the maximum lateness for the optimal

schedule is clearly max(Ok,3+1 + pj, pj - di).

Combining the above two cases, we have:

{ max(4k,j+1 + pi, pI - d3) if rk < Fej], (3

'k' = min[min _ qk',+1, max(4k,J+1 + pj, pj - d1)] otherwise
-1<k'<k

Now, observe that the inflated rejection penalty of the rejected jobs is the largest

when all the jobs are rejected. Hence, the inflated rejection penalty is at most

73

fe,({1, 2, ... , n}) < (1 + e')n En- e3 (using Lemma 3.5.1). Thus, the largest value of

k for which we need to compute #k,3 is L, where L is the smallest integer such that

(1 + ')L ;> (1 + ')" E_ ej. Thus, L is the smallest integer greater than or equal to
I ~ ~ (log En1 1ej3

g=1'), + n, whence L = O(" log Z11 es).

When we consider the inflated rejection penalty instead of the actual rejection

penalty, our problem becomes If |(Tmax(S) + fe,(5)). The answer to this problem is

given by

min{q k,1 + I- 1< k < L}

Thus, we need to compute exactly n(L + 2) values #k,J. Computation of each such

value takes O(L) time, so that the overall time for the dynamic program (FPTAS)

is 0(nL2) l 2 _71 ej). This is polynomial in the input size, since we need

_> log ej bits to represent the rejection costs.

We now relate the optimal objective function values for the problems I |(Tmax(S)+

Es eg) and 11 f(Tmar(S) + fe,(9)) through the following theorem.

Theorem 3.5.3 For c' = e/2n, the optimal objective function value for I |(Tmax(S)+

fe,(S)) is at most a factor of (1 + e) times the optimal objective function value for

I |(Tmax(S) + Es e3).

Proof. Consider any optimal schedule for If |(Tmax(S) + EJS e) in which the set

of scheduled jobs is S. When we consider the inflated rejection penalty instead of

the actual rejection penalty, the rejection penalty of the jobs in 9 increases by a

factor of at most (1 + e) (using Lemma 3.5.2). Also, the maximum tardiness of the

jobs in S remains unchanged. Hence, the objective function value for this schedule

increases by a factor of at most (1 + e) when we consider the inflated rejection penalty

instead of the actual rejection penalty. Thus, the optimal objective function value for

1i |(Tmax(S) + fc,(9)), with e' = e/2n, is at most (1 + e) times the optimal objective

function value for If |(Tmax(S) + EI e). H

74

This implies that the above dynamic program, which solves 11 |(Tmax(S) + fEi(5))

exactly, also gives a (1 + e)-factor approximation for 1| |(Tmax(S) + ES ej).

Theorem 3.5.4 There exists (1+e)-factor fully polynomial time approximation scheme

(FPTAS) for 1| |(Tmax(S) + Eg ei) which runs in O(*- log' e) time.

3.6 Inverse Approximation for Maximum Lateness

with Rejection.

As mentioned before, the notion of an approximation algorithm (in the usual sense)

does not hold much meaning for I I(Lmax(S) + Eg ej) because the optimal objective

function value could be negative. In such a case, it makes sense to consider inverse

approximation algorithms for the problem. In section 3.6.1, we introduce the notion

of inverse approximation and discuss some of its advantages over the usual notion of

approximation. We then give an inverse approximation scheme for 1| |(Lmax(S) +
ES ej) in section 3.6.2 and a fully polynomial time inverse approximation scheme

(IFPTAS) for the problem 1 I|(Lmax(S) + H~g e) in section 3.6.3, where the total

rejection penalty is the product (and not the sum) of the rejection costs of the rejected

jobs.

3.6.1 Introduction to Inverse Approximation.

Any approximation algorithm must use some notion of distance from the optimal

solution in order to measure the quality of the approximate solution that it produces.

The most commonly used notion in the literature is that of worst-case relative error

- a worst-case factor by which the objective function value of the output solution

differs from the optimal objective function value. Although widely accepted, this way

of measuring the quality of an approximate solution faces the following drawbacks:

75

e In the case when the optimal objective function value is non-positive, the relative

error is an inappropriate measure of performance.

* A translation of variables has a dramatic impact on the relative error. That

is, replacing x by y = x - a will lead to very different measures of the relative

error.

e The cost coefficients may themselves be uncertain, and the optimal objective

function value may be very sensitive to small changes in the cost coefficients.

The possibility of having a negative objective function value for 11 |(L.ax(S) +

E e3) precludes the existence of an approximation algorithm for it in the usual

sense. However, it does make sense to talk about inverse approximation algorithms

(as defined below) for this problem. Inverse approximation, and more generally,

inverse optimization, is a relatively new area of research and the concept was first

introduced by Bitran, Chandru, Sempolinski, and Shapiro [31]. The work of Ahuja

and Orlin [25, 26, 27] is a very good introduction to the area. We now define the

notion of inverse approximation and then discuss some of the advantages of using it

as a measure of the quality of performance.

A feasible solution x* for an optimization problem with input costs (parameters)

cj is said to have an inverse relative error of at most c if x* is optimal for a problem

with perturbed costs c' satisfying the following conditions: c/(1 + c) 5 ci cj(l + c)

for all cj > 0, and c,(1+e) c / c/(1+c) for all c, < 0. An C-inverse approximation

algorithm (for a fixed c > 0) returns a feasible solution with an inverse relative error

of at most c. An c-inverse approximation scheme returns a feasible solution with an

inverse relative error of at most c for any c > 0.

