
Analysis and Modeling of Non-Native Speech

for Automatic Speech Recognition

by

Karen Livescu

A.B., Princeton University (1996)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1999

@ Massachusetts Instituteo Technology 1999. All rights reserved.

A u th o r ............................................................................
Department of Electrical Engineering and Computer Science

August 13, 1999

Certified by........................... .... ...... ..
nes R. Glass

Principal Research Scientist
Thesis Supervisor

A ccepted by ...................... .. .....
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV0 m

LU 5
AF-R





Analysis and Modeling of Non-Native Speech
for Automatic Speech Recognition

by
Karen Livescu

Submitted to the Department of Electrical Engineering and Computer Science
on August 13, 1999, in partial fulfillment of the requirements for the degree of

Master of Science

Abstract

The performance of automatic speech recognizers has been observed to be dramatically
worse for speakers with non-native accents than for native speakers. This poses a problem
for many speech recognition systems, which need to handle both native and non-native
speech. The problem is further complicated by the large number of non-native accents,
which makes modeling separate accents difficult, as well as the small amount of non-native
speech that is often available for training. Previous work has attempted to address this
issue by building accent-specific acoustic and pronunciation models or by adapting acoustic
models to a particular non-native speaker.

In this thesis, we examine the problem of non-native speech in a speaker-independent,
large-vocabulary, spontaneous speech recognition system for American English, in which
a large amount of native training data and a relatively small amount of non-native data
are available. We investigate some of the major differences between native and non-native
speech and attempt to modify the recognizer to better model the characteristics of non-
native data. This work is performed using the SUMMIT speech recognition system in the
JUPITER weather information domain.

We first examine the modification of acoustic models for recognition of non-native speech.
We show that interpolating native and non-native models reduces the word error rate on
a non-native test set by 8.1% relative to a baseline recognizer using models trained on
pooled native and non-native data (a reduction from 20.9% to 19.2%). In the area of lexical
modeling, we describe a small study of native and non-native pronunciation using manual
transcriptions and outline some of the main differences between them. We then attempt
to model non-native word pronunciation patterns by applying phonetic substitutions, dele-
tions, and insertions to the pronunciations in the lexicon. The probabilities of these phonetic
confusions are estimated from non-native training data by aligning automatically-generated
phonetic transcriptions with the baseline lexicon. Using this approach, we obtain a relative
reduction of 10.0% in word error rate over the baseline recognizer on the non-native test
set. Using both phonetic confusions and interpolated acoustic models, we further reduce
the word error rate to 12.4% below baseline. Finally, we describe a study of language model

differences between native and non-native speakers in the JUPITER domain. We find that,
within the resolution of our analysis, language model differences do not account for a sig-

nificant part of the degradation in recognition performance between native and non-native

test speakers.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist
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Chapter 1

Introduction

The study of automatic recognition of non-native speech is motivated by several factors.

First, any deployed speech recognizer must be able to handle all of the input speech with

which it is presented, and in many cases, this includes non-native as well as native speech.

Recognition accuracy has been observed to be drastically lower for non-native speakers of

the target language than for native ones [12, 29, 31]. Research on both non-native accent

modeling and dialect-specific modeling, a closely related issue, shows that large gains in

performance can be achieved when the acoustics [3, 8, 22, 31] and pronunciation [15, 21, 29]

of a new accent or dialect are taken into account. A motivation for studying non-native

speech in particular, as opposed to dialect, is that non-native speech has been less widely

studied and has some specific properties [16] that appear to be fundamentally different

from those of dialectal speech. From a speech recognition perspective, non-native accents

are more problematic than dialects because there is a larger number of non-native accents

for any given language and because the variation among speakers of the same non-native

accent is potentially much greater than among speakers of the same dialect.

The problem of recognition of non-native speech is one of mismatch between the recog-

nizer's expectations and the test data. This includes two kinds of mismatch. The first is

mismatch between models automatically determined from training data and the character-

istics of the test data. The second is mismatch between knowledge-based, hand-made or

partially hand-made models (for example, for word pronunciation) and the corresponding

aspects of the test data. It has been previously observed that the performance of a speech

recognizer varies with the degree of similarity between the data on which its models have

been trained and the data on which it is tested. For example, in the case of the JUPITER

conversational system (described in Chapter 2), the training data for the deployed system

consists largely of native or lightly accented adult male speakers of American English; as

a result, performance is significantly worse for female speakers, children, and non-native

speakers with heavy accents [12]. A similar effect has been noted for recognizers trained on

one dialect and tested on another dialect of the same language [8, 15].
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1.1 Previous Work

Perhaps the simplest way to address the problem of training/testing mismatch is to pool
the native training data with any available non-native training data. This approach treats
native and non-native data as equivalent. As we show in Chapter 3, this can improve
recognition of non-native speech relative to acoustic models trained on native data and
even upon that of models trained on only non-native data, presumably because the non-
native training data alone are insufficient to train robust models. This does not eliminate
the mismatch, but it ensures that the recognizer has seen at least some training data similar
to the test data.

Another approach to the problem of mismatch is to use multiple models, with each model
optimized for a particular accent or class of accents. An accent-independent recognizer can
then be built by using an accent classifier to detect the accent of a test speaker and then
recognizing with the appropriate models. This approach is most commonly applied to the
acoustic model. If there are sufficient training data for each accent class, separate acous-
tic models can be trained on accent-specific data. This method has been applied with
some success to the recognition of both non-native accents [29] and dialectal accents [3].
In [29], Teixeira et al. show an improvement in isolated-word recognition over baseline
British-trained models, using both whole-word and subword models and using either sev-
eral accent-specific models or a single model for all non-native accents. Beattie et al. [3]
compare gender- and dialect-dependent models to a baseline model trained on pooled multi-
dialect data in a small-vocabulary (about 200-word) continuous speech recognition task for
American English. In this work, the gender-dependent and gender- and dialect-dependent
models achieved higher recognition accuracy than the pooled.

Very often, however, it is difficult to obtain sufficient data to robustly train the accent-
specific models. In these cases, model adaptation is often used. In this approach, a single
set of initial models is trained on a large set of data, but some transformation of the models
is performed based on a smaller set of adaptation data from a single speaker or speaker
category, determined by characteristics such as gender or accent. The adaptation can be
either supervised, in which a set of previously transcribed data is used, or unsupervised,
in which the recognizer's output is used to transform the models. This approach has been
used, for example, by Diakoloukas et al. [8] to build a set of dialect-specific models for a
new dialect of Swedish by adapting a set of existing models for another dialect with various
amounts of development data. In this work, the adapted models are shown to outperform
both the original unadapted models and a set of models trained only on data from the new
dialect. Adaptation has also been used successfully to build speaker-dependent models for
non-native speakers, using both supervised [3, 22, 31] and unsupervised [22, 31] approaches.

In the area of lexical modeling, several attempts have been made to better account for
non-native word pronunciations. Liu and Fung [21], for example, obtain an improvement in
recognition accuracy on English speakers with a Hong Kong accent by expanding a native
lexicon using phonological rules based on knowledge of the speakers' native Cantonese.
Teixeira et al. [29] use a data-driven approach to customize word pronunciation to specific
non-native accents, using the Baum-Welch algorithm to retrain expanded hidden-Markov
models representing the allowable pronunciations. Similar approaches have also been used

12



for dialect-specific recognition. Humphries et al. [15], for example, use a tree clustering

method to train probabilistic phonological rules for one British dialect and apply these

rules to an existing lexicon designed for another dialect.

1.2 Goals and Overview

In the previous work we have mentioned, most of the approaches have involved modeling

either a particular accent or a particular speaker. In this thesis, we investigate speaker-

independent recognition, with no speaker adaptation. For a system dealing with non-native

speakers from many diverse backgrounds, however, an approach using accent-specific models

has two major disadvantages. First, in order to effectively account for all of the different

accents of the test speakers, the number of models must be very large. This means both that

the models are more computationally cumbersome and that a much larger set of training

data is needed to adequately cover all of the accent categories. This problem is more

marked for non-native accents than for dialectal accents because, typically, there are many

fewer dialects of a given language than there are non-native accents. Furthermore, whereas

dialects appear to be fairly stable and predictable, there can be marked differences between

non-native speakers with the same accent. These differences are due to different levels of

familiarity with the target language, as well as individual tendencies in mapping unfamiliar

sounds and linguistic rules.

For these reasons, we are interested in the insights and performance gains we can obtain

by analyzing and modeling all non-native speakers as a single group. Specifically, the main

goals of this thesis are:

" To understand, in a qualitative and quantitative way, some of the major differences

between native and non-native speakers of American English and the ways in which

they affect the performance of a speech recognizer

" To investigate modifications to a speech recognizer geared toward improving its per-

formance on non-native speakers

From the point of view of improving recognition performance, the main question we

would like to address is: When faced with a domain in which we have a large amount of

native data and a small amount of varied non-native data, how can we best use the limited

non-native data to improve the recognizer's performance as much as possible? Although

we occasionally examine the effects of our methods on the recognition of native speech,

we do not attempt to build an accent-independent speech recognition system, that is, one

that can handle both native and non-native speakers. Our main concern is to improve the

recognition of non-native speech.

Chapter 2 describes the domain in which the work was performed and the baseline

speech recognizer. The remainder of the thesis is divided into three parts, corresponding

roughly to the three main components of a speech recognition system: Acoustic modeling,
lexical modeling, and language modeling. Chapter 3 discusses experiments performed on the

13



acoustic models. Chapters 4 and 5 discuss issues in lexical modeling: Chapter 4 describes
a study of pronunciation patterns using manual transcriptions of native and non-native
data, and Chapter 5 describes a method for automatic acquisition of such patterns and
incorporation of this knowledge into the recognizer. Chapter 6 describes measurements
showing the effect of language model differences between native and non-native speakers on
the performance of the recognizer. Chapter 7 summarizes the thesis and suggests directions
for future work.
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Chapter 2

The JUPITER Domain and SUMMIT

Recognizer

All of the work described in this thesis was performed in the JUPITER weather domain

using the SUMMIT speech recognition system. The following sections describe the JUPITER

conversational system and the associated database; the SUMMIT recognizer; and the baseline

recognizer used for most of the experiments in the following chapters.

2.1 JUPITER

JUPITER is a telephone-based conversational system providing weather-related information

for approximately 500 cities worldwide [33, 12, 11]. Using a toll-free number, users call

JUPITER and inquire about various aspects of current weather forecasts, such as tempera-

ture, humidity, wind speed, precipitation, sunrise and sunset times, and weather advisories.

In addition, users can ask JUPITER for help or clarification in various ways, such as "What

cities do you know in New Jersey?", "What can I ask?", or "Repeat that please." During

a call, JUPITER keeps a history of dialogue-specific information, so that questions such as

"What about tomorrow?" can be answered appropriately, depending on the city and type

of information that have been established in previous queries. Table 2-1 shows an example

of a successful JUPITER conversation.

2.1.1 The JUPITER Corpus

Calls made to JUPITER are stored in a database, or corpus, for training and system develop-

ment. The corpus used in this thesis contains 62,324 utterances collected between February

1997 and July 1998. Most of the utterances were collected live via the toll-free number.

The corpus also contains approximately 3,500 read utterances, as well as about 1,000 ut-

terances obtained through wizard data collection, in which the input is spontaneous but a
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User: I'd like the weather in New York.
JUPITER: I know of the following places in New York: Albany, Binghamton, Buffalo,
Elmira, Ithaca, New York City, Niagara Falls, Rochester, Syracuse, Utica, and Water-
town. Please select one.

User: Albany.
JUPITER: In Albany today: Patchy fog early. Very warm and hazy and humid. Scattered
showers early this morning. A little sunshine midday with chance of more showers
and thunderstorms in the later afternoon. High upper 80s. 30 percent chance of rain.
Tonight: Showers likely and possibly thunderstorms. Lows upper 60s. 60 percent chance
of rain. Is there something else I can do for you?

User: Tomorrow's weather.

JUPITER: In Albany Friday: 30 percent chance of shower morning. Then clouds mixing
with increasing sunshine afternoon. Becoming less humid. High lower 80s. What else
would you like to know?

User: Nothing thank you.
JUPITER: Thanks for using JUPITER! Have a nice day!

Table 2-1: Example of a conversation with JUPITER.

human typist replaces the computer [12]. In our experiments, we used only the live data for
training and testing. For each utterance, the corpus contains an orthographic transcription
produced by a human transcriber.

In order to study native and non-native speech separately, we tagged each utterance in
the corpus with an accent class label. We used the following accent classes: amer for native-
sounding speakers of American English; uk-aus for native-sounding speakers of another
dialect of English such as British or Australian English; other for all non-native speakers
of English; and undef to indicate that the accent is "undefined", which we define below. We
classified the accents by listening to those utterances which were noted by the transcriber
as being possibly non-native, British, or Australian. We tagged an utterance as other
whenever we could discern a non-native accent, whether weak or strong.

We note the following details about the classification of accents. First, we treat the
uk-aus accent class as neither native nor non-native. This is because, while these speakers
are not native speakers of American English, they are native speakers of another dialect of
English and are not attempting to approximate American English. Although the acoustics,
pronunciation, syntax, and semantics of non-American English dialects are all to some
extent different from those of American English, they are presumably both more predictable
and more similar to those of American English than are those of non-native English. For
these reasons, the uk-aus utterances were excluded from further analysis. We use the term
"non-native" to describe only those speakers whose accent is labeled other in the corpus,
and the term "native" to describe only the amer utterances.

Second, we assume that all non-native speakers in the corpus are attempting to speak
American English. Although some of the speakers may have learned a different dialect
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Set Number of Utterances In-Vocabulary

all 62,324 46,036
amer 50,704 36,325
uk-aus 463 392
other 5146 4339

undef 6011 4980

Table 2-2: Breakdown of the JUPITER corpus into accent classes and in-vocabulary versus

out-of-vocabulary utterances.

such as British or Australian English, we assume that the differences between non-native

approximations of different English dialects are no larger than, or qualitatively different

from, the differences between various non-native approximations of American English. We

therefore treat all non-native speakers as a single group in our analysis and experiments.

The undef accent was applied to all:

1. Read (non-spontaneous) utterances. We perform all analysis and experiments only

on spontaneous speech; because of the time-consuming nature of manual accent clas-

sification, we classified only spontaneous utterances.

