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Abstract

A reliable, automatic freeway incident detection system is an important component of an effec-

tive incident management system. A traffic surveillance system equipped with loop detectors and

speed traps can detect an incident by analyzing traffic measurements. Incident detection algo-

rithms(IDAs) are the tools used to analyze these measurements. This work studies the limitations of

current IDA evaluation methods and introduces some new approaches to incident detection. Case

studies on 1-93 North and 1-90 West highlight the limitations of existing evaluation approaches.

The algorithms perform optimally in a small subset of scenarios. The results of the case study

indicate that it is imperative to evaluate IDAs over a broad range of scenarios to fully understand

their applicability and transferability. The results also show that it may be advantageous to com-

bine algorithms which have complementary characteristics under different scenarios to optimize

overall performance. The feasibility of this approach has been demonstrated by combining a sim-

ple algorithm based on observing speed drops at a sensor with the McMaster algorithm.

A new approach to incident detection based on discrete choice models has been introduced and

evaluated. This approach uses logit models based on traffic flow variables to identify congestion

caused by incident. The performance of these algorithms has been studied over different scenarios.

Using already existing methods, the logit models can be estimated with both simulation and real

data to make the parameters both robust (simulation data from different scenarios) and easily trans-

ferable to the field (real data). A case study based on real incident data from 1-880 near Hayward,

California illustrates the advantage of this approach. A choice model based framework to combine

different algorithms has also been presented. This framework uses the decisions of different algo-

rithms to identify incidents. A model based on this framework has been estimated and evaluated

over a set of scenarios.
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Chapter 1

Introduction

An incident is any unexpected event, like an accident or a breakdown that causes capacity reduc-

tion that affects traffic flow. Depending on their severity, incidents can disrupt traffic flow causing

congestion and delays. As a freeway system approaches capacity, it becomes more sensitive to

delays caused by non-recurring incidents. Cost estimates of such delays have been predicted to be

35 billion/year by the year 2005[28]. The FHWA estimates 61% of the total delays on freeways to

be caused by incidents[25].

Freeway Traffic Management Systems(FTMS) use incident detection and effective incident man-

agement practices to reduce delays due to incidents. Automatic incident detection is an important

component of an FTMS. Incident detection algorithms(IDAs) analyze the data from the network

to identify incident. The performance of Incident Detection Algorithms is typically evaluated with

three main Measures of Effectiveness (MOEs), namely Detection Rate (DTR-fraction of all inci-

dents that the algorithm detects), the False Alarms (FAS), the False Alarm Rate (FAR) and the

Time taken to Detect(TTD) the incident. FAR is typically defined as the percentage of checks

made by the algorithm that result in incident declarations. The IDAs use measurement of traffic

variables from the system (using different types of sensors) to detect incidents.

Using the general Neyman-Person formulation for decision theory[38], a false alarm can be con-

sidered as declaration of incident when the null hypothesis (Ho) of no incident is true. Thus, a false

12



alarm can be considered as a type I error. Similarly, an undetected incident can be considered as

declaring no incident when the hypothesis H, (incident) is true. Therefore, a missed incident would

be a type II error. The trade-off between the different MOEs is intuitive. For example, An increase

in the detection rate (decrease in type II error) can generally be associated with increase in the FAR

(increase in type I error) and decrease in TTD. A decrease in FAR (decrease in type I error) implies

a decrease in DTR (increase in type II error) and an increase in TTD. Therefore, the problem of

incident detection typically has been the determination of the different algorithmic thresholds so

that the type-I and type-II errors are balanced.

1.1 Research Motivation

Different factors affect the performance of incident detection algorithms. They can be classified

into two main groups - system characteristics and algorithmic parameters & thresholds. The sys-

tem characteristics include network features like the flow rate(high, medium or low), road geom-

etry(entry or exit ramps, curvature, add or drop lanes) and properties of the sensor system such as

type of sensor(loop detector, speed traps, roadside to vehicle communication-RVC sensor etc.), the

sensor data averaging period and the spacing of the sensors. Algorithmic parameters are thresh-

olds used by different algorithms, persistency checks to confirm incidents and persistency checks

used to clear incidents. These factors influence the trade-offs between the MOEs in different ways.

A detailed analysis of the trade-off between the different MOEs will be presented in subsequent

sections.

The robustness of an incident detection algorithm can be defined as consistent performance un-

der different scenarios. Although there have been a number of studies applying different theories

and techniques to incident detection, there have been few studies directed towards evaluating the

robustness of the algorithms. Although a new algorithm may have excellent performance under

the controlled conditions used in the study, the performance is much different when it is actually

applied in the field. Therefore, any new algorithm must be tested over a wide range of scenarios to

identify not only the ideal operating conditions but also the limitations.

13



1.2 Literature Review

Incident detection algorithms can be classified into two main types - Model based algorithms and

Data processing algorithms.

Model based algorithms use models to represent freeway traffic states using sensor data. The most

basic model based incident detection algorithms are the California algorithms([18],[17]). These al-

gorithms compare measurements of traffic variables and spatial and temporal differences in traffic

variables against calibrated thresholds. The extensions to the basic California algorithms incor-

porate compression wave testing and other features to identify duration and severity of incidents.

The All Purpose Incident Detection(APID) algorithm[34] uses the basic California algorithm as

one of its subroutines. The HIOCC algorithm proposed by Collins et al.[22] looks for persistent

high occupancy measurements by loop detectors. This algorithm basically identifies congestion

and is ineffective in identifying the cause of congestion. The Multiple model method proposed

by Willsky et al.[3] uses explicit models to predict different traffic states - incident, compres-

sion waves, recurrent congestion etc. The traffic state at any detector station at any instant is a

vector containing the speed and occupancy as its elements. The model chooses the component

model that has the minimum error of prediction to produce the overall result. The McMaster

algorithm(Forbes[20],Persaud et al.[7],Hall et al.[8]) based on Catastrophe theory, proceeds in two

steps. In the first step, congestion is identified. In the second step incident congestion is distin-

guished from recurrent congestion.

Data processing algorithms use statistical techniques to identify incidents. Exponential algorithms

developed by Cook and Cleveland[2] use a forecasting technique called exponential smoothing to

forecast the values of traffic variables. The forecasted value is compared against the measured

value to detect incidents. Lin and Daganzo[45] present a simple scheme based on comparing

cumulative occupancy measurements at two adjoining stations to detect incidents. The Standard

Normal Deviate(SND) algorithm proposed by Dudek et al.[ 11] uses the normalized deviation of a

traffic variable from its mean over the last n time steps to detect incidents. Ahmed and Cook[40]

use a Box-Jenkins time series forecasting technique to model the occupancy at a single loop detec-
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tor. They use an autoregressive integrated moving average model (ARIMA) to provide short-term

forecasts of occupancy and associated confidence levels. If the occupancy is out of the confidence

bound, incident is detected. Neural Network based incident detection algorithms[16] recognize

traffic patterns under incident conditions. These algorithms require a large amount of training data

before they can be used. Ritchie and Cheu[41] use simulated data for the training phase. The

success of such neural network models depends on the validity of the simulator. The Neural net-

work approach precludes the possibility of deducing anything from the final model. The weights

obtained from training have very little physical interpretation. Chen et al.[15] propose a method

to detect incident by extracting the principal components from sensor data. Since all fundamental

traffic variables are related, they extract only the independent variations from the data from two ad-

jacent detector stations. The CUSUM algorithm, another time-series based approach used by Teng

and Madanat[19], uses traffic variable measurements to detect deviation from normal conditions in

a minimum time for a specified false alarm rate. Data processing algorithms usually do not have

methods to explicitly distinguish between incident and recurrent congestion. The lack of physical

interpretation is another disadvantage.

Most of the studies on evaluation of incident detection algorithms have been targeted at showing

improved performance of the algorithm under scenarios with given system characteristics. Gall

et al.[1] propose refinements to distinguish between incident and recurrent congestion, but rec-

ognize that the resulting algorithm may not be applicable in a network which is subject to many

bottlenecks. Persaud et al.[7] restrict their study to data from the median lane free from trucks.

They also restrict the flow rates to scenarios without recurrent bottlenecks. Peeta and Das[39]

study the influence of time-dependent demand. However, the test zone has been restricted to a

stretch between two ramps, free from effects of merging and exiting traffic. Under such conditions

any trivial congestion detection algorithm would have good performance. The emperical study

in later sections shows that most of the false alarms can be attributed to traffic conditions down-

stream of an on-ramp. Ishak et al.[42] study the applicability of Fuzzy ART to incident detection.

The scenarios they consider vary only the algorithmic parameters with fixed system characteristics.

This can give a misleading impression of robustness of the incident detection system. As Dudek
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et al.[ 11] indicate, "the results of an incident detection model have to placed in the proper per-

spective.". Stephanedes et al.[43] have also stressed the need for a comprehensive evaluation and

identified the limited transferability of algorithms. They have compared the performance of some

existing algorithms when the sensor data averaging period is varied and the algorithmic logic is

different(single-station or comparative). Abdulhai[4] has outlined the requirements for a univer-

sally transferable freeway incident detection framework based on Neural Networks. Most of the

simulation variables studied in our work can be directly related to the requirements in Abdulhai[4].

In any network, many of the system characteristics and algorithmic parameters are variable. Thus,

in order to demonstrate the applicability of the algorithms, it is imperative to examine the per-

formance under a wide range of scenarios in which these factors are varied. Given the complex

interplay between these factors, it would be difficult to expect intuitive performance from the al-

gorithms. It would also be difficult to directly use the MOEs to measure algorithmic performance

under the combined influence of the different factors. There have been few studies on the robust-

ness and transferability of the algorithms by varying the different factors. Such a study could lend

insight into designing and implementing incident detection systems for an FTMS. A wide range

of scenarios are not usually considered because of the lack of data. Simulation would be an ideal

testbed to generate data to study the algorithmic performance under numerous scenarios. More-

over, it is difficult to isolate the impacts of the different factors on trade-offs between MOEs when

real data is used. Loop detector based detection is subject counting errors(especially due to large

trucks and motorcycles).This makes additional data screening necessary. Petty[25] presents ways

to fix common problems in loop data.

Although data fusion methods, which use data from different sources in incident detection, have

been well studied(Petty[25], Sethi et al.[44], Bhandari et al.[33]) there are no studies on combin-

ing different loop-based algorithms. The current work presents some rules to combine loop-based

algorithms and evaluates the performance of one combined algorithm over a range of scenarios.
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1.2.1 Impact of System Characteristics on Incident Detection

The system characteristics that affect incident detection performance are flow rate(high, medium

or low), geometry of the stretch(entry or exit ramps, curvature, add or drop lanes) and properties

of the sensor system(loop detector, speed traps, RVC sensor etc.), the sensor data averaging period

and the spacing of the sensors. A qualitative discussion of the impact of each of these variables on

the performance has been presented in the remainder of this section.

Flow rate: Most algorithms do not detect incident per se but detect congestion. Therefore, when

an incident does not cause significant congestion, these algorithms have poor performance in terms

of the DTR. At high demand levels, the congestion due to incident is clearly visible, which makes

it easier to detect incidents. However, improved detection may be offset by an increase in the

FAS. Consider a hypothetical three lane section and without loss of any generality assume that

the capacity per lane is 2000 veh per hour. If the flow across the section is 4000 vph, a single

lane blockage would not cause noticeable congestion. The section would still be able to serve the

demand with the other two lanes. In such a scenario, any algorithm detecting congestion may not

be able to detect the incident. However, if the flow were around 6000 vph, any trivial algorithm

would be able to detect the congestion. Therefore, it is important to examine the performance of

algorithms under different flow conditions.

Complex Geometry: Complex geometrical configurations give rise to additional complications.

Recurrent bottlenecks due to entry ramps, weaving sections or drop lanes create incident-like situ-

ations. Presence of grade or curvature also produces patterns similar to those recognized by most

algorithms as incidents. Thus, it may be easier to detect incidents at some sections than others.

A robust algorithm would be expected to be relatively insensitive to the geometry. Consider the

case of a simple corridor with no ramps. If we assume relatively uniform grade and curvature, the

problem of incident detection reduces to that of congestion detection. Again any trivial congestion

detection algorithm would perform well. On the other hand, if there are several on- and off-ramps

which produce severe recurrent congestion, then it will be difficult to isolate the effect of an inci-

dent.
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Gall et al.[l] discuss a logic to distinguish between incident and other forms of congestion but limit

the applicability of their logic to cases where nonincident congestion is rare. Peeta and Das[39]

consider a stretch of with several entry and exit ramps. However, they applied their algorithm

only to a section where the incident was located. Moreover, this test section had no off and on

ramps. This precludes the possibility of testing the algorithm at stations upstream of an entry ramp

particularly susceptible to FAS. In a complex system with considerable geometric complexity, it is

necessary to examine the performance of IDAs for incidents at different locations. It is expected

that complex geometry will increase the number of FAS because of the presence of a great number

of incident-like patterns. The TTD would increase because the algorithm would need more time to

isolate the impact of an incident. Since it would be easier to miss incident congestion patterns, the

DTR can be expected to decrease.

Spacing of the sensors: The spacing between sensors is critical to detect incidents quickly and

reliably. Petty[25] has suggested the possibility of using principles from information theory to op-

timize the sensor spacing in order to obtain maximum information from the network. Intuitively,

as the spacing between the sensors decreases, we can expect algorithmic performance to improve

in terms of the time taken to detect the incident and the detection rate. But the number of false

alarms may increase due to an increase in the number of checks made by the algorithm. Obviously,

high spacing reduces the reliability of the data. Different networks have different sensor spacings.

Studying the sensitivity of algorithmic performance with respect to sensor spacing would also indi-

cate the degree of transferability of the algorithm between different networks. There have been few

studies[25] investigating the effect of sensor spacing on the algorithmic performance. Therefore,

it would be useful to examine the effect of sensor spacing on algorithmic performance.

1.2.2 Impact of Algorithmic Parameters on Incident Detection

The algorithmic parameters & thresholds depend mainly on the measures used by the algorithm

and to some degree on the system properties. Algorithmic parameters common to all algorithms

that use persistency checks are the number of time intervals needed to confirm incidents and the
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number of time intervals needed to clear incidents. For example:- If an algorithm uses the differ-

ence in average speed(at a sensor station) between two successive time intervals, the performance

of the algorithm would directly depend on the sensor data averaging period(greater the interval

length, lower would be the drop in speed, which implies that any threshold for the drop in speed

would be lower). Speed drops would be detected only during the onset of the incident. There

would be very little persistency checking for such an algorithm. On the other hand if an algorithm

used spatial differences in speed to detect incidents, persistency checks would be useful because

the incident congestion between two sensors would be sustained during the duration of the inci-

dent. Flow rate and system factors like sensor spacing also affect the choice of persistency. At high

flow rates or closer sensor spacings, it is easy to quickly detect any form of congestion. Therefore

higher persistencies are needed to distinguish incident congestion from recurrent congestion. Low

flows and high sensor spacings make detection of incidents difficult. Therefore, lower persisten-

cies would have to be chosen. Sensitivity of algorithmic thresholds to the different variables also

depend on the type of logic used eg:- single-station logic or comparative logic.

Persistency checking: The persistency of the algorithm directly affects the MOEs. A higher

persistency increases the time taken to detect the incident, but, reduces the number of false alarms

and may also reduce the detection rate. A lower persistency increases the detection rate and de-

creases the time to detect. But it also increases the false alarm rate. A majority of the algorithms

have thresholds which have to be calibrated. These thresholds also have to be updated or recal-

ibrated before they can be used at other sites. Peeta and Das[39] and Abdulhai[4] has presented

schemes to update the algorithmic thresholds.

Incident characteristics: Other factors specific to incidents such as duration of the incident and

location of the incident also affect performance of incident detection algorithms. Longer incidents

imply greater congestion in the network. This can increase the number of FAS because of the

presence of patterns similar to incidents. Incidents that occur in sections where capacity reduc-

tions have significant effect can be detected easily. But, incidents that occur in recurrent congested

zones of the network such as a weaving section would be more difficult to detect.
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Type of Logic: Single-station algorithms have difficulties in distinguishing between incident and

recurrent congestion and under non-incident related changes in traffic operation such as weather.

Performance of algorithms based on comparative logic is particularly sensitive to incident location

and duration of incidents. Persaud et al.[8] discuss the drawbacks of the different types of logic

used for incident detection algorithms.

In the next chapter the performance of two representative algorithms, the McMaster algorithm

based on catastrophe theory and the APID(All Purpose Incident Detection) algorithm based on

comparative occupancy logic, has been examined under a wide range of scenarios. The system

factors that have been varied are flow rate, location of incident, incident duration and sensor spac-

ing. The main algorithmic factor that was chosen to be varied was the number of intervals used in

persistency checking. Based on evaluation results, we present some new ideas and algorithms for

incident detection. Simulation based testing has helped identify conditions under which the algo-

rithms have poor performance. The microscopic simulator MITSIM[37] has been used to generate

data. A detailed description of MITSIM can be found in Ben-Akiva et al. [32], Yang et al.[37] and

Ahmed[26].

1.3 Thesis Contribution

The thesis makes the following contributions in the area of evaluating incident detection algorithms:-

i. It explores the trade-offs between the different MOEs over a large range of scenarios and to

derive insights into designing a network wide incident detection algorithm.

ii. It examines the influence of key system variables and algorithmic parameters(usually fixed

in other evaluation studies) like sensor spacing, flow rate, persistency and type of logic on

the performance of an incident detection algorithm.

iii. It uses the insights from the comprehensive evaluation tests, proposes enhancements to ex-

isting algorithms and makes them more applicable in the field and proposes new ideas for

the network being studied. In the direction of enhancing performance of existing algorithms,
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the idea of combining algorithms has been explored. Combined algorithms are shown to

perform better than the individual component algorithms.