Some of the advantages of using the inverse relative error notion of approximation

are as follows:

e Inverse approximation algorithms are invariant under the following operations:

- subtraction of a constant from the objective function

76

- changing the unit of the cost coefficients, that is, multiplying each cost

coefficient by a common constant.

e Inverse approximation algorithms are properly defined even if the objective

function takes on negative costs.

e Inverse approximation algorithms take into account that the cost coefficients

are quite commonly known only with a limited degree of precision.

* One may consider weighted inverse relative errors, taking into account the fact

that some data is known with higher precision than other data.

3.6.2 Inverse Approximation Scheme for 11 |(Lma(S) + ej).

In this section, we give an inverse approximation scheme for I |(Lmax(S) + ES ej).

Our approach consists of first rounding up the rejection costs ej to e' = [e1]<, and

then finding an optimal solution for I |(Lmax(S) + Eg e) with the modified costs e'.

Note that e' < (1 + e)ej for all J. Hence, by the definition of inverse approximation,

it is clear that this optimal solution has an inverse relative error of at most E.

To find the optimal solution to the modified problem, we run the dynamic program

of Section 3.4.1. Observe that due to the modified rejection costs, the total rejection

penalty of any set of jobs is of the form E ai(1 + e)i with ai 0 for all i. Here,

L is such that (1 + C)L is the maximum rounded rejection cost. Thus, if emax is the

maximum rejection cost, then L is the smallest integer such that (1 + C)L > emax,

i.e., L = O(1 log emax). Note that it is possible for ai to be greater than 1, since two

rounded rejection costs could have the same value (1 + c)i.

Hence, instead of storing the actual rejection penalty e = Ei= a;(1+ e) (which is

no longer an integer) in the state of the dynamic program, we can store the (L + 1)-

tuple (ao, a1 , ... , aL), which denotes the rejection penalty of EZ= a;(1+ e)1. Note

that a2 < n, and hence, the total number of such tuples is nL+1 nO(ogema2/c).

Thus, we need to compute at most n * nO(10semaa2/) entries 4(aQa2,...,a),j. Computation

77

of each such entry takes 0(1) time, so that the running time of the algorithm is

O(n1+o(lose-.,/c)) = O(no(loae-/<)).

Theorem 3.6.1 Dynamic programming yields an c-inverse approximation scheme

for 1 I|(Lmax(S) + ES es), which runs in O(n0(logemax/<)) time.

3.6.3 Fully Polynomial Time Inverse Approximation Scheme

for I I(Lmax(S) + H ei).

In this section, we describe a full polynomial time inverse approximation scheme

(IFPTAS) for 11 I(Lmax(S) + r13 e3). The algorithm runs in time polynomial in n,

, and the size (number of bits) of the rejection costs of the jobs. Note that for this

problem, the total rejection penalty is the product and not the sum of the rejection

costs of the rejected jobs.

As in the previous section, we first round up the rejection costs e3 to e' = [e11E,
and then find an optimal solution for 11 (Lmax(S) + flg ej) with the modified costs e'.

Note that e' < (1 + e)ej for all j. Hence, by the definition of inverse approximation,

it is clear that this optimal solution has an inverse relative error of at most e. To find

the optimal solution to the modified problem, we give a dynamic program which is

very similar to that of Section 3.4.1. Observe that due to the modified rejection costs,

the total rejection penalty of any set of jobs is of the form (1 + e)k, i.e., a power of

(1+ e). Hence, instead of storing the actual rejection penalty e = (1 + c)k (which is no

longer an integer) in the state of the dynamic program, we can store the exponent of

the rejection penalty, i.e., the value k will denote a rejection penalty of Tk = (1 + C)k

for k > 0. We explain below why k = 0 is a special case and how we handle it.

Note that since the total rejection penalty is the product of the rejection costs of

the rejected jobs, jobs with a rejection cost of 1 do not increase the rejection penalty

when they get rejected. In order to avoid this anomaly, we will assume that e > 1

for all j. Then, the exponent of k = 0 in the rejection penalty will be indicative of

the fact that none of the jobs are rejected, and we will make the rejection penalty

78

zero in this case by defining ro = 0.

We set up a dynamic program for the following problem: to find the schedule that

minimizes the maximum lateness when the total rejection penalty (product form) of

the rejected jobs is given. As in Section 3.4.1, we number the jobs in ascending order

of due date d3. Let #kj denote the minimum value of the maximum lateness when the

jobs in consideration are j, j+1,... , n, and the total rejection penalty of the rejected

jobs is rk, where rk = (1+ E)k for k > 0 and ro = 0. Let L denote the exponent of

e', i.e., e, = (1 + C)L3 .

Note that

-oo if k = Ln

Ok,n Pn - dn if k = 0 (3.9)

oo otherwise

This forms the boundary conditions for the dynamic program.

Now, consider any schedule for the jobs j, j+1, ... , n that minimizes the maximum

lateness when the total rejection penalty of the rejected jobs is (1 + e)k. We will refer

to this as the optimal schedule in the discussion below. In any such schedule, there

are two possible cases - either job j is rejected or job j is scheduled.

Case 1: Job j is rejected. This is possible only if (1 + c)k > e', i.e., k > Lj.

Otherwise, there is no feasible solution with total rejection penalty (1 + E)k

in which job j (with rejection cost e'j) is rejected, in which case only Case 2

applies. Hence, assume that k > Lj. Then, the value of the maximum lateness

for the optimal schedule is clearly Ok4L 1 ,Ji1, since the total rejection penalty of

the rejected jobs among j + 1, ... , n must be (1 +)k/e ' = (1 +)(kL 3)

Case 2: Job j is scheduled. In this case, the total rejection penalty of the rejected

jobs among j +1,... , n must be (1 + C)k. Also, when job j is scheduled before

all jobs in the optimal schedule for jobs j+1, j+ 2,..., n, the lateness of every

scheduled job among j+1, j +2,... , n is increased by p3 and the lateness of job

79

j is exactly p3 - dj. Then, the value of the maximum lateness for the optimal

schedule is clearly max(4k,J+1 + P, p -- di).

