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Abstract

The goal of this thesis is to study the causes and consequences of the size structure of marine
planktonic ecosystems. To this end, a theoretical (continuous) size spectrum model was
developed. Phytoplankton and zooplankton biomass is represented in the model as functions of
their respective biomass size spectrums. Thus, the model allows the natural recovery of the
continuous size spectrum for planktonic ecosystems. The model was developed under the
assumption that the structure of planktonic ecosystems is largely dependent on organism size.
The generality of the model allows the use of either allometric or random encounter models for
the specification of the size-dependent functions in the system.

A “distributed grazing” size-dependent dynamic simulation model is presented as a special
(discrete) case of the “general” size spectrum model proposed. The model consists of multiple
phytoplankton size classes and one zooplankton size class representative of the entire
herbivore community. Zooplankton grazing is described by a dynamic function that distributes
grazing pressure among phytoplankton size classes according to their relative biomass.
Allometric theory was used to specify the size-dependence of the maximum phytoplankton
growth rates. Simulations were carried out to study the dynamics of phytoplankton size structure
under different aliometric structures, representative of ecosystem diversity. Complementing the
analysis, simulations were carried out to study the effects of nutrient enrichment processes on
phytoplankton size structure. Size structure varied systematically as a function of the allometric
structure and nutrient enrichment process chosen. Two parameters were explored: 1) spectral
slope, which indicates the relative contribution of small and large cells to total phytoplankton
biomass; and 2) transient spectral shape, which indicates the effects of enrichment on
phytoplankton succession as the system goes from its original to a new steady state condition.
The model provides a natural and simple way of simulating the transient phytoplankton size
structure under nutrient enrichment scenarios. It is argued that this will prove very useful in the
analysis of plankton size structure dynamics in natural (e.g. spring blooms) and artificial (e.g.
ocean fertilization) enrichment processes.

Thesis Supervisor: Sallie W. Chisholm
Title: Professor of Civil and Environmental Engineering, and Biology
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INTRODUCTION

A comprehensive understanding of the structure (species composition and relative abundance)
and function (energy flow and nutrient cycles) of the ocean ecosystem is necessary to face the
world’s ever growing environmental problems. The dynamics and regulation of food webs can
only be understood by considering processes at the level of individual populations acting in
concert with processes over the domain of the entire community (Pahl-Wostl, 1993). Local
processes at the species level permanently change macroscopic properties of the system,
which then impose new constraints on the species themselves. Thus, a holistic approach is
necessary for the derivation of ecological patterns at the ecosystem level (Gaedke, 1995).

However, the complexity of natural ecosystems does not allow the consideration of ecosystem
dynamics in its entirety, forcing one to abstract from the particular situation under study.
Therefore, ecosystem dynamics should be studied from as many angles as possible. This task
is facilitated by the use of conceptual and mathematical models. Models, as simplified
description of the real world, will portray distinct features of the natural systems they are
designed to study. Hence, mathematical models are essential in promoting an increased
understanding of the dynamics of the ocean ecosystem. Models are designed to either
reproduce observed biological patterns in particular ecosystems, or to predict the effects of
environmental fluctuations on the temporal and spatial dynamics of the structure and function of
the ecosystems they describe.

One of the predominant patterns in phytoplankton ecology is a shifting in the size distribution of
phytoplankton communities as one moves from the nutrient-rich coastal waters to the
oligotrophic open ocean: small cells dominate the open seas. The size structure of the
phytoplankton community dictates the composition and structure of the rest of the food web.
The main objective of this work is to contribute to the development of models and a theoretical
framework for analyzing the causes and consequences of the size structure of phytoplankton
communities, which is a relatively conservative property of the ocean ecosystem.

In order to assist the reader in navigating the contents of this work, an explanation of the thesis
layout is provided. Chapter 2 begins with a historical presentation of marine ecosystem
modeling and its relevance to understanding ecosystem dynamics. A presentation of the
relevance of size as an ecological parameter is followed by a historical review of the progress of
size distribution models. | then continue to present the two main theoretical modeling
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approaches used to explain the size structure of planktonic ecosystems: biomass distribution
models and individual-based models. Chapter 2 ends with a review of size-structured dynamic
simulation models (size as an aggregation scheme).

In chapter 3, a theoretical biomass spectrum model is documented. The model describes the
flow of biomass in planktonic ecosystems. The phytoplankton and zooplankton communities are
classified according to organism size, allowing the derivation of biomass spectra from the
model. A special case (simplification) of the general model is presented: distributed grazing
model (Armstrong, 1998). The model consists of multiple phytoplankton size classes and one
zooplankton compartment representing the totality of the herbivore community. A proposed
mathematical approach for the derivation of biomass spectra for this special case follows.

Chapter 4 provides a detailed description of dynamic simulation models and their application for
analyzing the size structure of planktonic ecosystems. As a reference, simulations using a basic
nutrient-phytoplankton-zooplankton model are presented, along with a theoretical steady state
analysis for this system. A distributed grazing model is presented as the model of choice for
analyzing phytoplankton size structure. A general description of the mode! and justification for
choice of this model is followed by the presentation of dynamic simulations under different
allometric structures and nutrient enrichment scenarios. It is shown that the model provides a
natural and simple way of simulating the transient size structure under nutrient enrichment
scenarios. This will prove very useful in the analysis of the food web structure dynamics in large
scale enrichment processes, such as ocean fertilization.

In chapter 5, the primary conclusions of this work are summarized. Recommendations on future
research directions follow.
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Modeling the Size Structure of Planktonic Ecosystems
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INTRODUCTION

Marine biota account for almost half of the annual primary production of the planet and play an
important role in the control of climate and the atmosphere. They also play an important role in
the natural nutrient cycles of the ocean. Hence, a comprehensive understanding of the structure
and function of marine ecosystems is essential for predicting the development of community
structures and the functional responses of the system to changes in environmental conditions.
Mathematical models provide a feasible setting for analyzing the structure and function of
marine ecosystems from many different angles. Because they are simplified descriptions of the
real world, there is no reason to expect any individual approach to be unequivocally right or
wrong. Methodologies based on biomass size distributions and dynamic simulation models are
presented in this chapter.

Plankton biomass has been found to be distributed in a continuous manner across entire ranges
of size classes. Specifically, observations show that the abundance of organisms per size class
is inversely proportional to their body weight. Sheldon et al. (1972) observed that particle
concentrations (in ppm, by volume) were uniformly distributed when the data were grouped in
logarithmic size intervals, with some indication of a decrease in concentration with increasing
logarithmic intervals of organism size. The size structure of the phytoplankton community
dictates the composition and structure of the rest of the food web. This chapter reviews the
relevance of size distributions in the analysis of planktonic ecosystems. A description of the two
main theories for explaining the size distributions observed in pelagic ecosystems, as well as a

presentation of the applications of size as an aggregation scheme in simulation models, follows.

BACKGROUND

Marine ecosystem modeling

The initial work in modeling marine ecosystems was carried out by Riley et al. (1949) and Steele
(1958). Since then many models have been developed and published and it is only possible
here to refer to a few of these. Interest in the analysis of upwelling zones lead to the
development of models to simulate the population dynamics of those systems. As an example,
the international programs investigating coastal upwelling zones during the 1970s stimulated the
development of a number of successful models (Wrobleski, 1977, 1980). Another area of
interest for oceanographers during this period was the understanding of the processes
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maintaining the deep chlorophyll maximum in oligotrophic waters. The models developed by
Jamart et al. (1977, 1979) and Kiefer and Kremer (1981) are the most representative.

Most of the earlier models tended to concentrate on the interaction of phytoplankton and
zooplankton only. During the 1980s biological oceanographers became aware of the importance
of small organisms, such as picophytoplankton and bacteria, and the organisms that feed on
them, such as protozoa (Fasham, 1993). The new awareness of the importance of microbial
processes in the analysis of nutrient and plankton dynamics lead to the development of more
holistic models that attempt to embrace the totality of knowledge of the components of
planktonic ecosystems and the flows of mass and energy between these components. Williams
(1981) provided the background for plankton dynamics models incorporating bacteria,
protozoans and dissolved organic carbon. The first model to investigate quantitatively the
importance of these findings was the one developed by Pace et al (1984). They presented
results from a full simulation model incorporating a larger number of groups of organisms and
flows than those included in previous models. This model included physical forcing
parameterized in the form of variable nutrient inputs. Later Evans and Parslow (1985)
emphasized the importance of studying annual cycles, and demonstrated how different cycles of
mixed layer depth could give rise to qualitatively different biological cycles. Their phytoplankton-
zooplankton-nutrient dynamics model showed how the seasonal recurrence of plankton cycles,
in particular the spring bloom, is driven by the interaction of physical mixing with removal by
grazers.

All the models referred to so far use deterministic differential equations to describe ecosystem
dynamics. Fasham (1977) and Kremer (1983) explored stochastic approaches as an approach
for modeling marine ecosystem dynamics, in attempts to account for the high variability
characteristic of these systems. Lagrangian (following the water motion) modeis have been
used (Wolf and Woods, 1988) to simulate the light-dependent growth of phytoplankton. They
point out that the historical trajectories of phytoplankton within the turbulent mixed layer are a
critical factor in the phytoplankton growth. The Lagrangian model involved solving the
phytoplankton growth equations for each particle, and the subsequent derivation of the
phytoplankton vertical distribution. In the following section, | provide a background on the
historical progress of planktonic size distribution models.
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Size Distribution Models

Elton (1927) formulated all of the principles on which the modern theory of size distribution in
pelagic ecosystems is based. He noted that smaller organisms are much more abundant than
larger organisms and characterized this as the “pyramid of numbers”. He also stated that
elemental food chains comprising the food web are arranged in order of increasing organism
size, with the result that the general flow of biomass and energy in the community is from
smaller organisms to larger ones. A remarkable feature of Elton’s work was that he introduced
all the ideas and concepts on organism size in an attempt to simplify the complexity of
ecological communities (Platt, 1985). Kerr (1974) developed a theoretical model based on
trophic processes, to explain the observed regularities in the size composition of pelagic
ecosystems. The model assumes that prey and predator sizes are related and that growth and
metabolism satisfy similar functions of arganism size when averaged over entire trophic levels.
Later, Fenchel (1974) quantified (in operational form) the size-dependence of respiration and
growth rate, completing all the necessary pieces for the development of a theory of organism
size distribution in the pelagic ecosystem (Platt, 1985).

Allometric relationships between body size and weight-specific process rates enable a rough
prediction of community metabolic properties from body mass (size). According to allometric
theory, diverse sets of characteristics of organisms scale with body size. The metabolic activity
or specific rate process R, e.g. respiration or growth rate, may be estimated from the biomass,
W by using the equation R = aW’, where a and b are constants. This relationship seems to hold
for a diversity of processes among unrelated organisms. The mass-specific value of b is relative
constant (-0.25) for large data sets covering broad size ranges and for a variety of physiological
processes. The constant a, on the other hand, is variable and depends on the physiological
process under consideration (e.g. respiration or production). Furthermore, its value may differ
across major taxonomic groups.

Organism size (in pelagic ecosystems) gains additional predictive power at the community level
since body size and trophic position are related to each other (i.e.. autotrophs tend to be smaller
than heterotrophs and predators tend to be larger than their prey). The close relationship
between body size and physiological and ecological features allows prediction of the
abundance, metabolic activity, seasonal variability, reaction time to external perturbations, and
other ecosystem attributes, from organism size. In addition, the allometric approach can be
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used to parameterize dynamic simulation models for regions where direct measurements of

process rates are scarce.

There have been few attempts to develop truly dynamic models for size distributions that would
allow a dynamic representation of the pelagic biomass spectrum (Gaedke, 1995). In most
cases, size has been used as an aggregation scheme in dynamic simulation models. Figure 2-1
shows a classification of size distribution models. They are divided into theoretical models,
attempting to explain the causes of the size distribution and reproduce mathematically, and
size-dependent models that are developed using the size distribution theory as an underlying
assumption. The theoretical models are divided in biomass distribution models (Platt and co-
workers’ spectrum theory models) and individual-based models (Kiefer and Berwald’s random
encounter model). The size-dependent models are divided into steady state and dynamic
simulation models. The following section provides a description of two of the main size-based
modeling approaches used to study the structure and function of pelagic ecosystems: size
distribution models and size-dependent dynamic simulation models.

THEORIES OF SIZE DISTRIBUTION

Biomass Distribution Models

Population dynamics theory based on analysis of species (taxonomy) and stages can not be
applied practically to natural planktonic communities (Zhou and Huntley, 1997). Models of
population dynamics based on taxa and organism stages require separate determination of
individual metabolic rates for each species and stage, making the approach impractical.
Biomass spectrum theory is presented as an alternative perspective, based on the classification
of plankton on the basis of size alone so that both individual and community changes can be
estimated from allometrically-scaled rates.

interest in understanding the size distribution characteristic to the pelagic ecosystem has
resulted in the development of theoretical biomass spectrum models, characterized by the
description of a continuous flow of biomass or energy from smaller to larger organisms. These
models are based on allometric relationships between organism size and metabolic processes,
and have been used mostly as tools to attempt to explain the continuity and regularity of the
shape biomass size distributions in pelagic ecosystems (Gaedke, 1995). The models use the
correlation between body size and trophic position and describe a mostly continuous flow of
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SIZE
DISTRIBUTION
MODELS '
Theoretical Size Structured
Models Compartment
Models
Biomass individual Steady Dynamic
Distribution based State Simulation
Models models Models Models

Figure 2-1. Size distribution models in plankton ecology. Theoretical models represent those
derived to explain the size distribution of organisms in planktonic ecosystems. Size structured
compartment models represerit those developed using the size distribution theory as an
underlying assumption.
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matter from small to larger organisms. Allometric relationships allow the estimation of
contributions to metabolic processes like production and respiration. Analysis of the size
distributions of species abundance and biomass can provide information on the structural and
energetic aspects of the pelagic ecosystem.

Biomass size distributions are constructed by allocating all organisms into logarithmically
spaced size classes according to their individual body weight (or size)} and summing up the
biomass in each weight (size) class. Spectra developed for the ocean ecosystem from
observational data show regularity in the continuous distribution of biomass across the entire
range of logarithmic classes. This regularity implies that the abundance of organisms per size
class is inversely proportional to their body weight, which enables an estimate of the minimum
counting volumes required to assess abundance of all size categories with equal accuracy.
Hence, the generalizing capacity of body size can be used to reduce the enormous complexity
of pelagic food webs in aquatic ecosystems.

The slope of biomass size distributions provides insight into the energy flow and transfer
efficiency along the size gradient in complex pelagic food webs. This information is obtained
without the necessity to define distinct trophic levels or to distinguish taxonomic groups, as long
as the size range under consideration is sufficiently broad to justify the assumption of an energy
flow along the size gradient. Trophic transfer efficiencies may be derived from the slope of the
biomass spectrum if average predator-prey ratios can be estimated. Among other applications,
this technique may provide rough predictions of potential fish yield from plankton
measurements.