In addition to these new directions in evaluating incident detection algorithms, two new approaches

to incident detection have been presented. They are:-

i. A comparative algorithm(SPDDRP), based on detecting rapid speed drops at a station, is de-

veloped. Conventional Incident detection algorithms use elaborate measures and conditions

to identify incidents. However, SPDDRP assumes that in a network with dense loop detector

spacing, incidents can be detected by observing the speed drop at a sensor due to incident.

The validity of this assumption has also been tested.

ii. A family of discrete choice models for incident detection is calibrated and evaluated. Per-

formance of these models have been shown to be promising.

1.4 Thesis Outline

Chapter 2 presents the details of calibration of the McMaster and the APID algorithms. Chapter 3

describes the experiments conducted on 190 West and 193 North to evaluate the performance of the

algorithms over a wide range of scenarios and also summarizes the findings from the experiments.

Chapter 4 describes an algorithm based on speed drops to exploit dense loop detector spacing.

Chapter 5 presents a new incident detection algorithm based on different types of discrete choice

models. Chapter 6 presents the idea of combining algorithms to break the barriers imposed by

the trade-offs between the MOEs of any single algorithm. Two different frameworks to combine

algorithms have been presented. Chapter 7 summarizes the findings and discusses the areas for

future research.
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Chapter 2

Calibration of the McMaster and APID

algorithms

Both the McMaster and APID algorithms are fundamentally threshold algorithms. They identify

the different traffic states based on pre-determined thresholds. These thresholds are mostly non-

transferable. The first step in using these algorithms is the calculation of these thresholds.

2.1 Description of the system

The Network used in the current study is a part of the Central Artery/ Tunnel(CA/T) Project in

Boston. It is a 7.5 mile highway, approximately half of which will be built as a tunnel. The two

parts of the network used in the current study are 1-90 West and 1-93 North. This part of 1-90

West is also called the Ted Williams Tunnel. It is a two lane 1.6 mile stretch of tunnel with loop

detectors at every 200ft. Speed traps are located at every 600 ft. 1-90 West is a simple 2-lane tunnel

with no geometric change. As discussed in the earlier section, the problem of detecting incidents

in this simple network configuration reduces to that of detecting congestion. The results,presented

later, support this claim. The 1-93 North varies between 3 and 4 lanes. Loop detectors are located

at every 600 ft on normal freeways and at every 200ft in the tunnel. There are 6 on-ramps and 5

off-ramps. The locations of these ramps are shown in Figure 2-1. The flow rates on the different

links in Figure 2-1 are based on the OD flows estimated for the year 2004 during the PM peak. This
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Figure 2-1: 1-93 North Bound

demand is provided by the CA/T project and is used as the base demand(100%) for scenario design.

Sensor data is generated for all stations on 1-93 North and analyzed for presence of incidents. There

are significant variations in geometry because of on- and off- ramps, add/drop lanes and curvature.

2.2 The McMaster Algorithm

The McMaster algorithm uses flow-occupancy data to classify the traffic conditions into different

states based on pre-determined thresholds. A typical fundamental diagram has been presented in

Figure 2-2. The parameters OCMAX, VCRIT and the shape of the curve have to be determined

VCRIT

Region IV

Region I

Region II Region III

6CMAX
Occupancy

Figure 2-2: Fundamental Diagram of Traffic Flow

before the algorithm can be used. The algorithm uses the flow and occupancy values to classify the

current traffic state as one of the four states shown in Figure2-2. Based on this classification, the

algorithm decides if incident conditions exist at a particular sensor station. Region I represents a
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region of low occupancy and flow varying from low to high. This represents an incident-free con-

dition. Region II is a region of low flow at low occupancies. This typically represents the traffic

state at a sensor station downstream of a blocked lane. Region III is the other type of incident state.

It represents a high occupancy and low flow state. This is the traffic state upstream of the blocked

lane. Region IV is a high occupancy, high flow region. This is typically the state downstream of

a permanent bottleneck, e.g. an on-ramp. The parameters of the flow-occupancy plot have to be

calibrated.

The McMaster algorithm seeks to ensure that the data in the congested regime can be clearly

separated from other random fluctuations. The essence of the McMaster algorithm is that it tries to

explain sudden discrete changes in one variable when other related variables are exhibiting smooth

and continuous change. Further details can be obtained in Persaud et al.[7]. The Microscopic

Traffic Simulator(MITSIM)[37] was used to generate the fundamental diagram by varying the OD

flows. Zhou et al.[3 1], Hall et al. [12] and Hall et al.[13] have dealt extensively with the shape of

the flow-occupancy and speed-flow plots. They have fitted different curves to the left portion of

the flow-occupancy plot. Particularly, Zhou et al.[3 1] have estimated a cubic polynomial for the

speed-flow plot. In order to better represent the overall flow-occupancy relationship, polynomials

of different degrees were fitted to the data consisting of congested and uncongested operation. Two

main criteria have been used to select the degree of interpolation.

i. Better representation of the overall relationship:- The fit can be used as a criterion to select

the best polynomial. Both r-squared and adjusted r-squared values have been used to decide

best fit. Polynomials of degree 4 or higher were found to have better fit for most of the

stations. However, the r-squared indicated an overfit after degree 4.

ii. Conservative representation of region II of the fundamental diagram:- The Region II of the

fundamental diagram is the state of traffic at a station downstream of an incident. The pa-

rameter OCCmaX defines region II. It was identified that polynomials of degree 4 or higher

conservatively define OCCma. making false identifications of incident harder. This reduces

the FAS without affecting the DTR or TTD. Therefore these polynomials have been used.

Table 2.1 is representative of the trend observed in OCCmax for different degrees of interpo-
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lation.

Table 2.1: OCCma squared for different degrees

Degree OCCmax
2 23.86
3 23.55
4 21.58
5 21.58

The results from fitting different polynomials to the data for a sample sensor has been produced in

Table 2.2. As indicated by the adjusted r-squared values in the table, the model becomes an overfit

when the degree of the polynomial is 5. Thus the form of the polynomial used is

flow = ao + aiocc+ a20cc2 + a3occ3 + a40cc4

The thresholds can be determined from the shape of the left portion of the curve. Some typical

parameter values obtained from the simulation have been shown in Table 2.3. The initial calibra-

Table 2.2: R-square and Adjusted R-squared for different degrees

Degree R-squared Adjusted R-squared
2 0.7444 0.7420
3 0.7567 0.7557
4 0.7644 0.7607
5 0.7719 0.7605

tion and testing of the algorithms was done for the Ted Williams Tunnel. Projected 2004 PM peak

flows were used as the base flows. A typical plot generated from the simulation data has been

presented in Figure 2-3. Once an n-degree polynomial is fitted to the data, the threshold curve

(curve between 0 and OCCWC) is the 97.5% confidence curve. The threshold has been chosen so

that 95% of the points fall above the threshold in the no incident case. A sample plot is shown in

Figure 2-4.
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Table 2.3: Typical parameter values for a station for the McMaster algorithm

Parameter Value
ao -2.5
a i 1.4
a2 -6.5x10-2

a3 1.2x10-3

a4 -7x10-6

OCCmax(in %) 21.58
Verit(in veh/30 sec) 13.5

Av.Spd.(in mph) 50

2.3 The APID Algorithm

The All Purpose Incident Detection algorithm(APID) uses a combination of different algorithms to

identify incident conditions at different levels of flows ranging from low to high. The parameters

have to be obtained by observing the values of the different measures used by the algorithm over

a wide range of scenarios. Philip et al.[34] have presented the basic framework of the algorithm.

However, they have used the same set of parameters for all the stations. They acknowledged that

performance could be improved by using different groups of parameters. Their parameters are the

initial values for the parameter calibration in our study. Calibration has helped identify different
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Figure 2-4: Sample plot of McMaster threshold curve with the ±97.5% confidence curves

groups of parameters for different stations. The calibration has been performed for sensors in both

the Ted Williams Tunnel and the 1-93 North Bound. All stations in the Ted Williams tunnel have

used the same set of parameters due its simple geometry. At a spacing of 200 ft, five different

groups of parameters have been identified for 1-93 North. The algorithm uses three main routines

- a low volume routine, a medium volume routine and a high volume routine. The California Inci-

dent detection algorithm is used as the high volume routine. The basic framework has been slightly

modified for the current study. The basic algorithm uses compression wave testing and suspension

of detection when compression waves are detected. Suspension of detection is used to reduce false

alarms due to turbulent traffic conditions. Although it decrease FAS appreciably, it also directly

affects detection rate. The incidents on 1-93 North have been placed in locations close to recurrent

bottlenecks which are subject to turbulent traffic conditions. To avoid missed detection, suspension

of detection has not been used in the present case. Suspension can always be replaced by higher

thresholds and persistency checks for locations of unstable traffic conditions. The persistency of

3 polling periods has been found sufficient to eliminate compression wave testing at a spacing of

200ft. Persistency checking has also been applied to identify the end of the incident and return to

normal traffic conditions. Typical parameter thresholds used by the different components of the

APID algorithm are presented in Table 2.5. Typical plots of the measures have been produced in

Figure 2-5 and Figure 2-6. Based on these plots, the thresholds for the different measures were

decided.
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Table 2.4: Measures used by the APID algorithm

Description Measure
Spatial difference in occ(OCCDF) occdf(i,t)=occ(i,t)-occ(i+ 1,t)
Relative spatial difference in occ(OCCRDF) occdf(i,t)/occ(i,t)
Relative temporal difference in d/s occ(DOCCTD) docctd(i,t)=(occ(i+1,t-2)-occ(i+1,t))/occ(i+1,t-2)
Downstream Occupancy(DOCC) docc(i,t)=occ(i+l,t)
Relative temporal diff in speed(SPDTDF) spdtdf(i,t)=(spd(i,t-2)-spd(i,t))/spd(i,t-2)
Persistency threshold(PERSTH) threshold to be exceeded in persistency check
Medium Traffic Threshold(MEDTRFTH) threshold to be exceeded to use med flow alg
Clearence Threshold(CLRTH) threshold to be exceeded to clear incident

(a) Incident- free (b) Incident

Figure 2-5: OCCDF plots for incident and non-incident cases from simulation
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Table 2.5: Typical APID parameters

Calif Inc. Det. Med Vol Inc. Det Other prms
Prm Group DOCC OCCDF OCCRDF DOCCTD SPDTDF PERSTH MEDTRFTH CLRTH

1 20 25 0.35 0.40 0.10 0.35 15 0.31
2 17 15 0.65 0.40 0.10 0.65 15 0.31
3 17 55 0.80 0.40 0.10 0.80 15 0.31
4 17 30 0.50 0.40 0.10 0.50 15 0.31
5 17 20 0.50 0.40 0.10 0.50 15 0.31

0 So 000 1500 2W 2500 3000 3500 4

(a) Incident-free (b) Incident

Figure 2-6: OCCRDF plots for incident and non-incident cases from simulation
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Chapter 3

Evaluation of the McMaster and APID

algorithms

3.1 Refinements to the McMaster algorithm

Refinements for 1-90

Initial tests were conducted in the Ted William tunnel. The results of the tests indicated that

algorithms were not directly transferable to networks with dense loop detector spacing. Incidents

and other incident-like traffic states were easily detected which resulted in high number of false

alarms. In order to clearly distinguish between incidents and other patterns similar to incidents,

refinements were designed. These refinements were also tested in the second series of tests on 1-93

North.

Memory of true alarm to simulate actual behavior

The McMaster algorithm primarily uses the traffic state at a station to identify incidents. For

a dense spacing of loop detectors, it is possible to identify the incident state due to an incident

at several stations in the vicinity of the incident. This implies that it is possible to declare the

same incident twice. Subsequent alarms from the same incident would have to be suppressed

or recognized to be secondary alarms. Gall et al.[1] indicate that secondary alarms should be

identified but do not present any strategy. To prevent this, we use the strategy of declaring an
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incident only if it has not been declared before. We do this by checking to see if an incident state

exists in the vicinity of the current station. If there is a confirmed incident state, we check if this is

a true incident. An alarm has been identified to be a true alarm if it is declared a maximum time

tmax after the actual occurrence. The value of tmax has been established emperically to be 5,7.5

and 10 minutes for spacing of 200ft, 600ft and 1200ft respectively. In real situations, this would

correspond to the following. An operator is notified of an incident at a location. He/She responds

to the alarm. If the alarm is true, an incident management plan is executed and any further alarms

in the vicinity would be secondary. But if the alarm is a false alarm, the state of the station is

restored to no incident. So, any further alarms in the vicinity would be(if they are not genuine)

treated as false alarms. This strategy is one of the additions to the basic McMaster algorithm.

State Constraint

The original McMaster algorithm suggests that either Region I or Region II can be treated as

incident state. For the close detector spacing in the tunnel, this was found to be inappropriate.

This condition could be useful for larger sensor spacings. In order to reduce false alarms from this

state, it was constrained that during the persistency check interval, the state 3 should be observed

upstream of the incident(high density state) at least once. Incident should not be declared if over

the entire persistency interval, only state 2 was observed at the station. It should be noted that a

condition with state 3 upstream and state 2 downstream may occur for only one set of upstream

and downstream stations. However, state 2 can be observed for many sensor station pairs both

upstream and downstream of the incident. Gall et al.[l] proposed the original logic for a portion

of the Queen Elizabeth Freeway where the spacing of loops is approximately 2200 ft. However,

when the spacing is around 200-600 ft, incidents are hardly missed and numerous stations in the

vicinity of the incident declare the incident if the state constraint is not imposed.

Count Constraint

The original algorithm does not use any basic reduction in flow. From preliminary investigations,

it was found that for 30 sec polling period, there was a reduction in the count at the downstream

station compared to the upstream station, at the end of the first polling period during which the
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incident occurs. Therefore, it was constrained that for the first persistency check interval, the

upstream count should be greater than the downstream count. This condition basically exploits the

simple geometry of the Ted Williams Tunnel. For a 2 lane freeway stretch, flow discontinuities can

easily be identified for small sensor data averaging periods and dense loop spacings.

Refinements to the McMaster algorithm for 1-93 North

The refinements used in the tunnel case were also applied to the 1-93 North. But it was found that

the count constraint was too tight for the 3 lane and 4 lane case. Therefore this constraint was

relaxed. However, the state constraint and the false alarm memory conditions were retained.

3.2 Refinements to the APID algorithm

The algorithm uses three main routines - a low volume routine, a medium volume routine and a

high volume routine. The California Incident detection algorithm[ 11] is used as the high volume

routine. The basic framework has been modified for the current study. The basic algorithm uses

compression wave testing and suspension of detection when compression waves are detected. Sus-

pension of detection has not been used in the present case. The persistency of 3 polling periods has

been found sufficient to eliminate compression wave testing at a spacing of 200ft. Incident state

at any station was reset only when the traffic variable values returned to normal for a specified

number of consecutive time intervals. Thus, persistency checking was used to declare and clear

the incidents.

3.3 Evaluation Results

3.3.1 Evaluation on 1-90 West

Experiments on 1-90 West

The network in this case consists of one OD pair. Flow rates were increased from 900 vphpl to

2000 vphpl in steps of 100 vphpl. The incident duration considered were 3 , 6 and 10 min. Thus,

a total of 12*3 = 36 experiments were conducted. A total of 20 replications were performed per
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experiment. For the different experiments, the incident location was fixed. The simple network

geometry eliminates the need for studying different incident locations. The incident resulted in a

one lane closure. A total of one hour of simulation was performed and the incident occurred at

10 minutes from the start of simulation. For all experiments, the polling period was 30 seconds

for both the algorithms. There were a total of 56 stations with 2 sensors each in this network.

Therefore the total number of checks made by the algorithm in 20 hours of experiments with a

polling period of 30 seconds was 120x20x56x2 = 268800. This number was used in computing

the false alarm rate(= (FAS / number of checks)* 100). When the number of checks made by the

algorithm becomes very high, the percentage of checks resulting in incident declarations become

a very small fraction of the total. Expressing the false alarms as FAR therefore does not convey a

correct idea of the actual number of false alarms. Therefore, both FAR and FAS(number of false

alarms) have been presented. The results are presented in Table 3.2 and Table 3.3.

