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Abstract

For protection against storm tides, four mobile barriers, each of which consists of 20
gates hinged at the bottom axis, have been proposed to span the three inlets of the
Venice lagoon. In stormy weather these gates are raised from their housing to an
inclination of 500 angle, acting as a dam and keeping the water-level difference up to
2 meters across the barrier. The gates were originally expected to swing in unison
in response to the normally incident waves, but subsequent laboratory experiments
revealed that the neighboring gates can oscillate out-of-phase in a variety of ways
and affect the intended efficiency. Extending the linear theory of Mei et al., where
trapped waves around vertical rectangular gates are analytically solved, the inclined
Venice gates problem is examined here by using the hybrid finite element method,
accounting for the sea level differences and local bathymetry. Finite elements are
employed only in the immediate neighborhood of the gate, while formal analytical
representations are used away from it. Factors affecting the trapped wave period are
studied and the results are compared with existing laboratory experiments by Delft
Hydraulics Laboratory.
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Chapter 1

Introduction

To protect Venice and nearby islands in the same lagoon from frequent flooding by

storm tides from Adriatic Sea, Consorzio Venezia Nuova has been planning a design

of four mobile barriers to span the three inlets of the Venice lagoon, with one across

Chiogia and Malamocco inlets and two across Lido inlet where an artificial island

separates two barriers. Each barrier consists of 20 gates hinged at the bottom along a

fixed axis spanning the inlet, as shown in Figure 1-1. Each gate is a hollow steel box

of 20 m length and 4 to 5 m thickness. The height varies from 15 to 25 m depending

on the inlet depth. In calm weather all gates are lowered by filling the boxes with

water to their housings on the seabed to allow normal navigation. When a storm is

imminent, the gates are raised to a 50 degree inclination, by injecting compressed air

to expel water, so that the water-level difference up to 2 meters can be maintained.

The designed gates are unconnected for easy manufacturing, installation and main-

tenance, and were originally expected to swing in unison under normally incident

waves. Subsequent laboratory experiments for monochromatic waves, however, re-

vealed that the neighboring gates can oscillate out-of-phase in a variety of ways,

producing openings between them and affect the intended efficiency as a dam (Con-

sorzio Venezia Nuova [12]; Varisco [19]). The gate oscillations were found to occur

at a period that is twice that of the incoming wave and with relatively large ampli-

tude. Many experiments have been carried out for various dimensions of the same

design; these experiments have only been documented in internal reports by Consorzio
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Lagoon

Sea

Figure 1-1: Sketch of the mobile barrier.

Venezia Nuova [12].

This phenomenon of subharmonic resonance has later been studied theoretically

by Blondeaux et al. [1][2] and Vittori et al. [22] who treated a simplified model under

the following assumptions: (i) waves are much longer than the water depth; (ii) the

gates are modeled as plane vertical plates sliding along the bottom; (iii) the buoyancy

restoring force is replaced by a spring; and (iv) the length of the gates is so small

that the barrier moves like a continuous surface (Vittori [20][21]). Mei et al. [9]

studied a more realistic geometry where the gates are of finite dimensions. To enable

analytical computations the gates were assumed to be rectangular boxes standing

vertically at static equilibrium. The difference in water levels between the sea and the

lagoon was not considered. The natural modes of trapped waves for the water/gate

system were deduced by a linear theory and checked by laboratory experiments.

Sammarco et al. [14][15] further described how these natural modes can be resonated

by incident waves through a nonlinear mechanism. For both monochromatic and bi-

harmonic incident waves, nonlinear bifurcations including chaos have been examined

theoretically and confirmed experimentally [13].

12



In the proposed design, the operating gates are inclined at the average angle of 500

from the horizon. Since design by model experiments can be conclusive only if all the

parameters are varied over a wide range, at the expense of long time and high cost, it

is useful to construct a mathematical model to guide the design process. In light of

the investigations carried out for vertical gates, a comprehensive model must consist

of at least two parts. In the first, one must predict the resonance frequencies for a

given gate geometry accounting for the sea level differences and local bathymetry;

this is a linearized problem. In the second, one must predict the gate motion at

resonance forced by incident waves with a wide variety of spectra; this is a nonlinear

problem. Here we shall examine the first (linear) problem. The eigen-modes of

trapped waves will be computed by the numerical method of hybrid elements so that

finite elements are employed only in the immediate neighborhood of the gate, and

the formal analytical solution is used away from it. A general numerical program

is constructed so that arbitrary gate geometry, variable bathymetry, and water level

difference across the barrier are all considered. As a check, the simplified case where

the gates are vertical and rectangular is solved numerically and compared with the

analytical solution of Mei et al. [9]. The same simplified model, assuming rectangular

yet inclined gates, was also tested. Finally, using the prototype design, the role of

the gate geometry on the eigen-period is examined and the results are compared with

existing laboratory experiments by Delft Hydraulics Laboratory [12]. These results

can be possible reference in the final design. The nonlinear problem of subharmonic

resonance by incident wave will be left for a future study.
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Chapter 2

Problem formulation

Figure 2-1 shows two typical modes of the gate motion in a top view. Since the

mobile gates are inclined from the horizon, the mean position of the top of the gates

in general does not coincide with y-axis, where the gates are hinged to. These two

modes correspond to the most severe reduction of efficiency. In Mode One, every gate

moves in opposite phase with its neighbors, i.e., the gate displacements are in the

form of (- + - +- -) with respect to the mean position. In Mode Two one gate moves

backward (or forward) while two neighboring gates move forward (or backward), i. e.,

the gate displacements are in the form of (- + + - ++ - - -). Due to periodicity, the

analysis can be restricted to one half of the period along the barrier, 0 < y < b. Thus

for Mode One there are two half gates in the half period; for Mode Two, there are one

full gate and one half gate in the half period. Higher oscillation modes with longer

spatial period in y direction can be found in Sammarco [13] or Mei et al. [9], and will

not be discussed here.

The typical prototype geometry of the storm gate is shown in Figure 2-2, where

the gate is hinged along the sea side edge of its housing at x = 0. The walls of the

gate are

x =+(z,t) x = C(z,t)

The instantaneous and static angles of inclinations are 0 and 0 from the horizon

15
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Figure 2-1: First two modes of possible model responses.

respectively, i. e.,

e + O(y, t) (2.1)

with the dynamic angular displacement 0 taking different values for gates I and II

in the half period,

1, 0 < y < (1 - r)b

01,7 (1 - r)b < y < b

with r - 1/2 and r = 1/3 for Modes One and Two, respectively. The lagoon side of

the gate is distinguished by the superscript + while the sea side by the superscript

-. The water depths on two sides are denoted by h+ and h, which are functions of

x. The x ~ y plane is chosen to lie on the free surface, i.e., z = 0. When sea levels

across the barrier are different, the z-coordinate will be defined accordingly for either

side. As shown in Figure 2-2, the origins of x- and z-axis will be located differently,

i.e., O+ for the lagoon side while 0 for the sea side. Strictly speaking we should use

(x+, z+) and (x-, z-) for the coordinates, since they are generally different. But the

same symbols will be used for simplicity. Viscous forces and friction on the hinges

are not considered.

16
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Figure 2-2: Prototype geometry and notations.
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2.1 Governing equations

The velocity potential # is governed by:

V 2# = 0

Let the material derivative be denoted by

d a

then the kinematic boundary conditions are:

d

on the unknown free surface z = ((x, y, t),

d
-o (z + h) =0dt

on the sea bottom z = -h+(x), and

d
-,(x - (* =0

on the front and back walls of the gate x = (+(z, t). On the planes of symmetry in a

spatial period, we have

0 y = 0, y = b. (2.6)

In addition, the potential diminishes to zero when x approaches too.

Using g for gravitational acceleration, P for pressure and p for fluid density,

Bernoulli equation gives

P = -pgz - p P1,702 (2.7)

18
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On the free surface, the dynamic condition of uniform atmospheric pressure reads

0 = |av#2 (2.8)
g 81 2g

where ( is an unknown function of (x, y, t).

Eq. (2.3) and (2.8) can be combined to give

aq# a2qsg
+ 2 + |v#|2 + -V0. VIVG| 2 = 0 z = (2.9)

az OZ at 2

on the free surface. On the seabed we have

#z= -#xhl i.e. = 0 (2.10)an

at z = -h*(x). Let us define the gate rotation vector as -Ee 2 , where e2 is the unit

vector in y direction. A minus sign is introduced since the positive y-axis points into

the paper and counter-clockwise rotation with respect to negative y-axis is regarded

as positive e here. From eq. (2.5), we have

a# dO
= --- e2 - (L x n) (2.11)an dt

on the gate walls x =*(z, t), where n is the unit normal vector pointing into the

gate.

Now we consider the dynamics of either gate I or gate II. Conservation of angular

momentum gives

-I d2 2 =Tg + Tp (2.12)
dt2

where

I = IXX + Izz (2.13)

is the moment of inertia of the gate about the bottom axis. Torques are defined to

be positive if clockwise, i.e., rotating with respect to the positive y-axis. Tg denotes

19



the torque due to the weight of the gate,

Tg = Lc x (-Mge3 ) (2.14)

with M being the total mass, and Lc the position vector of the center of gravity of

the gate from the hinge. Tp is the buoyancy torque exerted by the fluid on both sides

of the gate

Tp = Tp- + Tp+ (2.15)

As shown in Figure 2-2, Tp-- is due to fluid pressure from the sea side,

Tp- L x Pn) dS (2.16)

where the surface integration is performed along the gate contour S- under the water

surface. Similarly, Tp+ is induced by fluid pressure from the lagoon side. Eq. (2.12)

then becomes

d2e
-I dt2 e 2 = Lc x (-Mge3 ) (2.17)

zds ds

() (Lx Pn)- dy(dz) x Pn+) dydz
A =--()dz fA fz=-h+(0) ' dz

The integration domain A of y is (0, (1 - r)b) for gate I and ((1 - r)b, b) for gate

II. ds is the elemental arc length along the gate contour in a vertical x ~ z plane,

therefore the factor ds/dz is introduced for the change of variable from s to z. In the

z direction, we integrate from --h(0), which denotes the z-coordinate of the hinge,

to Zi which is the free surface height along either side of the gate-wall,

z::= (*(x ( y, t) (2.18)

as shown in Figure 2-2. In principle the pressure P can be obtained from eq.(2.7).