Platt and Denman (1978) derived a steady-state theory for the distribution of organisms by size
in the pelagic zone of the open ocean. The theory was founded on large bodies of research that
suggested the size-dependence of physiclogical processes. The theory developed was
independent of the trophic level concept and explored the flow of biomass from smallest to
largest organism through a series of size classes arranged on an octave scale, for operational
convenience (data collection). They defined the biomass spectrum as b(w), characterized by the
arrangement of the nominal weights in an increasing octave scale such that the nominal weight
for each size class is double that of the previous class. The biomass spectrum has units [ML™)]
and the independent variable is the weight of an individual organism. They then defined the
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normalized spectrum, S(w), as b(w)/w, such that it is integrable over w. The main objective of

their work was to examine the flow of biomass from smaller to larger organisms, F(w)

(1) F(w) = glw)w , where {w) is the turnover time
ow)

(2) (w) = Aw", where A and x are constants

The general expression for the biomass flow is then

@) Fw=A"pww"™

By conservation of flux and by including the processes of respiration and losses to the detritus
food chain, Platt and Denman derive a general expression for the unnormalized spectrum

(4) b(w) = (Wiw,)***? , where ais an allometric constant
Wo and q represents the losses through inefficient feeding

By using parameters from the published literature they calculated the theoretical unnormalized
biomass spectrum and recovered, from the spectral shape obtained, the fact that biomass
decreases in regular manner with increasing size.

As a continuation of the work of Platt and Denman (1978), Silvert and Platt (1978) derived a
time-dependent equation for the size structure of the pelagic food chain, based on quantitative
relationships for the weight dependence of metabolism and growth. The normalized spectrum is
represented as a function of time, g(w,f), and represents the density of particles of a given size
w at time t. The unnormalized spectrum, b(w,?), is given now by g(w,t)dw, and represents the
mass of particles per unit volume in the interval of sizes between w and w+dw at time t. By
defining a continuous growth function they derive a generalization of the steady-state biomass
spectrum theory, obtaining a dynamic representation of the normalized biomass spectrum,
given by

(6)) Bw,b) = B(W,,0) Lo(w)
Bo(Wo)
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The main advantage of this new dynamic representation is that any peaks in the biomass
spectrum will propagate intact through the spectrum. in addition, with this model, the
independent variable, w, does not need to be measured in an octave scale.

Later, Silvert and Platt (1980) described the energy flow through a pelagic ecosystem by using a
nonlinear, time-dependent, and spatially inhomogeneous master equation. As in their previous
work, size was used as the main aggregation criteria. For organism description purposes, they
assumed that two particles could be regarded as identical if their ecological roles were similar
and if they were of the same size and at the same location. The model developed allocated
organisms in compartments defined such that all particles of a given typo which fall within a
specified size range and lie within a given volume of space are identified with the same
compartment and treated as equivalent. The possibility of differentiating organisms by type
(ecological role) represents an extension of the previous work of Platt and co-workers described
above, where all particles of the same size, regardless of their type, were treated as identical. In
this new model, three main categories were considered: plants, animals and detritus. Likewise,
all energy (or nutrient) sources and sinks are represented by compartments.

Silvert and Platt define b; as the energy content (combined biomass) of all particles in the #*
compartment. The principle of conservation of energy is expressed by

(6) ab =S, =4T;-T;) , where S,is the net rate of energy flow into
dt compartment i

T is the transfer rate (energy flow
between compartments)

For their analysis, Silvert and Platt considered two general classes of energy exchange
processes: energy exchange between compartments corresponding to very different particle
sizes, and energy exchange by transport of particles across the interface between adjacent
compartments. In the first group they analyze reproduction and predation processes, whereas in
the second group they include the effects of growth, advection and diffusion. Reproduction was
represented in the model by a linear function with no density-dependence, so its effect on the
dynamics of the model is much smalier than the effect of nonlinear terms (e.g. predation).
Predation is defined as all processes whereby particles are consumed by other particles, and its
representation is based on a generalization of Holling’s disc equation. Predation (in the model)
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is very important due to the dynamic effects caused by nonlinearity and feedback. Growth,
advection and diffusion are described by a continuous formulation.

Silvert and Platt derived two formulations for their model: a linear and a quadratic
representation. For the model in its linear form, the growth term was assumed to be
independent of the biomass density function, g, and the source term was assumed to be linear
in 8. The static form of the linear model equation was derived and solved by Platt and Denman
(1978) and the linear dynamic model by Silvert and Platt (1978). The linear model does not
include feedback and cannot reflect density-dependent effects and predator-prey cycles.
However, it does illustrate some of the main characteristics of pelagic ecosystems close to
steady state.

For the model in its quadratic representation, they assumed that all terms but the time derivative
are of second order in 5. Since reproduction is a linear flow term it is ignored and ail mortality is
“attributed” to predation in the mathematical representation of the model. The model equation is
homogeneous and of second order

) PB=-w S (BG) -2, where G =g/ (specific growth rate)
ot w Z = predation function (loss term)

In general, the model described by Silvert and Platt to describe the energy flux through the
pelagic ecosystem consist of two main components. The first component describes the forcing
of the system through primary productivity, i.e. the input of photosynthetically produced material
at the small-particle end of the biomass distribution. The second leading component of the
master equation is predation, and can be written in terms of the relative sizes of interacting
organisms (size selectivity of feeding). The food web structure described by the model is
represented then by a transition matrix whose elements express the probability that an
organism of a given size will prey on an organism of another size. The formalism described by
the model is applicable to discrete and limited parts of the size distribution and not limited to
whole ecosystem representations.
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Individual-Based Models

Kiefer and Berwald (1992) developed a random encounter model for the microbial planktonic
community as an alternative hypothesis to explain the size distribution features in planktonic
organisms. Traditionally, the monotonical decrease of biomass with increasing size has been
interpreted to be the result of allometric control of growth and respiration rates. Kiefer and
Berwald argue that the traditional size distribution theory developed by Platt and co-workers is
very general and does not provide sufficient insight into the dynamics of microbial populations,
given that they are based on the principle of conservation of energy and assume steady state
conditions.

The “random encounter” hypothesis is based on the assumption that the size distribution of cells
results from size-selective predation in an environment where populations swim randomly
through the water, encountering both prey and predators. Kiefer and Berwald argue that the
steady state flow of material through the micraobial food web, as well as the size distribution, are
determined by the random encounter of predator and prey populations. Finally, they argue that
the mathematical model derived explains the fourth power dependence of the frequency of cell
size.

They start by defining the differential size distribution of particles, F(D), as the concentration of
particles within an infinitesimal band at diameter D. By integration F(D) between the limits of the
bandwidth, D,,, and D,,.,, they calculate N(D}, defined as the numeric concentration of cells in a
bandwidth from D to D+dD. For marine particles, the differential size distribution has generally
been described by a hyperbolic function of the form F(D) = aD™, with b having a value of four.
This phenomenon is described as the fourth power dependency of the frequency of cell size and
has been noted by numerous scientists (Sheldon et al. 1972).

In their presentation, Kiefer and Berwald assume that microbial cells are spherical and start by
considering a population of phagotrophic protozoans of diameter D, and differential
concentration F(D,). As these cells move randomly through the water they encounter and
consume prey of size class 1 with range of diameters (D, , D1max). The range of cell sizes in
this prey class is determined by the ability of size class two cells to ingest them. In addition, the
population of cells of size class two encounters predators of size class three with range of
diameters (Damin , Dsmax). Similarly, the range of cell sizes in size class three is determined by
their ability to ingest cells in the population of cells of size class two. The rate of ingestion, F, is
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defined as the total rate of encounter of population two with prey multiplied by the mass of an
individual prey item. Likewise, the rate of biomass loss through predation, F,”, is defined as the
total rate of encounter of population two with predators muiltiplied by the mass of an individual
within the size class two population. Under steady state conditions, the ingestion rate of prey
must balance the losses to predation and those caused by consumption inefficiencies

(8) Fi = F.f + F,", where F,f accounts for the excretion and egestion losses

By defining the ingestion and predation components in terms of the mean clearance rate, Kiefer
and Berwald derive a steady state expression in terms of the population’s specific rates of
growth, s, and mortality, w.. At steady state, 1, = w,. Assuming no biochemical selectivity of
predation, they define the individual clearance rate as the encounter rate, Z,. They use the
formulation derived by Gerritsen and Strickler (1977) for the rate of encounter of prey by an
individual predator

9) Zp=_x RP*N(Dy) vi*+ 3 v’ , where v, is the speed of the prey

Vo v, is the speed of the predator
R is the radius of the encounter sphere

y4
3

Kiefer and Berwald then derived expressions for the mean clearance rate for a predator of
constant diameter D, feeding on prey of variable diameter D,, and for the predator’s predator
with a variable diameter D and feeding on prey of constant diameter D,. Based on observed
distributions of clearance they used a theoretical optimum in prey cell size, characterized by a
normal distribution, n(D;, D;), where larger and smaller cells are less effectively captured by a
predator of a given size. Using the expressions for the clearance rate, they derive an expression
for the specific rate of mortality, w,, in which the capture efficiency is the only term that depends
on the cell size of the prey and predator populations.

As an extension of the previous analysis, Kiefer and Berwald continue by including
nonphagotrophic populations, e.g. phytoplankton, in their random encounter model. For the
nonphagotrophic cells encounter with cells of another species is never beneficial (figure 2-2).
The nonphagotrophic population is included in the same size class as the phagotrophic
population of size class two in their initial case. The phytoplankton population will consume
nutrients, N, and will experience losses by grazing from the phagotrophic population of size
class three. For the phytoplankton population, the rate of replacement of individuals is not

28



Fz/' Fs/'

F2i' ; : F2i
F(D1)V(D1) p| FD2)V(D2i) | p| FD3)V(D3)

F2if

F2j' T
N7 roepvos)) |

Figure 2-2: Schematic diagram of trophic interactions in the random encounter model when
considering the existence of phytoplankton cells in size class 2 (modified from Kiefer and
Berwald, 1992). The phytoplankton community is represented by the shaded compartment in the
figure. Phytoplankton uptake nutrients and are subject to grazing from the larger size class of
phagotrophic organisms. The arrows represents the flows of biomass in the system.
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directly dependent on the concentration of cells of another size class, as is the case for the
phagotrophic populations. Instead, the rate of replacement for the phytoplankton community will
depend on the concentration of a limiting nutrient. The survival of the phytoplankton population
requires that it satisfy the steady state conditions for the specific rates of growth and mortality,
U2 = w,. By assuming that there is no chemical selection by predator between phago and
nonphagotrophic populations of the same size class, the ratio of specific growth rates of the two
populations is a function of the capture efficiencies and swimming speeds.

(10)  _uy =v," +3vs# , where j represents the nonphagotrophic population
Ha Vit +3vsf

Kiefer and Berwald argue that the expression for the ratio of specific growth rates shows that
the growth and death rates can be estimated from the random encounter of the organisms. The
main difference between the earlier hypothesis derived to explain the size distribution in the
microbial planktonic community and the random encounter hypothesis developed by Kiefer and
Berwald involves the treatment of the growth rate of populations. The earlier hypothesis is
based on the assumption that the specific growth rates of natural populations are uniquely
determined by cell size. The random encounter hypothesis ignores empirical allometry and
establishes that the specific growth rate of phagotrophic populations is not only a function of cell
size but also a function of the assimilation rate. The specific growth rate of nonphagotrophic
populations was found to be “relatively” coupled to the specific growth rates of similarly sized
phagotrophic cells. Also, the random encounter model implies that the steady state growth rates
will tend to increase with increases in both prey and predator cell concentration.

in addition, Kiefer and Berwald argue that there exists a strong dependence of growth and
respiration rates on nutrient and food supply, whereas there is little evidence of dependence of
rates on cell size. They state that for phytoplankton and bacteria species, the growth rates of
many larger species are faster than those of smaller species. Finally, the random encounter
hypothesis ignores the changes in size of individuals and instead focuses on trophic exchange.
Based on their analysis and the results of the model developed, Kiefer and Berwald propose
that the size distribution of single cells in the ocean is not the result of allometric constraints on
metabolism but a consequence of random encounter of prey and predator organisms.
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SIZE-STRUCTURED DYNAMIC SIMULATION MODELS

Dynamic simulation models have been used extensively in modeling marine ecosystems due to
their unique ability to study the dynamic nature, spatio-temporal organization, direct and indirect
cause-effect relationships, and impact of physical forcing on the ecosystem. These models
describe explicitly the major dynamics between the important functional groups and with abiotic
processes in a particular ecosystem. They are based on non-linear systems of coupled
differential or difference equations that have to be solved numerically. Examples include the
models developed by Fasham et al (1990) and Moloney and Filed (1991). As with all modeling
approaches the principal aim is not a perfect reproduction of the natural system, but to reduce
the complexity of ecosystems to a degree that allows analysis.

Dynamic simulation models can be classified in two main categories: those aiming to reproduce
natural patterns observed in a particular ecosystem and those designed to derive predictions
from the experience on which their development is based. The latter are used to predict the
response of the system to environmental changes, e.g. ocean fertilization. The main advantages
of dynamic simulation models include the possibility of studying the dynamic nature and spatio-
temporal structure, which are of great relevance in the analysis of ecosystems (Gaedke, 1995).
Dynamic simulation models represent a coherent way to analyze cause-effect relationships in
ecosystems. Their predictive power, however, is limited to a great extent by the large number of
parameters usually required, that introduce numerous assumptions and uncertainties. In
addition, the existence of positive feedback mechanisms and the chaotic nature of many
ecological processes further diminish the predictive ability of these models.

Planktonic ecosystems are commonly described by compartmental models where each
compartment represents a trophic level or taxonomic group (Moloney and Field, 1991).
Compartmental models range in complexity from the most basic NPZ models to connected food
webs like the one described by Fasham et al (1990). Such models represent the standing
stocks and interactions between the compartments. The compartments most commonly used
are phytoplankton, zooplankton and nutrients. When these models are used as the basis for
dynamic simulation models a number of problems are encountered. For example, by lumping all
phytoplankton size classes with widely disparate metabolic rates in one single compartment,
inappropriate rate parameters are commonly used. A logic solution would be to divide the main
compartments in subdivisions representing different taxonomic groups. However, the complexity
of aquatic ecosystems would require extensive subdivision of the main compartments in order to
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produce more realistic results. As complexity is added to the models, parameter estimation
becomes increasingly more difficult. In addition, the ability to analyze the significance of the
different ecological interactions described by the models is obscured by this added complexity
(Armstrong, 1998). This is the most commonly encountered problem for species or trophic level
compartment models (Moloney and Field, 1991).

