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Abstract

Precise position and motion control are indispensable factors for the operation of offshore
platforms. Mooring systems are, by all means, the most common devices to obtain the
required control.

The response to the motions of the platform performed by the moor will, in many cases,
dictate the overall offshore platform behavior as a result of environmental loads. These
loads induce in the system two typical modes of oscillation; slow drift and wave
frequency motions.

The objective of this thesis is to investigate the dynamic responses and the damping
achieved by cable and synthetic mooring systems when the water depth is very large.
Numerical simulations for different modes of oscillation and initial conditions of the
mooring lines have been executed, as to establish a comparison between the dynamic
properties of the diverse mooring solutions.

Finally, in order to analyze the relative importance of the mooring damping results, the
platform-moor systems are approximated to a one-dimensional mechanical damped
oscillator. This approximation highlights the motion modes where the moor response is
critical as well as exploring the advantages and disadvantages of each mooring solution.

Thesis supervisor: Professor Paul D. Sclavounos
Title: Professor of Naval Architecure
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CHAPTER 1:

INTRODUCTION

1.1 Motivation

Precise position and motion control are indispensable factors for the operation of offshore

platforms. Although there are other means of obtaining this control, mooring lines are,

without any doubt, the most important solution.

Among the mooring line solutions, there are at least two subdivisions. One division is the

vertical tension leg mooring, for which the buoyancy of the platform exceeds the weight,

and the cables provide the net equilibrating force.

The second class, which is the object of study of this thesis, are the spread mooring

systems, that consist of several pre-tensioned anchor lines arrayed around the structure to

hold the mooring in the desired position. This thesis will study in detail the dynamics of

this type of mooring systems for large water depths.
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1.2 Offshore Platforms

Offshore platform designs vary from gravity platforms sitting on the seabed, to semi-

submergible platforms, purely large free-floating bodies. The semi-submergible offshore

platforms are used for large to very large water depths, and are typically kept in position

by a spread mooring system. A set of pipes and risers are used to connect this floating

structure with the exploration and drilling equipment on the seabed.

Semi-submergible platforms are subject to environmental loads, mainly created by

waves, wind and ocean currents. These environmental loads induce motion responses on

the platform-moor group. Typically, motions of floating structures can be divided into

wave-frequency, high frequency, and slow drift motions.

The wave frequency motion is mainly produced by first order interactions between waves

and the floating body. The amplitude and frequency of these motions are, in general,

similar to those of the waves that induce them.

High frequency motions are generated by non-linear wave excitation. Their natural

periods are in the order of two to four seconds and they are frequently significant for TLP

structures. They are out of the scope of this thesis, since they do not appear in catenary-

type moored platforms.

Similar non-linear interactions between the floating body and the waves cause slow and

mean drift motions. This kind of motion appears in every type of floating platform. They

arise from resonant slow-drift oscillations. The typical period of these oscillations are in

the range of 50 to 150 seconds for conventional moored platforms. This type of motion

for a moored floating body typically occurs in surge, sway and yaw. Slow drift motions

are characterized by large horizontal excursions of the platforms that drive, as a result,

enormous forces on the mooring lines.
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These types of oscillations are critical in catenary type moored platforms and are being

studied in this thesis.

1.3 Mooring systems

Spread mooring systems hold semi-submergible platforms and floating production ships

in their desired position. Moreover, the moor provides the floating body the required

restoring forces to return to that equilibrium position when environmental loads force the

structure away from it.

The increasing water depth of oil exploration and drilling is creating the necessity for

new solutions of spread mooring systems. Cable moors are becoming increasingly

expensive for very large water depths, since the complexity of their installation is

growing rapidly due to the large weight of the lines. Therefore, lighter moorings are

becoming more attractive, especially for large water depths.

This thesis studies and compares three synthetic mooring solutions with a regular cable-

catenary type moor. The static and dynamic responses of these moors has been studied in

order to compare the restoring and damping properties among each of these four

solutions.

1.4 Thesis overview

This thesis has been divided into six chapters.

Chapter two covers the analytical formulation of the problem, starting with a brief review

of platform dynamics, and then deriving the characteristic equations of the mooring lines.

This mooring line formulation neglects the contribution of bending effects. Finally this
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chapter covers the derivation of energy absorption achieved by the lines and moor as they

are forced to undergo oscillatory motions.

Chapter three presents the platform specifications that have been used as a base for this

study and the mooring line designs that have been tested along this thesis. These designs

include material and geometrical properties as well as all the static responses of the

different systems to offset the fairlead from the initial position.

Chapter four presents the numerical results of the motion simulations for the mooring line

designs. These results present the dynamic properties of the mooring systems for 3

distinct modes of oscillation, slow drift surge, wave frequency surge and finally wave

frequency heave motions. Diverse amplitudes and periods have been used for all mooring

systems in order to understand the non-linear dynamics of these simulations.

Chapter five compares the results from chapter four using a linear damped oscillator. A

brief introduction to the formulation of a linear damped oscillator is included in this

section. Then, the mooring damping results from chapter four and the restoring forces of

chapter three are converted to the constant coefficients that the formulation of the

damping physical approximation requires. The results from this approximation are

displayed in this chapter.

The computations presented in this thesis were carried out with the computer program

LINES 1.1 licensed by Boston Marine Consulting Inc. Further details on the methods

presented in this thesis along with the capabilities of LINES 1.1 may be found in the

LINES 1.1 user manual which can be downloaded from the BMC web site at

www.bmarc.com.

Finally chapter six draws the main conclusions of the thesis.
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CHAPTER 2:

MATHEMATICAL FORMULATION:

2.1.Platform Dynamics formulation:

The dynamics of a floating offshore structure can be modeled through a second order

coupled linear system of differential equations. For all practical purposes, the platform is

considered a rigid structure with 6 degrees of freedom. The general equation for such a

system can be expressed in matrix form as:

[M + A]d ' + [B]- +([C ].i=Nt(21
dt dt

Where the i is a 6x1 vector that holds the six degrees of freedom that characterize the

response of the structure. The first three values of this vector represent the platform

translations along the coordinate system axes while the last three values describe

rotations around these same axes. M, A, B and C are six by six matrices that incorporate

the mass, added mass, damping and restoring coefficients of the floating structure. The
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magnitude and distribution of the coefficients in these matrices reflect the dynamic and

static characteristics of each degree of freedom and the coupling effects among them.

The force term in the previous equation comprises the sum of all the environmental loads

to the floating body plus the force due to the mooring system. For all practical purposes,

the forces on the fairlead of the mooring lines are, as those of the platform, dependent on

acceleration, velocity and position of the system. Therefore, it is natural to bring them to

the left-hand side of the equation.

Not all the contributions, however, of the moor to the L.H.S. matrices are equally

important. The inertia related terms for the mooring system are very small compared to

those of the platform. The mass and added mass of the mooring lines are several orders of

magnitude smaller than those of the platform.

On the other hand, the contribution to the damping and restoring coefficients are very

important, and in some cases they are the dominant contribution to the damping and

restoring forces. For example, the restoring coefficient in sway, surge or yaw comes

solely from the mooring system. To fully understand the dynamics of a floating platform,

we must comprehend the interaction between this body and the mooring that maintains at

a fixed position.

2.2.Mooring Line Formulation:

2.2.1.Characteristic equations of the lines

Let a generic mooring line be defined by the so-called natural coordinates of a 3-

dimensional line. The anchor end in the material line would be defined as the origin and

the direction towards the fairlead as positive along the cable.
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Fairlead

Z

Y

Figure 2-1: Mooring line local coordinates

Let "s" be the Lagrangian distance from a given point of the mooring line to the origin

when the line is not stretched. The coordinates of any material point of the mooring line

can be expressed as a function of its position along the cable and the time as follows,

r(s, t) = (x(s, t), y(s, t), z(s, t)) (2.2)

Once a tension is applied, and provided that the mooring line is made of elastic material,

the cable would stretch. Let "si" be the stretched distance measured from a given material

point to the origin of the line. In general this distance is a function of the original s and

the time so it can be expressed as si(s,t).

Given the previous definitions for the unstretched and stretched distance along the line, s

and si, the next step will be to introduce the concept of strain or rate of strain(E) in the

line.

15



Strain e: A cable segment with unstretched length s has at some point a Lagragian

arclength of si. Let the strain E then be defined as follows:

E=lim C =ds-1
s->0 & ds

ds

ds
(2.3)

Let then t be the tangential vector to the stretched position of the material line. As such

it can be expressed as the first derivative of the vector i with respect to si, the stretched

distance. Then,

- di dF ds dF 1 di
t = - = -- > - = (1+,C) t

ds, ds ds, ds1+E ds
(2.4)

Figure 2-2: Mooring line segment

If we focus now on a differential segment of mooring line of length ds, we see that any of

such differential segments of its line is governed by two fundamental equations. The first

one is a constitutive relation similar to the continuity principle for fluid dynamics. For

any given part of the mooring line it is known that,

(2.5)t =1

Since the tangential vector is always a unit vector, this is always true.

16



Then combining equation 2.4 and equation 2.5 we obtain,

dFd= (1+ ) ~ = + 2E
ds ds

(2.6)

The second equation that governs the mooring line motion is Newton's Law that can be

expressed as,

m - = I External Forces + 1 Internal Forces (2.7)

2.2.2.Internal Forces:

The fundamental internal force present in a mooring line is the tension. For mooring

lines, it is a normal practice to introduce the concept of an effective tension Te. This

tension is defined by:

Te=T+Pf Af (2.8)

Where,

Pf is the fluid pressure in the position of this particular segment of the mooring line

discarding the line-induced disturbance and, Af is the cross sectional area of the line.

