
INCREASING DESIGN COMMUNICATION
USING VIRTUAL REALITY

by

JUSTIN W. MILLS
Bachelor of Architectural Engineering

Oklahoma State University, 1997

Submitted to the Department of Civil and Environmental
Engineering in Partial Fulfillment of the Requirements for

the degree of

Master of Engineering in Civil and Environmental Engineering
at the Massachusetts Institute of Technology

MAY 1999

01999 Justin W. Mills. All rights reserved

The author hereby grants to MIT permission to reproduce and
to distribute publicly paper and electronic copies of this thesis

document in whole or in part.

Signature of Author:
JUSTIN W. MILLS

Department of Civil and Environmental Engineering
May 7, 1999

Certified By:

Accepted by:

JEROME J. CONNOR
Professor of Civil and Environmental Engineering

Thesis Supervisor

1J 1VP 19 AM

'V-A 1 -- Lt\J-'i ANDREW J. WHITTLE
Professor of Civil and Environmental Engineering

Chairnm=Cnemmittee-r...raduate Students

INCREASING DESIGN COMMUNICATION
USING VIRTUAL REALITY

by

JUSTIN W. MILLS

Submitted to the Department of Civil and Environmental
Engineering on May 7, 1999 in Partial Fulfillment of the

Requirements of

Degree of Master of Engineering
in Civil and Environmental Engineering

ABSTRACT

As the world of building design becomes more complex, the need for
sophisticated software will increase. A design environment that unifies
the consultants and the clients will greatly benefit all involved and will
result in better building designs. Using the Virtual Reality Modeling
Language, coupled with the Java programming language, the
communication of design decisions and design intent can be greatly
improved. Simple teaching tools illustrate the effects of design decisions,
such as increasing a beam span to cause a beam to increase in size.
Once the design is complete, communication with the client and the
builders can also be improved using this technology. Instead of having a
set of drawings and a set of specifications, a single virtual reality model
can be accessed and queried to find out information on specific pieces
and the process involved in creation of building systems. Finally, VRML
is not an overall solution to the integrated design environment problem,
but rather a tool to improve communication of ideas to others involved in
the building industry in a convenient, Internet-based form.

Thesis Supervisor: Jerome J. Connor

Title: Professor of Civil and Environmental Engineering

ACKNOWLEDGEMENTS

I would like to thank Professor Connor and Professor Helliwell for their help in the

completion of this document. Their time and effort make the High Performance

Structures track of the Master of Engineering Program at MIT such a success. I

would also like to thank each of my professors who provided me with the technical

knowledge needed to complete my studies.

Personally, I would like to thank my family for their support throughout my

educational career. Finally, I would like to thank my wife, Jennifer, for her support

and understanding, without which I would not have achieved my goals.

3

TABLE OF CONTENTS
CHAPTER 1 - INTRODUCTION 6

Introduction 6

CHAPTER 2 - HISTORY OF BUILDING DESIGN PROCESS 8

Background 8

Dispersed Design Team 10

Paper-Based CAD 11

Integrated Systems Solution 13

VRML Solution 15

CHAPTER 3 - LEARNING SYSTEMS 18

Introduction 18

Space Relationship Example 19

Simple Beam Column Example 25

CHAPTER 4 - DOCUMENTATION APPLICATIONS 35

Introduction 35

Design Details 36

Process Animation 40

Case Study 46

CHAPTER 5 - CONCLUSION 50

Summary 50

New Technologies 52

Where do we go from here? 53

REFERENCES 55

APPENDIX A - SOURCE FILES 56

General 56

Space Relationship Example 57

Simple Beam Column Example 58

Design Details Example 63

Process Animation Example 66

APPENDIX B - SOFTWARE LIST 71

Software List 71

4

CHAPTER 1 - INTRODUCTION

CHAPTER 2 - HISTORY OF BUILDING DESIGN PROCESS

Figure 2-1 - Dispersed Team Diagram

Figure 2-2 - Integrated Design Environment

Figure 2-3 - VRML 97 Logo

CHAPTER 3 - LEARNING SYSTEMS

Figure 3-1 - Virtual Reality Model of Two Rooms

Figure 3-2 - Plan, Room1 and Room2 Views

Figure 3-3 - Plan Views of Two Rooms World

Figure 3-4 - Effects of Design Decisions

Figure 3-5 - Beam Sizing World Interface

Figure 3-6 - Java Console

Figure 3-7 Various Views of Beam Size World and ...

