
An Efficient Boosting Algorithm for Combining

Preferences

by

Raj Dharmarajan Iyer Jr.

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1999

© Massachusetts Institute of Technology 1999. All rights reserved.

A uth or
Department of E'ectrical ngineering and Computer Science

August 24, 1999

C ertified by
David R. Karger

Associate Professor
Thesis Supervisor

Accepted by...............
Arthur C. Smith

Chairman, Departmental Committe Graduate Students

MACHU
OF TEC Lo

NOV

LIBRARIES

An Efficient Boosting Algorithm for Combining Preferences
by

Raj Dharmarajan Iyer Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on August 24, 1999, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

The problem of combining preferences arises in several applications, such as combining the
results of different search engines. This work describes an efficient algorithm for combining
multiple preferences. We first give a formal framework for the problem. We then describe
and analyze a new boosting algorithm for combining preferences called RankBoost. We also
describe an efficient implementation of the algorithm for certain natural cases. We discuss
two experiments we carried out to assess the performance of RankBoost. In the first experi-
ment, we used the algorithm to combine different WWW search strategies, each of which is
a query expansion for a given domain. For this task, we compare the performance of Rank-
Boost to the individual search strategies. The second experiment is a collaborative-filtering
task for making movie recommendations. Here, we present results comparing RankBoost to
nearest-neighbor and regression algorithms.

Thesis Supervisor: David R. Karger
Title: Associate Professor

3

4

Acknowledgments

I thank my advisor, David Karger, for wonderfully challenging me and teaching me how to
think. I thank Rob Schapire of AT&T Labs for being a shining light of wisdom and kindness
ever since I have known him. Thanks to Yoram Singer of AT&T Labs for working side by
side with me on this work. Thanks also to Yoav Freund, who patiently taught me during my
first summer at AT&T. I would not be where I am without the guidance and nurturing of
my undergraduate advisors, Max Mintz and Sampath Kannan of University of Pennsylvania,
and Joan Feigenbaum of AT&T Labs. And of course, I would not be here at all if it weren't
for the enduring love my parents, Raj Sr. and Patricia, and my brother, Nathan. Finally, I
thank my Heavenly Advisor, to whom I am eternally grateful.

5

6

Contents

1 Introduction 9

2 The Ranking Problem 13
2.1 The Ranking Problem 13
2.2 Nearest-Neighbor Methods . 14
2.3 Regression Methods . 14
2.4 More General Methods . 14
2.5 Other Related Work . 15

3 Boosting 17
3.1 Machine Learning for Pattern Recognition 17
3.2 Origins of Boosting . 19

3.2.1 The PAC Model . 20
3.2.2 Schapire's Algorithm . 21
3.2.3 The Boost-By-Majority Algorithm 22
3.2.4 The AdaBoost Algorithm . 25

3.3 Experiments with Boosting Algorithms . 29
3.3.1 Decision Trees . 30
3.3.2 Boosting Decision Trees . 31
3.3.3 Other Experiments . 33
3.3.4 Sum m ary . 34

3.4 Why Does Boosting Work? . 34
3.4.1 Arcing, bias, and variance . 35
3.4.2 Margins analysis . 36
3.4.3 A game-theoretic interpretation . 38
3.4.4 Estimating probabilities . 39
3.4.5 Boosting in the presence of noise . 41

4 The Algorithm RankBoost 43
4.1 A formal model of the ranking problem . 43
4.2 A boosting algorithm for the ranking task 44

4.2.1 The RankBoost algorithm . 45
4.2.2 Choosing at and criteria for weak learners 46
4.2.3 An efficient implementation for bipartite feedback 48

4.3 Weak hypotheses for ranking . 50

7

4.4 Generalization Error . 54
4.4.1 Probabilistic Model . 54
4.4.2 Sampling Error Definitions . 55
4.4.3 V C analysis . 56

5 Experimental evaluation of RankBoost 59
5.1 M eta-search . 59

5.1.1 Description of task and data set . 59
5.1.2 Experimental parameters and evaluation 61

5.2 Movie recommendations . 63
5.2.1 Description of task and data set . 63
5.2.2 Experimental parameters . 64
5.2.3 Algorithms for comparison . 64
5.2.4 Performance measures . 65
5.2.5 Experimental results . 67
5.2.6 D iscussion . 71
5.2.7 Performance measures for the movie task 72

6 Conclusion 75
6.1 Sum m ary . 75
6.2 Future work 76

8

Chapter 1

Introduction

It's Sunday night, and Alice wants to rent a movie. Tired of taking risks with movies that
she's never heard of, Alice seeks suggestions of movies that she will enjoy. She calls up her
friends, and each one rattles off the list of his of her top ten favorite movies. How should
Alice combine their recommendations so that she can determine which movie to rent tonight?

This problem is not as fanciful as it may seem. It is a collaborative-filtering prob-
lem [39, 67] and Internet websites such as Movie Critic [4] and MovieFinder [5] are devoted
to providing the same service as Alice's friends. When asked to make recommendations, the
system uses the preferences of previous users to produce a ranked list of movie suggestions.
The question is, how should the system combine these preferences into a single list that will
make good recommendations?

This is an example of the ranking problem: given a set of instances and a collection of
functions that rank the instances, how can we combine the functions to produce an ordering
of the instances that approximates their true order? In this dissertation we provide a formal
model for the ranking problem as well an algorithm to solve it.

Returning to Alice's dilemma, we see that one way she can combine her friends' movie
rankings is to first ask them to rank movies that she has already seen. Once she sees
how well each friend agrees with her preferences, she can determine whose suggestions to
follow regarding movies she hasn't seen. That is, based on how well her friends rate movies
that she has ranked, she can learn how to combine her friends' advice for movies that
she hasn't ranked. Better yet, Alice can submit a list of her favorite movies to the movie
recommendation website and let it do the work of learning how to combine its users' rankings
to suggest good movies for her. This is the approach of machine learning, which is the basis
of our model and algorithm for the ranking problem.

The ranking problem is not specific to Alice; it arises it many places. One example is
searching the Internet using multiple web search engines [2, 3]. Suppose that, instead of
submitting a query to a single search engine, we submit the query to ten search engines,
each of which returns a ranked lists of web pages relevant to our query. How can we combine
their ranked lists?

This raises a question about how we represent the ranked lists. Many search engines
rank web pages according to a query by computing a numeric similarity score for each web
page and then ordering the pages by score. Thus we might hope to combine these rankings

9

by averaging the scores of the pages. Indeed, this is a commonly taken approach [6, 14, 39},
which we will explore in Section 2.1. However, this approach can encounter a number of
difficulties. First, some search engines such as AltaVista [1] do not reveal their computed
similarity scores. Second, different search engines may use different numeric ranges for their
scores, rendering meaningless any straightforward combination. Third, and more significant,
even if the scores are in the same numeric range, different search engines may use different
numbers in the range to express identical measures of quality, or they may use the same
numbers to express different measures of quality.

This is easily illustrated in the movie recommendation example: when asked to score
movies from one to five stars, some people are extremists and assign movies either one star
or five stars, only rarely giving out three stars. Others like every movie they see and give all
movies four or five stars. Still others are wishy-washy and give most movies three stars, with
an occasional four or two. In such a situation, knowing that a movie received mostly four
star ratings is not very informative as an absolute score: we can interpret a person's scoring
of a movie only relative to the scores that the person assigned to other movies. Our work
is specifically designed to address this problem of combining relative preferences instead of
absolute scores.

The ranking problem, and the difficulties associated with it, arises in other applications as
well. The Internet search engine example is problem from the field of information retrieval.
One of the primary tasks of information retrieval is searching a large collection of documents
for those relevant to particular query: a popular and effective way to present the returned
documents to a user is to order the documents according to relevance. Here we use the term
"document" rather loosely, as it can mean text, images, audio, or video.

Another application is making predictions based on a ranked list of probable outcomes.
For example, automatic speech recognizers receive as input a recorded clip of spoken words
and return a list of textual transcriptions ranked according to likelihood. We would like to
combine the lists of various recognizers with the goal of increasing their collective accuracy.

Despite the wide range of applications that use and combine rankings, this problem has
received relatively little attention in the machine-learning community. The few methods that
have been devised for combining rankings are usually based on nearest-neighbor methods [56,
67], regression methods [39] or optimization techniques such as gradient descent [6, 14}. In
these cases, the rankings are viewed as real-valued scores and the problem of combining
different rankings reduces to a numerical search for a set of parameters that will minimize
the disparity between the combined scores and the feedback of a user. As already discussed,
these approaches do not guarantee that the combined system will match the user's preference
when we view the scores as a means to express preferences.

In this dissertation we introduce and analyze an efficient algorithm called RankBoost
for combining multiple rankings. The main difference between the majority of previous
work and our work is that we do not use absolute numeric scores to combine the ranking
functions. This algorithm is based on Freund and Schapire's [31] AdaBoost algorithm and its
recent successor developed by Schapire and Singer [65]. Similar to other boosting algorithms,
RankBoost works by combining many rankings of the given instances. Each of these may be
only weakly correlated with the target ranking that we are attempting to approximate. We
show how to combine such weak rankings into a single highly accurate ranking, and we prove

10

a bound on the quality of this final ranking in terms of the quality of the weak rankings.
For the movie task, we use very simple rankings that partition all movies into only two

equivalence sets, those that are more preferred and those that are less preferred. For instance,
we might use another user's ranked list of movies partitioned according to whether or not
he prefers them to some particular movie that appears on his list. Such partitions of the
data have the advantage that they only depend on the relative ordering defined by the given
rankings rather than absolute ratings. Despite their apparent weakness, their combination
using RankBoost performs quite well experimentally.

Besides giving a theoretical analysis of the quality of the ranking produced by RankBoost,
we also analyze its complexity and show how it can be implemented efficiently. We discuss
further improvements in efficiency that are possible in certain natural cases.

We report the results of experimental tests of our approach on two different tasks. One
is the movie-recommendation problem described above. For this problem, there exists a
large publicly available dataset which contains ratings of movies by many different peo-
ple. We compared RankBoost to nearest-neighbor and regression algorithms that have been
previously studied for this application, and we used several measures to evaluate their per-
formance. RankBoost was the clear winner in these experiments.

The other task is the meta-searching problem [24]. In a meta-search application, the
goal is to combine the rankings of several WWW search strategies. Examples of meta-
search engines include MetaCrawler [3] and Dogpile [2]. We simulated a meta-search engine
by creating search strategies, each of which is an operation that takes a query as input,
performs some simple transformation of the query (such as adding search directives such as
"AND", or search tokens such as "homepage") and sends it to a particular search engine.
The outcome of using each strategy is an ordered list of URL's that are proposed as answers
to the query. The goal is to combine the strategies that work best for a given set of queries.

The remainder of this dissertation is organized as follows. In Chapter 2 we discuss
previous approaches to the ranking problem. In Chapter 3 we introduce the basic ideas of
machine learning and then present a history of boosting. Finally, in Chapter 4 we explain
in detail our ranking model, boosting algorithm, and theoretical and experimental results.

11

12

Chapter 2

The Ranking Problem

In this chapter we explore the background that sets the stage for our boosting algorithm for
ranking problems. We begin by introducing the ranking problem and the applications where
it arises. We then survey existing approaches to solving the problem.

2.1 The Ranking Problem

As described in the previous chapter, the ranking problem asks, given a set of instances and a
collection of functions that rank the instances, how we can combine the functions to produce
an ordering of the instances that approximates their true ordering. We introduced the
ranking problem in the context of the collaborative-filtering [39, 67] task of making movie
recommendations. The problem also arises in a number of other areas and applications,
including information retrieval [57, 58], automatic speech recognition [55], and human voting.
In this section we survey past approaches to the problem and their relationship to our work,
as described in Chapter 1.

Despite the wide range of applications that use and combine rankings, this problem has
received relatively little attention from the machine-learning community. The methods that
have been proposed try to approximate the true ordering of a set of items by assigning scores
to each item (the predicted ordering is the order induced by the scores). They do this by
searching for the best combination of ranking functions. These methods can be grouped
into three general categories based on how they define "best" and how they perform the
search. Nearest-neighbor methods define a distance measure between two ranking functions
and find the closest one (or ones) by enumerative search. Regression methods view the
ranking functions as vectors over the space of instances and then find, by linear algebra, the
straight-line fit that best approximates them. Finally, more general methods define some
correlation measure between the predicted order and the true order and then search for the
best prediction via numerical methods such as gradient descent. We will briefly summarize
examples of work based on these methods.

As discussed in the previous chapter, these approaches do not guarantee that the com-
bined system will match the user's preference when we view the scores as a means to express
preferences. The main difference between the majority of previous work and our work is
that we do not use the absolute numeric scores to combine the ranking functions.

13

2.2 Nearest-Neighbor Methods

Some researchers [56, 67] have reported results using nearest-neighbor methods to rank items.
Shardanand and Maes [67] built a collaborative-filtering system that utilized a database of
user preferences to recommend music albums to a new user. Their system received a ranked
list of the new user's preferences on various music albums and then found the set of nearest-
neighbors to the user and averaged their predictions.

The authors experimented with four user similarity measures based on mean-squared
difference and the Pearson r correlation coefficient. The latter measure ignores the scores
used in ranking and is proportional to our measure of disagreement. They found that this
was the best of the four measures, a finding that supports our choice of the disagreement
measure. Of the three approaches, theirs is the most similar in spirit to ours.

2.3 Regression Methods

Regression methods have also been used combine user preferences. Hill et al. [39] presented
the earliest work on the collaborative filtering movie recommendation task described in
Chapter 1: given Alice's preferences on movies she has seen, examine a database of other
users' preferences and recommend movies that Alice hasn't seen. In this task, each user is
treated as a ranking function. To create a good combination of these users, Hill et al. first
found a subset of users whose preferences are correlated with the target user's preferences.
They then combined the scores to make predictions using a regression equation (for more
details see Section 5.2.3). This approach differs from ours since regression methods depend
on the actual numeric scores used in ranking, and using these scores may not be a good idea,
as explained in Chapter 1. We present experiments comparing our algorithm to one similar
to theirs in Chapter 5.

2.4 More General Methods

Regression seeks to maximize a certain utility function (Euclidean distance) by setting its
parameters via linear algebra. A more general approach is to choose a different utility func-
tion and maximize via numerical search. Such an approach to the ranking problem views the
set of scores assigned by a ranking function as a vector in a high-dimensional vector space
and defines a utility function that takes as input a target vector, a set of vectors that will
approximate the target, and some free parameters such as weights to form a linear combi-
nation of the set of vectors. Thus the problem of combining different rankings reduces to
a numerical search for a set of parameters that will maximize the utility function. [6, 14].
Bartell, Cottrell, and Belew [6] developed a method for automatically combining multiple
ranking functions with the goal of ranking a set of documents in reference to a user query.
Each ranking function, for example a keyword search, orders the documents it returns ac-
cording to their predicted relevance to the query. The combined classifier output by this
system is a weighted combination of the individual ranking functions; a set of documents is
ordered according to the score assigned by the combined classifier. The task of their system

14

is to estimate the optimal weight of each function so that the combined classifier will produce
a good ranking of the documents. The system estimates the weights on a training set of
queries (and documents) via a gradient descent method to maximize a utility function that is
proportional to the average (over all training queries) sum over all pairs of documents (a, b),
where a is preferred to b, of the difference between the combined score of a and the com-
bined score of b. They justify the choice of this utility function, explaining that is a variant
of Guttman's Point Alienation [37], which is a statistical measure of rank correlation.

Their approach is similar to ours in considering pairwise preferences of one document
over another. However, unlike our approach, in their utility function they use the actual
numeric scores assigned by the ranking functions. Such an approach may work in a specific
domain where all the ranking functions scores have the same range and interpretation, but
in a more general context it may suffer from the difficulties described in Chapter 1.

2.5 Other Related Work

Kantor [42] also considered the task of combining multiple ranking functions in the context
of information retrieval. Like us, he ignored the numeric scores assigned by each ranking
function, viewing each function as an ordering of the documents (he restricted each function
to be a total order, whereas we allow partial orders). He combined the ranking functions
using maximum, minimum, median, and summation operators. For example, the minimum
operator assigns to a document the minimum of the ranks assigned to it by the ranking
functions. Such a combination rule is easy to implement, but its justification is not clear.
Indeed, Kantor's experiments showed that maximum, minimum, and median performed
poorly compared to the single best ranking function, but summation performed the same as
the best ranking function. Our work provides a combination rule with a theoretical basis
and analysis.

One of the tasks encompassed by our ranking model is the meta-search task of combining
the results of multiple Web search engines, described in Chapter 1. Etzioni et al. [24] also
proposed a formal model of this task. They assumed that each search engine has a cost
associated with querying it; their goal is then to answer the query while minimizing the
cost of the meta-search. They further assume that each query has a sole relevant document,
rendering ordering issues unimportant. Thus their approach is only superficially related to
ours.

15

16

Chapter 3

Boosting

As described in Chapter 1, our solution to the ranking problem is based on machine learn-
ing. We begin this chapter with an introduction to the basic ideas of machine learning and
pattern recognition (Section 3.1). We then present the history and development of a par-
ticular machine learning method called boosting. We first examine the theoretical origins
of boosting that led to the discovery of the AdaBoost algorithm, the direct predecessor of
our boosting algorithm (Section 3.2). We then survey some of the experiments that demon-
strated the ability of AdaBoost to produce highly accurate prediction rules (Section 3.3).
These experiments raised theoretical questions about the algorithm, such as why boosting
produces good prediction rules, and why AdaBoost tends to resist overfitting (described in
Section 3.1). We discuss these questions and conclude with a summary of recent work that
is attempting to provide answers (Section 3.4).

Although our boosting algorithm for the ranking problem makes heavy use of the ideas
developed in Sections 3.2-3.4, our presentation of it in the next chapter is self-contained and
can be read after Section 3.1.

3.1 Machine Learning for Pattern Recognition

One of the primary motivations for the invention of the computer was the need to store
and manipulate large amounts of information. Now that people have this tool for infor-
mation processing, they are accumulating more and more data. Although it is relatively
easy to gather large quantities data, analyzing and interpreting the data remain consistent
challenges. One can ask simple questions about the data that may be difficult to answer.
For example, a credit card company might want to know, given a list of all purchases made
by its customers today, which purchases were made using stolen credit cards. As another
example, a software company's customer service division may receive 900 email messages a
day and would like to separate the messages into categories such as service requests from
Macintosh users, service requests from PC users, and inquiries from prospective customers.
Finally, when Alice is searching for a movie to watch this evening, she can look up a movie
database on the Internet and ask, "which movies would I like?"

In order answer a question about a set of data, a person might go through the data in
search of a pattern. Let's say that person is Bob. The credit card company hires Bob to

17

find stolen credit cards by giving him examples of purchases made with stolen cards and
then asking him to go through today's logs and report any suspicious transactions. In order
to do this, Bob needs to detect a pattern to get an idea of what a suspicious transaction
looks like. If Bob discovers a pattern that allows him to correctly identify newly stolen
credit cards more often than not, the credit company will handsomely reward him. When
Bob finishes that job, the software company hires him to organize its customer service email
messages. Looking at examples of correctly classified messages, Bob searches for patterns
and formulates rules to categorize incoming messages. One of his rules might be, "if the
message contains the phrase 'please help' then it is probably a service request." Finally, at
the end of the day Alice tells Bob the names of three movies that she loved and three movies
that she hated and asks him to recommend movies. Bob consults the list of movies that he
has seen and, if his tastes agree with Alice's, offers his suggestions.