Analysis of tests on 1-90 West

Table 3.1: Original McMaster Algorithm, Persistency=3, Spacing=200ft
Inc. Duration Parameter 900 1000 1100 1200 1300 1400 1500 1600

TTD(min) 2.03 2.15 2.11 2.12 2.09 1.77 1.75 1.60

3 min DTR(%) 70 75 95 100 100 100 100 100
FAS 2 3 3 5 11 12 14 18

TTD(min) 2.23 2.21 2.24 2.02 2.10 1.85 1.73 1.58

6 min DTR(%) 65 80 90 95 100 100 100 100
FAS 5 4 8 10 18 19 22 24

TTD(min) 2.23 2.14 2.09 2.04 1.87 1.81 1.77 1.72

10 min DTR(%) 35 75 95 100 100 100 100 100
FAS 8 6 11 14 24 27 31 34

i. As depicted in Figure 3-1 and Figure 3-2, APID outperforms the McMaster algorithm. The

components of APID are algorithms based on comparative logic. Such algorithms are known

to have problems in presence of significant changes in geometry[7]. Since 1-90 West is a

fairly straight tunnel stretch with almost no variation in geometry, APID has good perfor-

mance. In the second set of tests on 1-93, it will be seen that the APID algorithm has poor

performance at greater sensor spacings when there are substantial changes in geometry.
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Table 3.2: Refined McMaster Algorithm, Persistency=3, Spacing=200ft

Inc. Duration Parameter 900 1000 1100 1200 1300 1400 1500 1600
TTD(min) 2.09 2.18 2 2.05 2.16 1.8 1.8 1.75

3 min DTR(%) 55 70 95 95 95 100 100 100
FAS 0 1 2 1 1 2 2 3

TTD(min) 2.83 2.53 2.24 2 2.08 1.95 1.92 1.85
6 min DTR(%) 45 70 85 95 95 100 100 100

FAS 0 2 1 2 3 4 4 4

TTD(min) 2.2 2.25 2.23 2.2 2.18 1.98 1.95 1.8

10 min DTR(%) 25 70 90 100 100 100 100 100
FAS 1 2 4 6 5 8 12 16

Table 3.3: APID algorithm, Persistency=3, Spacing=200ft

Inc. Duration Parameter 900 1000 1100 1200 1300 1400 1500 1600
TTD(min) 2.00 2.37 2.08 2.03 1.90 1.63 1.58 1.55

3 min DTR(%) 30 75 100 100 100 100 100 100
FAS 0 1 0 0 0 1 0 0

TTD(min) 3.50 2.81 2.13 1.94 1.78 1.60 1.60 1.58

6 min DTR(%) 45 90 100 100 100 100 100 100
FAS 0 1 0 0 1 0 0 2

TTD(min) 2.91 2.00 1.71 1.65 1.60 1.50 1.50 1.50

10 min DTR(%) 85 95 100 100 100 100 100 100
FAS 0 1 1 3 2 2 5 9

ii. The McMaster in its original form has a high number of false alarms. This can be attributed

to the fact that the algorithm in its original form does not effectively distinguish between

incident and other forms of congestion when the spacing is 200 ft. The heuristics help

identify incidents clearly. Some scenarios even have a FAS of 0 at low flow rates. These

results are very similar to the findings of Peeta and Das[39].

iii. Both algorithms have extremely good performance with respect to false alarms. However,

as mentioned in earlier sections, these results are misleading and do not represent the per-

formance under a general set of conditions. In the second set of experiments on 1-93 North

in the next section, it will be shown that the performance deteriorates drastically in a more

complex network.
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Figure 3-2: Plot of MOEs

3.3.2 Evaluation on 1-93 North

Experiments on 1-93 North

Incidents were placed at 2 locations. A total of 20 replications, each of 1.5 hrs were simulated.

The OD flow of 2004PM was used as the base flow. The Incidents were simulated to occur 10

minutes after the beginning of the simulation and lasted 15 minutes. A complete lane blockage of

the center lane in a 3 lane section was considered for location 1 and a complete blockage of the

second lane from the left of a 4 lane section. The total number of stations in the present case is

74. The stations consist of both 3 and 4 lane sections (correspondingly 3 and 4 sensors). Therefore

the total number of checks made by the algorithm in 20 experiments of 1.5 hr each with a polling
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period of 30 seconds is 180x20x300(total number of sensors) = 1080000 at 200ft spacing, 360000

at 600ft spacing and 180000 at 1200ft spacing. The refinements used for the 1-90 West case were

also applied to the 1-93 North. But it was found that the count constraint was too tight for the 3 lane

and 4 lane case. This resulted in many missed detections. Therefore this constraint was relaxed.

However, the state constraint and the false alarm memory conditions were retained. Unlike the

Ted Williams tunnel, incident alarms were observed before the incidents in some replications. The

results have been presented in Table 3.4 to Table 3.1.

i. Location ] - South of 1-90, downstream of ramp LL and upstream of ramp C.

Location 1 on 1-93 NB mainline

1950 ft 1100 ft Location 2 on 1-93NB mainline

1100 ft 1700 ft

X

Ramp LL Ramp Ramp C Ramp CN-SA

X - Incident Location X - incident location

(a) Location 1 (b) Location 2

Figure 3-3: Incident Locations

ii. Location 2 - In the weaving section, downstream of ramp C and upstream of ramp CN-SA.

This congestion in this section builds up at a much faster rate than location 1.
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Analysis of tests on 1-93 North

Table 3.4: Basic McMaster Algorithm Persistency=2

200 ft 600 ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%

TTD(min) 1.83 2.56 2.05 1.95 2.19 4.13 5.6 6.82 3.64 4.75 8.03 7.96

Loc 1 DTR(%) 45 80 95 90 65 95 100 100 70 80 75 70

FAS 341 251 161 158 202 105 82 54 149 94 118 119

FAR(%) 0.032 0.023 0.015 0.015 0.056 0.029 0.023 0.015 0.083 0.052 0.066 0.066

TTD(min) 2.18 1.27 1.07 1.06 2.81 1.62 1.52 1.43 2.95 2.73 6.17 5.11

Loc 2 DTR(%) 55 65 70 84 65 85 100 100 100 100 90 95

FAS 327 229 197 183 168 119 114 121 130 132 109 127

FAR(%) 0.030 0.021 0.018 0.017 0.016 0.033 0.032 0.034 0.072 0.073 0.061 0.071

Table 3.5: Refined McMaster Algorithm Persistency=2

200 ft 600 ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%

TTD(min) 2.58 3.65 1.68 1.92 4.00 4.38 5.28 5.3 - 6.43 8.03 7.96

Loc1 DTR(%) 30 85 100 90 5 90 100 100 0 35 75 70

FAS 110 59 94 76 108 16 35 27 51 26 49 46

FAR(%) 0.010 0.006 0.009 0.007 0.030 0.004 0.009 0.008 - 0.014 0.027 0.026

TTD(min) 2.67 1.62 1.47 1.65 3.79 1.82 1.82 2.02 7.08 3.48 6.66 5.63

Loc2 DTR(%) 90 100 95 89 70 95 100 30 100 100 95 95

FAS 228 196 180 166 128 80 71 79 85 59 66 73

FAR(%) 0.021 0.018 0.017 0.015 0.036 0.022 0.019 0.022 0.047 0.033 0.037 0.041

Table 3.6: APID Algorithm Persistency=2

200 ft 600 ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%

TTD(min) 1.96 2.18 1.82 1.65 2.53 2.55 3.58 3.85 2.75 3.92 7.04 6.73

Loc 1 DTR(%) 65 95 100 85 75 100 100 100 10 90 65 75

FAS 93 95 89 90 273 144 119 125 50 32 66 59

FAR(%) 0.009 0.009 0.008 0.008 0.025 0.040 0.033 0.035 0.028 0.018 0.037 0.033

TTD(min) 1.88 1.82 1.53 2.03 3.07 1.93 2.10 2.00 4.00 3.88 3.87 4.10

Loc 2 DTR(%) 75 100 80 90 75 100 100 30 100 100 95 100

FAS 173 134 120 111 177 167 148 130 60 74 91 72

FAR(%) 0.016 0.012 0.011 0.010 0.049 0.046 0.041 0.036 0.033 0.041 0.051 0.040
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Table 3.7: Basic McMaster Algorithm Persistency=3

200 ft 600 ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%

TTD(min) 2.75 3.45 2.53 2.83 2.92 6.00 6.31 6.82 3.75 6.75 7.8 8.5

Loc1 DTR(%) 50 83 90 90 30 45 65 55 30 20 25 35

FAS 160 86 133 101 67 38 55 54 56 24 38 41

FAR(%) 0.015 0.008 0.012 0.009 0.019 0.011 0.015 0.015 0.031 0.013 0.021 0.023

TTD(min) 2.41 1.58 1.55 1.58 2.50 2.33 2.05 2.38 3.50 3.30 4.78 4.16

Loc 2 DTR(%) 80 95 100 95 70 100 100 100 95 100 100 95

FAS 167 163 189 161 42 73 69 72 44 49 50 61

FAR(%) 0.015 0.015 0.018 0.015 0.012 0.020 0.019 0.020 0.024 0.027 0.028 0.034

Table 3.8: Refined McMaster Algorithm Persistency=3

200 ft 600 ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%

TTD(min) 2.75 4.08 2.67 2.92 4.50 5.69 6.31 6.82 - 7.25 7.8 8.5

Loc 1 DTR(%) 10 43 90 90 5 40 65 55 0 10 25 35

FAS 52 24 48 51 28 5 19 12 - 14 16 18

FAR(%) 0.005 0.002 0.004 0.005 0.008 0.001 0.005 0.003 - 0.008 0.009 0.010

TTD(min) 3.00 2.25 2.12 2.56 3.79 3.10 2.33 2.92 8.00 4.17 5.42 4.87

Loc 2 DTR(%) 65 100 100 95 60 100 100 5 100 100 100 95

FAS 139 128 135 114 61 56 52 49 37 41 43 46

FAR(%) 0.013 0.012 0.013 0.011 0.017 0.016 0.014 0.014 0.021 0.023 0.024 0.026

Table 3.9: APID Algorithm Persistency=3

200 ft 600ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%

TTD(min) 2.50 2.47 2.34 2.24 3.72 3.32 3.89 4.36 - 4.65 7.35 6.42

Loc 1 DTR(%) 55 85 95 85 45 95 95 90 - 85 50 30

FAS 53 33 54 51 49 69 86 79 3 24 58 48

FAR(%) 0.005 0.003 0.005 0.005 0.014 0.019 0.024 0.022 0.002 0.013 0.032 0.027

TTD(min) 2.61 2.33 2.07 2.28 3.92 2.50 2.62 2.60 8.00 5.15 4.85 5.34

Loc 2 DTR(%) 45 100 75 80 65 100 100 100 5 85 85 95

FAS 49 53 61 58 90 81 96 93 60 44 58 45

FAR(%) 0.005 0.005 0.006 0.005 0.025 0.023 0.027 0.026 0.033 0.024 0.032 0.025
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Table 3.10: Basic McMaster Algorithm Persistency=4

200 ft 600 ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%

TTD(min) 3.30 3.07 3.26 3.57 3.00 5.00 6.8 6.5 - 7.5 7.67 8.00

Loc 1 DTR(%) 25 35 85 70 5 15 25 25 0 5 15 5

FAS 66 100 77 62 25 14 53 29 31 8 18 22

FAR(%) 0.0061 0.009 0.007 0.006 0.007 0.004 0.015 0.008 0.017 0.004 0.010 0.012

TTD(min) 2.32 2.23 2.12 2.28 3.57 3.45 2.83 3.03 4.50 3.95 4.05 4.78

Loc 2 DTR(%) 70 100 100 100 70 100 100 95 90 100 95 100

FAS 74 130 148 111 28 48 51 48 25 31 32 37

FAR(%) 0.007 0.012 0.014 0.010 0.008 0.013 0.014 0.013 0.014 0.017 0.018 0.021

Table 3.11: Refined McMaster Algorithm Persistency=4

200 ft 600 ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%

TTD(min) 2.00 2.75 3.11 3.46 - 9.5 6.80 6.50 - - 7.7 8.0

LocI DTR(%) 5 10 70 60 0 5 25 25 0 0 15 5

FAS 12 15 39 33 5 4 10 6 - - 9 7

FAR(%) 0.001 0.001 0.004 0.003 0.001 0.001 0.003 0.002 - - 0.005 0.004

TTD(min) 3.50 2.85 2.67 3.14 4.33 3.73 3.05 3.44 - 4.70 4.75 5.25

Loc 2 DTR(%) 45 100 100 95 45 100 100 90 0 100 100 100

FAS 72 87 83 74 27 40 38 34 14 28 30 31

FAR(%) 0.007 .008 0.008 0.007 0.008 0.011 0.009 0.008 0.008 0.016 0.017 0.017

Table 3.12: APID Algorithm Persistency=4

200 ft 600 ft 1200 ft

Loc Demand 60% 80% 100% 120% 60% 80% 100% 120% 60% 80% 100% 120%1

TTD(min) 2.40 2.97 2.75 2.90 3.80 3.82 4.56 4.89 - 4.87 7.42 6.92

Loc 1 DTR(%) 25 85 90 75 25 85 90 90 - 25 80 80

FAS 32 18 21 22 15 42 65 47 - 25 58 43

FAR(%) 0.003 0.002 0.002 0.002 0.004 0.012 0.018 0.013 - 0.014 0.032 0.024

TTD(min) 2.94 2.81 2.60 2.73 4.19 3.00 3.12 3.25 - 5.85 5.57 6.19

Loc 2 DTR(%) 40 90 75 75 40 100 100 100 - 65 70 65

FAS 28 38 28 34 56 61 71 68 9 30 51 40

FAR(%) 0.003 0.004 0.003 0.003 0.016 0.017 0.019 0.019 0.005 0.017 0.028 0.022
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Findings

I. Impact of spacing
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Figure 3-4: TTD and FAR vs spacing at 100% flowrate with pers=3 at location 2

i. At a spacing of 200ft, the performance at less than 80% flows is worse than that at

100% or 120% flows. Although the FAS at 200 ft is greater than that at 600 ft or 1200

ft, the FAR is greater at higher spacings, indicating that there are greater false alarm

confirmations for the same amount of checks made by the algorithm. This could be

attributed to large variation in sensor data between 2 adjacent sensors at higher spacings

and loss of information about geometry.

ii. The APID algorithm exhibits poor performance in terms of FAS when the spacing

between the sensors becomes high. But the performance in terms of DTR and TTD is

much better. This is because of comparative measures used by APID to detect incidents,

difference in occupancy(OCCDF) and the relative difference in occupancy(OCCRDF)

are difficult to use when there is considerable difference in geometry between two

adjacent sensor stations. This has been identified by Persaud et al.[7] and is also seen

in the plots of OCCDF and OCCRDF for 2 stations on either side of an on-ramp.

II. Impact of Flow
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Figure 3-5: TTD,DTR and FAR vs Flow rate at 600ft spacing with pers=3 at location 1
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Figure 3-6: OCCDF and OCCRDF for 2 stations on either side of an on-ramp

i. The level of flow in the network clearly affects the performance of the algorithms. In

almost all scenarios, the algorithms have very poor performance under conditions of

low flow, eg:-Table 3.8, Table 3.11 and Table 3.12 show very low DTR at a dense

spacing of 200ft for 60% and 80% flows. This is intuitive because it is not easy to

detect the effect of an incident in an uncongested condition. However, when the flow

rate is high, the effect of the incident is very noticeable. Therefore the number of false

alarms increase.

ii. In some scenarios, it can be seen that a large number of false alarms are observed even

at low flows of 60%. Most of the false alarms generated at low flows do not persist
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for long. They are cleared immediately after they are declared as the congestion does

not build up sufficiently. The APID algorithm has compression wave testing for such

turbulent traffic conditions. Therefore, it performs much better than the Conventional

McMaster in terms of FAR. But Refined McMaster has better performance than APID

even in these scenarios. This indicates that clever heuristics could be used in place the

of persistency checking or suspension of detection for better results.

iii. The refined algorithm maintains, in most cases, the performance in terms of TTD &

DTR while considerably lowering the FAS. At lower demands, the TTD for the refined

algorithm is slightly higher than the original algorithm.

III. Impact of Persistency

i. The persistency of the algorithm directly affects the MOEs. A higher persistency in-

creases the time taken to detect the incident, but reduces the number of false alarms

and may also reduce the detection rate. A lower persistency increases the detection rate

and decreases the time to detect, but increases the false alarm rate. A lower persistency

should not be used always because the congestion has not developed completely dur-

ing the short persistency check period and random fluctuations can be easily confused

for incidents. Table 3.8, Table 3.11, Table 3.9 and Table 3.12 clearly show the effect

of persistency. The difference between the average TTD for the same scenarios with

different persistencies is approximately 0.5 min (30 sec = 1 persistency time interval).

ii. Different algorithms have different performance with respect to persistency tests. When

the persistency is increased to 4, the Refined McMaster algorithm fails completely but

the APID algorithm continues to detect incidents with high DTR and controlled FAR.

When a persistency of 2 is used, the Refined McMaster algorithm has much better

performance at lower persistencies with low FAR.

IV. Impact of Interaction

i. The choice of persistency depends on the algorithm and the sensor spacing. In order to

make the refined McMaster algorithm operational, it would be necessary to use persis-

tency of 2 at high spacings (1200 ft) and high persistency at spacing <; 600 ft. APID
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however has very poor performance at low persistencies and all spacings. This implies

a higher persistency should be chosen for APID.

ii. The trade-off between the detection rate and the false alarm rate is very clear if the

performance of the APID and the refined McMaster algorithms are compared(Table 3.8

compared with Table 3.9 & Table 3.11 compared with Table 3.12). The APID algorithm

almost always has a detection rate exceeding 80%. But the false alarm rates are mostly

higher than that of the refined McMaster algorithm. The detection times at spacings

of 200ft and 600ft are comparable. But at a spacing of 1200 ft, the APID algorithm

outperforms the McMaster algorithm in terms of the time to detect and the Detection

rate.

V. Impact of Location

i. Most of the false alarms were observed either at locations close to the incident during

the post-incident phase or at stations immediately upstream of on- and off-ramps. Both

algorithms are relatively sensitive to such geometric non-uniformities.

ii. The location of the incident is also critical. Location 2 is in a weaving section where the

congestion develops rapidly. Therefore, in all the scenarios it can be seen that TTD and

DTR are much better for location 2. However, low TTD and high DTR is accompanied

by high FAS.