The utilization of the effective tension causes the mooring line equations to look like their

equivalent in air with the exception that when calculating the force due to the weight of

the cable or line, the regular weight must be replaced by the weight of the line in water.
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T2

Figure 2-3: Internal tensions

The tension inside the line will, generally, have the same direction as the line itself.

Therefore, the internal force on a segment with unstretched length can be written as:

d T- d 1 d
Internal Force =-dTe t sds Tdsce (etds=±(1+) e ds) (2.9)

2.2.3.External Forces:

The external forces to a segment of mooring line can be subdivided into 3 components,

F1 due to weight and buoyancy effects

F2 due to flow inertial effects. (Added mass related forces)

F3 due to fluid viscous effects.

Line Weight. Buoyancy.

The total vertical force of the segment due to weight and buoyancy effects is given by:

F; = (gpf Af -ws-k (2.10)

18



Where,

pf is the fluid density and,

w is the line weight in water per unit length.

Added mass forces:

The inertia related forces can be divided into two different components. The first one is

due to the motion of the fluid around the mooring line segment. The second component is

to the motion of the segment itself considering the fluid surrounding it stationary.

For the calculation of both of these terms we will need the following linear operator, [N],

which is a 3x3 matrix, that multiplied by a vector, yields the component of this vector

normal to the mooring line. Lets define [N] as,

[N] =[I] -[d(2.11)
ds .ds

With the aid of the matrix [N] and using GI Taylor's Theorem to calculate the normal

inertial forces, the added mass terms exerted upon the line are split into,

dii
F21 = pf Afds(1 + Cm)[N] dL (2.12)

dt

Due to the fluid velocity ii, around a fixed segment and,

F22 = -PfAfds(Cm)[N] d (2.13)

F22~~ 2P f t

Due to the acceleration of the material segment 2 assuming the surrounding fluid is
dt 2

stationary.
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Note that the flow velocity and acceleration are free of disturbance effects caused by their

interaction with the line. This last fact being only an approximation is very reasonable,

since the flow is most affected by other large structures as the platform itself or the flow

initial velocity components due to currents or waves. Taking into account the possible

disturbances in the flow due to the presence of the mooring line would make the problem

far more complicated and provide only marginal changes to the final result.

Viscous Fluid Forces.

The viscous term of the force is going to be calculated using Morison's equation for both

the normal and tangential directions of the segment. For this calculation to be possible we

need the relative velocity between the segment and the fluid that surrounds it.

df/dt

t

V t

V rel

Figure 2-4: Relative velocities

The relative velocity between the line segment and the fluid is defined by

rel = -

' dt
(2.14)

20



Now, if we decompose this relative velocity in tangential and normal direction relative to

the mooring line we obtain,

rel =[N]irel (2.15)

for the relative normal velocity and,

--re -- re) I( _ -~rel 1 d 1 -- re

I+E ds 1+e ds (1+E)2 ds -I (2.16)

rel 1 (di -. ,e di_
-~re I _r _ vl r

1+2e ds ds

for the relative tangential velocity. Once we know this two components of the relative

velocity the viscous force acting along the line can be approximated through Morrison's

equation in both directions as,

=1Ire + ;r' CI ;'relI -trel d (.7
3 = pf (D,,C + 1  " Vt jds (2.17 )

Where Dn is the projected dimension normal to the line and nDt is nothing but the length

of a circle of diameter Dt. These two dimensions are a function of the mooring line

geometry and in the case of a regular cable mooring line, they are the same and

coincident with the maximum diameter of the cable. Cd and Cf are, respectively,the drag

and friction coefficients. As well as the previous two diameters, these two coefficients

depend mainly on the mooring line geometry. See the next table as an example of the

range of these coefficients.

Mooring line type Cd Cr

Cable-type O(1) 0(0.01)

Chain-type O(1) 0(0.1)

Table 2-2: Viscous coeficients

21



Now, substituting all the forces from formulas (2.9), (2.10), (2.12), (2.13) and (2.17) into

Newton's law (2.7) and substituting the initial mass in the original equation by a linear

density times the length of the segment yields

m(s)ds dr =2
dt 2

- (1 + E)- T -
ds *ds

(gpf Af - wds -k
di

P, Afds(1+ C, )[N] !
dt

P Ads(Cm )[N] dF

p,(D,,Cd I' re' + 7D,C f, ,"rel )ds

Eliminating the differential of length ds from all the terms and reallocating the first and

forth terms in the right hand side yields to the definitive momentum equation

d 2 i d 1 di
[M] 2I T, - =<

dt2 ds y(-) E ds)

(gpf Af -w)k

di,
Pf Af (1+ Cm )[N] '

dt

2P, (D,C '' + DC

Where [M] is the mass matrix defined as follows

[M]=m(s)[ I ]+pfAfCm[N]

(2.19)

(2.20)

Now, by using Hooke's Law and assuming that the volume per unit length of the cable

will remain unchanged with strain, it is implied that Poisson's ratio g is equal to 0.5, the

line strain F can be rewritten as

22
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Te
= e (2.21)

EA,

And plugging this definition of the line strain into the original "Continuity" equation

(2.6) leads to the following constitutive relation:

&& T_
- =1+ 2 Te (2.22)

ds ds AE

that can be rewritten as:

Te = - 1 (2.23)
2 (ds ds

Momentum equation (2.19) plus this last constitutive relation (2.23) comprise a full close

form of equations to study the dynamics of a mooring line. From this system we are able

to obtain the displacement of every segment, F = (s, t), and the effective tension, Te.

However, for the problem to be complete, these equations have to be supplemented with

two extra requirements. On one hand, the non-linear system of partial differential

equations requires a set of boundary conditions, and on the other hand, due to the nature

of the problem, the interaction of the mooring line with the seabed requires a special

treatment.

2.2.4.Boundary Conditions:

Although different authors [9] use different boundary conditions, probably the most

natural set of conditions for catenary-like problems are the positions of both ends of the

mooring line. Therefore LINES 1.1 uses the following as boundary condition inputs. The

first boundary condition is given by fixing the position of the anchor to the line

coordinate system origin. The second B.C. is simply given by the position of the fairlead
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in time referred, again, to the same mooring line coordinate system. These two conditions

can be expressed as follows,

(O, t)= 0 (2.24)

r (L, t)= R(t) (2.25)

Where s=O is nothing but the origin in arclength of the mooring line and L is the

maximum unstretched arclength of the line and consequently where the fairlead stands.

2.3.5.Interaction with the seabed:

Typical wire rope and chains used in mooring systems have generally a significant length

of line that lies on the ocean floor. The interaction with the seabed adds a new dimension

to the classic catenary problem. Apart from the exterior forces that have been discussed

up to now, introducing the presence of the seabed adds another force to the problem. Any

part of the mooring line laying on the plane z=O gets a supporting force from the seabed

that cancels out the remaining weight of that particular part of the line.

To solve this problem, LINES uses the following approach: Whenever any segment of

the mooring line lays under the z=O plane, the regular weight force of the segment is

inverted to point upwards. The idea is to create an artificial medium below the seabed

with a higher density than the mooring line. The density in this artificial medium is

linear; it has a value equal to the density of the mooring line for z=O and increases

linearly as z tends to higher numbers in the negative range. With such a medium the

segments of the mooring line that might be under the seabed will eventually float to the

surface of the seabed as the simulation runs to their real static position.

The weight and buoyancy force components that were displayed in equation (x) for z>O

are changed into

F1= (gAfp(1-kz)-w)k for z 0 (2.26)
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Where ki is the slope of the density in the artificial medium and ps is the modified density

of the line. p, is such that for z=O the vertical force turns out to be zero as well. For any

z<O the magnitude of this force would increase linearly as shown by equation 2.26.

The result of this approach is reflected in the next figure. For a given a fixed set of

positions for both ends of the mooring line, 0 and F, the close form solution of a regular

catenary line of the same characteristics can be obtained (red color in figure 2-5). When

these initial conditions are run under LINES, the real shape of the mooring line, including

the presence of the seabed, is obtained as the line converges to the final static position

(blue line in figure 2-5).

F

Z

X

Figure 2-5: Static position of mooring line

2.4.Mooring Line Damping Generation

In order to calculate mooring induced damping, or the damping that a mooring line would

introduce into a floating platform or body, the fairlead of that particular line will be

forced to move under oscillatory motions either horizontally or vertically. Mooring

induced damping arises due to the flow separation around the lines. This effect is
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simulated in a non-linear manner by the usage of the viscous effects under Morrison's

equation.

The damping contribution of the mooring line is calculated as the energy that the material

line absorbs along a complete oscillation cycle. To calculate this damping, we need the

pair (Tension, Position) on the fairlead for every time step along this cycle. With that

pair, the damping contribution would be calculated as,

(2.27)
E =f F(t )- d -Jt Pe (T) -Ai

t dt ,eio

For a further clarification of this concept, consider a mooring line subject to a forced

horizontal oscillatory motion in its fairlead of amplitude A=10 m. (figure 2-6). Figures 2-

7 A and B show the history and patterns of the horizontal displacement and force on the

fairlead with the increasing time. If, as shown in figure 2-7.C, we plot tension on the

fairlead versus displacement, we obtain the so-called hysteresis cycle. The dissipated

energy per complete cycle is simply the area within a close loop.