20



2.2 Normalization

The equations in the preceding section can be normalized in the following manner,

where primes denote dimensionless quantities:

x= x/b, L' = L/b, t'= wt, #' A w' = (/A, h'* = hI/bAwb

Here w is the natural frequency of the gate, and A is the amplitude of wave motion.

The water depth h± is assumed to be of the same order of magnitude of b, which is

one half of the spatial period in y direction.

As a measurement of small parameter, we introduce

A
b

(2.19)

Recall that in eq. (2.1), 0(y, t) is the angular displacement of the gate from the mean

position which should be of the order of 0(e). We normalize the angular displacement

by
of_ 

o )

In normalized variables distinguished by primes, eq. (2.2) becomes

V'2#' = 0

The free surface condition (2.9) becomes

a9#' a24s' aG + a' + e |V'#'| 2

(9z' Ot'2 19t'

on z' = e', where G = g/w 2b. On the sea bottom we have

a#'1= 0
i8n

21
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on z' = -h'(x'). On the gate walls we have

aq#' _dO'a - de2 (L' x n) (2.23)

on x' = I±'(z', t'), with the rotation vector defined as -e0'e 2 . The dynamic condition

eq. (2.17) becomes

I d20' M

pb5 dt'2  pb3

+ f dy']EC'~
A' z'I= -h'- (0)

+ j dy' /ec'+z'= h'(0)

G (Lc' x e3)

-Gz'

-Gz'

-#'-
at'

1
2

2 )

0#'+ 1 C 1v i- e 2V +2 (Lat' ~261)

where the normalized Bernoulli equation

P

pb 2w 2 6 at'
1
2 2 E 4 21io

has been applied.

2.3 Linearization

For e < 1 the free surface boundary condition is linearized to

aq#' &2q3'
G az' + t = 0 (2.26)

at z' = 0. On the walls of the gate, we have to the first order,

L'2,=+ =' '|2,=gri + 6 (-O'e 2 x I'),,_,,, (2.27)

Here I' is the dimensionless position vector of a point on the static gate surface

x= ' The kinematic boundary condition (2.23) becomes, to the first order,

0#' dO'
- e2

(I' x n+) (2.28)

22
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ds'
dz'
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at x' = ('*(z'), where n+ is the unit normal vector pointing into the gate at the mean

position.

Let us now linearize the dynamic boundary condition. By using eq. (2.27) and

the vector identity

(a x b) x c = (a - c)b - (b - c)a (2.29)

in eq. (2.24), we find,

Lx n = [IV+ c(-O'e 2 x I')] x [ii + c(-O'e 2 x i)]

= I'x n-O' [(e 2 x I/) x +L' x (e 2 xn)]

= I'xn (2.30)

t. e., the moment arm of the pressure force acting at a fixed point on the gate walls

remains unchanged by the motion of rotation. Keeping terms up to O(c), we have,

from eq. (2.24):

e2= G (Lc' X e3)

dy' x[ G(L' -
_ z'=-h'-(0) (

M

pb3 GE (-O'e 2 x Lc ) x e 3

e 3 - h'-(0))+ (L' ds'
-) dz'

+ fec'+ (
z'1=-h'+(0) (L

+ p'+ -/

at, ( '

where we have expressed the vertical coordinate of a point on the gate surface by

Z = L' e3 - h':(0)

After some algebra, we find from eq. (2.31) that at the order O(c0 ):

0 = G (rcl x e3) (2.32)

ds'
x n~-) dz''+

10

'-h'+ (0)
Gf (V' X i+) ,ds' dzG2 (' n) dz'

23

I d2 0'

pb5 dt'2

- {A

dz' ] (2.31)

+ A

ds'
xn)dz,

-e3 - h'+ (0))

dy' Ix f G' (V'
_ z'=-h'-(0)



in which

'0 -e3 - h'* (0)

denotes the z-coordinate of a point on the gate walls at mean position. This condition

describes the static equilibrium between the static gravity torque Tg (the first term)

and the static buoyancy torque (the integrals), which can be found for a given equi-

librium angle e. The geometry and total mass of the gate can be chosen to achieve

the desired mean inclination angle.

Since the value of the integral over the vertical interval from z' = 0 to z' = e(' is

small

z' =0
Gz' (L' x i) dz' = 0(z' 2 ) O(2)' ' dz'

we have, at the order 0(c),

I d 20'e M Go
pb5 dt'2 e 2 pb- G' (e 2 x Lc )x e 3

( {JA# dy' x - GO'(e 2

+ fl#+( '+(0  GO'(e 2 x L').
z'=-h'+(0) 8'

-Ids'x) -e3 (L x n)d' dz'

N ds' L
e3) (L' x n+) dz'I>

dz'

where the integration domain is the gate surface at equilibrium position.

2.4 Summary of linearized governing equations

Returning to physical quantities, the linearized governing equations are

V 2# = 0

in the fluid,

(2.34)

aqs 02qs
g + =0 (2.35)

(2.36)

at z 0,

=0 0
On

24
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at z =h±(x), and
0# AdO' -

~±--L Lx fif
b dt

at x = (*(z). Since

(e2 x L) -e3 = (L x e3) -e2 = -(z)

on the walls of the gate, the y-component of eq. (2.33) becomes

d20

dt 2 MgO'(Lc -e 3 )

+ fjdy x
A

-

pa

0#+
p-

h+ (0) of a

with the static equilibrium condition,

0 = -Mg|%c x e3| + Ady x

0 z=- -( It
ds

x f |- dz -
dz

These results are consistent with those known in the dynamics of two dimensional

floating bodies (see e.g., Mei [8], 1989, p 298-300).

2.5 Fourier decomposition in a spatial period

Within the period -b < y < b, the gate motion is even in y. We therefore use Fourier

cosine series to represent the solution in the half period 0 < y < b. The wave potential

# can be described as

M±* (2.40)
#=

25

(2.37)

dsz

+ Pgo'(z) ) x Ids
dzI } (2.38)

(2.39)J 0z=-h+(O)
pg2|IL x i+ _

dz
dz]

+ pg@'- (z) |I210
z= -h-(0)



where * denotes the complex conjugate of the preceding term. Following Mei et al. [9],
the gate motion is represented by

T' u h (y)e i+ *

To ensure the absence of the long-crested propagating wave, we require that

fb I0(y)dy -0

thus

S O I (1 -r

Then 0' can be derived as

0' =0 E bcos
A M=1

( Ye- +* (2.44)

where 01 is so far arbitrary, and

2
bm 2sin mr (1 - r) (2.45)

mwr

are known real coefficients. The linearized governing equations of M:, can be derived

from eq. (2.34) through eq. (2.39):

02M+

OX2

+2 M*
+ az 2

in the fluid,

b l)2

2

m* = 0
9

at z = 0,
M*
On

(2.46)

(2.47)

(2.48)

at z = -h±(x), and
OMm - TW0'bm L x n*| (2.49)
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at x = (*(z). Note that M' and 0' are out of phase by 90'. Consider gate I in

0 < y < b(1 -r), i.e., the half gate for Mode One and the full gate for Mode Two, the

dynamic condition of the gate motion eq.(2.38) gives the eigen value condition for w:

W2 (I + Ia(w)) = C (2.50)

where

ip (1-r)b mTry
Ia(w) = E cos dy x (2.51)

W01 m-1 0o b)"x
0 ds 0 +ds

M- IIL x nt | - dz - Mm+|1 I L +A| dz
[j=-h-(O) dz j =-h+(0 ) dz

is the hydrodynamic moment of inertia, and

C = -Mg(Lc -e 3 ) (2.52)
f(1-r)b 0 ds + - ds

- pg o dyx [-h-(o) dz dz- h+(|) ±ILx ii+| dzj

is the total torque, consisting of torques due to the weight of the gate and the buoyancy

restoring force. Since Mg|Lc x e3| can be computed from eq. (2.39), Mg(Lc -e 3 ) can

be found from the inclination of Lc. All integrations must be carried out numerically

for studying complicated gate geometries.

In view of eq. (2.49), M: is pure imaginary, thus the dynamic moment of inertia

Ia(w) is real. Also from eq. (2.49), M is proportional to 01. Therefore Ia(W) is not

a function of 01. Since C does not depend on 0I either, the eigen value equation for

w, eq. (2.50), is of course independent of 01.

For a given trial value of w, M1 can be solved for 0' 1 from eq. (2.46) through

eq. (2.49). If the resulting Ia(w) satisfies eq. (2.50), the natural frequency w of the

trapped wave is found. Otherwise iterations are carried out until eq. (2.50) is met.
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Chapter 3

Hybrid finite element method

The general idea of hybrid finite element method is to use discrete finite elements near

the complicated body geometry, and formal analytical representations away from it.

In this approach, the boundary value problem for M is expressed as a variational

principle which incorporates the matching of the finite element region and the analyt-

ical region as natural boundary conditions. All the unknowns, including nodal values

in the finite element region as well as the expansion coefficients in the analytical re-

gion, are solved simultaneously. Continuity of pressure and normal velocity across

the imaginary boundary is automatically satisfied in the numerical procedure without

iteration. The method is a slightly modified version developed earlier for water wave

diffraction and radiation problems, see Yue et al. [23] and Mei [8].

3.1 The variational principle

We introduce the imaginary boundaries x = c± as shown in Figure 3-1, and let the

region Q between them as the finite element region in which all the complexities of

body geometry and bathymetry are confined. In this region the wave potential < is

defined in eq. (2.40) where M± must satisfy eq. (2.46) through eq. (2.49).

Let us define the remaining water region on two sides by n±, where analytical
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solutions will be sought. The wave potential here q5+ is similarly defined as

00 
my 

tqi = cos (y) e- + * (3.1)

and satisfies Laplace equation with out-going boundary conditions. For easy reference,

all the analytical variables are distinguished by hats. By assuming constant depth

h+ in n, the formal analytical solution of can be easily derived. Here we adopt the

expression from Mei et al. [9], that is, in eq.(3.1),

00

M±f =/ mnemn cosh kn(z + h±) (3.2)
n=O

where

W2 = gkntanh knh

k7E2
nmn _nr 2

ko is real, and kn, n=1, 2, 3, . . . are all imaginary quantities corresponding to evanes-

cent modes. The coefficients 3 mn are yet to be determined. Note that the frequency

must be low enough

ko < r/b

so that no propagating mode can exist, i.e., the wave is trapped.

The matching conditions across the imaginary boundary between region Q and n
are

#*_= *,?=(3.3)
Ox ax

Using Fourier cosine series to expand # and q as in eq. (2.40) and (3.1), the matching

between pressure and velocity flux become

M =M, "_ =MM (3.4)ax ax

at x = c.