2. Utterances spoken in a language other than English.

3. Utterances for which the accent class could not be determined for any reason; for

example, because the utterance was too short or noisy to discern the accent, the

speaker seemed to be using an artificial accent, or the recording contained only non-

speech sounds.

Table 2-2 shows the number of utterances in the corpus in each of the accent classes.

The table also contains the number of in-vocabulary utterances in each accent class, which

are those utterances that contain only words within the 1956-word JUPITER vocabulary.

2.1.2 Division of the Corpus into Training, Development, and Test Sets

We divided the native and non-native utterances in the corpus into training, development,

and test sets. The training sets were used to train acoustic and language models, as well

as lexicon arc weights and the phonetic confusion weights discussed in Chapter 5. The

development sets are used to perform intermediate tests, during which various parameters

may be optimized. The test sets are used to obtain the final results and are not tested on

or analyzed prior to the final experiments. The utterances in a single call to JUPITER are

always placed in the same set, so that we do not test on utterances from calls on which

we have trained. However, since the same speaker may call more than once, and since we

do not know the identity of the speaker(s) in each call, the development and test sets may

contain some of the same speakers as the training sets.
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Set Number of Utterances

native-train 33,692
nn-train 2,717
pooled-train-iv 36,409
pooled-train 50,269
native-dev 730
nn-dev 609
pooled-dev 500
native-test 1649
nn-test 1013

Table 2-3: Number of utterances in the training, development, and test sets. The abbrevia-
tions used in this table are: nn = non-native; dev = development; iv = in-vocabulary. The
pooled-train-iv set is the subset of pooled-train consisting of only the in-vocabulary
utterances.

Table 2-3 shows the number of utterances in each of these sets. All of the sets except
pooled-train contain in-vocabulary utterances only. The pooled-train-iv set is simply
the union of native-train and nn-train. The pooled-dev set is a random 500-utterance
subset of the union of native-dev and nn-dev.

2.2 SUMMIT

SUMMIT is a segment-based speech recognition system [9]. That is, it attempts to segment
the waveform into predefined subword units, which may be phones, sequences of phones, or
parts of phones. This is in contrast to frame-based recognizers, which divide the waveform
into equal-length windows, or frames [2, 24]. Both approaches first extract acoustic features
at small, regular intervals. However, segment-based recognition approaches next attempt
to segment the waveform using these features, while frame-based recognizers use the frame-
based features directly.

The problem that a continuous speech recognizer attempts to solve is: For a given input
waveform with corresponding acoustic feature vectors A = {d1, d2 ,... , dN}, what is the
most likely string of words '* = {wi, w2 ,. , WM} that produced the waveform? In other
words,

w* =argmaxP(9|A), (2.1)

where w' ranges over all possible word strings. Since a single word string may be realizable
as different strings of units Ui with different segmentations s, this equation becomes:

G* = arg max WP(, , s,A), (2.2)
t9 8U's

where u' ranges over all possible pronunciations of zW5 and s ranges over all possible segmen-
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tations for all of the pronunciations. This summation can be computationally expensive.

As a simplification, SUMMIT assumes that, given a word sequence ', there is an optimal

segmentation and unit sequence, which is much more likely than any other s and it. The

summation is therefore replaced by a maximization, in which we attempt to find the best

triple of word string, unit sequence, and segmentation, or the best path, given the acoustic

features:
{Gj* *, s*} = arg max P( , , s, A) (2.3)

Applying Bayes' Rule several times, this can be rewritten as

= arrnxP(A, it, s)P(sl, z)P(ilz|)P( ')
{ 7 , *, s }= arg max (2.4)

, ,s P(A)

= arg max P(Al, it, s)P(sli, z)P(i|lwi)P(zI) (2.5)

The second equality arises from the fact that P(A) is constant for all W', it, and s, and

therefore does not affect the maximization.

This derivation describes the approach used in Viterbi decoding [2], and is identical for

frame-based and segment-based recognizers. The difference lies in the fact that segment-

based recognizers explicitly consider segment start and end times during the search, whereas

frame-based methods do not. Segment-based methods can therefore require significantly

more computation during the search.

The estimation of the four components of the last equation is performed by, respectively,
the acoustic, duration, lexical (or pronunciation), and language model components. In this

thesis, we do not use a duration model; that is, P(s|li, W') is constant. The following four

sections describe the other components of the SUMMIT recognizer: segmentation, acoustic

modeling, lexical modeling, and language modeling. We finally describe the methods SUM-

MIT uses to search for the best path and the implementation of SUMMIT using finite-state

transducers.

2.2.1 Segmentation

One way to limit the size of the search space is to transform the input waveform into a

constrained network of hypothesized segments. In SUMMIT, this is done by first extracting

frame-based acoustic features (e.g., MFCC's) at small, regular intervals, as in a frame-based

recognizer, and then hypothesizing groupings of frames which define possible segments.

There are various methods for performing this task; two that have been used in SUMMIT

are acoustic segmentation [10, 19], in which segment boundaries are hypothesized at points

of large acoustic change, and probabilistic segmentation [5, 19], which uses a frame-based

phonetic recognizer to hypothesize boundaries. In this thesis, we use acoustic segmentation.
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2.2.2 Acoustic Modeling

After segmentation, a vector of acoustic features is extracted for each segment or boundary
in the segmentation graph, or for both the segments and boundaries in the graph. In this
thesis, we use only the boundaries in the segment graph. Each hypothesized boundary in
the graph may be an actual transition boundary between subword units, or an internal
"boundary" within a phonetic unit. We refer to both of these as boundaries or diphones,
although the latter kind does not correspond to an actual boundary between a pair of
phones.

The acoustic features are now represented as a set of boundary feature vectors Z =

{1, 22, ... , iLI. SUMMIT assumes that boundaries are independent of each other and of the
word string, so that the acoustic component in (2.5) becomes

L

P(ZIz5<7,s) = HP(ZI|,s) (2.6)
l=1

We further assume that the conditional probability of each it is independent of any part of
u and s other than those pertaining to the lth boundary, so that

L

P (Z|G I -,U s) = ( PjzI|bi), (2.7)
l=1

where bi is the l'h boundary label as defined by U' and s. The vector function of probabilities
of feature vectors Z conditioned on boundary labels bi from a set of R boundary labels,

P(zbi)

P(zb2)
PP) . (2.8)

.P(z bR)

is estimated by the acoustic model, or set of acoustic models if we wish to emphasize the fact
that each bi is modeled separately. During recognition, the acoustic model assigns to each
boundary in the segmentation graph a vector of scores corresponding to the probability of
observing the boundary's features given each of the bi. In practice, however, not all of the
scores may be generated for each boundary. Instead, the scores are computed on demand,
generating scores only for the hypotheses that are being considered in the recognition search
at a given time.

2.2.3 Lexical Modeling

Lexical modeling is represented by the lexicon, a dictionary of allowable pronunciations
for all of the words in the recognizer's vocabulary [32]. The lexicon consists of one or
more basic pronunciations, or baseforms, for each word, as well as any number of alternate
pronunciations created by applying phonological rules to the baseform. The phonological
rules account for processes such as place assimilation, gemination, and alveolar stop flapping.
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The alternate pronunciations are represented as a graph. In addition, the arcs in the lexicon

can be weighted to account for the different probabilities of the alternate pronunciations.

The lexical probability component in (2.5) is therefore the probability of a given path in

the lexicon.

2.2.4 Language Modeling

The language model provides an estimate of P('), the probability of observing the word

sequence w. One widely-used class of language models is n-grams [2]. The probability of

an N-word string can be rewritten as

N

P() = HP(wilwi1, wi-2,- ,wi) (2.9)
i=1

n-grams assume that the probability of a given word depends on a finite number n - 1 of

preceding words:
N

P(?5) = IP(wilwi_1, wi- 2 , ... , Win-1)) (2.10)

The probability estimates for n-gram language models are typically trained by counting

the number of times each n-word sequence occurs in a set of training data. To deal with

the problem of n-grams that do not occur in the training data, smoothing methods are

often used to redistribute some of the probability from observed n-grams to unobserved

n-grams [6]. In all of the experiments in this thesis, we use word n-grams with n = 2 or

n = 3, referred to as bigrams and trigrams, respectively.

2.2.5 Searching for the Best Hypothesis

During recognition, the combined constraints of the scored segmentation graph, the lexicon,
and the language model produce a weighted graph representing the search space. The

recognizer must then find the best-scoring path through this graph. In the version of

SUMMIT used in this thesis, the language model is applied in two passes. In the first pass,
a forward Viterbi beam search [25] is used to obtain the partial-path scores to each node

using a bigram language model, followed by a backward A* beam search [30] using the scores

from the Viterbi search as the look-ahead function. The A* search produces a smaller word

graph, which can then be searched with a more computationally demanding language model

such as a trigram. In the second pass, the new language model is used to rescore the word

graph with forward partial path scores, and a backward A* search is again used to obtain

the final hypotheses.
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2.2.6 Recognition Using Finite-State Transducers

For most of our recognition experiments, we used an implementation of SUMMIT using
weighted finite-state transducers, or FST's [11]. An FST recognizer R can be represented
as the composition of four FST's,

R = A oD o L o G, (2.11)

where: A is a segment graph with associated acoustic model scores; D performs the con-
version from the diphone labels in the acoustic graph to the phone labels in the lexicon; L
represents the lexicon; and G represents the language model. The process of recognition
then becomes a search for the best path through R. SUMMIT allows the composition of D,
L, and G to be performed either during or prior to recognition.

2.3 The Baseline Recognizer

This section describes the baseline recognizer used in all of the experiments other than
the ones pertaining to the language model; see Chapter 6 for a description of the baseline
recognizer used in the language model experiments.

2.3.1 Acoustic Models

The features used in the acoustic models are the first 14 Mel-frequency cepstral coefficients
(MFCC's) averaged over 8 different regions near each boundary in the phonetic segmen-
tation of each utterance [11]. These 112 features (14 MFCC's x 8 regions) are reduced
to a 50-dimensional vector using principal components analysis (PCA). The PCA trans-
forms the resulting feature space, producing an identity covariance matrix for the training
data [4]. The acoustic models are diagonal Gaussian mixture models with up to 50 mixture
components per model, depending on the amount of training data available.

The procedure for training the models is as follows. In order to train new models, we
need a time-aligned phonetic transcription of each of the training utterances. Since we
only have manual word transcriptions for the utterances in the corpus, we create forced
phonetic transcriptions or forced paths: We begin with a set of existing acoustic models,
and we perform recognition on each training utterance using the known word transcription
as the language model. In our case, the existing JUPITER acoustic models were trained on
both native and non-native data, including some of the non-native data in our test set;
however, we believe that the forced paths are sufficiently restricted by the pronunciations
in the lexicon that the existing acoustic models do not significantly affect the final models
that we train.

We next train the PCA coefficients. Finally, we train the mixture Gaussian models
using K-means clustering [25] followed by estimation of each Gaussian's parameters via the
expectation-maximization (EM) algorithm [7].
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The acoustic models for the baseline recognizer was trained on the pooled-train-iv

set. We will henceforth use the terms "pooled" and "baseline" interchangeably to refer to

this set of acoustic models. The boundary labels for the acoustic models are based on a set

of 62 phone labels (61 acoustic labels and a sentence-boundary marker); see Appendix A for

a listing and description of the phone labels. From these phone labels, we compiled a set of

2,300 boundary labels, including both internal and transition boundaries. Although there

are 3,906 possible boundary labels (622 transition boundaries and 62 internal boundaries),
many of them do not occur in the lexicon and therefore need not be modeled. Since there

were not a sufficient number of training tokens for all of the boundary labels, the labels

were manually grouped by subjective similarity into classes. For each class, a single model

was trained on the training tokens for all of the labels in the class. In order to be able

to maintain the same label classes for subsequent training runs using only native or non-

native training utterances, the classes were chosen in such a way that each class had at

least 25 training tokens in both the native-train and nn-train sets. This resulted in 448

classes, a smaller set than the 715-class set currently used for JUPITER recognition with this

label set [28]. Experiments conducted with both sets of classes show a small increase in

recognition error rate when using the smaller class set. Specifically, for the poooled-dev

set, the word error rate increased from 13.5% to 14.0%.

2.3.2 The Lexicon

For the baseline recognizer, we used a lexicon containing 1956 words. The arc probabilities in

the lexicon were trained on the pooled-train-iv set. In order to account for pronunciations

that do not occur at all in the training set, we smoothed the weights by adding a floor, or a

minimum number of occurrences, to the count of occurrences of each possible pronunciation.

The floor was optimized by trial and error, choosing the value yielding the lowest word error

rate in a set of experiments on the pooled-dev set. Using this criterion, a floor of 0.1 was

chosen.

2.3.3 The Language Model

The baseline recognizer uses a word bigram for the forward Viterbi search and a word tri-

gram for the backward A* search. For training of the n-grams, we used the pooled-train

set, which contains both in-vocabulary and out-of-vocabulary utterances. All out-of-vocabulary

words were treated as a single word during training. Smoothing is done using n-gram in-

terpolation [6] using smoothing and floor counts of 2 for the bigram and 5 for the trigram.

These values were chosen based on experiments on the pooled-dev set.

2.3.4 Baseline Performance

Table 2-4 shows the error rates obtained using the baseline recognizer on the native and

non-native test sets. The error rates on the development sets are also shown, as these are

used for comparison in subsequent chapters. In all cases, the beam width in the Viterbi
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Test Set

native-test

nn-test

native-dev

nn-dev

S

5.8
12.4

5.1
12.1

I

2.0
3.9
1.7
4.3

D WER
2.7 10.6
4.6 20.9
2.8 9.6
3.8 20.2

Table 2-4: Rates of substitution (S), insertion (I), and deletion (D) and word error rates
(WER) obtained with the baseline recognizer on native and non-native sets. Each error
rate is a percentage of the number of reference (actual) words in the test set.

search, measured in terms of the score difference between the best- and worst-scoring path
considered, is 20. The word transition weight, a parameter controlling the tradeoff between
deletions and insertions, is 4. We note the values of these parameters as they will be varied
during the course of subsequent experiments.
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Chapter 3

Acoustic Modeling

One respect in which native and non-native speakers may differ is in the acoustic features

of their speech (e.g., [1]). In other words, when intending to produce the same phone,
native and non-native speakers may produce it with different formant frequencies (in the

case of sonorants), voice onset times (for stops), durations, and so on. From a speech

recognizer's point of view, this difference can affect the behavior of the acoustic models.