The task that Bob is repeatedly performing is called pattern recognition. Given examples
of what to look for, Bob formulates a rule to find new examples of the same kind. Although
Bob may easily recommend a handful of movies to Alice, he will quickly tire of processing the
software company's 900 email messages. Rather than going through each message himself,
Bob can program his computer to do it for him (so that he can spend more time with Alice).

This is the approach of machine learning for pattern recognition. Let's consider the
email message classification task. As in any classification task, the goal is take an instance
(email message) and correctly predict its class (service category). Bob writes a learning
algorithm, to detect patterns just like he did. He first trains the algorithm, by giving it
instances labeled with the correct answers, so that it can formulate a prediction rule. He
then tests the algorithm's prediction rule on unlabeled data. More specifically, Bob first
gives the algorithm a training set of data that consists of instances labeled with their correct
classification, also called training examples. The algorithm uses the training set to produce
a classification rule that, given an instance, predicts the class of that instance. For example,
one of the parts of the rule might be:1

if "please" appears in the message
then the message is a request for service
else the message is from a Macintosh user

Once constructed, the prediction rule is applied to a disjoint test set of data that consists
of unlabeled instances. The rule predicts the class of each of the test instances, and then its
predictions are compared to the correct answers (often obtained from a human). The error
of the rule is usually measured as the percentage of misclassifications it made. If the error is
small, then the learning algorithm is declared to be a good one and its rule is used to classify
future data.

The prediction rule needs to be evaluated on a test set to make sure that it generalizes
beyond the training set: just because a rule performs well on the training set, where it has
access to the correct classification, does not mean that it will perform well on new data. For
example, a rule that simply stores the correct classification of every training instance will

'This example is an actual rule that was produced by a learning algorithm run on the customer service
email data of a well-known software company.

18

make perfect predictions on the training set but will be unable to make any predictions on a
test set. Such a rule is said to overfit the training data. Also, a rule might not generalize well
if the training set is not representative of the kinds of examples that the rule will encounter
in the future. Similarly, if the test set is not representative of future examples, then it will
not accurately measure the generalization of the rule.

At this point we need to construct a mathematical model of learning so that we can
ask and answer questions about the process. The model we use, a probabilistic model of
machine learning for pattern recognition, has been introduced and well-studied by various
researchers [17, 69, 71, 72]. In this model we assume that there is a fixed and unknown
probability distribution over the space of all instances. Similarly, there is a fixed and un-
known classification function that takes an instance as input and outputs the correct class
of the instance. The goal of a learning algorithm is to produce a rule that approximates the
classification function.

We assume that the training set and test set each consist of instances that are chosen
randomly and independently according to the unknown distribution (these sets differ in that
the classification function is used to correctly label the training instances, whereas the test
instances remain unlabeled). We consider a learning algorithm to be successful if it takes a
training set as input and outputs a prediction rule that has low expected classification error
on the test set (the expectation is taken over the random choice of the test set). We do not
demand that the learning algorithm be successful for every choice of training set, since may
be impossible if the training set is not representative of the instance space. Instead we ask
that the learning algorithm be successful with high probability (taken over the choice of the
training set and any internal random choices made by the algorithm).

This probabilistic model of machine learning for pattern recognition is the basis of the
history and development our work. In Section 3.2 we will see how theoretical questions
about this model gave rise to the first boosting algorithms, which eventually evolved into
powerful and efficient practical tools for machine learning tasks, and in turn raised theoretical
questions of their own.

3.2 Origins of Boosting

Given a training set of data, a learning algorithm will generate a rule that classifies the data.
This rule may or may not be accurate, depending on the quality of the learning algorithm
and the inherent difficulty of the particular classification task. Intuitively, if the rule is even
slightly better than randomly guessing the class of an instance, the learning algorithm has
found some structure in the data to achieve this edge. Boosting is a method that boosts the
accuracy of the learning algorithm by capitalizing on its edge. Boosting uses the learning
algorithm as a subroutine in order to produce a prediction rule that is guaranteed to be
highly accurate on the training set. Boosting works by running the learning algorithm on
the training set multiple times, each time focusing the learner's attention on different training
examples. After the boosting process is finished, the rules that were output by the learner
are combined into a single prediction rule which is provably accurate on the training set.
This combined rule is usually also highly accurate on the test set, which has been verified
both theoretically and experimentally.

19

In this section we outline the history and development of the first boosting algorithms
that culminated in the popular AdaBoost algorithm.

3.2.1 The PAC Model

In 1982, Leslie Valiant introduced a computational model of learning known as the probably
approximately correct (PAC) model of learning [693. The PAC model differs slightly from the
probabilistic model for pattern recognition described in Section 3.1 in that it explicitly con-
siders the computational costs of learning (for a thorough presentation of the PAC model,
see, for instance, Kearns and Vazirani [44]). A PAC learning problem is specified by an
instance space and a concept, a boolean function defined over the instance space, that rep-
resents the information to be learned. In the email classification task described in Section 1,
the instance space consists of all email messages and a concept is "a service request." The
goal of a PAC learning algorithm is to output a boolean prediction rule called a hypothesis
that approximates the concept.

The algorithm has access to an oracle which is a source of examples (instances with
their correct label according to the concept). When the algorithm requests an example, the
oracle chooses an instance at random according to a fixed probability distribution D that is
unknown to the algorithm. (The notion of an examples oracle is an abstract model of a set
of training examples. If the algorithm makes m calls to the oracle, this is equivalent to the
algorithm receiving as input a set of m training examples.)

In addition to the examples oracle, the algorithm receives an error parameter e, a confi-
dence parameter 6, and other parameters that specify the respective "sizes" of the instance
space and the concept. After running for a polynomial amount of time2, the learning algo-
rithm must output a hypothesis that, with probability 1 - 6, has expected error less than
c. That is, the algorithm must output a hypothesis that is probably approximately correct.
(The probability 1 - 6 is taken over all possible sets of examples returned by the oracle, as
well as any random decisions made by the learning algorithm, and the expectation is taken
with respect to the unknown distribution D.)

The PAC model has many strengths and received intense study after Valiant introduced
it. The model proved to be quite robust: researchers proposed numerous extensions that
were shown to be equivalent to the original definition. Kearns and Valiant [43] proposed one
such extension by defining strong and weak learning algorithms. A strong learning algorithm
runs in polynomial time and outputs a hypothesis that is probably approximately correct as
just described. A weak learning algorithm runs in polynomial time and outputs a hypothesis
that is probably barely correct, meaning that its accuracy is slightly better than the strategy
that randomly guesses the label of an instance by predicting 1 with probability 1 and 0 with
probability j. More precisely, a weak learner receives the same inputs as a strong learner,
except for the error parameter e, and it outputs a hypothesis that, with probability 1 - 6,
has expected error less than - -y for a fixed y > 0. The constant -y measures the edge of2
the weak learning algorithm over random guessing; it is not an input to the algorithm.

Kearns and Valiant raised the question of whether or not a weak learning algorithm

2 The algorithm is required to run in time that is polynomial in 1/E, 1/6, and the two size parameters.

20

could be converted into a strong learning algorithm. They referred to this problem as
the hypothesis boosting problem since, in order to show that a weak learner is equivalent
to a strong learner, one must boost the accuracy of the hypothesis output by the weak
learner. When considering this problem, they provided some evidence that these notions
might not be equivalent: assuming a uniform distribution over the instance space, they
gave a weak learning algorithm for concepts that are monotone boolean functions, but they
showed that there exists no strong learning algorithm for these functions. This showed that
when restrictions are placed on the unknown distribution, the two notions of learning are
not equivalent, and it seemed that this inequivalence would apply to the general case as
well. Thus it came as a great surprise when Robert E. Schapire demonstrated that strong
and weak learning actually are equivalent by providing an algorithm for converting a weak
learner into strong learner. His was the first boosting algorithm.

3.2.2 Schapire's Algorithm

Schapire [60] constructed a brilliant method for converting a weak learning algorithm into
a strong learning algorithm. Although the main idea of the algorithm is easy to grasp,
the proofs that the algorithm is correct and that it runs in polynomial time are somewhat
involved. The following presentation of the algorithm is from Schapire's Ph.D. thesis [61]
which the reader should consult for the details.

The core of the algorithm is a method for boosting the accuracy of a weak learner by
a small but significant amount. This method is applied recursively to achieve the desired
accuracy.

Consider a weak learning algorithm A that with high probability outputs a hypothesis
with an error rate of a with respect to a target concept c. The key idea of the boosting
algorithm B is to simulate A on three different distributions over the instance space X in
order to produce a new hypothesis with error significantly less than a. This simulation of A
on different distributions fully exploits the property that A outputs a weak hypothesis with
error slightly better than random guessing with respect to any distribution over X.

Let Q be the given examples oracle, and let D be the unknown distribution over X.
Algorithm B begins by simulating A on the original distribution Di = D using oracle
Q1 = Q. Let hi be the hypothesis output by A.

Intuitively, A has found some weak advantage on the original distribution; this advantage
is expressed by hi. To force A to learn more about the "harder" parts of the distribution,
B must somehow destroy this advantage. To do so, B creates a new distribution D 2 over
X. An instance chosen according to D2 has an equal chance of being correctly or incorrectly
classified by hi (so hi is no better than random guessing when it receives examples drawn
from D 2). The distribution D 2 is simulated by filtering the examples chosen according to D
by Q. To simulate D2 , a new examples oracle Q2 is constructed. When asked for an instance,
Q2 first flips a fair coin: if the result is heads then Q2 requests examples from Q until one
is chosen for which hi (x) = c(x); otherwise, Q2 waits for an instance to be chosen for which
hi(x) # c(x). (Schapire shows how to prevent Q2 from having to wait too long in either of
these loops for a desired instance, which is necessary for algorithm B to run in polynomial
time). Algorithm B simulates A again, this time providing A with examples chosen by Q2

21

according to D 2 . Let h2 be the resulting output hypothesis.
Finally, D3 is constructed by filtering out from 'D those instances on which hi and h2

agree. That is, a third oracle Q3 simulates the choice of an instance according to D 3 by
requesting instances from Q until one is found for which hi(x) # h2 (x). (Again Schapire
shows how to limit the time spent waiting in this loop for a desired instance.) Algorithm A
is simulated a third time, now with examples drawn from Q3, producing hypothesis h 3.

At last, B outputs its hypothesis h, defined as follows. Given an instance x, if hi(x) =
h2 (x) then h predicts the agreed upon value; otherwise h predicts h3 (x) (h3 serves as the
tie breaker). In other words, h takes the majority vote of hi,h2 , and h3 . Schapire is able to
prove that the error of h is bounded by g(a) = 3a2 - 2a3 , which is significantly smaller than
the original error a.

Algorithm B serves as the core of the boosting algorithm and is called recursively to
improve the accuracy of the output hypothesis. The boosting algorithm takes as input a de-
sired error bound E and a confidence parameter 6, and the algorithm constructs a hypothesis
with error less than c from weaker, recursively computed hypotheses.

In summary, Schapire's algorithm boosts the accuracy of a weak learner by efficiently
simulating the weak learner on multiple distributions over the instance space and taking
the majority vote of the resulting output hypotheses. Schapire's paper was rightly hailed as
ingenious, both in the algorithm it presented and the elegant handling of the proof techni-
calities. The equivalence of strong and weak learnability settled a number of open questions
in computational learning theory, and Schapire used the boosting algorithm to derive tighter
bounds on various resources used in the PAC model. His algorithm also had implications in
the areas of computational complexity theory and data compression.

3.2.3 The Boost-By-Majority Algorithm

Schapire's boosting algorithm was certainly a theoretical breakthrough, but the algorithm
and its analysis are quite complicated. And although the algorithm runs in polynomial time,
it is inefficient and impractical because of its repeated recursive calls. In addition, the output
final hypothesis is complex due to its recursive construction.

A much simpler and more efficient algorithm was constructed by Yoav Freund one year
after Schapire's original paper. Freund's algorithm, called the Boost-By-Majority algo-
rithm [25, 26], also works by constructing many different distributions over the instance
space. These constructed distributions are presented to the weak learner in order to focus
the learner's attention on "difficult" regions of the unknown distribution. The weak learner
outputs a weak hypothesis for each distribution it receives; intuitively, these hypotheses
perform well on different portions of the instance space. The boosting algorithm combines
these hypotheses into a final hypothesis using a single majority vote; this final hypothesis
has provably low expected error on the instance space.

Freund elegantly presents the main idea of his boosting algorithm by abstracting the hy-
pothesis boosting problem as a game, which he calls the majority-vote game. The majority-
vote game is played by two players, the weightor and the chooser. The weightor corresponds
to the boosting algorithm and the chooser corresponds to the weak learner. The game is

22

played over a finite space S.3 A parameter 0 < -y < j is fixed before the game. The
game proceeds for T rounds (T is chosen by the weightor), where each round consists of the
following steps:

1. The weightor picks a weight measure D on S. The weight measure is a probability
distribution over S, and the weight of a subset A is D(A) = ZxA D(x).

2. The chooser selects a set U C S such that D(U) > I + -y and marks all of the points
in U.

The game continues until the weightor decides to stop, at which point it suffers a loss,
calculated as follows. Let L C S be the set of points that were marked less than or equal
to T/2 times. The weightor's loss is IL|/|SI, the relative size of L. The goal of the weightor
is minimize its loss and the goal of the chooser to maximize it. (In the language of game
theory, this is a complete information, zero-sum game.)

We now illustrate the correspondence between the majority-vote game and the hypothesis
boosting problem. The weightor is the boosting algorithm and the chooser is the weak
learner. The space S is the training set, and the fixed parameter -y is the edge of the weak
learner. During each round t, the weightor's weight measure D on round t is a probability
distribution over the training set. Given the training set weighted by distribution D, the
weak learner produces a weak hypothesis. The points marked by the chooser are the training
examples that the weak hypothesis classifies correctly. After T rounds of the game, T
weak hypotheses have been generated by the weak learner. These are combined into a final
hypothesis H using a majority vote. H is then used to classify the training instances. The
points that are marked more than T/2 times are instances that are correctly classified by
more than T/2 weak hypotheses; thus, these instances are also correctly classified by H. The
points in L (those that are marked less than or equal to T/2 times), are misclassified by H

(we are making the pessimistic assumption that, if ties are broken randomly, the outcomes
are always decided incorrectly). Thus the error of H on the training set is IL|/|S|. The
boosting algorithm's goal is to minimize this error.

Freund showed that there exists a weighting strategy for the weightor, meaning an al-
gorithm for choosing D on each round of the game, that guarantees that its loss will be
small after a few rounds, regardless of the behavior of the chooser. More precisely, he gave
a strategy such that for any S, e > 0, and 6 > 0, the weightor can guarantee that its loss is
less than f after T < j(1/-y)2 ln(1/(2c)) rounds, no matter what the chooser does.

Although the weighting strategy is not too complicated, we choose not to present it
here since it is superceded by the method of the AdaBoost algorithm, presented in the next
section. Freund gives an explicit algorithm for his strategy, which iteratively updates the
weight of the point x on round t as a function of t, T, y, and how many times x has been
marked already. He also proves a tight bound F(y, c) on T, the number of rounds in the
majority-vote game required to bring the training error below C. He proves that this bound
is optimal by giving a second weighting strategy that uses F(y, c) rounds. Freund used his

3 Freund proves his results for the game defined over an arbitrary probability space. The case we consider
where the space is finite and the distribution is uniform is all that is needed to derive the Boost-By-Majority
algorithm.

23

algorithm and the methods used to construct it to prove tighter bounds on a number of
different problems from the PAC learning model, complexity theory, and data compression.

Generalization Error

We now return to the point mentioned earlier, that producing a classifier with low error on a
training sample S implies that the classifier will have low expected error on instances outside
S. This result comes from the notion of VC-dimension and uniform convergence theory [71,
72]. Roughly, the VC-dimension of a space of classifiers captures their complexity; the higher
the VC-dimension, the more complex the classifier. Vapnik [71] proved a precise bound on
the difference between the training error and generalization error of a classifier. Specifically,
let h be a classifier that comes from a space of binary functions with VC-dimension d.
Its generalization error is PrD [h(x) # yJ where the probability is taken with respect to the
unknown distribution D over the instance space. Its empirical error is Prs [h(x) # y], the
empirical probability on a set S of m training examples chosen independently at random
according to D. Vapnik proved that, with high probability (over the choice of training set),

Pr [h(x) # y] < Prs [h(x) y] + 6) (3.1)

(O(-) is the same as O(.) ignoring log factors). Thus, if an algorithm outputs classifiers
from a space of sufficiently small VC-dimension that have zero error on the training set,
then it can produce a classifier with arbitrarily small generalization error by training on a
sufficiently large number of training examples.

Although useful for proving theoretical results, the above bound is not predictively ac-
curate in practice. Also, typical learning scenarios involve a fixed set of training data on
which to build the classifier. In this situation Vapnik's theorem agrees with the intuition
that if the output classifier is sufficiently simple and is accurate on the training data, then
its generalization error will be small.

It can be proved that the VC-dimension of the majority vote classifier generated by the
Boost-By-Majority algorithm is O(Td), where T is the number of rounds of boosting and d
is the VC-dimension of the space of hypotheses generated by the weak learner [31]. Thus,
given a large enough training sample, Boost-By-Majority is able to produce an arbitrarily
accurate combined hypothesis. 4

Summary

In summary, Freund's Boost-By-Majority algorithm uses the weak learner to create a fi-
nal hypothesis that is highly accurate on the training set. Similar in spirit to Schapire's
algorithm, Boost-By-Majority achieves this by presenting the weak learner with different
distributions over the training set, which forces the weak learner to output hypotheses that
are accurate on different parts of the training set. However, Boost-By-Majority is major

4If the desired generalization error is e > 0, the number of training examples required is d/e 2 , a polynomial
in 1/e and d, which is required by the PAC model (Section 3.2.1).

24

improvement over Schapire's algorithm because it is much more efficient and its final hy-
pothesis is merely a majority vote over the weak hypotheses, which is much simpler than
the recursive final hypothesis produced by Schapire's algorithm.

3.2.4 The AdaBoost Algorithm

The need for a better boosting algorithm

So far we've seen two boosting algorithms for increasing the accuracy of a base learning
algorithm. The goal of the boosting algorithms is to output a combined hypothesis, which is
a majority vote of barely accurate weak hypotheses generated by the base learning algorithm,
that is accurate on the training data. Using Vapnik's theorem (Eq. (3.1)), this implies that
the combined hypothesis is highly likely to be accurate on the entire instance space.

Schapire's recursive algorithm constructs different distributions over the training data in
order to focus the base learner on "harder" parts of the unknown distribution. Freund's
Boost-By-Majority algorithm constructs different distributions by maintaining a weight for
each training example and updating the weights on each round of boosting. This algorithm
reduces training error much more rapidly, and its output hypothesis is simpler, being a single
majority vote over the weak hypotheses.

Although Boost-By-Majority is very efficient (it is optimal in the sense described in the
previous section), it has two practical deficiencies. First, the weight update rule depends on
-, the worst case edge of the base learner's weak hypotheses over random guessing (recall
that the base learner outputs hypotheses whose expected error with respect to any distribu-
tion over the data is less than I - -). In practice 7 is usually unknown, and estimating it2
requires either knowledge of the underlying distribution of the data (also usually unknown)
or repeated experiment. Secondly, Freund proved that Boost-By-Majority requires approx-
imately 1/y 2 rounds in order to reduce the training error to zero. Thus if y = 0.001, one
million rounds of boosting may be needed. During the boosting process a weak hypothesis
may be generated whose error is much less than I - -y, but Boost-By-Majority is unable to2
use this advantage to speed up the boosting process.