Combining the above two cases, we have:

=k fmax(4k,J+1 + Pi, Pi - di) if k <Lj (3.10)
min[4k-L,J+1, max(k,J+1 + pj, p3 - d1)] otherwise

Now, observe that the total rejection penalty of the rejected jobs is at most

l_1 ej = fl 1 (1 + C)L_ = (1 +)EU=1 L3 . From the definition of the Lj's, it follows

that L3 is the smallest integer such that (1 + eI)Lj > ej, i.e., L3 = O(1 log e3). Hence,

the maximum exponent of the total rejection penalty is E_ = O(} E_ log e,).

The answer to our problem 1| (Lmax(S) + flg ej) with modified rejection costs e

is given by

n
min{4k,1+Tk |0 < k <Z L}

j=1

Thus, we need to compute at most n j=_ L3 values O4, 3 . Computation of each

such value takes 0(1) time, so that the overall running time for the dynamic program

(IFPTAS) is O(En L) = O(1 En _ log e3). This is polynomial in the input size,

since we need En_1 log ej bits to represent the rejection costs.

Theorem 3.6.2 Dynamic programming yields an c-inverse fully polynomial

time approximation scheme (IFPTAS) for 1| |(L,,x(S) + [Is e3), which runs in

O(1 En 1 log ej) time.

80

Chapter 4

Makespan with Rejection

4.1 Introduction.

In this chapter, we consider the problem of makespan with rejection for which the

objective function is the sum of the makespan of the scheduled jobs and the total

rejection penalty of the rejected jobs. The one machine version of this problem is

denoted as 1| |(Cma(S) + Eg e3). If rejection is not considered, the problem is trivial

on one machine and N'P-complete on more than one machine. In Section 4.2, we give

a simple O(n) time algorithm for I I|(Cmax(S) + ES e). In Section 4.3, we give a

pseudo-polynomial time algorithm, based on dynamic programming, for the problem

on any fixed number of unrelated parallel machines, i.e., RmI I(Ca.x(S) + Eg e3).

We also develop a fully polynomial time approximation scheme (FPTAS) for

RmI I(Cmax(S) + Eg e3) in Section 4.4. The FPTAS uses the geometric rounding

technique on the job completion times and works with aligned schedules (as already

introduced in Section 2.4.1). In our FPTAS, we constrain each job to finish at times

of the form (1 + e/2n)t, where (1 + e) is the factor of approximation achieved by the

algorithm.

81

4.2 Complexity of Makespan with Rejection.

For any fixed number of machines m > 1, Pml (Cmax(S) + Eg ej) is trivially seen to

be AP-complete by restricting the problem to Pm| Z w3Cj, a known ,PP-complete

problem [5].

Theorem 4.2.1 Pm| |(Cmax(S) + Eg ej) is AP-complete for any m> 1.

For the one machine case, we give a simple O(n) time algorithm for this problem.

Note that if S is the set of scheduled jobs, then Cmax(S) = EjesPi on one machine.

Hence, the objective function reduces to

E p~j + :e
jES E

Hence, if a job j is scheduled, it contributes p to the sum, and if it is rejected, it

contributes e3 to the sum. It is easy to see now that the following strategy gives the

optimal objective function value: if pj e3 , then schedule job j, otherwise reject job

j. The running time is clearly O(n). We put this down in the following theorem.

Theorem 4.2.2 There exists an O(n) time algorithm for exactly solving

111 (Cmax(S) + ES es).

4.3 Pseudo-polynomial Time Algorithm.

In this section, we give a pseudo-polynomial time algorithm, based on dynamic pro-

gramming, to solve the makespan with rejection problem on any fixed number m of

unrelated parallel machines, i.e., Rml |(Cmax(S) + Eg ej). Let pij denote the pro-

cessing time of job i on machine j for 1 < i < n and 1 < j < m in the unrelated

parallel machine model. In Section 4.4, we show how to modify this dynamic program

to obtain an FPTAS for Rml |(Cmax(S) + ES ej).

82

We set up a dynamic program for finding the schedule that minimizes the total

rejection penalty of the rejected jobs when the makespan of the jobs scheduled on

each machine is given. We number the jobs in arbitrary order, since the makespan on

any machine does not depend on the order in which a given set of jobs is scheduled

on that machine. We will assume that the jobs are scheduled in increasing order of

job index on any given machine.

Let 0,1,,2,...,Sm,3 denote the minimum value of the total rejection penalty of the

rejected jobs when the jobs in consideration are 1, 2,..., j, and the makespan of the

jobs scheduled on machine k is sk for all 1 < k < m. The boundary conditions for

this dynamic program are given by

ei ifs;=OV i

031,82, = 0 if I k such that sk = Pik and si = 0 V i $ k (4.1)

oo otherwise

Now, consider any schedule for the jobs 1,2,..., j that minimizes the total rejec-

tion penalty of the rejected jobs when the makespan of the jobs scheduled on machine

k is Sk for 1 < k < m. We will refer to this as the optimal schedule in the discussion

below. In any such schedule, there are two possible cases - either job j is rejected

or job j is scheduled.

Case 1: Job J is rejected. Then, the value of the total rejection penalty of the

rejected jobs for the optimal schedule is clearly 41, 2 ,...,SJ-1 + ei, since the

makespan of the jobs among 1, 2,...,j - 1 scheduled on machine k is Sk.