In this chapter, we investigate the possibility of improving the recognizer's performance on

non-native utterances by changing the way in which the acoustic models are trained.

To this end, we created several sets of acoustic models. Section 3.1 compares models

trained on the native training set, models trained on the non-native training set, and the

baseline models described in Chapter 2. Section 3.2 describes the creation of a combined

model by interpolation of the native and non-native models and shows the results of using

this model.

3.1 Native and Non-Native Acoustic Models

The native and non-native acoustic models were trained on the native-train and nn-train

sets described in Chapter 2. The measurements, label classes, and training procedure were

the same as those used to train the baseline models. Table 3-1 shows the performance

of recognizers using the native, non-native, and pooled models. All of the recognizers are

identical to the baseline recognizer described in Chapter 2, except for the different acoustic

models.

As expected, the native models perform better on the native sets than they do on the

non-native sets, and the non-native models perform better on the non-native sets than on

the native set. The non-native models also perform better on the non-native sets than do

the native models. This result is not a foregone conclusion, for two reasons. First, the

native models would presumably perform better than the non-native models on non-native

test data if the non-native models had sufficiently little training data. This result, therefore,
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Native Models Non-Native Models Pooled Models
Test Set S I D WER S I D WER S I D WER
native-dev 5.0 1.6 2.7 9.3 12.9 3.7 5.3 21.8 5.1 1.7 2.8 9.6
nn-dev 13.8 4.9 4.3 23.0 12.6 4.8 3.0 20.4 12.1 4.3 3.8 20.2
native-test 5.4 1.8 2.5 9.7 14.9 3.9 5.1 23.9 5.8 2.0 2.7 10.6
nn-test 14.0 4.4 5.0 23.4 12.8 4.5 4.3 21.7 12.4 3.9 4.6 20.9

Table 3-1: Rates of substitution (S), insertion (I), and deletion (D) and word error rates
(WER) for recognizers using the native, non-native, and pooled acoustic models. The sets
are the native and non-native development sets (native-dev, and nn-dev, respectively).

provides some assurance that the non-native models are adequately trained. Second, since
the non-native models are trained on speakers with many very different accents, it is possible
that the resulting models would simply be too broad to accurately model the acoustics of
the speech of any one non-native speaker. Therefore, this result also confirms that it is
reasonable to model the acoustics of non-native speech with various accents using a single
set of models.

The pooled models perform slightly worse on the native sets than do the native models.
This indicates that including non-native data in the training set, at least in the proportion
we have used, is detrimental to recognition of native speech. However, when testing on
non-native speech, the pooled models perform slightly better than the non-native models.
This suggests that, although non-native training data is better than native training data
for recognition of non-native speech, including native data in the training can be helpful.

3.2 Model Interpolation

While the non-native models perform better on non-native data than do the native models,
and the pooled models perform even better by a small amount, there is reason to believe that
we could do better than either of these. The improvement we have seen from pooling the
native and non-native training data indicates that the recognition of non-native speech can
benefit from native training data. However, the pooled training set gives very little weight
to the non-native training utterances, since the native utterances outnumber them by a
factor of about 12. Intuitively, we would like to give more weight to the non-native training
utterances than they receive in the pooled training. It would be undesirable to remove
some of the native utterances from the pooled training set to achieve a better balance, since
these add to the robustness of the models. One way to achieve the desired weighting is by
interpolating the native and non-native models.
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3.2.1 Definition

Interpolation of models refers to the weighted averaging of the PDF's of several mod-

els to produce a single output. Interpolation is closely related to model aggregation, the

averaging of model PDF's using equal weights, which has been shown to improve the per-

formance of a recognizer when applied to models from different training runs using the

same data [13]. Model interpolation has also been used successfully to combine well-trained

context-independent models with less well-trained but more detailed context-dependent

models [14]. The case of native and non-native models is similar, in the sense that the

native models are better trained but the non-native models are more appropriate for the

test population.

Given an observation vector of acoustic features 5, a set of N models A(F), 2()),- , P ,
and the corresponding weights w1 , w 2 , - , wN, the interpolated model is defined as:

N

(S) = EwifA , (3.1)
i=1

where

Ewi = 1 (3.2)
i=1

In our case, there are only two models, Pnat(5) and Pfn(5), where the subscript nat refers

to the native model and nn to the non-native one. The expression for the interpolated

model is therefore:

P(S) = wnatPnat(S) + Wnn ), (3.3)

where

wnat + wn = 1 (3.4)

3.2.2 Experiments

We created a series of interpolated models by varying the relative weights assigned to

the native and non-native models. Figure 3-1 shows the results of using these models in

recognition experiments on the native and non-native development sets.

As expected, the WER's obtained with won = 0 and wn = 1 are identical to those

obtained with native and non-native models alone, respectively. Also as expected, the

WER on native-dev displays almost monotonically increasing behavior as the non-native

models are given increasingly more weight. The minimum WER, however, does not occur

for Wnn = 0 but for wn = 0.03. With this weighting, the WER is 9.1%, which is a 2.1%

relative error rate reduction (RERR) from the WER obtained with the native models. This

may indicate that there is a benefit to interpolating the native and non-native models even

for recognition of native speech, although it is not clear that the difference in this experiment

is significant.
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Figure 3-1: Word error rates obtained on native and non-native development sets using
interpolated models with varying relative weights.

For nn-dev, the lowest WER, obtained with wn = 0.54, is 16.3%. This is a 20.0%
RERR with respect to the non-native models and a 19.3% RERR with respect to the
baseline models, indicating that the recognition of non-native speech benefits greatly from
the interpolation of native and non-native models.

It is interesting to note that, when testing on nn-dev, almost any amount of interpolation
is much better than using either of the individual models. The WER on nn-dev decreases
drastically as we go from no interpolation (wan = 0 or 1) to interpolation with wn = 0.2
or 0.9, while varying much less within a large range of won between those values. We also
note that there appears to be a local minimum in the WER on nn-dev at won = 0.37-0.35,
in addition to the absolute minimum at wnn = 0.54. It is not clear whether or not this can
be attributed to statistical variation alone.

Tables 3-2 and 3-3 show the error rates obtained on the non-native and native test sets
using interpolated models with wn = 0.54 and won = 0.03, respectively. For nn-test,
the WER using the interpolated models is 19.2%, an 8.1% improvement over the pooled
models and an 11.5% improvement over the non-native models. For nat-test, using the
interpolated models yields a WER of 9.6%, a 9.4% improvement over the pooled models
and a 1.0% improvement over the native models.

In order to determine whether these results are the best that we could have obtained
on the test sets, we tested the interpolated models on nn-test and nat-test with varying
weights, as we did for the development sets. Figure 3-2 shows the results of these experi-
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Pooled Models
S I D WER

12.4 3.9 4.6 20.9
±-r

Non-Native Models
S I D WER

12.8 4.5 14.3 1 21.7 ±|
Interpolated

S I D

11.5 3.6 4.1

Table 3-2: Comparison of error rates on the non-native test set obtained with the baseline

models, non-native models, and interpolated models with wn = 0.54

Models
D WER

2.7 10.6
II S

11

Native Models
I D WER

1.8 2.5 9.7 I 

Interpolated
S I D

5.3 1.8 2.5

Table 3-3: Comparison of error rates on the native test set obtained with the baseline

models, native models, and interpolated models with wn = 0.03

ments. The lowest WER for nn-test is 18.9%, an improvement of 9.6% over baseline, and

occurs at wn = 0.57. For nat-test, the lowest WER is 9.5%, an improvement of 2.1%

over the native models alone, and occurs at wn = 0.05.

It is not clear why even the best-performing interpolated model for nn-test produces

only about half the improvement that was obtained on nn-dev. This may be due to the

large variability in non-native speech; that is, the utterances in the development set may

happen to be better modeled by the acoustic models than those in the test set.
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Chapter 4

Comparison of Native and
Non-Native Lexical Patterns Using
Manual Transcriptions

In this chapter, we investigate the differences between native and non-native patterns of
word pronunciation through manual phonetic transcriptions of a small subset of the utter-

ances in the JUPITER corpus. We examine the transcriptions both qualitatively, to gain a
general impression of the phenomena present, and quantitatively, to measure the frequen-
cies of these phenomena. This is an informal investigation, in that only a small number
of utterances were transcribed by a single person. However, this type of investigation can
provide a general picture of the types of pronunciation differences that exist between native
and non-native speakers.

4.1 Manual Transcriptions

The data for this study consist of 100 utterances from 19 native speakers and 96 utterances

from 24 non-native speakers, drawn from the JUPITER corpus. Each utterance was tran-

scribed by both listening to portions of the utterance and visually examining a spectrogram
of the waveform. The label set for the phonetic transcriptions is based on the one used

in the baseline recognizer. However, labels were added as needed to better account for

the speech sounds present in the data. This resulted in somewhat different label sets for

the native and non-native transcriptions. For example, we found that several of the native

speakers tended to use diphthong-like sounds instead of pure vowels. We therefore added

several labels corresponding to these sounds. For non-native speakers, we added several

short, tense vowels (such as IPA [i], a non-diphthongized, tense, high front vowel), as well

as labels for non-native varieties of /r/ and /1/. Several non-standard phones were added

for both native and non-native transcriptions, such as IPA [Y] (a lax, rounded, mid-high,
mid-front vowel) and IPA [x] (a voiceless velar fricative). The full label sets used for the

transcriptions are described in Appendix A. In the discussion and examples of the following
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sections, we use the manual transcription labels.

4.1.1 Guidelines for Preparation of Transcriptions

One of the first issues that arose in the preparation of the manual transcriptions is the
level of specificity of the transcriptions. For example, the transcriptions cannot be on the
phonemic level, since it is often not clear what the underlying phonemes are. For example,
if an American speaker devoices a final [z], we may infer that the intended phoneme was a
[z] although the sound produced more closely resembles an [s]. If, however, a non-American
speaker devoices the same [z], we cannot know if he/she intended to produce a [z] or an
[s]. A broad phonetic transcription is also possible; in this case, for example, a non-native
speaker's pure [i] and a native speaker's diphthongized [iy] might receive the same label.
However, this would have two main drawbacks. First, we would lose information about
the presence of sounds that may be difficult for a speech recognizer to handle. Second,
the non-American sounds may be difficult to classify under a broad classification scheme.
For example, of two slightly different [i]'s, one may more closely resemble an [iy] while the
other may more closely resemble an [ih]; using [i] allows us to both better describe the two
segments and indicate that they are members of the same class.

For this reason, we have chosen to transcribe all of the utterances at the most specific
level possible; that is, using the largest set of phones that we were able to distinguish.
This has the advantage of retaining as much information as possible, but the disadvantage
that it is biased by the transcriber's familiarity with various non-American phones. For
example, while the transcriptions distinguish between [a] and [aa], [i] and [iy], and [ue] and
[uhe], all non-American /r/'s are labeled [r*]. The utterances no doubt also contain many
phones that were transcribed as American sounds although, to the speakers, they may be
phonemically different (for example, aspirated and non-aspirated stops).

In some cases, the identity of a segment was very ambiguous. In general, we used the
convention that the speaker is given the benefit of the doubt. Therefore, in cases where
a segment could have been either a "correct" phone or an "incorrect" one (according to
the lexicon), the correct phone was chosen for the transcription. Stop closures proved very
difficult to transcribe, with some voiceless stop closures appearing to contain voice bars. As a
rule, the correct closure was used in the transcription, except for a few voiceless stop closures
that were labeled as their voiced counterparts because the waveforms appeared to contain
several periods of voicing within the closures. Some segments were difficult to transcribe
due to the limited bandwidth and various background noises. For example, alveolar and
labiodental fricatives were easily confusable, and breath noises or background noise may
have made some segments appear fricated even if they were not; in these cases, again, the
correct label was used in the transcription. Finally, in cases where a phone's identity was
particularly ambiguous, the label [unk] (for "unknown") or another label indicating the
possible phones (such as [nas] for any nasal, [sch] for any schwa, and [dh-v] for [dh] or [v])
was used. Finally, pauses and non-speech sounds such as coughs and lip smacks were not
transcribed and are not addressed in our analysis.
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4.2 Observations on Common Pronunciation Phenomena in
Transcriptions

This section describes some of the phenomena we noted in the transcriptions of native and

non-native utterances.

4.2.1 Non-Native Speakers

This section lists some common phenomena in the non-native utterances, along with exam-

ples of each one. Many of these are intuitive if we consider the properties of languages other

than English [27]. For example, certain languages have a simpler syllable structure than

English and tend to use simpler consonant clusters, or none at all. It might be expected,
therefore, that speakers of these languages may delete consonants in clusters or insert schwas

to break up strings of consonants. Many languages also do not tend to reduce vowels in

unstressed positions to the extent that American English does, so it is to be expected that

speakers of these languages may substitute full vowels for schwas.

The data also demonstrate the unpredictability of non-native pronunciations. In some

cases, we find different productions of the same word or phone within the same speaker.

For example, one speaker in the corpus, who seemed to have a Spanish or South American

accent, had a great deal of difficulty with the liquids in the word Florida. In several

productions of this word, he: replaced the [1] with an American [r]-like sound; deleted the

[r]; used a flap or trill for the [r]; or produced an unidentifiable phone in place of the [1].

Another speaker in the test set, who seemed to have a French accent, produced two different

types of /r/ in the utterance Paris France: A trilled one in Paris and an American-sounding

[r] in France.

The following is a list of some of the common pronunciation phenomena in the non-native

transcriptions. The examples are of the form

words: ["typical" pronunciation] -+ [non-native pronunciation] (phenomenon)

where the "typical" pronunciation is drawn from the baseline lexicon. The symbol e repre-

sents the null phone, used when there is an insertion or deletion.