For these reasons, Freund and Schapire joined forces to develop a more practical boosting
algorithm. The algorithm they discovered, AdaBoost, came from a unexpected connection
to on-line learning.

The on-line learning model

In the on-line learning model, introduced by Littlestone [47], learning takes place in a se-
quence of trials. During each trial, an on-line learning algorithm is given an unlabelled
instance (such as an email message) and asked to predict the label of the instance (such as
"service request"). After making its prediction, the algorithm receives the correct answer
and suffers some loss depending on whether or not its prediction was correct. The goal of
the algorithm is to minimize its cumulative loss over a number of such trials.

One kind of on-line learning algorithm, called a voting algorithm, makes its predictions
by employing an input set of prediction rules called experts. The algorithm maintains a real-
valued weight for each expert that represents its confidence in the expert's advice. When

25

given an instance, the voting algorithm shows the instance to each expert and asks for its
vote on its label. The voting algorithm chooses as its prediction the weighted majority
vote of the experts. When the correct label of the instance is revealed, both the voting
algorithm and each expert may suffer some loss. Indeed, we can view this process as the
voting algorithm first receiving and instance and then receiving a vector of losses for each
expert. After examining the loss of each expert on the instance, the voting algorithm may
increase or decrease the weight of an expert according to whether or not the expert predicted
the correct label.

The Hedge learning algorithm

Freund and Schapire were working on a particular voting algorithm called Hedge [31] which
led to the discovery of the new boosting algorithm. The Hedge algorithm5 receives as input a
set of N experts and a learning rate parameter # E [0, 1]. It initializes the weight vector pl =
(p, ... , py) to be a uniform probability distribution over the experts. (The initial weight
vector can be initialized according to a prior distribution if such information is available).
During learning trial t, the algorithm receives an instance and the corresponding loss vector
lt = (Eti,..., fv), where e E [0,1] is the loss of expert i on the instance. The loss Hedge
suffers is pt - ft, the expected loss of its prediction according to its current distribution over
the experts. Hedge updates the distribution according to the rule

which has the effect of decreasing the weight an expert if its prediction was incorrect (pt+1
is renormalized to make it a probability distribution.) Freund and Schapire proved that the
cumulative loss of the Hedge algorithm over T trials is almost as good as that of the best
expert, meaning the expert with loss mini Li where Li = T1 f'. Specifically, they proved
that the cumulative loss of Hedge is bounded by c mini Li + a ln N, where the constants c
and a turn out to be the best achievable by any on-line learning algorithm [73].

Application to boosting: AdaBoost

Using the Hedge algorithm and the bounds on its performance, Freund and Schapire derived
a new boosting algorithm. The natural application of Hedge to the boosting problem is to
consider a fixed set of weak hypotheses as experts and the training examples as trials. If
it makes an incorrect prediction, the weight of a hypothesis is decreased, via multiplication
by a factor # E [0,1]. The problem with this boosting algorithm is that, in order to output
a highly accurate prediction rule in a reasonable amount of time, the weight update factor
must depend on the worst-case edge -y. This is exactly the dependence they were trying
to avoid. Freund and Schapire in fact used the dual application: the experts correspond
to training examples and trials correspond to weak hypotheses. The weight update rule
is similarly reversed: the weight of an example is increased if the current weak hypothesis

5The Hedge algorithm and its analysis are direct generalizations of the "weighted majority" algorithm of
Littlestone and Warmuth [48].

26

Algorithm AdaBoost
Given: training examples (xi, yl), ... , (Xm,Ym) where xi E X, yi E Y = {+1, -1}
Initialize: Di(i) = 1/m.
For t = 1, ... , T:

e Train weak learner using distribution Dt.

* Get weak hypothesis ht : X -+ [-1, +1] and its error Et = Z I Dt(i)yiht(xi).

e Set

at= 'ln .

* Update:

Dt+ (i) = Dt(i) exp (-atyiht(xi))
zt

where Zt is a normalization factor (chosen so that Dti+1 will be a distribution).

Output the final hypothesis:

T

H(x) = sign(f (x)) = sign (atht(x)).

Figure 3-1: The AdaBoost algorithm.

predicts its label incorrectly. Also, the parameter 3 is no longer fixed; it is #t set as a function
of the error of the weak hypothesis on that round. This is the AdaBoost algorithm.

We present pseudocode for the AdaBoost algorithm in Figure 3-1. We use the more
convenient notation of the recent generalization of AdaBoost by Schapire and Singer [65].
The first notational change is that positive examples are labelled +1 and negative examples
are labelled -1 (instead of 1 and 0, respectively). Accordingly, the weak hypotheses ht now
map the instance space X to [-1, +1]. Note that this means that ht(xi) #A yi if and only
if yiht(xi) < 0. The second change is that the weight update rule uses the constant at
instead of #t. The relationship between the two is #f = e- or at = -- ln #t. Despite these
differences in notation, the algorithm in Figure 3-1 is identical to Freund and Schapire's
original algorithm.

AdaBoost behaves similarly to the other boosting algorithms we've seen so far in that

weak hypotheses are generated successively and the weight of each training example is in-
creased if that example is "hard". The main difference between AdaBoost and Boost-By-
Majority is the weight update rule: AdaBoost uses a multiplicative update rule that depends

on the loss of the current weak hypothesis, not its worst case edge 'Y. Another difference is
that each weak hypothesis receives a weight at when it is generated; AdaBoost's combined
hypothesis is a weighted majority vote of the weak hypotheses rather than a simple majority

vote.

27

Training error

The effect of the weight update rule is to reduce the training error. It is relatively easy to
show that the training error drops exponentially rapidly:

1m T
- |{i : H(xi) # yi}| - Z exp(-yif (xi)) = f Zt. (3.2)

1m t=1

The inequality follows from the fact that exp(-yif(xi)) > 1 if yi $ H(xi), and the equality
can be seen by unraveling the recursive definition of Dt [65].

In order to rapidly minimize training error, Eq. (3.2) suggests that at and ht should be
chosen on round t to minimize the normalization factor

m

Zt = $ D (i) exp(-atyiht (Xi)). (3.3)

Of course, our learning model assumes that the weak learner is a subroutine to the boosting
algorithm and is not required to choose its weak hypotheses to minimize Eq. (3.3). In
practice, however, one often designs and implements the weak learner along with the boosting
algorithm, depending on the application, and thus has control over which hypothesis is output
as ht. If the weak hypotheses ht are binary, then using the setting for at in Fig. (3-1), the
bound on the training error simplifies to

T T

11 2 eit(1 - et) = 11 V1 - 4_/t < exp -2 E _/t

t=1 t=1 t=1

where yt is the empirical edge of ht over random guessing, that is, Et = -yt. Note that this
means that AdaBoost is able to improve in efficiency if any of the weak hypotheses have an
error rate lower than the worst case error 1 - -y. This is a desirable property not enjoyed by
the Boost-By-Majority algorithm; in practice, AdaBoost reduces the training error to zero
very rapidly, as we will see in Section 3.3.

In addition, Eq. (3.2) indicates that AdaBoost is essentially a greedy method for finding
a linear combination f of weak hypotheses which attempts to minimize

m mT

Eexp(-yif (Xi)) = Eexp -yiEa.h(xi) (3.4)
i=1 i=1 t=1

On each round t, AdaBoost receives ht from the weak learner and then sets at to add one
more term to the accumulating weighted sum of weak hypotheses in such a way that Eq. (3.4)
will be maximally reduced. In other words, AdaBoost is performing a kind of steepest descent
search to minimize Eq. (3.4), where each step is constrained to be along the coordinate axes

(we identify coordinate axes with the weights assigned to the weak hypotheses).

28

Generalization error

Freund and Schapire proved that as the number of boosting rounds T increases, the training
error of the combined classifier AdaBoost drops to zero exponentially fast. Using techniques
of Baum and Haussler [8] and Vapnik's theorem (Eq. (3.1)), they showed that, if the weak
learner has a hypothesis space of VC-dimension d, then with high probability the general-
ization error of the combined classifier H is bounded:

Pro [H() # y] < Prs [H(x) # y] + Td (3.5)

where Prs [-] denotes the empirical probability on the training sample S. This implies that
the generalization error of H can be made arbitrarily small by training on a large enough
number of examples. It also suggests that H will overfit a fixed training sample as the
number of rounds of boosting T increases.

Non-binary classification

Freund and Schapire also generalized the AdaBoost algorithm to handle classification prob-
lems with more than two classes. Specifically, they presented two algorithms for multiclass
problems, where the label space Y is a finite set. They also presented an algorithm for
regression problems where Y = [0,1]. Schapire [62] used error-correcting codes to pro-
duce another boosting algorithm for multiclass problems (see also Dietterich and Bakiri [19]
and Guruswami and Sahai [36]). In their generalization of binary AdaBoost, Schapire and
Singer [65] proposed another multiclass boosting algorithm as well as an algorithm for multi-
label problems where an instance may have more than one correct label.

Summary

The AdaBoost algorithm was a breakthrough. Once boosting became practical, the experi-
ments could begin. In the next section we will discuss the empirical evaluation of AdaBoost.

3.3 Experiments with Boosting Algorithms

When the first boosting algorithms were invented they received a small amount of attention
from the experimental machine learning community [21, 22]. Then the AdaBoost algorithm
arrived with its many desirable properties: a theoretical derivation and analysis, fast running
time, and simple implementation. These properties attracted machine learning researchers
who began experimenting with the algorithm. All of the experimental studies showed that
AdaBoost almost always improves the performance of various base learning algorithms, often
by a dramatic amount.

We begin this section by discussing the application of boosting to one kind of base learning
algorithm that outputs decision tree classifiers. We then briefly survey other experimental
studies. We conclude with a discussion of the questions raised by these experiments with
AdaBoost that led to further theoretical study of the algorithm.

29

3.3.1 Decision Trees

Experiments with the AdaBoost algorithm usually apply it to classification problems. Recall
that a classification problem is specified by a space X of instances and a space Y of labels,
where each instance x is assigned a label y according to an unknown labelling function
c : X -+ Y. We assume that the label space Y is finite. The input to a base learning
algorithm is a set of training examples ((x1, Yi),..., (xm, yn)), where it is assumed that yi
is the correct label of instance xi (i.e., yi = c(xi)). The goal of the algorithm is to output a
classifier h : X -+ Y that closely approximates the unknown function c.

The first experiments with AdaBoost [20, 29, 53] used it to improve the performance of
algorithms that generate decision trees, which are defined as follows. Suppose each instance
x E X is represented as a vector of n attributes (al, ... , an) that take on either discrete
or continuous values. For example, an attribute vector that represents human physical
characteristics is (height, weight, hair color, eye color, skin color). The values of these
attributes for a particular person might be (1.85 m, 70.5 kg, black, dark brown, tan). A
decision tree is a hierarchical classifier that classifies instances according the values of their
attributes. Each non-leaf node of the decision tree has an associated attribute a (one of the
ai's) and a value v (one of the possible values of a). Each non-leaf node has three children
designated as "yes", "no", and "missing." Each leaf node u has an associated label y E Y.

A one node decision tree, called a stump [40], consists of one internal node and three
leaves. Consider a stump T whose internal node compares the value of attribute a to value
v. T classifies instance x as follows. Let x.a be the value of attribute a of x. If a is a
discrete-valued attribute then

" if x.a = v then T assigns x the label associated with the "yes" leaf.
" if x.a # v then Ti assigns x the label associated with the "no" leaf.
" if x.a is undefined, meaning x is missing a value for attribute a, then Ti assigns x the

label associated with the "missing" leaf.

If instead a is a continuous-valued attribute, Ti applies a threshold test (x.a > v) instead of
an equality test.

A general decision tree T has many internal nodes with associated attributes. In order
to classify instance x, T traces x along the path from the root to a leaf u according to the
outcomes at every decision node; T assigns x the label associated with leaf u. A decision tree
can be thought of as a partition of the instance space X into pairwise disjoint sets X, whose
union is X, where each X, has an associated logic expression that expresses the attribute
values of instances that fall in that set (for example "hair color = brown and height < 1 m").

The goal of a decision tree learning algorithm is to find a partition of X and an assignment
of labels to each set of the partition that minimizes the number of mislabelled instances.
Algorithms such as CART [13] and C4.5 and its successors [54] use a greedy strategy to
generate a partition and label assignment which has low error on the training set. These
algorithms run the risk of overfitting, meaning creating a specialized decision tree that is
highly accurate on the training set but performs poorly on the test set. To resist this when
growing the tree, the algorithms prune the tree of nodes thought to be too specialized.

30

3.3.2 Boosting Decision Trees

We describe two experiments using AdaBoost to improve the performance of decision tree
classifiers. The first experiment [29] used as a base learner a simple algorithm for generating
a decision stump; the final hypothesis output by AdaBoost was then a weighted combination
of stumps. In this experiment AdaBoost was compared to bagging [10], another method for
generating and combining multiple classifiers, in order to separate the effects of combining
classifiers from the particular merits of the boosting approach. AdaBoost was also compared
to C4.5, a standard decision tree learning algorithm. The second experiment [29, 20, 53]
used C4.5 itself as the base learner; here also boosting was compared to C4.5 alone and
to bagging. Before we report the results of the experiments, we briefly describe bagging,
following Quinlan's presentation [53].

Bagging

Invented by Breiman [10], bagging ("bootstrap aggregating") is a method for generating
and combining multiple classifiers by repeatedly sampling the training data. Given a base
learner and a training set of m examples, bagging runs for T rounds and then outputs a
combined classifier. For each round t = 1, 2, ... IT, a training set of size m is sampled (with
replacement) from the original examples. This training set is the same size as the original
data, but some examples may not appear in it while others may appear more than once.
The base learning algorithm generates a classifier C' from the sample and the final classifier
C* is formed by combining the T classifiers from these rounds. To classify an instance x, a
vote for class k is recorded for every classifier for which C (x) = k, and C* (x) is then the
class with the most votes (with ties broken arbitrarily).

Breiman used bagging to improve the performance of the CART decision tree algorithm
on seven moderate-sized datasets. With the number of classifiers T set to 50, he reported that
the average error of the bagged classifier C* ranged from 0.57 to 0.94 of the corresponding
error when a single classifier was learned. He noted, "The vital element is the instability of
the [base learning algorithm]. If perturbing the [training] set can cause significant changes
in the [classifier] constructed, then bagging can improve accuracy."

Bagging and boosting are similar in some respects. Both use a base learner to generate
multiple classifiers by training the base learner on different samples of the training data. As
a result, both methods require that the base learner be "instable" in that small changes in
the training set will lead to different classifiers. However, there are two major differences
between bagging and boosting. First, bagging resamples the training set on each round
according to a uniform distribution over the examples. In contrast, boosting resamples on
each round according to a different distribution that is modified based on the performance
of the classifier generated on the previous round. Second, bagging uses a simple majority
vote over the T classifiers whereas boosting uses a weighted majority vote (the weight of a
classifier depends on its error relative to the distribution from which it was generated).

31

Boosting Decision Stumps

As a base learner, Freund and Schapire [29] used a simple greedy algorithm for finding
the decision stump with the lowest error (relative to a given distribution over the training
examples). They ran their experiments on 27 benchmark datasets from the repository at the
University of California at Irvine [52]. They set the number of boosting and bagging rounds
to be T = 100.

Boosting did significantly and uniformly better than bagging. The boosting (test) error
rate was worse than the bagging error rate on only one dataset, and the improvement of
bagging over boosting was only 10%. In the most dramatic improvement (on the soybean-
small dataset), the best stump had an error rate of 57.6%, bagging reduced the error to
20.5% and boosting achieved an error of 0.25%. On average, boosting improved the error
rate over using a single (best) decision stump by 55.2%, compared to bagging which gave an
improvement of 11.0%.

A comparison to C4.5 revealed that the method of boosting decision stumps does quite
well as a learning algorithm in its own right. The algorithm beat C4.5 on 10 of the bench-
marks (by at least 2%), tied on 14, and lost on 3. C4.5's improvement in performance over
a single decision stump was 49.3% (compared to boosting's 55.2%).

Boosting C4.5

An algorithm that produces a decision stump classifier can be thought of as a weak learner.
The last experiment showed that boosting was able to dramatically improve its performance,
more often than bagging and to a greater degree. Freund and Schapire [29] and Quinlan [53]
investigated the abilities of boosting and bagging to improve C4.5, a considerably stronger
learning algorithm.

When using C4.5 as the base learner, boosting and bagging seem more evenly matched,
although boosting still seems to have a slight advantage. Freund and Schapire's experiments
revealed that on average, boosting improved the error rate of C4.5 by 24.8%, bagging by
20.0%. Bagging was superior to C4.5 on 23 datasets and tied otherwise, whereas boosting
was superior on 25 datasets and actually degraded performance on 1 dataset (by 54%).
Boosting beat bagging by more than 2% on 6 of the benchmarks, while bagging did not beat
boosting by this amount (or more) on any benchmark. For the remaining 21 benchmarks,
the difference in performance was less than 2%.

Quinlan's results [53] with bagging and boosting C4.5 were more compelling. He ran
boosting and bagging for T = 10 rounds and used 27 datasets from the UCI repository,
about half of which were also used by Freund and Schapire. He found that bagging reduced
C4.5's classification error by 10% on average and was superior to C4.5 on 24 of the 27 datasets
and degraded performance on 3 (the worst increase was 11%). Boosting reduced error by
15% but improved performance on 21 datasets and degraded performance on 6 (the worst
increase was 36%). Compared to one another, boosting was superior to bagging (by more
than 2%) on 20 of the 27 datasets. Quinlan concluded that boosting outperforms bagging,
often by a significant amount, but bagging is less prone to degrade the base learner.

Drucker and Cortes [20] also found that AdaBoost was able to improve the performance
of C4.5. They used AdaBoost to build ensembles of decision trees for optical character

32

recognition (OCR) tasks. In each of their experiments, the boosted decision trees performed
better than a single tree, sometimes reducing the error by a factor of four.

Boosting Past Zero

Quinlan experimented further to try to determine the cause for boosting's occasional degra-
dation in performance. In the original AdaBoost paper [31], Freund and Schapire attributed
this kind of degradation to overfitting. As discussed earlier, the goal of boosting is to con-
struct a combined classifier consisting of weak classifiers. In order to produce the best
classifier, one would naturally expect to run AdaBoost until the training error of the com-
bined classifier reaches zero. Further rounds in this situation would seem only to overfit-they
will increase the complexity of the combined classifier but cannot improve its performance
on the training data.

To test the hypothesis that degradation in performance was due to overfitting, Quinlan
repeated his experiments with T = 10 as before but stopped boosting if the training error
reached zero. He found that in many cases, C4.5 required only three rounds of boosting to
produce a combined classifier that performs perfectly on the training data; the average num-
ber of rounds was 4.9. Despite using fewer rounds, and thus being less prone to overfitting,
the test error of boosted C4.5 was worse: the average error over the 27 datasets was 13%
higher than when boosting was run for T = 10 rounds. This meant that boosting continued
to improve the accuracy of the combined classifier (on the test set) even after the training
error reached zero!

Drucker and Cortes [20] made a related observation of AdaBoost's resistance to overfitting
in their experiments using boosting to build ensembles of decision trees, "Overtraining never
seems to be a problem for these weak learners, that is, as one increases the number of trees,
the ensemble test error rate asymptotes and never increases." We will return to this point
in Section 3.4.