We shall now prove that, for prescribed V+, and unit depth in y, the boundary
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B

Figure 3-1: Finite element model.

value problem coupling MM+ and M+ is equivalent to the stationarity of the following

functional. In the + domain,

J+ [(VMm)2 + ( ,, ) 2bJ (Mm+)2 dQ - SJ(M+)2dS
2g z,=0

1J- 'rn
+ fx=c+ 2 - M+)

M dS - _
Ox x= +

OM1 = #nm eOmnX cosh kn(z + h+)
n=O

V+ jwbnIL x fi+

is the normal velocity of the gate on the front wall x = , with 0' taken to be unity
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where

V+M dS

and

(3.5)

(3.6)

(3.7)



in eq. (2.49). In the - domain, the functional is

J- = [(VM-;)2 + (M)(M,;)2 dQ - W1 (M ) 2 dS

- M M) " dS - V~M dS (3.8)
x~-2 Ox x~g

where

S mneQmunx cosh kn (z + h-) (3.9)
n=O

and

V~ - fwbmli x n | (3.10)

is the normal velocity of the gate on the back wall x

Hereafter we omit the subscript m for brevity. M, therefore, denotes the mth

mode in y direction.

Consider the + region, i.e., the lagoon side. We take the first variation of the

functional J+,

JJ+ [ VM. V(6M)+ (,,) 2 MMI d

MM dS -f V+6M dS
g Jz=0 Jx= +

+ I -(M -M) dS- 6M dS
I=c+ 2 Ox x=c+ Ox/ 1 ( M -A DO6M\
+ <(6 - M dS (3.11)
fx=c+ 2 Ox Ox

By applying Green's theorem to M and 6M over the region Q+, the last integral can

be shown to vanish identically because both M and 6M satisfy Helmholtz equation,

identical homogeneous boundary conditions on the free surface and the seabed, and

vanish at infinity. We now perform partial integration to the first term of eq. (3.11)

+ VM -V(JM) + ()2 MM d

-(MVM) -- M V2M + M M] d
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-[ V2M-_n, M 6MdQ
fn \ b/

/ DM+ 6M dS (3.12)
fsF+B+SB+ On

Gauss' theorem has been applied thus the second term is the line integral on the

boundary of Q+ domain, where SF is along the free surface, B is along the seabed,

SB is on the gate wall x = , and C is the imaginary boundary at x = c+, as shown

in Figure 3-1.

After some algebra, eq. (3.11) becomes

6J+ _ 2M M 6MdQ

/OlM w2  bMrBM
-- M 6MdS+ 6MdS+ - dS

sF Bn / B n nSB V

+ OM- o 6MdS-H + (M-M) dS (3.13)
Jc On On c2 On

In order for 6J+ = 0 for arbitrary 6M and 6, M must satisfy Helmholtz equation

eq. (2.46), also eq. (2.47) on the free surface SF, eq. (2.48) on the seabed B, and

eq. (2.49) on the gate surface SB. In addition continuity of M and OM/On across

the imaginary boundary C are satisfied as natural boundary conditions. Therefore,

the stationarity of J+ is equivalent to the boundary value problem coupling M+ and

M+. Similar proof can be done for M- and M- in Q-.

Since 6 is arbitrary in the space C (Q), while 6M is in the space H'(Q), we

restate the variational principle in the weak form as follows: For given V+, find

M c H1 (Q) and M c C (Q) such that VV) C H1 (Q),

J [VM-V ()M ] dQ (3.14)

W2 ModS- _V+V)dS - V@a dS=0
g z=0 1 x=+ Jx=c+ Ox

and V/ E C (Q),

( ) - M) dS= 0 (3.15)
x=c+ Ox
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Similarly we can find the variational principle in the weak form for Q

3.2 Finite element formulation

The finite element region Q+ is divided into a triangular network of NN nodes. If we

consider a global shape function F(xj, zj) = 6oj, which has the value 1 at the node

(xj, zj), and vanishes at all other nodes, then

NN

M = E piFi(x, z),
NN

7P = F (x, z) (3.16)

where M represents the typical M1, with pi and V/i being unknown coefficients. In

the analytical region n+, we express

NT-1

MI = E /ne-anX cosh kn(z + h+),
n=O

NT-1

/ Z aenx cosh kn (Z+ h+)
n=O

where a, is given in eq. (3.2), )n, in are the unknown coefficients. The series are

truncated after NT terms.

The integrals in eq. (3.14) and eq. (3.15) can then be expressed as follows:

VM - VV)+

[A VF-VF+ b )2 FFz dQI p

2

FjFdS] 1j
j=21

- {$F+}T [K] {pF+I
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(3.17)

,)2 M,0 dQ(bJ j
NN NN

{+T [K+ I 1+ t+},

w2z
MV) dS

(3.18)

(3.19)

domain.



where NF is the number of nodes on the free surface z = 0;

V+F dS]

- bW+} T {V+}

where Nw+ is the number of nodes on the gate wall x =

f
NC+NT-I

S( tdS - I - ae-Jx cosh kj(z +)
wh + is tei=1 j=0 xrc

where N+ is the number of nodes on the artificial boundary x =- c+;

Ixc+ MxdS

Nc+ NT-i

= E Z [(
i=1 j=0 Lxc

-aje-"ix cosh kj(z + h+)Fi dSAk

(3.22)

and

MI dS
Ox

NT-i NT-1

= ( (_5
i=0 ]=0

= {5+ rK] { +}

-aje-" cosh kj (z + h+) e-ix cosh ki(z + h+) dS] j

(3.23)

We now collect the integrals and assemble the matrix forms of eq. (3.14) and

eq. (3.15) as

{ +T [K+] {i++ ± F+}T [K+] {pF+}

+{$vb} T [Kr] {+1I V W+} T {V+}
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(3.24)

(3.20)

(3.21)

N+W
- f

X= +

OM

= -{p"*}T (K+] f+

x=c+

+)Fj dS j



and

{i+T [K3] T {PC+} + {+T [K4] T {f)+}= 0 (3.25)

Similarly we have in - region

{p-}-T KI- {p-}+{$F- IT [K-] {pF-I

+{ cT- r [K3] {} {VW }T {Vj (3.26)

and

{ -}T [K3] T pC} + ~}T [K-] {-} = 0 (3.27)

All vectors {VF±}T {)Ci}T and {$,W±}T are subsets of vector {$*±}T, thus the

preceding equations can be rearranged into a linear system with the stiffness matrices

properly assembled. Since the vectors {#*}T and {±}T are arbitrary, eq. (3.24) to

(3.27) become a linear equation

[K] {p} = {V} (3.28)

where

[p = {-}T, {p-~}T, {+T {+T] (3.29)

{v}T = [{V-} T , {V+}] (3.30)

and the structure of the global stiffness matrix [K] is given in Figure 3-2.

Gauss elimination is used to solve the matrix equation (3.28) for the vector {p}

which consists of the nodal point potentials in the finite element region and the

expansion coefficients in the analytical region. Note that the global stiffness matrix

[K] is symmetric and real.
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'K+
K 3

K+T K+T N3 4 T

NC NT

Figure 3-2: Global stiffness matrix [K].

3.3 Stiffness matrix

In the finite element region, isoparametric 3-node elements are chosen. The Fourier-

decomposed potential M in each element is approximated by

M = {Ne}T{_e} (3.31)

where {pe}T is a vector of nodal point values

{e p -- (e pe, pe)

{Ne}T is the local shape function

{N }T = (Ne,Ne,Nj)

and

Ni = (ai + bix + ciz)/2A
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i - 1, 2, 3, A is the area of the triangle element, and

ai = x2z3 - Xz2z a2 =x -X z IZ3 a3 = 2iz - 1z

b1 = z - z' b2 =z- -e z [a 3 = -Z

ci = X3 - X2 C2 =Xi - z3 C3 =X2 -Xi

For the lagoon side (the + region), the evaluation of the matrix [KF] in eq. (3.18)

is calculated,

(K+] = VN- -VNe+ N N dA

= Kiij (3.32)

where

Sb + ±?+ 2A 2 (m7)
2

K11 =bi+c +3 b

when i j, and
A2 M,,r 2

K1 = bi bj + c.cj + 3 (m)

when i # j. The element stiffness matrix is then assembled into a global matrix [K+].

Note that Kij = Kiji thus [K+] is symmetric. In the assemblage, the nodal points

are re-indexed and the element matrices are placed accordingly in the global matrix.

The same node can belong to several adjacent elements and the stiffness contributions

must be added up.

Similarly, we have

[K] - K2i (3.33)
2x2

where

= I2 - Xil

3

when i = j, and
x2 - z

K2ij = X -X
6

when i # j, for points 1, 2 on the free surface.
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The integration in eq. (3.21) is performed for points 1, 2 on the artificial boundary

C+:

[K+] - [ j C K 3iJ e (3.34)
3 u k4 1b31

where there is no summation over j, with

K 3 1 j= cosh kj (h + z 2 ) - cosh kj (h + zi) + kjb 3 sinh kj (h + zi)

and

K32j= cosh kj (h + zi) - cosh kj (h + z2 ) - kjb3 sinh kj (h + z2 )

Finally in eq. (3.23), the matrix [K4f] is diagonal due to orthogonality, with the

diagonal element

[K+]. _yje2ajC+ 2 ± sinh 2kih]K = a -ac h+ + 4ki (335

The matrices for the - region are similarly derived. Note that all matrix elements

are real. These matrices are then properly arranged as in Figure 3-2 and constitute

the global stiffness matrix [K].

As in eq. (3.20), the matrix [V+] is evaluated by numerical integration of eq. (3.7)

on the gate wall x = for a given w. Since the problem is two-dimensional, the

vector product in eq. (3.7) is easily calculated by

IL x n+| =- |ILI sin K

where is the angle between L and i+. After [K] and [V] are derived, the vector {p}
is solved from the linear equation eq. (3.28). The results are then put in the eigen

value equation eq. (2.50), which is satisfied after some iterations of w. Similarly when

computing C in eq. (2.52), we use

Lc - e3 = |Lc I cos KG

where r1G is the angle between Lc and the positive z-axis.

The natural frequency w and eigen function M are then found. Some one-
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dimensional root-finding routines can be used here. Since the calculation of Ia(w) is

somewhat computationally expensive, and the eigen value equation is well-behaved,

we choose the secant method, which generally converges rapidly, to find w in eq. (2.50).