An alternative approach is to develop models based on general ecological principles. Organism
size has been identified as a valid scaling factor in the analysis of metabolic processes and
ecological interactions in pelagic ecosystems. The structure of planktonic ecosystems is largely
dependent on organism size (Sheldon et al., 1972; Platt and Denman, 1978; Silvert and Platt,
1980). In addition, rates of many metabolic processes are size-dependent (Moloney and Field,
1989; Chisholm, 1992). The use of size as an independent ecological criterion for estimating
many ecological and metabolic parameters obviates the parameter estimation problems
discussed above. The realization of the predictive power of organism size for physiological and
ecological properties has lead to the use of organism size as an aggregation scheme in
dynamic simulation models for planktonic ecosystems. Two main approaches have been used
to reproduce and predict planktonic size distributions: steady state models and dynamic
simulation models.

Armstrong (1994) proposed two steady state models: parallel independent food chains and
“connected” food web. The phytoplankton and zooplankton communities were divided according
to size, and the parameter values for the size classes were derived using allometric relations,
with smaller size classes growing more rapidly and being consumed more rapidly than larger
size classes. In this model, total nutrient in the system was increased and phytoplankton and
zooplankton “invade” the system sequentially, starting with the smallest size classes. The
resulting pattern was one of equal biomass in equal logarithmic size categories where total
phytoplankton biomass increases by the addition of larger size classes rather than through
biomass increases in existing size classes (Armstrong, 1994). This model is effective at
describing steady state conditions but is problematic for fitting non steady state data. Armstrong
(1994) proposed the connected food web as an alternative to overcome this problem. However,
the resulting model presents a new problem: the set of species that will be present at a given
nutrient loading becomes extremely sensitive to choices of parameter values and food web
structure (Armstrong et al. 1994).
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Perhaps the best example of a complex dynamic simulation size-dependent model for
planktonic ecosystems is the one developed by Moloney and Field, 1991. The model is
represented by compartments organized along a gradient of organism size. The model is
comprised of three phytoplankton and zooplankton size classes, bacteria, and nutrients. The
equations for the model compartments are parameterized using allometric relationships. The
size-based simulation describes the carbon and nitrogen flows in plankton ecosystems. In
contrast to size-based energy flow models (Silvert and Platt, 1980), this model simulates the
flows of carbon and nitrogen in the ecosystem.

Moloney and Field argue that the model has several clear advantages over size-independent
models such as the one developed by Fasham et al. (1990). One of the main problems in the
Fasham et al. model comes from the parameterization of zooplankton grazing on multiple
resources by means of feeding preferences. The assumption that zooplankton grazing on
zooplankton is a size-dependent process obviates that problem: zooplankton graze on their
“corresponding” phytoplankion size class. However, the chosen web structure and the imposed
grazing limitations are not necessarily representative of actual trophodynamics in a real
ecosystem. A more realistic approach would be to allow zooplankton to graze on all equivalent
or smaller phytoplankton size classes.

To illustrate the applicability of their model, Moloney and Field simulate the responses of
plankton ecosystems to upwelling events. The main goal of the model was to simulate the
general features and processes of planktonic ecosystems. Moloney and Field argue that this
model represents a first step toward the development of a “generic model” for the dynamics of
plankton communities. They argue that the use of size as the independent criterion for
classifying planktonic communities allows the systematic estimation of parameters for an
unlimited number of size classes. They also state that the model can be applied to the analysis
of different environments by changing the parameter values and the input biomass spectrum.
However, the “migration” of the model into different ecosystems requires access to a
considerable database on plankton size distribution, trophic interactions, and the size
dependence of rates and processes.

Finally, they argue that the model structure can be changed to include additional compartments
(nutrients, micronutrients, or additional size classes) for added realism. Again, the added

complexity translates in greater data requirements, larger sensitivity to parameter values, and
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added difficulty in understanding the contribution of the different ecological processes described
in the model. As a resuit of the problems embedded in dynamic simulation models like the one
derived by Moloney and Field, Armstrong (1998) proposes the use of a distributed grazing
model for analyzing plankton population dynamics (refer to Chapter 4).

More recently, Gin et al. (1998) developed a theoretical model to test hypotheses regarding size
structure of plankton communities and their response to perturbations in the environment. They
argue that increased understanding of changes in size structure in response to environmental
perturbations will be relevant in the analysis of fisheries yields and of the trophic state of
ecosystems. The model includes seven size classes of phytoplankton, zooplankton, and nitrate,
ammonium, particulate organic nitrogen, and dissolved organic nitrogen. The flows and standing
stocks of the different model compartments are driven by external forcing functions, such as
light availability and seasonal changes in the vertical structure of the water column. The model
was used to simulate the phytoplankton size structure in oligotrophic waters in the Sargasso
Sea (BATS). The model is an extension of previous size-based models for the region (Hurtt and
Armstrong, 1996). It includes the modeling of the seasonal and depth variation of size spectra,
and the results were tested against more recently acquired size spectral data from the BATS
station (Gin, 1996). in addition, the model was applied to a mesotrophic coastal ecosystem in
Massachusetts Bay. Gin et al. (1998) found that the model was reasonably successfully applied
to two very different ecosystems (oligotrophic and eutrophic). This resuit supports the theory
that models based on objective estimators of ecological parameters, such as size, can be
effectively used to test hypotheses regarding the structure and function of diverse marine
ecosystems.
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Chapter 3

Biomass Spectrum Model
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INTRODUCTION

The large body of published work dealing with the size dependence of physiological processes
and abundance in planktonic ecosystems constitutes the main foundation for the development
of a theory of the biomass size distribution. This chapter presents the derivation of a “general”
biomass spectrum model that characterizes the flow of biomass in pelagic ecosystems. The
model represents the size distribution of organisms and their interactions in a dynamic and
continuous way. The analysis is based on organism size as the main variable, but the separate
representation of the phytoplankton and zooplankton communities allows the consideration of
population dynamics (trophic interactions) in the analysis of the biomass flow between
planktonic organisms. The representation of biomass as a function of size allows the derivation
of the phytoplankton and zooplankton spectrums from the biomass spectrum model derived.

BIOMASS SPECTRUM MODEL

Mathematical Description

We first define a mathematical representation for the fiow of biomass in the ecosystem based
on the biomass concentration within discrete compartments of phytoplankton and zooplankton,
organized according to organism size. We then derive a continuous form for the biomass flow
within the phytoplankton and zooplankton communities that aliows for the derivation of biomass
spectra.

We start by defining the phytoplankton biomass spectrum, ofs, t), as a function of organism
size, s, and time, t. Size is defined as a continuous variable and organisms are classified in size
classes of width 4s. The total phytoplankton biomass in the size range (s, s+4s), P(s, 4s, t), has
units [mass Alength’], and is defined as

(1) P(s, 4s, t) = p(s,t) 4s, where As is the size class width [length], and
p(s, t) is the phytoplankton biomass spectrum [mass Aength?]

An equivalent definition applies to the total zooplankton biomass spectrum, ({s, ), derived from

(2) Z(s, 4s, 1) = ([s, 1) 4s, where As is the size class width [length], and
(s, ) is the zooplankton biomass spectrum [mass Alength’]
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The total phytoplankton biomass in the system, P+ (t), can then be defined by
(3  Prt) = fofs.tids

Similarly, the total zooplankton biomass in the system, Z(t), is defined by

@) )= fis.yds

The nutrient concentration, N(t), has no size dependency and is only dependent on time.

As explained in the introduction, the model will represent the trophic interactions within the
planktonic community. For this, | start by using the general expressions for a simple NPZ
(nutrients/phytoplankton/zooplankton) model, described by the general differential equations,

(%) dN = input + regeneration - uptake
dt

(6) dP = growth — grazing - loss
dt

(7) dZ = growth — predation - loss
dt

where N, P and Z represent nutnent concentration, phytoplankton biomass and
zooplankton biomass, respectively

The trophic interactions described by this system of coupled differential equations represent
those most commonly used in the development of basic plankton models. The regeneration
term in the nutrient equation accounts for the recycling of phytoplankton and zooplankton. The
loss term in the phytoplankton equation accounts for loss of biomass by means other than
grazing, e.g. natural death, respiration, sinking, etc. The predation term in the zooplankton
equation accounts for predation from higher trophic level organisms, where as the loss term
accounts for losses by mechanisms other than predation, e.g. respiration.

Three compartments can represent the general plankton model: nutrient (N), phytoplankton (P),
and zooplankton (Z), as seen in figure 3-1. By defining Q; as the flux from compartment i to
compartment j , with units [mass/length®time], and including size as a variable for phytoplankton
and zooplankton, we can represent the mass balance for each of the three
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Figure 3-1: “General” biomass spectrum model The compartments (“boxes”) in the diagram
represent biomass and the arrows represent the flows of biomass from one compartment to
another. The phytoplankton and zooplankton compartments represent the continuum of all sizes
of phytoplankton and zooplankton. They represent the whole communities and not individual
taxa. The nutrient input function, f, represents the flow of nutrients into the system from a
substrate nutrient source. The nutrient regeneration pathways (for phytoplankton and
zooplankton losses) are shown as the dotted lines in the diagram.
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compartments in the model. The phytoplankton and zooplankton compartments in figure 3-1
represent the whole phytoplankton and zooplankton communities, respectively, and not
particular taxa. Using the biomass flux notation presented in figure 3-1, we can construct a new
set of differential equations for the system, where phytoplankton and zooplankton biomass and
fluxes are size-dependent. The phytoplankton and zooplankton equations represent their

respective biomass in the size range (s, s+4s).

G %;_\_IIIL = ¢(0) + Qzn(t) + Qen(t) - Que(®)

(9) _(_5_(,0(8, t)AS) = QNP(sr As: t) - QPZ(S: 4s, t) - QPN(S} 4s, t)
ot

(10)  _3(<(s), 0)4s) = QeAS), 48, 1) + Qzz(S', 48, 1) - Qzz(S’, 4S', 1) - Qzn(S’, 48, 1) - Qze(S), AS', 1)
o

The set of initial conditions s, t,), (s, t,), and N(t,) needs to be known to analyze the
dynamics of the system. We now develop mathematical definitions for the biomass fluxes of the
system. Note that the zooplankton equation includes additional terms describing size-based
predation (positive and negative) within the zooplankton community. Zooplankton growth is
represented by grazing on phytoplankton and by a positive predation term describing the effect
of predation on smaller zooplankton. Predation on zooplankton is represented by the traditional
closure term (higher predation), and by a negative predation term describing the effect of
predation from larger zooplankton. The trophic interactions in the system are based on two main
assumptions: all phytoplankton grow by the uptake of nutrient from a common nutrient pool; and
all zooplankton graze on all phytoplankton of equivalent or smaller size, and on all smailer
zooplankton. This implies that zooplankton grow by the grazing on phytoplankton and the
predation on smaller zooplankton, but are at the same time subject to predation from larger
zooplankton.

Table 3-1 presents the definition and mathematical representation for all the biomass fluxes in
the system. As described above, it is assumed that trophic interactions are dependent on the
size of the interacting organisms. The biomass fluxes presented in table 3-1 are determined by
functions describing the different metabolic processes involved in the trophic interactions that

43



Table 3-1: Biomass flux definitions and mathematical representations for the “general” biomass spectrum
model. Phytoplankton size is represented by s and zooplankton size by s’. The sub-indices represent the
compartments between which the biomass is being transferred.

Mathematical Representation
()

Que(t) = % u(s)N(t)p(s;, t)as

Qpn(t) = ? Sp(s) p(s;, t) As

Qzn(t) = X 8z(si) Ci.(Ss, t) As’

Qnp(s, As, 1) = u(s) N(t) p(s, t) As

Qpz(s, As, t) = Zi)g(s, s’} p(s,t)As {(s/, 1) AS’
Qpn(s, As, t) = 8p(8) p(s, t) As

Qpz(s', AS', ) = % 9(s, 8) p(s;, )As C(s', 1) AS’
Qzz(s', As', t) = 5_,;( h(s, s') {(sk, 1)As (s, t) AS’
Qz/(s', As', 1) = %: h(s’, 8) {(s',1)As' {(sp, t) As
Qzn(s', As', t) = 8,(8) G(s', t)AS’

Qzc(s’, As’, t) = ¢(s') £(s', HAS’

Definition
Nutrient input from mixing

Nutrient uptake by phytoplankton community

Nutrient input from total phytoplankton
community losses

Nutrient input from total zooplankton
community losses

Growth for phytoplankton of size s
Total grazing from equivalent or farger
zooplankton on phytoplankton of size s

Losses (other than grazing) for
phytoplankton of size s

Grazing of zooplankton of size s’ on all
equivalent or smaller phytoplankton

Predation of zooplankton of size s’ on all
smaller zooplankton

Total predation from larger zooplankton on
zooplankton of size s’

Losses (other than zooplankton predation) for
zooplankton of size s’

Losses to higher predation for zooplankton of
size §
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characterize the system. The functions’ notation and respective descriptions are presented in
table 3-2. By substituting the flow terms (table 3-1) in the model equations presented above we
obtain general equations for the model based on discrete size classes for the phytoplankton and
zooplankton communities,

(11)  dNt) = @t - 2 u(s)Ntp(s; )as + 2:(s)p(s; HAs + 26:(5/){(s, Has’
dt j j i

(12) & p(s, )as = u(s)N(tp(s, t)4s - 29(s, $)p(s,) 4SS/, DAS’ - 5p(S)p(s, t)As
&t i

(13) & {(s), a8’ = 2 g(s, §) p(s, 1)As L[S, 1) AS’ + Z h(s, §) {{(Sk t)As ([s', t) 45" -
& Ji k

2 h(s’, 8) {(8,0) 48’ LSy, 1) 45 - 5(8) {{(s', ) AS’ - ¢(S)) {[s), AS’
n

To express the model in terms of continuous equations (continuous description of size and
biomass flow) we calculate the limits of the equations as As and As’ tend to zero. We then
obtain a set of three general equations for the model. The integro-differential equations
describing the ecosystem dynamics are

Nutrient Equation
Spmax Spmax Szmax
MO = 4t)- " TuNGpsas + [ S(S)pls s + [ G(s)L(s, s’ (14)
ot Spmin Spmin Szmin
Phytoplankton Equation
5,0(S,t) - Szmax(s) , s s
= u(s)N{tp(s, t) - f g(s,8)p(s, )(s’0)ds’ - de(S)p(s,1) (15)
dt Szmin(s)
Zooplankton Equation
s, ¢ Spmax(s’) Sz(s)
xsy o [ 9(sS)p(s (s’ 9ds +  h(s,s)dsHLS), s’ (16)
dt Spmin(s’) Sz(s)

[ s 0ets s - o)A, - B(S)S’

Sz'(s’)
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Table 3-2: Size-dependent metabolic and trophic interaction functions for the system biomass fluxes.
Phytoplankton size is represented by s and zooplankton size by s".