Fairlead

Anchor

Figure 2-6: Fairlead oscillations
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t

Figure 2-6 A: Force of fairlead

Horizontal Displacement

Figure 2-6 C: Hysteresis Cycle

Figure 2-6 B: Fairlead oscillations

The area embedded in the hysteresis cycle represents the amount of energy absorbed by

the line in every oscillation and corresponds to the result obtained from the integration

2.27. Note that while this hysteresis loop figure presents several oscillation cycles figures

A and B represent only about a period and a half of the fairlead oscillating motions and

forces. It is clear from the hysteresis loop graph that the system has reached a reasonable

27



steady motion. Note that mooring lines, being a dynamic system, cause the results from

the first period or periods in the simulation to be discharged since they are sensitive to the

start-up transients.

2.4. Whole Mooring System formulation

The previous procedure for a single mooring line has been generalized to take account for

the coupled responses of all the lines comprising the mooring system.

The relationships for the total force that the mooring system exerts on the platform can be

found by considering the individual line contributions. In general,

L

F =I F i =1,2,3 (2.28)
n=1

Where F is the total force on the direction i and L is the total number of lines. And,

L

M = " XF" (2.29)
n=1

Where M is the total torque that the mooring system applies into the platform and F" is

the position of the fairlead of line n relative to the platform coordinate system.

Knowing these extensions, the damping created by the assemblage of all mooring lines

creates is obtained by adding the contributions of all the forces in the integration along

the complete motion loop.
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CHAPTER 3

INITIAL CONFIGURATIONS

As off shore oil exploration and production moves into areas of greater ocean depths, the

necessity to create and implement new concepts in mooring designs becomes

increasingly apparent.

As water depths increase, the regular cable catenary moorings become less and less

attractive. For large and especially very large water depths, the cable mooring lines

become extremely long and heavy. This large weights and lengths carry several

disadvantages. The first disadvantage is seen in the dramatic increase of the cable cost

and, particularly, the cost of the moor installation. Secondly, as depth increases, the

restoring force to horizontal motion decreases drastically, allowing very large horizontal

excursions of the offshore system. These large offsets of the platform increase the cost of

the riser solutions.

In recent years the trends of the mooring systems for offshore devices have been shifted

into different approaches than the regular steel catenary moorings. Taut mooring systems

using synthetic fibers are an interesting alternative. Some of the potential benefits of the

usage of synthetic lines when compared with catenary mooring systems are:
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* Low weight: This fact diminishes the cost of handling and installation of the mooring

system.

e Smaller horizontal offsets. The offsets are reduced by a factor of 2-5 with respect to a

regular catenary system.

e No potential hazard to the sub-sea equipment in case of a line breakage and fall into

the seabed.

e Smaller lengths of cable that drives the total cost of the line down.

The configuration and dynamic properties of these two mooring systems, catenary-type

mooring and synthetic

taut mooring are, in

general, different. The

objective of this thesis is

to perform a fully

dynamic analysis of both ~ - -

types of mooring

systems. I will also draw -

a comparison between

the two systems and

analyze the differences in

performance and

dynamic properties.

The base of this study is

a SPAR platform already

tested and in operation

currently using a
OUTBOCARD PROFILE INBOARD PROFILE

classical catenary-type

mooring system. A Spar Figure 3-1: Spar Platform.
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platform is a deep draft offshore structure. This type of offshore platform consists of a

cylindrical hull and a deck. The hull might be used for storage purposes. The deck on this

type of platform is a more typical deck that can be found on many other offshore

platforms.

The analysis for all systems, the existing mooring lines and a synthetic cable taut

moorings, are based on the hull motion results and the response to the environmental

loads of the system. The responses of the platform to the environmental loads have been

obtained from experimental data and state-of-the-art computational tools such as SWIM

(Slow Wave Motion of Platforms). While only one configuration for the catenary-type

has been studied since this solution has already been installed in the platform, I have run

extensive experiments with different solutions for synthetic taut mooring lines.

3.1.Main characteristics of the SPAR platform:

The following table shows the main dimensions and characteristics of the hull of the Spar

platform used for this thesis,

Main Characteristics of the Spar Hull

Hull Diameter

Hull Length

Draft

Mass

Table 3-1: Main Characteristics of Spar Hull

37.18 m

214.85 m

198.12 m

2.20495.108 kg

These previous characteristics are sketched in the next figure.
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Figure 3-2: Spar platform dimensions

The weight of this type of platform and the amount of water that her hull displaces causes

the platform to rest in vertical stable equilibrium. The purpose of the moor is to hold the

platform over a specific point of the seabed and not to fix her vertical position. However,

given the shape and position of lines in the mooring systems, the platform receives an

extra vertical tension that pulls it down. The magnitude of this tension is very small

compared to the buoyancy or the weight effects of the platform.

3.2.Main characteristics of the mooring systems:

The platform is held at a fixed position by the mooring system. This mooring system

provides the platform with the restoring forces and damping to balance out the

displacements and motions that the environmental loads induce on the floating structure.

This platform particular moor consists on a set of 14 lines evenly distributed in a circular

shape around the hull. The geometry and physical properties of all the lines are the same.

This study consists of full numerical dynamic simulations for each different set of

mooring lines. The first test coincides with the existing one in the platform, while the rest

are based on synthetic lines. All these synthetic lines will have similar material

properties, but different initial pretensions. To achieve the variation in the pretension of
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the lines, the initial position of the anchor is going to be variable. The rest of the

geometrical properties of these lines are going to be the same so that the reason for all

possible differences in the dynamic properties is only due to the initial pretension.

3.2.1.Cable Mooring System Solution

The cable mooring solution is already installed and tested for this particular platform. For

this reason, it will be used as a basis for the comparison of the static and dynamic

properties of all the new synthetic configurations. The following table shows the

configuration of the catenary-type mooring line cables,

Catenary-type mooring line configuration (For each line) 14 lines Moor

Fairlead Depth 106.68 m

Horizontal distance from Fairlead to Spar vertical axis 18.59 m

Anchor Depth 789.4 m

Horizontal distance from Anchor to Spar vertical axis 838 m

Total Line Length 1082 m

Pretension at Fairlead 2055 KN

Weight in water (per unit length) 1116.6 N/m

Weight in air (per unit length) 1350 N/m

Diameter 0. 172 m

EA 1.824-109 N

Added Mass Coefficient 1

Viscous drag Coefficient 1.2

Viscous Friction Coefficient 0.05

Table 3-2: Main Characteristics of cable mooring system.

The result of the geometric properties displayed in the previous table is shown in the next

figure that shows the arrangement of the mooring line cables around the platform. Such a
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symmetric disposition of the lines ensures a similar response from the moor to any

horizontal motions of the complete system regardless of the direction of the excitation.

The existence of such a large number of mooring lines increases the safety qualities of

the mooring system. In case of failure of any of the lines of the moor, given the large

number lines present, the stresses would be spread among the rest of the lines, preventing

any of them from reaching any tension above the critical breaking tension.

500

250

0

-400 -200

Figure 3-3 Catenary type mooring system.
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3.2.2.Synthetic Mooring Configurations:

All the synthetic lines tested configurations are also composed of a set of 14 lines evenly

distributed around the vertical axis of the platform. The fundamental reason behind this

decision was to eliminate all possible reasons of misleading results of the experiments. A

secondary reason for using the set of 14 lines is to ensure similar safety qualities and to

preserve the axisymmetric properties of the moor.

To maintain the uniformity of the experiments, the material properties of the synthetic

lines are the same for all three of the synthetic mooring solutions subject to study in this

thesis. The difference among these three solutions is the initial pretension of the lines in

each moor. In order to achieve these diverse pretensions on the lines, the distance of the

anchor to the vertical axis of the platform is varied from one solution to the next. The

next figure shows how the tension of the fairlead of the line varies with the distance of

the anchor to the vertical position of the platform axis.

Pretension on Fairlead (N)
Poliester Mooring Line

4.OOE+06

3.50E+06

3.OOE+06

4 2.50E+06

.5 2.OOE+06

1.50E+06

1.OOE+06

5.OOE+05

O.OOE+00

810 820 830 840 850 860 870 880 890 900

Distance from origin to Anchor (m)

Figure 3-4: Synthetic Line pretension
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Figure 3-4 presents a very large change in behavior of the pretension of the line for

distances from the anchor to the vertical of the platform over 860 meters. The total

unstretched length of the line is maintained constant. When the horizontal distance from

the anchor to the platform is smaller than 860 meters, the lines present a loose shape,

however, as soon as the distance reaches that limit the lines became taut and the

pretension increases dramatically.

To decide what set of pretensions are valid to maintain the platform position, the

restoring forces against horizontal excursions of the platform was studied. Any synthetic

configuration that would provide smaller restoring forces than the actual cable solution

was discharged automatically. A static study of the restoring forces for the whole moor

was carried out for a range of anchor-to-origin distances from 820 to 870 meters. The

results of this study are displayed in the next figure.

Restoring Forces for the Whole Moor. 8 Different Synthetic Configurationa and the original
platform Cable Moor.