3.3.3 Other Experiments

We now describe other experiments with the AdaBoost algorithm.
Breiman [12] compared boosting and bagging using decision trees on real and synthetic

data in order to determine the differences between the two methods. In the process he
formulated an explanation of boosting's excellent generalization behavior, and he derived a
new boosting algorithm. We discuss his work in more detail in Section 3.4.1.

Dietterich [18] built ensembles of decision trees using boosting, bagging, and randomiza-
tion (the next attribute to add to the tree is chosen uniformly at random among a restricted
set of attributes). His results were consistent with the trend we have seen: boosting produces
better combined classifiers than bagging or randomization. However, when he introduced
noise into the training data, meaning choosing a random subset of the examples and assign-
ing each a label chosen randomly among the incorrect ones, he found that bagging performs
much better than boosting and sometimes better than randomization.

Bauer and Kohavi [7] conducted an extensive experimental study of the effects of boost-
ing, bagging, and related ensemble methods on various base learners, including various deci-

33

sion trees and the Naive-Bayes predictor [23]. Like Dietterich, they also found that boosting
performs worse than bagging on noisy data.

Jackson and Craven [41] employed AdaBoost using sparse perceptrons as the weak learn-
ing algorithm. Testing on three datasets, they found that boosted sparse perceptrons out-
performed more general multi-layered perceptrons, as well as C4.5. A main feature of their
results was that the boosted classifiers were very simple and were easy for humans to inter-
pret, whereas the classifiers produced by multi-layered perceptrons or C4.5 were much more
complex and incomprehensible.

Maclin and Opitz [49] compared boosting and bagging using neural networks and decision
trees. They performed their experiments on datasets from the UCI repository and found that
boosting methods were better able to improve the performance of both of the base learners.
They also observed that boosting is sensitive to noise.

Other experiments not surveyed here include those by Dietterich and Bakiri [19], Margineantu
and Dietterich [50], Schapire [62], and Schwenk and Bengio [66].

3.3.4 Summary

We have seen that experiments with the AdaBoost algorithm revealed that it able to use
a base learning algorithm to produce a highly accurate prediction rule. AdaBoost usually
improves the base learner quite dramatically, with minimal extra computation costs. Along
these lines, Leslie Valiant praised AdaBoost in his 1997 Knuth Prize Lecture [70], "The way
to get practioners to use your work is to give them an extremely simple algorithm that, in
minutes, does magic like this!" (referring to Quinlan's results).

These experiments raised many questions about the behavior of AdaBoost:

" Why is AdaBoost able to produce good classifiers?

" Why is AdaBoost able to continue to reduce the test error of the combined classifier
after the training error reaches zero?

" Why does AdaBoost resist overfitting?

" How can AdaBoost be modified to work in the presence of noise?

In the next section we will present the attempts of various reseachers to answer these ques-
tions.

3.4 Why Does Boosting Work?

As theory suggested, the many experiments with the AdaBoost algorithm verified that it
rapidly produced combined classifiers that were much more accurate on test data than any
constituent classifier. In turn, the experiments raised questions that the theory was not
prepared to answer, the most prominent of which is, why AdaBoost does not overfit when
run for many rounds, and how it is able to continue to reduce the test error of the combined
classifier after its training error reaches zero. This question has not been fully answered as

34

of now. In this section we survey the various interpretations of boosting made by various
researchers, usually in an attempt to explain the surprising phenomenon of its resistance to
overfitting.

We begin with Breiman's justification of AdaBoost's performance based on an analysis
of its affect on the bias and variance of the weak learner. We then survey the margins
theory of Schapire, Freund, Bartlett, and Lee, which shed some light on how generalization
performance could continue to improve after training error reaches zero. Next, we explore a
connection between boosting and game theory elucidated by Freund and Schapire, and then
briefly describe a recent statistical view of boosting by Friedman, Hastie, and Tibshirani.
Finally, we conclude with a short discussion of AdaBoost's sensitivity to noise, meaning
mislabelled training examples.

3.4.1 Arcing, bias, and variance

Intrigued by the performance of boosting and bagging on decision trees, Breiman [12] for-
mulated an explanation of the differences between the two ensemble methods, as well as a
justification for boosting's resistance to overfitting. Based on his observations he derived
a new boosting algorithm, which he called an arcing algorithm (adaptively resample and
combine), and compared it to AdaBoost on real and artificial datasets.

The goal of any learning algorithm for a classification task is to minimize its generalization
error, the probability that its output classifier will misclassify an instance not in the training
set. Breiman, and other researchers [45, 46, 68], have examined different ways of decomposing
the generalization error of an algorithm into two terms called the (statistical) bias and
variance. Intuitively, the bias term measures the systematic error of the learning algorithm,
in other words, any inherent inability of the algorithm to perfectly classify the data. The
variance term measures the error that is due to fluctuations such as noise in the data or
random choices made by the algorithm.

Breiman defined one particular bias-variance decomposition and argued that in order for
a learning algorithm to reduce its generalization error, it must reduce its bias and variance.
With this observation in mind, he ran bagging and boosting, with CART decision trees [13]
as the weak learner, on various artificial datasets, chosen so that he could accurately estimate
the bias and variance of the ensemble methods. His experiments showed that both bagging
and boosting (or arcing, as he called it) do not significantly affect the bias of the weak
learner, but they do drastically reduce its variance (meaning the variance of the ensemble
is much less than the variance of a single classifier). After observing that boosting achieved
lower test error than bagging on some real-world datasets, Breiman concluded that boosting
beats bagging because it is better at reducing variance (as he demonstrated on his artificial
datasets). It is a natural conclusion that boosting and bagging should reduce variance since
they average over many classifiers.

Breiman then developed an ad-hoc new boosting algorithm named arc-x4:

After testing [AdaBoost] I suspected that its success lay not in its specific
form but in its adaptive resampling property, where increasing weight was placed
on those cases more frequently misclassified. To check on this, I tried three simple
update schemes for the [distribution over examples]. In each, the update was of

35

the form 1 + m(n)h [m(n) is the number of times example n was misclassified by
the previously constructed classifiers], and h = 1, 2, 4 was tested on the waveform
data. The last one did the best and became arc-x4. Higher values of h were not
tested so further improvement is possible.

Breiman found that arc-x4 performed comparably to AdaBoost in producing classifiers with
small test error, and this was verified by other researchers [7, 49].

Breiman's observation that boosting's strength is its ability to reduce the variance of
the weak learner was not replicated by other researchers; in fact, they found the opposite,
that boosting tends to reduce both bias and variance [7, 33, 64]. In particular, Freund and
Schapire [28] discussed Breiman's paper [12] in the same journal issue. Schapire et al. [64]
also gave a detailed discussion of the merits and weaknesses of the application of the bias-
variance analysis to boosting. They offered an alternative explanation for the effectiveness
of boosting, which we present in the next section.

3.4.2 Margins analysis

In order to produce the best classifier, one would naturally expect to run AdaBoost until the
training error of the combined classifier reaches zero. Further rounds in this situation would
seem only to overfit--they will increase the complexity of the combined classifier but cannot
improve its performance on the training data. As we saw in Section 3.3.2, experiments
with AdaBoost displayed the opposite phenomenon: the test error of the combined classifier
continues to decrease after its training error reaches zero [20, 53]. For example, the left side
of Figure 2 shows the training and test curves of running AdaBoost on top of C4.5 on the
"letter" dataset [52].

These observations seem to contradict Occam's Razor, one of the fundamental principles
in the theory and practice of machine learning (see, for instance, Chapter 2 of Kearns and
Vazirani [44]). The principle states that in order to achieve good test error, the classifier
should be as simple as possible. By "simple" we mean that the classifier is chosen from a
restricted space of classifiers. When the space is finite, we use its cardinality as the measure
of complexity and when it is infinite we use the VC-dimension [72] which is often closely
related to the number of parameters that define the classifier. Typically, in both theory
and practice, the difference between the training error and test error increases when the
complexity of the classifier increases [64].

Indeed, Freund and Schapire predicted this typical behavior for AdaBoost when they first
developed the algorithm [31]. They showed that, for a combined hypothesis H generated
from a training sample S of size m using a weak learner whose hypothesis space has VC-
dimension d, with high probability the generalization error of H is bounded by

Pro [H(x) y] < Prs [H(x) = y]+O ,(

where Prs [-] denotes the empirical probability on the sample S (Eq. (3.5), Section 3.2.4).
This bound suggests that boosting will overfit if run for too many rounds (as T becomes
large).

36

20: 1.

15-_ _ _ _ _ _ _ _ _ *I

10 0.5-

5- .

0
-

10 100 1000 -1 -0.5 0.5 1
rounds margin

Figure 3-2: Error curves and margin distribution graphs for boosting C4.5 on the letter
dataset as reported by Schapire et al. [64]. Left: The training and test error curves (lower
and upper curves, respectively) of the combined classifier as a function of the number of
rounds of boosting. The horizontal lines indicate the test error rate of the (first) base
classifier as well as the test error of the final combined classifier. Right: The cumulative
distribution of margins of the training examples after 5, 100, and 1000 iterations, included
by short-dashed, long-dashed (mostly hidden), and solid curves, respectively. (Reprinted
from Schapire [63].)

Faced with the contradicting experimental evidence that, when run for a large number
of rounds, boosting often does not overfit and continues to improve the test of its combined
classifier [12, 20, 53], Freund and Schapire sought a revised analysis of the generalization
error of AdaBoost. Together with Bartlett and Lee, they formulated the margins analysis
of boosting [64]. We follow Schapire's summary [63], using the notation of the AdaBoost
pseudocode of Figure 3-1.

Recall that the combined hypothesis H output by AdaBoost cclassifies an instance x as
H(x) = sign(f(x)) = sign(E_ 1 atht(x)). Define the margin of an example (x, y), where
y E {-1, +1}, as

yf (x) _y E'_, atht (x)
marginf(x, y) = < - T-

t= lazl t=1 lat|
It is a number in [-1, +1] that is positive if and only if H correctly classifies the example.
Moreover, the magnitude of the margin can be interpreted as a measure of confidence in the
prediction of H. Schapire et al. proved that larger margins on the training set translate into
a superior upper bound on the generalization error. Specifically, for any 0 > 0, with high
probability (over the choice of training set) the generalization error is at most

Prs marginf (x, y) < o] + O (.ci

Unlike the previous generalization error bound, this bound is entirely independent of T,
the number of rounds of boosting. In addition, Schapire et al. proved that boosting is

37

particularly aggressive at reducing the margin (in a quantifiable sense) since it concentrates
on the examples with the smallest margins.

Boosting's effect on the margins can be seen empirically, as shown on the right side of
Figure 3-2, which shows the cumulative distribution of the margins of the training example
on the "letter" dataset. In this case, even after the training error reaches zero, boosting
continues to increase the margins of the training examples, effecting a corresponding drop
in the test error.

Several authors [11, 35, 51] have made attempts to use the insights gleaned from the
theory of margins. For example, Grove and Schuurmans [35] boosted decision trees using
a linear programming algorithm for directly maximizing the minimum margin. They found
that although this algorithm achieved a better minimum margin than AdaBoost, its test
error was worse. They also reported experiments where AdaBoost did eventually overfit the
training data (as observed by other researchers [29, 49, 53]) after a large number of rounds

(e.g., 1000). They concluded that the margins theory alone does not accurately describe
empirical observation.

In contrast, Mason, Bartlett, and Baxter [51] successfully applied the margins theory to
derive a new boosting algorithm that achieves better empirical test error than AdaBoost.
Rather than only minimizing training error as does AdaBoost, their algorithm instead op-
timizes a cost function which involves both the training error and the complexity of the
combined classifier. Experiments with their algorithm, which is a gradient descent method,
revealed that it sometimes avoids reducing training error in favor of reducing the complexity
of the combined classifier, which is impossible behavior for AdaBoost.

In summary, the margins analysis of AdaBoost produced further insight into the strange
resistance of boosting to overfitting. In addition, Schapire notes that the margin theory
points to a strong connection between boosting and the support-vector machines of Vapnik
and others [9, 16, 72] which explicitly attempt to maximize the minimum margin.

3.4.3 A game-theoretic interpretation

The behavior of AdaBoost can also be understood in a game-theoretic setting as explored
by Freund and Schapire [30, 32] (see also Grove and Schuurmans [35] and Breiman [12]). We
follow Schapire's summary [63].

In classical game theory, it is possible to put any two-person, zero-sum game in the form
of a matrix M (see, for instance, Fudenberg and Tirole [34]). To play the game, one player
chooses a row i and the other player chooses a column j. The loss of the row player (which
is the same as the payoff to the column player) is Mj. More generally, the two sides may
play randomly, choosing distributions P and Q over rows and columns, respectively. The
expected loss then is PTMQ.

Boosting can be viewed as repeated play of a particular game matrix. Assume that the
weak hypotheses are binary, and let Wt {h 1 , ... , h,} be the entire hypothesis space. To
simplify the discussion, we assume 71 is finite. For a fixed training set (Xi, y1), ... , (Xm, Ym),

38

the game matrix M has m rows and n columns, where

M-- _ 1 if hj(xi)= yi
0 otherwise.

The row player now is the boosting algorithm, and the column player is the weak learner. The
boosting algorithm's choice of a distribution Dt over training examples becomes a distribution
P over rows of M, while the weak learner's choice of a weak hypothesis ht becomes the choice
of a column j of M (note the similarity to Freund's majority-vote game (Section 3.2.3) and
the original derivation of AdaBoost (Section 3.2.4)).

As an example of the connection between boosting and game theory, consider von Neu-
mann's famous minmax theorem which states that

max min PTMQ = min max PTMQ
Q P P Q

for any matrix M. When applied to the matrix just defined and reinterpreted in the boosting
setting, this can be shown to have the following meaning: if, for any distribution over the
training examples, there exists a weak hypothesis with error at most j - -Y, then there
exists a convex combination of weak hypotheses with a margin of at least 27 on all training
examples. As explained in Section 3.4.2, AdaBoost seeks to find such a final hypothesis with
high margin on all examples by combining many weak hypotheses; so in a sense, the minmax
theorem tells us that AdaBoost has at least the potential for success since, given a "good"
weak learner, there must exist a good combination of weak hypotheses.

Going much further, AdaBoost can be shown to be a special case of a more general
algorithm for playing repeated games, or for approximately solving matrix games. This
shows that, asymptotically, the distribution over training examples as well as the weights over
weak hypotheses in the final hypothesis have game-theoretic interpretations as approximate
minmax or maxmin strategies.

3.4.4 Estimating probabilities

Let us return to definition of the AdaBoost algorithm. As we saw in Section 3.2.4, AdaBoost
is a greedy method for choosing at in order to minimize Eq. (3.4):

Zexp(-yif(xi)) = exp -yi E actht(i).
i=1 i=1 t=1

Starting from this interpretation, Friedman, Hastie, and Tibshirani [33] recently offered a
statistical view of boosting. The following summary of their work in based on Schapire's
presentation [63].

So far we have considered the classification problem of predicting the label y of an instance
x with the intention of minimizing the probability of an incorrect prediction; we have assumed
that x is assigned y by a deterministic labelling function. A related useful problem arises
when we modify this assumption: perhaps x can receive different labels, according to a non-
deterministic labelling function. In this case we are called upon to estimate the probability

39

that a given instance x has label y. For example, given the observation (x) that Tracy has
a headache, what is the probability that the headache stems from a disease (yi), as opposed
to the fact that she skipped breakfast this morning (y2)? Friedman, Hastie, and Tibshirani
suggested a method for using the output of AdaBoost to make reasonable estimates of such
probabilities. Specifically, they suggest using a logistic function, and estimating

exp(f (x))
Prf [y = +1|X] = ex~)(3.6)exp(f (x)) + exp(-f (x))

where, as usual, f(x) is the weighted average of weak hypotheses generated by AdaBoost.
The rationale for this choice is the close connection between the log loss (negative log likeli-
hood) of such a model, namely,

ln (1 + exp (-2yif (xi))) (3.7)

and the function that, as we have already noted, AdaBoost attempts to minimize:

Z exp(-yif (xi)). (3.8)

Specifically, it can be verified that Eq. (3.8) is an upper bound on Eq. (3.7). In addition,
if we add the constant 1 - In 2 to Eq. (3.7) (which does not affect its minimization), then
it can be verified that the resulting function and the one in Eq. (3.8) have identical Taylor
expansions around zero up to second order; thus, their behavior near zero is very similar.
Finally, it can be shown that, for any distribution over pairs (x, y), the expected log loss,

E [ln(1 + exp(-2yf (x)))],

and the expected error of AdaBoost,

E [exp(-yf (x))],

are minimized by the same function f, namely,

SPr [y = +1|x]f(x) = -ln.
fW 2 (Pr [y =-1|x])

Thus, for all these reasons, minimizing Eq. (3.8), as is done by AdaBoost, can be viewed
as a method of approximately minimizing the negative log likelihood given in Eq. (3.7).
Therefore, we may expect Eq. (3.6) to give a reasonable probability estimate.

Friedman, Hastie, and Tibshirani also make other connections between AdaBoost, logistic
regression, and additive models. In particular, they derive new boosting algorithms based
on these connections. The new algorithms exhibit comparable or superior performance to
AdaBoost, as demonstrated in their experiments with decision trees.

40

3.4.5 Boosting in the presence of noise

Quinlan [53] was the first to notice that AdaBoost sometimes increased the error of a base
learner (decision trees, in his case). When he presented this work at his AAAI'96 talk, he
mentioned that he believed the poor performance of the algorithm was due to noise, meaning
mislabelled training examples. Dietterich [18] confirmed this observation, finding that bag-
ging outperformed AdaBoost when given noisy training data. Maclin and Opitz [49] made
similar findings for neural networks: when they introduced noise into the data, AdaBoost
produced classifiers with test error worse than arc-x4 [12] and much worse than bagging [10].

Bauer and Kohavi [7] reported detailed behavior of boosting in the presence of noise.
When using decision trees, they found that AdaBoost performed worse than the single (best)
tree on 4 out of 14 datasets, where 2 of the 4 definitely contained mislabelled training data.
They listed this problem first on their list of open problems:

The main problem with boosting seems to be [lack of] robustness to noise.
We attempted to drop instances with very high weight but the experiments did
not show this to be a successful approach. Should smaller sample sizes be used to
force theories to be simple if tree sizes grow as trials progress? Are there methods
to make boosting algorithms more robust when the dataset is noisy?

When he observed this phenomenon in his own experiments, Quinlan tried using confi-
dence estimates to improve the performance of AdaBoost. Specifically, suppose base classifier
ht classifies instance x with an associated confidence Ct(x) (between 0 and 1). Quinlan sug-
gested that, in the combined hypothesis, rather than vote with weight at on instance x, ht
should modify the strength of its vote according to Ct(x). He implemented a scheme for
doing so, based on the Laplace ratio, and found that this improved the performance of Ad-
aBoost on all but one of the noisy datasets. He concluded, "This modification is necessarily
ad-hoc, since the confidence estimate.. .has only an intuitive meaning."

An approach to this problem has arisen from AdaBoost's predecessor, the Boost-By-
Majority algorithm. As noted by Freund and Schapire [28], "...boost-by-majority is quite
different than AdaBoost in the way it treats outliers, which suggests that it might be worth
exploring experimentally." See a very recent paper by Freund [27] for the next chapter in
the story which includes a new boosting algorithm, BrownBoost.

41

42

Chapter 4

The Algorithm RankBoost

In this chapter we introduce our formal model of the ranking problem and present a boosting
algorithm, which we call RankBoost, for solving it.

4.1 A formal model of the ranking problem

In this section, we describe our formal model for studying ranking. Let X be a set called
the domain or instance space. Elements of X are called instances. For example, in the
movie-ranking task, each movie is an instance.