Notation Definition

u(s) nutrient uptake function for phytoplankton of size s

dp(s) loss function for phytoplankton of size s

5z(s’) foss function for zooplankton of size s’

g(s, s) grazing function for zooplankton of size s’ on phytoplankion of size s
h(s, s’) predation function for zooplankton of size s’ on zooplankton of size s
h(s', s) predation function for zoopiankton of size s on zooplankton of size s’
c(s’) higher predation (closure term) function on zooplankton of size s’

The limits of the integrals in the system are defined as follows. Spmin, Spmax, Szmin, @Nd Szmex
represent the minimum and maximum sizes of phytoplankton and zooplankton present in the
ecosystem. S,mins) @and Sznaxe represent the minimum and maximum sizes of zooplankton
grazing on phytoplankton of size S. Symins) @Nd  Spmex(s) represent the minimum and maximum
sizes of phytoplankton grazed upon by zooplankton of size s’. Sz and Sz, represent the
minimum and maximum sizes of zooplankton subject to predation by zooplankton of size s’.
Szzsy) and Szz, represent the minimum and maximum sizes of zooplankton preying on
zooplankton of size s'. The system of integro-differential equations describes an ecosystem in
which all trophic interactions are size-dependent. The grazing and predation processes are
based on the general assumption that all zooplankton graze on all phytoplankton of equivalent
or smaller size, and on all zooplankton of smaller size.

The generality of the biomass spectrum model presented allows the use of either allometric or
random encounter models to represent the size dependency in the system (refer to Chapter 3
for a description of both models). Given the size dependent parameters we should in principle
be able to solve the system for the steady state spectra, p*(s,t), {*(s’,t). First we need to define
functional forms for the biomass fluxes (uptake, grazing, predation and loss) and the metabolic
and trophic interaction functions. Then, we continue by establishing the size-dependence by the
use of an allometric or random encounter structure. The model equations can then be solved to
derive the continuous spectrum for phytoplankton and zooplankton.
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To solve for the steady state spectra we set the ordinary and partial derivatives equal to 0 and
solve the steady state equations for the steady state conditions for nutrient biomass, N*, and the
spectrum for phytoplankton, p*(s,f), and zooplankton, {*(s’,t). Approximate solutions for the
phytoplankton biomass spectra can be chosen. An example can be the use of a hyperbolic
function to describe plankton biomass spectra, since numerous scientists sampling
geographically diverse waters (Kiefer and Berwald, 1992) have noted hyperbolic distributions for
plankton biomass. The coefficients of the distribution function can then be estimated by using a
least-squares method.

Distributed Grazing Model

A model of “distributed grazing” was chosen as a special case of interest for analyzing the
generation of steady state biomass spectra from the general model described previously. The
model consists of multiple phytoplankton size classes and one zooplankton population
representative of the total grazing biomass in the system. Hence, size-dependence only applies
to phytoplankton biomass and the grazing function for zooplankton. The specifics regarding the
grazing distribution will be discussed later in the analysis. Refer to Chapter 4 to review a
discussion of the biological relevance of this model, as well as a presentation of different
allometric and nutrient enrichment simulation scenarios.

For simpilification purposes, | will assume that the phytoplankton community has no losses other
than those to the zooplankton community by grazing. | will also assume that the system is
closed, i.e. no nutrient input; in other words, the whole system is driven by recycled nutrients. |
also introduce the concept of grazing inefficiencies, represented by the use of the function g’in
the model. The inefficiencies in the grazing process imply that a fraction of the biomass grazed
is not transformed to zooplankton growth but lost in the feeding process. The general integro-
differential equations for this system are

dN( t) Spmax
—— = - [USINWp(s.Hds + &Z(Y) (17)
dt Spmin
IS = wNWp(s, B - gis)als, HZ(Y (18)
dt
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dzZ(t) : Spm}g(fg,(s)p(s’t)z(t)ds-EZZ(t) (19
dt

Spmin{(s’)

To analyze the system at steady state we set the ordinary and partial derivatives equal to 0,

obtaining
0 = -S”}"Z(s)zv(t)p(s, Hds + S,Z(Y (20)
Spmin
0 = u(s)N()-g(s)Z(t) (21)
Spmax(s’)
0 = f g'(s)p(s,t)ds - &z (22)

Spmin(s)

Following the hypothesis presented above that phytoplankton biomass spectra can be derived
from the model by assuming approximate solutions of the size structure, | define a hyperbolic

spectrum for the size dependent functions in the system.

(23)  u(s) = u,s"’
(24)  g(s) = g5’
(25)  g'(s) = g'0s”"
(26)  p(s,t) = pos”

it is assumed that all parameters of the hyperbolic distributions are known, except for those for
the phytoplankton biomass spectra function. Substituting the hyperbolic distributions in
equations (20), (21) and (22), we obtain a new set of equations characterized by the hyperbolic
distributions chosen

Spmax 1t 1
= - f U,S"'Nps7'ds + 85,2 (27)
Spmin
0 = us''N-g,89Z (28)
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Spmax(s’}

0= 7 957" pos”"ds - & (29)

Spmin(s’)

| assume that the hyperbolic coefficients for the phytoplankton growth and zooplankton grazing
functions are equivalent (u, = g,). This assumption is consistent with observational data and has
been used in previous theoretical analysis of plankton biomass distributions (Kiefer and
Berwald, 1992). Multiplying equation (28) by s’ and solving the integrals in equations (27) and
(29) we obtain a set of three steady state equations in four unknowns

0 had - ucpoN s p1+01+1 Sprnex + 5ZZ (30)
p1 +u 1 ,+ 1 Spm/'n
0 = uN-g.Z (31)
0 = Gopo8”9 " | S - (32)
PG+ 71 | Spmin

Solving equations (30) and (31) for Z and equating them, and then solving the result and
equation (32) for &; and equating them, | obtain

(@S9 pr+urt g+ 1)] =777 | s, (33)

g P

Spmv'n

By defining a=u,+1, b=p;, = g1+, G=0'o/Go, X=Spme, @NA Y= S,, @nd substituting in equation (33),

we obtain
XY = G ag+h (34)
X Yot ctb

Solving for b and calculating the roots of the resulting polynomial we can calculate p, if u,, @'y,
o 9o Spmax, AN Spmip. Once we calculate p; we substitute it in equation (29) and solve for p..
However, without any further information we can not solve for N and Z.

A similar approach for deriving the steady state phytoplankton biomass spectra consists in using
the same steady state conditions, described by equations (27), (28), and (29). If the size-
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dependent coefficients for the hyperbolic distributions for growth, grazing, zooplankton growth
efficiency are known, and the loss function for zooplankton is given, we can derive the spectra
by assuming a given steady state nutrient level. We then solve the system by calculating Z from
equation (28) and substituting in the nutrient equation (27) to obtain a system of two equations
in two unknowns, p; and p,. The calculation of the two unknowns completes the derivation of
the phytoplankton biomass spectra, under the assumption that it is represented by a hyperbolic
distribution. In this case, the assumption of growth equivalent to grazing is not necessary to
derive the phytoplankton biomass spectra.

The analysis presented above shows that the “general” biomass spectrum model developed
provides a natural way of deriving the phytoplankton biomass spectra from the size-dependent
trophic interactions of the ecosystem described. The analysis was carried out for the “distributed
grazing” special case but can be extended to the “general” model.
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Chapter 4

Size-Structured Dynamic Simulation Models
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INTRODUCTION

Models of nutrient cycles in the ocean are a very important tool for elucidating short- and long-
term patterns in chemical fluxes. This chapter presents a description and simulations for a basic
NPZ model and a “distributed grazing” size-dependent model. The most basic categorization for
ocean systems, and the most widely used (Franks et al .1986; Wroblesky et al. 1988; Evans
and Parslow 1985; Steele and Henderson 1992) has three components: nutrients (N),
phytoplankton (P), and grazing zooplankton (Z2). This model is a simplification of the biomass
spectrum model (Chapter 3) with no size-dependence given that the phytoplankton and
zooplankton compartments represent their respective communities in their entirety.

The structure of the general biomass spectrum model developed (Chapter 3) allows the
inclusion of either allometric or random encounter structures for the size-dependent rate
coefficients. The research objectives of the present study lead to the selection of allometric
theory for analyzing plankton population dynamics. This chapter presents the description and
results of a set of dynamic simulations carried out with a “distributed grazing” (discrete) size-
dependent model under different allometric structure and nutrient enrichment scenarios. This
alternative model structure consists of multiple phytoplankton size classes and one zooplankton
compartment representing the entire herbivore community. Grazing pressure is distributed
across phytoplankton size classes according to their relative biomass.

BASIC ‘NPZ’ MODEL

Background

The incredible complexity of the dynamics of plankton ecosystems limits the number of
taxonomic categories that can be feasibly used. The multiple interactions between taxonomic
categories in a planktonic food-web resuits in the need for many parameters, increasing the
data requirements and obscuring the mechanisms involved. In general, most models are limited
to about seven compartments (Fasham et al. 1990). It is argued that valuable results can still be
achieved using very simple systems. The nonlinearity of the dynamics of basic NPZ models has
made them a model of choice for many scientists interested in studying the dynamics of marine
plankton. Simple models such as these have a relatively long history (e.g. Riley, 1946). There
has been a recent revival of interest in their study in an attempt to simulate and predict the
fluxes of elements such as carbon and nitrogen at regional or global scales (Steele, 1984). The
relatively good agreement between models and observations (Steele and Henderson, 1992) is a
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measure of the validity of these simple compartment models and of their simplifying

assumptions.

General Description

The model consists of three components: nutrients (N), phytoplankton (P), and grazing
zooplankton (Z) (figure 4-1). The model is driven by physical processes, such as mixing or
upwelling, that introduce nutrients into the system and are closed at the upper level by some
loss of zooplankton. In the model, nutrients are regarded as a third variable and are introduced
to the system by some physical supply function. The system represented is driven by a single
limiting nutrient, N.

Mathematical Representation
The biomass flows for the NPZ model can be expressed by a system of coupled ordinary

differential equations,
(1) dN = input — uptake + regeneration (phytoplankton and zooplankton)
dt

(2) _dP_ = uptake — grazing - losses
dt

(3) dZ = growth - losses
dt

| define functions for the nutrient input, ¢(f), nutrient uptake by phytoplankton, m, phytoplankton
grazing by zooplankton, g, and for the phytoplankton and zooplankton losses, 3. The model can

then be represented by the following set of three coupled ordinary differential equations,
(4) dN_ = ¢(t) - mPN + &P + 6;Z + (1-a)gPZ
dt

(5) dP = mPN-gPZ- &P
dt

6) dZ =agPZ- &2
dt
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R NUTRIENTS a N PHYTOPLANKTON

ZOOPLANKTON

Figure 4-1: Basic NPZ model (modified from Truscott and Brindley, 1994). The compartments
("boxes”) in the diagram represent biomass and the arrows represent the flows of biomass from
one compartment {0 another. Nutrients are introduced in the system from a substrate nutrient
source, as described by an input function, f. Phytoplankton uptake nutrients and are grazed
upon by zooplankton. These main biomass flows are represented by the solid arrows. The
dotted arrows represent the regeneration of nutrients as a resutt of phytoplankton and
zooplankton losses. It is assumed that all losses are regenerated instantaneously.
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where N, P, and Z represent the concentration of nutrients, and the biomass of phytoplankton
and zooplankton, and «a represents the efficiency of zooplankton grazing. The model assumes
the instantaneous regeneration of nutrients through phytoplankton and zooplankton losses and
zooplankton grazing inefficiencies. The specifics of the functions for nutrient input (¢),

phytoplankton uptake/growth (m), zooplankton grazing (g), and loss (38) are described as
follows.

The nutrient input function, 4, was specified as in Steele and Henderson (1992), assuming a
single ‘box’ with mixing from a deeper high nutrient source. A Michaelis-Menten function was
used to parameterize the effect of nutrient limitation on phytoplankton growth, as well as the
grazing of zooplankton on phytoplankton. Linear loss terms for phytoplankton and zooplankton
were chosen. The model is then represented by the following set of coupled differential

equations,
(7) AN = s(N,—N) - uPN + 5P + 5;Z + (1-a) oy Z P .
dt kotN k+P
(8) dP = uPN- yZP - &P
dt ketN kAP
(9) dZ = qyZP -5Z
dt k,+P

where u is the maximum phytoplankton growth rate; ks is the nutrient concentration at which the
(phytoplankton) nutrient uptake velocity is half its maximum value; yis the maximum grazing
rate; ky is the half-saturation constant for zooplankton grazing on phytoplankton; and « is the
assimilation efficiency for zooplankton grazing. The function describing the input of limiting
nutrient to the system (from an outside nutrient source) is described by the rate of mixing for
the nutrient supply, s; and by the concentration (at the source) of the limiting nutrient, N,. Table
4-1 summarizes the variable and parameter definitions and their units. It is assumed that
nutrients are regenerated instantly, as seen from the nutrient equation above.
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Table 4-1: Variable and parameter definitions and units for the basic plankton model, NPZ. Units for the
nutrient, phytoplankton and zooplankton biomass are in mmol m™ of an equivalent limiting nutrient (i.e.
nitrogen).

Notation Description Units
P.Z Phytoplankton and zoopiankton concentration mmol m™
N, No System and supply limiting nutrient concentration mmol m™®
s Limiting nutrient supply mixing rate d*

i Maximum phytoplankton growth rate d’

Ko Half-saturation nutrient concentration for phytoplankton mmol m
8p Intrinsic phytoplankton loss rate d*

¥ Maximum zooplankton grazing rate d’

o Zooplankton growth efficiency dimensionless
Kz Half-saturation phytoplankton concentration for zooplankton mmol m
5, Intrinsic zooplankton loss rate d*

Theoretical Steady State Analysis

The equilibrium solutions of the system are the solutions to the equations,

(10)  s(N,~N)-uPN+ 5P + & Z + (1-a) ayZP =0,
ketN k+P

(11) wPN-yZP -8P=0,
ketN kP

(12) ayZP-8&Z=0.
Ky P

We first note that N, must be less than or equal to N. Otherwise, since « is greater than zero
and less than or equal to 1, either P or Z would have to be less than zero, which is biologically
inadmissible. This result is consistent with the assumption made by Steele and Henderson
(1992). Solving the set of equations we obtain a steady state (equilibrium) solution for the
system. The equilibrium solution of biological relevance, (N’, P’, Z’), is that in which the biomass
for nutrients, phytoplankton, and zooplankton is positive (greater than zero).

(13) N= N,
14 P= gl
ay — Oz
(15) Z'= Kz a (Nopt - NoOp = Sp Kp)

(ke+No)(ay — &)

58



A detailed analysis of the stability of the equilibrium solutions for a general NPZ model is
presented in Truscott and Brindley (1994). The analysis is applicable to the model described
above. They start by constructing a Jacobian (stability) matrix in order to calculate their
eigenvalues and determine the stability of the system by studying their signs. Truscott and
Brindley found that the general expression for the characteristic equation of the stability matrix is
positive-definite. Therefore, the Routh-Hurwitz' conditions are satisfied and the equilibrium
solution (N, P, Z’) is stable.