1.80E-07

1.60E+07

1.40E+07

1.20E+07

1.OOE+07

.~8.OOE-i06

8A

- 6.OOE+06

4.OOE+06 _

2.OOE+06

0.00E+00 I-. . ,--4

0 5 10 15 20 25 30

Horizontal Displacement (m)

-+-820 -U-830 840 -%-850 -*-855 -- 860 -- 865 - 870 - Cable Moor

Figure 3-5: Moor static restoring forces
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The previous graph shows the restoring force reaction to horizontal displacements out of

the platform equilibrium position for all the initial configurations of synthetic mooring

systems that were tested. Note that while the static response of the synthetic

configurations is, in general, linear with respect to the displacement, that is not the case

of the cable-type moor. The cable moor seems to have a linear behavior for small offsets

from the origin, but as soon as the range is larger than 15 meters, the restoring force

ramps up dramatically. The reason for this difference lays in the shape and weight of the

different lines. For the light synthetic mooring lines, the mooring system needs to be taut

in order to provide the required restoring. That is not the case of the cable configuration.

Figure 3-3 shows that the cable lines are shaped in an arch way rather than in a straight

line. Therefore, for small displacements of the platform from the origin, the moor will

still have a loose pattern. However, as soon as the distance of the platform from its

equilibrium position begins to increase, the cable lines become very taut. The restoring

force they create in that case increases largely since they will then behave as a spring

with very large Young modulus. The result of this phenomenon is a steep increase in the

combined restoring force of all, 14, lines.

On the other hand, synthetic lines are very light compared to the cables. Hence, weight is

not enough to provide the initial tensions that will fix the platform in its place if their

initial disposition is as the one seen for the cable type moor. Note from figure 3-5 that

only the three synthetic moors with highest pretension have a sufficiently large restoring

force. Figure 3-4 also shows that all these three configurations are in the range of linear

elastic behavior and thus, the three of them share an initial taut disposition. In other

words, in order to achieve restoring forces comparable to those of the cable moor, the

synthetic mooring systems need to have an initial taut configuration.

The following table shows material properties and the initial geometric conditions of the

final tested synthetic lines. As mentioned before these configurations have a restoring

force response that surpluses the one provided to the platform by the cable solution. Note
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that the three different configurations only differ in the initial distance of all the anchors

to the vertical of the floating body.

Catenary-type mooring line configuration

(For each line)

Fairlead Depth

Hztal. dist. From Fairlead to Spar vert. axis

Anchor Depth

Hztal dist. From Anchor to Spar vert. axis

Total Line Length

Low

Tension

106.7 m

18.59 m

789.4 m

860 m

1082 m

Medium

Tension

106.7 m

18.59 m

789.4 m

865 m

1082 m

High

Tension

107.7 m

18.59 m

789.4 m

870 m

1082 m

Pretension at Fairlead 5.32-10' N 1.11-i0 7 N 1.82-10' N

Weight in water (per unit length) 93 N/m 93 N/m 93 N/m

Weight in air (per unit length) 362 N/m 362 N/m 362 N/m

Diameter 0.2324 m 0.2324 m 0.2324 m

EA 2.05.108 N 2.05. 108 N 2.05. 108 N

Added Mass Coefficient

Viscous drag Coefficient

Viscous Friction Coefficient

Table 3-3: Synthetic moor line's properties

1

1.2

0.03

1

1.2

0.03

1

1.2

0.03

These properties belong to a polyester synthetic cable. For a full table of material

properties of synthetic ropes, see Appendix A. This specific material was chosen among

all the possibilities shown in appendix A for several reasons. The polyester fiber was

preferred over the aramid because it is softer, provides a smoother tension reaction and a

bigger elongation for the same unstretched length. There are also economic issues when

considering between these two solutions. In general, aramid fibers are more expensive

than polyester. Among the polyester ropes, the one with the maximum diameter was

elected because it had the maximum breaking strength.
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The aspect of the whole synthetic mooring system is shown in the next figure:

500

250

500 0

-500. 500 0

Figure 3-6: Synthetic mooring system

This last figure shows that even at an equilibrium position, the synthetic cables are

shaped as straight lines. For the 3 synthetic mooring systems examined in this study, the

shape looks the same and the only difference among them is the distance of the anchor

and the consequent different rate of strain since all the lines have the same unstretched

length.

This initial taut shape of the lines explains why the static force response of these mooring

systems to offsets is linear. Provided that the tension in the lines does not reach ranges

close to their breaking strength, the strain behavior of these synthetic ropes can be

assumed as linear with respect to the internal tension in the lines. Given then, the initial

taut disposition of this type of moor, it is expected for the static restoring force response

not to show the non-linearities that the cable mooring system shows.
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CHAPTER 4:

NUMERICAL RESULTS.

4.1.Comparison of the dynamic properties of the four moors

As mentioned in the second chapter, any floating body can sustain motions in 6 different

directions. For the specific case of a SPAR platform held by means of a mooring line

three of these motions are of special interest; surge, sway and heave. In the particular

case of the first two, we can expect an axisymmetric behavior around the vertical axis due

to the large number of lines and their specific disposition around the platform. Hence,

only horizontal motions along the X-axis have been studied.

As also mentioned in the second chapter, when dealing with wave induced motions in

floating bodies, there has to be a clear distinction among, linear and non-linear effects.

Heave motions are fundamentally induced by wave linear effects, while in the surge

direction, both linear and non-linear effects are important. Linear effects excite platform

motions of amplitude in the same order as the amplitude of the waves that induce them,

while the amplitude of the oscillations induced by slow drift effects are much larger. The

natural periods of these two types of oscillations also differ a great deal, the natural

period of the linear induced motions are also in the same order of that of the waves that
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excite them. On the other hand, the natural periods of oscillation induced by slow drift

effects are very long, typically in the order of one minute to a hundred seconds.

4.2.Slow Drift Oscillation:

The value of the maximum amplitude of oscillation induced to the platform due to slow

drift effects is known, at least for the cable mooring system. From this maximum

excursion and using information from figure 3-4 the value of the maximum excursions

for different mooring systems is obtained. The taut synthetic moors should incur in

smaller offsets since the restoring forces of the synthetic lines are larger for the same

displacement.

To study the dynamic responses of the different mooring systems to drift excitations and

to be able to compare the results, I have used the equivalent excursion for the synthetic

moors. These equivalent excursions are calculated using as a base the static restoring

forces of the cable mooring system and comparing them with the forces exerted by the 3

synthetic moors. The equivalent excursions for each system are displayed in the rows of

the next table:

Equivalent Excursions (m)

Cable Mooring Synthetic. Low Synthetic. Medium Synthetic. High

system tension tension tension

10 6 4 4

15 10 5 5

20 14 9 8

25 25 20 16

Table 4-1: Equivalent excursion for slow-drift motions

These set of amplitudes have been studied for three different periods. These periods are

50, 100 and 150 seconds. Each of these mooring lines slow drift dynamic response has

been tested for these 3 periods as well as their respective amplitudes of oscillation.
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In order to be able to compare the damping energy loss among the four different mooring

systems the damping results have been non-dimensionalized. The energy loss obtained

from LINES 1.1 has been divided by the amplitude of the oscillations, the total mass of

the platform and gravity. By using this non-dimensionalization the energy loss associated

to each equivalent motion can be

compared with its equivalent in a
Non-dimensional slow drift damping. Cable Moor different mooring system. The

L.60E-02 denominator of the non-
E 1.40E-02

1.20E-02 dimensional damping represents

'OOE-02 the energy that the platform
8.O,033

6.0033 acquires when forced into

4.O-03 oscillatory motions. The non-
S2.00E303

z 2.OOE-03 dimensional damping represents

0 5 10 15 20 25 30 then the fraction of this energy
Amplitnde of the oscilations (m)

-+-T-50s -- T-100s -A-T-150s that is absorbed every cycle by the

Figure 4-1: Slow drift damping. Cable. mooring system.

Non-dimensional slow drift damping. Synthetic Moor
Low tension

1AE 03

1.20B-03

8.WGE-04

6.0E-04

4.OE-04

2.O(E-04

O.Ot400 
10 12 14 16 18 20 22

Amplitude of the oscilations (m)

-+-T=.50 -ST=100 -+-T=1.50 s

The energy loss or damping for all

the mooring systems are shown in

the next set of figures, 4-1 to 4-4.

In these figures, the general

behavior of the damping in the

different mooring systems has

been plotted. These figures

represent how the non-

dimensional damping coefficient

varies with the amplitude of the

motion for the three distinct

24

Figure 4-2: Slow drift damping. Synth. Low tension.

periods mentioned before.

42

*1

I
I
0

a
0

I



Figure 4-1 shows the resulting damping for the cable mooring system, while the other

three plots show the damping results for the synthetic cases, starting with the low tension

graph, figure 4-2 and finishing with the high tension one, figure 4-4.

Non-dimensional slow drift damping. Synthetic Moor
Medium tension The behavior of the damping

s.ooso4 coefficients in these graphs

- OOE-04 follows, up to some point, the

expected shape. From these
og4.00E04

graphs we see that as the

2.OOE-04 - amplitude of the motions
O.OOE-00 increases, so does the

0 5 10 15 20 25 amplitude of the coefficient.
Amplitude of the oscilations (m)

-+-T-50s-U-T-100s A+T-150s The first of these graphs, 4-1,

Figure 4-3: Slow drift damping. Synth. Medium tension. represents the cable catenary-

Non-diensional slow ddft daning. Syntheic Moor type mooring system. From

High temion this graph, we notice that the

smaller periods the larger the
4.OOE-04

damping becomes. The reason
3.50E-04

S.0OE-04 for this behavior is that for a
l2.5004

similar amplitude, as the

e1-50E0' period of oscillation
|| 1.OO-04

5.oo-o5 - decreases, the faster the
o.OOE+00

0 5 10 15 20 velocities and accelerations of
AmplItude of the oscIations (m) the line segments increase.