For a particular choice in the finite element region, we must choose small enough

elements in a wavelength, and a large enough number of expansion terms NT. The

accuracy is first judged by comparison with the analytical solution and then by con-

vergence tests with different choices of element size and NT.
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Chapter 4

Numerical results

As a check we first performed calculations for Mode One of the simplified model of

vertically standing gates with rectangular cross section, as studied analytically and

experimentally by Mei et al. [9]. The water depths are kept the same on both sides

of the gates. We have also performed a wide range of computations for inclined gates

of rectangular cross section and a flat seabed. Even when the gross dimensions are

the same as those in the proposed design, the results do not compare well with the

experiments by Delft Hydraulics Laboratory [12]. Some theoretical derivations are

given in Appendix A with a simple numerical result, which is not satisfactory. This

is because the total moment C and the hydrodynamics inertia la depend strongly

on the geometry of the gate and the housing: the more accurate model is necessary.

Therefore, the prototype geometry as shown in Figure 2-2 is used. By varying the

parameters including water depth difference, inclination angle, gate width, and thick-

ness, the role of the gate geometry on the eigen-period is examined and compared

with existing laboratory experiments [12].

4.1 Vertical gates

A simplified model where the gates are rectangular and vertical is solved numerically

here. The analytical solution is adapted from Mei et al. [9] and Sammarco [13], where

41



the total moment C and the hydrodynamics inertia Ia are derived explicitly:

C = pgah2 - Mg(ze + h) (4.1)

with 2a being the thickness of the gate and zc the depth of the center of mass. Also

2pb 0001
Ia(W)= E E -#mn D, sin mr (1 - r) (4.2)

m=1 n=O

with
bmDn

Omn = bmn (4.3)
cymnCn

where

12 hw 2
Co = - (h+ 2 sinh2 kh , Do = 2(- -1 cosh kh + 1i (4.4)

2 W2 k2 g(

Cn = h - 2 sin2 knh , D = [(1 - -2 cos knh - 1 . (4.5)
2 W k2

bm and ann are given in eq. (2.45) and eq. (3.2) accordingly. For Mode One, ana-

lytical and numerical results are compared in Figure 4-1. Different gate inertias are

examined, from the lowest to the highest, I = 0.21, 0.196, 0.273, 0.582 and 0.771

kg m2 , as being tested by Tran [17].

A sample free surface displacement is shown for I = 0.21kg m 2 in Figure 4-2,

where

(= ote- * (4.6)

with
z 0 m m7y

W = - rn cos (b (4.7)

The width of the wave flume in the experiment is 0.366 m which equals the semi-

period b in the y direction. Note that the free surface displacement is opposite to the

gate motion, that is, the gate oscillation is forced by the waves, instead of generating

them. This is reasonable since waves are trapped near the gates, there is no radiation

towards infinity.

42



5.00

analytical solution

4.50 symbols hybrid finite element
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Figure 4-1: Natural period of vertical gates oscillating in opposite phases in various
water depths h (m). Corresponding to curves from the lowest to the highest, the
inertia I is 0.21, 0.196, 0.273, 0.582, 0.771 kg m2
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Figure 4-2: Free surface displacement for vertical gates at Mode One. I = 0.21kg m2

w 4.0 and h 0.4 m.
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4.2 Prototype gates

4.2.1 Scale model experiments

The dimensions of the proposed design to span the Malamocco inlet are shown in

Figure 4-3, with width b = 20 m in y direction, and thickness of 4 m. In calm

weather, the water depth is 15 m on both sides of the gate. In a severe storm, the

water level is expected to increase by 0.5 m in the lagoon and up to 2.5 m on the sea

side, implying a difference of water levels ranging from 0 to 2 m. When in operation,

the gates are raised to an inclination angle of e=500 from the horizon.

Under contract with Consorzio Venezia Nuova, Delft Hydraulics Laboratory [12]

performed a series of scale model experiments during 1988 to study the oscillations

of the gates. The model gates consisted of polyurethane foam and covered with

aluminum sheeting; the air chamber was not reproduced. Instead of water, lead

ballast, put inside an aluminum cylinder installed in the center plane of the model

gate along the z-axis, was used to balance the inclination and water-depth difference.

The total mass, position of center of gravity, and structural moment of inertia were

thus not reproduced. We shall now describe our mathematical simulations for these

model gates with a dual purpose of predicting and understanding the effects of various

geometrical parameters, and of comparing our theory with the Delft measurements.

It should be noted that while the inertia properties (total mass, position of center

of gravity, and structural moment of inertia) of the model gates are different from

the proposed prototype, the numerical results given in the followings are, however,

transformed to prototype scale as done in the Delft report [12].

For our mathematical model we need to know the position vector Lc of the center

of gravity of the gate, as well as the structural inertia I. For the laboratory model,

both can be found by linear interpolation from the recorded percentage of ballast

lead (Fig 5.1, Fig 5.2, Fig 5.4 and table on p 37 in the Delft report [12]) and are

listed in Table 4.1 and 4.2. All these values have been converted by Delft Hydraulic

Laboratory from model scale to prototype scale.

In general, higher percentage of ballast lead gives larger MgLc and I. Some of the
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-0.50
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Figure 4-3: Prototype geometry. The dimensions shown in meters are for the Malam-
occo inlet, with width b = 20 m in y direction, thickness = 4 m, and inclination angle
0 = 500 when in operation.

inertia properties
percent lead (%)

I (106kg m 2 per m gate width)

|Lc I (m)
angle ac (see Figure 4-3)

h- - h+ (m)
-0.5 0.0 0.5 1.0 1.5 2.0
86.97
21.91
16.23
4.96

74.17
17.39
15.31
5.20

61.36
13.73
14.52
5.44

48.55
11.27
13.94
5.64

29.68
8.06

13.38
5.84

Table 4.1: Values of L and I. For 0=500, h+=15.5 m.
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8
inertia properties 400 450 500 550 600 650
percent lead (%) 102.1 88.13 74.17 64.64 55.11 45.58

I (10 6kg m 2 per m gate width) 27.24 22.32 17.39 14.36 12.53 10.70
ILcl (in) 17.24 16.31 15.31 14.67 14.23 13.83

angle ac (see Figure 4-3) 4.73 4.94 5.20 5.40 5.54 5.68

Table 4.2: Values of Lc and I. For h+=15.5 m.

scale model tests were for free-oscillations where the gates were given initial angular

displacements consistent with the mode. Because only three or four gates were used

to span the width of the wave channel, records of natural periods are available only for

Mode One and Two as shown in Figure 2-1. Specifically, natural periods have been

recorded for Gate N0 7 for several values of (i) inclination angles and (ii) water-level

differences across the barrier. Our numerical results can only be compared with these

measurements.

4.2.2 Hydrodynamic inertia and total moment

To help understand the results on the natural periods, we first present the cal-

culated hydrodynamic inertia 'a as a function of w. Since the total moment C and

structural inertia I depend only on the equilibrium geometry, they are independent of

W, i.e., are constants for fixed 0 and h+. As shown in Figure 4-4, the hydrodynamic

inertia I, for e = 500 is around 1O8kg M2 , and for the scale model, the structural

inertia I, which is a constant here, is of the same order O(10'). Therefore both ',

and I are important in the calculation of the eigen solution w in eq. (2.50). Because

I is a constant, and Ia(w) increases monotonically with w, eq. (2.50) has only one

root. Also the eigen frequency is lower (period is longer) if the hydrodynamic inertia

is greater.

Since the eigen frequency is determined by the hydrodynamic inertia Ia as well

as I, let us study first their dependence on various geometrical dimensions. First,

the effect of water level difference is examined. The water depth in the lagoon h+ is
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Figure 4-4: Calculated hydrodynamic inertia Ia(w) and total moment C of a half gate
for various frequencies. Mode One, e = 50 , h*=15.5 m, b=20 m.
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Figure 4-5: Calculated hydrodynamic inertia I, and total moment C with various
water depth differences. Prototype geometry is used with w=-0.4, e = 500, b=20 m,
h+=15.5 m, h~ = h++water depth difference. (Mode One: half gate; Mode Two:
one gate.)
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h- - h+ (in)
C/(Ia + I) -0.5 0.0 0.5 1.0 1.5 2.0
Mode One 0.2032 0.2017 0.1968 0.1852 0.1743 0.1564
Mode Two 0.1590 0.1551 0.1479 0.1369 0.1268 0.1123

Table 4.3: The ratio C/(Ia + I) for various water depth differences. w=0.4, 0=50,
b=20 m.

kept constant at 15.5 m, while h~ on the sea side is varied from 15.0 to 17.5 in. The

frequency w=0.4 here is arbitrarily fixed. When h- increases, MgLc must decrease

in eq. (2.39), then the total moment C decreases as well in eq. (2.52), as shown in

Figure 4-5. In the scale model, a decrease in MgLc also implies a decrease in I.

With increasing water level difference, C and I decrease but Ia increases, hence in

eq. (2.50), the change of (I + I) is small. In Table 4.3, it can be found that an

increased difference in water levels reduces the ratio C/(Ia + I), therefore lengthens

the period. However, within the design range, the ratio does not vary significantly,

so the water level difference across the barrier is not a major factor influencing the

eigen frequency w.

In Figure 4-6, the water depths h+ are kept constant on both sides at 15.5 m, the

frequency w is fixed, but the inclination angle E ranges from 400 to 65'. It is shown

that Ia and C change rapidly with the inclination angle, and both decrease with

increasing 0. In the extreme case when the gate becomes vertical, Ia and C approach

their minima. Also in the model tests, I decreases as e increases. As shown in Table

4.4, the ratio of C/(I + I) decreases monotonically with increasing inclination angle,

so a longer period is expected for larger e. In comparison with Table 4.3, trapped

wave periods are much more sensitive to the inclination angle than the difference in

water levels.

Finally in Figure 4-7, we show the effect of the gate width b in the y direction (along

the barrier) for fixed e and h*. Because C and I are not dynamical quantities, they

are proportional to the gate width. Ia, however, increases more dramatically when b

increases, thus C/(Ia + I) must decrease with wider gates, leading to longer trapped
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Figure 4-6: Calculated hydrodynamic inertia I, and total moment C with various
inclination angles for prototype geometry. w=0.4, h+=15.5 m, b=20 m. (Mode One:
half gate; Mode Two: one gate.)