Case 2: Job j is scheduled. Suppose job j is scheduled on machine k. This is

possible only if Pik is finite. In this case, the makespan on machine k is at least

Pik. Hence, if Sk < Pik, there is no feasible solution in which the makespan on

machine k is sk and job j is scheduled on machine k. Therefore, assume that

sk Pik. In this case, if there was a job among 1,2,..., j - 1 scheduled on

83

machine k before job j, it must have completed at time sk - Pik. Then, the

value of the total rejection penalty of the rejected jobs for the optimal schedule

is 0-1,-Sk-Pjk,-,m,51'

Combining the above two cases, we have:

0321,S2,...,Sm,3 = min($ i,8 2, ... ,Sm,lj-1 + e1 ,

min{,, . .,,_,,...,,m,_1 | Sk Pik and 1 < k < m})

Note that the value of the makespan on machine k is at most = Pik. We restrict

this summation to only those values of k for which pik is finite. We can now see that

the answer to our original problem is

n

min{(max(si,s2,... Sm) + 4S1,S2,...,sm,n) 1 0 8 k s5 Zpik and 1 < k m}
j=1

Thus, we need to compute at most n 1 (_ p) table entries 12,.-,-

Computation of each such entry takes 0(m) time, so that the running time of the al-

gorithm is O(nm r_,1(Et pji)), which is polynomial in the values of the processing

times.

Theorem 4.3.1 Dynamic programming yields an O(nm Hr(m,(E'= pji)) time algo-

rithm for exactly solving Rm| |(Cmax(S) + Eg ej).

4.4 Fully Polynomial Time Approximation Scheme.

In this section, we describe a fully polynomial time approximation scheme (FPTAS)

for Rmj I(Cmax(S)+ ES ej). The algorithm runs in time polynomial in n, }, and the

size (number of bits) of the processing times of the jobs.

We "trim" the state space of the dynamic program of Section 4.3 by fusing states

that are "close" to each other. This fusion of "close" states is achieved by transforming

84

any schedule to an e'-aligned schedule, as described in Section 2.4.1. Recall that in

an e'-aligned schedule, every job finishes at a time of the form 7r = (1 + e')i, for i > 0,

and e' > 0. As before, we will handle the zero completion time of the empty schedule

by defining r-1 = 0.

The following lemma establishes an upper bound on the increase in the optimal

objective function value for Rml |(Cma(S) + Eg ej) when we restrict our attention

to e'-aligned schedules only.

Lemma 4.4.1 For Rm\ |(Cma,(S) + ES ej), the optimal objective function value

increases by a factor of at most (1 + e')" for any c' > 0, when we restrict our attention

to e'-aligned schedules only.

Proof. The proof of Lemma 4.4.1 tells us that in any given schedule, the completion

time C; of the ith scheduled job on any machine increases by a factor of at most

(1 + e')i after the schedule on that machine is e'-aligned. Thus, the makespan on any

machine increases by a factor of at most (1 + e')n after the schedule on that machine

is c'-aligned.

Consider an optimal schedule F for Rml |(Cmax(S) + ES e3) in which the set of

scheduled jobs is S. Since the makespan of the entire schedule is the maximum of

the makespan on each machine, we conclude that the makespan of F increases by a

factor of at most (1 + e')n after the schedule F is c'-aligned. Also, the rejection cost

of the jobs in 5 trivially remains unchanged. Hence, the objective function value for

schedule F increases by a factor of at most (1 + e')" when F is e'-aligned. This implies

that the optimal objective function value increases by a factor of at most (1 + c')" for

any e' > 0, when we restrict our attention to e'-aligned schedules only. I

Setting e' = g gives us an (1+ e)-factor increase in the optimal objective function

value, as stated in the next lemma. The proof is similar to Lemma 2.4.2.

Lemma 4.4.2 For Rm| |(Cmax,(S)+ Eg e1) and e' = e/2n for any e > 0, the optimal

objective function value increases by a factor of at most (1 + e) for any e > 0, when

we restrict our attention to e'-aligned schedules only.

85

Let c' = '. For our FPTAS, we set up a dynamic program for a harder problem:

namely, to find the c'-aligned schedule that minimizes the total rejection penalty of

the rejected jobs when the makespan of the jobs scheduled on each machine is given.

We number the jobs in arbitrary order, since the makespan on any machine does not

depend on the order in which a given set of jobs is scheduled on that machine. We

will assume that the jobs are scheduled in increasing order of job index on any given

machine.

Let 4O1,j2 ,....,, denote the minimum value of the total rejection penalty of the

rejected jobs when the jobs in consideration are 1,2,..., j, and the makespan of the

c'-aligned schedule on machine k is ri, for 1 < k < m. The boundary conditions for

this dynamic program are given by

ei if ik= -1 Vk

i,2,.0m,1 = 0 3 k such that Pik E (ri,1k., Tik] and ie = 0 V £ $ k (4.2)

oo otherwise

Now, consider any e'-aligned schedule for the jobs 1,2,...,j that minimizes the

total rejection penalty of the rejected jobs when the makespan of the jobs scheduled

on machine k is -ri, for 1 < k < m. We will refer to this as the optimal schedule in

the discussion below. In any such schedule, there are two possible cases - either job

j is rejected or job j is scheduled.

Case 1: Job j is rejected. Then, the value of the total rejection penalty of the

rejected jobs for the optimal schedule is clearly #i 1 ,i 2 ,...,im,j-1 + e, since the

makespan of the jobs among 1, 2,..., j -1 scheduled on machine k is rik.