Pk 4 r b .Plal a DTR ws locama Pid of FARvslcto

Mocmaster
R .f 9. M00aster
APOD Rol Mmstte

:00 Rot Mosrastar

100 12

(a) TTD (b) DTR (c) FAR

Figure 3-7: TTD,DTR and FAR vs Location at 200ft spacing,pers=3,od=100%
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Chapter 4

A Heuristic algorithm for dense loop

detector spacing

4.1 Introduction

Conventional incident detection algorithms use elaborate criteria based on speed, occupancy and

flow to identify congestion and differentiate incident congestion from recurrent congestion. How-

ever, at a close spacing of sensors such as that in 1-93 North, incidents can be quickly and reliably

identified by observing significant changes in speed or occupancy at any sensor station. Occupancy

or speed should have been used over flow as indicators because flow is not a clear indicator of the

level of congestion as identified by our preliminary experiments and by Lin and Danganzo[45].

4.2 The Proposed Method

Figure 4-1 shows typical change in speed and occupancy at the sensor upstream of the incident

lane. Such sharp changes are outside the range of random fluctuations. By detecting such a sharp

drop in speed or rise in occupancy, we can detect the incident quickly and reliably. The traffic

variables and parameters used by the method are discussed in this section. The method uses the

current value of the average speed at the sensor - st, the value of average speed in the last interval,

st- i and the value of average speed in the interval before the last, st-2. The method has been found
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Figure 4-1: Speed Drop and Occupancy Rise at station upstream of incident

to be sensitive to traffic conditions. Under heavy congestion, the method may have difficulties in

identifying incidents. But under capacity or close to capacity flows, the method is very effective

in declaring incidents. The magnitude of the drop depends on the traffic conditions. The proposed

method does not use persistency tests in its current version. This reduces the time to detect the

incident considerably when the performance is compared to that of other conventional algorithms.

The values of the parameters have been presented in Table 4.1. The framework used to detect

incidents and the conditions necessary to characterize incidents have been identified in Figure 4-2

below. The different parameters and the conditions have been summarized below.

4.3 The Framework

The method uses the following variable values to detect incidents.

i. The current value of the average speed at the sensor, st

ii. The value of average speed in the last interval, st_ I

iii. The value of average speed in the interval before the last, st-2
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The input required to the algorithm is the same as that for the APID algorithm. Therefore, it is

easy to implement. Although speed has been used as the indicator measure, occupancy could also

be used. The framework used to detect incidents and the conditions necessary to characterize inci-

dents have been identified in Figure 4-2 below. The values of the parameters have been presented

in Table 4.1. The core of the framework has been presented in pseudocode form below:-

I~ nputs -s Is S

o s, s Vs -valid yess -2 s =alpha yes
s >beta

s s > gamma

Declare incident

Figure 4-2: Framework to declare incidents

if((st, st- 1, sr-2 2 0.0)&(st-2 - St - 1 > )&

(st-2 >_ @)&(st-_I /st 2 Y))

DECLARE INCIDENT

The different parameters and the conditions have been summarized below:-

i. St-2,St_1,St 0.0 This condition is essential to eliminate spurious values and to account

for sensor malfunctioning. This establishes validity of the data which is part of the test as

indicated in the framework in Figure 4-2.

ii. at = min(st-2 - St-1) This is the parameter used primarily to detect incidents. st-2 - st_ I a

for incident to be detected.

iii. P = minimum average speed.
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Table 4.1: Results

Parameter 200 ft 600 ft
c(mph) 25 20
P(mph) 30 30

7 0.77 0.77

iv. y= min(st_1/st) This is needed to check

incidents. In case of incident, st- I > st.

that st can increase compared to st-1. Its

under any flow conditions for an incident.

for random fluctuations. st-/st >_ y for declaring

But, under conditions of low flow which implies

assumed that st-1 can not be lesser than y % of st

4.4 Experiments on 1-93 North

Experiments were conducted on the 1-93 North to evaluate the performance of the Speed Drop

algorithm. All alarms in the first five minutes have been rejected because the network loading has

not been completed in that time and the flows have not stabilized. A complete blockage of the

Table 4.2: Scenario properties

Description Range
Spacing of the sensors(ft) 200, 600
Flow rate(vphpl) 80%,100%,120% of OD2004 PM
Incident Duration(min) 15
Replications per experiment 20
Duration of Simulation(min) 90
Polling Period of algorithm(min) 0.5
Incident Start 10 min after start of simulation

second lane from the left, of a 4 lane section, was simulated. Incident was placed Location 2. The

results have been presented in Table 4.3.
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Table 4.3: Results at 200 ft and 600 ft sensor spacing

200 ft sensor spacing
80% 100% 120%

Demand Ref MCM APID SD Ref MCM APID SD Ref MCM APID SD
TTD(min) 2.25 2.76 1.22 2.12 2.01 1.03 2.56 2.02 1.27
DTR(%) 100 95 80 100 100 80 95 95 85

FAS 128 39 37 135 59 17 114 61 17
600 ft sensor spacing

80% 100% 120%
Demand Ref MCM APID SD Ref MCM APID SD Ref MCM APID SD

TTD(min) 5.69 3.32 1.62 6.31 3.89 1.82 6.82 4.36 - 2.00
DTR(%) 40 95 40 65 95 70 55 90 60

FAS 5 69 47 19 86 38 12 79 44

4.5 Summary and Findings

i. The time to detect the incidents is less than half the

at 200 ft and 600 ft spacing.

time taken by the other algorithms both

ii. At 200 ft spacing, the number of false alarms in 20 replications is less than half those

generated by APID at 100% and 120% flow rates. The number of false alarms is signifi-

cantly smaller than that of McMaster even in its refined form. However at 600 ft spacing,

the SPDDRP generates more FAS than the Refined McMaster algorithm but less FAS than

APID.

iii. The Detection rate of the SPDDRP algorithm is less than the other algorithms. The advan-

tage to be gained from the SPDDRP algorithm is primarily the TTD. In order to make the

SPDDRP algorithm operational, it would be necessary to combine it with another algorithm

having complementary characteristics (poor TTD, low FAS and high DTR).

iv. The algorithm is found to be sensitive to traffic conditions. If the conditions without incident

are highly congested, the algorithm does not have good performance.
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Chapter 5

Discrete choice models for incident

detection algorithms

5.1 Introduction

Fundamentally, incident detection algorithms (IDAs) can be probabilistic or deterministic. Prob-

abilistic algorithms are different forms of the Neyman-Pearson (or) the Bayesian formulation[35,

36]. Deterministic algorithms use sensor data to identify incidents. The California algorithms[17,

18] and the McMaster algorithm[20, 7] are two main types of deterministic algorithms. Calibration

of these algorithms is based on studying the range of variations in fundamental traffic variables as

reported by the sensor data. Most of the calibration efforts use simulated data as a starting point.

The advantage of simulation is that a large amount of incident data can be generated. Different

scenarios can be studied. The disadvantage of simulation data is that it is subject to different

modeling inaccuracies. Factors that affect the performance of an incident detection algorithm are

sensor spacing, geometric configuration of the freeway network, location of the incident between

two sensors, the duration of persistency checks made by the algorithm etc. All these factors can

be varied using simulation. In spite of such extensive calibration, the parameters have to be tuned

using the real data once it is available. Thus, using real data in the calibration phase would yield

more realistic parameters. But the disadvantages are that it is not very easily available and is often

subject to different types of confounding effects, sensor malfunctioning etc. which have to be fil-
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tered. A mechanism is necessary to combine the information contained in real and simulated data.

This would improve the parameters while, at least partially, eliminating the drawbacks of either

data source. Although, we could use information from simulation to get more significant models,

we would have to correct the differences in scale between the data sources. The problem of es-

timation using multiple data sources has been studied in detail Ben-Akiva et al.[32]. They have

presented a method to combine revealed preference(RP) and stated preference(SP) data. SP data

have complimentary characteristics to RP data. Combining RP and SP data uses the information

from SP data on trade-offs among attributes to help identify different parameters while correcting

biases contained in the SP data. Real incident data can be treated as RP data and simulated data

is equivalent to SP data. Combined estimation using both real and simulated data strengthens the

estimation by using the information in the simulated data while correcting for biases in the simu-

lated data using real data. A close analogy exists between that study and the current study as seen

above. Therefore, a similar approach is used in this chapter to combine real and simulated incident

data.

5.2 Model Specification and Estimation

Incidents are detected by analyzing the values of the fundamental traffic variables: speed, oc-

cupancy and flow, measured using loop detectors. Spatial and temporal differences between the

values of these variables can be constructed. Spatial differences between values of traffic variables

of two adjacent stations and temporal differences in the values of traffic variables at a station can

also be constructed. Given the values of these variables, we can compute the probability of an

incident. Different specifications have been studied in the following sections.

Traffic state is identified to be in one of the following three states - free flow, congestion due

to incident and congestion due to bottlenecks. Incident data is generated using the simulator for

different scenarios. Data from one scenario, reasonably free from confounding effects of different

types of congestion, is selected. Sensors on either side of the incident were chosen to sample the

incident data. During the incident, the state was classified to be incident. Classification of the state

as incident-free or recurrent congested was based on visual inspection of the values of the traffic
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variables (speed, occupancy) at different times. Incident data from all replications of one scenario

were also chosen in order to the enrich the sample with incident congested alternative. In this way,

choice-based sampling has been used to obtain the data for estimation.

5.2.1 Binary Logit model to identify congestion

A probabilistic incident detection model based on a discrete choice model is used to evaluate

the probability of an incident, given the traffic variables at that instant and at that section. The

initial binary choice model is used to identify congestion. For the present case two alternatives

exist, congested or non-congested flow. Accordingly, a binary logit model has been used. The

model specification is as specified in Table 5.1. Vcon.g is the systematic utility associated with the

congestion alternative.

Vcong = + SPD * speed + OCC * occupancy (5.1)

The sensor used for estimation is the first sensor upstream of the incident in the affected lane. The

Table 5.1: Initial choice model specification

Variable Name Description
beta alternative specific constant for no-congestion
SPD alternative specific for congestion
OCC alternative specific for congestion

results of the estimation are in Table 5.2 The data for calibration was chosen from Location 2. De-

mand level of 100% was used for calibration. An incident of 15 min duration was simulated. The

incident started 10 min after start of simulation. The model fit is good (0.91) and the log-likelihood

is substantially different from that of the trivial model. All the coefficients are significant. The sign

of the speed coefficient is intuitive. As the speed increases, the probability of detecting congestion

decreases. The sign of the occupancy coefficient is not straightforward because of its correlation

with speed measurements. Using the above coefficients, predictions were made for probabilities

of of the two states. A plot of the probabilities has been presented in Figure 5-1 and Figure 5-2.

This is an extremely simplified model which would be able to detect congestion but not distinguish
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Table 5.2: Summary of estimation

Variable Name Coefficient Std. Error t-statistic
beta -26.85 5.227 -5.137

SPD -0.1832 0.06197 -2.956

oCC -0.5468 0.09131 -5.988

Log-likelihood of 0 coeffs model -471.34

Log-likelihood of MNL model -42.471

p2  0.9099

p2 0.9035

between recurrent and incident congestion. In order to distinguish between recurrent and incident

congestion we would have to use a richer specification recognizing the fact that conditions down-

stream of an incident are different from that downstream of a bottleneck. This is supported by the

observation of Hall et al.[1]. In case of location 1 in Figure 5-1, congestion is caused by incident

Plot of Speed at Location 1 Ptobabilities plot for Location 1

Sa 1000 1500 2000 2500 3000 3500
Time in secs

(a) Speed Vs time

4000

(b) Probabilities Vs time

Figure 5-1: Predicted probabilities for location 1

as well as shock wave propagation from downstream on-ramp. The model predicts the conges-

tion probability accurately. As indicated by the speeds, the congestion starts before the incident.

Therefore, the probabilities become one before the start of the incident. The probabilities remain

at one until the end of the simulation. Clearly, this model is effective in detecting congestion but

not incident. It can be seen from Figure 5-2 that the speed drops during the incident for location 2.
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Figure 5-2: Predicted probabilities for location 2

The probability of congestion during the incident becomes one. Thus, the model is clearly able to

detect congestion during the incident. After that the speeds briefly increase back to normal before

dropping again due to bottleneck. The same behavior is reflected in the probabilities. The prob-

abilities are especially turbulent between the end of the incident and the onset of the subsequent

shock wave. In the next section, we examine a model identify incident congestion.

5.2.2 Binary Logit model to identify incidents

Since our purpose is to detect incidents, the model presented in the previous section is only partially

relevant. In this section, we present a binary logit model in which alternatives are incident and no

incident. Thus the base alternative (no incident) in this case includes both free flow and recurrent

congestion. In order to distinguish between the two alternatives in this case, the specification has

to be improved. A good choice of explanatory variables includes spatial difference in flow, occu-

pancy or speed. Flow(counts) was found to be too noisy with substantial variation because of its

discrete nature. Speed has been used for the present case. Relative spatial differences(difference

in speed between two adjoining detectors normalized with respect to speed of the upstream detec-

tor) are found to be smoother than spatial differences because they represent variation normalized

with respect to the upstream variable value. Sample plots of spatial speed differences and relative
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spatial speed differences have been produced in Figure 5-3. Vie is the systematic utility associated

with the incident alternative. spdrdf and occrdf refer to the relative speed difference and relative

occupancy difference respectively. They are defined in the equations below.

spddf(i, t) = speed(i, t) - speed(i + 1, t)

spdrdf(i, t) = (spddf(i, t))/speed(i, t)

occdf(i,t) = occupancy(i,t) - occupancy(i+ 1, t)

occrdf(i, t) = (occdf(i, t)) /occupancy(i, t)

SPDDF vs time

(5.2)

(5.3)

(5.4)

(5.5)

SPDRDF Vs time

1500 2000 2500
Time in sacs

(a) SPDDF Vs time
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(b) SPDRDF Vs time

Figure 5-3: Comparison of SPDDF with SPDRDF

Vie = P + SPD * speed + OCC * occupancy + FLW * flow + SPDRDF * (spdrdf) (5.6)

All coefficients from the estimation are seen to be significant. There is also a good fit and the

log-likelihood is significantly different from that of the trivial model.
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Table 5.3: Initial model specification

Variable Name Description
beta alternative specific constant for no-incident
SPD alternative specific for incident congestion
OCC alternative specific for incident congestion
FLW alternative specific for incident congestion
SPDRDF alternative specific for incident congestion

Table 5.4: Summary of estimation

Variable Name Coefficient Std. Error t-statistic
beta -29.28 4.41 -6.64
SPD -0.2366 0.1196 -1.978
OCC -0.2829 0.09681 -2.922
FLW -1.6150 0.2829 -5.708
SPDRDF -13.03 2.79 -4.669
Log-likelihood of 0 coeffs model -471.34
Log-likelihood of MNL model -4.4453

p2  0.9810

2 0.9596
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Figure 5-4: Predicted probabilities for location 1
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Figure 5-5: Predicted probabilities for location 2

The probability predictions for location 1, Figure 5-4, are accurate. But for location 2, Figure 5-

5, although the trend of the probabilities is accurate most of the time, there is some oscillation

in the magnitude of the probability over the incident duration. Such variations is not preferable

because this would result in declaring and clearing incidents several times, leading to multiple

alarms during the incident.

5.2.3 Binary Logit model to distinguish between incident and recurrent con-

gestion

Many incident detection algorithms proceed in two steps. First, they detect congestion and then

distinguish between recurrent and incident congestion. It is easy to detect congestion but the

difficulty lies in distinguishing between incident and recurrent congestion. It would be useful

to examine the specification necessary to effectively distinguish between incident and recurrent

congestion. The model specification is as follows:-

Vine = P+ SPDRDF * spdrdf + OCCRDF * occrdf (5.7)

All coefficients from the estimation are seen to be significant. There is also a good fit and the log-
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Table 5.5: Initial model specification

Variable Name Description
beta alternative specific constant for incident congestion
SPDRDF alternative specific variable for recurrent congestion
OCCRDF alternative specific variable for recurrent congestion

Table 5.6: Summary of estimation

Variable Name Coefficient Std. Error t-statistic

beta -27.47 9.125 -3.01
SPDRDF -11.71 5.398 2.169
OCCRDF -59.35 2.334 -2.543
Log-likelihood of 0 coeffs model -471.34
Log-likelihood of MNL model -2.1519

p2 0.9894

-2 0.9747

likelihood is significantly different from that of the trivial model. Although, the probabilities are

good, the variation in probability over the duration of the incident is still present. The predicted

probabilities can be seen to be reasonably accurate for both locations from Figure 5-6 and Figure 5-

7.

57



Plot of Speed at Location 1
60.

0.5

500 1000 1500 2000 2500 3000 3500 4000
Time in secs

(a) Speed Vs time

Plot of probabilities Vs time for location 1

00 1000 1500 2000 2500 3000 3500 4000
Time in sec

(b) Probabilities Vs time

Figure 5-6: Predicted probabilities for location 1
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Figure 5-7: Predicted probabilities for location 2
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5.2.4 Multinomial Logit model

A multinomial logit specification can be used to distinguish between the three different traffic

states. Each traffic state is treated as a separate alternative.