C/(Ia + I) 400 450 500 550 600 650
Mode One 0.2708 0.2476 0.2149 0.1823 0.1537 0.1193
Mode Two 0.1970 0.1858 0.1628 0.1402 0.1180 0.0921

Table 4.4: The ratio C/(Ia + I) for various inclination angles. w=0.4, h*-15.5 m,
b=20 m.
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wave period from eq. (2.50).

4.2.3 Natural periods of trapped waves

With the effects of , and C understood, we can now examine quantitatively the

natural periods of trapped waves and compared them with measured data.

First we keep e = 500 and h+=15.5 m as in Figure 4-5, and vary h- on the sea

side. In Figure 4-8, the trapped wave period increases with the water level difference

for both Modes One and Two, as predicted from Figure 4-5. For the same gate

geometry, an increase in depth difference lengthens the period. However, water level

difference across the barrier is not a major factor. The agreement between numerical

result and experiment data is fair.

In Figure 4-9, the effect of static angle of inclination e is examined. Only for

Mode Two is comparison possible because the experiment was performed for three

gates across the width of the flume. The agreement is good. When the equilibrium

inclination approaches 90', the trapped mode period increases. This suggests that

without changing the gate dimensions, vertical gates may be more advantageous in

having natural frequencies far below the incident wave spectrum.

In Figure 4-10, the gate width in the y direction is varied. In the Delft experiments

only one width b = 20.0 m was examined. The agreement is again good. As shown

in the figure, if two adjacent gates are locked together, i.e., b = 40.0 m, the period

increases by about 30%. Therefore locking two or more gates can also help reducing

the likelihood of resonance by making the eigen period longer than the period of the

significant incident waves.

Numerical experiments on the effects of gate thickness are shown in Figure 4-11.

Both water depth h* and inclination angle 0 are kept constant. Referring to Figure

4-3, in the computations we increase the gate thickness by moving the wall BC away

from the opposite wall, while keeping the slope of segment AB the same. Various

values of the gate thickness are then tested. Since the structural moment of inertia

I and the position of center of gravity I. are not available from the Delft report, we

simply take I and inclination of IGc as constants. Physically we can expect a smaller
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Figure 4-7: Calculated hydrodynamic inertia Ia and total moment C for various gate
widths b. w=0.4, 0 = 500, h*-15.5 m. (Mode One: half gate; Mode Two: one gate.)
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Figure 4-8: Natural period of trapped mode for various water depth differences.
E = 500, b=20 m, h+=15.5 m, h- = h++water depth difference.
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Figure 4-10: Natural period of trapped mode for various gate widths. e = 500,
h+=15.5 m.
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Figure 4-11: Natural period of trapped mode for various gate thicknesses. e = 500,
h*=15.5 m, b=20 m.
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I and a larger inclination of Lc for a thinner gate. Agreement with the limited data

is good. For thicker gates, the opening due to out-of-phase oscillations will of course

be smaller for the same angular displacement, but the reduction of natural period

may make the barrier more susceptible to resonance by incident waves whose spectral

peak is around 14 s in Adriatic Sea.

As was pointed out in Mei et al. [9], higher modes are characterized by longer

spatial periods b relative to the width of each gate, i.e., there are more gates in a

period 2b along the barrier. From our computations it can be seen that the natural

period of Mode One is shorter than that of Mode Two which has three gates in a

spatial period. Therefore if the gates are designed such that the peak period of the

incident waves is much smaller than the natural period of Mode One, subharmonic

resonance of Mode Two, or even higher modes, poses no threat.

As can be seen from Figures 4-8 through 4-11, agreement between our numerical

predictions and the Delft experiments is quite good in general. The largest error is

about 5% in Figure 4-8, for Mode One, when the water depth difference is 2 m.
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Chapter 5

Conclusion

Extending the linear theory of Mei et al. [9], the problem of trapped modes near

inclined Venice storm gates is examined by using the hybrid finite element method.

Natural periods of the trapped waves are computed to assess the influence of geo-

metrical parameters, and compared with experiments, for the prototype geometry.

This numerical scheme makes it possible to consider a wide range of gate inclination,

thickness, width, etc., which are factors in exciting resonance and in cost estimates.

Variable bathymetry and water level difference across the barrier are also considered.

For a fixed geometry of the gate, we have shown that the increase of water level

difference, or an increase of gate inclination angle, is accompanied by a longer nat-

ural period. The trapped wave period also becomes longer when the gate width is

extended. Finally, the effect of thicker gate is to decrease the eigen-period.

To avoid unwanted resonance, we can adjust the gate dimensions so that the

natural frequency of the gates is outside the range of the local incident wave spectrum.

Since in Mode One there is an opening between every pair of adjacent gates, it is

the worst mode for the intended function of the barrier. Either by reducing the gate

thickness, by increasing the gate width, or by maintaining a more vertical equilibrium

position, the eigen-period can be increased so as to escape the effective range of the

incident wave frequencies. Indeed the simplest solution appears to be just locking

two, or more, or all gates together.

For unlocked gates, further development of the theory along the lines of Sam-
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marco et al. [14][15] would lead to a nonlinear evolution equation for the trapped

wave, and the study of spectral shape of the incident waves is also necessary.
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Appendix A

A simplified model

A.1 Formulation

Referring to Figure A-1, consider the simplified gate model of rectangular cross section

with the thickness of 2a, as used in Mei et al. [9]. Assume a flat seabed of constant

depth: z = h+ on the lagoon side while z = h- on the sea side. The walls of the gate

are then given:

= (z + h+) cot E) + ( )
\sin Eh}

(-=(z + h-) cot 8 - si 8

therefore the boundary condition on the gate walls becomes

0$* &#*± (z+ hk)±acos0

Ox tz sin E)cos E
(dOs
k dt

(A.2)

at x = (*, and eq. (2.17) reads

(A.1)

-I 1( = Mgde cos8
dt2

+ f-FA

IA

1z-h
z=--

zz=-h+

P (z+h-
sine sin E

P (z+h+
sin e sin e
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- a cot

+ a cot e)

dy dz
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+

Figure A-1: The ideal gate model.

in -y direction, with de being the distance of the center of gravity of the gate from

the hinge. Notice that as in eq. (2.17), we have, for change of variable,

ds 1
dz sinE

The preceding equations are similarly normalized as in Section 2.2, where

x x/b, t' = wt, ' Awb' (= /A, h'+ = hi/b

6' = = C

Taylor expansion is then performed to linearize all the boundary conditions.

For the free surface boundary condition, eq. (2.21) is given at z' = 6('.
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Taylor expansion about z' = 0, we have

+ E at' I 2 + 2' EC
at' 2

(A.4)

As E - 0, it gives exactly eq. (2.26). Similarly, at the walls of the gate ('*

z' = (z' + h'*) cot(0 + e6') ± a'
sin(E + E60')

(A.5)

Apply Taylor expansion

tan(0 + 6') = tan 0 + e6' - sec 2 0 + }62012 - sec 2 0 cot 0 + O(63)

cos(e + 60') = cos E - 6' sin 0 - }e20'2 - cos + O(e3)

sin(o + E60') sin e + eO' - cos - e20'2 - sin ± + (e3)

(A.6)

we find the mean position of the walls x'= e' to be

' =(z' + h'±) cot sa'sin
(A.7)

The boundary condition at the walls of the gate can therefore be expanded about

' = e'. By letting 6 -+ 0, we find

~F(z' + h'*) - a'
sin e

cos 0 dO'
dt'

(A.8)

at x' = e'*. The unit normal vector ii+ = F(sin 0, - cos 0) points into the gate at

the mean position.

After substituting eq. (A.6) into the normalized equation of eq. (A.3), and keeping

the terms up to 0(e), the dynamic condition of the gate can be rewritten

I d2 0' M

pb5 dt'2  pb3 Gdc COS®

{ / 'Gz'F'- d'-e
-h'- sin e

M .-E G d' sin 60'+ dy'x
pb 3  C I A

/' [Gz'6' (2 cot OF'-
-h'- sin 0
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dz'a) + t'

)z'=0oz'2 -( + --- =



+
Gz'F'+ c E+ I Gz''
sine J -h'+ sin e

where the first two integrals are evaluated at x'

evaluated at x' = '+, with

(2 cot OF'+ + a') +

The last two integrals are

z'±+ h'+
'+ - / ) + a' cot 0

Ssin 8

F'- - ( h) -a' cote (A.10)
sin 8

being the moment arm of pressure force acting at a given point on the gate walls.

Similar treatment of Taylor expansion about the mean position of the gate surfaces

X' = (' leads to

Of
f (n y', t'),l f (nl y', t'),,_g± + 85 (n, y', t'),_g± - An + --- (A. 11)

where f is an arbitrary function, n is the unit normal vector, n is the mean position

of n, and An is the small variation of n:

An = RAO = F' -e'

* ~ a -

&ih± =F a,sine6
± a cos0 (A.12)

After some algebra , we can find from eq. (A.9) that at the order 0(e0 ),

0 = d' cos e + dy' x
pb3 C A

fO z''- dz' -
-h'- Sine

0 z'f+I -s dz'
-h'+ sine /

which is the static equilibrium condition between gravity torque Md' and the equi-

librium angle 0. The same result can be derived simply by letting 0' = 0 and #'= 0
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in eq. (A.9). At the next order 0(c), we get

I d2 0'

pb5 dt'2

M
= MG d' sine0' + dy' x

pb 3 " s/

{J 0 Gz'O' (2 cot OF'-

1
sin 0 [Gz' 0' (2 cot e'+ + a')

A.2 Governing equations

Now we return to physical quantities. As in Section 2.5, Fourier cosine series is used

to represent the solution in the half period 0 < y < b.

governing equations of Mm:

We then have linearized

a2 M+ a2 M m

2~x

in the fluid,

at z = 0,

b

- Mm± =0
9

aM*
am 0n
On

i (z + h+ T a cos "
= TiW bn Esine J (A.18)

at x = ±(z). Consider gate I in 0 < y < b(1 - r), the dynamic condition of the gate

motion eq. (A.14) gives the eigen value condition for w, the same as eq. (2.50):

(A.19)
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a') + a'-F- dz
at d

+ '+
at'

dz' (A.14)

at z = -h±(x), and

(A.15)

(A.16)

(A.17)

-
0

/-h'+

Uz4

W 2 (I + Iapw)) = C



(1-r)b dm y x0 K b ) d
M (z+ h- -acose) dz+

sin 206

f0

-h+
z+h+ +acos \

sin
2 0

is the hydrodynamic moment of inertia, and

(1 - r)b
C = -Mgde sin p - pg dy x

(z + h--a cosO
2cote si- J

Sin2

2 cot z a cos
c t sin 2 0

a]
- - idz

sin e j
al

+ a dz
sine 0-

is the total moment due to gravity force and buoyancy, where Mgde can be easily

derived from

(1-r)b
Mgde cos E = pg I dy x

[J 0/ -h-

zz+ h+ + acoso )dz -2-Sin 2 e )dz
J0

-h+

(z + h--a coso ) 1
sin

2 0 (A.22)

For this simplified model where the inclined gates are rectangular boxes, eq.(A.21)

and eq.(A.22) can be integrated analytically to get C. For example, when there is no

water level difference across the barrier, C is given

C = pg(1 - r)b x

- z [2 cc

Jz [2cot0

)t z+ h-acos) a dz
Sin2 9sn0

z+ h h+ acosO a
- + dz

sin2 sinE
(z+h+acos) dz-

sin 209

j0 z +h-acose)

h sin 209
dz]

2pgabh (1 - r) cos 2 0
sin 0

sin
Cos f

(A.23)
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0po
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(A.20)

dz]
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- Jz (A.21)
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A.3 Numerical results

For the inclined gate model as shown in Figure A-1, numerical calculations using the

hybrid finite element method are performed. The gate is of the same gross dimensions

as in the proposed design, i.e., h=15.5 m, b=20 m, and 0=50', however rectangular-

shaped throughout the water depth with thickness of 2a=4.0 m.