-4-- T=50 s - T= 100 s -A- T= 150 s

Figure 4-4: Slow drift damping. Synth. High tension. The viscous and inertial terms

in the governing equation

become, therefore, very

crucial for two reasons. The first reason is the large weight of this line, considerably

larger than the synthetic one, makes the inertial effects very important. The second

affects the viscous terms of the governing equation. The transversal fluid-segment
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relative velocity for the cable case is important due to the catenary like shape of the

mooring lines. This increases the relative significance of the viscous terms.

In the remaining three graphs, we can also encounter the growth behavior of the non-

dimensional damping as the amplitude of the oscillations is augmented. Note that the

studied range of amplitudes for the synthetic cases varies and is smaller than the previous

cable case. As previously stated, the reason for this modification is that the synthetic lines

generate the same restoring forces for smaller excursions, given its initial taut disposition.

However, for these three cases the behavior of the non-dimensional damping regarding

the period of the oscillations is different than the one seen in the cable mooring system.

In these experiments, it is not always true that for a given amplitude, the smaller the

period the larger the damping. Due to the initial taut shape of the mooring lines, the

horizontal oscillations of the fairlead do not considerably modify the shape of these lines,

which maintain, even under oscillations their straight-line shape. Rather, these horizontal

oscillations modify the rate of strain in the lines.

Under this pattern of motion, the relative transverse velocities are rather small. This fact

diminishes the importance of the viscous effects. The inertial effects are also of minor

consequence compared to those of the cable moor since the density of the synthetics is by

far smaller than the cable. Under these two assumptions the dynamic response of the

mooring systems becomes very close to the static behavior. Therefore, the static

responses of the lines become of considerable influence in these cases. As a result of the

new relative significance of the static effects, the damping differences with a varying

period become very small. Note then that, the range of the non-dimensional damping for

the synthetic cases is lower than that for the cable moor case.

This last point regarding the range of the results in the damping coefficients becomes

salient when we plot the results for a single period and all the four mooring systems in

the same plot. The cable, being 10 times heavier than the synthetics, presents a higher

variability of the damping due to modifications of the period than the rest of the
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considered moors. The next two figures, 4-5 and 4-6, show the values of the non-

dimensional damping for harmonic oscillation simulations with periods of 50 and 100

seconds. They show the resulting damping for all the different mooring systems.

Slow drift non-dimensional damping. T= 50 s
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Figure 4-5: Slow drift damping. Period 50 s.

Slow drift non-dimensional damping. T= 100 s
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Figure 4-6: Slow drift damping. Period 100 s.
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The plots in the previous page, 4-5 and 4-6, show that for "high" frequencies in the slow

drift motions, the larger inertial effects of the cable mooring system create a large

disparity in the outcome damping of the mooring lines. Remember that due to the

equivalent excursion, an oscillation of amplitude 10 m. with the cable moor must be

compared with the 4 m. amplitude motion in the case of synthetics under high pretension.

Taking into account this aspect, the jump of non-dimensional damping from the original

cable solution to the synthetic moors with highest pretension can almost reach two orders

of magnitude.

The lower pretension synthetic mooring system presents much better damping qualities

than the other two, at least regarding slow drift motions. The relative damping achieved

by the original cable solution is typically bigger than that achieved by the low-tension

synthetic moor, yet the differences are not as important. Moreover, when the oscillations

became slower, and the inertial contributions are not as important, the damping attained

by the low-tension synthetic moor turns out to be even larger than the cable solution. This

is the result of a decrease in the damping of the cable moor when dealing with very long

periods, rather than an increase of the damping in the synthetic solution. When the period

of the oscillation becomes so long, we could even consider studying the damping using a

quasi-static solution.

These considerations are clearly shown in the next pair of figures that represent the

hysteresis cycles for oscillations of amplitude 10m, for cable, or the equivalent values for

synthetic lines. The periods represented in figure 4-7 and figure 4-8 are fifty and one

hundred seconds respectively. Note that the shape and most importantly the area of the

hysteresis cycles of the synthetic solutions do not change noticeably from the first to the

second figure.
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Slow Drift Hysteresis Cycles. Period 50 s.
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Figure 4-7: Slow drift hysteresis Cycles. Period 50s.

Slow Drift Histeresis Cycles. Period 100 s
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Figure 4-8: Slow drift hysteresis Cycles. Period 100s.
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On the other hand, the hysteresis loop of the original cable solution suffers a noticeable

area decrease when the period goes from 50 seconds to 100 seconds. The shape of this

loop turns thinner as the frequency of the oscillation decreases and it appears more like

the static or quasi-static response. The 100 seconds period cycle for the cable mooring

system tends to a series of quasi-static solutions of the mooring system's restoring forces

because the period of oscillation is very long.

These graphs, 4-7 and 4-8, also show why the damping of the two synthetic lines with

higher pretension is so small. It is important to notice that due to the high tension and the

initial taut conditions, they behave almost like springs providing very little slow drift

damping to the floating structure. These two moors are relatively insensitive to the period

variation, at least in this range of motions. The reason for this is that they already behave

as a linear quasi-static system for the smaller period, so increasing the length of the

period cannot force them to lose any more area in their associated hysteresis cycles.

The low-tension synthetic system, also, presents very little modification in its area due to

the variation in the period of the motion. The result displayed in figures 4-7 and 4-8 for

the low-tension synthetic damping looks counter intuitive because the 50 seconds

hysteresis loop presents sharper ends that the 100 seconds loop. The most probable

reason for this is that the faster oscillation induces higher fairlead tensions of the moor on

the extremes of the cycle. As a result of these higher tensions, the mooring system reacts

quicker, sharpening the extremes of the hysteresis loop.

The range of the forces is very similar for all the cases proving that the initial

consideration of the equivalent excursion is accurate. The dynamic reaction of the moors

does not introduce, in the slow drift case, a big enough modification in the tensions for a

reconsideration of the equivalent excursion hypothesis.
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Finally, note that the excursions are variable, and each mooring system range of

displacements is different. In this context, the responses with lower motions have to lose

less energy because the platform, principal mass of the whole linear system, is also

undergoing smaller oscillations and therefore presents less motion energy.

4.3.Linear Surge Oscillations

For the linear surge oscillations of the mooring lines I followed a similar procedure to the

one performed in the slow drift motion. All the different mooring systems were tested for

various horizontal amplitudes under a range of periods similar to those of regular waves

in deep water areas.

In order to compare the damping results from the different mooring systems, I used again

the same non-dimensional damping quantities, dividing the original energy loss by the

weight of the platform in Newtons and the amplitude of the oscillation.

Regardless of the range of amplitudes studied for each of the mooring systems all of them

have been tested under the same collection of motion periods. For the linear surge

oscillations the periods considered are 7, 10 and 15 seconds. Each moor has been studied

for all of these periods and a range of amplitudes starting at values as small as half a

meter and up to oscillations of three meters wide. The range of amplitudes used for each

mooring system is displayed in the next table:
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Amplitudes studied for each mooring system. All in meters.

Cable Moor Synth. Moor. Low Synth. Moor. Synth. Moor. High

Tension Medium Tension Tension

1 0.5 0.3 0.3

2 1 0.6 0.6

3 1.5 0.9 0.9

2 1 1

3 2 2

3 3

Table 4-2: Linear surge amplitudes

The concept of equivalent excursion has not been used for linear oscillations. The

frequency of these harmonic motions is much faster than the slow drift case. Now, the

dynamic effects in the internal tension are considerable. The maximum tensions involved

in these oscillations are higher than the static restoring forces that would result from a

similar platform displacement. The dynamic effects are very influential in the case of the

cable mooring due to its heavy weight. Therefore, if we tried to use equivalent

excursions, we would find that the forces involved in the existent cable moor would be

much higher than those that would appear in the case of synthetic mooring systems. The

meaning of equivalent excursion would disappear since the range of tensions involved in

two "equivalent" oscillations would be different.

The results of the linear surge damping experiments are displayed in the next set of

figures, 4-9 to 4-12. Each moor configuration is shown in a different graph. These graphs

show how the damping for different period series vary with the amplitude of the motion.

Figure 4-9 demonstrates the damping behavior for the cable mooring system. As

expected, the damping increases with the amplitude and frequency of the motion. Figures

4-10, 4-11 and 4-12 represent the synthetic cases for low, medium and high initial

tension. These three other figures display the same behavior with regard to the amplitude

of the oscillations. The larger the amplitude of the oscillation is, the larger the equivalent
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damping coefficient. The variation of the damping with

Non-dimensional surge linear damping. Cable Moor
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Figure 4-9: Linear surge damping. Cable.

Non-dimensional surge linear damping. Synthetic Moor
Low Tension
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regard to the period of

oscillations does not have such

a clear pattern for the synthetic

cases as the one presented in

the cable case.

The energy loss behavior with

the period variation does not

show a common blueprint for

the three synthetic cases. In the

case of the lower tension, the

higher periods show larger

damping. The medium

pretension synthetic case

shows a behavior where the

higher the frequency, the

higher the damping. And

finally, the high pretension

synthetic solution shows that

the largest damping

corresponds to the period of

ten seconds.