A learning algorithm in our model accepts as input a set of ranking features fi,..., fn,
which are functions. These are intended to provide a base level of information about the
ranking task. Said differently, the learner's job will be to learn a ranking expressible in terms
of the primitive ranking features, similar to ordinary features in more conventional learning
settings. In one formulation of the movie task, each ranking feature corresponds to a single
viewer's past ratings of movies.

Formally, each ranking feature f2 is a function of the form fi : X - a. The set R consists
of all real numbers, plus one additional element _L that indicates that no ranking is given
and which is defined to be incomparable to all real numbers. For two instances xo and xi,
we interpret fi(xi) > fi(xo) to mean that x1 is ranked higher than xO by fi. If fi(x) = 1
then x is unranked by fi. For the movie ranking task, fi(x) is simply the numerical rating
provided by movie-viewer i on movie x, or I if the movie was not rated.

The final input to the learning algorithm is a feedback function D. This function encodes
known relative ranking information about a subset of the instances. Typically, the learner
will try to approximate 4I to produce a ranking of unseen instances. For the movie task, the
feedback consists of Alice's preferences among the movies she has already seen.

Formally, we assume the feedback function has the form D : X x X -+ R with the
interpretation that ID(xo, xi) represents how important it is that xi be ranked above xO.
Positive values mean that x1 should be ranked above xO while negative values mean the
opposite; a value of zero indicates no preference between xO and x1 . Consistent with this
interpretation, we assume that D(x, x) = 0 for all x E X, and that 4 is anti-symmetric in
the sense that 4z(xo,x) = -1(xi, xo) for all xo,x1 E X. Note, however, that we do not
assume transitivity of the feedback function.

43

For the movie task, we can define 1(xo, xi) to be +1 if movie x1 was preferred to movie
xO by the current viewer, -1 if the opposite was the case, and 0 if either of the movies was
not seen or if they were equally rated.

We generally assume that the support of (D is finite. Let X. denote the set of feedback
instances, i.e., those instances that occur in the support of 4:

XD = {x E X | 3x' E X : 4(x, x') # 0}.

Also, let |IDI be the size of the support of D:

|@| = {(xo, x1) E X x X | '(xo, x1) # 0}|.

In some settings, it may be appropriate for the learner to accept a set of feedback functions
41,..., 4),m. However, all of these can be combined into a single function (D simply by adding
them: 1 = _jj3 I). (If some have greater importance than others, then a weighted sum can
be used.)

Formally, we require the learner to output a ranking of all instances represented in the
form of a function H : X --+ R with a similar interpretation to that of the ranking features,
i.e., x1 is ranked higher than xO by H if H(xi) > H(xo). For the movie task, this corresponds
to a complete ordering of all movies (with possible ties allowed).

The goal of the learner is to produce a "good" ranking of all instances, including those
not observed in training. For instance, for the movie task, we would like to find a ranking
of all movies that accurately predicts which ones a movie-viewer will like more or less than
others; obviously, this ranking should include movies that the viewer has not already seen.
As in other learning settings, how well the learning system performs on unseen data depends
on many factors, such as the number of instances covered in training and the representational
complexity of the ranking produced by the learner.

There are various methods that can be used to evaluate such a ranking. Some of these
are discussed in Chapter 5. The boosting algorithm described in the next section attempts
to minimize one possible measure called the ranking loss.

4.2 A boosting algorithm for the ranking task

In this section, we describe an approach to the ranking problem based on a machine learning
method called boosting, in particular, Freund and Schapire's [31] AdaBoost algorithm and its
successor developed by Schapire and Singer [65]. Boosting is a method of producing highly
accurate prediction rules by combining many "weak" rules which may be only moderately
accurate.

In the current setting, we seek a learning algorithm that will produce a function H
X -+ R whose induced ordering of X will approximate the relative orderings encoded by the
feedback function 1. To formalize this goal, let D(xo, x1) = c -max{0, 4(xo, x1)} so that all
negative entries of D (which carry no additional information) are set to zero. Here, c is a

44

Algorithm RankBoost
Given: initial distribution D over X x X.
Initialize: Di = D.
For t = 1, ... , T:

e Train weak learner using distribution Dt.

e Get weak hypothesis ht : X -+ R.
* Choose at E R.

0 Update: Dt~(xo, x) = Dt (xo, xi) exp (at (ht(xo) - ht (xi)))
zt

where Zt is a normalization factor (chosen so that Dti+ will be a distribution).

T

Output the final hypothesis: H(x) = et ht(x).
t=1

Figure 4-1: The RankBoost algorithm.

positive constant chosen so that

5 D(xo, xi) = 1.
X0,X1

(When a specific range is not specified on a sum, we always assume summation over all of

X.) A pair xo, x1 is said to be crucial if <D(xo, xi) > 0 so that the pair receives non-zero
weight under D.

Our boosting algorithm is designed to find an H with a small weighted number of crucial-
pair misorderings, namely,

E D(xo, x 1) [H(xi) < H(xo)] = Pr(x0 ,x1)~D [H(xi) < H(xo)] . (4.1)
X0,X1

Here and throughout this paper, we define [7rJ to be 1 if predicate 7r holds and 0 otherwise.
We call the quantity in Eq. (4.1) the ranking loss and we denote it by rlOSSD(H).

4.2.1 The RankBoost algorithm

We call our boosting algorithm RankBoost, and its pseudocode is shown in Figure 4-1.
Like all boosting algorithms, RankBoost operates in rounds. We assume access to a separate
procedure called the weak learner that, on each round, is called to produce a weak hypothesis.
RankBoost maintains a distribution Dt over X x X that is passed on round t to the weak
learner. Intuitively, RankBoost chooses Dt to emphasize different parts of the training data.

A high weight assigned to a pair of instances indicates a great importance that the weak
learner order that pair correctly.

Weak hypotheses have the form ht : X -+ R. We think of these as providing ranking
information in the manner described above. The weak learner we used in our experiments
is based on the given ranking features; details are given in Section 4.3.

The boosting algorithm uses the weak hypotheses to update the distribution as shown in

45

Figure 4-1. Suppose that xo, x1 is a crucial pair so that we want x1 to be ranked higher than
xo (in all other cases, Dt will be zero). Assuming for the moment that the parameter at > 0
(as it usually will be), this rule decreases the weight Dt(xo, x1) if ht gives a correct ranking
(ht(x 1) > ht(xo)) and increases the weight otherwise. Thus, Dt will tend to concentrate on
the pairs whose relative ranking is hardest to determine. The actual setting of at will be
discussed shortly.

The final or combined hypothesis H is a weighted sum of the weak hypotheses. In
the following theorem we prove a bound on the ranking loss of H on the training set.
This theorem also provides guidance in choosing at and in designing the weak learner as
we discuss below. As in standard classification problems, the loss on a separate test set
can also be theoretically bounded given appropriate assumptions using uniform-convergence
theory [17, 38, 71] . In Section 4.4 we will derive one such bound on the ranking generalization
error of H and explain why the classification generalization error bounds do not trivially carry
over to the ranking setting.

Theorem 1 Assuming the notation of Figure 4-1, the ranking loss of H is

T

rlossD(H) I1 Z.
t=1

Proof: Unraveling the update rule, we have that

= D(xo, xi) exp (H(xo) - H(xi))

Note that [x > 0] < ex for all real x. Therefore, the ranking loss with respect to initial
distribution D is

S D(xo, xi) [H(xo) > H(xj)j <5 D(xo, xi) exp (H(xo) - H(xi))
XO ,X1 XOX1

= S DT+1(xo, x1) l Zt =l Z.
XOX1 t t

This proves the theorem. m
Note that our methods for choosing at, which are presented in the next section, guarantee

that Zt < 1. Note also that RankBoost generally requires O(I(b|) space and time per round.

4.2.2 Choosing at and criteria for weak learners

In view of the bound established in Theorem 1, we are guaranteed to produce a combined
hypothesis with low ranking loss if on each round t we choose at and the weak learner
constructs ht so as to minimize

Zt = E Dt (xo, xi) exp (at (ht (xo) - ht (x1)))
XOX1

46

Formally, RankBoost uses the weak learner as a black box and has no control over how
it chooses its weak hypotheses. In practice, however, we are often faced with the task of
implementing the weak learner, in which case we can design it to minimize Zt.

There are various methods for achieving this end. Here we sketch three. Let us fix t
and drop all t subscripts when clear from context. (In particular, for the time being, D will
denote Dt rather than an initial distribution.)

First method. First and most generally, for any given weak hypothesis h, it can be shown
that Z, viewed as a function of a, has a unique minimum which can be found numerically
via a simple binary search (except in trivial degenerate cases). For details, see Section 6.2
of Schapire and Singer [65].

Second method. The second method of minimizing Z is applicable in the special case
that h has range {0, 1}. In this case, we can minimize Z analytically as follows: For b E
{-1, 0, +1}, let

Wb = E D(xo, x1) [h(xo) - h(xi) = b].
XOX1

Also, abbreviate W+1 by W+ and W_ 1 by W. Then Z = We- + Wo + W+e'. Using simple
calculus, it can be verified that Z is minimized by setting

a = }In (4.2)

which yields
Z = Wo + 2 WW+. (4.3)

Thus, if we are using weak hypotheses with range restricted to {0, 1}, we should attempt to
find h that tends to minimize Eq. (4.3) and we should then set a as in Eq. (4.2).

Third method. Here we consider weak hypotheses of intermediate generality, namely
those with range [0, 1]. For these hypotheses, we can use a third method to setting a based
on an approximation of Z. Specifically, by the convexity of eax as a function of x, it can be
verified that

eoax < 1+ X e a+ 1- x -a
- 2) (2)

for all real a and x E [-1, +1]. Thus, we can approximate Z by

Z < Z: D(xoxi) 1 + h(xo) - h(x) e ± 1 - h(xo) + h(x) e-]
XOx1 2 2

1 - r e 1+r r a (4.4)
2 2

where

r (zo, x11)(h(x1) - h(xo)). (4.5)
X0,1

47

The right hand side of Eq. (4.4) is minimized when

le = ! In +r(4.6)
1 - r)

which, plugging into Eq. (4.4), yields Z < v1 - r 2. Thus, to approximately minimize Z using
weak hypotheses with range [0, 1], we can attempt to maximize Ir| as defined in Eq. (4.5)
and then set a as in Eq. (4.6).

We now consider the case when any of these three methods for setting a assign a weak
hypothesis h a weight a < 0. For example, according to Eq. (4.2), a is negative if W+,
the weight of misordered pairs, is greater than W_, the weight of correctly ordered pairs.
Similarly for Eq. (4.6), a < 0 if r < 0 (note that r = W_ - W+). Intuitively, this means that
h is negatively correlated with the feedback; the reverse of its predicted order will better
approximate the feedback. RankBoost allows such weak hypotheses and its update rule
reflects this intuition: the weights of the pairs that h correctly orders are increased, and the
weights of the incorrect pairs are decreased.

4.2.3 An efficient implementation for bipartite feedback

In this section, we describe a more efficient implementation of RankBoost for feedback of a
special form. We say that the feedback function is bipartite if there exist disjoint subsets
X0 and X1 of X such that (D ranks all instances in X1 above all instances in X0 and says
nothing about any other pairs. That is, formally, for all £0 E X0 and all xi E X1 we have
that 4(xo, xi) = +1, D(xi, x0) = -1 and 4 is zero on all other pairs.

Such feedback arises naturally, for instance, in document rank-retrieval tasks common
in the field of information retrieval. Here, a set of documents may have been judged to be
relevant or irrelevant. A feedback function that encodes these preferences will be bipartite.
The goal of an algorithm for this task is to discover the relevant documents and present them
to a user. Rather than output a classification of documents as relevant or irrelevant, the goal
here is to output a ranked list of all documents that tends to place all relevant documents near
the top of the list. One reason a ranking is preferred over a hard classification is that a ranking
expresses the algorithm's confidence in its predictions. Another reason is that typically users
of ranked-retrieval systems do not have the patience to examine every document that was
predicted as relevant, especially if there is large number of such documents. A ranking allows
the system to guide the user's decisions about which documents to read.

If RankBoost is implemented naively as in Section 4.2.2, then the space and time-per-
round requirements will be O(jXoj X 1|). In this section, we show how this can be improved

to O(IXol + X1 |). Note that, in this section, Xt = X0 U X 1.
The main idea is to maintain a set of weights vt over X. (rather than the two-argument

distribution Dt), and to maintain the condition that, on each round,

Dt(xo,xi) = vt(xo)vt(xi) (4.7)

for all crucial pairs zo, x1 (recall that Dt is zero for all other pairs).
The pseudocode for this implementation is shown in Figure 4-2. Eq. (4.7) can be proved

48

Algorithm RankBoost.B
Given: disjoint subsets Xo and Xi of X.

Initialize:

V(X 1/|X1|I if x E X1
v1(z)-= 1|jXo| if x E Xo

For t = 1,..., T:

e Train weak learner using distribution Dt (as defined by Eq. (4.7)).

* Get weak hypothesis ht : X -+ R.

* Choose at C R.
e Update:

Svt(x) exp (-at ht(x)) if E X1
Z1

vt (x) exp (at ht(x)) if Xo

where Z', and Z normalize Vt over X 1 and X 0 :

Z = 1 vt(x) exp(-atht(x))

Z = (vt(x)exp(atht(x))
xEXo

T

Output the final hypothesis: H(x) = atht(x).
t=1

Figure 4-2: A more efficient version of RankBoost for bipartite feedback.

by induction on t. It clearly holds initially. Using our inductive hypothesis, it is straight-
forward to expand the computation of Zt = Z - Zt in Figure 4-2 to see that it is equivalent
to the computation of Zt in Figure 4-1. To show that Eq. (4.7) holds on round t + 1, we
have, for crucial pair x 0 , x 1 :

Dt±D(xoxl) = D(xo, x 1) exp (at(ht (xo) - ht (xi)))
zt

vt(xo) exp (atht(xo)) vt(x 1) exp (-atht(xi))

4 t
= Vt+1(Xo) - Vt+1(X1)-

Finally, note that all space requirements and all per-round computations are O(IXol + X 1 |),
with the possible exception of the call to the weak learner. However, if we want the weak
learner to maximize Irl as in Eq. (4.5), then we also only need to pass IXel weights to the
weak learner, all of which can be computed in time linear in IX1l. Omitting t subscripts,
and defining

s(x) +1 if x E X
S - 1 ifxEXo

49

we can rewrite r as

r = E D(xo, xi)(h(xi) - h(xo))
xOx1

=E E v(xo)v(xi) (h(x1)s(x1) + h(xo)s(xo))
xOEXO x1EX1

E v(Xo) E v(Xi) s(xo) h(xo) + E v(xi) E v (xo) s(x1) h(xi)
x06X0 \ x1X1 x16X1 x 0X0 ;

= d(x)s(x)h(x) (4.8)

where
d(x) = v(x) E v(x').

x' :s(x)#s(x')

All of the weights d(x) can be computed in linear time by first computing the sums that
appear in this equation for the two possible cases that x is in Xo or X 1. Thus, we only need
to pass |Xol + X1 | weights to the weak learner in this case rather than the full distribution
Dt of size |XoI |X1|.

4.3 Weak hypotheses for ranking

As described in Section 4.2, our algorithm RankBoost requires access to a weak learner to
produce weak hypotheses. In this section, we describe an efficient implementation of a weak
learner for ranking.

Perhaps the simplest and most obvious weak learner would find a weak hypothesis h that
is equal to one of the ranking features fi, except on unranked instances. For example, recall
that a ranking features for the movie task is a movie viewer. That is,

h(x) {fi(x) if fi(x) E R

for some gdef E R.

Although perhaps appropriate in some settings, the main problem with such a weak
learner is that it depends critically on the actual values defined by the ranking features,
rather than relying exclusively on the relative-ordering information which they provide. We
believe that learning algorithms of the latter form will be much more general and applicable.
Such methods can be used even when features provide only an ordering of instances and no
scores or other information are available. Such methods also side-step the issue of combining
ranking features whose associated scores have different semantics (such as the different scores
assigned to URL's by different search engines).

For these reasons, we focus in this section and in our experiments on {0, 1}-valued weak
hypotheses that use the ordering information provided by the ranking features, but ignore

50

specific scoring information. In particular, we will use weak hypotheses h of the form

1 if fi(x) > 0
h(x) 0 if fi(x) < 0 (4.9)

que if fi(x) I

where 0 E R and qdef E {0, 1}. That is, a weak hypothesis is derived from a ranking feature fi
by comparing the score of fi on a given instance to a threshold 0. To instances left unranked
by fi, the weak hypothesis assigns the default score qdef. For the remainder of this section,
we show how to choose the "best" feature, threshold and default score.

Since our weak hypotheses are {0, 1}-valued, we can use either the second or third meth-
ods described in Section 4.2.2 to guide us in our search for a weak hypothesis. We chose the
third method because we can implement it more efficiently than the second. According to the
second method, the weak learner should seek a weak hypothesis that minimizes Eq. (4.3).
For a given candidate weak hypothesis, we can directly compute the quantities Wo, W_, and
W+, as defined in Section 4.2.2, in O(I@|) time. Moreover, for each of the n ranking features,
there are at most X| + 1 thresholds to consider (as defined by the range of fi on X4) and
two possible default scores (0 and 1). Thus a straightforward implementation of the second
method requires O(n|i||Xpl) time to generate a weak hypothesis.

The third method of Section 4.2.2 requires maximizing Irl as given by Eq. (4.5) and has
the disadvantage that it is based on an approximation of Z. However, although a straight-
forward implementation also requires O(n|I ||Xe I) time, we will show how to implement
it in O(n|Xe| + |4|) time. (In the case of bipartite feedback, if the boosting algorithm of
Section 4.2.3 is used, only O(n|X l) time is needed.) This is a significant improvement from
the point of view of our experiments in which |@| was large.

We now describe a time and space efficient algorithm for maximizing Irl. Let us fix t and
drop it from all subscripts to simplify the notation. We begin by rewriting r for a given D
and h as follows:

r = D(xo, x 1) (h(x 1) - h(xo))
XOXl

= E D(xo, x)h(xi) - E D(xo, x1)h(xo)
XO,X1 XOX

= h(x) E D(x', x) - E h(x) E D(x, x')
x' x xl

= h(x) E(D(x', x) - D(x, x'))
xxl

= h(x) 7(x) , (4.10)

where we define ir(x) = EZ,(D(x', x) - D(x, x')) as the potential of x. Note that 7(x)

depends only on the current distribution D. Hence, the weak learner can precompute all the
potentials at the beginning of each boosting round in O(I|I) time and O(IXe l) space. When
the feedback is bipartite, comparing Eqs. (4.8) and (4.10), we see that w(x) = d(x)s(x) where
d and s are defined in Section 4.2.3; thus, in this case, 7 can be computed even faster in only

51

O(IXel) time.
Now let us address the problem of finding a good threshold value 0 and default value qdef

We need to scan the candidate ranking features fi and evaluate Irl (defined by Eq. (4.10)) for
each possible choice of fi, 0 and qdef. Substituting into Eq.(4.10) the h defined by Eq. (4.9),
we have that

r = E h(x)7r(x)+ E h(x)7r(x)+ E h(x)7r(x) (4.11)
x:fi(x)>6 x:/3(x)<6 x:/i(x)=1L

=- 7r(x)+qde E 7F(X). (4.12)
x:fi(x)>9 x:fi(x)=I

For a fixed ranking feature fi, let Xf, = {x E Xb I fi(x) : I} be the set of feedback instances
ranked by fi. We only need to consider Xf I + 1 threshold values, namely, {fi(x) I x E
Xf, } U {-oo} since these define all possible behaviors on the feedback instances. Moreover,
we can straightforwardly compute the first term of Eq. (4.12) for all thresholds in this set in
time O(Xfi 1) simply by scanning down a presorted list of threshold values and maintaining
the partial sum in the obvious way.