The numerical results are plotted in Figure A-2 with different inclination angles

from horizon. The structural inertia I listed in Table 4.2, found by linear interpolation

from the recorded data, is also used. The results do not compare well with the

prototype tests: the largest error is about 25% when 0=60'. Because the total

moment C and the hydrodynamics inertia I, only depend on the geometry of the

gate, the more accurate model is necessary.
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Appendix B

Fortran program solving the

trapped waves

C This program uses Hybrid Finite Element Method to compute the

C trapped modes around inclined Venice gates.

PROGRAM VENICE

REAL ANS,FUNC

EXTERNAL FUNC

DIMENSION XYZ(139,2),NCON(218,3),NELEF(50),

+ NELECP(50),NELECM(50),NELEWP(50),NELEWM(50)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQTNBAND

COMMON/IO/ IREAD,ITERM 10

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HMG,DEN,XCP,XCM

COMMON/CWIXI/ C,WI,XI

IREAD=1

OPEN(UNIT=IREAD,FILE= 'h155')

PAI=z3.1415926

c THETA stores (temporarily) the angle of center of gravity

c relative to the inclination angle.

THETA=5.2049

CALL INPUT (XYZ,NCON,NELEF,NELECP,NELECM,NELEWP,NELEWM) 20

CALL BAND(NCON)
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c XI is the mass moment of inertia per unit length.

XI=(1-1./MODE) *B*17.39378e6

CALL GETC(XYZ,NCON,NELEWP,NELEWM)

CALL RTSEC(FUNC,0.2,0.4,1.E-5,ANS,

+ XYZ,NCONNELEF,NELECPNELECM,NELEWP,NELEWM)

WRITE(*,*) ANS,2*PAI/ANS

STOP

END

30

C Subroutine ASEMK assembles element stiffness matrices into a

C global stiffness matrix SYSK, which is stored in symm packed form.

SUBROUTINE ASEMK(XYZ,NCON,SYSK)

COMPLEX SYSK,ELK

DIMENSION NCON(NELE,3),XYZ(NNOD,2),SYSK(NEQT,NBAND)

DIMENSION NR(3),P(3,2),ELK(3,3)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

40

CALL ERASE(SYSK,NEQT*NBAND*2)

DO 40 L=1,NELE

DO 14 J=1,3

NR(J)=NCON(L,J)

14 CONTINUE

DO 16 I=1,3

DO 15 J=1,2

P(I,J)=XYZ(NR(I),J)

15 CONTINUE

16 CONTINUE 50

c Call subroutine SHAPE to calculate element stiffness matrix.

CALL SHAPE(P,ELK)

DO 20 I=1,3

DO 18 J=I,3

IF(NR(J)-NR(I) .GE. 0) GOTO 17

LR=NR(I)-NR(J)+1

SYSK(NR(J),LR) =SYSK (NR(J),LR) +ELK(I,J)
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GOTO 18

17 LS=NR(J)-NR(I)+1

SYSK (NR(I),LS) =SYSK (NR(I),LS) +ELK(I,J) 60

18 CONTINUE

20 CONTINUE

40 CONTINUE

RETURN

END

C Subroutine BAND determines the bandwidth of matrix SYSK.

SUBROUTINE BAND(NCON)

DIMENSION NCON(NELE,3) 70

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

KMAX=0

DO 10 L=1,NELE

IMAX=-1

IMIN=10000

DO 20 K=1,3

II=NCON(L,K)

IMAX=MAXO(IMAX,II) 80

IMIN=MINO(IMIN,II)

20 CONTINUE

KMAX=MAX0((IMAX-IMIN+1),KMAX)

10 CONTINUE

NBAND=MAXO(KMAX,NNP,NNM)

RETURN

END

C Subroutine BKSUBT back-substitutes for solution CX, given 90

C CA*CX=CB. Solution is retained in CB.

SUBROUTINE BKSUBT(CA,CB,NEQT,NBAND)

COMPLEX CA(*),CB(*),C
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20

10

40

30

JB=NBAND-1

DO 10 I=1,NEQT

C=1.0/CA(I)

CB(I)=CB(I)*C

IF(I .EQ. NEQT) GOTO 10

IB=MIN0(JB,NEQT-I)

DO 20 II=1,IB

INDEX=II*NEQT+I

CA(INDEX) =CA(INDEX)*C

CONTINUE

CONTINUE

Il=NEQT-1

DO 30 1=1,11

J=NEQT-I

IB=MIN0(JB3,I)

DO 40 II=1,IB

CB(J)=CB(J)-CA(J+II*NEQT)*CB(II+J)

CONTINUE

CONTINUE

RETURN

END

100

110

C Subroutine CROSSK assembles matrix SYSK3 containing cross terms.

SUBROUTINE CROSSK(NELEC,XYZ,NCON,SYSK3,WK,ALPHA,NN,NCS,IPM,EKC)

IMPLICIT COMPLEX(S) 120

DIMENSION SYSK3(NN,NCS),NELEC(*),XYZ(NNOD,2),NCON(NELE,3),

+ WK(NCS),ALPHA(NCS)

DIMENSION NR(2),P(2),EKC(2,NCS)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM

c IPM is the index for either "+"(P) or "-"(M) region.

IF (IPM .EQ. 1) THEN
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H=HP 130

NC=NCP

ELSE

H=HM

NC=NCM

ENDIF

CALL ERASE(SYSK3,NN*NCS*2)

DO 40 L=1,NC

DO 10 1=1,2

NR(I)=NCON(NELEC(L),I)

P(I)=XYZ(NR(I),2) 140

10 CONTINUE

PL=P(2)-P(1)

PK=WK(1)

PK1=(H+P(1))*PK

PK2=(H+P(2))*PK

COEF-ALPHA(1)/(PK*PK*ABS(PL))

SH1=SINH(PK1)

SH2=SINH(PK2)

CH1=COSH(PK1)

CH2=COSH(PK2) 150

c Calculate element stiffness matrix for each line segment.

EKC(1,1)=COEF*(CH2-CH1-PK*PL*SH1)

EKC(2,1)=COEF*(CH1-CH2+PK*PL*SH2)

DO 20 J=2,NCS

PK=WK(J)

PK1=(H+P(1))*PK

PK2=(H+P(2))*PK

COEF=ALPHA(J)/(PK*PK*ABS(PL))

SN1=SIN(PK1)

SN2=SIN(PK2) 160

CS1=COS(PK1)

CS2=COS(PK2)

c Calculate element stiffness matrix for each line segment.

EKC(1,J)=COEF*(CS2-CS1+PK*PL*SN1)

EKC(2,J)=COEF*(CS1-CS2-PK*PL*SN2)
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20 CONTINUE

c Assemble to matrix SYSK3.

DO 30 I=1,2

DO 3 J=1,NCS

LR=L+I-1 170

SYSK3(LR,J)=SYSK3(LR,J)+EKC(I,J)

3 CONTINUE

30 CONTINUE

40 CONTINUE

RETURN

END

C Subroutine DENSE performs static condensation.

SUBROUTINE DENSE(SYSK,SYSK3P,SYSK3M,SYSK4P,SYSK4M) 180

IMPLICIT COMPLEX(S)

DIMENSION SYSK(NNOD,NBAND),SYSK3P(NNP,NCSP),SYSK3M(NNM,NCSM),

+ SYSK4P(NCSP),SYSK4M(NCSM)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

NN=NNOD-NNP

DO 28 K=1,NNP

KK=NN+K

DO 26 J=1,NNP 190

KJ=J-K+1

IF(KJ .LT. 1) GOTO 26

DO 24 I=1,NCSP

SYSK(KK,KJ)=SYSK(KK,KJ)-SYSK3P(K,I)*SYSK3P(J,I)/SYSK4P(I)

24 CONTINUE

26 CONTINUE

28 CONTINUE

DO 38 K=1,NNM

DO 36 J=1,NNM

KJ=J-K+1 200

IF(KJ .LT. 1) GOTO 36
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DO 34 I=1,NCSM

SYSK(K,KJ) =SYSK(K,KJ)-SYSK3M(K,I)*SYSK3M(J,I)/SYSK4M(I)

34 CONTINUE

36 CONTINUE

38 CONTINUE

RETURN

END

210

C Subroutine DIAGK calculates the diagonal matrix SYSK4.

SUBROUTINE DIAGK(SYSK4,WK,ALPHA,NCS,IPM)

IMPLICIT COMPLEX(S)

DIMENSION SYSK4(NCS),WK(NCS),ALPHA(NCS)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM

c IPM is the index for either "+"(P) or "-"(M) region.

IF (IPM .EQ. 1) THEN 220

H=HP

ELSE

H=HM

ENDIF

CALL ERASE(SYSK4,NCS*2)

COEF=-ALPHA(1)

SYSK4(1)=COEF*(H/2.0+SINH(2.0*WK(1)*H)/(4.0*WK(1)))

DO 20 J=2,NCS

COEF=--ALPHA(J)

SYSK4(J)=COEF* (H/2.0+SIN(2.0*WK(J) *H) / (4.0*WK (J))) 230

20 CONTINUE

RETURN

END

C Subroutine EIGVAL finds required eigenvalues satisfying

C X*TANH(X)=C, the dispersion relation.
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SUBROUTINE EIGVAL(N,H,X,Y)

DIMENSION X(N),Y(N)

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM 240

TOLR=1.E-5

C=C1*H

XJ=C

c Loop to calculate real root, store in X(1).