Simulations

Representative model parameters were chosen from Frost (1987), Fasham et al (1990),
Fasham (1993), Ducklow and Fasham (1992), Pahi-Wostl (1997), Steele and Henderson
(1992), and Edwards and Brindley (1996). The input of nutrients to the system is assumed to be
derived from a deeper high nutrient source, N,. Following Edwards and Brindley (1996), |
choose N, with a value of 0.6 mmol N m™and the mixing nutrient rate with a value of 0.05 m d™'.
The phytoplankton parameters were chosen from Fasham et al (1990) and Armstrong (1994).
The value chosen for the maximum phytoplankton growth, 12 was 1.25 d™'. The half-saturation
nutrient concentration for phytoplankton, k,, was chosen to be 0.5 mmol N m™ and the intrinsic
phytoplankton loss rate, &, was chosen to be 0.09 d’. The maximum zooplankton grazing rate,
¥, was chosen from Fasham et al (1990) with a value of 1.0 d”. Following Edwards and Brindley
(1996) | use a zooplankton assimilation efficiency, «, of 0.25. Finally, | use the value of 0.05 d™
for the intrinsic zooplankton loss, &, used by Fasham et al (1990). Table 4-2 summarizes the
model parameters used for the simulations that follow.

Following Edwards and Brindley (1996), the grazing half-saturation constant, k,, was chosen as
the primary bifurcation parameter. Hence, two different simulation scenarios were developed,
with values of 1.0 mmol m™ and 2.0 mmol m?, as in Fasham et al (1990) and Pahl-Wostl (1997),
respectively. For both scenarios, the model equations were solved numerically over time using a
Runge-Kutta (4,5) with the set of parameters presented in Table 4-2. Different sets of initial
conditions were used and it was found that the steady state biomass concentrations are
independent of the initial conditions chosen. This is result is in accordance with the theoretical
stability analysis developed by Truscott and Brindley (1994).

! Routh-Hurwitz conditions refer to stability conditions based on the analysis of the eigenvalues of the community
matrix (Jacobian) of a particular ecosystem.
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Table 4-2: Parameter values for the basic plankton model, NPZ.

Notation Value Units

No 0.6 mmol m™

s 0.05 d’

i 1.25 d’

Kp 0.5 mmol m™

3p 0.09 d’

y 1.0 d'

a 0.25 dimensionless
K, 1.00r2.0 mmol m>

8, 0.05 d’

The system was modeled and projected to steady state, and time series and phase portraits for
the nutrient, phytoplankton and zooplankton biomass were developed. Using the parameters
defined above, | simulate the system from the initial conditions (N, P, Z) = (0.4, 0.2, 0.1) to
obtain both the time series and the trajectory in N-P-Z space of the system (figure 4-2). The
system was simulated over a period of 200 days. For the first scenario, k, = 1.0 mmol m™, the
nutrient, phytoplankton and zooplankton concentrations settle down to steady state values of
(N, P, Z’) = (0.6, 0.25, 0.72). The initial large rise in the phytoplankton community is due to the
excitable nature of the system.

Phytoplankton bloom as they take up nutrients from the system. The nutrient levels decrease in
this process. Zooplankton start grazing on phytoplankton with a delay of about 10 days with
respect to the beginning of the phytoplankton bloom. As grazing pressure builds, the
phytoplankton biomass starts leveling off and then decreasing. However, as zooplankton
grazing saturates, zooplankton biomass starts leveling off and then decreasing. Simultaneously,
nutrient levels are increasing due to the external input and regeneration, and to the decreased
uptake by phytoplankton. Nutrient levels peak at a certain biomass, time at which the
phytoplankton start a new bloom. This process repeats itself, making the system settle to a
periodic orbit, or limit cycle, after a relatively short transient time. The oscillations have a period
of 35 days which is consistent with observational data and output of large pelagic ecosystem
models (Edwards and Brindley, 1996). The cycles are shown in the phase portrait diagram,
which shows the decreasing amplitude and eventual settling of the system to the steady state
values presented above. The behavior of the system is independent of initial conditions, as
expected from the theoretical analysis.
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Starting from the same set of initial conditions, a second set of simulations was carried out
changing the value of the half-saturation constant for zooplankton, k;, to the value 2.0 mmol m™
used by Pahl-Wostl (1997). The system settles down to steady state values of (N’, P, Z’) =
(0.6,0.5,1.45) after a transient time of about 80 days (figure 4-3). Again, the behavior and steady
state conditions of the system are independent of the initial conditions. Starting from a range of
other initial conditions, trajectories converge to the same steady-state and the transient time
remains roughly the same. Edwards and Brindley (1996) state that the actual nature of the
transient trajectories depends upon the position of the initial conditions with respect to the
nullsurfaces. The phase portrait diagram shows the main features of the plankton population
dynamics; one phytoplankton bloom followed by zooplankton peak and settling to steady state.

The steady state values calculated for both simulation scenarios are consistent with the
theoretical steady state expressions derived in the theoretical analysis section. To compare
them, simulation parameter values were substituted in the equilibrium expressions. The results
obtained are equivalent. As expected from the steady state expressions the steady state values
(estimated and simulated) for phytoplankton and zooplankton biomass are directly proportional
to the bifurcation parameter chosen, k.

DISTRIBUTED GRAZING MODEL, ‘NP'Z’

Background

Interest in understanding and reproducing the main dynamics of the size distribution features of
pelagic ecosystems has lead to the development of many different size-dependent modeling
approaches. Armstrong (1994) developed a model of independent parallel food chains where
each pair of phytoplankton and zooplankton represented a different size class. Parameter
values for the different size classes were taken to vary allometrically with size, with smaller size
classes growing more rapidly and being consumed more rapidly by their respective zooplankton
grazers. The model produced the pattern of “equal biomass in equal logarithmic size classes”
(Chisholm, 1992). However, the simple model of parallel food chains was found to have several
undesirable properties when used to model time-series data (Armstrong, 1998). The model was
found to be effective at describing steady state conditions but inadequate at fitting non-steady
state data.
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Figure 4-3: Time series and phase space trajectory for NPZ model with kz =2.0 mmol m>. After
one phytoplankton bloom, the system settles down to steady state values of (0.6,0.5,1.45).

63



Generalizations of this model have been developed by allowing zooplankton predation on
smaller zooplankton size classes and on all equivalent and smaller phytoplankton size classes
(Armstrong, 1994; Moloney and Field, 1991; Moloney et al., 1991). The added food web
complexity makes the model structure much more realistic, as it is representative of a much
wider set of ecosystem dynamics. However, the added complexity results in very high sensitivity
to the choices of parameter values and food web structure. In addition, these more complex
food web structures are often dynamically unstable in biologically unrealistic ways, showing
striking and unrealistic oscillations in phytoplankton and zooplankton densities in very short
periods of time.

General Description

in an attempt to overcome some of these problems, Armstrong (1998) develops a model of
“distributed grazing”. The model consists of multiple phytoplankton size classes and one
zooplankton population representative of the total grazing biomass in the system (figure 4-4). In
the present analysis, this model will be referred to as the NPZ model. The NPZ food web
structure consists of multiple (discrete) phytoplankton size classes and a single state variable,
Z, representing total herbivore biomass. This model allows the natural generation of biomass
size spectra for phytoplankton. Armstrong (1998) argues that the model has the simplicity and
predictable behavior of the simple model of parallel food chains, in particular as related to its
ability to produce size spectra. In addition, it allows a dynamic representation of the changes of
size structure in the system. Armstrong (1998) also argues that the system is dynamically stable
for a wide range of conditions (initial conditions and parameter values). For a detailed
description of the dynamic stability of this food web model, see Armstrong (1998).

In this model, grazing intensity among size classes is distributed in response to changes in
phytoplankton densities. The grazing model is qualitatively similar to the switching grazer model
used by Fasham et al. 1990 to distribute zooplankton grazing among bacteria, phytoplankton
and detritus. However, in this case, size-specific grazing is modeled as a community level
phenomenon rather than as the switching among prey types of a single zooplankton species
(Armstrong 1998). In addition, the state variable Z represents the biomass of the entire grazing
community and not the abundance of a single species.

The potential grazing is distributed among phytoplankton size classes in proportion to their
current abundance, allowing size classes that are currently in lower abundance to bloom while
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Figure 4-4: Distributed grazing model (modified from Armstrong, 1998). The compartments
(“boxes”) in the diagram represent biomass and the arrows represent the flows of biomass from
one compartment to another. The phytoplankton community is divided in multiple discrete size
classes, P;. The zooplankton community grazes on all phytoplankton size classes, and these in
turn grow by the uptake of nutrients from the system. The nutrient input function, f, represents the
flow of nutrients into the system from a substrate nutrient source. The nutrient regeneration
pathways (for phytoplankton and zooplankton losses) are omitted for simplicity.

65



size classes that are currently dominant are not blooming (Armstrong 1998). The distribution of
grazing based on relative phytoplankton biomass recovers some of the complexity and realism
“lost” by the inclusion of the entire grazing community in one state variable, Z. The distribution of
grazing relative to the phytoplankton biomass at different size classes is quantitatively
represented (mathematically) using the grazing model of Fasham et al. (1990). Armstrong
(1998) introduces a lag in then redistribution of grazing (as phytoplankton densities change)
which is not considered in the present analysis.

The size-dependence of the phytoplankton community is determined by imposing an allometric
structure on the phytoplankton metabolic rates. For present purposes, maximum phytoplankton
growth rate is selected as the parameter of choice for determining the allometric structure of the
model. The different structures selected are described in the simulations section.

Mathematical Representation

The mode! is described by a set of n coupled differential equations,
(18)  dN = @(t) - SMPN + S5pP; + 5Z + (1-a) g PZ
dt

(17) dP. = mPN -gPZ - 5nP;
dt

(18) dZ =2logPZ- &Z
dt

where N, P, and Z represent the biomass of nutrients, phytoplankton in each size class i and
zooplankton. The specifics of the functions for nutrient input (¢), phytoplankton uptake/growth

(m), zooplankton grazing (g), and loss (8) will be described in the simulations section.

One of the main problems that arises for the use of this model is the definition of a grazing
function for the zooplankton community. It is argued that grazing should be distributed among
phytoplankton size classes in proportion to their abundance, so that the zooplankton community
exert more grazing on the most readily available food source. In particular, grazing should be
distributed so that it changes dynamically as a function of the relative proportion of biomass in
the different phytoplankton size classes. Following Fasham et al 1990, 1 define weighted

preferences p; for each of the phytoplankton size classes in the model, of the form
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(19 o’ = _pP__, where pis the nominal preference for P,
2p P

Nominal preferences are defined as the grazing preferences for the different phytoplankton size
classes when they are equally abundant. The use of this grazing model will guarantee that the

zooplankton community will actively select the most abundant phytoplankton size class. Grazing
was parameterized using a Michaelis-Menten model; and defining PT as the total phytoplankton

biomass available for grazing in the system (PT = 3o, P), we obtain

(20) g = ayZpP , where y is the maximum specific grazing rate, and
k+PT kz is the half-saturation constant for grazing

Substitution of the expression for the weighted preferences in the grazing function yields

21 ;= ayZpP? , where y represents the grazing of Z on P,
k(2 P) + 2 Pf

| assume no grazing preference when the biomass of phytoplankton from different size classes
is equal. Hence, the grazing distribution is solely determined by the relative concentrations of
phytoplankton size classes and is represented by

(22) I = ay ZP?
k(X P) + TP}

Using a Michaelis-Menten function to parameterize the effect of nutrient limitation on
phytoplankton growth, and linear loss terms for phytoplankton and zooplankton, the model is
represented by the following set of coupled differential equations,

(23) dN = S(No—N) - ZuPN + X65P, + 2 + (1-0) X __ay Z P}

at keitN k(2 P) +2X pj2
(24) dP, = uPN- _ yZP} - 5P

dt keN  kAXP) + X P}
(25) dZ = 3 ___ayZP? - 82

dt k(X P) + XP?
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where 4; is the maximum phytoplankton growth rate for size class J, kg is the half-saturation
constant for phytoplankton of size class j, s is the mixing rate of nutrients, N, is the substrate
nutrient concentration, and « is the assimilation efficiency for zooplankton grazing. Table 4-3
summarizes the variable and parameter definitions and their units. It is assumed that nutrients
are regenerated instantly, as seen from the nutrient equation above.

The phytoplankton parameters are specified by means of allometric relations among
phytoplankton based on different size classes. Following Armstrong (1994) | use an allometric
model of the form R; = R,(L;/ L,,)ﬂ R  that relates a rate constant, R;, for phytoplankton of size

class j, to a corresponding constant, R,, for a reference phytoplankton size class. L; and L, are
the nominal sizes for phytoplankton of size class i and reference. fz represents the allometric
constant for rate constant R.

Table 4-3: Variable and parameter definitions and units for the “distributed grazing” model. Units for the
nutrient, phytoplankton and zooplankton biomass are in mmol m™ of an equivalent nutrient (i.e. nitrogen).

Notation Description Units

P Z Phytoplankton and zooplankton concentration mmol m™

N, N, System and substrate nutrient concentration mmol m™

s Substrate mixing rate with system d*

n Maximum phytoplankton growth rate d*

Kp Half-saturation nutrient concentration for phytoplankton mmo! m*

8p Intrinsic phytoplankton loss rate d’

Y Maximum zooplankion grazing rate d*

o Zooplankion growth efficiency dimensionless
Kz Half-saturation phytoplankton concentration for zooplankton mmol m?

5 Intrinsic zooplankton loss rate d?

B Allometric constant for rate processr dimensionless
Simulations

| begin by dividing the phytoplankton size spectrum into discrete size classes. For calculation of
the phytoplankton rates, | take the smallest phytoplankton size class as the reference class.
Moloney and Field (1991) define phytoplankton size classes that are of equal width on a
logarithmic scale. Hence, following Armstrong (1994) | define size classes so that the nominal
size of phytoplankton in adjacent size classes differs by a factor of four. The upper limit of the
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smallest phytoplankton size class is chosen to be 2um and its corresponding nominal size to be
1um . Accordingly, the upper limits of the additional four phytoplankton size classes are 8um,
32um, 128um, and 512um. And their corresponding nominal size classes are 4um, 16um,
64um, and 256um. The widths of the five phytoplankton size classes are 2um, 6um, 24um,
96um, and 384 um, respectively. By this process we have discretized the phytoplankton
community into five separate size classes, covering a spectrum of size between 0 and 512pum.
Phytoplankton range in size from ~0.6 to ~500 microns in diameter, so our five phytoplankton
size classes cover the complete range of phytoplankton size, as intended.

Representative model parameters were chosen from Moloney and Field (1991), Armstrong
(1994), Fasham et al. (1990), Ducklow and Fasham (1992), Frost and Franzen (1992), and
Edwards and Brindley (1996). The input of hutrients to the system is assumed to be derived
from a deeper high nutrient source, N,. Following Edwards and Brindley (1996), | choose N;, to
be 0.6 mmol N m?and the mixing nutrient rate to be 0.05 m d™'. Zooplankton parameter values
of y=1.0d", kz= 1.0 mmol N m®, and &; = 0.05 d” were taken from Fasham et al (1990) and
Ducklow and Fasham (1992).