CHAPTER 4 - DOCUMENTATION APPLICATIONS

Figure 4-1 - Design Details Model

Figure 4-2 - Detail of Joint

Figure 4-3 - Information Window

Figure 4-4 - Sequence World

Figure 4-5 - Pause Button

Figure 4-6 - Sequence World During Animation

Figure 4-7 - Initial View of Site Model

Figure 4-8 - Site Model Views

Figure 4-9 - 3rd Floor Model

Figure 4-10 - Stair and Framing Detail Models

CHAPTER 5 - CONCLUSION

TABLE OF FIGURES
6

8

10

13

15

18

19

24

25

28

31

34

34

35

37

38

39

43

44

45

47

47

48

49

50

5

Chapter 1 - Introduction

Chapter 1 - INTRODUCTION

Introduction

From our beginnings, man has labored over the design and construction of new

buildings. Some of these buildings are built for monumental reasons and others for

pure functionality. Although the Egyptian Imhotep is considered the first architect,

many others before him labored over how to create structures to protect people from

the elements and to give them a sense of home. From simple structures, more

complex building were envisioned and some were even built. There exist today

structures that were designed centuries ago that cannot be re-constructed, even with

today's technological advances. As these designs became more complex, more people

were necessary to handle the complex details, and with advancement in the sciences,

6

Chapter 1 - Introduction

even more people were needed to design structures. Recently, computers have been

introduced, allowing designers to store massive amounts of data and perform

millions of calculations on buildings before they are even built. Since the

introduction of computers, the profession has been in need of an environment

similar to the old style of building design, in which all designers worked from a

common location and toward the same goal. Today, the design team is dispersed

and often the project is located far from any single designer. The computer lends us

the tool to create an environment where all parties involved in the design and

building process can meet to visually communicate their ideas to each other.

The scope of this thesis includes the theoretical aspect of utilizing virtual worlds and

some real applications. A basic knowledge of the Virtual Reality Modeling Language

and the Java language is assumed. The overall concept and structure of each of the

examples is discussed and an in-depth explanation of areas specific to Java and

VRML is provided.

7

Chapter 2 - History of Building Design Process

Chapter 2 - HISTORY OF BuILDING DESIGN PROCESS

Background

Building design has become a more complex task than in the days of a master

architect responsible for all parts of the building design, including the beauty of the

building, the strength of the structure and the comfort of the environment. As

buildings evolved and codes were established to provide safety to occupants, the

single architect was no longer able to accomplish the entire design task alone.

Therefore, consultants were brought in to aid in designing specific parts of the

building, allowing the architect to focus on the architecture. Eventually, these

consultants formed their own organizations with their own guidelines and

responsibilities for their segment of the overall building task. Currently there is a

8

Chapter 2 - History of Building Design Process

trend of specialization within each of these major organizations into further refined

consultant groups. The client or general consultant usually requests specialty

consultants to solve a specific problem that is beyond their expertise. An example of

this is in the area of vibration design in structural engineering. With the increasing

complexity in seismic design and the need for motion sensitive buildings such as

chip manufacturing plants, specialists are needed to aid the general structural

engineer in his task of designing the structure of a building. Another example, even

closer to the architect's role, is the acoustic consultant for acoustic-sensitive projects

such as theaters. This consultant recognizes the needs of the architect and the goals

of the design and provides expertise in an area that the architect may not have.

Unlike other design professionals, those involved in building design don't have the

advantage of prototyping their design and testing its effectiveness. Mock-up pieces

of the building can be built at full or partial scale to test the component, but full

interaction between all the pieces can never be tested until the structure is built.

This makes the design of buildings unique from the typical product design process

and is a source of problems since mistakes are usually identified and corrected

during the prototyping phase. Designing a modern building requires multiple teams

of designers to work in unison under the orchestration of a central project manager.

The role of project manager is sometimes assumed by the architect and is required

to coordinate the efforts of each consultant.

9

Chapter 2 - History of Building Design Process

Dispersed Desig n Team

It is rare to find a constructed facility that is designed, engineered and built by the

same company. Even when this is the case, the work is typically spread out across

multiple offices, dividing the work among the company's resources. More typical is

the case where a design team is made up of an architect or central designer

supported by several consultants who are geographically dispersed as seen in Figure

2-1. As buildings
OWNER

become more complex Architect Mechanical

t Engineer

and consultants tend Design
Project

to specialize there is

Acoustical
a trend toward hiring Consultant

Structural

a specialized Engineer

consultant for a Figure 2-1 Dispersed Team Diagram

specific area of the building design process rather than hiring a general-purpose

consultant. For example, when a high-tech building is designed, a specialized

electrical consultant is required to design the specific hardware wiring, but a

traditional electrical engineer may design the standard wiring, including the

lighting systems. As several small teams form to apply their skills in various areas

of the building design, communication within and among teams becomes strained,

yet is essential to success.

Physical meetings have and probably will continue to be the ideal communication

scenario in any environment. Pure interaction can occur and nothing is left to guess

10

Chapter 2 - History of Building Design Process

at, such as a long pause on the other end of the line during a phone meeting.