For each threshold, we also need to evaluate Irl for the two possible assignments of qdef
(0 or 1). To do this, we simply need to evaluate Ex:f,(x)=I 7r(x) once. Naively, this takes
O(IX. - Xf, 1) time, i.e., linear in the number of unranked instances. We would prefer all
operations to depend instead on the number of ranked instances since, in applications such
as meta-searching and information retrieval, each ranking feature may rank only a small
fraction of the instances. To do this, note that Ex r(x) = 0 by definition of r(x). This
implies that

Z 7r(x) = - E ir(x). (4.13)
x:fi(x)=1 IX:/i(x)#1

The right hand side of this equation can clearly be computed in O(IX, 1) time. Combining
Eqs. (4.12) and (4.13), we have

r = r(x) - qd E 7 (X). (4.14)
x:fi(x)>9 XGXf5

The pseudocode for the weak learner is given in Figure 4-3. Note that the input to the
algorithm includes for each feature a sorted list of candidate thresholds {Oj}j_ 1 for that
feature. For convenience we assume that 01 = oc and Oj = -oc. Also, the value |r| is
calculated according to Eq. (4.14): the variable L stores the left summand and the variable
R stores the right summand. Finally, if the default rank gdef is specified by the user, then
step 6 is skipped.

Thus, for a given ranking feature, the total time required to evaluate |rl for all candidate
weak hypotheses is only linear in the number of instances that are ranked by that feature.
In summary, we have shown:

Theorem 2 The algorithm of Figure 4-3 finds the weak hypothesis of the form given in
Eq. (4.9) that maximizes Ir| as in Eq. (4.10). The running time is O(n|<b||Xj|) per round

52

Algorithm WeakLearn
Given: distribution D over X x X.

set of features {fi} 1 .
for each fi, the set Xf2 = {x}K i such that fi(xi) ... > fi(xK)-
for each fi, the set of candidate thresholds {6j} such that 01 > ... ;> ,.

Initialize: for all x E Xp, 7r(x) = E D(x', x) - D(x, x')

r=0.
For i = 1, ... , N:

1. L= 0.
2. R = 7 ir(x) . /* L - qdefR is rhs of Eq. (4.14) */

XEXfi

3. 60= o.
4. For j =1,...,J:
5. L= L + r(x) /*compute L = r(x) */

x:0j3-2fj(x)>0j x:fi(x)>O
6. if ILI >IL-RI /* find best value for qdef I
7. then q = 0.
8. else q = 1.
9. if IL - qRI > jrl /* find best weak hypothesis */

10. r* =L- qR.
11. i*
12. 6* =6.
13. qdef = q.

Output weak hypothesis (fi.,0, qdef).

Figure 4-3: The weak learner.

of boosting. An efficient implementation runs in time

O(|+ |Xf5i) = O(|<b|+ n|X,| .

If the feedback is bipartite, the running time can be improved to O(n|X,|).

Positive cumulative weights. Since the final hypothesis has the form H(x) = z_ 1 atht(x)
and the hypotheses output by WeakLearn are binary, if ht (x) = 1 then ht contributes its
weight at to the final score of x. During the boosting process, WeakLearn may output dis-
tinct hypotheses that correspond to different thresholds of the same feature f. If we view
these hypotheses in increasing order by threshold, we see that f's contribution to the final
score of x is the sum of the weights of the hypotheses whose thresholds are less than f (x).
To simplify matters, if we assume that ht occurs exactly once among h, ... , hT, then if the
weights at are always positive, then f's contribution increases monotonically with the score
it assigns instances.

This behavior of a feature's contribution being positively correlated with the score it

53

assigns is desirable in some applications. In the meta-search task, it is natural that the
search strategy f should contribute more weight to the final score of those instances that
appear higher on its ranked list. Put another way, it would seem strange if, for example, f
contributed more weight to instances in the middle of its list and less to those at either end,
as would be the case if some of the at's were negative. Also, from the perspective of general-
ization error, if we allow some at's to be negative then we can construct arbitrary functions
of the instance space by thresholding a single feature, and this is probably more complexity
than we would like to allow in the combined hypothesis (in order to avoid overfitting).

To address this situation, we implemented an additional version of WeakLearn that
chooses its hypotheses to exhibit this monotonic behavior. In practice, our earlier assump-
tion that all he's are unique may not hold. If it doesn't, then the contribution of a particular
hypothesis h will be its cumulative weight, the sum of those at's for which ht = h. Thus
we need to ensure that this cumulative weight is positive. Our implementation outputs the
hypothesis that maximizes Ir| subject to the constraint that the cumulative weight of that
hypothesis remains positive. We refer to this modified weak learner as WeakLearn.cum.

4.4 Generalization Error

In this section we derive a bound on the generalization error of the combined hypothesis
when the weak hypotheses are binary functions and the feedback is bipartite. That is, we
assume that the feedback partitions the instance space into two sets, X and Y, such that
<b(x, y) > 0 for all x E X and y c Y, meaning the instances in Y are ranked above those in
X. Many problems can be viewed as providing bipartite feedback, including the meta-search
and movie recommendation tasks described in Chapter 5, as well as many of the problems
in information retrieval [57, 58].

4.4.1 Probabilistic Model

Up to this point we have not discussed where our train and test data comes from. The
assumption of machine learning , as described in Section 3.1, is that there exists a fixed
and unknown distribution over the instance space. The training set (and test set) is a
set of independent samples according to this distribution. This model clearly translates to
the classification setting, where the goal is predict the class of an instance. The training set
consists of an independent sample of instances, where each instance is labeled with its correct
class. A learning algorithm formulates a classification rule after running on the training set,
and the rule is evaluated on the test set, which is a disjoint independent sample of unlabeled
instances.

This probabilistic model does not translate as readily to the ranking setting, however,
where the goal is to predict the order of a pair of instances. A natural approach for the
bipartite case would be to assume a fixed and unknown distribution D over (XuY) x (XUY),
pairs from the instance space.1 The obvious next step would be to declare the training set

'Note that assuming a distribution over X x Y trivializes the ranking problem: the rule which always
ranks the second instance over the first is perfect.

54

to be a collection of instances sampled independently at random according to D. The
generalization results for classification would then trivially extend to ranking. The problem
is that the pairs in the training set are not independent: if (x1 , yi) and (x 2 , Y2) are in the
training set, then so are (XI, Y2) and (x 2 , Y1)-

Here we present a revised approach that permits sampling independence assumptions.
Rather than a single distribution D, we assume the existence of two distributions, Do over
X and D1 over Y. The training instances are the union of an independent sample according
to Do and an independent sample according to D1 . (This is similar to the "two button"
learning model in classification.) The training set, then, consists of all pairs of training
instances.

Consider the movie recommendation task as an example of this model. The model
suggests that movies viewed by a person can be partitioned into an independent sample of
good movies and an independent sample of bad movies. This assumption is not entirely true
since people usually choose which movies to view based on movies they've seen. However,
such independence assumptions are common in machine learning (take for instance, the
Naive-Bayes classifier [23]).

4.4.2 Sampling Error Definitions

Given this probabilistic model of the ranking problem, we can now define generalization
error. The final hypothesis output by RankBoost has the form

T

H(x) = E atht(x)
t=1

and orders instances according to the scores it assigns them. We are concerned here with
the predictions of such hypotheses on pairs of instances, so we consider hypotheses of the
form H: (X U Y) x (X U Y) -+ {-1, 0,+1}, where

T T

H(x, y) = sign Eatht(y) - Eatht(x)
(t=1 t=1

where the ht come from some class of binary functions 7. Let C be the set of all such
functions H.

H misorders (x, y) E X x Y if H(x, y) #, 1, which leads us to define the generalization
error of H as

Eq(H) = Prx~Do,y~D1 [[H(x, y) # 11]

= EDo,Di [[H(x, y) # 1]

We first verify that this definition is consistent with our notion of test error. For a given

55

test sample To x T where To = (x 1, ... ,x,) and T = (Y1..., y), the test error of H is

ET,T 1 - [H(xi, y) # 1] = ± ETr,Ti [[H(xi,y1) 11]][pq J pq i
= E Prx ,y [[H(xi, yj) # 111

pq ij
1= -- E (H) =E (H)

pq ij

Similarly, if we have a training sample So x Si where So = (x1, ... ,x) and Si =

(yi,..., y.), the training (or empirical) error of H is

5(H) = 1y) # 1]
mn iif

Our goal is to show that, with high probability, the difference between s(H) and E,(H) is
small, meaning that the performance of the combined hypothesis H on the training sample
is representative of its performance any random sample.

4.4.3 VC analysis

We now bound the difference between the training error and test error of the combined
hypothesis output by RankBoost using standard VC-dimension analysis techniques [17, 71].
We will show that, with high probability taken over the choice of training set, this difference
is small for every H E C. If this happens then, no matter which combined hypothesis
is chosen by our algorithm, the training error of the combined hypothesis will accurately
estimate its generalization error. Another way of saying this is that the probability (over the
choice of training set) is very small that there exists an H E C such that s(H) and e,(H)
differ by more than a small amount. In other words, we will show that for every 6 > 0, there
exists a small e such that

PrSo~Dm,Sl~D' [H E C : Z [H(xi, y) 1] - E, [[H(x, y) # 1]] > c <6 (4.15)0 1 mn i

where the choice of c will be determined during the course of the proof.
Our approach will be to separate (4.15) into two probabilities, one over the choice of So

and the other over the choice of Si, and then to bound each of these using classification
generalization error theorems.

In order to use these theorems we will need to convert H into a binary function. Define
F : X x Y -+ {0, 1} as a function which indicates whether or not H misorders the pair (x, y),
meaning F(x, y) = J[H(x, y) # 1]. Although H is a function on (X U Y) x (X U Y), we only
care about its performance on pairs (x, y) E X x Y, which is to say that it incurs no penalty
for its ordering of two instances from either X or Y. The quantity inside the absolute value

56

of (4.15) can then be rewritten as

1 E F(x, yj) - Exy [F(x, y)]
mn i

_ 1 1 1
= E F(xi, y) - - E E, [F(xi, y)] + - E, [F(xi, y)] - Ex, [F(x, y)]mn m m

= E I E F(xi, yj) - Ey [F(xi, y)] + (4.16)
m i (n j

E Y F(xi, y) - Ex [F(x, y)] . (4.17)

So if we prove that there exist co and ei such that co + Ei = E and

Prs1 ~D [F E F, x E X: - E F(xz, yj) - Ey [F(xz, y)] > i 6/2 (4.18)

1
PrSo~.Dm 3F E F, 3y E Y : - F(xi, y) - Ex [F(x, y)] > EO /2 (4.19)

we will have shown (4.15), because with high probability, the summand of (4.17) will be less
than ei for every xi, which implies that the sum will be less than ei. Likewise, the quantity
inside the expectation of (4.17) will be less than co for every y and so the expectation will
be less than co.

We now prove (4.19) using standard classification results, and (4.18) follows by a symmet-
ric argument. Consider (4.19) for a fixed y, which means that F(x, y) is a single argument
binary-valued function. Let Fy be the set of all such functions F for a fixed y. Then the
choice of F in (4.19) comes from U, Fy. A theorem of Vapnik [71] applies to (4.19) and gives
a choice of co that depends on the size m of the training set So, the error probability 6, and
the complexity d' of U, Fy, measured as its VC-dimension (for details, see Vapnik [71] or
Devroye, Gy6rfi, and Lugosi [17]). Specifically, for any 6 > 0,

PrSo~DM 3F E U.F, : 1: F(i, y) - E. [F(x, y)] > EO(m, 6, d') < 6 ,

where

Eo(m, 6, d') = 2 d'(ln(2m/d') + 1) + ln(9/6)
m

The parameters m and 6 are given; it remains to calculate d', the VC-dimension of U, FY.
(We note that although we are using a classification result to bound (4.19), the probability
correspond to a peculiar classification problem (trying to differentiate X from Y by picking
an F and one y E Y) that does seem to have a natural interpretation.)

Let's determine the form of the functions in UY Fy. For a fixed y E Y,

F(x, y) = [H(x, y) 0 11

57

T T

= sign E atht(y) - (atht(x)# 1
(t=1 t=1

" T T

= [atht(x) - Eatht(y) > 01].t=1 t=1
T

= [atht(x) - b > 0

where b = E atht(y) is constant because y is fixed. So the functions in U, F consist of all
possible thresholds of all linear combinations of T weak hypotheses. Freund and Schapire's
Theorem 8 [31] bounds the VC-dimension of this class in terms of T and the VC-dimension
of the weak hypothesis class X. Applying their result, we have that if W has VC-dimension
d> 2 , then d' is at most 2(d + 1)(T + 1) log 2 (e(T + 1)), where e is the base of the natural
logarithm.

As the final step, repeating the same reasoning for (4.18) keeping x fixed, and putting
it all together, we have that with probability 1 - 6 over the choice of training sample, all
H E C satisfy

le(H) - Eg(H)j < 2 d'(n(2m/d') + 1) + ln(18/6) + 1d'(ln(2n/d') + 1) + ln(18/6)

where d' = 2(d + 1)(T + 1) log2 (e(T + 1)) and d is the VC-dimension of the class of weak
hypotheses. m

58

Chapter 5

Experimental evaluation of
RankBoost

In this chapter, we report experiments with RankBoost on two ranking problems. The first
is a simplified web meta-search task, the goal of which is to build a search strategy for
finding homepages of machine-learning researchers and universities. The second task is a
collaborative-filtering problem of making movie recommendations for a new user based on
the preferences of other users.

In each experiment, we divided the available data into training data and test data, ran
each algorithm on the training data, and evaluated the output hypothesis on the test data.
Details are given below.

5.1 Meta-search

We first present experiments on learning to combine the results of several web searches. This
problem exhibits many facets that require a general approach such as ours. For instance,
approaches that combine similarity scores are not applicable since the similarity scores of
web search engines often have different semantics or are unavailable.

5.1.1 Description of task and data set

In order to test RankBoost on this task, we used the data of Cohen, Schapire and Singer [15].
Their goal was to simulate the problem of building a domain-specific search engine. As test
cases, they picked two fairly narrow classes of queries-retrieving the homepages of machine-
learning researchers (ML), and retrieving the homepages of universities (UNIV). They chose
these test cases partly because the feedback was readily available from the web. They
obtained a list of machine-learning researchers, identified by name and affiliated institution,
together with their homepages, 1 and a similar list for universities, identified by name and

(sometimes) geographical location from Yahoo! We refer to each entry on these lists (i.e., a

'From 'http://www.aic.nrl.navy.mil/-aha/research/machine-learning.html'.

59

name-affiliation pair or a name-location pair) as a base query. The goal is to learn a meta-
search strategy that, given a base query, will generate a ranking of URL's that includes the
correct homepage at or close to the top.

Cohen, Schapire and Singer also constructed a series of special-purpose search templates
for each domain. Each template specifies a query expansion method for converting a base
query into a likely seeming AltaVista query which we call the expanded query. For exam-
ple, one of the templates has the form +"NAME" +machine +learning which means that
AltaVista should search for all the words in the person's name plus the words 'machine' and
'learning'. When applied to the base query 'Joe Researcher from Learning University' this
template expands to the expanded query +"Joe Researcher" +machine +learning.

A total of 16 search templates were used for the ML domain and 22 for the UNIV
domain. 2 Each search template was used to retrieve the top thirty ranked documents. If
none of these lists contained the correct homepage, then the base query was discarded from
the experiment. In the ML domain, there were 210 base queries for which at least one search
template returned the correct homepage; for the UNIV domain, there were 290 such base
queries.

We mapped the meta-search problem into our framework as follows. Formally, the in-
stances now are pairs of the form (q, u) where q is a base query and u is one of the URL's
returned by one of the search templates for this query. Each ranking feature fi is constructed
from a corresponding search template i by assigning the jth URL u on its list (for base query
q) a rank of -j; that is, fi((q, u)) = -j. If u was not ranked for this base query, then we
set fi((q, u)) = 1. We also construct a separate feedback function 41 q for each base query q
that ranks the correct homepage URL u, above all others. That is, 1 q((q, u), (q, u,)) = +1
and 1 q((q, u,), (q, u)) = -1 for all u # u.. All other entries of 4 q are set to zero. All
the feedback functions (Dq were then combined into one feedback function D by summing
as described in Section 4.1: 1 = Zq 4q. Thus our feedback function is bipartite. As dis-
cussed in Section 4.2.3, even though our input feedback is binary, our goal is to output not
a classification but a ranked list that places the homepages at the top of the list.

Given this mapping of the ranking problem into our framework, we can immediately
apply RankBoost. This mapping implies that each weak hypothesis is defined by a search
template i (corresponding to ranking feature fi), and a threshold value 0. Given a base
query q and a URL u, this weak hypothesis outputs 1 or 0 if u is ranked above or below
the threshold 0 on the list of URL's returned by the expanded query associated with search
template i applied to base query q. As usual, the final hypothesis H is a weighted sum of the
weak hypotheses. Thus, given a test base query q, we first form all of the expanded queries
and send these to the search engine to obtain lists of URL's. We then evaluate H as above
on each pair (q, u), where u is a returned URL, to obtain a predicted ranking of all of the
URL's.

For evaluation, we divided the data into training and test sets using four-fold cross-
validation. We created four partitions of the data, each one using 75% of the base queries
for training and 25% for testing. Of course, the learning algorithms had no access to the
test data during training.

2See Cohen, Schapire and Singer [15] for the list of search templates.

60

. 035 0 055WeakLearn.2 WeakLearn.2
WeakLearn.2.cum ---- WeakLearn.2.cum - --

0.03 WeakLearn.3 *---- 0.05 WeakLearn.3 --
WeakLearn. 3 .cum WeakLearn. 3 . cum

0.025 0.04

0

- 0.015 -j0.035

0 .01 -.... . 0 .03 -.......

0.005 - .. 0.025........

0 0.02
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

Rounds of Boosting Rounds of Boosting

Figure 5-1: Performance of the four weak learners WeakLearn.{2,3,2.cum,3.cum} on the ML
dataset. Left: Train error Right: Test error

5.1.2 Experimental parameters and evaluation

Since all search templates had access to the same set of documents, if a URL was not returned
in the top 30 documents by a search template, we interpreted this as ranking the URL below
all of the returned documents. Thus we set the parameter qdef, the default value for weak
hypotheses, to be 0 (see Section 4.3).

Our implementation of RankBoost used a definition of ranking loss modified from the
original given in Section 4.1, Eq. (4.1):

rlOSSD(H) = E D(xo, xi) [H(xi) <; H(xo)]
X0,X1

If the output hypothesis ranked as equal a pair (X0 , x 1) of instances that the feedback ranked
as unequal, we assigned the hypothesis an error of 1/2 instead of 1. This represents the
fact that if we used the hypothesis to produce an ordered list of documents, breaking ties
randomly, then its expected error on (xo, xi) is 1/2, since the probability that x0 is listed
above x1 is equal to the probability that x1 is listed above x0 . The modified definition is

rlOSSD(H) = E D(xo, x 1) [H(xi) < H(xo)] + . E D(xo, x1) [H(xi) = H(xo)] . (5.1)
X0,X1 X0,X1

RankBoost parameters. Since WeakLearn outputs binary weak hypotheses, we can set
the parameter a using either the second or third methods presented in Section 4.2.2. The
second method sets a as the minimum of Z, and the third method sets a to approximately
minimize Z. The third method can be implemented more easily and runs faster. We im-
plemented both methods, called WeakLearn.2 and WeakLearn.3, to determine if the extra
time required by the second method (almost ten times that of the third method on the ML
dataset) was made up for by a reduction in test error rate. We also implemented weak
learners that restricted their hypotheses to have positive cumulative weights in order to test
whether such hypotheses were helpful or harmful in reducing test error (as discussed at the
end of Section 4.3). We called these WeakLearn.2.cum and WeakLearn.3.cum.