For the phytoplankton community, | assume that the only size-dependent parameter is the
maximum phytoplankton growth rate (Armstrong, 1994). Moloney and Field (1991) include size
dependence for the half-saturation constants and loss rates for phytoplankton. However, their
constancy will suffice for the purpose of the present analysis. Values of ks = 0.7 mmol N m™
and & = 0.016 d”’ were chosen from Armstrong (1994) and were taken to be constant across all
five phytoplankton size classes. Maximum phytoplankton growth rate for the reference
(smallest) size class was taken as 4 = 1.4 d”. The allometric coefficient for the maximum
phytoplankton growth rate was allowed to vary across cases.

| start by carrying out simulations for a reference case in which there is no size-dependency for
the maximum growth rate, S, = 0. | then used a value 8, = -0.75, as in Moloney and Field
(1991), Armstrong (1994) and Chisholm (1992). This value for the allometric coefficient is the
most used in size-dependent models for phytoplankton maximum growth rate, and will be
referred to as the “traditional” case. The third case is representative of a phytoplankton
community in which larger size classes are comprised mostly of diatoms. Maximum
phytoplankton growth rate declines less fast within taxa than across taxa, so the allometric
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exponent for a community composed of the same type of phytoplankton should be less
negative. Following Armstrong (1994) | use 8, = -0.4. This case will be referred to as the
“diatom” case.

| also study a fourth case based on the fact that in some planktonic communities the maximum
growth rate increases with size instead of decreasing, as it is normally assumed (Chisholm,
1992). For this case | use g, = 0.725 so that the maximum growth rate for the larger size class is
2.8 d". The allometric structure was chosen to represent a system composed mainly of
cyanobacteria and diatoms. 'Synechococcus’, a class of cyanobacteria, are tiny organisms (~1
micron) whose maximum growth rates are around 1.5 d”'. They represent the smaller size
classes in the system. Diatoms represent the larger size classes in the system and have growth
rates of around 2.5 d™'. The allometric structure chosen produces maximum growth rates
ranging in value from 1.4 to 2.8 d!, appropriate for the system described. This case will be
referred to as the “positive slope” case. Finally, | analyze the potential of the model for use in
the study of nutrient enrichment processes. For this purpose, | study the effects on the system
dynamics of pulse and press perturbations for the “diatom” (8, = -0.4) and the “positive slope”
(8. = 0.125) cases.

For each of the eight different scenarios, the model equations were solved numerically over time
using a Runge-Kutta (4,5) with the set of parameters described above. | used the same initial
conditions as in the simulations for the basic NPZ model. Different sets of initial conditions were
used and it was found that except for some ranges of biomass that lead to unrealistic
oscillations, steady-state biomass concentrations are independent of the initial conditions
chosen. This is result is in accordance with the stability analysis carried out by Armstrong (1998)
in which he concludes that the system is dynamically stable under a wide range of conditions. in
particular it was found that the resulting phytoplankton size distribution is not affected by their
initial biomass distribution.

The system was modeled and projected to steady state, and time-series for the nutrient,
phytoplankton and zooplankton biomass were developed. At steady state, size spectra were
constructed to study the resuiting size structure of the ecosystem under the different scenarios.
For the perturbation cases, | modeled the transient size structure of the system from the
moment of the perturbation to the time of settling to steady state. This analysis may prove to be
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very helpful in the study of micronutrient’ enrichment processes, such as iron fertilization. in
these processes, models such as the one presented here may be used to predict the
community response, in terms of species composition and size distribution, to the addition of
micronutrients to the system.

“Size-Independent” Simulation

Consider first the case with no size-dependence for the maximum phytoplankton growth rate. in
this case, the five phytoplankton size classes are dynamically equivalent since they are subject
to the same growth (nutrient uptake), grazing, and loss rates. Hence, all phytoplankton size
classes settle to the same steady state values. In particular, the steady state biomass for each
phytoplankton size class is consistent with the theoretical steady state representation derived
for the basic NPZ model (P°; = &;kz /ay). Since | used the same parameters for the zooplankton
community here as | did for the NPZ model, the phytoplankton steady state concentrations have
the same value of 0.25 mmol m™. Time-series for the biomass concentrations of the
phytoplankton size classes, as well as cumulative biomass distributions are presented in figure
4-5. Cumulative distributions are presented to illustrate the individual contribution to total system
biomass of each phytoplankton size class and of the zooplankton community, as in Armstrong
(1994). From the time-series data we observe that the system has a transient time (time for
settling to steady-state) of about 400 days. We also observe that the total phytoplankton
biomass supported by the system at steady-state is of 7.25 mmol m™. The nutrient biomass is
~0.01 mmol m™ and the total ecosystem biomass (including the zooplankton community) at
steady state is ~1.84 mmol m”,

Biomass spectra for the phytoplankton community at steady-state are developed as synoptic
images of the size structure of the taxon-independent system under consideration. The
unnormalized biomass spectrum is obtained by plotting the phytoplankton biomass for each size
class against their respective size ranges.

The normalized spectrum is obtained by following the framework presented by Platt and
Denman (1978) [B(w) = b(w)/Aw, where b(w) is the biomass in a certain weight/size class, w,
and Aw is the width of the weight/size class]. As shown in figure 4-6, the unnormalized spectra

is flat, since there is no size-dependence. The normalized spectra is presented in figure 4-7.

% ‘Micronutrients’ are nutrients typically required by organisms in relatively small quantities in order to grow and
reproduce .
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Figure 4-5: Time-series data for individual and cumulative biomass distributions for the “size-
independent” simulation. P; in the individual time-series graph represents all five phytoplankton
size classes, since they are dynamically equivalent.
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Figure 4-6: Unnormalized steady state spectra for “size-independent” simulation. The no size-
dependency of maximum phytoplankton growth rate determines the flat shape of the spectra.
Steady state biomass concentrations are equal in all phytoplankton size classes.
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For both cases, an approximation (“smooth” spectrum) was developed using a third power
logarithmic model that, although not very exact, produces the main features of the size
distribution depicted in the biomass spectrums (unnormalized and normalized). The biomass
spectrum slopes for the phytoplankton community can be derived as follows

b(w)/b(w,) = (w,/w,)*, where x is the unnormalized b.s slope
Bw)/B(w,) = (w,/w,)", where x, is the normalized b.s slope

The biomass spectrum slope has been given considerable attention in theoretical studies of
planktonic size spectra. In idealized form, the slope of the normalized spectrum allows one to
infer the relative contribution of small and large sized cells to total biomass (Kent 1999). Using
the steady state data generated by the model simulation, | obtain x = 0, and x, = -0.95. The
slope of the unnormalized spectrum is zero given the no size-dependency condition of this first
case. The normalized spectrum slope, however, is similar to the slope of actual biomass spectra
(i.e., close to —1) (Cavender-Bares, 1999).

“Traditional” Simulation, g, =-0.75

The “traditional” simulation is representative of the most commonly used allometric structure in
the size-dependent models literature. This value for the allometric coefficient was determined
following Chisholm (1992), and Moloney and Field (1991). Figure 4-8 shows the relationship
between maximum phytoplankton growth rate and size of the organism for this allometric
structure.

Time-series for the biomass concentrations of the phytoplankton size classes, as well as
cumulative biomass distributions are presented in figure 4-9. From the time-series data, we
observe that the system has a transient time of about 160 days, much shorter than that
estimated for the model with no size-dependence. As a result of the allometric structure chosen,
smaller phytoplankton size classes have a clear competitive advantage over larger
phytoplankton organisms. This advantage comes from the decreasing magnitude of
uptake/growth rates as we move from smaller to larger cells. Independent of the set of initial
conditions chosen, the system settles to steady state, with the smaller three phytoplankton size
classes surviving and the larger two going extinct after a certain period of time. For the
parameters chosen, these two larger size classes remain in the system for an extended period
of time but ultimately decay to extinction.
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Figure 4-8: Maximum phytoplankton growth rates as a function of size for the “traditional”
simulation. The graph displays a continuous representation of the maximum growth rate.
The maximum growth rate data used for the model simulations is discrete.
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Figure 4-9: Time-series data for individual and cumulative biomass distributions for the
“traditional” simulation. Graphs show the clear dominance of the two smallest phytoplankton size
classes at all times during the simulation.
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The cumulative biomass time-series clearly shows that the smallest phytoplankton size class is
the main contributor to phytoplankton biomass. The distribution presented in the cumulative
biomass time-series at steady-state is very similar to that obtained by Armstrong (1994) in his
independent food chain (steady-state) model. One advantage of the present approach is the
ability to display the temporal dynamics of the system. This is particularly relevant to study the
short-term dynamics of the system before it settles to steady-state. By analyzing the short-term
population dynamics, we observe that smallest size class clearly dominates the uptake of
nutrient, growing rapidly and then decreasing as grazing pressure builds, and finally leveling off
to its steady-state value. The other phytoplankton size classes follow the same dynamic but
their growth is much smaller. We also observe that the total phytoplankton biomass supported
by the system at steady-state is of 0.44 mmol m™. The nutrient biomass is ~0.03 mmol m™ and
the total ecosystem biomass (including the zooplankton community) at steady state is ~7.07
mmol m>. Both the phytoplankton and total biomass supported by the system are much lower
than those supported by the size-independent model, as a result of the lower maximum growth
rates for all but the smallest phytoplankton size class.

The model simulations produce a matrix of nutrient, phytoplankton and zooplankton biomass at
n “simulation” time-steps. The data stored in the biomass matrix is used to construct the
biomass spectra for the phytoplankton community at steady state. The unnormalized and
normalized biomass spectra, with their respective logarithmic approximations, are presented in
figures 4-10 and 4-11. Using the data generated by the model simulations, | obtain x = -0.9, and
X, = -1.8. In contrast with the size-independent model, the value for the normalized spectrum
slope is much higher (almost two times larger) than that for actual biomass spectra (-1). The
change in the normalized spectra slope to a more negative value reflects the proportionally
larger distribution of biomass in smaller cells.

“Diatom” Simulation, g, =-0.4
The “diatom” simulation is representative of a system in which larger phytoplankton size classes
are comprised mostly of diatoms. Following Armstrong (1994), | choose the value —-0.4 for the

allometric coefficient. The relationship between maximum phytoplankton growth rate and size of
the organism is shown in figure 4-12.

Time-series data for the biomass concentrations of the phytoplankton size classes, as well as
cumulative biomass distributions are presented in figure 4-13. Using the same set of initial
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Figure 4-10: Unnormalized steady state spectra for the “traditional” simulation. The spectra shows
that only the three smaller phytoplankton size classes are present at steady state. Phytoplankton
biomass is inversely proportional to size as a result of the allometric structure chosen.
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Figure 4-11: Normalized steady state spectra for the “traditional” simulation. The normalization is
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Figure 4-12: Maximum phytoplankton growth rates as a function of size for the “diatom”
simulation. The graph displays a continuous representation of the maximum growth rate.
The maximum growth rate data used for the model simulations is discrete.
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Figure 4-13: Time-series data for individual and cumulative biomass distributions for the “diatom
simulation. Graphs show the clear dominance of the two smallest phytoplankton size classes at
all times during the simulation. All phytoplankton species settle to non-zero steady state
conditions.
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conditions as in the previous two cases we observe that the transient time is of about 240 days.
This value is intermediate between those obtained for the “size-independent” and “traditional”
models. This is expected, given that the allometric coefficient is less negative than that used in
the traditional case. As in the “traditional” case, the allometric structure determines that smaller
phytoplankton size classes have a competitive advantage over larger phytoplankton organisms.
However, this new structure allows for all five phytoplankton size classes to thrive and survive in
the system and settle to steady state. Again, the steady state conditions are independent of the
set of initial conditions chosen.

The cumulative biomass time-series clearly shows that the smallest phytoplankton size class is
the main contributor to phytoplankton biomass, but in this case, the second size class
contributes to total phytoplankton biomass significantly as well. When compared to Armstrong’s
(1994) steady state conditions for the “diatom” case we find that the two models produce
equivalent results. In both cases, the “diatom” simulations are characterized by allowing the
survival of a larger number of size classes than the “traditional” case.

By analyzing the short-term population dynamics, we observe that the two smallest size classes
clearly dominate the uptake of nutrient, growing rapidly and then decaying as grazing pressure
increases. Eventually, all five phytoplankton size classes eventually level off to steady state, as
grazing and growth rates closely balance each other. The total phytoplankton biomass
supported by the system at steady state is of 0.72 mmol m. The nutrient biomass is ~0.02
mmol m™ and the total ecosystem biomass (including the zooplankton community) at steady
state is ~7.3 mmol m™.

The total phytoplankton biomass supported by the system at steady state is larger than that
supported by the “traditional” simulation, but lower than that for the size-independent model, as
a result of the respective allometric structures. Comparing the total biomass supported by the
system we find that for all three simulations described (“size-independent’, “traditional’, and
“diatom”), the steady state concentration for the zooplankton community is constant. Comparing
all three cases we also observe that the lower the steady state nutrient concentration, the larger
the total phytoplankton biomass at steady state.

The unnormalized and normalized biomass spectra, with their respective logarithmic
approximations, is presented in figures 4-14 and 4-15. Using the data generated by the model
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Figure 4-14: Unnormalized steady state spectra for the “diatom” simulation. The spectra shows
that all phytoplankton size classes are present at steady state. Phytoplankton biomass is
inversely proportional to size as a result of the allometric structure chosen.
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Figure 4-15: Normalized steady state spectra for the “diatom” simulation. The normalization is
responsible for the decrease (more negative) in biomass spectra slope, as compared to the
unnormalized spectra.
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simulations, | calculate values of x = -0.55, and x,, = -1.9 for the unnormalized and normalized
spectra slopes, respectively. The value for the unnormalized spectra slope is less negative than
that for the “traditional” simulations; a direct resuilt of the difference in the allometric structures
for both simulations. Both allometric structures are based on the principle that smaller
phytoplankton cells grow faster than larger phytoplankton cells, but the competitive advantage is
smaller in the “diatom” case, and less biomass is distributed in the small size classes.

The value for the normalized spectrum slope, however, is very close to that for the “traditional”
case. Again, this is a result of the “smoocthing” property of the normalization process. The steady
state biomass conditions for the smaller two phytoplankton size classes are similar for both
models. In addition, the steady state biomass for the larger two size classes is very low. The
steady state biomass for the third size class is very different for both models, but the “size-
class-width” normalization minimizes that difference and produces very similar normalized
biomass spectra shapes and slopes.

“Positive Slope” Simulation, g, = 0.125

Chisholm (1992) states that in some planktonic ecosystems the maximum phytoplankton growth
rate increases with size instead of decreasing, as it is normally assumed. See earlier comment
explaining choice of allometric structure and type of ecosystem represented (simulations
section). To obtain this allometric structure | use g, = 0.125 so that, given a growth rate of

1.4 d" for the smallest size class, the maximum growth rate for the larger size classis 2.8 d™.
The relationship between maximum phytoplankton growth rate and size of the organisms (size
classes) for this model is shown in figure 4-16.