Case 2: Job j is scheduled. Suppose job j is scheduled on machine k. This is

possible only if Pik is finite. In this case, the makespan on machine k is at least

Pjk. Hence, if rik < Pik, there is no feasible solution in which the makespan

on machine k is ri, and job j is scheduled on machine k. Therefore, assume

86

that Ti, Pik. In this case, if there was a job among 1, 2,... ,j - 1 scheduled

on machine k before job j, it must have completed at time rig, where i is the

largest value of f satisfying T + Pjk Ti,. Then, the value of the total rejection

penalty of the rejected jobs for the optimal schedule is #

Combining the above two cases, we have:

.i7i2,...,im,J = min(ii2,-,im,J-1 + ej, min{#ii,. m,-1 | Tih Pjk and 1 < k < m})

Now, observe that for finding an e'-aligned schedule with the optimum objective

function value, it is sufficient to assume that the completion time of the latest sched-

uled job on any machine k is at most (1 + e')" Zi Pk for all 1 < k K m. Thus, the

largest value of ik, 1 < k K m, for which we need to compute #i, 2,...,im,J is Lk, where

Lk is the smallest integer such that TL, (+ 1 pjk. Thus, Lk is the smallest

integer greater than or equal to +og E= 1 Pjk + n, whence Li = O(" log Et-1 pjk).
1og(1+f:) E (0

The answer to our problem Rm| (Cmax(S) + ES e,) when we consider e'-aligned

schedules only is

mlin{(Tmax(ii,i 2 ,...,im) + ii,i 2 ... jim,n) j - 1 Zk 5 Lk and 1 < k < m}

Thus, we need to compute at most n(Li+2)(L2 +2) .. . (Lm+ 2) values #ii, 2 . m

Computation of each such value takes 0(m) time, so that the overall running time for

the dynamic program (FPTAS) is 0(nm Jm Li) = O(" Pk))

This is polynomial in the input size when the number of machines m is fixed, since

we need E> 1 log Pjk bits to represent the processing times on machine k.

Theorem 4.4.3 Dynamic programming yields a (1 + e)-factor fully polynomial

time approximation scheme (FPTAS) for Rm| |(Cmax(S) + ES es), which runs in

O(nr+m L1(logE 1 pk)) time.

87

Chapter 5

Fixed-precision and

Logarithmic-precision Models and

Strongly Polynomial Time

Algorithms

5.1 Introduction.

In this chapter, we introduce a new model for algorithm design which we call the

L-bit precision model. In this model, the input numbers (for the problem) are of the

form c* 2 ', where t > 0 is arbitrary and c < c* = 2 L. Thus, the input numbers have a

precision of L bits. The L-bit precision model is realistic because it incorporates the

format in which large numbers are stored in computers today. One such format which

is becoming increasingly popular in the computer industry is the IEEE Standard for

Binary Floating-point Arithmetic [28, 29, 30].

In this L-bit precision model, we define a polynomial time algorithm to have run-

ning time polynomial in c* = 2L and n, where n is the size of the problem instance.

Depending on the value of L, we have two different models of precision which we

88

describe below.

Fixed-precision Model: In this model, L is a constant, so that a polynomial time

algorithm has running time polynomial in n under this model, and is, hence, a

strongly polynomial time algorithm, i.e., the running time does not depend on

the sizes of the input numbers.

Logarithmic-precision Model: In this model, L is O(log n), where n is the size of

the problem instance. This implies that c* = 2L is polynomial in n. Hence, a

polynomial time algorithm is also a strongly polynomial time algorithm under

this model.

We focus on designing algorithms for VP-complete problems under the above

models. In particular, we give strongly polynomial time algorithms for the following

.AP-complete problems:

e the knapsack problem (Section 5.2),

e the k-partition problem for a fixed k (Section 5.3), and

e scheduling to minimize makespan on a fixed number of identical parallel ma-

chines (Section 5.4).

This is joint work with James Orlin. Our results show that it is possible for

flP-complete problems to have strongly polynomial time algorithms under the above

models.

5.2 The Knapsack Problem.

The knapsack problem is defined as follows:

Given sets A = {a1, a 2 ,.. ., an} and C = {ci, c2 , ... , cn} of n numbers each

and a number b, find a set S C {1,2, ... ,n} which maximizes ECes cj

subject to the condition that EjES a3 < b.

89

We can interpret the above definition as follows. Suppose there are n items, with

item i having weight ci and volume ai. The items are to be placed in a knapsack with

(volume) capacity b. We want to find the subset S of items which can be put into

the knapsack to maximize the total weight of items in the knapsack. This problem is

N'P-complete [5].

We first discuss a dynamic program to solve this problem when the ci's are arbi-

trary. We then show how the running time of this dynamic program can be improved

when the ci's have L bits of precision. We will use the indicator variable xo to denote

whether item j is placed or not placed in the knapsack. Recall that S is the set of

items placed in the knapsack. That is,

o= 1 ifj E S (5.1)
0 otherwise

Thus, we want to maximize n 1 cjxo subject to the condition that E = ajxo < b.

Let 0,,k denote the minimum value of E_ ajxj subject to the restriction that

_c x ; s, i.e., the minimum total volume of items chosen such that the sum of

their weights is at least s. The boundary conditions for this dynamic program are

given by

0 if s = 0

43,1 a1 if 0 < s < c1 (5.2)

oo otherwise

We now work out the dynamic programming recursion for 0,,k. Depending on the

value of Xk, there are two possible cases:

Case 1: Xk = 0, i.e., item k is not chosen. In this case, it is easy to see that

's,k = s,k--

90

Case 2: Xk = 1, i.e., item k is chosen. This is possible only if s > Ck. Otherwise,

there is no feasible solution in which ,_ c.z 5 >s and z = 1, in which case

only Case 1 applies. Hence, assume that s > Ck. In this case, the sum of the

weights of the items chosen from {1, 2,. . ., k -1} must be at least s- ck. Hence,

it follows that 0,,,k = 5
-Ck,k-1 + ak.