10 XI=XJ

XJ=C/TANH(XI)

IF(ABS(XI-XJ) .GT. TOLR) GOTO 10

X(1)=XJ/H

Y(1)=SQRT(C2-X(1)*X(1)) 250

IF(N .LE. 1) RETURN

c Loop to calculate imaginery roots, store in X(I).

DO 30 I=2,N

XJ=(I-1)*PAI

DX=XJ

20 XI=XJ

XJ=ATAN(-C/XI)+DX

IF(ABS(XI-XJ) .GT. TOLR) GOTO 20

X(I)=XJ/H

Y(I)=SQRT(C2+X(I)*X(I)) 260

30 CONTINUE

RETURN

END

C Subroutine ERASE sets consecutive array elements to zero.

SUBROUTINE ERASE(A,N)

DIMENSION A(N)

DO 10 I=1,N 270

A(I)=0.0

10 CONTINUE

RETURN
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END

C Subroutine FEM performs Hybrid Finite Element Method for a

C given frequency W, to get the hydrodynamic moment of inertia WI.

SUBROUTINE FEM(WXYZ,NCON,NELEFNELECPNELECMNELEWP,NELEWM)

IMPLICIT COMPLEX(S) 280

DIMENSION SYSK(139,60),SYSF(139),SYSK3P(5,100),

+ SYSK3M(5,100),SYSK4P(100),SYSK4M(100)

DIMENSION WKP(100),WKM(100),ALPHAP(100),ALPHAM(100),

+ XYZ(NNOD,2),EKC(2,100)

DIMENSION NCON(NELE,3),NELEF(*),

+ NELECP(*),NELECM(*),NELEWP(*),NELEWM(*)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/IO/ IREAD,ITERM

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM 290

COMMON/CWIXI/ C,WIXI

WI=0.0

c Loop over modes of Fourier-decomposed potential in y-direction.

DO 10 M=1,ITERM

C1=W*W/G

C2=(M*PAI/B)**2.0

c Get stiffness matrics SYSK, SYSK3, and SYSK4.

CALL ASEMK(XYZ,NCON,SYSK)

CALL SURFK(NELEF,XYZNCON,SYSK) 300

CALL EIGVAL(NCSP,HP,WKP,ALPHAP)

CALL EIGVAL(NCSM,HM,WKM,ALPHAM)

CALL CROSSK(NELECP,XYZ,NCON,SYSK3P,WKP,ALPHAP,NNP,NCSP,1,EKC)

CALL CROSSK(NELECM,XYZ,NCON,SYSK3M,WKM,ALPHAM,NNM,NCSM,-1,EKC)

CALL DIAGK(SYSK4P,WKP,ALPHAP,NCSP,1)

CALL DIAGK(SYSK4M,WKM,ALPHAM,NCSM,-1)

c Get forcing vector SYSF.

CALL ERASE(SYSF,2*NEQT)

CALL LOAD(NELEWP,XYZ,NCON,SYSF,W,1)
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CALL LOAD(NELEWM,XYZNCONSYSF,W,-1)

c Static condense the linear system and solve for potentials, store

c in SYSF.

CALL DENSE(SYSK,SYSK3P,SYSK3M,SYSK4P,SYSK4M)

CALL SOLV(SYSK,SYSF,NEQT,NBAND)

CALL BKSUBT(SYSKSYSFNEQT,NBAND)

c Calculate hydrodynamic moment of inertia WI.

CALL GETWI(NELEWP,NELEWM,XYZ,NCON,SYSF,W,WI)

10 CONTINUE

RETURN

END 320

C Subroutine GETC calculates total torque C, consisting of torques

C due to the weight of the gate and the buoyancy restoring force.

SUBROUTINE GETC(XYZNCON,NELEWP,NELEWM)

DIMENSION NELEWP(*),NELEWM(*),XYZ(NNOD,2),NCON(NELE,3)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM

COMMON/CWIXI/ C,WI,XI 330

CALL GETCR(WTP,CP,XYZ,NCON,NELEWP,1)

CALL GETCR(WTM,CM,XYZ,NCON,NELEWM,-1)

WT= G*DEN*(1-1./MODE)*B*(WTM-WTP)

C = G*DEN*(1-1./MODE)*B*(CP-CM) - WT*TAN(THETA)

RETURN

END

C Subroutine GETCR uses Gaussian integration to calculate torques 340

C on either side of the gate.

SUBROUTINE GETCR(WT,CC,XYZ,NCON,NELEW,IPM)

DIMENSION NELEW(*),XYZ(NNOD,2),NCON(NELE,3)

DIMENSION NR(2),X(2),Z(2)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,
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+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM

c IPM is the index for either "+"(P) or "-"(M) region.

IF (IPM .EQ. 1) THEN 350

c In z-direction, integrate from -h(0)=-0.5

H=HP+0.5

NW=NWP

ELSE

H=HM+0.5

NW=NWM

ENDIF

WEIGHT=0.577350269189626

WT=0.0

CC=0.0 360

DO 40 L=1,NW

DO 10 I=1,2

NR(I)=NCON(NELEW(L),I)

X(I)=XYZ(NR(I),1)

Z(I)=XYZ(NR(I),2)

10 CONTINUE

XL=X(1)-X(2)

ZL=Z(1)-Z(2)

XO=(X(1)+X(2))/2.

ZO=(Z(1)+Z(2))/2. 370

X1=X0+WEIGHT*XL/2.

X2=X0-WEIGHT*XL/2.

Z1=Z0+WEIGHT*ZL/2.+H

Z2=Z0-WEIGHT*ZL/2.+H

FL=SQRT(XL*XL+ZL*ZL)

AL1=SQRT(X1*X1+Z1*Z1)

AL2=SQRT(X2*X2+Z2*Z2)

ATL=ATAN(ZL/XL)

IF(ATL .LT. 0.0) ATL=ATL+PAI

AT1=ATAN(Z1/X1) 380

IF(AT1 .LT. 0.0) AT1=AT1+PAI
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AT2=ATAN(Z2/X2)

IF(AT2 .LT. 0.0) AT2=AT2+PAI

c Use COS to find the cross product.

CROSS 1=ABS(COS(ATL-AT1))

CROSS2=ABS(COS(ATL-AT2))

IF(1) THEN

WT=WT+FL/2.*((Z1 -H)*AL1*CROSS1+ (Z2-H)*AL2*CROSS2)

CC=CC+FL/2.*( X1 *AL1*CROSS1+ X2 *AL2*CROSS2)

c Following is the old approach adapting P. Sammarco. 390

ELSE

T=PAI/2-ATL

TT=TAN(T)

ST=SIN(T)

CT=COS(T)

A=AL1*SIN(ATL-AT1)

WT=WT+FL/2.*((Zl-H)*(Z1+A*ST)/CT+(Z2-H)*(Z2+A*ST)/CT)

CC=CC-FL/2.*((Z1-H)*((Z1+A*ST)*2*TT/CT+A)+

+ (Z2-H)*((Z2+A*ST)*2*TT/CT+A))

ENDIF 400

40 CONTINUE

RETURN

END

C Subroutine GETWI calculates hydrodynamic moment of inertia WI.

SUBROUTINE GETWI(NELEWP,NELEWM,XYZ,NCON,SYSF,W,WI)

IMPLICIT COMPLEX(S)

DIMENSION SYSF(NEQT),NELEWP(NWP),NELEWM(NWM)

DIMENSION NR(2),X(2),Z(2),NCON(NELE,3),XYZ(NNOD,2) 410

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,MHP,HM,G,DEN,XCP,XCM

c Performs the intergration in "+"(P) region.

SWIP=CMPLX(0.0,0.0)

DO 40 L=1,NWP
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DO 10 I=1,2

NR(I)=NCON(NELEWP(L),I)

X(I) =XYZ(NR(I),1) 420

Z(I)=XYZ(NR(I),2)

10 CONTINUE

XP=X(1)+X(2)

c In z-direction, integrate from -h(O)=-0.5

ZP=Z(1)+Z(2)+2*(HP+0.5)

XM=X(1)-X(2)

ZM=Z(1)-Z(2)

FL=SQRT(XM*XM+ZM*ZM)

AL=SQRT(XP*XP+ZP*ZP)/2.

AT M=ATAN(ZM/XM) 430

IF(ATM .LT. 0.0) ATM=ATM+PAI

ATP=ATAN(ZP/XP)

IF(ATP .LT. 0.0) ATP=ATP+PAI

c Use COS to find the cross product.

CROSS=ABS(COS(ATM-ATP))

SOL= (SYSF(NR(2))+SYSF(NR(1)))*FL*AL*CROSS/2.

SWIP=SWIP+SOL

40 CONTINUE

c Performs the intergration in "-"(M) region.

SWIM=CMPLX(0.0,0.0) 440

DO 30 L=1,NWM

DO 20 I=1,2

NR(I)=NCON(NELEWM(L),I)

X(I)=XYZ(NR(I),1)

Z(I)=XYZ(NR(I),2)

20 CONTINUE

XP=X(1)+X(2)

ZP=Z(1)+Z(2)+2*(HM+0.5)

XM=X(1)-X(2)

ZM=Z(1)-Z(2) 450

FL=SQRT(XM*XM+ZM*ZM)

AL=SQRT(XP*XP+ZP*ZP)/2.

ATM=ATAN(ZM/XM)
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IF(ATM .LT. 0.0) ATM=ATM+PAI

ATP=ATAN(ZP/XP)

IF(ATP .LT. 0.0) ATP=ATP+PAI

c Use COS to find the cross product.

CROSS=ABS(COS(ATM-ATP))

SOL= (SYSF(NR(2)) +SYSF(NR(1)) )*FL*AL*CROSS/2.

SWIM=SWIM+SOL 460

30 CONTINUE

WI=WI+B*REAL ((SWIP -SWIM)*CMPLX(0.0,1.0)*DEN

+ *SIN(M*PAI*(1 -1./MODE))/(W*M*PAI))

RETURN

END

C Subroutine INPUT reads all physical data and grid system given

C in the input file IREAD.