Table 5.7: Initial model specification

Variable Name Description
i11C alternative specific constant for incident congestion alternative
rec alternative specific constant for recurrent congestion alternative

OCCno alternative specific for no congestion congestion alternative
OCCine alternative specific for incident congestion alternative
OCCDFine alternative specific for incident congestion alternative
OCCDFrec alternative specific for recurrent congestion alternative

Vno = inc + OCC 0 * occupancy

Vrec = Prec + OCCRDFrec * occrdf

(5.8)

(5.9)

(5.10)vilc = OCCRDFic * occrdf + OCCine * occupancy

All coefficients from the estimation are seen to be significant. There is also a good fit and the

Table 5.8: Summary of estimation

Variable Name Coefficient Std. Error t-statistic

ine -9.5020 2.6090 -3.6420

Irec -10.8100 1.3170 -8.2060
OCCO -0.4112 0.05701 -7.2140

OCCine -0.3016 0.0926 -3.2570
OCCD ine 0.3098 0.1983 2.0070
OCCDFrec -0.4107 0.08717 -4.7120
Log-likelihood of 0 coeffs model -747.056
Log-likelihood of MNL model -64.7035

p2  0.9134

2 0.9054

log-likelihood is significantly different from that of the trivial model. The signs of the coefficients
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are intuitive. The positive sign of OCCDFINC shows that for a greater occupancy difference,

there is a greater probability of incident state than free flow. There is no clear interpretation for the

sign of OCCDFREC. This can be explained by the plot of the Occupancy Difference in Figure 5-8.

From the figure, it can be interpreted that the role of OCCDF in distinguishing between no incident

and bottleneck is not very clear. OCCDF varies around a mean of 0 for both the no incident and

recurrent congested scenarios. It can also be seen in Figure 5-9 and Figure 5-10 that the model is

Figlot 
of OCCDF for location 2
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Figure 5-8: Occupancy Difference at Location 2

able to predict the traffic state accurately. Particularly in Figure 5-9, the model is able to identify

the propagation of the shock wave at the station. It can be seen from the speed plot that speeds drop

much before the occurrence of the incident at t=600 seconds. Thus the model is able to identify

and isolate the effect of the incident from that of the bottleneck. In Figure 5-10, the model is able

to clearly predict the onset of the incident, the recovery phase, the subsequent bottleneck and the

queue close to end of the simulation. The probabilities predicted by the model for location 2 are

much more accurate than the previous models. The variation in probabilities is in agreement with

the turbulent traffic state after the incident. But the model is able to clearly differentiate between

the different states.
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5.2.5 Nested Logit model

The framework of almost all incident detection algorithms have two main components - a conges-

tion detection routine and a routine to distinguish between incident and recurrent congestion. This

essentially means that given the congestion, the algorithm attempts to check if the congestion is

due to incident. This suggests a natural extension of the multinomial logit model, discussed earlier,

to a nested logit model structure. The a priori hypothesis is that speed/occupancy can be used to

identify the presence of congestion and flow/spatial differences can be used to distinguish between

the different types of congestion. This is intuitive, because any type of congestion is accompanied

by a drop in speed and increase in occupancy. As seen earlier the flows under incident congestion

are lesser than recurrent congestion and the spatial differences would be greater. The initial model

was estimated using the same data set used to estimate the binary logit and multinomial logit mod-

els in the earlier sections. The nested logit model has been estimated using Hielow[29]. The model

structure was developed using the model structure presented earlier to identify congestion and the

model to distinguish between incident and recurrent congestion. The NL model structure is shown

in Figure 5-11

Table 5.9: Model specification

Variable Name Description

pno No Congestion alternative specific constant

P;nc Incident alternative specific constant

OCCcong occupancy alternative specific variable for congestion nest
FLWine alternative specific variable for incident congestion alternative

FLWrec alternative specific variable for recurrent congestion alternative

OCCRDFinc alternative specific variable for incident congestion alternative
OCCRDFrec alternative specific variable for recurrent congestion alternative

Nested Logit Model probability expressions

Vno = no (5.11)

Veong = OCCcong * occupancy + Vcong (5.12)
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Figure 5-11: Nested logit model structure

Vong (1/peong)ln(ePcn" Vic + ePc""gVrec) (5.13)

Vine= Pine + FLWine * flow + OCCRDFinc * occrdf (5.14)

Vrec = FLWrec * flow + OCCRDFrec * occrdf (5.15)

Po = 1/(1 +eVong -Vn) (5.16)

Pine= (1 - Pno)(1/(1 + evrec-inc)) (5.17)

Prec = (1 - Pno)(1/(I + evnc-Vrec)) (5.18)

Vno is the systematic utility associated with the no congestion alternative

Vine is the systematic utility associated with the incident alternative

Vrec is the systematic utility associated with the recurrent alternative

Pno is the probability of no congestion

Pine is the probability of incident

Prec is the probability of recurrent congestion

pcong is the scale associated with the congestion nest

The results of the estimation are presented in Table 5.10. The signs of the coefficients are intuitive.

The coefficient ~no is greater than 0, which means that all being equal, there is a greater proba-

bility of no congestion. the coefficient OCCcong is positive, which indicates that as the occupancy

increases, probability of congestion increases. The results in Table 5.10 are for simulated data.

All the coefficients except the alternative specific constants are significant at the 95% significance

level. The predicted probabilities are presented in Figure 5-12 and Figure 5-13.
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Table 5.10: Summary of estimation

Variable Name Coefficient Std. Error t-statistic

pno 4.063 2.898 1.402

frec 2.795 5.305 0.5268

OCCcong -0.4914 0.08209 5.986
OCCRDFinc 67.80 19.98 3.394

OCCRDFrec -22.43 10.83 -2.071

FLWinc -4.582 1.34 -3.419
FLWrec -1.691 0.9121 -1.854
o 0.3792 5.305 0.5268
Lni(L) -50.1444(-747.056)

p2(P2) 0.9077(0.9204)
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Figure 5-12: Predicted probabilities for location 1
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Plot of probabilities Vs time for location 2
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Figure 5-13: Predicted probabilities for location 2

It can be seen from the prediction of the probabilities that the nested logit model captures all

the phenomena most accurately in both locations. In case of Location 1, the model identifies the

incident, the recovery phase and the subsequent recurrent congestion better than the MNL model.

In location 2, the model identifies all phenomena predicted by the MNL model. In addition, the

model also captures the brief recovery wave between t= 1600 to t= 1700, after the incident is cleared.

This can be observed by a short increase in speeds at end of the incident. The predictions are also

much less ambiguous than the MNL predictions.

5.3 Model Evaluation using MITSIM

Using the coefficients obtained from calibration and the framework developed earlier, the per-

formance of the model has been tested over the same set of data and scenarios used to test the

APID and McMaster algorithms. The validity of the simulation with respect to real data has been

discussed in the later sections. The algorithm was tested for 20 replications with one incident be-

ing simulated in each replication. Each replication was one hour long. These results have been

presented in Table 5. 11 and Table 5.12.
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Table 5.11: MNL model results Persistency=3

200 ft 600 ft
Location Demand 80% 100% 120% 80% 100% 120%

TTD(min) 2.63 1.95 2.00 4.06 3.35 4.10
Location 1 DTR(%) 75 100 90 90 100 100

FAS 29 54 45 28 62 57
TTD(min) 2.02 1.84 2.16 2.45 2.48 2.67

Location 2 DTR(%) 100 80 90 100 100 100
FAS 52 47 56 41 52 53

Table 5.12: NL model results Persistency=3

200 ft 600 ft

Location Demand 80% 100% 120% 80% 100% 120%
TTD(min) 2.46 1.70 2.00 4.00 2.75 2.62

Location 1 DTR(%) 70 100 75 90 100 100
FAS 42 50 41 26 47 27

TTD(min) 2.18 2.00 2.14 2.60 2.52 2.62
Location 2 DTR(%) 95 80 90 100 100 100

FAS 64 67 78 52 55 50

5.3.1 Limitations of Simulation

The limitations of the model calibrated with only simulated data are:-

i. Simulation data tends to have lesser variation than field data. But it is also free from con-

founding effects, invalid observations ( due to sensor malfunctioning etc.) or loss of data

(failure of loops).

ii. The choice model parameters depend heavily on the accuracy of simulation namely the lane

changing, gap acceptance and merging models. They also depend on the accuracy of mod-

eling of incidents (visibility of incidents, presence of rubber necking).

iii. Inherently, the simulation cannot match the real network exactly because of boundary effects

and limitations in network data availability.
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5.3.2 Summary of Results

i. The probabilistic approach helps collapse all thresholds into a single threshold. This is sig-

nificant as the number of threshold to be calibrated is just one. This precludes the need for

an elaborate calibration process. Thresholds can be established by directly setting costs of

declaring incidents and false alarms. Section 5.5.5 illustrates this procedure.

ii. The NL model has better performance than the MNL model. This was expected because the

NL model has better power to distinguish between recurrent and incident congestion better

by accounting for the correlation between the two congested states.

iii. Both models maintain a detection rate above 70% in all scenarios and have quick detection

times of 2-3 min in almost all scenarios.

iv. These choice models have been found to have problems when there are large lanewise dif-

ferentials in the values of traffic variable.

v. The model was calibrated using data from location 2. The same parameters were used to

make predictions for location 1. This indicates that the model parameters are transferable in

this case.

5.4 Comparison of performance of different algorithms

The results from the Nested Logit model have been compared with the results from the McMaster

and APID incident detection algorithms in Table 5.13.

i. It can be seen that over almost all scenarios, the NL model has smaller TTD than either the

Refined McMaster or the APID algorithms.

ii. The FAS generated by the NL model lies between the FAS generated by APID and the

refined McMaster algorithms.

iii. The performance of the NL model based algorithms is intuitive because they use both single-

station and comparative variables in calibration.
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Table 5.13: NL vs others at 200 ft and 600 ft sensor spacing

Results at 200 ft___________

Location 80% 100% 120%

Demand MCM APID NL MCM APID NL MCM APID NL
TTD(min) 4.08 2.47 2.46 2.67 2.34 1.70 2.92 2.24 2.00

Location 1 DTR(%) 43 85 70 90 95 100 90 85 75
FAS 24 33 42 48 54 50 51 51 41

TTD(min) 2.25 2.33 2.18 2.12 2.07 2.00 2.56 2.28 2.14
Location 2 DTR(%) 100 100 95 100 75 80 95 80 90

FAS 128 53 64 135 61 67 114 58 78
Results at 600 ft

Location 80% 100% 120%

Demand MCM APID NL MCM APID NL MCM APID NL
TTD(min) 5.69 3.32 4.00 6.31 3.89 2.75 6.82 4.36 2.62

Location 1 DTR(%) 40 95 90 65 95 100 55 90 100
FAS 5 69 26 19 86 47 12 79 27

TTD(min) 3.10 2.50 2.60 2.33 2.62 2.52 2.92 2.60 2.62
Location 2 DTR(%) 100 100 100 100 100 100 100 100 100

FAS 56 81 52 52 96 55 49 93 50

5.5 Combined Estimation using real and simulated data

5.5.1 Introduction

Using both real and simulated data in the calibration phase can yield more realistic parameters.

Since simulation can be used to obtain data from different scenarios, the robustness of the model

can be improved. However, simulated data is subject to different types of errors and modeling inac-

curacies. These errors can be reduced by using real data in conjunction with simulated data during

the model estimation phase. As discussed earlier, this approach is similar to that of combining

revealed preference and stated preference data which has received much attention in recent years.

In addition, all traffic states may not be observed at any given sensor station in the real data. This

disadvantage can be overcome to an extent using simulation. The estimation of logit models using

simulated data was studied in the previous section. In this section, combined estimation using real

and simulated data has been presented. Data from 1-880 near Hayward, California has been used.
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A brief description of the real data is followed by the description of simulation parameters. Factors

that affect modeling of incidents in a simulator have been briefly studied. Results of combined

estimation have been discussed followed by results from testing of the model prediction.

5.5.2 Real data

Description of the real incident data used in current study

For the current study, real incident data was obtained from the Internet for 1-880 near Hayward,

California[24]. The data was collected as part of the Freeway Service Patrol (FSP) study at the

University of California at Berkeley. The study section has been presented in appendix C-1. Also

produced in appendix B-I is the geometric configuration of the network (to scale) where the actual

location of the exit and entry ramps have been marked. The study section was 9.2 miles long and

varied between 3-5 lanes. An HOV lane covered approximately 3.5 miles of the study section. In

addition to loop detector data, probe vehicle data was also collected in the study. The data is also

available in the processed format, both at one minute intervals and at five minute intervals. The one

minute interval data was chosen and some sample plots have been made (shown in appendix D-1).

Format of the Loop data

Loop detectors in the network were placed approximately 1/3 of a mile (approximately 1800 ft).

There were a total of 322 mainline detectors, 18 on-ramp detectors and 14 off-ramp detectors. The

loop data was collected in 2 different periods. The first study took place from February 16 through

March 19, 1993 and the second study took place from September 27 through October 29, 1993.

On each day, the loop data is available for both the a.m. and the p.m. peaks (i.e. 6:30-9:30 a.m.

and 3:30 - 6:30 p.m. ). The raw loop data is in the binary format and has to be converted to the

standard form with measurements of speed, occupancy and counts from each sensor.

Format of the Incident data

Detailed data is also available for the incidents that were observed in the study. Some of the

details available are time at which the incident was first observed (which is offset from the time of
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occurrence by the time taken for the congestion to reach the upstream or downstream station), the

location of the incident, the severity of the incident (single vehicle / multiple vehicles), end of the

incident and the incident management strategy used to clear the incident.

5.5.3 Simulation data

Predictions under free flow

In order to obtain realistic results, the parameters of the simulator have to be calibrated. The net-

work used for the current study has also been studied by Ashok and Ben-Akiva[23]. The simulator

MITSIM needs as input, time dependent OD trip tables. The estimates of dynamic OD flows using

the sensor data has been have been obtained by Ashok and Ben-Akiva[23]. Some calibration has

also been done for the same network by Ahmed[26]. The number of replications (to obtain a sta-

tistically significant estimate) required for all the speed and flow estimates to be within 5 percent

accuracy was determined to be 10. In order to measure the accuracy of the model, the root mean

square error(rmse and root mean square percent error(rmsep) were used. This can be defined as

1N
rmse Nyj -y,1 2  (5.19)

1N

rmsep = {(y,- yi)/yi} 2  (5.20)

Based on the above measure, further tuning of the model produced results which have been pro-

duced in Table 5.14. The tuning of the model mainly involved the setting of desirable speed and

maximum allowable speed for specific portions of the network. The network in the simulator is

subject to boundary effects. It does not accurately represent all field conditions. Based on the max-

imum speed observed in different parts of the network obtained from Petty[24], this value for reset

for different parts of the network. There is a significant drop in difference between the predicted

and the actual speeds. The flow predictions are practically constant.

70



Table 5.14: Error estimates

Measure Old(flow) New(flow) Old(speed) New(Speed)
RMSEP(%) 2.57 2.39 24.33 17.70
RMSE 27.26 24.74 11.47 6.31

Predictions under incident conditions

In order that the simulator replicates actual behavior to a reasonable extent the manner in which an

incident is simulated has to be carefully studied. In order to simulate an incident some parameters

have to be specified prior to the simulation. Some of these parameters that could be important

under incident conditions are

i. Visibility of the incident

ii. Rubbernecking

iii. Nosing and Yielding parameters

In order to calibrate the simulator under incident conditions, the incident scenario simulated is

the one for which the plots have been produced in appendix D-1. There were two simulated

incidents in the same time interval. Both were major incidents lasting over 30 minutes each.

In both cases one lane was blocked. The first incident started at 7:40 am and lasted for about

34 minutes. The second incident started at 8:42 am and lasted for 47 minutes. Both incidents

were simulated with rubber necking, with reduced speeds of 20mph in adjacent lanes. Again,

10 replications were determined to be sufficient to ensure 95% accuracy. The Root Mean Square

Table 5.15: Error estimates under incident conditions

Measure Speed Flow
RMSEP(%) 22.73 3.06
RMSE 10.59 32.51

Error Percent(RMSEP) & Root Mean Square Error(RMSE) values for speed and flow are close

to the magnitude of the corresponding values for non-incident cases. Most of the calibration was

71



done by varying the visibility distance and the rubbernecking speed. Further improvement could

be achieved by varying parameters of the lane changing model.

Simulation details

Using the information about the layout of the network and the map of the network showing the

geometry, it was created in MITSIM[37]. For the initial experiments, the section of the network

between Hesperian Blvd. and WA-Street is to be used. This region of the network is the longest

section in the network between any 2-exit/entry ramps. Hence, it would be a section where the

congestion induced due to incident (capacity reduction) can be easily detected and differen'tiated

from the congestion due to bottlenecks (excessive demand). The details of the simulation have

been presented in Table 5.16. It has to be noted that the real data contained, in addition to incidents

Table 5.16: Simulation Setup

Simulation Between 07:30:00 to 10:30:00
Incident Between 08:00:00 to 08:30:00
Location of Incident at midway of section between detectors 1 and 7

Type of Incident 2 lane block with simulated rubber-necking

similar to the simulated incident, other minor incidents that reduced capacity during the periods of

data collection. Model calibration using real data should correct these differences.

5.5.4 Model structure for Combined Estimation - NLRPSP

The model estimated using both simulation data(SP) and real data(RP) is referred to as NLRPSP.

The model simulated using only simulation data(SP) is referred to as NLSP.