To measure the accuracy of a weak learner on a given dataset, after each round of boosting

61

0 035 0 055

Table 5.1: Comparison of the combined hypothesis and individual search templates.

we plotted the train and test error of the combined hypothesis generated thus far. We ran
each weak learner for 1000 rounds of boosting on each of the four partitions of the data and
averaged the results. Figure 5-1 displays the plots of train error (left) and test error (right)
for the first 200 rounds of boosting on the ML dataset. (The slopes of the curves did not
change during the remaining 800 rounds.) The plots for the UNIV dataset were similar.

WeakLearn.2 achieved the lowest train error, followed by WeakLearn.3, and finally Weak-
Learn.2.cum and WeakLearn.3.cum, whose performance was nearly identical. However,
WeakLearn.2.cum and WeakLearn.3.cum produced the lowest test error (again behaving
nearly identically) and resisted overfitting, unlike their counterparts. So we see that restrict-
ing the weak hypotheses to have positive cumulative weights hampers training performance
but improves test performance. Also, when we subject the hypotheses to this restriction,
we see no difference between the second and third methods of setting a. Therefore, in our
experiments we used WeakLearn.cum.3.cum, the third method of setting a that allows only
positive cumulative hypothesis weights.

Evaluation. In order to determine a good number of boosting rounds, we first ran Rank-
Boost on each partition of the data and produced a graph of the average training error. For
the ML data set, the training error did not decrease significantly after 50 rounds of boosting
(see Fig. 5-1 (left)), so we used the final hypothesis built after 50 rounds. For the UNIV
data set, the training error did not decrease significantly after 40 rounds of boosting (graph
omitted), so we used the final hypothesis built after 40 rounds.

To evaluate the performance of the individual search templates in comparison to the
combined hypothesis output by RankBoost, we measured the number of queries for which
the correct document was in the top k ranked documents, for various values of k. We then
compared the performance of the combined hypothesis to that of the best search template
for each value of k. The results for the ML and UNIV domains are shown in Table 5.1.
All columns except the last give the number of base queries for which the correct homepage
received a rank greater than or equal to k. Bold figures give the maximum value over all
of the search templates on the test data. Note that the best search template is determined
based on its performance on the test data, while RankBoost only has access to training data.

62

Top Top Top Top Top Top Avg
ML Domain 1 2 5 10 20 30 Ran]

RankBoost 102 144 173 184 194 202 4.38
Best (Top 1) 117 137 154 167 177 181 6.80
Best (Top 10) 112 147 172 179 185 187 5.33
Best (Top 30) 95 129 159 178 187 191 5.68
University Domain
RankBoost 95 141 197 215 247 263 7.74
Best single query 112 144 198 221 238 247 8.17

For the ML data set, the combined hypothesis closely tracked the performance of the
best expert at every value of k, which is especially interesting since no single template was
the best for all values of k. For the UNIV data set, a single template was the besta for all
values of k, and the combined hypothesis performed almost as well as the best template for
k = 1, 2, .. ., 10 and then outperformed the best template for k = 20, 30. Of course, having
found a single best template, there is no need to use RankBoost.

We also computed (an approximation to) average rank, i.e., the rank of the correct
homepage URL, averaged over all base queries in the test set. For this calculation, we
viewed each search template as assigning a rank of 1 through 30 to its returned URL's, rank
1 being the best. Since the correct URL was sometimes not ranked by a search template,
we artificially assigned a rank of 31 to every unranked document. For each base query,
RankBoost ranked every URL returned by every search template. Thus if the total number
of URL's was larger than 30, RankBoost assigned to some instances ranks greater than 30.
To avoid an unfair comparison to the search templates, we limited the maximum rank of
RankBoost to 31. The last column of Table 5.1 gives average rank.

5.2 Movie recommendations

Our second set of experiments dealt with the movie-recommendation task described in the
introduction, the goal of which is to produce for a given user a list of unseen movies ordered by
predicted preference. Unlike the meta-search task where the output ordering was evaluated
according to relative rank of a single document (the correct homepage), in the movie task
the output ordering is compared to the correct ordering given by the user. Thus, the movie
task tests RankBoost on a more general ranking problem. However, performance measures
for comparing two ranked lists are not as clear cut; we defined four such measures for this
purpose. To evaluate the performance of RankBoost, we compared it to a nearest-neighbor
algorithm and a regression algorithm.

5.2.1 Description of task and data set

For these experiments we used publicly available data4 provided by the Digital Equipment
Corporation which ran its own EachMovie recommendation service for the eighteen months
between March 1996 and September 1997 and collected user preference data. Movie viewers
were able to assign a movie a score from the set R = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, 1.0 being
the best. We used the data of 61,625 viewers entering a total of 2,811,983 numeric ratings
for 1,628 different movies (films and videos).

Most of the mapping of this problem into our framework was described in Section 4.1.
For our experiments, we selected a subset C of the viewers to serve as ranking features: each
viewer in C defined an ordering of the set of movies that he or she viewed. The feedback
function <D was then defined as in Section 4.1 using the movie ratings of a single target
user. We used half of the movies viewed by the target user for the feedback function in

3The best search template for the UNIV domain was "NAME" PLACE.
4From 'http://www.research.digital.com/SRC/eachmovie/'.

63

training and used the other half of the viewed movies for testing as described below. We
then averaged all results over multiple runs with many different target users (details are
given in Section 5.2.5).

5.2.2 Experimental parameters

In the meta-search task we assumed that all search engines had access to all documents
and thus the absence of a document on a search engine's list indicated low preference. This
assumption does not hold in the movie task as it is not clear what a viewer's preference will
be on an unseen movie. Thus we did not set the parameter qdef, allowing the weak learner to
choose it adaptively. As in the meta-search task, we used the modified definition of ranking
loss given in Eq. (5.1). We also used WeakLearn.3.cum because preliminary experiments
revealed that this weak learner achieved a lower test error rate than WeakLearn.3 and also
resisted overfitting. In these experiments, we ran RankBoost for 100 rounds.

5.2.3 Algorithms for comparison

We compared the performance of RankBoost on this data set to two other algorithms, a
regression algorithm and a nearest-neighbor algorithm.

Regression. We used a regression algorithm similar to the ones used by Hill et al. [39].
The algorithm employs the assumption that the scores assigned a movie by a target user Alice
can be described as a linear combination of the scores assigned to that movie by other movie
viewers. Formally, let a be a row vector whose components are the scores Alice assigned
to movies (discarding unranked movies). Let C be a matrix containing the scores of the
other viewers for the subset of movies that Alice has ranked. Since some of the viewers have
not ranked movies that were ranked by Alice, we need to decide on a default rank for these
movies. For each viewer represented by a row in C, we set the score of the viewer's unranked
movies to be the viewer's average score over all movies. We next use linear regression to
find a vector w of minimum length that minimizes ||w C - al . This can be done using
standard numerical techniques (we used the package available in Matlab). Given w we can
now predict Alice's ratings of all the movies.

Nearest neighbor. Given a target user Alice with certain movie preferences, the
nearest-neighbor algorithm (NN) finds a movie viewer Bob whose preferences are most sim-
ilar to Alice's and then uses Bob's preferences to make recommendations for Alice. More
specifically, we find the ranking feature fi (corresponding to one of the other movie viewers)
that gives an ordering most similar to that of the target user as encoded by the feedback
function <b. The measure of similarity we use is the ranking loss of fi with respect to the
same initial distribution D that was constructed by RankBoost. Thus, in some sense, NN
can be viewed as a single weak hypothesis output after one round of RankBoost (although
no threshold of fi is performed).

As with regression, a problem with NN is that the neighbor it selects may not rank all the
movies ranked by the target user. To fix this, we modified the algorithm to associate with
each feature fi a default score ge E R which fi assigns to unranked movies. When searching
for the best feature, NN chooses qef by calculating and then minimizing the ranking loss (on

64

the training set) for each possible value of qdef. If it is the case that this viewer ranks all of
the (training) movies seen by the target user, then NN sets qdef to the average score over all
movies that it ranked (including those not ranked by the target user).

5.2.4 Performance measures

In order to evaluate and compare performance, we used four error measures, disagreement,
predicted-rank-of-top, coverage, and average precision. Disagreement compares the entire
predicted order to the entire correct order, whereas the other three measures are concerned
only with the predicted rank of those instances that should have received the top rank.

We assume that each of the algorithms described in the previous section produces a
real-valued function H that orders movies in the usual way: x1 ranked higher than x0 if
H(xi) > H(xo). The correct ordering of test movies, c, is also represented as a real-valued
function.

For each of the following measures, we first give the definition when H is a total order,
meaning it assigns a unique score to each movie. When H is a partial order, as is the case
for some of the algorithms, we assume that ties are broken randomly when producing a list
of movies ordered by H. In this situation we calculate the expectation of the error measure
over the random choices to break the ties.

Disagreement. Disagreement is the fraction of distinct pairs of movies (in the test set)
that H misorders with respect to c. If N is the number of distinct pairs of movies ordered
by c, then the disagreement d is

1
disagreement = T , cH(xo) > H(x1)]

NXo,x1: c(X0)<C(X1)

This is equivalent to the ranking loss of H (Eq. (4.1)) where c is used to construct the
feedback function. If H is a partial order, then its expected disagreement with respect to c
is

E [disagreement] = N ([H(xo) > H(x1)] + T [H(xo) = H(xi)])
N20,X1: c(zo)<c(Xi)

This is equivalent to Eq. (5.1) where c is used to construct the feedback function.

Precision/recall measures Disagreement is one way of comparing two orderings, and
it is the function that both RankBoost and NN attempt to minimize. We should consider
evaluating the rankings of these algorithms using other measures as well, for a number of
reasons. One reason is to test whether RankBoost's minimization of ranking loss produces
rankings that have high quality with respect to other measures. This can be evaluated also
by looking at the comparative performance on another measure of RankBoost and regression,
since the latter doesn't directly minimize disagreement. Another reason is motivated by the
application: people looking for movie recommendations will likely be more interested in the

65

top of the predicted ranking than the bottom. That is, they will want to know what movies
to go and see, not what movies to avoid at all costs.

For these reasons we considered three other error measures, which view the movie recom-
mendation task as having bipartite feedback. According to these measures, the goal of the
movie task is find movies that Alice will love. Thus any set of movies that she has seen is
partitioned in two: those which she assigned her highest score and those which she assigned
a lesser score. This is an example of a ranked-retrieval task in the field of information re-
trieval, where only the movies that Alice assigns her highest score are considered relevant.
As discussed in Section 4.2.3, the goal here is not to classify but to rank.

We refer to the movies to which Alice assigns her highest score as good movies. We based
our error measures on the precision measures used for that task. The precision of the kth
good movie appearing in a ranked list is defined as k divided by the number of movies on
the list up to and including this movie. For example, if all the good movies appear one after
another at the top of a list, then the precision of every good movie is 1.

More formally, define rank(m), the rank of movie m appearing in the list ordered by
H, as the position of m in the list, e.g. first=1, second=2, etc. Suppose there are K good
movies (according to Alice), and denote their sequence on H's list as {tk}K 1 . In other words,
H(ti) > ... H(tK). Then the precision of the first good movie is 1/rank(ti), and, more
generally, the precision of the kth good movie is k/rank(tk). Again, if all K good movies
appear one after another at the top of H's list, meaning rank(tk) = k for every k, then the
precision of every good movie is 1.

Average Precision (AP). Average precision, commonly used in the information re-
trieval community, measures how good H is at putting good movies high on its list. It is
defined as

AP= 1 k
K 1 rank(tk)

If H is a partial order, then tk is a random variable, and therefore so is rank(tk), and we
calculate expected average precision. Let N be the total number of movies ranked by H.
Then,

1 K N-K+k
E [AP] = K k Z Pr [rank(tk) i-- i

k=1 i=k

The formula for Pr [rank(tk) = i] is a ratio with binomial coefficients in the numerator and
denominator, and we defer its statement and derivation to Appendix 5.2.7.

Predicted-rank-of-top (PROT). PROT is the precision of the first good movie on
H's list and measures how good H is at ranking one good movie high on its list. It is

1
PROT = .

rank(ti)

If H is a partial order, its expected PROT is

N-K+1

E [PROT] = Pr [rank(ti) = i] -.
i=1

66

Coverage. Coverage is the precision of the last good movie on H's list (also known as
precision at recall 1), and it measures how good H is at ranking its lowest good movie. It is

1
coverage = rank(tK)

If H is a partial order, its expected coverage is

N K
E [coverage] = E Pr [rank(tK) = i-

i=K

5.2.5 Experimental results

We now describe our experimental results. We ran a series of three tests, examining the
performance of the algorithms as we varied the number of features, the density of the features,
meaning the number of movies ranked by each movie viewer, and the density of the feedback,
meaning the number of movies ranked by each target user.

We first experimented with the number of features used for ranking. We selected two
disjoint random sets T and T' of 2000 viewers each. Subsets of the viewers in T were used
as feature sets, and each of the users in T' was used as feedback. Specifically, we further
broke T down into six subsets of sizes 100, 200, 500, 750, 1000, and 2000. Each subset served
as a feature set for training on half of a target user's movies and testing on the other half,
for each user in T'. For each algorithm, we calculated the four measures described above,
averaged over the 2000 target users. We ran the algorithms on five disjoint random splits
of the data into feature and feedback sets, and we averaged the results, which are shown in
Figure 5-2.

RankBoost was the clear winner for all four performance measures, achieving the lowest
disagreement and the highest AP, PROT, and coverage. Also, the slopes of the curves
indicated that RankBoost was best able to improve its performance as the number of features
increased.

NN did well on disagreement, AP, and coverage, but on PROT it performed worse than
random guessing. This suggests that, although NN places good movies relatively high in
its list (because of its good AP), it does not place a single good movie near the top of its
list (because of its poor PROT). An investigation of the data revealed that almost always
the nearest neighbor did not view all of the movies in the test feedback and therefore NN
assigned some movies a default score (as described in Section 5.2.3). Sometimes the default
score was high and placed the unseen movies at the top of NN's list, which can drive down
the PROT if most of the unseen movies are not good movies (according to the feedback).

RankBoost and NN directly tried to minimize disagreement whereas regression did not,
and its disagreement was little better than that of random guessing. Regression did perform
better than random guessing on PROT and coverage, but on average precision it was worse.
This suggests that most of the good movies appear low on regression's list even though the
first good movie appears near the top. Also, judging by the slopes of its performance curves,
regression did not make much use of the additional information provided by a larger number
of features. We discuss possible reasons for this poor performance at the end of this section.

67

ESAP

. RankBoost
- NN

-, Regression

.................

102 10
3

Disagreements
0.4

0.39

0.38

0.37

0.36

0.35

0.34

10 3102

0.6

0.55

0.5

0.45

0.4

0.35

PROT

RankBoost
-- NN

Regression

102 10 3

Coverage

102 103

Figure 5-2: Performance of algorithms with respect to feature sets of sizes 100, 200, 500,
750, 1000, 2000. For PROT and ESAP, the dashed line shows the (expected) performance
of a random permutation of the movies. For disagreement, the expected performance of a
random ordering was 0.5. For coverage, the expected performance was 0.32.
For disagreement, the expected performance of a random ordering was 0.5.

In our next experiment we explored the effect of the density of the features, the number
number of movies ranked by each viewer. We partitioned the set of features into bins
according to their density. The bins were 10-20, 21-40, 41-60, 61-100, 101-1455, where 1455
was the maximum number of movies ranked by a single viewer in the data set. We selected
a random set of 1000 features (viewers) from each bin to be evaluated on a disjoint random
set of 1000 feedback target users (of varying densities). We ran the algorithms on six such
random splits, calculated the averages of the four error measures on each split, and then
averaged them together. The results are shown in Figure 5-3. The x-coordinate of each
point is the average density of the features in a single bin; for example, 80 is the average
density of features whose density is in the range 61-100.

The relative performance of the algorithms was the same as in Figure 5-2. RankBoost
was the winner again, and it was best able to improve its performance when presented with
the additional information provided by the denser features. As feature density increased,

68

0.5-

0.48-

0.46

0.44-

0.42

0.4

0.48

0.46

0.44

0.42

0.4 [

RankBoost
NN
Regression

* -

0.381

0.36

0RankBoost
-+- NN
+ Regression

op ---- ~

0.52
- 1 .0.65

0.5-- RankBoost 0.6- RankBoost
0. e-NN -e-NN

0.48 + Regression 0.55 . Regression

0.46- -0.5

0.44- 0.45 - - -. -. -

0.42 40.4

0.4 0.35 -.0 0- .-d *

0 50 100 150 0 50 100 150

Disagreements Coverage

0.48 ~ ~ - 0.42-

0.46- -- RankBoost 0.4 RankBoost
NN Nk

0.44 - Regression -- NN

0.42 0.38 Regression

0.4 -
0.36 /

0.38

0.36 0.34
0.34

0 50 100 150 0 50 100 150

Figure 5-3: Performance of the algorithms on different feature densities. For PROT and
ESAP, the dashed line shows the (expected) performance of a random permutation of the
movies. For disagreement, the expected performance of a random ordering was 0.5. For
coverage, the expected performance was 0.32.

NN's performance on AP, disagreement, and coverage improved more significantly than when
simply the number of features increased (Figure 5-2). However, NN continued to perform
worse than random guessing on PROT, and its performance degraded as feature density
increased. As for regression, it continued to perform similarly to or worse than random
guessing, and its performance was largely unaffected as feature density increased.

The previous two experiments varied the amount of information provided by the features;
in the next experiment, we varied the amount of information provided by the feedback. We
varied the feedback density, the number of movies ranked by the target user. We partitioned
the users into bins according to density in the same way as in the previous experiment. We
ran the algorithms on 1000 target users of each density, using half of the movies ranked by
each user for training and the other half for testing. We used a fixed randomly chosen set of
1000 features. We repeated this experiment on six random splits of the data and averaged
the results, which appear in Figure 5-4.

The most noticeable effect of increasing the feedback density is that it degrades the perfor-

69

PROTESAP

PROT

0 5

"C11 l P 0.6 -
NN -e
Regression

- Random 0.5

0.3

- -0.2

0 100 150 0 50 1

Disagreements Coverage

0.5- 0.55
.4- -e

e- RankBoost 0.5 -
0.45- -- NN 0.45-

Regression
s Random 0.4

0.4 0.35

0.3

0.35 0.25

0.2

00 150

0 50 100 150 0 50 100 150

Figure 5-4: Performance of algorithms, including randomly ordering the movies, on different
feedback densities.

mance of all three algorithms on AP and coverage and the performance of NN and regression
on PROT (RankBoost is able to improve PROT). Other than that, the comparative per-
formance of the algorithms to one another was the same as in the previous experiments,
with two exceptions. First, the AP of the random ordering was higher than that of all of
the algorithms when the target user ranked 10 to 20 movies. This advantage of the random
ordering disappeared when the target user ranked more than 20 movies, which suggests that
the algorithms need to train on a ranking of at least 10 movies in order to beat random
guessing. The other difference in behavior was that regression finally performed better than
random guessing on AP.