Time-series for the biomass concentrations of the phytoplankton size classes, as well as
cumulative biomass distributions are presented in figure 4-17. The use of a positive allometric
coefficient results in a proportionally larger distribution of biomass in larger phytoplankton size
classes, since they will have larger maximum growth rates. Simulations in this case result in
steady state conditions with all five phytoplankton size classes present. This is a result of the
higher maximum growth rate values used across all size classes. As in the three models
described previously, the steady state conditions are independent of the set of initial conditions
chosen. The cumulative biomass time-series clearly shows that the largest phytoplankton size
class is the main contributor to phytoplankton biomass. However, the other four size classes are
all significant contributors to total phytoplankton biomass. The “weighted” model of distributed
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Figure 4-16: Maximum phytoplankton growth rates as a function of size for the “positive
slope” simulation. The graph displays a continuous representation of the maximum
growth rate. The maximum growth rate data used for the model simulations is discrete.
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Figure 4-17: Time-series data for individual and cumulative biomass distributions for the “positive
slope” simulation. Graphs show dominance of the larger phytoplankton size classes at all times
during the simulation. Biomass differences across size classes are smaller than for previous
models. All phytoplankton species settle to non-zero steady state conditions.
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grazing allows for the coexistence of all phytoplankton size classes at relatively large biomass
levels, by allowing the grazing community to exert greater grazing pressure on the relatively
more abundant size classes.

The short-term population dynamics of the system indicate that the largest size classes
dominate the uptake of nutrient, growing rapidly and then decaying as grazing pressure
increases. Smaller size classes bloom at a slower rate than larger size classes, and the
magnitude of their biomass at peak stages is sequentially smaller as we move from the largest
to the smallest size class. The steady state biomass concentrations are all within the same
order of magnitude. The grazing response to phytoplankton growth is slower in this case,
resulting in a longer transient time value than that obtained in the previous simulations. In this
case, the transient time (time to steady state) is about 400 days. This value is close to that
obtained for the size-independent model and higher than those obtained for both the “traditional”
and “diatom” simulations.

The total phytoplankton biomass supported by the system at steady state is 1.16 mmol m™. The
nutrient biomass is ~0.006 mmol m™ and the total ecosystem biomass (including the
zooplankton community) at steady state is ~1.75 mmol m™. We observe that the phytoplankton
biomass supported by the system is larger than that supported by both the “traditional” and the
“diatom” simulations. This result is consistent with the increase in phytoplankton biomass from
the “traditional” to the “diatom” simulations, as the allometric coefficient becomes less negative.
However, the total phytoplankton biomass is smaller than that for the size-independent case.
This may indicate that total phytoplankton biomass is largest with no size-dependency, and
decreases as the allometric coefficient used for the model becomes either more positive or
more negative. Consistent with the resuits for the previous simulations we find that the steady
state concentration for the zooplankton community is constant. Another relevant feature of this
model is that, contrary to the results obtained when comparing the previous three models, the
steady state nutrient concentration is not directly related to total phytoplankton biomass.

The unnormalized and normalized biomass spectra, with their respective logarithmic
approximations, are presented in figures 4-18 and 4-19. Using the data generated by the model
simulations, | obtain respective spectra slopes of x = 0.15, and x, = -0.8. As a direct result of the
allometric structure chosen, the slope of the unnormalized spectra is positive. However, the
size-fractionation method implies that the larger the size class, the larger the range in size. As a
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Figure 4-18: Unnormalized steady state spectra for the “positive slope” simulation. The spectra
shows that all phytoplankton size classes are present at steady state. Phytoplankton biomass is

directly proportional to size producing a positive spectra slope.
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Figure 4-19: Normalized steady state spectra for the “positive slope” simulation. The
normalization accounts for the shift in biomass spectra, from an increasing (positive slope) trend
to a decreasing trend (negative slope) with increasing size.
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result, the normalization (with respect to size class width) of the biomass spectra produces a
slope value close to the value for the actual biomass spectra (-1). This result is very important,
because it implies that even under a positive allometric structure, the normalized biomass
spectra is in substantial agreement with observational oceanographic data, reflecting the
uniform decrease in normalized biomass with increasing size. Except for the “size-independent”
simulation, the slope of the normalized spectra for the “positive slope” simulation is the one
closest to —1 (theoretical biomass spectra slope).

Nutrient Enrichment Processes

Based on field observations Cavender-Bares (1999) hypothesizes that smooth, linear microbial
spectra in the form of a power law occur only during extended periods of high nutrients, perhaps
with low grazing pressure. Cavender-Bares (1999) suggests that these conditions may be
expected in surface waters of the oligotrophic ocean. Biomass spectra constructed from field
observations in these conditions are smooth, like the ones produced from the different model
simulation scenarios described above. Cavender-Bares (1999) also states that nutrient
enrichment experiments should ideally simulate the high nutrient conditions characteristic of
spring blooms.

The model was adapted to simulate nutrient enrichment experiments. First, the original model
was projected to steady state (as shown in the analysis above). Then, nutrient input was
increased, and the model was projected to a new steady state. Pulse and press perturbation
techniques were used to illustrate the different possible scenarios. Pulse enrichment consists of
a temporary increase in nutrient levels; after the enrichment ends, nutrient input level is returned
to its initial background level. Press enrichment differs in that the nutrient enrichment is constant
and maintained until the system reaches new steady state conditions. We intend to use the
results of these simulations to analyze the changes in community structure and size spectra
brought about by the different nutrient enrichment scenarios.

The nutrient enrichment simulations are developed only as illustrative examples of the potential
of the model for simulating nutrient enrichment experiments, such as iron fertilization. To this
effect, the “diatom” and “positive slope” simulations were used to analyze the pulse and press
perturbation scenarios. The change in the nutrient environment can be characterized by an
increase in substrate nutrient concentration, or by the addition of a new nutrient, such as a
micronutrient, to the system. To account for preferential response to the nutrient enrichment
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process, it was assumed that the larger two size classes experience an enhanced benefit from
the new nutrient environment. Changing the model’s allometric structure at the time of
enrichment simulated this effect. A new allometric coefficient of 0.25 was used for the two larger
size classes. This change produces larger maximum growth rates for the two larger size

classes, and is representative of their competitive advantage under the new nutrient conditions.

More complex and realistic approaches can be incorporated into the model by adding a new
compartment representing a new nutrient source. However, for the purpose at hand, it was
decided that the nutrient increase would be included as increased substrate concentration and
that the competitive advantage of the larger size classes would be represented by the altered
allometric structure. For all simulations, the model was initially run for 600 days, time by which
the steady state conditions are well established. At this time, the substrate concentration was
increased from 0.6 mmol m™to 5 mmol m™ and the new allometric structure was established.

“Pulse” enrichment

For both the “diatom” and “positive slope” simulations, a period of 100 days was used as the
period of perturbation (nutrient enrichment). As explained above, the nutrient level is increased
at =600 days and then reduced back to the original background concentrations at (=700 days.
At the time of enrichment, the allometric structure for size classes 4 and 5 was changed, using
the new coefficient of 0.25 for the two larger size classes. At the end of the perturbation period,
the allometric coefficient was set back to its original value of -0.4 or 0.125 for the “diatom” and
“positive slope” simulations, respectively.

The simulations for both models show that after the perturbation stops the system returns to its
original steady state conditions. The resulting phytoplankton biomass spectra is unchanged as
well. However, the community structure is affected by the nutrient enrichment and its effects are
present in the system for a period of about 200 days after the perturbation ceases. in the
“diatom” case, there is evidence of species succession, represented in changes in the
community structure, as the growth of the larger size classes is enhanced by their competitive
advantage for uptake and growth under the new nutrient conditions. During the enrichment
period, the larger size classes go from having the lowest contribution to phytoplankton biomass,
to being the dominant phytoplankton size classes in the system. As seen in the time-series
graph (figure 4-20), the change in the size structure of the community starts occurring
immediately after the enrichment starts. The system returns to its original size structure only
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Figure 4-20: Time-series data for individual and cumulative biomass distributions for the “diatom”
pulse-enrichment simulations. Graphs show the shift in community structure during the
enrichment period. Larger size classes bloom shortly into the perturbation and become the
dominant classes in the system. After the perturbation stops, the system returns to its original
steady state conditions, with larger biomass distributed in the smaller size classes.
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after the perturbation stops. It is important to emphasize that under both “pulse” enrichment
scenarios, the zooplankton biomass also returns to its original steady state value.

In the “positive slope” case, the resuiting steady state conditions are the same as those for the
original “unperturbed” system. The larger size classes experience the largest bioom after the
nutrient enrichment due to their increased ability to grow under the new conditions established
(figure 4-21). The relative distribution of phytoplankton biomass is unchanged however, as the
size classes benefited are the same ones that dominated the system before the enrichment.

The settling to the original steady sate implies that there is no change in the resulting biomass
spectra for either one of the two “pulse” perturbation simulations. The return to the original
steady state conditions is evidence of the stability of the system and of its independence on
initial conditions.

“Press” (continuous) enrichment

Press perturbations are characterized by a continued and constant enrichment process. Hence,
the system is perturbed by the addition of nutrient at a certain time and the new nutrient
environment is maintained until the system reaches a new set of steady state conditions. For
both the “diatom” and “positive slope” simulations, the perturbation was carried out at =600
days, increasing the substrate nutrient level to 5 mmol m™. As in the “pulse” perturbation case,
the allometric structure for size classes 4 and 5 was changed at the time of enrichment. The
same value of 0.25 for the allometric coefficient was used. The resulting vector of maximum
phytoplankton growth rates is ume = [1.4 1.67 1.98 3.96 5.6], starting with the smallest size
class. The system was then projected to steady state and the new conditions were used to
produce new biomass spectral representations.

The simulations show that for both models the system settles to a new set of steady state
conditions after about 100 days. The stability of the system and the independence of steady
state on initial conditions are illustrated by the fact that the resulting phytoplankton biomass
spectra is the same for the “diatom” and “positive slope” simulations in the “press” perturbation
simulations. This is particularly relevant given that the size structure of the system at original
steady state conditions is very different for both cases. In the “diatom” case, we have a larger
proportion of total phytoplankton biomass distributed in the smaller size classes. In the
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Figure 4-21: Time-series data for individual and cumulative biomass distributions for the “positive
slope” pulse-enrichment simulations. Graphs show the larger biomass increase (bloom) for larger
size classes during the enrichment period. This results in an even larger distribution of biomass in
larger size classes during the enrichment. At the end of the enrichment, lower nutrient substrate
biomass and grazing dramatically reduce phytoplankton biomass in all size classes.
Phytoplankton then grow and the system returns to its original steady state conditions, with larger
biomass distributed in the larger size classes.
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“positive slope” model, on the contrary, we have a community characterized by dominance of
the larger phytoplankton size classes. However, once both systems are perturbed by equivalent
“press” nutrient enrichment processes, they both settle to steady state after equivalent transient
times. The new biomass steady state conditions, however different, produce equivalent biomass
slopes (unnormalized and normalized).

In the “diatom” simulation, there is a rapid species succession following the enrichment and the
establishment of the new allometric (resource uptake competition) structure. The community
structure changes are displayed clearly from the time-series data (figure 4-22). Immediately
after the enrichment process starts we observe that the two larger phytoplankton size classes
(previously the less abundant) experience a large bloom determined by their resource uptake
competitive advantage over the smaller phytoplankton size classes. After the bloom, grazing
pressure builds up and they decay to new steady state condition values an order of magnitude
larger than those for the “pre-enrichment” conditions. The smaller size classes decay after the
nutrient enrichment process begins due to their relative decreased ability for nutrient uptake and
growth. The three smaller size classes decay and settle to biomass steady state values an order
of magnitude smaller than those for the “pre-enrichment” conditions. Hence, the new steady
state conditions are representative of a new community structure in which the dominant size
classes are those who were less abundant prior to the enrichment process, and vice versa.

The total phytoplankton biomass supported by the system at the new steady state conditions is
equivalent to that for the system at steady state before the enrichment process. However,
contrary to the equivalency of “pre” and “post” enrichment steady state values for the
zooplankton community, the “press” perturbation environment resuits in an almost 10-fold
increase in the zooplankton steady state biomass. The increase in the zooplankton biomass is
caused by the bloom of the larger phytoplankton size classes at the beginning of the nutrient
enrichment, which causes the zooplankton to respond by exerting increasing grazing on the
most abundant size classes. Eventually, grazing pressure results in the decay of phytoplankton,
until grazing and phytoplankton growth rates are closely balanced and the system settles to
steady state.

The changes in the size structure of the system are evident when we compare the biomass
spectra for the “pre” and “post” enfichment steady state conditions. The steady state

unnormalized biomass spectra slope, x, changes from a value of —0.55 to 0.26. The shape of
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Figure 4-22: Time-series data for individual and cumulative biomass distributions for the “diatom”
press-enrichment simulation. Graphs show the shift in community structure during the enrichment
period. Larger size classes bloom shortly into the perturbation and become the dominant classes
in the system. The system settles to a new set of steady state conditions with larger biomass
distributed in the larger size classes. New steady state community size structure is opposite to
that before the enrichment process.
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the spectra for the smaller three size classes is unchanged since we did not alter their maximum
growth rates, and their biomass decreases as size increases. The two larger size classes have
the largest contribution to total phytoplankton biomass, with Ps having the largest contribution of
all size classes. The unnormalized biomass spectra data (figure 4-23) shows that the shape of
the spectra is non-uniform (decreasing at first, and then increasing), in contrast with the uniform
shape for the “pre” enrichment spectra. This feature (non-uniformity) is in accordance with the
spectra developed from nutrient enrichment experiments such as the IronEx Il (Cavender-
Bares, 1999).

The slope for the normalized biomass spectra, x,, at steady state changes from —1.9 to -0.69, a
value much closer to —1. The shape of the spectra for the smaller three size classes is
unchanged by the enrichment process, but the slope is less steep than that for the “pre”
enrichment conditions. From the normalized biomass spectra graph (figure 4-24) we observe
that the shape of the spectra is still non-uniform, but less so than that for the unnormalized
spectra. The normalized spectra is decreasing for the first three size classes, increases with the
fourth size class and then decreases again with the largest size class. This feature is in contrast
with the smooth shape of the normalized spectra for the “pre” enrichment model, and in
accordance with biomass spectra developed from observational data for nutrient enrichment
experiments.