VnO = no (5.21)

Veong = OCCcong * occupancy + Vong (5.22)

Veong =( 1 /peog )jfl ec"ng* Vinc + ePcng*Vrec) (5.23)

Vine = Pine + FLWine * f low + OCCRDFinc * occrdf + SPDine * speed (5.24)
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inc rec

Figure 5-14: Nested logit model structure for RP-SP Combination

Vrec = FLWrec * flow + OCCRDFrec * occrdf + SPDrec * speed (5.25)

Pno = 1/( + eVcong-Vno) (5.26)

Pi= (1 -Po)(1/(1 +eree inc)) (5.27)

Prec= (1 - Pno)(1/(l + encVrec)) (5.28)

Vno is the systematic utility associated with the no congestion alternative

Vine is the systematic utility associated with the incident congestion alternative

Vrec is the systematic utility associated with the recurrent congestion alternative

Pno is the probability of no congestion

Pine is the probability of incident congestion alternative

Prec is the probability of recurrent congestion alternative

The model for combined estimation has two different types of scale differences. Since we believe

that the simulation data(analogous to SP, referred to as SP) is different from the real data(analogous

to RP, therefore referred to as RP), we use the scale parameter psp. The second type of scale pa-

rameter because of the congestion nest is pCON. In order to estimate both the scale parameters, the

model structure considered is presented in Figure 5-14. The psp for the SP data is accounted for
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Table 5.17: Model specification

Variable Name Description

pno No Congestion alternative specific constant

inc Incident alternative specific constant

OCCcong occupancy alternative specific variable for congestion nest

FLWine flow alternative specific variable for incident alternative

FLWrec flow alternative specific variable for recurrent alternative

OCCRDFinc occupancy relative difference alternative specific variable for incident

OCCRDFrec occupancy relative difference alternative specific variable for recurrent

SPDine speed alternative specific variable for incident

SPDrec speed alternative specific variable for recurrent -

PSP scale parameter introduced to correct scale difference between RP and SP data

Pcon scale parameter of congestion nest

before the pCON for the congestion dummy node is considered.

5.5.5 Results of Combined Estimation

For the present case, most of the real sensor data did not contain any traffic state III. Therefore

the state III points are only from the simulation data. The results of the combined estimation have

been presented in Table 5.18.

5.5.6 Using the RP-SP for prediction

The combined model can be used for detecting incident conditions by calculating the probability

of an incident, given the traffic state at any particular sensor. There are several advantages in using

a choice model to compute this probability. Some of them are summarized below.

i. In addition to predicting probability of an incident, we could also predict the probability of

other states. The equivalent procedure for a deterministic algorithm would be to calculate

the relative distance of a traffic point to the different incident states.

ii. We have an effective method to improve our model using real data. By combining real data

with simulated data, we can increase the reliability of our model and reduce the bias due to
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Table 5.18: RP-SP Estimation results

Coef Value(t-stat)

pno 2.161(8.1)
Irec -2.325(-4.01)
FLWine -1.381(-6.72)

FLWrec -1.159(-5.82)
OCCRDFnlC -4.866(1.465)
OCCRDFrec -5.555(-3.71)
OCCcong 0.5706(11.37)
SPDine -0.2577(-4.27)
SPDrec -0.2381(-4.08)

Pcon 0.3350(- 11)

PSP 0.7139(-8.57)
Log-likelihood(trivial model) -1707.55
Log-likelihood -683.05
Fit 0.60

either data source. We also reduce the effort spent in tuning the model to real data when the

model is used in the field.

iii. We get new coefficients from our SP data(simulation in this case). This was also demon-

strated in the current study because we did not have state III in the real data, we can use the

coefficient from the simulation.

Table 5.19: RP-SP Estimation results

Coef Value

pno 2.161(8.1)
Irec -2.325(-4.01)
FLOWinc -1.381(-6.72)
FLOWrec -1.159(-5.82)
OCCRDFinc -4.866(1.465)
OCCRDFrec -5.555(3.71)
OCCcong 0.5706(11.37)

SPDine -0.2577(-4.27)
SPDrec -0.2381(-4.08)
Ocong 0.3350(-11)
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Based on the coefficients obtained above, the probability of an incident was calculated using three

different models, an MNL model, a Nested Logit model using only simulated data and a Nested

Logit model calibrated using both simulated and real data. The plots of the probabilities has

been shown compared in Figure 5-15 On comparison of the three plots, it can be seen that the
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Figure 5-15: Predicted probabilities

performance of the MNL and the NLSP(Nested Logit model estimated with SP i.e. simulation

data only) models, both based on simulated data is almost comparable. The NLSP predictions have

much lesser variation. The prediction of the NLRPSP model, which uses both real and simulated

data, is much better than either model in the sense that the probability of incident has increased and

the probability of recurrent congestion has reduced. This model has not been evaluated because

of a lack of accurate real incident data. It would be difficult to observe any improved prediction

if real incident information is not very accurate. However, it is clear from Figure 5-15 that the

probabilities are less ambiguous when calibrated with real incident data.
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Chapter 6

Combining different algorithms for

improved performance

6.1 Combining the SPDDRP and McMaster algorithms

6.1.1 Introduction

The results from testing of the McMaster and the APID algorithms have been summarized in Fig-

ure 6-1 at a persistency = 3. It can be seen that the McMaster algorithm in its refined form has less

FAS than the APID algorithm. But APID is better in terms of the TTD. In order to further improve

the TTD of the McMaster Algorithm or the APID algorithm, it would be advantageous to combine

it with the Speed Drop algorithm discussed earlier. The Speed Drop algorithm has quick detection

properties but poor detection rate which can be compensated by combining the other algorithms in

an OR mode so that TTD and DTR over all scenarios improve while not increasing the FAS too

much. SPDDRP does not perform well in congested conditions where the McMaster algorithm has

good performance. Therefore the combination uses the best of both algorithms.

The algorithm chosen to be combined with SPDDRP was the McMaster algorithm in its refined

form. The SPDDRP algorithm has been improved by using it in an OR mode with the McMaster

algorithm that improves the DTR without worsening the FAS. Two main observations have been

used to select the McMaster algorithm
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I ~ persistency = 31

200 ft 600 ft 1200 ft

80% 100% 120% 80% 100% 120% 80% 100% 120%

loc1 TTD APID APID APID APID APID APID APID APID APID

lo1 DTR APID APID MCM APID APID APID APID APID MCM

loc FAS MCM MCM MCM MCM MCM MCM MCM MCM MCM

loc2 TTD MCM APID APID APID MCM APID MCM APID MCM

loc2 DTR MCM MCM MCM MCM MCM MCM MCM MCM MCM

loc2 FAS APID APID APID MCM MCM MCM MCM MCM MCM

Figure 6-1: Summary of Results

6.1.2 Methodology

Th following rules are used for combining algorithms:-

i. If the two algorithms are perfectly complementary to each other they can be combined in

an OR fashion for maximum benefits. The speed drop algorithm studied earlier uses a high

threshold to obtain quick detection time while maintaining a low false alarm rate. But the

high threshold also leads to missed detections. Thus, in order to improve the performance of

the SPDDRP algorithm, it would have to be combined with another algorithm that has less

rigid thresholds for incident detection but acceptable false alarm and detection properties.

Combining in an "OR" mode leads to higher FAS, higher DTR and probably lower TTD

since the earliest confirmation detects the incident.

ii. In order to combine algorithms in an AND fashion, the algorithms have to be functionally

similar. There should not be considerable differences in the spatial and temporal locations

where incidents are detected by the algorithms. If the algorithms detect the same incident at

very different locations or at different times, there would be a lot of missed detections.

6.1.3 Framework

Basic Idea

By virtue of the model structure shown below, under uncongested conditions, the SPDDRP dec-

laration would mostly declare incident. However, when speed is less than x, we rely on Refined
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McMaster would declare the incident.

(if speed > a)

(if SPDDRP == 1)

confirm incident

else((if Ref MCM == ])&(if 0.5*SPDDRP == 1))

confirm incident

else

(if RefMCM == 1)

confirm incident

SPDDRP=l Noe 5(PMP=0.5(SPDDRP1I

CONFIRM Inadent 4

Incident Yeared - CLEAR Incident

Fbi V o

Figure 6-2: Combination of SPDDRP and MCM

Since the SPDDRP algorithm does not use persistency checks, it can be easily combined with a

version of the McMaster that does not use these checks. When the number of persistency checks

are relaxed, the FAS increase. In order to limit the increase in FAS, McMaster was combined with

a relaxed version of the SPDDRP algorithm to confirm detections. We will demonstrate that the

FAS do not increase unreasonably because of relaxing persistency checks. The framework used

has been presented in Figure 6-2. The check for random fluctuations has been eliminated in the
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version of the SPDDRP algorithm that is used in conjunction with the McMaster algorithm. The

original version of the speed drop is used as the main indicator of incidents.

6.1.4 Evaluation of the combined algorithm

The combined algorithm was tested over the same range of scenarios, at location 2, used to test

the SPDDRP algorithm. The parameters are summarized in Table 6.1. The parameter acomb is the

value of c parameter for the SPDDRP module combined with the McMaster algorithm in an AND

fashion. The results are presented in Table 6.2 and compared with SPDDRP results for a spacing of

200 ft. The combined algorithm improves the time to detect of the SPDDRP algorithm in addition

to the improvement in the detection rate which improves to 100% for all scenarios.

Table 6.1: Parameters used

Parameter 200 ft
x(mph) 24
P(mph) 30
Y 0.77

Ucomb (mph) 12

Table 6.2: Results at 200 ft spacing

80% 100% 120%
Demand SD COMB SD COMB SD COMB

TTD(min) 1.22 1.07 1.03 1.09 1.27 1.06
DTR(%) 80 100 80 100 85 100
FAS 37 44 17 28 17 30

6.1.5 Findings and Summary

i. In order to combine the Refined McMaster algorithm with the SPDDRP algorithm, the per-

sistency is reduced to 1.
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ii. As expected, the detection rate has improved and the false alarms have increased because

of the ORing of the algorithms. However, the reduction in the time to detect the incident is

unexpected. The McMaster algorithm using the modified SPDDRP algorithm for confirma-

tion detects incidents quicker than the original SPDDRP algorithm for some scenarios. By

increasing the Xcomb parameter, we can reduce the FAS but the DTR would decrease.

iii. However, when the McMaster algorithm operates with a persistency greater than one, it is

not able to confirm the incident over successive time periods.

iv. A performance frontier can be constructed for every incident detection algorithm. This

would be the maximum improvement that can be attained in the MOEs for a specific sce-

nario for different values of thresholds. The limit of the maximum attainable MOEs can

be obtained by calculating the MOEs for the different values of the input parameters. The

parameter c and acomb were varied to obtain the MOE frontiers. Sample plots of the fron-

tiers for the 80% and 120% OD have been presented in Figure 6-3. The frontiers have been

presented for all three algorithms - SPDDRP, SDRM(MCM AND 0.5*SPDDRP i.e. relaxed

speed drop and refined McMaster) and SPDMCM (SPDDRP OR SDRM). It can be seen

that SDRM algorithm has favorable FAS but bad DTR. Also, for a given TTD SPDMCM

generates higher FAS than SDRM.

E x Lrapelated FAS ns TTD Itror O -80 Eltrapolatedw FAS s TTD froter lor 00-120

- SDORMI -- SDORMI
SPO--- SPDMCM

- - SPDR SPOORP

(a) OD 80% (b) OD 100%

Figure 6-3: FAS vs TTD at 200ft spacing

v. From Figure 6-4, it can be seen that the SPDMCM algorithm has much better detection

performance than the other algorithms over all scenarios.
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(b) OD 100% (c) OD 120%

Figure 6-4: DTR vs FAS at 200ft spacing
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6.2 Using a LOGIT model to combine algorithms

6.2.1 Introduction

Two different algorithms may detect the same incident at different sensor stations and at different

times. Therefore, it becomes difficult to relate the incident indications from different algorithms.

Incident indication refers to the detection of incident state by an algorithm at a station. Persistence

of this preliminary incident state results in incident confirmation. This is particularly true for net-

works with dense loop detector spacing and small sensor data averaging periods. The number of

incident declarations in a given time period could also be different. For example:- single-station

algorithms, such as the McMaster algorithm, observe the traffic state as different regions in the fun-

damental diagram. Since they do not observe temporal drops in values of traffic variables, they may

give more incident indications than other algorithms like the SPDDRP algorithm. Table 6.3 shows

Table 6.3: Comparison of number of incident indications

Algorithm No of Indications
McMaster 24
APID 10
SPDDRP 2
COMB 7

the number of indications of the different algorithms at a single station upstream of an incident for

a single experiment. All other algorithms in Table 6.3 except the McMaster algorithm are based on

comparative thresholds. As discussed in chapter 3, algorithms with comparative thresholds give

many more indications at sections with complex geometry. In combining algorithms, if we have

to wait for confirmation from all algorithms, the time taken to confirm an incident may increase

disproportionately, offsetting the advantages of combining them. The fundamental requirement

for combining algorithms is a weight function that can be used to indicate the degree to which

an incident indication from an algorithm can be trusted. For example:- Consider the combination

of the SPDDRP and McMaster. We trust the SPDDRP algorithm completely because of the high

threshold level and low FAS. In this case, weight = 1 for SPDDRP and weight = 0 for McMaster

under uncongested conditions. By assigning different weights, we may be able to reduce the FAS
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of the combined algorithm.

A logit model based on algorithmic decisions would automatically assign weights to the deci-

sions using coefficients. The decisions of different algorithms under different scenarios can be

used to calibrate such a model. The resultant decision would be the output of all individual model

decisions.

Another way to improve the performance of a logit-based algorithm is to note the strength of

an incident indication. Strength of an incident indication can be defined as the magnitude of the

deviation of a measurement from the corresponding threshold. It is obvious that a stronger signal,

indicated by greater deviation from the threshold in the correct direction (For example:- incident is

indicated by a positive deviation of measured occupancy from the threshold occupancy upstream

of the incident), can be trusted more than a weak signal which would correspond to a small devia-

tion. The Strength of signal idea can be easily used in a logit model by multiplying the algorithmic

decisions with magnitude of the deviation. Table 6.4 presents the deviation from the threshold for

Table 6.4: Comparison drop magnitude for incidents vs False alarms(SPDDRP)

OD(%) Mean Drop for True alarm Mean Drop for FAS
80 27.95 27.0611
100 28.34 26.54

120 29.15 26.55

true detections and FAS for the SPDDRP algorithm for one scenario. Since a greater deviation

from the threshold implies a stronger signal, it is evident that the incident signal is stronger for true

incidents than FAS from Table 6.4. The mean drop for true incidents is greater than that for FAS

and the magnitude of this drop for true incidents increases for higher OD. However no such pattern

is clear for the drop in case of FAS.

Thus, two types of logit models can be used to combine algorithms:-
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I. A multinomial logit model in which the decisions of the Refined McMaster, APID and the

SPDDRP algorithms(LOGCMB-I) are used as binary explanatory variables.

II. A multinomial logit model in which the decisions of the Refined McMaster, APID and an

interaction term between decision of SPDDRP algorithm and the speed drop magnitude (as

an indicator of the strength of the signal) are used to make quick decisions(LOGCMB-II).

Choice based sampling

Table 6.3 shows the number of algorithmic decisions favoring an incident for different algorithms

over a single replication. Clearly such decisions can be identified only over the duration of the

incident during the experiment. Data from location 2 was used to collect incident and non-incident

data. The number of observations for which any one of the component algorithms makes an inci-

dent declaration was collected from all replications of one scenario from location 2. This was done

to obtain more incident data.

LOGCMB-I

The model specification is presented in Table 6.5. The results of estimation of the LOGCMB-I

model is presented in Table 6.6. In addition to algorithm indications, interaction variables are also

been used. The interaction variables could be a proxy for measuring the most significant algorithm

combinations.

Vio = no + SPDno * speed (6.1)

Vine = FLWinc * f low + OCCDFic * occdf + spdine * speed+ (6.2)

MCMinc * mcm + APDine * apd + DRPinc * drp + DRPMCMinc * drp * mcm+

DRPAPDinc * drp * apd + MCMAPDinc * mcm * apd

Vrec = ,rec + f lwrec * f low + OCCDFrec * occdf (6.3)

Vo is the systematic utility associated with the no congestion alternative

Vine is the systematic utility associated with the incident congestion alternative

Vrec is the systematic utility associated with the recurrent congestion alternative
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Table 6.5: Model specification

Var Name Description

no No Congestion alternative specific constant
SPDno speed alternative specific variable for no congestion

frec Incident alternative specific constant
FLWrec flow alternative specific variable for recurrent congestion alternative

OCCDFrec occupancy difference alternative specific variable for recurrent congestion alternative

FLWine flow alternative specific variable for incident congestion alternative

OCCDine occupancy difference alternative specific variable for incident congestion alternative

SPDine speed alternative specific variable for incident congestion alternative

MCMine = 1, if McMaster declares incident; = 0 otherwise

APDine = 1, if APID declares incident; = 0 otherwise

DRPinc = 1, if SPDDRP declares incident; = 0 otherwise

DRPMCMine = MCMinc*SPDinc

DRPAPDine = APDinc*SPDinc
MCMAPDinC = MCMine*APDine

Pno is the probability of no congestion alternative

Pine is the probability of incident congestion

Prec is the probability of recurrent congestion

mcm = 1 if McMaster algorithm gives incident indication; = 0 otherwise

apd = 1 if APID algorithm gives incident indication; = 0 otherwise

drp = 1 if SPDDRP give incident indication; = 0 otherwise

There is a good model fit. The interaction term measuring the effect of using the McMaster

and the APID algorithms is not significant at 95% level of significance. OCCDFine > OCCDFrec

which is intuitive because as the occupancy difference increases between the upstream and the

downstream stations, the probability of incident increases.