* Use of the non-American tense vowels [i], [o], [uu], [a], and [e], often used instead of

lax vowels:

city: [s ih tcl t iy] -+ [s i tcl t i] ([ih] -+[i], [iy] -[i])

no: [n ow] -+ [n o] ([ow] -+[o])

tomorrow: [tcl t ax m aa r ow] -+ [t uu m a r ow] ([ax] -+[uu], [aa] -+[a])

something: [s ah m th ih ng] -+ [s a m tht ih ng] ([ah] -+[a])
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name: [n ey m] -+ [n e m] ([ey] -+[e])

e Use of full vowels instead of reduced ones:

Phoenix: [f iy n ix kcl k s] -+ [f iy n iy kcl k s] ([ix] -+[iy])

about: [ax bcl b aw tcl t] -+ [eh bcl b ahw uhx-ins dcl d ix-ins] ([ax] -[eh])

" Deletion of final consonants or of consonants in clusters:

how-about: [hh aw ax bcl b aw tcl t] -+ [hh aw bcl b aw] ([tcl t] -[e])

NewYorkCity: [n y uw y o r kcl k s ih tcl t iy] -+ [n y uhe y o r* s i tcl t i]
([kcl k] -+[E])

Portland: [pcl p o r tcl 1 ax n dcl d] -+ [pcl p o r 1 eh n dcl d] ([tcl] -[E])

e For some speakers, difficulty producing liquids and non-American productions of [1]
and [r]:

Florida: [f 1 o r ix dx ax] -+ [f r unk unk i dh a] ([1 o r] -+[r unk unk])

Peru: [pcl p rx uw] -4 [pcl p eh r* uw] ([rx] -+[eh r*])

" Frequent schwa insertions:

how-about the weather in: [hh aw ax bcl b aw tcl t dh ax w eh dh rx ih n] -+

[ahw eh b ahw uhx.ins d ix-ins dh-v eh w eh dh rx* ax-ins q i n* ix-ins] ([e]
- [uhx-ins], [ix-ins], [ax-ins])

4.2.2 Native Speakers

The following are some of the common phenomena that appear in the native utterances,
along with examples of each. Note than some of these are also common in non-native
speakers.

" Deletion of segments or compression of strings of segments in unstressed syllables:

tomorrow in: [tcl t ax m aa r ow ih n] -4 [tcl t mm aa r nn] ([ow ih n] -4[nn])

could you: [kcl k uh dcl d y uw] -4 [k dcl d ue] ([uh] -+[E], [y uw] -4[ue])

* Devoicing of final consonants, especially [z]:

directions: [dcl d ix r eh kcl k sh ix n z] -+ [dcl d eh r eh k sh nn s] ([z] -+[s])

" Use of diphthongs in place of pure vowels:

and: [ae n dcl d] -+ [ihae n] ([ae] -*[ihae])

" Schwa insertions:

what is: [w ah dx ih z] -+ [w ah dx ix-ins ih z ax-ins] ([e] -+[ix-ins], [ax-ins])
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4.3 Quantitative Analysis

In order to obtain quantitative estimates of the frequencies of the various phenomena in

the transcriptions, we aligned each transcription with a subset of the lexicon corresponding

to the known word transcription of each utterance. The procedure was a simple string

alignment, in which any lexical phone can be aligned with any surface (transcription) phone.

Alignments with e represent deletions and insertions. A match between a surface phone

and an identical lexical phone is given a cost of 0 and a mismatch is given a cost of 1, and

the best alignment is found by minimizing the score. The only exceptions are that inserted

schwas must be aligned with e, and that [er] -+[rx], [t-] -+[t], [k-] -4[k], and [p-] -4[p] are

considered to be matches since the manual transcriptions do not differentiate between these

pairs of phones. After aligning all transcriptions, the probabilities of all phone-to-phone

alignments, or confusions, are computed.

Figures 4-1 and 4-2 show the estimated confusion probabilities in bubble plot form. The

calculation of the estimated probabilities is described in greater detail in Chapter 5. In this

chapter, we are not concerned with the exact values of the probabilities, but only with their

relative magnitudes. Note that the plots contain some spurious confusions (such as [uw] -

[gf]) due to alignment errors.

Table 4-1 shows the frequencies of some of the common phenomena we have discussed,

as well as some additional phenomena. The frequencies in the table were obtained from

the automatic alignments. For each type of phenomenon, the number of occurrences of

the phenomenon is divided by the number of times the conditioning context occurred. For

example, for the use of [i, iy] instead of [ih], the conditioning count is the number of times a

lexical [ih] occurred. For the frequencies of certain sounds that do not occur in the lexicon

([i], [r*], etc.), the conditioning count is simply the total number of surface labels. This

table suggests that non-natives are more likely to use the vowels [a, o, e, i, uu]; replace a lax

vowel with a tense vowel; replace a schwa with a full vowel or diphthong; use non-American

liquids [r*, 1*]; replace a stop with a fricative (such as [gcl g] -* [gf]); or replace a dental

fricative with an alveolar stop or stop-like fricative. Native speakers, on the other hand,

are more likely to delete a schwa or use a diphthong instead of a pure vowel. For the other

phenomena measured, it is difficult to determine from such a small number of occurrences

whether there is a clear difference.

These phenomena suggest that we may be able to model non-native pronunciation pat-

terns by incorporating additional rules into the recognizer's lexicon. However, discovering

such rules and applying them to the lexicon is labor-intensive and prone to human and

alignment error. A more attractive solution may be to learn rules from training data auto-

matically. In the next chapter, we describe an attempt to automatically learn a particular

class of phonetic replacement rules from the non-native training data.
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Figure 4-1: Bubble plot showing the estimated confusion probabilities for non-native speak-
ers. The radius of each bubble is proportional to the probability of the corresponding
confusion. The largest bubble corresponds to P(th~tjth) = 0.4545.
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Frequency I Frequency
Phenomenon (Native) (Non-Native)
(1) use of [a, o, e, i, uu] 38/2089 = 1.8% 93/2140 = 4.3%
(2) [eh] - [e, ey] 0/60 0/50
(3) [ih] - [i, iy] 0/52 15/76 = 19.7%
(4) [uh] - [uu, uw, ue] 0/8 0/5
(5) [ah] -+ [a, aa, ao] 1/32 = 3.1% 3/39 = 7.7%
(6) lax -+ tense (sum of (2)-(5)) 1/152 = 0.7% 18/170 = 10.6%
(7) schwa -± full vowel/diphthong 10/133 = 7.5% 27/157 = 17.2%
(8) [r*] 0/2089 14/2140 = 0.7%
(9) [1*] 0/2089 4/2140 = 0.2%
(10) schwa insertion 13/2153 = 0.6% 17/2212 = 0.8%
(11) schwa deletion 9/133 = 6.8% 2/157 = 1.3%
(12) voiced fric. -+ voiceless fric. 7/91 = 7.7% 13/134 = 9.7%
(13) use of [ehow, ihow, ea, ehax, ihae, iheh, ihuw] 9/2089 = 0.4% 0/2140
(14) stop frication 5/279 = 1.8% 10/240 = 4.2%
(15) [dh, th -+[d, t, dh d, tht] 19/78 = 24.4% 42/98 = 42.9%

Table 4-1: Frequencies of various phenomena noted in manual transcriptions of native and
non-native data.
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Chapter 5

Automatic Acquisition of
Non-Native Pronunciation
Patterns

In this chapter we investigate the possibility of modeling the pronunciation patterns of

non-native speakers within a speech recognizer. One natural way to attempt to do this is

by training the lexicon arc weights on the non-native training data. However, as Table 5-1
shows, this actually increases the word error rate on the non-native development set. This
is most likely because of the limited size of the non-native training set; that is, it may not
contain enough occurrences of each pronunciation in the lexicon to robustly train the arc
weights.

Furthermore, even given sufficient non-native training data, a redistribution of the prob-
abilities of alternate pronunciations is not likely to account for most of the pronuncia-

tion patterns of non-native speakers. The baseline lexicon contains several pronunciations

per word, derived by applying common American English phonological rules to baseform
pronunciations. However, as discussed in Chapter 4, and as shown in previous research

(e.g., [29]), non-native speech may contain many more pronunciations per word and may
follow different phonological rules than native speech. Ideally, we would like to collect entire
word pronunciations and train their probabilities from real non-native data. However, since
we do not have enough instances of each word from the JUPITER lexicon in the non-native

Baseline Lexicon Lex. Trained on nn-train

S I D WER S I D WER

12.1 4.3 3.8 20.2 14.1 4.6 3.9 22.6

Table 5-1: Rates of substitution (S), insertion (I), and deletion (D) and word error rates

(WER) on nn-dev for recognizers using the baseline lexicon and a lexicon with arc weights
trained on nn-train. In both cases, the baseline acoustic models were used.
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training data, we attempt to derive rules from the training data, which we can then apply
to the lexicon much as phonological rules are added to the baseforms.

5.1 Approach

The specific approach we chose is to augment the baseline FST recognizer with an additional
weighted FST, C, which is introduced between the lexicon and the phonetic graph. That
is, whereas the baseline recognizer can be represented as

R=AoDoLoG, (5.1)

as described in Chapter 2, the modified recognizer is

Rc =A oDoCoLoG (5.2)

The FST C may represent any number of phonological phenomena, and its arc weights
represent the probabilities of occurrence of these phenomena.

In this initial investigation, we consider a very simple type of C. Namely, we build a C
consisting of a single state, with self-loops representing allowed mappings between lexical
phones and surface phones, the phones that actually occur in the utterance. A portion of
such an FST may look like the following:

sh:sh/0.8

Figure 5-1: Example portion of a simple C.

In this and all FST's we show, an arc labeled (x : y)/p indicates that a y can be realized
as an x with probability p. The notation (x : y) represents the conditional event that,
given a lexical label y, its surface realization is x. In cases where a lexical label has a
single surface realization, the weight on the corresponding arc may be omitted. This FST
indicates that a [sh] in the lexicon can be realized as a [sh] with probability 0.8 or as a
[ch] with probability 0.2, and that a lexical [ix] can be realized as an [ix] with probability
0.7 or as an [iy] with probability 0.2. An [ix] can also be deleted with probability 0.1; this
is represented as substitution with a null phone, e. The weight on an arc need not be its
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probability, although it is often a function of the probability. In this approach, insertions
are represented as transitions from a null phone to a non-null phone.

This type of C models only context-independent probabilities. For example, it does not
have different probabilities for the mapping (ch : sh) in Chicago and in Shanghai, although
the former is likely to be more probable than the latter. As we will show, however, even
this simplistic approach can be useful in the recognition of non-native speech.

A full C would contain at least one arc for every lexical label. The maximum size of C
is NNs - 1, where N, is the number of lexical labels and NS is the number of surface labels,
including a null phone in both label sets. The maximum is one less than NNs because
the mapping between two null phones is not included. N, and Ns may differ, for example,
if the lexicon contains phonemic pronunciations and the phone graph contains phonetic
pronunciations. However, we consider only the case where the lexical and surface label sets
are identical, so that N = N, = N. We refer to this FST as C because it attempts to model
the phonetic confusions that non-native speakers may exhibit, or, as will be discussed, that
the recognizer may exhibit in recognizing non-native speech. We will also refer to C as a
confusion FST or CFST.

The effect of composing C with L is to simply add to each arc in L a set of parallel arcs
corresponding to the possible surface realizations of the lexical phone on that arc. So, for
example, L may contain the following pronunciation graph for Chicago:

sh.Chicago , ix:E kcl.E kEaa:E gel:E g E ow:E Q
Figure 5-2: Lexical pronunciation graph for the word Chicago.

This graph indicates that the word Chicago can only be realized as the phone string [sh ix
kcl k aa gcl g ow]. If C contains only the confusions shown in Figure 5-1, plus self-mappings
only for all of the other lexical labels, then the composition C o L yields the following
pronunciation graph for Chicago:

mxE/0.7

Figure 5-3: Expanded lexical pronunciation graph for the word Chicago.

This FST indicates that Chicago can have any of the pronunciations [sh ix kcl k aa gcl g
ow], [sh kcl k aa gcl g ow], [sh iy kcl k aa gcl g ow], [ch ix kcl k aa gcl g ow], [ch kcl k aa gcl

g ow], or [ch iy kcl k aa gcl g ow]. In practice, the (e : E) arcs are removed, and alternate
paths that skip over node 1 or 2 are inserted.
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An alternate way of looking at C, rather than as an expansion of the lexicon, is that it
allows an imperfect match between the lexicon and the surface phones. For example, while
the lexicon may only have the pronunciation [sh ix kcl k aa gcl g ow] for the word Chicago,
the incorporation of C allows the common non-native pronunciation [sh iy kcl k aa gcl g
ow] by permitting a mismatch in the second phone.

This approach is similar in some respects to previous research in pronunciation model-
ing. In [20], for example, Levinson et al. obtained word hypotheses by aligning the output
of a phonetic recognizer with the lexicon and grammar. This is similar to the approach
used here, in that it allows a mismatch between the phonetic hypotheses and the lexicon.
However, [20] used a measure of acoustic similarity between phones to determine the con-
fusion weights. The work of Teixeira et al. [29] is more similar to the current approach, in
that the pronunciation weights are estimated from non-native training data. In [26], Riley
and Ljolje train probabilistic, context-dependent phoneme-to-phone mappings to obtain a
phonetic lexicon for native speakers, using a similar estimation procedure to the one we
have described but using a classification tree to group contexts into feature-based classes.
Finally, there are also similarities between our approach and that of ANGIE [18], a subword
lexical modeling framework, in which the probabilities of phonological rules are trainable.

5.2 Methods

This section discusses the methods we use to build CFST's: The estimation of arc probabil-
ities, computational considerations in recognition with CFST's, and the problem of sparse
training data.

5.2.1 Estimation of CFST Arc Probabilities

The first problem we confront is that of training the confusion probabilities in C. In order
to do so, we need to have an accurate phonetic transcription for each utterance, aligned
with the corresponding pronunciation of each word as it appears in the lexicon. We cannot
do this by creating forced paths using the baseline recognizer, since these will only contain
pronunciations already in the baseline lexicon. One option is to manually transcribe all
of the training utterances. This, however, is a very labor-intensive task and is prone to
mismatch between the human transcriber's conception of each phone and the recognizer's
acoustic models.