Figure 4-10: Linear surge damping. Synth. Low tension
The reason for this behavior

might be hidden in the mooring

line configuration. Note that these oscillations are relatively small compared to the

dimension of the lines, and that the synthetic mooring systems are taut. Under those

initial conditions, the lines in the moor whose direction is aligned with the direction of

motion, are going to experience very little movement. Moreover, these motions are going

to be mainly in the direction of the lines themselves, modifying the stretch degree of the

line but not creating any added mass or viscous effects.
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Non-dimensional surge linear damping. Synthetic Moor
Medium Tension
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Figure 4-11: Linear surge damping. Synth. Med. tensio

Non-dimensional surge linear damping. Synthetic Moo
High Tension

1 1.5 2 2.5

The creation of non-linear

viscous effects that govern the

damping in the taut mooring

cases are then accomplished

mainly by the lines whose

direction is transverse to the

direction of the motions.

'zi

3 3.5

Amplitude of the oscilations (m) The damping results for
-4-T= 7s -U-- T= 10 s -*- T=15 s

horizontal oscillations of ten

Figure 4-12: Linear surge damping. Synth. High tension seconds period and all the moor

configurations are shown in

figure 4-13. Again this plot reveals that, as for the slow drift motion, the cable

configuration provides at least ten times more energy absorption than the best synthetic

proposition.
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dictates the way they behave

relative to transversal
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and therefore explain the
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Figure 4-13: Linear surge damping. Period 10 s.

This figure also shows that the difference among the various synthetic solutions is very

small, especially for the higher initial tensioned mooring systems.

Note also, that the linear surge damping for all the moor solutions shows an almost

exponential behavior with respect to the amplitude of the motions.

The explanation for the dramatic jump in damping for the cable solution lies in the

hysteresis loops of these four mooring solutions. The hysteresis loops for a motion of

seven and fifteen seconds periods and amplitude of three meters are plotted in figures

number 4-14 and 4-15. Following the same trend as the slow drift hysteresis loops, the

cable configuration cycle encloses a much larger area than the synthetic solutions. The

cable hysteresis loop is very sensitive to variations of the oscillatory period, while the

synthetic moors show again a quasi-static response with unremarkable effects.
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Linear Surge Histeresis Cycles. Period 7s

-3 -2 -1 0 1 2 3

Horizontal Displacement (m)

Figure 4-14: Linear surge hysteresis cycles. Period 7s.

These two figures, 4-14 and 4-15, show that the maximum values of the forces involved

in the motions are larger for the cable moor than for the synthetic ones. This result proves

that the notion of equivalent excursions does not apply for linear motions. If we had

wanted to ensure the maximum forces to be the same magnitude for all the mooring

systems, the excursions of the platform for the synthetic moors should have been larger

than their equivalent for the cable moor.
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Linear Surge Histeresis Loops. Period 15s.

Cable
Synth. Low tension

- Synth. Medium tension

-Synth. High tension

0

N

-o-

0

-3 -2 -1 0 1 2

Horizontal Displacement

Figure 4-15: Linear surge hysteresis cycles. Period 15s.

4.4.Heave Oscillations

The same procedure that I have used to study the last two cases is going will be followed

in this section for the damping responses of the moorings to the heave oscillations. Given

the cylindrical shape of the platform and its depth, the excitation in heave has a smaller

intensity than the excitations in surge or sway. This smaller excitation force leads to

smaller oscillations of the platform in the vertical mode than that achieved in the

horizontal direction.

For this mode of oscillation, all the platforms have been tested under the same set of

conditions. The range of periods used for these experiments has been the same as those in

the linear surge motions: seven, ten and fifteen seconds. Being both linear surge and
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heave oscillations induced by first order interactions, their respective motions would also

present similar frequencies. The amplitudes of the heave harmonic motions are smaller

than those used for linear surge. These

Damping for Catenary Type Moor (Heave) experiments have been carried out

-02 varying the amplitude of the motions
-02 among the following values: 0.5, 1 and
-02 1

_ I 1.5 meters.

0.7 0.9 1.1

Amplitude of the oscilation (n)

-.- T=7s -.-- T= 10s --.- T=15

Figure 4-16: Heave damping. Cable.

Damping for Synthetic Moor (Heave)
Low Tension
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IL
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0.OE+00
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The results for this set of experiments

are displayed on figures 4-16, 4-17, 4-

18 and 4-19. These figures show the
1.3 1.5 particular behavior of each mooring

line damping with respect to the

amplitude of the motions. Series are

separated as in the previous cases by

period of the oscillation.

The same behaviors, as found in the

first two sets of experiments, also exist

regarding the modification of the

absorbed energy and its relation to the

increased amplitude of the motion

increases. All the mooring systems

show that the larger the amplitude, the

1.3 1.5 larger the damping for a given

s frequency of the motions.

Figure 4-17: Heave damping. Synth. Low tension.
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Damping for Synthetic Type Moor (Heave
Medium Tension

40"1

0.5 0.7 0.9 1.1

Amplitude of the oscilation (m)

-- T= 7 s -- T= 10 s -*- T= 15 s

Figure 4-18: Heave damping. Synth. Medium t

Regarding the behavior of the

damping coefficients with

respect to the period of the

oscillations, the same results as

in the previous experiences are

found. The cable moor clearly

shows that the damping grows

as the frequency of the

oscillation increases. On the

other hand, the synthetic moors
1.3 1.5

do not seem to present a clear

pattern of behavior when the

ension. period of the oscillation varies.

Damping for Synthetic Type Moor (Heave)
High Tension All the three synthetic solutions

3.5E-04 present their highest damping

3.0E-04 - under the fastest oscillation of

2.5E-04 -the fairlead. Again, this result

2.OE-04 I might seem counterintuitive

1.5E-04 and it probably falls under a

1.oE-04 similar hypothesis mentioned

5.0E-05 in the linear surge case. All the

o.oE+00 lines are now forced to move in
0.5 0.7 0.9 1.1 1.3 1.5

Amplitude of the oscilation (m) a direction transverse to their
-- T= 7 s -- T= 10 s-e-T= 15 s tangential axis. The vibration

gure 4-19: Heave damping. Synth. High tension. of each line will depend on the

initial pretension and the period

of oscillation of the fairlead. Should any of the periods induce an oscillation close to

resonant motion of the line, the viscous effects would ramp up in the process creating a

new large damping.
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Figure 4-20 compares the damping coefficients for all the mooring solutions under a

period of ten seconds. Again, the cable configuration shows an energy absorption that is

over one order of magnitude larger than the damping achieved by any of the synthetic

solutions. In addition, the low-tension synthetic solution presents again the largest

damping of all the taut mooring systems.

But not all are similarities, figure 4-21 shows the hysteresis loops of the different

solutions for a period of ten seconds and an amplitude of one and a half meters. This

graph displays very clearly that each mooring system has different initial pretensions.

Due to this difference, the range of tensions encountered for each moor loop is shifted

vertically from each other. In the case of horizontal directions the axisymetric disposition

of the lines would cancel out the total resulting force that the moor exerted into the

platform. For the vertical case, all the lines are pulling down with an equal force and the

compounded result is no longer void.

Vertical Damping

1.OE-02

S
E 1.OE-03

1.OE-04

1.OE-05

Amplitude of the motion (m)

-U- Cable -+- Syn. Low Tens. -*- Syn. Med. Tens. -- Syn. High Tens.

Figure 4-20: Vertical damping. Period 10s.
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Heave Histeresis Cycles. Period 10 s

z
0

.0P

Vertical Displacement (m)

Figure 4-2 1: Heave hysteresis Cycles. Period 10Os.

The difference in pretension of these moors would result in a modification of the

platform's initial vertical position or the necessity to introduce into the platform a type of

ballast. However, the equilibrium position would not be modified more than a meter and

a half from the cable to the lower tension synthetic solution. Thus having left this initial

consideration out of the tests does not introduce any important modification to the final

results.
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CHAPER 5:

DAMPING RELATIVE IMPORTANCE

5.1 Linear Damped oscillator

To study the relative importance of the damping of different mooring systems, these

results have been compared using a linear approximation. The idea is to compare all the

results from the previous experiments using a simplification of formula 2.1. However,

instead of using a coupled second order linear equation with six degrees of freedom, this

approximation considers only motions in one dimension.

When formula 2.1 is reduced to one degree of freedom it yields to,

(m + a) + b x + k x = f (5.1)

That corresponds to the next simplified mechanical system.
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m+a

Figure 5-1: Simple model for damped oscillator.

Where "m+a" represents the mass of the oscillator plus its added mass, k is the

coefficient of the spring and b is the linear damping of the system.

Now, dividing by the coefficients of the second order term and considering only the

unforced oscillations, the equation can be rewritten as,

j +2ai+a_ x=O

Where sigma and the natural frequency of the system, ow, are defined as,

b
2(m + a)

_ k
o =(ma)

" (+ a)

(5.2)

(5.3)

This equation presents a close form solution that depends on the damping ratio of the

system, (, that is defined as,

(5.4)
(00

The damping ratio is an index of the stability of the system's stability to non-forced

oscillations, if ( is negative, the system is unstable and the initial motion would grow
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without bound. When ( is zero, the system is just neutrally stable, and as the value of (

increases towards 1, the relative damping of the system increases. For values of ( larger

than 1, the system will not overshoot the neutral position. For small values of (, the

damping ratio indicates explicitly the number of cycles, n, to damp the amplitude of the

oscillation to l/e its original value. N is given by the next equation,

1
n ~

2;r{
(5.5)

The following figures show the system oscillation responses with time for a fixed starting

position and different values of the damping ratio, (.