LOGCMB-II

The results of estimation of the LOGCMB-I model have been presented in Table 6.7. The effect of

strength of the incident signal has been incorporated using the SPDDRPinc variable.
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Table 6.6: Estimation results

Var Name Coef Std. Err t-stat

no -537.2 37.02 -14.51
SPDno 11.16 0.7277 15.33

Irec 1.824 0.7445 2.45

FLWrec -0.7081 0.3504 -2.021
OCCDFrec 1.429 0.8851 1.615
FLWine -0.4397 0.3587 -1.226
OCCDFine 1.563 0.8852 1.766

SPDine -0.3355 0.04629 -7.247

MCMinc 5.713 0.5184 11.02
APDine 3.345 0.5948 5.624
DRPine -0.3355 0.9726 -2.476

DRPMCMinc -6.493 1.216 -5.339
DRPAPDinc -2.284 1.169 -1.953
MCMAPDinc -1.29 1.013 -1.273
Lni(L) -142.902(-1054.37)

___(p2_) 0.8511(0.8645)

VnO = ,o + SPDno * speed (6.4)

Vine = FLW * f low + OCCDFin * occdf + spdine * speed+ (6.5)

MCMinc * mcm+ APDine * apd + SPDDRPe1C * speedd rop + DRPMCMinc * drp* mcm+

DRPAPDinc * drp * apd + MCMAPDinc * mcm * apd

Vrec = rec + flwrec * flow + OCCDFrec * occdf (6.6)

VnO is the systematic utility associated with the no congestion alternative

Vine is the systematic utility associated with the incident alternative

Vrec is the systematic utility associated with the recurrent alternative

Pno is the probability of no congestion

Pine is the probability of incident

Prec is the probability of recurrent congestion

mcm = 1 if McMaster algorithm gives incident indication; = 0 otherwise
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Table 6.7: Model specification

Var Name Description

fno No Congestion alternative specific constant

SPDno speed alternative specific variable for no congestion

rec Incident alternative specific constant
FLWrec flow alternative specific variable for recurrent alternative

OCCDFrec occupancy difference alternative specific variable for recurrent alternative

FLWine flow alternative specific variable for incident alternative

OCCDFinc occupancy difference alternative specific variable for incident

SPDinc speed alternative specific variable for incident alternative

MCMine= 1, if McMaster declares incident; = 0 otherwise
APDin= 1, if APID declares incident; = 0 otherwise

SPDDRPinc =speed drop,if SPDDRP declares incident; = 0 otherwise

DRPMCMinc = MCMine*SPDine

DRPAPDinc = APDine*SPDine

MCMAPDinc = MCMinc *APDine

apd = 1 if APID algorithm gives incident indication; = 0 otherwise

drp = 1 if SPDDRP algorithm gives incident indication; = 0 otherwise

speeddrop = drop in speed if SPDDRP give incident indication; = 0 otherwise

The observations made for LOGCMB-I are also true for LOGCMB-II.

6.2.2 Testing of the models

The models have been calibrated using data from location 2. In order to test the models, they were

evaluated at different levels of OD flows(80% - 120%), at location 1. Three levels of OD, 80%,

100% and 120%, were used for testing. Table 6.9 and Table 6.10 show the results of testing for

LOGCMB-I and LOGCMB-II respectively.
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Table 6.8: Estimation Results

Table 6.9: LOGCMB-I model results Persistency=3

200 ft
Location Demand 80% 100% 120%

TTD(min) 3.25 2.32 2.68
Location 1 DTR(%) 10 85 85

FAS 20 10 7

Table 6.10: LOGCMB-II model results Persistency=3

200 ft
Location Demand 80% 100% 120%

TTD(min) 3.33 2.23 2.42
Location 1 DTR(%) 15 90 90

FAS 20 18 9
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Var Name Coef Std. Err t-stat

Pno -639.9 76.08 -8.411
SPDno 13.36 1.585 8.428

Irec 1.833 0.743 2.467
FLWrec -0.8268 0.7804 -1.059
OCCDFrec -0.4659 0.9196 -0.5066
FLWine -0.5554 0.7841 -0.7083
OCCDFjiC -0.3298 0.9197 -0.3586
SPDine -0.3381 0.04677 -7.229
MCMinc 5.726 0.5237 10.93
APDine 3.353 0.5994 5.593

SPDDRPinc -0.1058 0.03681 -2.875
DRPMCMinc -6.616 1.17 -5.656

DRPAPDinc -2.435 1.062 -2.293
MCMAPDinc -1.374 1.005 -1.367

Lnl(L) -140.02(-1054.37)

2(p2 0.8539(0.8672)



6.2.3 Discussion

i. The LOGCMB algorithms were calibrated using data from location 2. They were validated

at location 1.

ii. The FAS generated by the LOGCMB algorithms is the Minimum for the given scenario

compared to any other algorithm. It generates less FAS than the SPDDRP algorithm. The

DTR and TTD at high flows is comparable to that of the APID and McMaster algorithms but

less than that of SPDMCM presented in the previous section.

iii. The LOGCMB-II algorithm detects incidents quicker than the LOGCMB-I algorithm. This

is intuitive because the LOGCMB-II algorithm also uses the strength of incident signal.

iv. The poor DTR of the LOGCMB algorithm at low flows can be improved in the same way

discussed earlier for the SPDDRP algorithm.
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Chapter 7

Summary, Conclusions and Future

directions

7.1 Summary and Conclusions

The purpose of the current study was to explore the influence of different system characteristics and

algorithmic parameters on the performance of incident detection algorithms(IDAs)and to propose

new directions in the design and evaluation of IDAs. The limitations of many existing studies in

evaluating IDAs were identified. The need for a broad-based evaluation was justified with case

studies on 1-93 North and 1-90 West. The insights from the comprehensive evaluation were used

to propose new ideas for designing IDAs.

7.1.1 Evaluation of the McMaster and APID algorithms

The performance of the McMaster and APID algorithms was evaluated in two case studies. The

algorithms were calibrated prior to evaluation. The first study on 1-90 West helped to design

refinements to enhance the algorithms. These refinements were tested in the second study on 1-93

North.
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Findings

i. In order to identify the applicability and transferability of IIDAs, their performance must be

evaluated over a broad range of scenarios.

ii. The Refined McMaster and the APID algorithms exhibited excellent performance on 1-90

West especially with respect to FAS. The network in this case was devoid of any complex

geometry. This study was representative of many existing studies which give a misleading

impression of the applicability of the IDA.

iii. The performance of both algorithms deteriorated in the second study on 1-93 North. The

geometry of the network varied considerably due to on & off ramps, add & drop lanes and

curvature. The performance in these scenarios indicates the restricted applicability of these

algorithms.

iv. Over all scenarios, the Refined McMaster algorithm generated less FAS than APID, but

APID detected incidents quicker than the Refined McMaster algorithm.

7.1.2 Detecting incidents based on speed drop: SPDDRP

Designing new ideas for given conditions may be better than trying to transfer algorithms from

different sites to the current site directly. Simple ideas which exploit the best features of the

network under study would be good candidates.The SPDDRP algorithm for dense loop detector

spacing supports this observation.

Findings

i. The SPDDRP algorithm was a simple and effective idea to detect incidents quickly(less

TTD) and reliably(less FAS).

ii. SPDDRP had a poor DTR and it was applicable only to non-congested traffic.
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7.1.3 Discrete choice model based Incident Detection

The predictions of algorithms based on discrete choice models were seen to be powerful and ele-

gant. A family of logit models were calibrated and evaluated for 1-93 North. The model predictions

were tested over the same range of scenarios used to test the McMaster and APID algorithms.

Findings

i. The probabilistic approach helped collapse all thresholds into a single threshold. This elim-

inated the need for an elaborate calibration process.

ii. The Nested logit model predicted all traffic phenomena correctly and in a much better way

than the other models (MNL,binary logit).

iii. Combined estimation of these models using real and simulated data yielded more realistic

parameters. The advantage of combined estimation using both real and simulated data was

shown in a case study on 1-880.

7.1.4 Combining algorithms

The trade-offs between the different MOEs indicated that it was difficult to improve all the MOEs

simultaneously as increasing the type I error (increase in FAS) decreased the type II error(decreased

the missed detections) and vice-versa. Each algorithm can be thought of as having a trade-off fron-

tier which represents the maximum attainable performance of the algorithm for a given set of

system variables. Combining algorithms was shown to be equivalent to combining different trade-

off frontiers, one for each algorithm, to improve the overall performance. Two methods to combine

algorithms were presented:-

Findings

i. The combination of the SPDDRP idea and the Refined McMaster algorithm was a simple

example to demonstrate the idea of combining complementary algorithms. The combined

algorithm(SPDMCM) was shown to have better performance than either component algo-

rithm.
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ii. The effectiveness of combining algorithmic decisions using a logit framework was shown

using the LOGCM-I and LOGCMB-II models. These models were evaluated in different

tests on 1-93 North. Calibration of these algorithms was performed using data from location

2 and the algorithms were validated using data from location 1.

iii. The LOGCMB-I model detected incidents quicker than LOGCMB-I because it used the

strength of the incident signal.

7.2 Future Research

I. Using BOSS quattro to calibrate parameters of McMaster and APID algorithms: BOSS

quattro is a software package which is designed to analyze and optimize the influence of

parameters on responses yielded by external software applications. A model gives BOSS

quattro the required information about the parameters affecting the external software appli-

cation. Using a driver system, BOSS quattro reads the available parameters from models

and collects the analysis responses after the application run. New responses can be defined

by combining the responses and parameters using mathematical operators and functions.

Parametric study, Monte-Carlo study, Design of experiments, Multiobjective Constrained

optimization and Updating are some of the built in analysis and optimization routines. The

user can also write his/her own driver to conduct any specialized optimization or analysis

routine that he/she may want to perform. Using this software and an incident analyzing tool

which generates MOEs for given sets of sensor data and a simple objective function subject

to some constraints, the calibration process can be automated.

II. The algorithms were calibrated for 1-93 North and 1-90 West. Similar calibration is necessary

for 1-93 South and 1-90 East before a network-wide implementation for the CA/T project.

III. The performance of the algorithms has been evaluated for single lane blockages. The perfor-

mance has to be studied for other types of incidents such as partial lane blockage, multiple

incidents etc.
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IV. The advantages of combined estimation using real and simulated data for logit models have

been demonstrated using data from 1-880. Similar estimation would have to be performed

for the freeways in the Central Artery Network before the parameters can be used in the field.

V. On-line updating schemes would have to be used to constantly update the parameters to

significant network-wide changes like change in weather conditions that affect the overall

network state.

VI. Combining algorithms is a difficult problem. In general this problem could be difficult.

When persistency checks are used, different algorithms declare incidents at different points

in space and time. Combining algorithms becomes a cumbersome task. Combining algo-

rithms using the Logit framework is easier. Decisions of the McMaster, APID and SPDDRP

algorithms have been incorporated in the LOGIT framework. Other algorithms could also

be used into the model to improve the specification.

VII. The model specification of the logit model can be enriched to increase its applicability. Traf-

fic variables from two adjoining stations are typically used by different algorithms. Chen et

al.[15] have studied the use of Principal Component Analysis(PCA) to extract the indepen-

dent variations from the traffic data. These independent variations could also be used in the

model specification to improve the prediction power. PCA ia also the core of the Prepro-

cessor Feature Extraction used by Abdulhai and Ritchie[5]. It has been used in conjunction

with Neural Networks. An analogous approach is recommended for use with choice models.
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Appendix A

Results of Calibration

Table A. 1: McMaster Parameters for the Ted Williams Tunnel
SNo b1 b2 b3 b4 b5 OCMAX avSpd VCRIT n il i2

1 -1.07e-05 1.90e-03 -0.1202 3.0295 -10.51 22.65 62.06 15.66 2 10 11

2 -1.1Oe-05 1.92e-03 -0.1200 3.0021 -10.36 22.84 61.85 15.52 2 12 13

3 -1.04e-05 1.88e-03 -0.1202 3.0280 -10.58 22.01 61.65 15.42 2 14 15

4 -1.06e-05 1.85e-03 -0.1167 2.9577 -10.22 22.13 61.36 15.67 2 16 17

5 -1.17e-05 2.01e-03 -0.1247 3.0838 -10.82 22.21 61.20 15.41 2 18 19

6 -1.14e-05 2.01e-03 -0.1260 3.1260 -11.16 21.50 61.33 15.35 2 20 21

7 -1.12e-05 1.97e-03 -0.1237 3.0866 -10.93 22.09 61.03 15.49 2 22 23

8 -1.07e-05 1.87e-03 -0.1179 2.9825 -10.40 22.89 60.92 15.61 2 24 25

9 -1.05e-05 1.83e-03 -0.1148 2.8994 -9.97 22.86 60.64 15.29 2 26 27

10 -1.21e-05 2.05e-03 -0.1241 3.0306 -10.69 22.51 59.99 14.86 2 28 29

11 -1.01e-05 1.78e-03 -0.1129 2.9234 -10.96 23.89 57.43 15.39 2 31 32

12 -1.07e-05 1.79e-03 -0.1109 2.8643 -11.23 24.91 55.05 14.87 2 34 35

13 -9.84e-06 1.72e-03 -0.1091 2.8874 -12.32 26.71 50.13 14.82 2 37 38

14 -2.69e-05 3.79e-03 -0.1953 4.3240 -20.79 24.31 48.09 13.95 2 39 40

15 -9.01e-06 1.66e-03 -0.1049 2.7278 -11.20 27.50 43.09 13.97 2 41 42

16 -4.56e-06 9.65e-04 -0.0710 2.1313 -7.58 29.54 44.70 14.86 2 43 44

17 1.75e-06 1.54e-04 -0.0370 1.6072 -4.80 29.96 46.51 15.71 2 45 46

18 7.82e-06 -4.95e-04 -0.0144 1.3122 -3.35 29.06 47.76 16.14 2 47 48

19 1.40e-05 -1.17e-03 0.0087 1.0337 -2.35 28.00 48.42 16.43 2 49 50

20 1.12e-05 -9.33e-04 0.0024 1.1004 -2.51 28.43 48.88 16.59 2 51 52
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Table A.2: McMaster Parameters for the Ted Williams Tunnel(contd.)

SNo b1 b2 b3 b4 b5 OCMAX avSpd VCRIT n il i2
21 1.08e-05 -9.00e-04 0.0022 1.0985 -2.52 29.14 49.11 16.85 2 53 54
22 8.80e-06 -7.13e-04 -0.0030 1.1439 -2.67 29.60 49.29 16.80 2 55 56
23 1.62e-05 -1.38e-03 0.0146 1.0187 -2.82 28.14 49.31 16.77 2 71 72
24 2.31e-05 -1.90e-03 0.0230 1.0776 -4.14 26.69 49.24 16.63 2 73 74
25 5.55e-05 -4.76e-03 0.1106 -0.0233 0.66 25.44 49.34 16.51 2 75 76
26 2.94e-05 -2.99e-03 0.0882 -0.2851 2.41 33.47 49.26 16.62 2 77 78
27 4.80e-05 -4.29e-03 0.1017 0.0258 0.77 25.84 49.35 16.71 2 79 80
28 5.05e-05 -4.28e-03 0.0974 0.1165 0.21 26.32 49.35 16.95 2 81 82
29 5.12e-05 -4.36e-03 0.0989 0.1186 0.10 26.31 49.35 16.78 2 83 84
30 6.16e-05 -5.08e-03 0.1157 -0.0152 0.22 26.55 49.35 16.92 2 85 86
31 4.76e-05 -4.08e-03 0.0909 0.2289 -0.60 26.48 49.36 16.89 2 87 88
32 2.31e-05 -2.15e-03 0.0416 0.6957 -1.80 27.50 49.31 17.31 2 89 90
33 2.77e-05 -2.55e-03 0.0532 0.5641 -1.37 27.55 49.26 17.30 2 91 92
34 2.1Oe-05 -1.95e-03 0.0362 0.7410 -1.90 28.29 49.24 17.32 2 93 94
35 1.46e-05 -1.41e-03 0.0219 0.8774 -2.23 29.10 49.15 17.51 2 95 96
36 1.74e-05 -1.62e-03 0.0257 0.8747 -2.44 28.08 49.22 17.38 2 97 98
37 1.58e-05 -1.53e-03 0.0246 0.8719 -2.38 28.83 49.16 17.53 2 99 100
38 1.92e-05 -1.79e-03 0.0302 0.8367 -2.44 28.33 49.14 17.24 2 101 102
39 1.45e-05 -1.40e-03 0.0202 0.9144 -2.39 28.58 49.09 17.31 2 103 104
40 1.49e-05 -1.61e-03 0.0406 0.4271 -1.32 32.71 49.04 16.81 2 105 106
41 1.40e-05 -1.31e-03 0.0179 0.9287 -2.39 29.27 49.08 17.45 2 107 108
42 1.89e-05 -1.77e-03 0.0316 0.7814 -2.09 28.68 49.08 17.30 2 109 110
43 1.08e-05 -1.01e-03 0.0092 1.0134 -2.72 29.88 49.20 17.35 2 111 112
44 1.80e-05 -1.5le-03 0.0178 0.9714 -2.11 27.72 51.25 16.85 2 113 114
45 2.45e-05 -1.95e-03 0.0244 0.9648 -1.99 26.03 53.06 16.52 2 116 117
46 2.01e-05 -1.50e-03 0.0072 1.1893 -2.45 25.03 54.48 16.27 2 119 120
47 5.08e-05 -3.59e-03 0.0529 0.8448 -1.59 23.82 55.90 16.43 2 122 123
48 6.48e-05 -4.44e-03 0.0687 0.7631 -1.41 23.29 57.25 16.59 2 126 127
49 8.54e-05 -5.74e-03 0.0942 0.6050 -1.25 22.74 58.28 16.56 2 130 131
50 9.27e-05 -6.36e-03 0.1097 0.4781 -1.04 22.34 58.93 16.62 2 134 135
51 8.94e-05 -6.23e-03 0.1097 0.4579 -0.89 22.55 59.33 16.91 2 138 139
52 1.17e-04 -8.00e-03 0.1498 0.1012 0.16 22.31 59.66 16.94 2 144 145
53 1.17e-04 -8.16e-03 0.1548 0.0718 0.12 22.23 60.18 17.15 2 146 147
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Table A.3: McMaster Parameters for the 1-93 North