Our approach to this problem is to generate automatic transcriptions of the non-native
training sentences, using either phonetic recognizer hypotheses or forced paths with an
expanded lexicon; both of these methods are described in Section 5.3. We then use an
automatic string alignment procedure to align the transcriptions with the lexicon. Finally,
we derive the maximum likelihood estimates of the confusion probabilities from their fre-
quencies in the alignments.
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The alignment of each utterance is done by composing several FST's:

P o Ca o Lo o W, (5.3)

where P is an unweighted FST representing the string of phones in the utterance's phonetic
transcription; Ca is an alignment CFST which contains an a priori probability Pa(s : 1) of
each confusion (s : 1); Lo is the lexicon with no arc weights; and W is an unweighted FST
representing the known word transcription of the utterance. The probabilities in Ca can
be set either manually or using an existing CFST from a prior training run. We use LO
rather than L during alignment because we do not want to bias the alignment toward any
particular pronunciation of a given word. If we used the weighted lexicon L, there could
be a situation in which the speaker produced one of the pronunciations in the lexicon for a
given word, but the word was aligned with a different pronunciation because it had a higher
probability in L.

The probability of each confusion is then computed by counting the number of times it

occurs in the alignments. For substitutions and deletions, if the lexical label 1 occurs nj

times in the alignments, and the confusion (s : 1) with the surface label s occurs n,:i times,
the maximum likelihood estimate of the probability of (s : 1) is

P(s : l) ns: (5.4)
ni

The probabilities of insertions are treated somewhat differently than those of substitu-
tions and deletions. This is because, in the case of a substitution or deletion, the lexical
label and its a priori probability are given. In the case of an insertion, on the other hand,
we can view it as adding an arc with a null phone, ins, to the baseline lexicon where none
previously existed. Note that ins is similar to, but not the same as, e. While ins is a
null lexical phone, it is a special kind of null phone-namely, one that will be replaced by a
non-null surface phone. There are infinitely many E's in any lexical string, but only as many
ins's as there will be insertions. In this formulation, the probability of an inserted s is the a
priori probability of traversing an ins arc in the lexicon, multiplied by the probability of an
ins being realized as an s. The first step, therefore, is to calculate the a priori probability
of ins, or, in other words, the probability of an insertion.

Consider a sequence of lexical labels 1 = {l1,12, ... , 1m }, which is realized as the sequence
of surface labels s'= {si, S2, -. , Sm+nns}, where si = E for a deletion. The nim, additional
surface labels represent inserted phones. Then the maximum likelihood estimate of the
probability of an insertion is

P(ins) n2 ns (5.5)
m + nins

In the present case, nin, is the number of insertions in the alignments and m + nns is

the total number of surface phones in the alignments, including E as a surface phone when

there is a deletion. Given that an insertion occurs, the estimated probability of the inserted

phone being s is then

P(slins) = ns:ins (5.6)
nins
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where ns:ns is the number of times an s was inserted. Letting ntot = m + nin,, the total
probability of an s insertion is therefore

P(s : ins) P(slins)P(ins) (5.7)

ns~ins(5.8)
ntot

5.2.2 Computational Considerations of CFST's

The composition of a lexicon and a CFST can be larger than the lexicon by a factor of
up to N8 , the number of surface phonetic labels. In preliminary experiments, we found
that this can make both the running time and memory requirements of the recognizer
prohibitively large. In order to make recognition with CFST's feasible, we use two main
space-saving measures: dynamic composition and CFST pruning. Instead of performing
the composition R = D o C o L o G offline prior to recognition, we perform the two smaller
compositions R1 = D o C and R 2 = L o G offline and perform R = R1 o R 2 dynamically
during recognition. In dynamic composition, portions of R are created as necessary to
expand the hypotheses being considered. While this is less efficient than offine composition,
since R is not optimized during dynamic composition, it limits the working size of the FST
being searched. In addition, since dynamic composition creates many superfluous paths,
the total number of active nodes in the Viterbi search is limited to 1000.

In order to further limit the size of R, we prune C by including only those arcs whose
probabilities are above a given threshold. When pruning C, we always include the self-
confusions (1 : 1) even if their probabilities are below threshold, so as to always allow the
baseline pronunciations. After pruning, the arc probabilities are redistributed so that the
probabilities of all of the allowed confusions for each lexical label sum to 1. In the case of
insertions, the redistribution is done so that the probabilities of the allowed insertions sum
to P(ins).

In addition, in some of the experiments, we further reduce time and space requirements
by using a narrower beam in the Viterbi search than the baseline recognizer does. While
this initially increases the error rates, it allows us to experiment with a larger range of
CFST sizes.

5.2.3 The Sparse Data Problem

The robust estimation of confusion probabilities depends on the availability of sufficient
training data. Because the non-native training data are quite limited, some of the lexical
labels in the alignments occur very few times, so that the probability estimates for the con-
fusions of those labels are unreliable. While the maximum likelihood probability estimates
from the previous section are optimal for predicting the training set, they may not reliably
predict the probabilities of unseen data.

In order to combat this problem, we smooth the confusion probabilities; that is, we redis-
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tribute the probability so that some or all of the unobserved confusions receive some prob-

ability, while the observed confusions receive somewhat less than the maximum likelihood

probabilities. We describe two smoothing approaches, padding and linear interpolation.

Padding

A simple solution to the problem of unobserved confusions is to simply assume that some or

all of the unobserved confusions were seen some minimum number of times in the training

data. We use two types of padding approaches. In the first method, which we refer to as

pad-1, we add one occurrence of each self-confusion (1 : 1) that did not occur. This is a very

restricted form of smoothing, but it ensures that the baseline pronunciations are allowed,

while adding a very small number of arcs to the CFST. Using this approach, the probability

estimates for substitutions and deletions are

n 1L : 1) observed

P(s :(1) =: 1) unobserved, s 1 1 (5.9)

1 (1 : 1) unobserved, s = 1

The probability estimates for insertions do not change; that is, P(s : ins) = P(s : ins).

In the second approach, pad-2, we add a small number n, of occurrences of each confusion

that did not occur in the training data. This guarantees that all confusions are represented.

If the number of unobserved confusions from lexical label 1 is ul, the probability estimates

become
"s) (s : 1) observed

#(s : 1) = "npul (5.10)
flI+fpu' (s : 1) unobserved

This holds for all types of confusions, where, for an insertion, ni is replaced by ntot.

Linear Interpolation

A smoothing approach often used in training n-gram language models is linear interpola-

tion [17], in which the probability estimates of the n-gram model are linear combinations

of the observed frequencies of that n-gram in the training set and the probability estimates

of the next lower-order n-gram model. By analogy to n-grams, confusion probability esti-

mates can be smoothed by combining the observed frequency of (s : 1) with the a priori

probability estimate of s, P(s):

P(s : 1) = A2 P(s : 1) + (1 - A2) F(s), (5.11)

where F(s) is similarly smoothed with PO = 1/N, the a priori unigram probability (recall

that N is the number of labels in the label set):

P(s)= n (5.12)
ntot
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P(s) = AiP(s) + (1 - A1 )o (1

Al and A2 are the smoothing parameters, which determine the weighting given to each of
the probabilities being combined. We use the approach of [23], in which

A2 - (5.14)
nj + ri

rtotA, - , (5.15)
ntot + rtot

where rl is the number of unique surface labels s for which (s : 1) occurs in the training
data, and rtot is the number of unique surface labels in the training data.

5.3 Experiments

This section describes recognition experiments performed with CFST's using the methods
described in the previous section to compute the estimated confusion probabilities. Unless
otherwise indicated, all of the recognizers use the baseline acoustic, lexical, and language
models; the only differences between the baseline and the test recognizers are the incorpo-
ration of a CFST, and possibly the use of different beam widths or word transition weights
during the search.

5.3.1 Training from Phonetic Recognition Hypotheses

The first method we used to create automatic transcriptions of the training data is phonetic
recognition. The phonetic recognizer we used has the same diphone acoustic models as the
baseline word recognizer. In order to constrain the transcriptions as little as possible, while
minimizing obvious transcription errors, a phone bigram language model, trained on the
mixed-train-iv set, is used for this task. We felt that, because the phonetic language
model is trained from forced paths created using the baseline lexicon, a higher-order n-
gram would force the transcriptions to conform too closely to the baseline pronunciations.
On the other hand, in preliminary experiments, we found that a unigram tends to produce
some obvious transcription errors such as strings of consecutive stop closures (this problem
may have been alleviated by the use of a duration model, which would discourage single
segments from being broken up into several shorter segments).

For the alignment CFST Ca, we used the simple weighting function

o0 s=l
w(s : l) (5.16)

The arc probabilities in C were then estimated from the alignments as described above. We
refer to this method of creating C as the "phonetic recognition (or PR) method." Note that,
since the arc weights are trained from phonetic recognition outputs and not from "correct"
transcriptions, C is modeling not only effects present in the actual speech data but also the
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degree of difficulty that the recognizer has in distinguishing certain phones from each other.

Using this method on the non-native training set with no smoothing, we obtain a CFST,
CPR, containing 2188 confusions. Note that the maximum possible number of confusions
is 622 - 1 = 3843, since there are 62 phone labels including the null phone. The confusion

probabilities in CPR are shown in bubble plot form in Figure 5-4. In this and subsequent

bubble plots, the null phone is represented as NULL for both deletions and insertions, and
the phone label [_] is represented as iwt (for inter-word trash). The diagonal entries (I : 1)
are excluded from the bubble plot, since they are typically so large as to overwhelm the

off-diagonal entries. Also excluded are all lexical labels with nj < 30-namely, [k-], [zh],
[dr], [nn], [oy], and [p-]-since these tended to have very large confusion probabilities as
well. As expected, (sonorant : sonorant) and (non - sonorant : non - sonorant) confusions
tend to receive higher probability estimates than (sonorant : non - sonorant) or (non -
sonorant : sonorant)-that is, there is more probability mass in the upper left and lower
right regions of the plot than in the lower left and upper right. However, because of errors

in phonetic recognition and alignment, there are many more (sonorant : non - sonorant)

and (non - sonorant : sonorant) confusions than we might expect.

Table 5-2 shows the most likely confusions for each lexical label, including the diagonal

entries, as well as the number of occurrences of each lexical label in the alignments. As

both this table and Figure 5-4 show, the most common confusions include both some that
we expect to see in non-native speech, such as (iy : ix) and (d: dh), and some that are most

likely errors in phonetic recognition or alignment, such as (1: aw) and (s f). Appendix B

lists all of the confusions and their frequencies.

We tested a recognizer using CFST's derived from CPR by pruning with varying pruning

thresholds (cprune's). In this implementation, the pruning threshold is expressed as a

negative log probability, so that the higher the threshold, the more arcs are included. In all

cases, we used the pad-1 smoothing method. Figure 5-5 shows the average number of arcs

per phone in the CFST-that is, the ratio of the number of arcs in the CFST to the number

of phones in the label set-for each cprune. The largest CFST, with cprune = 6, contains

a total of 1250 confusions, a little over half of the confusions in CPR. Figure 5-6 shows

the word error rates obtained on the nn-dev set as a function of cprune. The word error
rates are shown for two Viterbi pruning thresholds (vprune's). Due to time and memory
constraints, the word error rate was not measured at vprune = 20, cprune = 6.

For cprune = 0, the CFST is an identity mapping, so that the recognizer is almost

identical to the baseline recognizer; the only difference is that, in this case, the composition
is done on the fly and the number of active nodes during the Viterbi search is limited to

1000. Therefore, the slight increase in WER at cprune = 0, vprune = 20 with respect to

the baseline (from 20.2% to 20.3%) is due only to dynamic composition.

For both vprune = 15 and vprune = 20, there is a minimum in WER at cprune = 4.

The increase in WER for cprune > 4 may indicate that the low-probability arcs are not

well-trained, and that adding them increases the confusability between words. The lowest

WER obtained in this series of experiments is 18.2% at vprune = 20, cprune = 4. This is

a 9.9% relative reduction from the baseline WER.
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Figure 5-4: Bubble plot showing the estimated confusion probabilities using the phonetic
recognition method. The radius of each bubble is proportional to the probability of the
corresponding confusion. The largest bubble corresponds to P(ch : t) = 0.155.
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Lex. Label Freq. Most Common Conf. Lex. Label Freq. Most Common Conf.

aa 1146 aa, 6, ow, ah, ax, ix dr 15 dh, tcl, dr, E, -, d

ae 1205 ae, aa, E, eh, ax, ix tr 42 tr, E, t, -, ay, f

ah 1338 ah, ax, aa, E, 11, ow jh 225 jh, E, t, ch, tcl, s
u 265 u, e, -, ax, ae, _ ch 271 ch, t, e, sh, jh, ih

eh 1822 eh, ae, ix, ih, e, ax zh 8 tcl, kcl, n, p, s, E
ih 2204 ih, ix, iy, E, ux, ey z 1110 z,s _, tcl, e, n
iy 1389 iy, ix, E, ih, y, ey v 338 v, E,11, 1, tcl, dcl
uh 183 uh, ax, uw, 6, ix, ih dh 2414 dh, d, E, t, ih, n

uw 503 uw, E, ix, ax, ow, w sh 232 sh, s, E, ch, t, tcl

ux 466 ux, ih, ix, E, iy, tcl s 2577 s, 6, z, _, t, tcl

aw 776 aw, aa, ow, 11, E, ah f 829 f, s, E, p, tcl, w

ay 1051 ay, E, ae, ax, ey, u tlh 211 th, t, s, E _, kcl

ey 940 ey, E, ix, iy, ae, ih hh 634 hh, 6, -, k, dh, 1
ow 2043 ow, aa, -, 11, ax, uw b 978 b, p, E, dh, d, m
oy 22 oy, ay, ow, 11, n, E d 1017 d, dh, 6, t, b, iy
ax 2421 ax, E, ih, eh, ae, ow g 412 g, E, k, dh, y, t

ix 2743 ix, 6, ih, iy, ae, ax p 572 p, t, E, k, dh, tcl
rx 2415 rx, E, ax, ix, 11, ae p- 27 p-, p, b, ae, f, _
er 185 er, ow, rx, ax, aa, ah t 2409 t, dh, k, d, 6, p

w 2445 w, 1, E, y, m, b t- 68 t-, t, e, d, ax, s

y 830 y, 6, ih, t, n, iy k 1375 k, t, g, 6, dh, p

r 1121 r, E, 1, t, n, rx k- 1 _

1 1047 1, E, dx, n, m, nx bcl 906 bcl, pcl, w, E, m, 1
11 835 11, e, n, ow, tcl, dcl 2378 dcl, tcl, E, t, n, z

m 1233 m, n, E, w, -, 11 gcl 325 gcl, E, dcl, kcl, tcl, n

n 3680 n, E, -, m, 11, ng pci 510 pc, tcl, E, bcl, kcl, dcl

nn 18 n, ax, d , 6, - tcl 3658 tcl, E, dcl, kcl, n, dh

ng 498 ng, n, E, 11, -, ey kcl 1464 kcl, tcl, E, -, gcl, pCi
nx 547 nx, e, m, 11, dx, dcl - 42881 -, , s, n, dhi ax

dx 473 dx, 6, d, dcl, nx, n _ 36718 -, -, tcl, n, s, t

tq 61 tq, E, dh, 1, dcl, E 146831 -, _ tcl, n, s, ix

Table 5-2: Frequency and most common confusions for each

recognition method.

lexical label, using the phonetic
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Figure 5-5: Average number of arcs per phone as a function of CFST pruning threshold,
using the phonetic recognition method.
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Figure 5-6: Word error rate on nn-dev as a
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vprunel| S I I D I WER
15 13.1 3.3 4.9 21.3
20 12.2 3.3 4.8 20.3

Table 5-3: Error rates obtained on
the phonetic recognition method.