Figure 5-2.A: Unstable oscillation

Figure 5-2.C: Damped oscillations

Figure 5-2.B: Neutrally stable

Figure 5-2.D: Collapse response
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The approximation for the platform and moor group to a linear system will always be

similar to the case of figure 5-2.C. The mass of the system is very large while the

restoring and damping coefficients are in the same order of magnitude. This fact places

the damping ratio in the bracket of zero to one.

5.2. Platform-moor coefficients

The approximation of the platform-moor group response to a linear system requires some

simplifications in order to obtain coefficients for restoring and linear damping.

The first simplification is relative to the restoring force of the moor. According to the

formula 5.1, the restoring force of the moor will only depend on the position of the

platform. As we saw in the hysteresis loops, this will only be an approximation since the

tension of the moor depends also on dynamic effects. The relative restoring forces must

be transformed into a linear response mechanism. For this purpose, the static responses of

the mooring systems have been used, ignoring all dynamic effects and their repercussions

in the final tension.

In the case of the synthetic lines, this simplification is rather accurate since the inertial

effects of the lines are not very significant. Also, their static response is very close to a

straight line. For the case of the cable moor, the inertial effects are more important and

the static restoring forces are not even linear. However, this approximation provides a

very good general idea in order to compare the dynamics of the different solutions.

The second step to take towards the utilization of the equivalent system is to convert the

energy loss per cycle into its equivalent linear damping coefficient, b in the linear

equation 5.1. For this step, it is assumed that the instantaneous value of the internal

tension on the line can be approximated by
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T =b- (5.6)
dt

Now, combining formula 2.27 (in this case only for one dimension) with 5.6 we can

obtain the relation between the energy loss per cycle obtained through a numerical

simulation, and the linear damping coefficient that is needed for the linear approximation.

E~jF(,)fk'r [ Fdl 2)r~a
t+T -. x t X]&-2d 2a

E= F (t)- -dt~b dt =b (5.7)t dt f dt. T

Now, rewriting this equation we obtain the equivalent linear damping,

Er
b = r (5.8)

21r 2 a 2

However, the linear damping results vary for different periods and amplitudes of the

motion. The linear approximation requires a constant damping, so I have used the mean

value of all the damping results as a definitive approximation to the linear mechanical

system.

Slow drift surge, linear surge and heave, have been studied using separate linear

approximations because the difference among the damping coefficients is rather large,

and the character of the three modes of oscillations is very different. Even for only one of

these modes of oscillation, the linear damping coefficient is far from being constant. Note

in table 5-1 that the standard deviation of the mean linear damping coefficients are of the

order of their respective averages themselves.

Regardless of these facts, the linear approximation still gives a very good sense of the

dynamics of the platform with the different mooring solutions. They are only a first

estimate, yet an improvement of these results would take a full numerical resolution of

the differential equation using non-constant coefficients.
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5.3 Linear Approximation

The coefficients obtained for the linear approximations are shown in the following tables.

Each table presents one mode of oscillation and all four types of mooring solutions.

0 Slow drift surge motions:

Cable

Moor

Platform mass (kg)

Added mass coefficient

Total mass (kg)

Mean linear damping (Ns/m)

Damping stand. Deviation (Ns/m)

Restoring force (N/m)

2.205.108

1

4.41.108

1635324

884022.8

295136

Synthetic.

Low

tension

2.205-10

1

4.41. 108

1015696

532953.3

441139

Synthetic.

Medium

tension

2.205-10'

1

4.41-108

314303.11

158680.2

585822

Synthetic.

High

tension

2.205.108

1

4.41. 108

110438.7

124896.6

704499

Table 5-1: Linear approximation coefficients for slow drift motion.

* Linear Surge motions:

Cable Synthetic. Synthetic. Synthetic.

Moor Low Medium High

tension tension tension

Platform mass (kg)

Added mass coefficient

Total mass (kg)

Mean linear damping (Ns/m)

Damping stand. Deviation (Ns/m)

Restoring force (N/m)

2.205-10'

1

4.41. 108

3405893

2136281

295136

2.205.108

1

4.41.108

198982

152424

441139

2.205.108

1

4.41.108

77411.1

70169.5

585822

2.205.108

1

4.41.108

59125.6

65731.6

704499
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Table 5-2: Linear approximation coefficients for linear surge motion.

e Linear Heave motions:

Cable

Moor

Platform mass (kg)

Added mass coefficient

Total mass (kg)

Mean linear damping (Ns/m)

Damping stand. Deviation (Ns/m)

Restoring force (N/m)

2.205.108

0

2.205.108

3405893

2316281

1.31-106

Synthetic.

Low

tension

2.205-108

0

2.205.10

198982

152424

1.28-106

Synthetic.

Medium

tension

2.205.108

0

2.205- 108

77411

70169

2.11. 106

Table 5-3: Linear approximation coefficients for linear heave motion.

Note that both surge motions share the same added mass coefficient, 1,equal that of an

infinitely long cylinder. The length of the spar platform is large enough so that using 1 as

added mass coefficient is a good initial value for the linear approximation. Meanwhile,

the vertical motions of the platform added mass is zero. Only the water under the bottom

of the platform is accelerated when the platform undergoes vertical oscillations. This

volume of water, and especially its respective weight, is very small compared to the

platform weight.

Also note that, the two horizontal modes of motion share the same restoring coefficients.

All the restoring in this direction comes from the mooring system. On the other hand,

when dealing with the motions in heave, the amount of water displaced by the platform

must be considered. The restoring in this case comes from the contributions of the

mooring lines and the buoyancy variation of the platform. For the cable moor and the low

tension synthetic moor, most of the restoring force comes from buoyancy effects. On the

other hand, for the two higher tension synthetic solutions, the mooring effects are as

important as the buoyancy contribution.
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High

tension

2.205.108

0

2.205.108

59125

65731

1.84. 107



Using the previous coefficients is straightforward to calculate the non-dimensional

parameters and the damping ratio, (, that are needed for the linear approximation. The

results for these coefficients are displayed in the following tables.

* Non dimensional coefficients: Slow drift surge.

Cable Synthetic. Synthetic. Synthetic.

Moor Low Medium High

tension tension tension

a(l/s) 1.854-10-3 1.1516-10-3 3.5636-10~ 1.252-10~4

Natural frequency (1/s) 2.587.10-2 3.1628-10-3 3.6448-10-3 3.996-10-3

Natural Period (s) 242.8 198.6 172.4 157.2

Damping ratio, ( 7.16.10-2 3.6411-10-2 9.77-10-3 3.122-10-3

Table 5-4: Linear approximation non-dimensional coefficients for slow drift motion.

* Non dimensional coefficients: Linear surge.

Cable Synthetic. Synthetic. Synthetic.

Moor Low Medium High

tension tension tension

a(1/s) 3.861-10-3  2.256- 10- 8.777 10-5 6.703-10-5

Natural frequency (1/s) 2.587.10-2 3.1628-10-3 3.6448-10-3 3.996-10-3

Natural Period (s) 242.8 198.6 172.4 157.2

Damping ratio, ( 1.492.10-1 7.1332-10-3 2.4081-10-3 1.677-10~3

Table 5-5: Linear approximation non-dimensional coefficients for linear surge motion.
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* Non dimensional coefficients: Linear heave.

Cable Synthetic. Synthetic. Synthetic.

Moor Low Medium High

tension tension tension

a (1/s) 7.723-10-3 4.5122-10- 1.75122-10~ 1.340-10-

Natural frequency (1/s) 7.079.10-2 7.619.10-2 9.7823. 103  2.888-10-

Natural Period (s) 81.5 82.46 64.23 21.75

Damping ratio, ( 1.002.101 5.9223 10-3  1.794. 103  4.641.10-3

Table 5-6: Linear approximation non-dimensional coefficients for heave motion.

The damping ratio for all these solutions and their different motions is always in the

bracket of zero to one. Therefore, the non-forced oscillations of any of these systems are

naturally damped.

The first analysis that we can obtain from the results of tables 5-4 and 5-5 comes from the

natural frequencies of oscillation of the different systems. For the surge cases, the natural

frequency is very low given the enormous mass of the system. The correspondent natural

period in all these cases is in the order of 200 seconds.

This result is definitely noteworthy. We know that the periods of linear oscillations of the

platform are in the order of 10 seconds, the same as the periods of the waves that induce

these oscillations. Being the natural period of the system so far away from the typical

periods of excitation diminishes the necessity for large damping properties of the moor.

When the system is forced into an oscillation far away from the natural frequency, the

mass and restoring effects do not cancel out. Given that the mass terms of these systems

are so large, the inertial effects will absorb the exciting forces regardless of the type of

moor present in the system. Therefore, for linear surge oscillations, the damping provided

by the moor is not critical towards the design of the platform.
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On the other hand, the period of oscillation under slow drift effects is much closer to the

natural periods of the platform-moor unit. Thus, a careful study of the damping properties

of the system has been done.

Figure 5-3 shows the natural decay of the platform motions given an initial 15 m. offset

from the equilibrium position. This figure shows the decay response of the cable and the

synthetic solutions for a period of oscillation of 200 seconds.