sno bI b2 b3 b4 b5 ocmax avspd vcrit n ii i2 i3 i4

1 1.75e-04 -3.55e-03 -4.99e-03 0.87 0.01 19.04 44.10 8.00 4 535 536 537 538

2 -5.35e-05 2.17e-03 -5.99e-02 1.12 -0.72 19.43 45.54 7.81 4 531 532 533 534

3 -3.92e-05 2.66e-03 -7.77e-02 1.23 -1.25 18.46 47.27 7.24 4 12 13 14 15

4 -6.41e-06 1.09e-03 -6.38e-02 1.41 -2.16 18.82 49.90 8.32 3 530 529 528

5 -6.81e-06 1.16e-03 -6.75e-02 1.49 -2.59 18.70 50.25 8.39 3 26 27 28

6 -6.85e-06 1.16e-03 -6.73e-02 1.48 -2.81 18.79 49.10 8.07 3 525 526 527

7 -7.33e-06 1.21e-03 -6.79e-02 1.43 -2.74 18.00 48.30 7.40 3 522 523 524

8 -7.21e-06 1.19e-03 -6.65e-02 1.40 -2.50 17.83 47.72 7.38 3 385 386 387

9 -6.31e-06 1.06e-03 -6.05e-02 1.33 -2.49 18.67 46.17 7.33 3 381 382 383

10 -4.31e-06 7.83e-04 -4.98e-02 1.24 -3.34 21.70 36.31 7.12 4 252 253 254 269

11 -3.90e-06 7.14e-04 -4.63e-02 1.19 -3.21 35.20 36.22 7.78 4 517 518 519 520

12 -4.42e-06 8.00e-04 -5.06e-02 1.25 -3.40 21.36 37.73 7.01 4 378 379 380 521

13 -4.00e-06 7.64e-04 -5.20e-02 1.41 -3.01 24.68 47.42 10.15 3 514 515 516

14 -4.31e-06 7.99e-04 -5.31e-02 1.41 -3.33 24.45 47.38 9.55 4 375 377 374 376

15 -5.28e-06 9.64e-04 -6.17e-02 1.56 -3.27 22.63 49.39 10.24 3 255 256 257

16 -4.49e-06 8.47e-04 -5.63e-02 1.48 -3.07 23.73 48.91 10.32 3 371 372 373

17 -5.86e-06 1.03e-03 -6.39e-02 1.56 -2.95 22.05 49.79 10.09 3 258 259 260

18 -6.01e-06 1.05e-03 -6.43e-02 1.55 -2.79 21.77 49.69 10.05 3 365 366 367

19 -5.61e-06 1.Ole-03 -6.31e-02 1.57 -3.13 22.32 49.55 10.24 3 368 369 370

20 -6.02e-06 1.05e-03 -6.39e-02 1.54 -2.75 21.77 49.83 9.98 3 362 363 364

21 -5.98e-06 1.03e-03 -6.24e-02 1.50 -2.53 21.93 49.67 9.86 3 261 262 263

22 -6.19e-06 1.06e-03 -6.29e-02 1.48 -2.31 21.40 49.62 9.70 3 359 360 361

23 -6.24e-06 1.06e-03 -6.26e-02 1.47 -2.29 21.29 49.44 9.63 3 356 357 358

24 -6.07e-06 1.03e-03 -6.08e-02 1.43 -2.09 21.44 49.00 9.55 3 353 354 355

25 -6.00e-06 1.Ole-03 -6.01e-02 1.42 -2.00 21.24 48.47 9.54 3 264 265 266

26 -4.46e-06 7.79e-04 -4.89e-02 1.25 -1.77 23.65 46.88 9.51 3 349 350 351

27 -2.47e-06 5.14e-04 -4.1Oe-02 1.31 -1.59 28.53 44.30 12.83 3 238 239 240

28 -4.05e-06 7.85e-04 -5.39e-02 1.45 -2.03 23.61 41.92 11.33 3 728 729 730

29 -5.89e-06 1.04e-03 -6.50e-02 1.61 -2.05 22.20 44.87 11.55 3 731 732 733

30 -6.16e-06 1.09e-03 -6.75e-02 1.66 -2.17 21.88 47.06 11.69 3 1111 2222 3333

31 -6.56e-06 1.15e-03 -7.10e-02 1.72 -2.44 21.63 48.99 11.81 3 244 245 246

32 -6.81e-06 1.19e-03 -7.25e-02 1.74 -2.52 21.42 49.48 11.80 3 343 344 345

33 -6.99e-06 1.21e-03 -7.34e-02 1.76 -2.62 21.32 49.63 11.77 3 340 341 342

34 -6.80e-06 1.18e-03 -7.24e-02 1.75 -2.68 21.60 49.40 11.73 3 247 248 249

35 -5.69e-06 1.03e-03 -6.69e-02 1.72 -3.11 23.72 46.04 12.21 4 70 71 72 73
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Table A.4: McMaster Parameters for the 1-93 North(contd.)

36 -6.69e-06 1.15e-03 -7.12e-02 1.77 -3.00 22.87 47.61 12.25 4 339 338 337 336
37 -7.08e-06 1.20e-03 -7.26e-02 1.78 -2.90 22.71 47.66 12.26 4 74 75 76 77
38 -7.07e-06 1.19e-03 -7.19e-02 1.77 -2.76 22.85 47.62 12.32 4 335 334 333 332
39 -7.00e-06 1.17e-03 -7.09e-02 1.75 -2.62 23.16 47.31 12.34 4 331 330 329 328
40 -6.94e-06 1.16e-03 -7.02e-02 1.73 -2.54 23.41 47.12 12.35 4 78 79 80 81
41 -6.92e-06 1.15e-03 -6.96e-02 1.72 -2.52 23.97 46.76 12.33 4 82 83 84 85
42 -6.49e-06 1.09e-03 -6.66e-02 1.68 -2.38 31.18 44.36 12.76 4 86 87 88' 89
43 -6.14e-06 1.03e-03 -6.40e-02 1.64 -2.28 31.37 43.68 12.87 4 96 97 98 99
44 -5.97e-06 1.Ole-03 -6.29e-02 1.62 -2.25 31.25 43.55 12.92 4 324 325 326 327
45 -5.81e-06 9.87e-04 -6.19e-02 1.62 -2.25 31.41 43.41 12.96 4 320 321 322 323
46 -5.64e-06 9.61e-04 -6.08e-02 1.60 -2.28 31.66 43.09 12.96 4 316 317 318 319
47 -4.90e-06 8.58e-04 -5.63e-02 1.54 -2.19 32.60 42.04 13.02 4 312 313 314 315
48 -4.09e-06 7.43e-04 -5.1Oe-02 1.46 -2.05 33.20 40.55 12.97 4 106 107 108 109
49 -4.11e-06 7.28e-04 -4.98e-02 1.43 -2.11 32.71 39.62 12.59 4 308 309 310 311
50 4.77e-06 6.73e-05 -3.36e-02 1.24 -2.63 22.61 40.75 10.39 4 304 305 306 307
51 1.84e-05 -7.23e-04 -1.31e-02 1.09 -2.27 26.31 41.56 13.03 3 117 118 119
52 -3.61e-05 1.62e-03 -3.22e-02 1.00 -1.63 25.02 43.02 14.42 4 300 301 302 303
53 -1.19e-04 4.38e-03 -6.17e-02 1.17 -1.61 23.18 46.71 14.33 4 125 126 127 128
54 -1.09e-04 3.53e-03 -4.53e-02 1.10 -1.51 23.25 47.63 14.50 4 296 297 298 299
55 -9.26e-05 2.98e-03 -3.95e-02 1.08 -1.48 22.84 47.97 14.47 4 292 293 294 295
56 -6.58e-05 1.99e-03 -2.74e-02 1.04 -1.41 22.49 48.52 14.49 4 133 134 135 136
57 -6.30e-05 1.88e-03 -2.54e-02 1.03 -1.34 22.04 48.89 14.47 4 288 289 290 291
58 -9.23e-05 2.97e-03 -3.79e-02 1.08 -1.32 21.17 49.10 14.28 4 144 145 146 147
59 -5.21e-05 1.13e-03 -1.06e-02 0.94 -1.36 21.78 48.61 14.20 4 284 285 286 287
60 3.77e-05 -3.04e-03 5.15e-02 0.62 -1.33 23.07 47.57 13.86 4 280 281 282 283
61 4.60e-05 -3.33e-03 5.28e-02 0.64 -1.46 23.25 47.26 13.50 4 152 153 154 155
62 -7.63e-05 1.76e-03 -2.41e-02 1.02 -1.30 19.61 48.36 12.47 4 158 159 160 161
63 -2.29e-04 5.1le-03 -4.61e-02 1.07 -1.23 19.64 48.87 12.62 4 1723 1724 1725 1726
64 -1.37e-04 3.36e-03 -3.59e-02 1.06 -1.16 19.22 49.20 12.80 4 1727 1728 1729 1730
65 -6.44e-05 1.55e-03 -2.06e-02 1.01 -1.14 19.12 49.51 13.11 4 1731 1732 1733 1734
66 -5.87e-05 1.08e-03 -1.14e-02 0.96 -1.10 19.69 49.80 13.50 4 1735 1736 1737 1738
67 -4.32e-05 9.31e-04 -1.28e-02 0.98 -1.07 18.98 50.01 13.65 4 1739 1740 1741 1742
68 -4.04e-05 1.Ole-03 -1.56e-02 1.00 -1.06 18.35 50.12 13.58 4 1743 1744 1745 1746
69 -1.05e-04 3.28e-03 -4.05e-02 1.08 -1.09 18.18 50.19 13.43 4 1747 1748 1749 1750
70 -1.03e-04 3.27e-03 -4.19e-02 1.09 -1.10 18.56 50.17 13.48 4 1751 1752 1753 1754
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Table A.5: McMaster Parameters for the 1-93 North(contd.)

71 -1.47e-04 4.33e-03 -4.85e-02 1.10 -1.08 18.67 50.11 13.52 4 1755 1756 1757 1758
72 -7.11e-05 1.94e-03 -2.43e-02 1.02 -1.07 18.55 49.99 13.68 4 1759 1760 1761 1762
73 -9.52e-05 2.95e-03 -3.86e-02 1.08 -1.08 18.07 49.81 13.33 4 1763 1764 1765 1766
74 -6.03e-05 1.74e-03 -2.46e-02 1.04 -1.07 18.67 49.67 13.57 4 1767 1768 1769 1770
75 -9.19e-05 2.40e-03 -2.76e-02 1.03 -1.08 18.95 49.44 13.59 4 1771 1772 1773 1774
76 -7.13e-05 1.62e-03 -1.81e-02 0.99 -1.09 18.98 49.25 13.54 4 1775 1776 1777 1778
77 -4.54e-05 1.17e-03 -1.88e-02 1.02 -1.09 19.23 49.11 13.70 4 1779 1780 1781 1782
78 -4.29e-05 8.04e-04 -1.05e-02 0.97 -1.09 19.64 49.02 13.74 4 1783 1784 1785 1786
79 -6.48e-05 1.28e-03 -1.39e-02 0.97 -1.08 19.83 48.52 13.60 4 1789 1790 1791 1792
80 -6.06e-05 1.34e-03 -1.87e-02 0.99 -1.24 20.67 46.75 13.24 4 1793 1794 1795 1796
81 3.39e-05 -2.17e-03 2.09e-02 0.82 -1.58 22.53 44.15 11.73 4 1797 1798 1799 1800
82 -3.36e-05 8.68e-04 -2.20e-02 1.04 -1.37 20.35 47.39 12.27 3 700 701 702
83 -8.38e-06 -9.05e-05 -8.63e-03 0.99 -1.28 19.12 48.62 12.59 3 3855 3856 3857
84 -2.46e-05 7.1Oe-04 -1.76e-02 1.02 -1.24 18.57 49.50 12.95 3 697 698 699
85 -9.32e-05 2.94e-03 -3.98e-02 1.08 -1.26 18.58 49.08 12.86 3 3852 3853 3854
86 -1.15e-04 4.01e-03 -5.78e-02 1.14 -1.50 19.91 47.10 12.16 3 686 687 688
87 -3.46e-06 -2.l le-04 -6.08e-03 0.90 -1.49 27.02 41.42 13.01 4 3848 3849 3850 3851
88 9.84e-06 -5.78e-04 -7.90e-03 0.99 -1.36 27.34 42.78 13.53 4 689 690 691 692
89 7.47e-06 -6.54e-04 -7.13e-03 1.00 -1.28 25.47 44.57 12.77 4 3844 3845 3847 3846
90 9.01e-06 -9.94e-04 2.34e-03 0.96 -1.25 26.91 44.36 13.48 4 693 694 695 696
91 3.33e-05 -1.72e-03 9.52e-03 0.93 -1.24 25.70 44.68 13.56 4 655 656 657 658
92 1.50e-05 -1.32e-03 8.44e-03 0.93 -1.20 24.40 45.32 13.41 4 3840 3841 3842 3843
93 3.45e-05 -2.35e-03 2.55e-02 0.85 -1.18 24.21 46.30 13.42 4 3836 3837 3838 3839
94 8.06e-06 -1.66e-03 2.03e-02 0.86 -1.17 23.77 46.51 13.39 4 3832 3833 3834 3835
95 3.03e-05 -2.22e-03 2.44e-02 0.85 -1.24 23.65 45.97 13.16 4 3828 3829 3830 3831
96 4.74e-05 -2.92e-03 3.39e-02 0.80 -1.32 24.50 45.20 12.93 4 3823 3824 3825 3826
97 4.79e-05 -2.94e-03 2.99e-02 0.85 -1.42 23.02 45.05 12.43 4 3820 3821 3822 3827
98 3.73e-05 -2.27e-03 2.26e-02 0.87 -1.31 25.45 45.66 13.77 3 3817 3818 3819
99 2.21e-05 -1.74e-03 1.79e-02 0.89 -1.21 22.96 47.01 13.83 3 3814 3815 3816
100 -6.81e-05 1.96e-03 -2.68e-02 1.06 -1.20 20.41 48.52 14.02 3 3811 3812 3813
101 -8.33e-05 2.61e-03 -3.47e-02 1.08 -1.18 20.43 48.66 14.22 3 717 718 719
102 -8.73e-05 2.90e-03 -3.93e-02 1.10 -1.15 20.28 48.73 14.34 3 3808 3809 3810
103 -1.1Oe-04 3.71e-03 -4.84e-02 1.14 -1.14 20.16 48.76 14.24 3 714 715 716
104 -1.25e-04 4.33e-03 -5.70e-02 1.17 -1.15 20.33 48.71 14.25 3 3803 3804 3805
105 -1.82e-04 6.57e-03 -8.64e-02 1.27 -1.46 19.97 48.01 13.17 3 703 704 705
106 -4.65e-05 1.47e-03 -2.19e-02 0.98 -1.32 23.73 44.73 14.84 4 3799 3800 3801 3802
107 -3.13e-05 6.28e-04 -8.17e-03 0.94 -1.31 23.14 46.02 14.90 4 706 707 708 709
108 -8.96e-05 3.08e-03 -4.01e-02 1.09 -1.19 21.25 47.60 15.09 4 2799 2800 2801 2802
109 -1.31e-04 4.67e-03 -5.88e-02 1.16 -1.12 20.61 48.23 15.05 4 710 711 712 713
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Table A.6: APID Parameters for Ted Williams tunnel

Parameter Name Value
compwavetestperiod 0
compwavetestenabled 0
compwavethl 100
compwaveth2 100
persistenabled 1
medtrfenabled 1
ligttrfenabled 1
incdetthl 10.2
incdetth2 0.40
incdetth3 28.8
medtrfincdetl 0.40
medtrfincdet2 0.10
persistencyth 0.40
medtrfth 15.00
lowtrfth 0.00
incclrth 0.31

Table A.7: APID Parameters for 1-93 North

Parameter Name Groupi Group2 Group3 Group4 Group5
compwavetestperiod 0 0 0 0 0
compwavetestenabled 0 0 0 0 0
compwavethl 100 100 100 100 100
compwaveth2 100 100 100 100 100
persistenabled 1 1 1 1 1
medtrfenabled 1 1 1 1 1
ligttrfenabled 1 1 1 1 1
incdetthl 25 30 55 30 20
incdetth2 0.35 0.80 0.40 0.40 0.40
incdetth3 20 10 17 17 17
medtrfincdetl 0.40 0.80 0.40 0.40 0.40
medtrfincdet2 0.10 0.10 0.10 0.10 0.10
persistencyth 0.35 0.80 0.80 0.50 0.50
medtrfth 15.00 15.00 15.00 15.00 15.00
lowtrfth 0.00 0.00 0.00 0.00 0.00
incclrth 0.31 0.31 0.31 0.31 0.31
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Appendix B

1880 Geometric Layout
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Figure B-1: Layout of 1880 from www.mapquest.com
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Appendix D

Sample plots from real data
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Figure D- 1: flow/occ/spd plots
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Appendix E

Geometric Layout of the CA/T network
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Figure E-1: The CAT network
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