0

*0
0:

Figure 5-7: Word error rate on nn-test
the phonetic recognition method.

nn-test using a CFST with cprune = 4, trained using

2 3 4 5 6
cprune

as a function of CFST pruning threshold, using

Based on these results, we chose a cprune of 4 to test the recognizer on the nn-test set.

The results for both vprune = 15 and vprune = 20 are shown in Table 5-3. Compared to

the baseline WER of 20.9%, the test recognizer reduces the WER by 2.9% with vprune = 20

but increases it by 1.9% with vprune = 15. To test whether this is the best performance

we could obtain on nn-test, we repeated the experiment with the entire series of cprune's

tested on the nn-dev set. The results of these experiments are shown in Figure 5-7. As

this figure shows, for the pruning thresholds tested, this is the best performance we could

obtain on nn-test. As in Chapter 3, we observe what appears to be a qualitative difference
between the development set and the test set.
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5.3.2 Training from Forced Paths

Although we are able to obtain some performance gains using a phonetic recognizer to
generate automatic transcriptions, this results in large CFST's whose accuracy is limited
by that of the alignments. Furthermore, there is reason to believe that the CFST's created
this way are too large, since the phonetic recognizer does not use all of the information that
the word recognizer has available to it. In the phonetic recognition approach, we build a
CFST that the word recognizer would need in order to obtain the most likely word sequence,
if the word sequence were constrained to match a particular string of phones. However, the
word recognizer has the entire phonetic graph at its disposal, and can search for alternate
phones that better match the lexicon when necessary. For this reason, we may not need to
expand the lexicon to such a great extent.

An alternate approach is to generate forced transcriptions using a lexicon expanded with
a pre-existing CFST Co trained with the phonetic recognition method. In other words, the
forced paths are created by searching the FST

RFP = A o D o Co o L oW, (5.17)

where W represents the known word transcription of the utterance. Since the recognizer
knows the correct word sequence when creating forced paths, it is more likely to choose
only those confusions from Co that are "necessary", in the sense that it will prefer to use
fewer confusions so as to minimize cost.

We used different CFST's for Co and Ca, the alignment CFST. For Co, we used CPR,
pruned with a threshold of 6.5 and padded with pad-1. The pruning threshold was chosen
so as to include most of the confusions in Co (1582 out of 2193, including padding), while
still performing the forced paths in a reasonable amount of time. For alignment, however,
C, must allow all possible confusions, so that every transcription can be aligned with the
lexicon. Therefore, for Ca we used CPR padded using pad-2, with n, = 1. We refer to this
as the "forced path method" of confusion probability estimation.

Using this method with no smoothing, we obtain a CFST, CFP, containing 840 con-
fusions. This is a large decrease relative to the phonetic recognition method. Figure 5-8
shows a bubble plot of the confusion probability estimates in CFP, excluding those of lex-
ical labels with fewer than 30 occurrences in the alignments ([k-], [zh], [nn], [dr], [oy], and
[p-]). A full listing of the confusion frequencies is given in Appendix B. Table 5-4 lists
the most common confusions for each lexical label. From a visual inspection of both the
plot and the table, the confusion statistics appear to conform better with our expectations
about non-native speech. Overall, the plot is "cleaner" than the one obtained with the PR
method, in the sense that the probability mass is more concentrated in the upper left and
lower right quadrants. While many of the most common confusions still appear to be due
to poor phonetic classification or alignment, such as (I : w) and (tcl : pcl), many of the
expected confusions receive higher probability estimates than with the PR method, such as
(iy : ih) and (uw : uh).

Figure 5-9 shows the number of arcs per phone for values of cprune between 0 and 12,
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Lex. Label ' Freq. [Most Common Conf. Lex. Label Freq. [Most Common Conf.

aa 1157 aa, ah, ow, ae, 11, ay dr 15 dr, dh, tcl
ae 1230 ae, aa, u, aw, ah, ax tr 42 tr, t, jh
ah 1304 ah, aa, 11, ow, ax, eh jh 224 jh, t, s, y, e, ch
u 265 u, ae, ax, ix, s, 11 ch 266 ch, t, sh, tr, jh, e

eh 1814 eh, ae, ix, ih, ax, ah zh 4 n, ix, p
ih 2113 ih, iy, ix, ey, ux, e z 1118 z, s, tcl, n, t, E
iy 1379 iy, ix, ey, y, ih, E v 369 v, 11, f, 1, 6, tcl
uh 212 uh, uw, y, ah, ih, e dh 2416 dh, d, t, 6, s, nx
uw 506 uw, ix, ow, ax, E, w sh 236 sh, s, k, ch, y
ux 474 ux, ix, uw, ih, iy, 6 s 2580 s, Z, E, dh, th, f
aw 773 aw, ow, aa, 11, ah, ay f 829 f, p, s, e, dh, pcl
ay 1053 ay, ae, ey, u, aa, ax th 209 th, s, t, _, 11, 6
ey 938 ey, ix, iy, ae, e, ay hh 662 hh, e, s, 1, dh, aa
ow 2089 ow, aa, 11, e, ax, uw b 1014 b, p, 6, dh, m, f
oy 22 oy, ow, ay d 1094 d, t, dh, e, b, m
ax 2546 ax, ix, 6, eh, ae, ih g 421 g, e, k, dh, w, y
ix 2890 ix, e, iy, ae, ax, ow p 584 p, 6, f, t, s, dh
rx 2391 rx, ax, E, 11, ix, ae p- 27 p-, p, b, e
er 175 er, ow, ae, ax, rx, aa t 2540 t, dh, d, ch, p, k
w 2468 w, 1, v, m, dh, f t- 74 t-, t, f, s, E, ax

y 829 y, , n, dh, jh,iy k 1438 k, g, t, p, _, dh
r 1155 r, e, 1, dh, dx, n k- 1 -
1 1111 1, e, dx, nx, dh, n bcl 913 bcl, pci, m, -, 1, e

11 803 11, n, e, tcl, dx, ow dcl 2559 dcl, tcl, z, n, 11,
m 1233 m, n, e, w, 11, dcl gcl 359 gcl, kcl, tcl, e, n, rx
n 3713 n, e, ng, m, 11, tcl pci 511 pcl, tcl, bcl, f, 11, dcl

nn 14 n, ax tcl 3864 tcl, e, dcl, 11, n, kcl
ng 499 ng, n, -, 11, u, rx kcl 1487 kcl, tcl, e, -, pci, gcl
nx 522 nx, e, m, 11, dx,1 - 6365 -,

dx 406 dx, 6, 11, nx, dcl, 1 _ 13378 _, -, s, n, ax, 11
tq 46 tq, e, s, 1, iy, aw 6 82166 ix, s, -, n, -, tcl

Table 5-4: Frequency and most common confusions for each lexical label, using the forced
paths method.
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S I D |WER I
11.4 3.2 4.2 18.8

Table 5-5: Error rates obtained on nn-test using a CFST, forced paths method. In this
test, cprune = 12, vprune = 15, wtw = 2.

using the forced paths method. Figure 5-10 shows the word error rates obtained on the
nn-dev set using CFST's derived from CFP with cprune E [0, 12], vprune = 15 and with
cprune E [0, 7], vprune = 20. As before, a smaller range of cprune was used with the
larger vprune due to time and memory constraints. Note that, at cprune = 12, the CFST
contains all of the confusions in the training data. All of the CFST's were padded with
pad-1.

For cprune E [0, 5], the word transition weight (wtw) was 4, whereas for cprune > 5, the
wtw was 2. This is because, as cprune increases, the ratio of deletions to insertions tends
to increase. In order to balance the deletions and insertions, the wtw must be decreased.
Ideally, we would optimize the wtw for each cprune; however, as the greatest change in the
deletion/insertion ratio occurs between cprune = 5 and cprune = 6, we approximate the
evolution as a step function.

In this case, the word error rate is almost monotonically decreasing with cprune. The
lowest WER is 15.8% and is obtained with vprune = 15, cprune = 12. This represents
a 21.8% relative reduction from the baseline WER. We therefore tested the recognizer on
nn-test using these parameters. The results for this test are shown in Table 5-5.

In order to find out whether we could have obtained a lower WER on nn-test, we tested
with the entire series of cprune values. The results of these tests are shown in Figure 5-11.
In this case, only the vprune = 15 series was done. This experiment confirms that the
lowest WER is obtained for cprune = 12.

5.3.3 Iterative Training

One factor that limits the accuracy of the confusion probability estimates is the quality of
the alignments. This, in turn, is largely determined by the quality of the alignment CFST
Ca. If we assume that a newly estimated C is more accurate than the Ca that was used in
training it, in the sense that it predicts a higher probabillity for the training set, then we
should be able to obtain an even more accurate CFST by using C as an alignment CFST
and reestimating the probabilities. This can be repeated indefinitely and, if the assumption
of monotonically increasing training set probability is correct, the process should converge
at a local optimum.

Figures 5-12 and 5-13 compare the number of arcs per phone and word error rates on
nn-dev for the first, second, and third iterations of CFST training using the forced paths
method. In the second and third iterations, the forced paths were not remade, but only
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Figure 5-9: Average number of arcs per phone as a function of CFST pruning threshold,
using the forced paths method.
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Figure 5-10: Word error rate on nn-dev as a function of CFST pruning threshold, using
the forced paths method.
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Figure 5-11: Word error rate on nn-test as a function of CFST pruning threshold, using
the forced paths method.

realigned with an alignment CFST from the previous iteration. In building the alignment
CFST's, the existing CFST was padded with pad-2 with n, = 1. As these figures show,
we do not obtain the desired performance gains. This may be because the first-iteration

confusion probabilities are already quite constrained, since the forced paths were made using

a pruned CFST, so that retraining does not add a significant amount of information. Since

the iterative training procedure did not appear to significantly affect the performance on
nn-dev, this experiment was not repeated on nn-test.

It is possible that a more refined iteration process would achieve better results. For
example, a better method of smoothing, instead of the simple padding method we used,
may have helped by creating more realistic alignment CFST's. A training algorithm that
considers multiple possible transcriptions or recomputes the forced paths between iterations
may also be considered in the future.

5.3.4 Comparison of Smoothing Approaches

In order to compare the effects of different smoothing approaches, we performed a small

experiment with a single medium-sized CFST, using each of the three methods described in

Section 5.2.3, as well as no smoothing at all. Table 5-6 shows the performance obtained on

nn-dev in these tests. In the case of pad-2, we used n, = 0.5, so that, while all confusions

are represented, those that occurred in the training data receive higher probabilities than
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Figure 5-12: Average number of arcs per phone as a function of CFST pruning threshold,
using the forced paths method, for 1", 2 "d, and 3 rd iterations.
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Figure 5-13: Word error rate on nn-dev as a function of CFST pruning threshold, using
the forced paths method, for 1 "t, 2 "d, and 3 rd iteration.

58



Method S I D WER
No Smoothing 10.9 2.9 3.7 17.5
Pad-1 10.9 2.9 3.8 17.6
Pad-2 11.0 2.8 3.8 17.6
Linear Interpolation 11.0 3.0 3.7 17.7

Table 5-6: Comparison of error rates on nn-dev using various types of smoothing. In all
cases, vprune = 15 and wtw = 4.

S I D WER

10.6 3.6 4.0 18.3

Table 5-7: Error rates obtained on nn-test using a CFST, forced paths method, with
interpolated acoustic models. In this test, cprune = 12, vprune = 15, wtw = 2.

those that did not. All of the CFST's are derived from CFP with cprune = 5. The
differences between the error rates are very small: The word error rates range from 17.5%
with no smoothing to 17.7% with linear interpolation, a relative difference of just over 1%.
It is not clear whether this difference is significant. This experiment was therefore also not
repeated on nn-test. However, in future work, we may refine the smoothing approach, for
example by optimizing the smoothing parameters on development data.

5.3.5 Recognition with Interpolated Models and CFST's

In Chapter 3, we showed that interpolated acoustic models can reduce the word error rate of
a recognizer. In this chapter, we have shown that adding a CFST to the baseline recognizer
can also reduce the word error rate. We now consider combining the two methods; that is,
adding a CFST to a recognizer using interpolated acoustic models.

Figure 5-14 compares the error rates obtained on the nn-dev set using a CFST with
cprune E [0, 12] and either the baseline acoustic models or the interpolated acoustic models
with w,, = 0.54. The interpolated models obtain much better performance than the
baseline models; the lowest WER with the interpolated models is 15.2% at cprune = 12,
a 24.8% improvement over the baseline recognizer and a 3.8% improvement over using just
the CFST. Using the interpolated models with cprune = 12 on the nn-test set, we obtain

a WER of 18.3%, a 12.4% reduction from baseline (see Table 5-7).

We again wanted to know whether this result is the best we could obtain on nn-test.