SUBROUTINE INPUT(XYZ,NCON,NELEFNELECP,NELECMNELEWP,NELEWM) 470

DIMENSION XYZ(139,2),NCON(218,3),NELEF(*),NELECP(*),NELECM(*),

+ NELEWP(*),NELEWM(*)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/IO/ IREAD,ITERM

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM

READ(IREAD,900) NNOD,NELE,NF,NCSP,NCSM,

+ NCPNCM,NWP,NWM

NEQT=NNOD 480

NNP=NCP+1

NNM=NCM+1

READ(IREAD,901) ITERM,MODE,THE,B,G,DEN,HP,HM,XCP,XCM

MODE=MODE+1

c The center of gravity is "THETA" degree relative to the gate.

THETA= (THE -THETA)*PAI/ 180.

B=B*MODE/2

READ(IREAD,902) (I,XYZ(I,1),XYZ(I,2),L=1,NNOD)

READ(IREAD,903) (I,NCON(I,1),NCON(I,2),NCON(I,3),L=1,NELE)

82



READ(IREAD,904) (I,NELEF(I),L=1,NF) 490

READ(IREAD,905) (I,NELECP(I),L=1,NCP)

READ(IREAD,906) (I,NELECM(I),L=1,NCM)

READ(IREAD,907) (I,NELEWP(I),L=1,NWP)

READ(IREAD,908) (I,NELEWM(I),L=1,NWM)

900 FORMAT(518/418)

901 FORMAT(218/4F8/4F8)

902 FORMAT(139(/18,2F16))

903 FORMAT(218(/418))

904 FORMAT(10(/218))

905 FORMAT(4(/218)) 500

906 FORMAT(4(/218))

907 FORMAT(12(/218))

908 FORMAT(10(/218))

CLOSE(UNIT=IREAD)

RETURN

END

C Subroutine LOAD determines the forcing vector SYSF.

SUBROUTINE LOAD (NELEW,XYZ,NCON,SYSF,W,IPM) 510

IMPLICIT COMPLEX(S)

DIMENSION SYSF(NEQT),NELEW(*),XYZ(NNOD,2),NCON(NELE,3)

DIMENSION NR(2),X(2),Z(2)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM

c IPM is the index for either "+"(P) or "-"(M) region.

IF (IPM .EQ. 1) THEN

c In z-direction, integrate from -h(0)=z-0.5 520

H=HP+0.5

NW=NWP

ELSE

H=HM+0.5

NW=NWM
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ENDIF

c Use Gaussian integration.

WEIGHT=0.577350269189626

SBM=CMPLX(0.0, -2.0) *MODE*W*SIN(M*PAI* (1-1./MODE))/ (M*PAI)

DO 40 L=1,NW 530

DO 10 I=1,2

NR(I)=NCON(NELEW(L),I)

X(I)=XYZ(NR(I),1)

Z(I)=XYZ(NR(I),2)

10 CONTINUE

XL=X(1)-X(2)

ZL=Z(1)-Z(2)

X0=(X(1)+X(2))/2.

Z0=(Z(1)+Z(2))/2.

X1=X0+WEIGHT*XL/2. 540

X2=X0-WEIGHT*XL/2.

Z1=Z0+WEIGHT*ZL/2.+H

Z2=Z0-WEIGHT*ZL/2.+H

FL=SQRT(XL*XL+ZL*ZL)

AL1=SQRT(X1*X1+Z1*Z1)

AL2=SQRT(X2*X2+Z2*Z2)

ATL=ATAN(ZL/XL)

IF(ATL .LT. 0.0) ATL=ATL+PAI

AT1=ATAN(Z1/X1)

IF(AT1 .LT. 0.0) AT1=AT1+PAI 550

AT2=ATAN(Z2/X2)

IF(AT2 .LT. 0.0) AT2=AT2+PAI

c Use COS to find the cross product.

CROSS1=ABS(COS(ATL-AT1))

CROSS2=ABS(COS(ATL-AT2))

SYSF(NR(1))=SYSF(NR(1))+IPM*SBM*FL/2.*

+ (AL1*CROSS1*(X1-X(2))/XL+AL2*CROSS2*(X2-X(2))/XL)

SYSF(NR(2))=SYSF(NR(2))+IPM*SBM*FL/2.*

+ (AL1*CROSS1*(X(1)-X1)/XL+AL2*CROSS2*(X(1)-X2)/XL)

40 CONTINUE 560

RETURN
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END

C Subroutine RTSCE(secant method), adapted from Numerical Recipes,

C is used to find the root of eigen function FUNC.

SUBROUTINE RTSEC(FUNC,X1,X2,XACCANS,

+ XYZNCONNELEF,NELECP,NELECM,NELEWP,NELEWM)

INTEGER MAXIT

REAL ANS,X1,X2,XACC,FUNC 570

EXTERNAL FUNC

PARAMETER (MAXIT=30)

INTEGER J

REAL DX,F,FL,SWAP,XL

DIMENSION XYZ(NNOD,2),NCON(NELE,3),NELEF(*),

+ NELECP(*),NELECM(*),NELEWP(*),NELEWM(*)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/CWIXI/ C,WI,XI

580

FL=FUNC(X1,XYZ,NCON,NELEF,NELECP,NELECM,NELEWP,NELEWM)

F=FUNC(X2,XYZ,NCON,NELEF,NELECP,NELECM,NELEWP,NELEWM)

IF(ABS(FL) .LT. ABS(F)) THEN

ANS=X1

XL=X2

SWAP=FL

FL=F

F=SWAP

ELSE

XL=Xl 590

ANS=X2

ENDIF

DO 10 J=1,MAXIT

DX=(XL-ANS)*F/(F-FL)

XL=ANS

FL=F

ANS=ANS+DX
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F=FUNC(ANS,XYZ,NCON,NELEF,NELECP,NELECM,NELEWP,NELEWM)

IF(ABS(DX) .LT. XACC .OR. F .EQ. 0.0) RETURN

10 CONTINUE 600

RETURN

END

C Subroutine SHAPE generates the element stiffness matrices

C in the finite element region.

SUBROUTINE SHAPE(P,ELK)

COMPLEX ELK

DIMENSION P(3,2),ELK(3,3),BB(3),CC(3)

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM 610

CALL ERASE(ELK,18)

BB(1)=P(2,2)-P(3,2)

BB(2)=P(3,2)-P(1,2)

BB(3)=P(1,2)-P(2,2)

CC(1)=P(3,1)-P(2,1)

CC(2)=P(1,l)-P(3,1)

CC(3)=P(2,1)-P(1,1)

AREA=ABS(0.5*(BB(1)*CC(2)-BB(2)*CC(l)))

A4=4.0*AREA 620

HELM=AREA*AREA*C2/3.0

ELK(1,1)=(BB(1)*BB(1)+CC(1)*CC(1)+2.0*HELM)/A4

ELK(1,2)=(BB(1)*BB(2)+CC(1)*CC(2)+ HELM)/A4

ELK(1,3)=(BB(1)*BB(3)+CC(1)*CC(3)+ HELM)/A4

ELK(2,2)=(BB(2)*BB(2)+CC(2)*CC(2)+2.0*HELM)/A4

ELK(2,3)=(BB(2)*BB(3)+CC(2)*CC(3)+ HELM)/A4

ELK(3,3)=(BB(3)*BB(3)+CC(3)*CC(3)+2.0*HELM)/A4

RETURN

END

630

C Subroutine SOLV performs Gauss reduction, wehre A is

C stored in symm packed form and B is the forcing vector.
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SUBROUTINE SOLV(A,B,NEQT,NBAND)

COMPLEX A(*),B(*),Q,R

NSOLVE=NEQT-1

NB=NBAND-1

JF=NEQT-NB

DO 10 I=1,NSOLVE 640

Q=1.0/A(I)

IF(I .GT. JF) NB=NEQT-I

NB1=NB+1

DO 20 II=1,NB

JI=I+II

R=A(I+II*NEQT)*Q

B(JI)=B(JI)-R*B(I)

JJ=NB1-II

DO 30 IJ=1,JJ

INDEX1I=JI+ (IJ- 1)*NEQT 650

INDEX2=I+(II+IJ-1)*NEQT

A(INDEX1)=A(INDEX1)-R*A(INDEX2)

30 CONTINUE

20 CONTINUE

10 CONTINUE

RETURN

END

C Subroutine SURFK calculates free surface contribution and assembles 660

C into global stiffness matrix SYSK.

SUBROUTINE SURFK(NELEF,XYZ,NCONSYSK)

COMPLEX SYSKEKS

DIMENSION NELEF(NF),NCON(NELE,3),XYZ(NNOD,2),SYSK(NEQT,NBAND)

DIMENSION NR(2),P(2),EKS(2,2)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM
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DO 40 L=1,NF 670

NR(1)=NCON(NELEF(L),1)

P(1)=XYZ(NR(1),1)

NR(2)=NCON(NELEF(L),3)

P(2)=XYZ(NR(2),1)

PL=ABS(P(2)-P(1))

EKS(1,1)=-Cl*PL/3.0

EKS(1,2)=-C1*PL/6.0

EKS(2,2)=-C1*PL/3.0

DO 30 I=1,2

DO 3 J=I,2 680

IF(NR(J)-NR(I) .GE. 0) GOTO 26

LR=NR(I)-NR(J)+1

SYSK(NR(J),LR)=SYSK(NR(J),LR)+EKS(I,J)

GOTO 30

26 LS=NR(J)-NR(I)+1

SYSK(NR(I),LS)=SYSK(NR(I),LS)+EKS(I,J)

3 CONTINUE

30 CONTINUE

40 CONTINUE

RETURN 690

END

C Function FUNC is the eigen function for W.

REAL FUNCTION FUNC(W,XYZ,NCON,NELEF,NELECP,NELECM,NELEWP,NELEWM)

REAL W,C,XI,WI

DIMENSION XYZ(NNOD,2),NCON(NELE,3),NELEF(*),

+ NELECP(*),NELECM(*),NELEWP(*),NELEWM(*)

COMMON/NUMS/ NELE,NNOD,NF,NWP,NWM,NNP,NNM,

+ NCPNCMNCSPNCSMNEQT,NBAND 700

COMMON/PHYI/ MODE,B,C1,C2,PAI,THETA,M,HP,HM,G,DEN,XCP,XCM

COMMON/CWIXI/ C,WI,XI

CALL FEM(W,XYZ,NCON,NELEF,NELECP,NELECM,NELEWP,NELEWM)

FUNC=W*W*(XI+WI)-C
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