Analysis of the “positive slope” press-enrichment simulation dynamics shows an increase in all
size classes after the enrichment process begins. The allometric structure determines that the
magnitude of the bloom will be larger for larger size classes, and vice versa. Analogous to

the initial growth at the beginning of the simulation (initial nutrient conditions), the largest size
class blooms and peaks first, followed in order by the other classes in descending order of size.
During their respective blooms, all phytoplankton size classes are subject to increasing grazing
pressure and after their peaks in biomass they decay and settle to the new set of steady state
conditions. The three smaller size classes decay and settle to biomass steady state values
about two times smaller than those for the “pre-enrichment” conditions. The steady state values
for the larger size classes are very close to those for the “pre” enrichment conditions. Hence,
the new steady state conditions are representative of a new community structure in which the
proportional distribution of biomass in larger size classes is even greater than before the
enrichment process. The community structure dynamics for the system before and after
enrichment are displayed in figure 4-25.
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Figure 4-23: Unnormalized steady state spectra for the “diatom” press-enrichment simulation
(bottom) compared to “pre” enrichment steady state spectra (top). The non-uniform shape of the
spectra (bottom) is representative of the species succession following the enrichment process.
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Figure 4-24: Normalized steady state spectra for the “diatom” press-enrichment simulation
(bottom) compared to “pre” enrichment steady state spectra (top). The non-uniform shape of the
spectra (bottom) is representative of the species succession following the enrichment process.
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Figure 4-25: Time-series data for individual and cumulative biomass distributions for the “positive
slope” press-enrichment simulation. Graphs show the changes in the community structure during
the enrichment period. Larger size classes bloom shortly into the perturbation and become even
more dominant in the system. The system settles to a new set of steady state conditions with
larger biomass proportionally more distributed in the larger size classes. New steady state
community size structure is equivalent (but accentuated) to that before the enrichment process.
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The total phytoplankton biomass supported by the system at the new steady state conditions is
smaller than that supported by the system before enrichment, due to the 2-fold reduction in
biomass for the smaller size classes. Analogous to the “diatom” enrichment simulation, the
“positive slope” enrichment simulation shows that the system experiences an almost 10-fold
increase in the biomass of the zooplankton community. The increase in the zooplankton
biomass is caused by the bloom of all phytoplankton size classes at the beginning of the
nutrient enrichment, which causes the zooplankton to respond by exerting increasing grazing on
the most abundant size classes. Eventually, grazing pressure results in the decay of
phytoplankton, until grazing and phytoplankton growth rates are closely baianced and the
system settles to steady state.

The biomass spectra for the “pre” and “post” enrichment steady state conditions allows the
analysis of the changes in the size structure of the system. The steady state unnormalized
biomass spectra slope, x, changes from a value of 0.15 to 0.26. The general shape of the
unnormalized spectra (increasing) is unchanged since the new allometric structure is analogous
to the original allometric structure in the sense that maximum growth rate increases as we move
from smaller to larger size classes. The new allometric structure, however, produces larger
maximum growth rates for the two larger size classes, producing an even more marked larger
contribution to total phytoplankton biomass by them (more positive slope). The shape of the new
unnormalized biomass spectra (figure 4-26) is less smooth than that for the original model.
Comparison of the two graphs shows that the "post” enrichment steady state spectra displays a
large increase in biomass as we move from the third to the fourth size class. Again, the change
in the smoothness of the spectra is consistent with spectra developed from field observations
during and after nutrient enrichment experiments.

The slope for the normalized biomass spectra, x,, for the “post” enrichment system at steady
state changes from —0.8 to —0.69. The shape of the spectra is very similar to that for the “pre”
enrichment conditions, but the slope is less steep. From the normalized biomass spectra graph
(figure 4-27) we observe that the shape of the spectra is somewhat less uniform than that for
the “pre” enrichment conditions, but not dramatically so. This is a result of the similarity of the
steady state community structure for the system before and after the enrichment process.

When comparing the “post”’ enrichment spectra for the “diatom” and “positive slope” simulations
we observe that the steady state biomass spectra slopes (unnormalized and normalized) are
equivalent. The equivalency of the spectra slopes is a result of the equivalency of the steady
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Figure 4-26: Unnormalized steady state spectra for the “positive slope” press-enrichment
simulation (bottom) compared to “pre” enrichment steady state spectra (top). The less uniform
shape of the spectra (bottom) is representative of the changes in relative size distribution

following the enrichment process.
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Figure 4-27: Normalized steady state spectra for the “positive slope” press-enrichment simulation
(bottom) compared to “pre” enrichment steady state spectra (top). The normalization produces a
close-to-uniform shape of the spectra (bottom).
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state biomass for the smallest and largest size class in both cases. However, the shapes of the
spectra for both cases are very different, being much less uniform in the “diatom” simulation.
This difference results from the marked differences in steady state biomass for the second and
third phytoplankton size classes. As explained above, the “diatom” spectra after enrichment is
much less uniform given the shift in biomass distribution (species succession).

Transient Size Structure - nutrient enrichment

The dynamic nature of the model allows the modeling of the transient dynamics of the system.
The model produces dynamic information on the nutrient, phytoplankton and zooplankton
biomass. The data produced by the mode! can be used to display the dynamic changes in the
size structure of the phytoplankton community during and/or after a nutrient enrichment process.
This capability is extremely relevant for studying the transient community structure (size
distribution) changes under different nutrient enrichment scenarios. The ability of the model to
reproduce transient biomass spectra will prove extremely helpful in the prediction of size
distribution changes in nutrient enrichment experiments such as the IronEx ll. For illustrative
purposes | present the results of the modeling of the transient size structure for the “diatom”
case subject to a “press” nutrient enrichment process. This model was selected because it
presents the most community structure changes under the enrichment process. Since this
presentation is done for illustrative purposes, the selection was done without regard to how
realistic the simulation is.

The “pre” and “post” enrichment steady state conditions were analyzed above. Here | present
an analysis of the transient size structure, as the model goes from the first steady state to the
latter. The time series information for the “diatom” case press-enrichment process (figure 4-22)
shows that the community size structure changes as the larger size classes go from being the
less abundant to being the most abundant in the system. After the biomass of the two larger
phytoplankton size classes peaks, grazing pressure makes them decay to the new steady state
conditions. Hence, the main shift in the relative biomass distribution takes place between the
time when the enrichment begins and the peak in biomass for the two larger size classes
(t=~20 days after enrichment begins). After the peak in biomass, the proportionality in the
relative distribution still changes, but the main features of the size spectra are unchanged.

Unnormalized spectra for the transient conditions is displayed in figure 4-28. By analyzing the
transient size structure we observe that the changes in the relative abundance of populations
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Figure 4-28: Transient unnormalized biomass spectra for “diatom” press nutrient enrichment
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occur on time scales of several days following the enrichment. This result is in accordance with
spectra developed from field “nutrient enrichment experiments” (Cavender-Bares ef al. 1999).
We observe that one day into the enrichment process there is already evidence of species
succession, as the biomass of the larger size classes increases much faster than that for the
smaller classes. At this point, we already see a change from a uniform shape to a non-uniform
one. The species succession in the following days is characterized by a rapid and steady
increase in biomass for the larger two classes (especially for the largest one) and a siow but
steady decrease in biomass for the smaller three classes. The community structure starts
shifting to one in which the two larger classes dominate the system (with the largest being the
most abundant) and the three smaller classes are less abundant (with biomass being inversely
proportional to cell size). This new structure is evident in the unnormalized spectra graph for the
biomass “peak”. The main features and shape of the spectra at this time are the same as those
for the new (“post”) steady state conditions. There are changes in the biomass for each size
class but the general size structure is maintained.

The normalized size spectra graph (figure 4-29) displays the same features in the dynamics of
the transient size structure response, showing a spectra which is increasingly less uniform. The
normalization makes the changes less evident, however. As the enrichment progresses, the
normalized spectrum changes from a smooth decreasing spectra to a non-uniform decreasing
spectra featuring an increase in size class four followed by a decrease into size class five. The
changes in the unnormalized and normalized spectra slopes are presented in table 4-4. As the
perturbation goes on, the unnormalized spectra slope becomes less negative at first and then
more positive. This is a result of the shift in community structure, as more biomass is
proportionally distributed in large size classes. The same increasing trend is true for the
normalized spectra but the slope is always negative.

Table 4-4: Transient biomass spectra slopes for “diatom” press-enrichment process

Time (after Unnormalized Normalized
enrichment) spectra slope spectra slope
Initial steady state | -0.56 -1.91
t=1 -0.32 -1.25
t=2 -0.17 -1.10
t=3 -0.06 -1.01
t=4 0.01 -0.93
t=56 0.06 -0.89
t = 20 (“peak”) 0.27 -0.68
New steady state | 0.26 -0.69
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Figure 4-29: Transient normalized biomass spectra for “diatom” press nutrient enrichment
simulation. The graph shows the size distribution dynamics from the beginning of the enrichment
process (original steady state) to the establishment of the new steady state conditions. Each of
the other figures is representative of the number of days after the beginning of the enrichment.
Enrichment results in non-uniform spectra.
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The dynamic nature of the model allows the modeling of the transient size structure (biomass
spectra) response of the system to an external perturbation, and its projection to steady state. In
this case, | decided to model the response of the system to nutrient enrichment processes to
predict the community response in terms of its size distribution. This feature of the model is
extremely relevant for studying system ecosystem responses to enrichment processes such as
the IronEx |l or to model spring blooms or changes in the system under changing nutrient
environments. in this case, the substrate nutrient concentration was selected as the parameter
of choice for simulating the effects of nutrient enrichment processes. In order to allow for
different responses of different size classes to the enrichment, the allometric structure was
changed, representing potential competitive advantages between different size classes in
response to the enrichment. This is representative of community responses to enrichment with
micronutrients such as iron, where enrichment benefits some size classes more than others.

The representation described above is obviously an extreme simplification of phytoplankton
community dynamics. However, for the illustrative purposes at hand it was considered sufficient.
It is conceivable to adapt the model to allow for more realistic and complex representations of
uptake and growth dynamics in response to nutrient enrichment processes. For example, one
could include an additional compartment to represent a new nutrient source, such as a
micronutrient. This micronutrient would be added to the system at the time of enrichment. in this
case, uptake preferences for the different phytoplankton size classes could be determined
based on field and laboratory data.
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Conclusions
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CONCLUSIONS

Phytoplankton biomass has been found to be distributed in a continuous manner across entire
ranges of size classes. Observations show that the abundance of organisms per size class is
inversely proportional to their body mass. This relatively conservative property of marine
ecosystems is of great relevance since the size structure of the phytoplankton community
dictates the composition and structure of the rest of the ocean food web. Size distribution
models were used in an attempt to enhance understanding of the causes and consequences of
the size structure of planktonic ecosystems.

Platt (1985) argues that the biomass spectrum provides an operationally viable, alternative
taxonomy that contains latent information about community physiology and metabolism that
cannot be obtained from a conventional taxonomic description. Size distribution models provide
insight into the energy flow and transfer efficiency along the size gradient in complex pelagic
food webs without the necessity to define distinct trophic levels or to distinguish taxonomic
groups (Gaedke, 1995). Thus, given that most physiological rates, (e.g. growth and respiration
rates, and generation time) scale allometrically with organism size, it is worthwhile to consider
basing pelagic ecosystem studies on size-dependent principles. The “general” biomass
spectrum model presented in this thesis provides a natural way of obtaining size spectra from
ecological dynamics in plankton ecosystems, through analysis of the steady state solutions of
the general model. This is proposed as an area for further work.

The size distribution of planktonic organisms with respect to organism size suggests the
occurrence of a continuum of functional groups owing to the close relationships between body
mass and many physiological and ecological properties of pelagic organisms (Gaedke, 1992). A
possible consequence at higher hierarchical levels of organization of this empirically well
established observation is that the reaction time of the organisms to fluctuating environmental
conditions and the seasonal variability of abundance may depend on organism size as well.
Additionally, these physiological and ecological parameters are closely coupled to spatial and
temporal scales of the ecosystem, adding to the predictive power of size-structured models in
the analysis of the structure and function of pelagic ecosystems.

The use of size as an aggregation scheme for dynamic simulation models provides a
combination of reductionism and holism useful for exploring the ecological properties of
plankton ecosystems. Among the drawbacks to generalizing biological and ecological processes
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(e.g. based on size), we find that there will always be groups of organisms, which will negate the
allometric rules chosen. The allometric relationships between organism size and various model
parameters will not apply in all cases. In addition, these relationships are usually predictable
over a large range of body size, but within any narrow size range, there may be considerable
variability. Thus, real size spectra will not necessarily be as smooth as that predicted from size
distribution models (Borgmann, 1987). However, the use of allometric relationships is not
intended to aid biologists in the study of individual species. Its contribution resides in the ability
to estimate parameters for use in ecological models of plankton communities. The size
relationships are objective estimators of ecological parameters and therefore have applications
in the study and understanding of pelagic ecosystems.

Size distribution models obviate the problem of parameter estimation common in ecological
modeling studies. In addition, the results of the model simulations can be validated against any
system, since the parameters are not specifically related to any particular ecological system.
The model can be applied to diverse planktonic ecosystems to test hypotheses regarding the
structure and function of those systems, thus improving the predictive power of the model.
Ideally, one would be able to construct a reasonably simple model with a high degree of
geographical robustness, in the sense that the same size-structured model will give reasonably
accurate predictions of biological production in all the major parts of the world ocean. Model
predictions can be used to direct field research and analyze current ecological theories. The
combination of the analysis of plankton biomass spectra and biophysical measurements will aid
in the prediction of the spatio-temporal distribution and productivity of marine plankton (Zhou
and Huntley, 1997). Size spectra developed from the “distributed grazing” model simulations
show that the allometric structure chosen determines the resulting steady state size structure of
the ecosystem. This is shown in the analysis of the unnormalized and normalized spectral
slopes in chapter 4.

Marine primary production is generally assumed to be limited by nitrogen. However, there are
areas of the world ocean (e.g. the subarctic Pacific and Antarctic Ocean) in which nitrate is not
fully utilized and remains at high levels throughout the summer. It has been argued (Martin and
Fitzwater, 1988) that production in these areas may be limited by a micronutrient such as iron.
Size distribution models can be used to enhance understanding of the causes and
consequences of micronutrient limitation. They can aiso be used to study the effects of
enrichment processes (e.g. iron fertilization) on the size structure of the planktonic community.
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As illustrated in chapter 4, the “distributed grazing” model proposed can be used to predict the
transient response of the community (in terms of the effects on the size structure of the
ecosystem) to nutrient enrichment processes. The model shows the succession of size classes
as a result of the enrichment process. Understanding of these changes is essential in analyzing
the potential biological effects and changes in the food web promoted by these enrichment
scenarios. Models will also help in understanding the role of marine biota in natural nutrient
cycles, with relevant atmospheric and climatic implications.

The representation used for describing the community effects of the enrichment process is an
extreme simplification of phytoplankton nutrient uptake dynamics. It is conceivable to adapt the
structure of the model to allow for the presence of an additional limiting nutrient (e.g. a
micronutrient such as iron) and to define the phytoplankton growth function in terms of the
uptake of the two nutrients considered. Competitive advantages (in nutrient uptake and growth)
between size classes can also be integrated in the model structure to account for the differential
response of phytoplankton size classes to enrichment processes.
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