Figure 5-15 shows a series of results obtained on the nn-test set using the interpolated

acoustic models and the same set of CFST's as in Figure 5-11. For comparison, the figure

also reproduces the results of Figure 5-11. For all values of cprune, the recognizer with the

interpolated acoustic models achieves a lower word error rate. The lowest WER obtained
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Figure 5-14: Word error rate on nn-dev as a function of CFST pruning threshold, using
either the baseline acoustic models or interpolated acoustic models with w," = 0.54.

with the interpolated models is 18.1%, a 13.4% reduction from the baseline recognizer.
This is somewhat better than the results obtained using the parameters that gave the best
performance on nn-dev, but it is still not as large a reduction as we obtained on nn-dev.

5.4 Summary

The main results of this chapter for the nn-dev and nn-test sets are summarized in Table 5-
8. In the first training run, in which transcriptions are generated by a phonetic recognizer,
we obtain up to a 9.9% reduction in word error rate on nn-dev and up to a 2.9% reduction
on nn-test, with respect to the baseline recognizer. By using the resulting CFST to
create forced paths, we obtain relative reductions in word error rate of up to 21.8% on the
development set and 9.6% on the test set. Finally, using this CFST and the interpolated
acoustic models from Chapter 3, the WER is further reduced to 15.2% on nn-dev and
18.3% on nn-test, representing 24.8% and 12.4% relative reductions from the baseline,
respectively. Table 5-8 also contains the results of Chapter 3, obtained using the interpolated
acoustic models alone, for comparison. As the table shows, using a CFST, either alone or in
combination with interpolated acoustic models, achieves a larger improvement than using
the interpolated acoustic models alone.

The work described in this chapter demonstrates that some of the pronunciation pat-
terns of non-native speakers as a group can be modeled using a simple single-state weighted
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Figure 5-15: Word error rate on nn-test as a function of CFST pruning threshold, using

either the baseline acoustic models or interpolated acoustic models with w,,, = 0.54.

II nn-dev nn-test

Method S I[D IWER S I I(D[WER

Baseline 112.1 4.3 3.8 20.2 12.4 3.9 4.6 20.9

PR 11.1 3.4 3.7 18.2 12.2 3.3 4.8 20.3

FP 10.1 2.7 3.0 15.8 11.4 3.2 4.2 18.8

Interpolated AM 9.8 3.8 2.7 16.3 11.5 3.6 4.1 19.2

FP+Interp. AM 8.9 3.6 2.7 15.2 10.6 3.6 4.0 18.3

Table 5-8: Summary of the main results on nn-dev and nn-test. The methods compared

are: Baseline recognizer; PR = baseline recognizer with CFST trained using phonetic recog-

nition method; FP = baseline recognizer with CFST trained using forced paths method;

Interpolated AM = baseline recognizer using interpolated acoustic models with w,, = 0.54;

and FP+Interp. AM = CFST trained using forced paths method + interpolated acoustic

models.
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FST, representing the likelihoods of phone substitutions, deletions, and insertions. Further-
more, the confusion probabilities can be automatically trained, using no prior knowledge to
initialize their values.

There are many possible refinements to the methods we have described. For example, it
would be interesting to attempt to iteratively train the confusion probabilities via an EM
algorithm, and to refine the smoothing methods used for both the alignment and recognition
CFST's. The CFST approach has the potential to be used for native speech as well, for
example for discovering phonological rules rather than manually specifying them. This and
other applications and extensions of this approach are further discussed in Chapter 7.
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Chapter 6

Effect of the Language Model on

Recognition Performance

One factor that may affect speech recognition performance is the degree of similarity between

the language model used by the recognizer and the "language model" of the test speakers,

i.e. the distribution of words and phrases in the test utterances. If non-native speakers use

words, or combinations of words, with different probabilities than do native speakers, the

language model (LM) scores for their utterances are likely to be lower than those for native

utterances. As a result, non-native utterances may be less likely to be recognized correctly.

One example of this problem is given by the sentence How about the Ann Arbor?, spoken

by a non-native speaker in the corpus. This sentence is likely to receive a poor LM score

since it is uncommon to place a determiner (the) before a city name. A native speaker

would probably have been more likely to say, How about Ann Arbor? Using a word bigram

LM trained on the native training set, the log probability of Ann Arbor following how about

(represented as one word in the bigram model) is -6.6; for Ann Arbor following the, the log

probability is -12.8. This is an example of a non-native speaker receiving a low LM score

because of incorrect syntax.

There are several other factors that may cause non-native utterances to receive lower LM

scores. First, non-native speakers may use different distributions of words (i.e. different

unigram probabilities) or combinations of words (i.e. different bigram or higher n-gram

probabilities) than native speakers do, because of either linguistic difficulties or "practical"

considerations. An example of a "practical" consideration that may cause such differences

in distributions is that non-native speakers may be more likely to ask about the weather in

cities outside the U.S.; a word n-gram trained on mostly native sentences would therefore

assign lower probabilities to such queries. Because of the recognizer's poorer performance

on non-native speakers, they may also be more likely than native speakers to make "repairs"

in the conversation. Examples of repairs from the non-native utterances in the corpus are:

I said that's about it, thank you.

No, this is not a city, I said good bye.
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I was talking about Rochester.
Do you understand my question?

Such sentences, if they are in fact less common among native speakers than among non-
native speakers, should receive lower scores and therefore tend to worsen recognition per-
formance.

In short, there are many factors that may cause us to expect non-native speakers to
receive lower LM scores than native speakers. In the following sections we present some
measurements intended to determine whether or not this effect is seen in the data, and to
what extent it affects recognition performance.

6.1 Experimental Setup

The recognizer used for the language model experiments is similar to the baseline recognizer
described in Chapter 2, but differs in the following respects:

" The phonetic inventory consists of 106 labels, and includes stressed and unstressed
variants of many of the labels.

" The lexicon consists of 1892 words (rather than 1956) and has unweighted arcs.

" The training set used for all of the language models contains 19,081 in-vocabulary,
native utterances.

A recognizer using this label set and vocabulary has been reported on previously [11]. The
test sets used in this chapter are a native set of 1041 utterances and a non-native set of
1552 utterances.

6.2 Set Log Probabilities

One measure of the degree of difficulty of predicting the words in a given set using a given
LM is the entropy of the set with respect to the LM. The estimated entropy He of a set
containing N words {w 1 , W2,... wN} with respect to a given LM is defined as

He = -log2Pe(w1, W2,... ,WN), (6.1)N

where P (wi, w 2 , ---, WN) is an estimate of the probability of the given sequence of words
given the language model. In our case, we will talk about per-word negative log probability

'The use of a different recognizer in these experiments is a chronological artifact and is unrelated to the
purpose of the experiments.
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Test Set Unigram PNLP Bigram PNLP Trigram PNLP WER
(Perplexity) (Perplexity) (Perplexity)

native 4.87 (130.17) 2.78 (16.19) 2.67 (14.40) 11.9
non-native 4.99 (147.47) 3.04 (20.83) 2.96 (19.35) 30.0

Table 6-1: PNLP's, perplexities, and WER's for the native and non-native test sets.

(PNLP) rather than entropy since our software uses natural logs. The PNLP is simply

the entropy multiplied by a factor of In2. A quantity closely related to entropy is the set

perplexity, defined as
B = 2He = Pe (Wiw2, ... , N) (6.2)

Table 6-1 shows the PNLP's and perplexities of the native and non-native test sets with

respect to word unigram, bigram, and trigram models. The table also shows the word error

rates obtained by the recognizer on those sets. For all of the language models, the non-

native sets have larger PNLP's than the native sets. This matches our expectation that a

LM should perform better on data similar to its training data. The fact that the WER for

these sets increases with increasing PNLP is also reasonable, as we expect the recognizer

to have more difficulty recognizing low-probability (high PNLP) utterances. However, the

degree of the correlation between PNLP and error rate is not clear from the limited data

in this table. In the following section, we examine the per-speaker PNLP's and error rates

to gain a more detailed picture of this relationship.

6.3 Per-Speaker PNLP's

Figures 6-1 and 6-2 show scatterplots of the per-speaker WER versus PNLP for the native

and non-native test sets. We chose to plot the PNLP's, rather than perplexities, because

the PNLP's have a smaller dynamic range, which makes the plots more suitable for visual

inspection. For these and all subsequent plots, the PNLP's have been measured using the

word bigram language model. The plots seem to indicate that, in general, WER and PNLP

are positively correlated. In particular, the linear correlation coefficients between WER and

PNLP for the native and non-native speakers are 0.4378 and 0.4850, respectively, both of

which are significant at the 1% significance level.

Besides the general trend of positive correlation, there appears to be a disproportionately

large subset of speakers in both sets that receive zero WER, regardless of PNLP. This

disproportionate number of of zero-WER speakers can be seen in Figure 6-3, which shows

the distributions of error rate and PNLP within the test sets. The PNLP distributions

appear to have a Gaussian-like shape.

Figure 6-4 shows the average WER versus PNLP for the native and non-native speakers,

along with superimposed least-squares lines fitted to the data. In fitting the line to the

native data, the rightmost datum (6.75, 0.0) was ignored since it was based on only one
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Figure 6-1: Scatterplot of WER versus PNLP for the native test set.
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Figure 6-2: Scatterplot of WER versus PNLP for the non-native test set.
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Figure 6-4: Average WER versus PNLP for native and non-native speakers, along with
best-fit lines.

uterance and was therefore considered unreliable. The relationship between WER and
PNLP is much clearer in this plot: The higher the PNLP, the larger the average WER for
both native and non-native speakers.

As Figure 6-4 shows, the WER for non-native speakers is always much higher than that
for native speakers, regardless of the PNLP. Specifically, we can calculate the mean percent
difference Dp in average WER between native and non-native speakers at the same PNLP.
We use the following method to calculate this mean: Let bmax be the highest PNLP bin
number for which there are both native and non-native data; e' and e"" the average WER
in bin b for native and non-native speakers, respectively; N a and N" the number of native
and non-native speakers, respectively, in bin b; and N' and N" the total number of native
and non-native speakers, respectively. Then:

bmax nn a nn a
Dp = 100 E wb( eb - eb ), where Wb = 1( + (6.3)

b=1 b2 Na

In other words, each bin is weighted by the number of speakers in that bin, represented by
the average of the proportions of native and non-native speakers in that bin. For the data
shown in Figure 6-4, we find that D, = 167%, with a standard deviation of o-D, = 40%.
This is within error of the overall percent difference in WER between native and non-native
speakers, which is 152%. Within the resolution of this analysis, therefore, differences in
entropy do not account for a significant amount of the difference in WER between native
and non-native speakers.
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6.4 Summary

Our analysis of the effects of language model differences between native and non-native

speakers demonstrates the following:

" As expected, native speakers have lower entropy than non-native speakers with respect

to word n-gram models trained on native utterances.

" Word error rate generally increases with entropy for the test sets that we examined.

" Differences in entropy between native and non-native speakers do not account for a

significant portion of the difference in WER between the two sets.
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Chapter 7

Conclusion

This thesis has explored several aspects of non-native speech and its interaction with the

acoustic, lexical, and language modeling components of a speech recognizer. This work

differs from most previous research on non-native speech in that we have treated all non-

native speakers as a group, rather than dividing them into separate accent classes. This

approach is well-suited to a speech recognition system with a great deal of native speech

data, but little non-native data, at its disposal.

The main goal of this thesis has been to understand the ways in which the speech of non-

native speakers of American English, as a group, may differ from that of native speakers,

and to attempt to modify a speech recognizer to better handle non-native speech input.

This work was done using the SUMMIT speech recognizer in the JUPITER weather domain.

The following sections summarize our main results and suggest directions for future work.

7.1 Summary

In the area of acoustic modeling, we have shown that a reduction in the word error rate on

non-native speech can be achieved by interpolating two sets of acoustic models, one trained

on only native speech and the other trained on only non-native speech. Using interpolated

models with a weight of 0.46 on the native models and 0.54 on the non-native models, we

have achieved an 19.3% relative reduction in word error rate on a non-native development

set, and an 8.1% relative reduction on a non-native test set, when compared to a baseline

model trained on pooled native and non-native data.

In the area of lexical modeling, we began with an informal study of manual phonetic

transcriptions. By manually transcribing small subsets of the native and non-native utter-

ances in the JUPITER corpus, we have been able to deduce some of the general characteristics

of the non-native data. As expected, the non-native utterances appear to contain a larger

number of non-American phones such as the tense vowels [i, o, uu, a, o] and non-American

varieties of the liquids /r/ and /1/. Non-native speakers also appear to replace lax vowels
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Method S I D WER
Baseline 12.4 3.9 4.6 20.9
Interpolated AM 11.5 3.6 4.1 19.2
CFST, FP method 11.4 3.2 4.2 18.8
Interp. AM + CFST, FP 10.6 3.6 4.0 18.3

Table 7-1: Error rates obtained on nn-test using the baseline recognizer, interpolated
acoustic models (AM), a CFST trained using the forced paths (FP) method, and both
interpolated AM and a CFST. The CFST in this table is CFP, unpruned and padded with
the pad-1 method.

with tense vowels, reduced vowels with full vowels, and voiced consonants with voiceless
consonants to a greater extent than native speakers; while native speakers have a greater
tendency to replace pure vowels with diphthongs and to delete reduced vowels.

We have also investigated a method for the automatic acquisition of non-native pronun-
ciation patterns. Using a one-state weighted finite-state transducer within an FST-based
recognizer, we model the phonetic substitutions, deletions, and insertions present in non-
native speech. We refer to this FST as a confusion FST or CFST. The context-independent
probabilities of the confusions are estimated from alignments of automatically generated
phonetic transcriptions with the baseline lexicon. We have shown that a two-step training
process can yield much greater improvement than a single probability estimation step. In
the two-step process, an initial CFST CPR is first trained from alignments of phonetic rec-
ognizer hypotheses. This CFST is used in a word recognizer to create forced paths, which
are then aligned with the baseline lexicon using the same initial CFST. The probability
estimates derived from this second alignment step yield a more compact CFST, CFP, and
lower word error rates than either the baseline recognizer or a recognizer using CPR. The
word error rates obtained using CFp are up to 10.0% lower than the baseline. Using both
CFp and interpolated acoustic models, the word error rate is further reduced to 12.4% be-
low baseline. Table 7-1 summarizes the results on the non-native test set with each method.