Combining the above two cases, we have

sk {ms,k-1 if S < ck(53)

min(4,_1,/SCk,k_1 + ak) otherwise

The answer to our original knapsack problem is:

max{s #, < b}

Note that for a fixed k, we need to compute 4,,k for at most E. cj values of s.

Thus, we need to compute at most n E. _ cean c- entries 0,s,k- Computation of each such

entry takes 0(1) time, so that the running time of the algorithm is 0(n E7_ cj),

which is not polynomial in the size of the input.

We now show how the computation associated with the above dynamic program

can be reduced to polynomial time under the L-bit precision model. Assume that each

cj has a representation with a precision of L bits, i.e., cj = dj2t-7, with dj < c* = 2L

for all 1 < j < n.

We first sort the cj's in non-increasing order of tj's, so that ti > t 2 - t,. Let

S= E _ c,. That is, si is the sum of the weights of the items i, i + 1,..., n. Before

we proceed further, let us derive an upper bound on sj/2.

n

Si = f2r

< c*2'- since dj < c* for allj

91

n

< c 26 since tj < ti for all j > i

< c*n2"

~->< c n
2t2

We compute the 4,,k's in increasing order of k. For a fixed k, consider the stage

when we start computation of the 4,,k's for different values of s. We analyze the

number of values of s for which we need to compute 0,,k for this fixed k. Let s*

be the largest value of s for which ,,k-i1 < b. Since we are computing the Os,k's in

increasing order of k, we know s* at this stage of the computation. We now observe

the following two facts.

Fact 1: There is a feasible solution to the knapsack problem with E'1 cx equal

to s*. Hence, the value of E - c x for the optimal solution is at least s*. It is

also easy to see that (s* + sk) is an upper bound on the value of E_ cjx for

the optimal solution. The (possibly infeasible) solution that attains this bound

is obtained by adding all the items k, k +1 ... , n to the solution with value s*.

Thus, we are only concerned with values of s in the range s* < s < s* + Sk.

Fact 2: Because of the non-increasing order of the ti's, the sum of any subset of the

c.'s from {C1I, c 2 , .. . , ck} is a multiple of 21k. Thus, each value of s that we need

to consider must also be a multiple of 2tk.

Due to the above two facts, the number of different values of s for which we need

to compute 0,,k for a fixed k is sk/2k < c*n. This implies that the total number

of table entries 4,,k that we need to compute is c*n 2 , and the running time of the

dynamic program becomes O(c*n2).

Theorem 5.2.1 In the L-bit precision model, the knapsack problem can be solved in

O(c*n2) polynomial time, where c* = 2 L. The running time is strongly polynomial

when L is fixed (fixed-precision model) or L = O(log n) (logarithmic-precision model).

92

5.3 The k-Partition Problem.

The k-partition problem is defined as follows:

Given a set A = {ai, a 2 ,..., anj of n numbers such that E" ai = kb, is

there a partition of A into k subsets A1 , A 2 , ... , Ak such that EZaEA, ai = b

for all 1 < j < k ?

This problem is N'P-complete (even for a fixed k) [5]. The standard dynamic pro-

gram for solving this problem is as follows. Let

W21 ,W 2 ,... ,,J be 1 (and 0 otherwise) if there exist a partition of {ai, a 2 ,..., a3 } into

k subsets, where the sum of the numbers in the ith partition is wi for 1 < i < k.

Obviously, the answer to the k-partition problem is 'Yes' if and only if 4,b,...,,= 1.

The boundary conditions for this dynamic program are given by

w1,7W2...,W 1{ if 3 i such that wi = a1 and w. = 0 V j ' (5.4)
0 otherwise

Consider any partition of {ai, a 2 ,..., a)} into k subsets where the sum of the

numbers in the ith partition is wi for 1 < i < k. In any such partition, there are k

possible sets Ai (1 i < k) into which element a- can be placed. Of course, element

aJ can be placed in set Ai only if wi > aj. Otherwise, there is no feasible solution in

which the sum of the elements in the set A, is wi and element a. is placed in set Aj.

Hence, the dynamic programming recursion is:

w1,W2...,Wk , = minO 1 , ...,w_ ,, wi 2 aj and 1 < i < k}

Thus, we need to compute at most kb+k- 1 entries 4w1,2...,Wc,3. Compu-
k - 1

tation of each such entry takes 0(k) time, so that the running time of the algorithm

isO (k (k 1)) which is not polynomial in the size of the input, even if
k - 1

93

k is fixed.

We now show how the computation associated with the above dynamic program

can be reduced to polynomial time under the L-bit precision model. Assume that each

ai has a representation with a precision of L bits, i.e., ai = c2ti, with ci < c* =2L

for all 1 < i < n.

We first sort the numbers ai in non-increasing order of ti's, so that t1 > t2 > - tn.

Let yi be the sum of the numbers ag+, a,+2, an, i.e., yi = _ a.. Before we

proceed further, let us derive an upper bound on yi/2W.

y= Sc3 2 i
j=i+1

< c*2t' since c- < c* for all j
j=i+1

K c* E 2ti since t > tj for allj > i
J=i+ 1

K c*n20'

- < c*n
2ti

The following two facts are crucial to the development of the polynomial time

algorithm for the k-partition problem under the L-bit precision model.

Fact 1: Let w be the sum of a subset of numbers from {ai, a 2 ,..., ai}. Since we are

interested in a subset of {ai, a 2 , ... , an} that sums to b, we will need to consider

the value w only if w + y; > b. Otherwise, if w + yi < b, we will never reach

the sum of b, even if we add all the remaining elements from {ai+1, ai+ 2, ... , an}

to this subset. Thus, when we consider subsets of numbers summing to w

from the set {ai, a2,..., ai}, we need to consider at most yi values of w, i.e.,

b - yi < w < b.