At first, it appears counterintuitive that the algorithms should perform worse as the
number of movies ranked by the target user increases. One would expect that the algorithms
would do better with more training feedback. Indeed this is the case for the disagreement
measure (with the exception of regression, as in the previous experiments). This might
suggest a weakness of the precision-based measures: that they are sensitive to the number
of movies in the feedback. On the other hand, randomly ordering the movies also degrades
as the feedback density increases, which suggests that the ranking problem is intrinsically

70

RankBoost
e --- NN

+ Regression
- Random

3-

ESAP

0.6

0.8-v a - -- coverage-

0.5-

0.6 - -0.45 -

0.4

0.35

0.2 - 0.3
0.25

0 10.25
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 20 40 60 80 100 120 140

Fraction of Good Movies Number of Movies Ranked

Figure 5-5: Left: The performance of random guessing when the fraction of good movies is
varied (the number of movies is 60). Right: The performance of random guessing when the
number of movies ranked is varied (the fraction of good movies is 4).

more difficult. This would certainly be the case if the fraction of good movies in the feedback
decreases as feedback density increases. We discovered that both effects occur.

We first calculated the fraction of good movies in the feedback for each feedback density.
For densities of 10-20, 21-40, 41-60, 61-100, and over 100, the fractions were, respectively,
0.33, 0.26, 0.22, 0.20, 0.18. As this fraction decreases, the ranking problem becomes more
difficult. For example, the left plot of Figure 5-5 shows the performance of random guessing,
with respect to the three measures, as the fraction of good movies varies as }, ., 1,) (the

number of movies ranked was 60).
However, consider the right plot of Figure 5-5, which shows the performance of random

guessing when the fraction of good movies is constant (0.25) and the number of movies ranked
is varied. Here to the measured performance degrades, which is an effect of the measures, not
the difficulty of the problem. That is, this is the effect of taking a training set of data and

making a (fixed) number of copies of each (movie,score) pair, which provides no additional
information or challenge to the algorithms described in Section 5.2.3. This sensitivity to the
number of movies ranked is a weakness of these three precision-based measures, since ideally
we would like them to remain constant for problems of the same difficulty.

5.2.6 Discussion

Our experiments show that RankBoost clearly performed better than regression and nearest
neighbor on the movie recommendation task.

RankBoost's approach of ordering based on relative comparisons performed much better

than regression which treats the movie scores as absolute numerical values. One reason

for regression's poor performance may be overfitting: its solution is subject only to a mild

restriction (shortest length, as described in Section 5.2.3). Even so, it is not clear whether this

improvement of RankBoost over regression is due to using relative preferences or to boosting

or both. To try to separate these effects, we could test regression on relative preferences by
normalizing the scores of each movie viewer so that the distribution of scores used by that
viewer has the same mean and variance as the distribution of scores of every other viewer.

71

PROT

RankBoost also performed better than the nearest-neighbor algorithm presented here.
Based on these experiments we could design a better nearest-neighbor algorithm, choosing
default ranks in a better way and, when choosing a nearest neighbor, perhaps taking into
account the number of movies ranked by the neighbor. It would also be worthwhile to
compare RankBoost to an algorithm which finds k nearest neighbors to a target user and
averages their predictions. Such an experiment would differentiate between a straightforward
search for and combination of similar users and boosting's method of search and combination.
Averaging the prediction of the k nearest neighbors introduces a dependence on absolute
scores, however, so this proposed experiment would further test our hypothesis that relative
preferences are more informative.

5.2.7 Performance measures for the movie task

For the movie recommendation task, we provided various measures of the performance of a
predicted ordering H of movies output by a ranking algorithm (Section 5.2.4). We assumed
that if there were ties between movies, meaning that H is a partial order, the ties would
be broken randomly when listing one item over an other. To analyze this performance, we
calculated the expectation over all ways to break ties, that is, over all total orders that are
consistent with H. This expectation involved the quantity Pr [rank(tk) = i], the probability
that the kth good movie occurs at position i in H's list, taken over all total orders consistent
with H. Here we calculate this probability.

Let R be the number of movies that definitely appear before tk on H's list,

R=|{Im : H(m) > H(tkeg .

Let r be the set of all good movies definitely appearing before tk,

r = {t E {tl,..., tk_1} : H(t) > H(tk)} .

Let Q be the number of movies tied with t k,

Q =|{m : H(m) = H(tk)}.

Let q be the number of good movies tied with tk,

q = |{t E {t 1 , . .. , tK} : H(t) = H(tk)}.

Finally, let j = r - k, meaning tk is the jth good movie among the set of tied good movies.
Then,

i-R-1) Q-i+R)

Pr [rank(tk) = i] = (~1 (q~j (5.2)
()

We prove (5.2) as follows. Define the random variable Y to be the rank of tk within the
set of tied movies. For example, if tk is the first movie listed then Y = 1. Then

Pr [rank(tk) = i] = Pr [R + Y = i] = Pr [Y =] , (5.3)

72

where f = i - R. So now we need to calculate the probability that, in a group of equally
scored movies, the jth good movie appears at position f.

This process can be modeled as sampling without replacement Q times from an urn with
Q balls, q colored green and Q - q colored red. The event Y = f means that the jth green
ball was drawn on the fth draw. Looking at the entire sequence of draws, this means that
j - 1 green balls came up during draws 1, .. ., f - 1, the jth green ball was drawn on draw
f, and q - j green balls came up during draws f +1,..., Q. There are C-) ways to arrange

the drawings of the first j - 1 green balls and (q-) ways to arrange the drawings of the

remaining q - j green balls. The total number of all possible sequences of draws is (Q). Thus

Pr [Yj = f] = . (5.4)
(u)

Substituting f = i - ft from (5.3) into this equation gives (5.2), the desired result. *

73

74

Chapter 6

Conclusion

6.1 Summary

The problem of combining preferences arises in several applications, including combining the
results of different search engines and collaborative-filtering tasks such as making movie rec-
ommendations. One important property of these tasks is that the most relevant information
to be combined represents relative preferences rather than absolute ratings. We have given
both a formal framework and an efficient algorithm for the problem of combining preferences,
which our experiments indicate works well in practice.

Comparison to Cohen, Schapire, Singer. Our model of the ranking problem is
similar to the one proposed by Cohen, Schapire, and Singer [15]. They consider ranking
features of the form fi : X -+ S U {I}, where S is a totally ordered set and I V S is
incomparable to all elements in S and indicates that no ranking is given. They combine the
ranking features using a two step approach. In the first step, they use each fi to construct
a function Rf: X x X -+ [0, 1] which indicates fi's preference of one instance over another.
Given the set {Rf } as input, a learning algorithm in their framework must output a final
hypothesis PREF: X x X -* [0,1] which is a weighted combination j wiR, 7wi E [0,1].
In the second step, they are faced with the problem of constructing a total order p that has
minimum disagreement with PREF (disagreement is similar to ranking loss as defined in
Eq. (4.1)). They prove that this problem, which we call MIN-DISAGREE, is NP-complete,
and they give a 2-approximation algorithm for it.

In our framework, the ranking features are of the form fi : X -+ R U {I}. This
allows us to combine the output of the features but does not change the complexity of
MIN-DISAGREE. The real difference between our approach and theirs is that, rather than
attempting to minimize disagreement directly, we minimize a function that approximates
disagreement, namely the training error bound proven in Theorem 1 of Section 4.2. This
function can be minimized efficiently as we have shown by providing fast algorithms for doing
so.

Efficiency of algorithms. Our learning system consists of two algorithms: the boosting
algorithm RankBoost and the weak learner. The input to the system includes an instance
space X, n ranking features, and a feedback function of size |jD| that ranks a subset of the
instances X. C X. Given this input, RankBoost generally runs in O(<I4) time, and a naive

75

implementation of the weak learner we present runs in O(n|<bTXP) time. We have shown
two improvements in efficiency, as summarized in Theorem 2 of Section 4.3. If we use binary
weak hypotheses and we search for the best weak hypothesis using the third method in
Section 4.2.2, then we can implement the weak learner in time O(njXJ + |<b). If we use a
binary feedback function, then we can implement RankBoost in time linear in the number of
instances in the feedback. If in addition we use binary weak hypotheses, we can implement
the weak learner in O(nIXj 1) time.

These two restriction are both natural and useful. Binary hypotheses are quite simple
and this makes them easy to design, analyze, and compute efficiently. Although a single
such hypothesis may have only weak predictive power, many of them can be combined via
boosting into a highly accurate prediction rule, as is indicated by our experiments. As for
restricting the feedback function to be binary, this often does not reduce the applicabil-
ity of the algorithm, since many applications come with binary feedback, such as those in
information retrieval.

Experimental results. In our experiments we used the weak learner that outputs
a thresholded ranking feature as weak hypothesis. Although these prediction rules have
limited power, RankBoost was nevertheless able to combine them into a highly accurate
prediction rule. In the meta-search task, RankBoost performed just as well as the best search
strategy for each error measure. In the movie-recommendation task, RankBoost consistently
outperformed a standard regression algorithm and a nearest-neighbor algorithm.

Our experiments also indicate that RankBoost is able to do well on data sets of varying
sizes. The meta-search task had a small number of ranking features (16 to 22), a large
instance space (10,000 URL's) and large feedback (10,000 URL's). The movie task had a
large number of ranking features (100 to 2000), a smaller instance space (1,628 movies), and
a range of feedback sizes (10-1455).

6.2 Future work

The are a variety of directions for future work. We contend that relative preferences can be
more important than absolute scores. The results of our experiments on the movie recom-
mendation task support this: RankBoost significantly outperformed nearest neighbor and
regression. to further differentiate between scores and ranks, we proposed two experiments
(Section 5.2.6): testing regression on relative preferences by normalizing the scores of each
movie viewer, and testing the averaged combination of k nearest neighbors.

As we have pointed out before, many ranking problems have bipartite feedback and
therefore can also be viewed as binary classification problems. For such problems it would be
interesting to compare RankBoost to AdaBoost combined with a weak leaner for minimizing
classification error. AdaBoost outputs a real-valued score for each instance which is then
thresholded to produce a classification (see Section 3.2.4). We could compare RankBoost's
ordering to AdaBoost's ordering the instances by classification weight to see if minimizing
ranking loss is superior to minimizing classification error. There is some anecdotal evidence
that this is the case [591, but a thorough empirical evaluation is needed.

As for the RankBoost algorithm itself, the first method for setting at is the most general
and requires numerical search. Schapire and Singer [65] suggest using general iterative meth-

76

ods such as Newton-Raphson. Because such methods often have no proof of convergence or
can be numerically unstable, we would like to find a special purpose iterative method with
a proof of convergence. Of course, to be practical, the method would also need to converge
quickly.

Perhaps the most important practical research direction is to apply RankBoost to in-
formation retrieval (IR) problems, including text, speech, and image retrieval. These IR
problems are important today due to the vast amount of data available to people via the
WWW and large scale databases, and they are receiving attention from a variety of sci-
entific communities. We would like to test RankBoost's alternative approach of combining
preferences by minimize misorderings to see how its performance compares to traditional
methods.

In IR experiments where the goal is to order documents by relevance to a query, a
ranking feature might be a word or phrase. The feature assigns a document a score which
is a function of the document length and the number of times the word or phrase appeared
in the document. In this setting the numerical ratings given by the all the features have the
same range and meaning. Thus it makes sense to consider combining the features using their
actual numeric scores. If we conduct experiments comparing a weak learner that uses the
features directly as real-valued functions to the weak learner presented here which thresholds
the features, our results can tell us how RankBoost performs with absolute versus relative
ratings.

77

78

Bibliography

[1] AltaVista: The most powerful and useful guide to the Net.

http://www.altavista.com/.

[2] Dogpile. http: //www . dogpile . com/.

[3] MetaCrawler. http://www.metacrawler. com/.

[4] Movie Critic. http://www.rmoviecritic. com/.

[5] MovieFinder. http://www.moviefinder. com/.

[6] Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. Automatic combination
of multiple ranked retrieval systems. In Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, 1994.

[7] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, to appear.

[8] Eric B. Baum and David Haussler. What size net gives valid generalization? Neural
Computation, 1(1):151-160, 1989.

[9] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth Annual ACM Workshop on
Computational Learning Theory, pages 144-152, 1992.

[10] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

[11] Leo Breiman. Arcing the edge. Technical Report 486, Statistics Department, University
of California at Berkeley, 1997.

[12] Leo Breiman. Arcing classifiers. Annals of Statistics, 26(3):801-849, 1998.

[13] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classifi-
cation and Regression Trees. Wadsworth & Brooks, 1984.

[14] Rich Caruana, Shumeet Baluja, and Tom Mitchell. Using the future to "sort out" the
present: Rankprop and multitask learning for medical risk evaluation. In Advances in
Neural Information Processing Systems 8, pages 959-965, 1996.

79

[15] William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order things.
Journal of Artificial Intelligence Research, 10:243-270, 1999.

[16] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273-297, September 1995.

[17] Luc Devroye, Lazl6 Gy6rfi, and Gabor Lugosi. A Probabilistic Theory of Pattern Recog-
nition. Springer, 1996.

[18] Thomas G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Unpublished
manuscript, 1998.

[19] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research, 2:263-286,
January 1995.

[20] Harris Drucker and Corinna Cortes. Boosting decision trees. In Advances in Neural
Information Processing Systems 8, pages 479-485, 1996.

[21] Harris Drucker, Corinna Cortes, L. D. Jackel, Yann LeCun, and Vladimir Vapnik. Boost-
ing and other ensemble methods. Neural Computation, 6(6):1289-1301, 1994.

[22] Harris Drucker, Robert Schapire, and Patrice Simard. Boosting performance in neu-
ral networks. International Journal of Pattern Recognition and Artificial Intelligence,
7(4):705-719, 1993.

[23] Richard 0. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley,
1973.

[24] 0. Etzioni, S. Hanks, T. Jiang, R. M. Karp, 0. Madani, and 0. Waarts. Efficient
information gathering on the internet. In 37th Annual Symposium on Foundations of
Computer Science, 1996.

[25] Yoav Freund. Data Filtering and Distribution Modeling Algorithms for Machine Learn-
ing. PhD thesis, University of California at Santa Cruz, 1993. Retrievable from:
ftp.cse.ucsc.edu/pub/tr/ucsc-crl-93-37.ps.Z.

[26] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Com-
putation, 121(2):256-285, 1995.

[27] Yoav Freund. An adaptive version of the boost by majority algorithm. In Proceedings
of the Twelfth Annual Conference on Computational Learning Theory, pages 102-113,
1999.

[28] Yoav Freund and Robert Schapire. Discussion of the paper "Arcing Classifiers" by leo
breiman. Annals of Statistics, 26(3):824-832, 1998.

80

[29] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In Machine Learning: Proceedings of the Thirteenth International Conference, pages
148-156, 1996.

[30] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. In
Proceedings of the Ninth Annual Conference on Computational Learning Theory, pages
325-332, 1996.

[31] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119-139, August 1997.

[32] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, (to appear).

[33] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting. Technical Report, 1998.

[34] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

[35] Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the margin
of learned ensembles. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, 1998.

[36] Venkatesan Guruswami and Amit Sahai. Multiclass learning, boosting, and error-
correcting codes. In Proceedings of the Twelfth Annual Conference on Computational
Learning Theory, pages 145-155, 1999.

[37] L. Guttman. What is not what in statistics. The Statistician, 26:81-107, 1978.

[38] David Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 100(1):78-150, 1992.

[39] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and
evaluating choices in a virtual community of use. In Human Factors in Computing
Systems CHI'95 Conference Proceedings, pages 194-201, 1995.

[40] W. Iba and P. Langley. Polynomial learnability of probabilistic concepts with respect
to the Kullback-Liebler divergence. In Machine Learning: Proceedings of the Ninth
International Conference, pages 233-240, 1992.

[41] Jeffrey C. Jackson and Mark W. Craven. Learning sparse perceptrons. In Advances in
Neural Information Processing Systems 8, pages 654-660, 1996.

[42] P.B. Kantor. Decision level data fusion for routing of documents in the TREC3 context:
a best case analysis of worst case results. In Proceedings of the third text retrieval
conference (TREC-3), 1994.

81

[43] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. Journal of the Association for Computing Machinery,
41(1):67-95, January 1994.

[44] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, 1994.

[45] Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for zero-one loss
functions. In Machine Learning: Proceedings of the Thirteenth International Conference,
pages 275-283, 1996.

[46] Eun Bae Kong and Thomas G. Dietterich. Error-correcting output coding corrects
bias and variance. In Proceedings of the Twelfth International Conference on Machine
Learning, pages 313-321, 1995.

[47] Nick Littlestone. Learning when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285-318, 1988.

[48] Nick Littlestone and Manfred Warmuth. The weighted majority algorithm. In 30th
Annual Symposium on Foundations of Computer Science, pages 256-261, October 1989.

[49] Richard Maclin and David Opitz. An empirical evaluation of bagging and boosting.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pages
546-551, 1997.

[50] Dragos D. Margineantu and Thomas G. Dietterich. Pruning adaptive boosting. In
Machine Learning: Proceedings of the Fourteenth International Conference, pages 211-
218, 1997.

[51] Llew Mason, Peter Bartlett, and Jonathan Baxter. Direct optimization of margins
improves generalization in combined classifiers. Technical report, Deparment of Systems
Engineering, Australian National University, 1998.

[52] C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[53] J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 725-730, 1996.

[54] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[55] Lawrence Rabiner and Bing-Hwang Juang. Fundamentals of Speech Recognition. Pren-
tice Hall, 1993.

[56] Paul Resnick, Neophytos Iacovou, Mitesh Sushak, Peter Bergstrom, and John Riedl.
Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings
of Computer Supported Cooperative Work, 1995.

82

[57] Gerard Salton. Automatic text processing: the transformation, analysis and retrieval of
information by computer. Addison-Wesley, 1989.

[58] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[59] Robert E. Schapire. Personal communication.

[60] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227,
1990.

[61] Robert E. Schapire. The Design and Analysis of Efficient Learning Algorithms. MIT
Press, 1992.

[62] Robert E. Schapire. Using output codes to boost multiclass learning problems. In
Machine Learning: Proceedings of the Fourteenth International Conference, pages 313-
321, 1997.

[63] Robert E. Schapire. Theoretical views of boosting. In Computational Learning Theory:
Fourth European Conference, EuroCOLT '99, pages 1-10, 1999.

[64] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: A new explanation for the effectiveness of voting methods. Annals of Statistics,
26(5):1651-1686, 1998.

[65] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-
rated predictions. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, pages 80-91, 1998.

[66] Holger Schwenk and Yoshua Bengio. Training methods for adaptive boosting of neural
networks. In Advances in Neural Information Processing Systems 10, pages 647-653,
1998.

[67] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms for
automating "word of mouth". In Human Factors in Computing Systems CHI'95 Con-
ference Proceedings, 1995.

[68] Robert Tibshirani. Bias, variance and prediction error for classification rules. Technical
report, University of Toronto, November 1996.

[69] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-
1142, November 1984.

[70] L. G. Valiant. Learning is computational (Knuth Prize Lecture). In 38th Annual Sym-
posium on Foundations of Computer Science, October 1997.

[71] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag,
1982.

83

[72] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[73] V. G. Vovk. A game of prediction with expert advice. Journal of Computer and System
Sciences, 56(2):153-173, April 1998.

QW 3 C84