Finally, in the area of language modeling, we have examined the difference between native
and non-native speakers using measurements of their per-word negative log probabilities
(PNLP's), a measure closely related to perplexity. We have found that, as expected, the set
PNLP of a non-native test set is higher than that of a native test set, and the distributions
of per-speaker PNLP's indicate that word error rate is positively correlated with PNLP.
However, within the resolution of our measurements, the difference in PNLP between native
and non-native speakers does not account for a significant portion of the difference in word
error rates obtained on these sets.

This work has shown that it is possible to improve recognition accuracy on non-native
speech while treating all non-native speakers as a single group. This is potentially useful
for the development of speech recognition systems in domains in which non-native data
are limited, or in which it is undesirable for other reasons, such as computational or time
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considerations, to separate non-native speakers into specific accents.

7.2 Future Work

We believe that, of the methods we have attempted, the automatic acquisition of pronun-

ciation patterns has the greatest potential for future work. We have investigated only the

simplest form of CFST, a one-state FST modeling only context-independent probabilities,

incorporated directly into the baseline recognizer. One natural extension, given sufficient

training data, would be to model context-dependent probabilities. In this work, we have

also considered only confusions between two identical label sets. Another application of

CFST's would be to derive phonological rules from training data, using a phonemic label

set on one side and a phonetic label set on the other side. These methods can be applied

more widely, not only to accent-specific modeling but to lexical and phonological modeling

in general. We plan to continue to investigate these possibilities.

One of the drawbacks of our implementation of CFST's is a large increase in running time

and memory requirements. However, our setup seems to contain redundant information:

Since the acoustic models have been trained from forced paths created with the baseline

recognizer, they implicitly encode some of the confusability between phones. There are at

least two ways to attempt to reduce this redundancy. First, it may be beneficial to retrain

the acoustic models, using forced paths created with a CFST. This would hopefully create

smaller, more accurate models, leaving the modeling of confusability to the CFST. Second,

since a CFST can greatly expand the number of allowable pronunciations per word, it may

not be necessary to consider the entire acoustic-phonetic graph during recognition. Instead,

the acoustic-phonetic graph can be collapsed in an initial phonetic recognition pass to a

single path (as in [20]) or an N-best graph.

Another area in which further study is needed is language modeling. A more detailed

study than the one we have done may reveal more specific differences between native and

non-native speakers, and suggest possible modifications to the language model. As a starting

point, it would be interesting to perform a similar experiment to the one we have performed

with the acoustic models; that is, to interpolate a native language model with a non-native

one.

In this thesis, we have achieved an improved speaker-independent baseline recognizer

for non-native speakers. Although the results show that it is possible to obtain signifi-

cant gains in performance by modeling all non-native speakers as a single group, there are

many accent- and speaker-specific phenomena that could be better modeled. While sepa-

rate accent-specific models for a large number of non-native accents may not be feasible, a

system that uses a single set of baseline models for all non-native speakers and adapts to the

characteristics of a particular test speaker may be a good way to address the complexities

of non-native speech. For a conversational system like JUPITER, in which the speaker usu-

ally remains constant throughout a multi-utterance interaction, an incremental adaptation

approach may be particularly suitable.
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Finally, an area that this thesis does not address is that of accent-independent recog-
nition. We have concentrated on improving the performance of a speech recognizer on
non-native speakers. However, a deployed recognizer such as the one used in the JUPITER
conversational system must be able to appropriately handle both native and non-native
speech input. While much work is still needed to bring the recognition of non-native speech
to the level of native speech recognition, any accent-specific methods must ultimately be
incorporated into an accent-independent recognizer.
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Appendix A

Label Sets

The following tables list the label sets used in the acoustic and pronunciation modeling work
in this thesis. Table A-1 lists the labels used in the baseline recognizer of Chapters 2-5,
and Table A-2 lists the additional labels used in the manual transcriptions in Chapter 4.
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Label IPA Example/Description Label IPA Example/Description

aa [a] bob n [n] noon

ae [m] bat ng [13] sing

ah [A] but nn [1i] butt on

aw [ei] bout nx [i] winner

ax [a] about ow [oW] boat

ay [dY] bite oy [oy] boy

b [b] bee p [p] pea

bcl [b"] b closure p- [p] spot

ch [6] choke pci [p0] p closure

d [d] day r [r] ray

dcl [d'] d closure rx [a,] butt er, car

dh [6] then s [s] sea

dr - dry sh [§] she
dx [r] muddy t [ph] tea

eh [e] bet t- [t] stop

er [-] bird tcl [t0] t closure

ey [ey] bait th [0] thin

f [f] fin tq [?] glottalized t (button)

g [g] gay tr - try

gcl [g"] g closure u - filled-pause [A] (uM)

hh [h] hay uh [0] book
ih [1] bit uw [uw] boot
ix [f] debit ux {_] toot
iy [iy] beet v [v) van
jh [J] joke w [w] way

k [kh] key y [y] yacht
k- [k] ski z [z] zone
kcl [k"] k closure zh [z] measure

1 [1] lay - - utterance initial/final silence

11 [1] bottle, cool - interword silence
m [m] mom

Table A-1: Label set used for baseline recognizer in Chapters 2-5.
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Label Description Label Description

a low, front, unrounded vowel m* unusual [m]

aey [ae]-[y] n* unusual [n]

ahw [ah]-[w] nas undertermined nasal

ahy [ah]-[y] nf [f]-like [n]
ao mid-low, mid-back nv [v]-like [n]
ax-ins inserted [ax] o mid-high, back rounded vowel
bf voiced labial fricative oax [o]-[ax]

dhd stop-like [dh] q glottal stop

dh-n [n]-like [dh], as in in the qn glottalization

dh-v undetermined, either [dh] or [v] r* unusual [r]

e mid-high, front vowel rx* unusual [rx]

ea [e]-[a] sch-ins inserted schwa of undetermined type

ehax [eh]-[ax] t* unusual [t]
ehow [eh]-[ow] tht stop-like [th]
gf voiced velar fricative tx voiceless flap

i high, front, short vowel ue rounded [i]

ih* unusual [ih] uex [ue]-like schwa

ihae [ih]-[ae] uhe rounded [ih]
iheh [ih]-[eh] uhx [uh]-like schwa
ihow [ih]-[ow] uhx-ins inserted [uhx]

ihuw [ih]-[uw] uhy [uh]-[y]

ix-ins inserted [ix] unk unknown sound

kf voiceless velar fricative uu high, back, short vowel
1* unusual [1] w* unusual[w]

Table A-2: Labels used for manual transcriptions which are not included in Table A-1.
The label descriptions are often given in terms of other labels in this table or in Table A-
1. For diphthongs, the descriptions are of the form [starting point]-[ending point]. The
transcriptions made use of all of the labels shown here and all of the labels in Table A-1,
with the following exceptions: [er] was not used-[rx] was used to represent both [er] and
[rx]; and no distinction was made between aspirated and unaspirated stops, using the labels
for the aspirated stops to represent both levels of aspiration. The labels were created as

needed, so that some are only used in the native transcriptions, while others are only used

in the non-native transcriptions.
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Appendix B

Confusion Matrices

The following tables list the counts of each phonetic confusion, as well as the total count
of each lexical label, in the automatic alignments described in Chapter 5. Table B-1 shows
the counts obtained using the phonetic recognition method and corresponds to the CFST

CPR, described in Section 5.3.1. Table B-2 shows the counts obtained in the first iteration
of the forced paths method and corresponds to CFP, described in Section 5.3.2.
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aa ae ah u eh ih iy uh uw ux aw ay ey ow oy ax ix rx er w y r 1 11 m n nn ng nx dx tg tot
aa 1037 12 27 5 8 9 27 9 2 2 1 2 10 aa 1157
ae 53 1035 21 23 9 3 4 22 5 8 18 13 1 8 1 ae 1230
ah 49 1 1141 10 10 1 1 8 1 23 15 1 1 1 37 ah 1304
u 2 9 230 2 1 2 4 3 3 2 u 265

eh 4 82 15 1551 37 3 4 2 4 14 3 18 60 4 1 eh 1814
ih 1 7 3 1727 288 1 1 10 22 2 31 1 1 4 1 2 ih 2113
jy 2 2 10 1274 2 3 17 2 34 2 13 5 iy 1379
uh 2 1 193 9 1 1 4 uh 212
uw 464 1 2 7 5 10 5 1 1 uw 506
ux 2 3 3 6 439 1 1 15 ux 474
aw 10 2 7 2 728 3 11 1 8 aw 773
ay 10 20 4 16 3 2 2 4 947 17 2 1 10 3 1 1 ay 1053
ey 14 3 5 3 19 1 2 8 837 6 19 6 1 1 2 1 ey 938
ow 43 1 3 7 15 5 2 1919 16 2 2 6 4 35 1 ow 2089
OY 2 3 17 OY 22
ax 4 11 3 11 8 2 1 1 1 5 2452 15 3 6 2 2 ax 2546
ix 14 57 9 15 17 61 1 3 1 1 4 18 24 2549 11 4 2 2 ix 2890
rx 11 60 1 19 9 2 4 2 3 5 2 7 21 49 143 74 1682 18 12 100 2 10 1 rx 2391
er 5 10 1 2 2 2 5 2 1 1 29 8 7 94 2 2 2 er 175
w 1 1 2 2 2282 3 47 5 28 3 w 2468
y 2 2 2 1 783 4 y 829
r 1 4 2 2 5 2 1 999 30 4 5 9 1 9 r 1155
1 1 1 5 2 1 8 1 2 5 979 6 9 17 21 1 1111
11 2 2 1 1 5 3 1 8 2 5 2 664 4 32 9 11 803m 1 8 1 6 1156 45 1 n 1233
n 1 8 2 4 3 8 11 21 3569 24 n 3713

nn 4 10 nn 14
ng 3 1 3 21 465 ng 499
nx 2 7 9 490 3 nx 522
dx 1 1 2 7 1 4 369 dx 406
tq 2 1 1 1 1 2 19 tq 46
dr dr 15
tr tr 42
jh 1 2 jh 224
ch 1 ch 266
zh 1 2 zh 4
z 1 2 1 2 1 1 2 1 10 2 z 1118
v 1 2 1 2 8 13 4 3 v 369

dh 5 1 2 1 1 1 1 2 1 3 3 8 4 dh 2416
sh 1 sh 236
8 1 2 4 1 1 3 2 1 7 3 s 2580f 2 2 f 829
th 3 th 209
hh 2 2 1 2 3 1 hh 662
b 2 2 2 3 b 1014
d 1 1 1 2 1 d 1094
g 1 2 2 1 1 1 1 g 421
P 1 1 p 584
P~ p- 27
t t 2540

t-1 t- 74
k 1 k 1438
k- k- 1
bcl 1 2 3 4 bcl 913
dc1 2 1 1 4 7 2 dc 2559
gcl 1 3 3 gcl 359
pci 1 pci 511
tcl 3 14 7 tcl 3864
kcl 1 1 kcl 1487

- 6365
- 3 5 2 1 1 63 1 1 59 1 134 13378
e 1 5 1 2 6 5 4 128 3 5 1 10 41 2 - 82166

Table B-2: Confusion matrix showing the frequency of each confusion and the total frequency of each lexical label, using the forced paths method.
Lexical labels are on the left and right; surface labels are listed along the top and bottom. This table is continued on the following page.
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dr tr jh ch zh z v dh sh s f th hh b d g p p- t t- k k- bcldcl gcl pl tcl kcl - - e tot

aa 1 5 aa 1157
ae 1 5 ae 1230
ah 1 3 ah 1304
u 3 1 2 1 u 265
eh 1 11 eh 1814
ih 1 1 1 8 ih 2113
iy 1 3 1 1 7 iy 1379
uh 1 uh 212
uw 1 1 1 1 1 5 uw 506
ux 1 3 ux 474

aw 1 aw 773

ay 2 1 1 1 5 ay 1053
ey 1 1 8 ey 938
ow 1 6 1 1 19 ow 2089

oy Oy 22
ax 3 1 1 2 12 ax 2546
ix 1 5 1 10 80 ix 2890
rx 4 5 7 3 1 2 13 2 117 rx 2391
er er 175

w 45 19 12 3 3 1 1 1 9 w 2468

y 3 1 3 2 2 24 y 829
r 2 15 2 4 4 2 1 1 1 2 1 1 45 r 1155
1 14 1 3 1 2 1 2 2 2 25 1 1111

11 4 4 4 4 1 2 14 1 28 11 803
m 2 1 2 10 m 1233

n 7 2 10 2 5 36 n 3713
nn nn 14
ng 6 ng 499
nx 1 10 nx 522

dx 1 1 2 3 1 1 12 dx 406

tq 1 1 1 4 1 1 10 tq 46
dr 11 3 1 dr 15
tr 39 1 2 tr 42
jh 208 1 1 4 1 5 1 jh 224
ch 2 1 229 7 1 24 1 ch 266

zh 1 zh 4
z 936 1 3 116 2 8 16 1 5 7 z 1118

v 296 2 6 10 6 6 3 6 v 369
dh 2232 8 6 86 26 1 3 21 dh 2416
sh 2 221 8 4 sh 236

s 54 13 9 2399 12 12 3 1 1 8 2 7 1 2 31 s 2580
f 4 1 8 790 1 1 2 9 3 1 5 f 829
th 1 11 1 177 10 1 3 2 th 209
hh 2 1 4 633 1 10 hh 662
b 3 2 982 11 1 6 b 1014

d 1 16 2 2 3 1032 17 1 14 d 1094
g 4 1 1 380 1 1 10 1 13 g 421

p 2 2 3 1 565 3 2 1 3 p 584

p- 2 6 18 1 p- 27
t 1 2 17 36 8 5 2 1 2 22 11 2413 5 9 2 4 t 2540

t- 2 2 4 64 1 t- 74
k 2 1 1 17 3 9 1399 1 1 2 1 k 1438
k- 1 k- 1
bcl 1 892 5 3 2 bcl 913
dcl 10 2 2 1 2463 56 2 3 3 del 2559
gcl 2 2 331 1 5 8 3 gcl 359
pci 2 3 1 494 9 1 pci 511
tcl 4 2 34 4 3749 7 3 37 tcl 3864
kcl 1 1 1 3 4 26 1427 11 11 kcl 1487

6364 1 - 6365
2 51 166 4 1 1 47 1 17 1 55 618 12143 -13378
3 1 86 1 3 29 62 38 .82166

Table B-2: Confusion matrix obtained with the forced paths method (continued).

00



t; -t tt(