Fact 2: Because of the non-increasing order of the ti's, the sum of any subset of

numbers from {a1, a 2 ,.. . , a} is a multiple of 2ti.

94

Now, let us consider the table entry <W1,W2, ... , w,;. Due to Fact 1, we are only

interested in at most y; different values for each of w1 , w2,. - -, Wk. Also, by Fact 2,

we should only consider values that are are multiples of 2'i. Hence, there at most

y/2 t'i < c*n values for each of w1 , w2,..., Wk that we need to consider.

Thus, the total number of table entries that we need to compute is at most n(c*n)k.

Computation of each such table entry takes O(k) time, so that the total running time

of the algorithm is 0(kn(c*n)k) which is polynomial in c* and n for a fixed k.

Theorem 5.3.1 In the L-bit precision model, the k-partition problem can be solved

in 0(kn(c*n)k) polynomial time for a fixed k, where c* = 2L. The running time is

strongly polynomial when L is fixed (fixed-precision model) or L = O(log n)

(logarithmic-precision model).

5.4 Scheduling to Minimize Makespan on Identical

Parallel Machines.

In this section, we consider the problem of scheduling n jobs on any fixed number m

of identical parallel machines in order to minimize the makespan. Each job j has a

processing time p3 on any machine. In scheduling notation, this problem is denoted

as Pm| ICma.

The decision problem formulation of PmI |Cmax is defined as follows:

Given a set of n independent jobs, N = {J 1,... , Jn}, with processing

times pj, V 1 < j < n, m identical parallel machines, and a number b, is

there a schedule of the n jobs on the m machines such that the makespan

on each machine is at most b ?

This problem is /VP-complete [5]. We first discuss a dynamic program to solve

this problem when the p3's are arbitrary. We then show how the running time of this

dynamic program can be improved when the pj's have L bits of precision.

95

Let 481,S2,...,3,, be 1 (and 0 otherwise) if there exists a schedule of the jobs

{1,2,...,j} on m machines such that the makespan on machine k is at most sk,

for all 1 K k K m. Obviously, the answer to the decision version of Pmj |Cma is

'Yes' if and only if Ob,b,...,b,n 1.

The boundary condition for this dynamic program is given by

S91,S2,...,Sm,1 = if 3 k such that Sk Pk (5.5)
0 otherwise

Consider any schedule of {1, 2,..., j} on m machines in which the makespan on

machine k is at most Sk for all 1 < k K m. In any such partition, there are m possible

machines on which job j can be scheduled. If job j is scheduled on machine k, then

the total processing time of the other jobs scheduled on machine k must be at most

sk - pj. Of course, job j can be scheduled on machine k only if sk 2 p3 . Otherwise,

there is no feasible solution in which the makespan on machine k is at most sk and

job j is scheduled on machine k. Hence, the dynamic programming recursion is:

4S1,S 2 ,...,Sm,3 = max{q. 1,...,sk-pi,...,sm,J-1 I Sk pj and 1 < k K m}

Since we are only interested in values of sk which are less than or equal to b for all

1 < k K m, the number of table entries that we need to compute is at most O(nbm).

Computation of each such entry takes 0(m) time, so that the running time of the

algorithm is O(nmbm).

We now show how the computation associated with the above dynamic program

can be reduced to polynomial time under the L-bit precision model. Assume that each

p3 has a representation with a precision of L bits, i.e., pj = cj2'i, with c3 < c* = 2L

for all 1 < j < n.

We first sort the pj's in non-increasing order of tj's, so that tit 2 2---i. Let

s = "+_ p3 . That is, si is the sum of the processing times of the jobs i + 1, i +

96

2,... , n. We derive an upper bound on si/2'i below.

n

si = c 2
j=i+1

< c* 2'j since di < c* for all j
j=i+1

" c* 2 t' since t. < ti for all j > i
j=j+1

" c*n2"

si < c*n
2tt

Consider the table entry 4S1, 2 ,...S,,J* Observe the following two facts about the

possible values of the Sk's that we need to consider.

Fact 1: Since we want to achieve a makespan of at most b on every machine, it is

sufficient to consider values of Sk greater than or equal to b-yj for all 1 K k K m.

This is because the sum of the processing times of the jobs among {j + 1, .. , n}

scheduled on machine k can be at most yj.

Fact 2: Because of the non-increasing order of the ti's, the makespan of any subset

of jobs from {1, 2,. . .,j} is a multiple of 2ti.

Due to Fact 1, we are only interested in at most yJ different values for each

of 81, S2,... Sm. Also, by Fact 2, we need to consider only values of Sk which are

multiples of 2t'. Hence, the number of different values of Sk that we need to consider

for each 1 K k K m is at most y,/2 t' < c*n.

Thus, we need to compute at most n(c*n)m table entries 4S1,S2,.-,J Computation

of each such entry takes 0(m) time, so that the overall running time of the algorithm

is O(nm(c*n)'), which is polynomial in c* and n for a fixed m.

Theorem 5.4.1 In the L-bit precision model, the decision version of Pm| |C,,

can be solved in 0(nm(c*n)m) polynomial time, where c* - 2L. The running time is

97

strongly polynomial when L is fixed (fixed-precision model) or L = O(log n) (logarithmic-

precision model).

98

Bibliography

[1] Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jif Sgall, and

Leen Stougie. Multiprocessor scheduling with rejection. In Proceedings of the

7th ACM-SIAM Symposium on Discrete Algorithms, pages 95-103, 1996.

[2] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques

for average completion time scheduling. In Proceedings of the 8th ACM-SIAM

Symposium on Discrete Algorithms, pages 609-618, January 1997.