Given that all the damping ratios are smaller than one, each of these oscillations presents

a decaying trend. However, the velocity of decay varies greatly from one solution to

another. The rate of decay of the medium and high tension synthetic solutions is far

smaller than the other two, and by the time the system has reached 2000 seconds, it

continues to oscillate with amplitude equal or higher than 7.5 meters.

Slow drift linear approximation

15

10

5

0

-5

-10

-15

Time (s)

- Cable - Synth. Low tension - Synt. Medium tension - Synth. High tension

Figure 5-3: Natural oscillation for slow drift linear approximation.
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For slow drift motions close to the resonance frequencies of the system, figure 5-3 also

shows that the low-tension synthetic moor, even when compared with the cable solution,

presents very good damping qualities.

Moreover, the average damping coefficient, used for these approximations, handicaps the

results of the low-tension synthetic mooring system. Figures 4-1 and 4-2 show how the

damping for the cable decreases as the period of oscillation increases. This pattern is not

found in the low-synthetic solution. Therefore, when considering periods as high as 200

seconds, the cable damping is considerably smaller than its average damping. This fact

makes the low tension synthetic solution even more attractive, since its respective

damping does not decrease with the growth of the period of the oscillations.

Following the same train of thought used for the linear surge, as the slow drift motions

move further away from the resonance frequency, the relative importance of the damping

in the system diminishes. Therefore, the election of mooring system, when the period of

the oscillations are in the order of 1 minute, should not be governed by the damping

capabilities of the system. Above all, this study is only considering the damping effects of

the mooring system, discharging all the inherit platform viscous damping. If we

considered the complete damping, the relative damping difference among the cable and

the low-tension synthetic solution will became even smaller.

Regarding the oscillations in heave, we can see in table 5-6, that the natural period of

these systems are in general very large compared to the period of the exciting waves. This

is clearly the case for all solutions apart from the high-tension synthetic moor. An

analogy to the linear surge case can then be established. In general, the motions in heave

will be most affected by the mass of the platform. This factor along with the exciting

force will determine the nature of the motions regardless of the mooring system used.

Note that for a SPAR platform in this mode, motions in this mode of oscillation, will be

typically very small, given the very large depth of the body and its vertical cylindrical

shape. The only surface on the floating body where pressure can cause vertical resulting
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forces is on its' bottom, and at a depth of 200 meters, the wave effects create very small

variations in the overall pressure of the fluid.

Unless the mooring system is very taut, and thus its natural period becomes close to the

period of the exciting waves, the damping contributions of the moor in vertical direction

are not a major concern for the dynamics of the platform.
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CHAPTER 6:

CONCLUSIONS

As the water depth for offshore oil drilling increases, the trend in the mooring systems

design is shifting from classical cable mooring line into solutions based of synthetic

ropes.

The mechanical responses, especially to dynamic excitations, of these synthetic moor

solutions, under very large water depth conditions, have not yet been tested.

There are several reasons for the consideration of light synthetic rope solutions, among

which, the most significant is based purely on economics. Not only the cheaper cost of

the synthetics, but also, its lower cost of installation make them an extremely attractive

alternative for large and very large water depths.

Regarding the mechanical properties of the synthetic mooring systems, Chaper 3

demonstrates that the restoring forces achieved by regular catenary-type moor can be

easily attained by light taut mooring systems.
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These restoring forces, however, can create misleading interpretations. The fact that the

moor is more taut does not automatically imply smaller oscillations of the moored

floating body. In the case of the mooring systems considered in this thesis, the mass of

the platform is so vast that the inertial terms of the motion equation govern the response

of the system to external loads. Therefore, the amplitude of the motions when the off-

shore platform is forced to oscillate under external loads will not vary significantly from

one mooring system to another. The damping becomes a second-order consideration.

If one further increased the initial pretension of the synthetics, provided that the

maximum tension in the lines was not a critical concern, this increase would only make

the natural frequency of the heave response to move towards the frequency of the waves

that generates that heave. Then, the amplitude of the oscillations would become

dangerous for the integrity of the moor.

Regarding the dynamic responses, and particularly the damping that the system

introduces into the platform motions, Chapter 5 shows that only the damping qualities of

the moor regarding slow-drift oscillations are critical when designing spread-mooring

systems for large water depths.

In Chapter 5 we also proved that the low-tension synthetic mooring solution presents

excellent dynamic properties. It provides the platform with restoring forces even larger

than the original cable solution as well as behaves favorably under slow-drift oscillations.

A fully coupled platform-mooring system numerical analysis would provide a more

accurate solution and could be utilized to ensure the validity of these results.

These considerations about the low-tension synthetic moor, added to its lower cost, make

this a viable alternative for the positioning and control of floating structures in large

water depths.

73



REFERENCES:

[1] Cannon, Dynamics of physical systems

[2] Michael S. Triantafyllou, Mooring Dynamics for offshore applications. Part one I.

Theory.

[3] Genevieve Tcheou, Non-Linear dynamics of mooring lines

[4] Finn Gunnar Nielsen, Arne Ulrik Bindingb*, Extreme loads in taut mooring

lines and mooring line induced damping. An asymptotic approach.

[5] F.G. Nielsen, A.U. Bindingsb*, Alternative configurations and materials for

deep water mooring. Results from a three year joint research effort. OTC Paper

10755.

[6] John Magne Johnsen, Ola Oritsland, Design and optimisation of Taut-leg

mooring systems. OTC Paper 10776.

[7] Ivan De Pellegrin, Manmade fiber ropes in deepwater mooring applications.

OTC Paper 10907.

[8] D. L. Garret, Dynamic analysis of slender rods

[9] William C. Webster, Mooring-induced damping

[10] Boston Marine Consulting Inc. LINES 1.1 User Manual

[11] R. M. Raaijmakers and J.A. Battjes, An experimental verification of Huse's

model on the calculation of mooring line damping.

[12] A.C. Fernandes, M. M. Mourelle, O.B. Sert*, S. da Silva and P.H.C.C.

Parra, Hydrodinamic coefficients in thedesign of steel catenary risers.

74



[13] C.R. Chaplin, Reading U. and C.J.M. Del Vecchio, Appraisal of lightweight

moorings for deep water. OTC 6965.

[14] Bob Wilde, Patrick Kelly, Filipo Librino, and Simeon Whitehill, Conceptual

design and comparison of aramid and polyester taut leg spread moorings for deep

water applications. OTC Paper 8145.

75



APPENDIX A: ROPE PROPERTIES

Polyester rope properties:

Breaking Weigh in air Weigh in water Diameter (m) EA (N)

Strength (N)

6.23E+06

6.67E+06

7.12E+06

7.56E+06

8.01E+06

8.45E+06

8.90E+06

9.34E+06

9.79E+06

1.02E+07

1.07E+07

1.11E+07

1. 16E+07

1.20E+07

1.25E+07

1.29E+07

1.33E+07

(N/m)

159.3856

171.6348

184.0299

196.4249

208.82

221.3608

234.0475

202.8412

257.8168

271.9618

284.7943

297.481

310.4593

323.2918

336.1243

349.1027

362.081

(N/m)

40.97654

44.18467

47.24698

50.4551

53.66323

56.87136

60.07949

63.43344

66.64157

69.8497

73.20365

76.41178

79.76573

83.11968

86.32781

89.68176

93.03571

0.154178

0.16002

0.165608

0.171196

0.17653

0.18161

0.18669

0.19177

0.196596

0.201422

0.205994

0.210566

0.215138

0.219456

0.223774

0.228092

0.23241

95898880

1.03E+08

1. 1E+08

1.16E+08

1.23E+08

1.3E+08

1.37E+08

1.44E+08

1.51E+08

1.58E+08

1.64E+08

1.71E+08

1.78E+08

1.85E+08

1.92E+08

1.99E+08

2.05E+08
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Aramid rope properties:

Breaking Weigh in air Weigh in Diameter (m) EA Soft (N) EA Stiff (N)

Strenth (N)

6.67E+06

7.12E+06

7.56E+06

8.01E+06

8.45E+06

8.90E+06

9.34E+06

9.79E+06

1.02E+07

1.07E+07

1.11E+07

1. 16E+07

1.20E+07

1.25E+07

1.29E+07

1.33E+07 154.4276 43.1639 0.150114 2.19E+08 4.37E+08
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(N/m)

77.1409

82.39056

87.4944

92.59824

97.8479

102.9517

108.0556

113.1594

118.4091

123.5129

128.6168

134.0123

138.9703

144.0741

149.3238

water (N/m)

21.58195

23.04019

24.49843

25.95667

27.41491

28.87315

30.33139

31.64381

33.10205

34.56029

36.01853

37.47677

38.93501

40.39325

41.85149

0.09906

0.104902

0.108966

0.112014

0.115062

0.119126

0.122174

0.125222

0.12827

0.131318

0.13462

0.137668

0.140716

0.143764

0.146812

1.11E+08

1.18E+08

1.25E+08

1.32E+08

1.4E+08

1.47E+08

1.09E+08

1.61E+08

1.68E+08

1.76E+08

1.83E+08

1.9E+08

1.97E+08

2.04E+08

2.12E+08

2.22E+08

2.36E+08

2.5 1E+08

2.65E+08

2.79E+08

2.94E+08

3.08E+08

3.22E+08

3.36E+08

3.5 1E+08

3.65E+08

3.79E+08

3.94E+08

4.08E+08

4.22E+08