[3] D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma, and

J. Wein. Techniques for Scheduling with Rejection. In G. Bilardi, G. F. Italiano,

A. Pietracaprina, and G. Pucci, editors, Algorithms - ESA '98, volume 1461 of

Lecture Notes in Computer Science, pages 490 - 501. Springer, Berlin, 1998.

Proceedings of the 6th Annual European Symposium on Algorithms.

[4] D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma, and

J. Wein. Techniques for Scheduling with Rejection. Submitted to the Journal of

Algorithms.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of 'P- Completeness. W.H. Freeman and Company, New York, 1979.

[6] M. Goemans. Improved approximation algorithms for scheduling with release

dates. In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms,

pages 591-598, 1997.

99

[7] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals

of Discrete Mathematics, 5:287-326, 1979.

[8] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize

average completion time: Off-line and on-line approximation algorithms. Math-

ematics of Operations Research, (3):513-544, August 1997.

[9] L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average comple-

tion time: Off-line and on-line algorithms. In Proceedings of the 7th A CM-SIAM

Symposium on Discrete Algorithms, pages 142-151, January 1996.

[10] E. L. Lawler. Scheduling a single machine to minimize the number of late jobs.

Preprint, Computer Science Division, Univ. of California, Berkeley, 1982.

[11] E. L. Lawler and J. M. Moore. A functional equation and its application to

resource allocation and sequencing problems. In Management Science, volume 16,

pages 77-84, 1969.

[12] E. L. Lawler and D. B. Shmoys. Chapter 5: Weighted number of late jobs (prelim-

inary version). To appear in: J.K. Lenstra and D.B. Shmoys (eds.) Scheduling,

Wiley.

[13] Maxwell. Personal communication. 1996.

[14] Alix Munier, Maurice Queyranne, and Andreas S. Schulz. Approximation bounds

for a general class of precedence constrained parallel machine scheduling prob-

lems. In R. E. Bixby, E. A. Boyd, and R. Z. Rios-Mercado, editors, IPCO: 6th

Integer Programming and Combinatorial Optimization Conference, volume 1412

of Lecture Notes in Computer Science, pages 367 - 382. Springer, Berlin, 1998.

[15] I. M. Ovacik and R. Uzsoy. Decomposition Methods for Complex Factory Schedul-

ing Problems. Kluwer Academic Publishers, 1997.

100

[16] C. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In

Proceedings of Fourth Workshop on Algorithms and Data Structures, Lecture

Notes in Computer Science, 955, pages 86-97, Berlin, 1995. Springer-Verlag.

Journal version to appear in Mathematical Programming B.

[17] M. H. Rothkopf. Scheduling independent tasks on parallel processors. In Man-

agement Science, volume 12, pages 437-447, 1966.

[18] A. S. Schulz and M. Skutella. Random-based scheduling: New approximations

and LP lower bounds. In J. Rolim, editor, Randomization and Approxima-

tion Techniques in Computer Science, volume 1269 of LNCS, pages 119 - 133.

Springer, Berlin, 1997. Proceedings of the International Workshop RANDOM'97.

[19] A. S. Schulz and M. Skutella. Scheduling-LPs bear probabilities: Randomized

approximations for min-sum criteria. In R. Burkard and G. Woeginger, editors,

Algorithms - ESA '97, volume 1284 of LNCS, pages 416 - 429. Springer, Berlin,

1997. Proceedings of the 5th Annual European Symposium on Algorithms.

[20] Steve Seiden. More multiprocessor scheduling with rejection. Technical Report

TR Woe-16, Institut fnr Mathematik B, TU Graz, 1997.

[21] W.E. Smith. Various optimizers for single-stage production. Naval Research

Logistics Quarterly, 3:59-66, 1956.

[22] E. L. Lawler. Optimal sequencing of a single machine subject to precedence

constraints. Management Science 19, pages 544-546.

[23] Peter Brucker. Scheduling Algorithms. Springer-Verlag, Germany, 1998.

[24] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and D. B. Shmoys. Sequencing

and Scheduling: Algorithms and Complexity. In S. C. Graves, A. H. G. Rinooy

Kan, and P. H. Zipkin, editors, Handbooks in Operations Research aid Man-

agement Science, Vol. 4, Logistics of Production and Inventory, pages 445-522.

North-Holland, 1993.

101

[25] R. K. Ahuja and J. B. Orlin. Inverse Optimization, Part I: Linear Programming

and general problem. Working paper 4002, MIT Sloan School of Management,

Cambridge, MA, January 1998.

[26] R. K. Ahuja and J. B. Orlin. Inverse Optimization, Part II: Network Flow

Problems. Working paper 4003, MIT Sloan School of Management, Cambridge,

MA, February 1998.

[27] R. K. Ahuja and J. B. Orlin. Combinatorial algorithms for inverse network flow

problems. Working paper 4004, Sloan School of Management, Cambridge, MA,

February 1998.

[28] IEEE. IEEE standard for binary floating-point arithmetic. SIGPLAN Notices,

22:2, pages 9-25.

[29] D. Goldberg. What every computer scientist should know about floating-point

arithmetic. Computing Surveys, 23:1, pages 5-48.

[30] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R.

Karpinski, J. Palmer, F. N. Ris, and D. Stevenson. A proposed radix- and

word-length-independent standard for floating-point arithmetic. IEEE Micro,

4:4, pages 86-100.

[31] G. R. Bitran, V. Chandru, D. E. Sempolinski, and J. F. Shapiro. Inverse Opti-

mization: An application to the capacitated plant location problem. Management

Science, Vol. 27, pages 1120-1141, 1981.

102