Because creating architecture is so visual, physical meetings are required to

thoroughly explain and understand what is being discussed. Artificial meeting

environments cannot currently meet many of the needs of those involved in building

design. Typically the sheer size of the materials used in the design process, i.e.

models, drawings sheets 24" x 36", cannot be shown on a small computer screen. If

shown on projection screens, the individual speaking is lost, and can, at best

simulate a pointing finger with a mouse movement. All aspects of creating

architecture are messy processes, usually requiring access to several large drawings

at once. When multiple consultants meet, each with their own set of drawings, a

paper war is waged as marks are frantically scratched onto sheets leaving notes for

later use. Even with the advent of CAD systems, there is no good way to quickly

sketch and annotate CAD drawings in the quick and dirty manner designers are so

used to.

Paper-Based CA D

With the introduction of Computer Aided Drafting into the design environment, it

would appear as though design professionals have come a long way from the old

paper-based documentation. It was the practice to trace and re-trace existing

drawings from consultant to consultant. An architect would send his or her plans

and details as a blueprint to each of the consultants who would in turn trace these,

or even completely re-generate them from scratch. This required hours of manual

labor to produce documents that now are seen as works of art because of the

workmanship that went into producing them. CAD systems were the solution to

11

Chapter 2 - History of Building Design Process

this problem by providing an environment similar to word processing systems,

where editing and re-editing of existing documents is capable. Using CAD systems

the architect draws the CAD plans and sends copies to each consultant. To this

point, it is very similar to the old process, only in an electronic format rather than a

paper format.

In an ideal CAD process, the consultants merely place their information within the

same file, using the architects' plans as a base to their plans. This is where most

design teams fail. This is typically done using layers, similar to the layers of tracing

paper that litter architect's offices. By breaking up the content of a drawing,

universal information such as grid lines and wall locations can be shared by each

drawing file. This allows the next set of drawings to start with a base set of

information allowing them to remove any unnecessary information that may also be

include in the drawing. The real-life process begins with the conversion of the CAD

file to a format that is consistent with that particular office's standards, changing

line colors and layer naming. Conversion of drawing formats is typically a full time

job within large companies. As alliances are made between designers, some

companies will generate programs to do this conversion automatically, dissecting

each drawing file, and changing it accordingly. This appears strangely close to the

old procedure of tracing or even re-drawing the sent document. For this reason,

traditional CAD systems will never attain integration between design teams and

design information will keep being changed and modified by the current user to

match their version of the other consultant's standards.

12

Chapter 2 - History of Building Design Process

Integrated Syste ms Solution

Traditional CAD systems have aided the building design profession in the past, but

now it is time to take design communication a step further. As the public expects

near perfect design, allowing little room for errors, design professionals must take

extreme care to simulate and check every area of the building. What better

environment to do this than a three-dimensional world where the structure truly

can be built (See Figure 2-2).

FArchitect/Designer _ esg Clients

Engineers DeinPublic

Consultants Builders

Figure 2-2 Integrated Design Environment

Such systems exist within the mechanical engineering world and provide a

networked environment where designers from many locations can edit pieces of the

model simultaneously. As soon as a change is made, the entire model must be

updated to reflect the new geometry, material property or attribute. Additional

components to the base system perform more advanced design calculations and

geometry checks. This environment has enabled the mechanical engineering

industry to produce physical parts close to their final design the first time they are

produced, rather than after several iterations. This is because the CAD

environment allows testing of their pieces in many ways to simulate actual tests

that will be performed on the physical parts. Basic geometric modeling is the basis

for such a system allowing the designer to generate complex three-dimensional

13

Chapter 2 - History of Building Design Process

models of the building components. This is what is done using traditional CAD

systems today, generating solid models from two-dimensional drawings to simulate

the actual design. The difference lies in how such models are created.

In the integrated system, the new piece can be constructed based on existing

components and specified relative to their geometry. For example, using a

traditional CAD system, a designer creates a box and places it on two column boxes

to represent a beam. An integrated design environment would accept the input as a

geometric shape that spans between two existing objects, therefore, when one of the

columns is moved, the beam automatically elongates or shortens to react to the

change in geometry. Additional constraints could be added using component design

sub-routines that specify the geometry of the beam as a function of the weight of

components resting on it and the span.

This system would require a great amount of overhead at the beginning of a project

to input all of the geometry and the associated data. The payoff would be in the

iterations during design revisions when changes are made to systems and

components of the building. During this period, only minor changes will be required,

because other changes will occur automatically as a result of the single change. As a

detail is changed or updated only that particular detail need be worried about. The

reason being that the other parts of the building that rely on that component would

have been designed relative the component and thus updated with the new

component data.

14

Chapter 2 - History of Building Design Process

Another feature of this design approach is the actual model itself, which can be used

in presentations to clients, and even passed on to facility-management organizations

who may have use for it in building maintenance programs. As the public demands

safer and "functional" designs and the systems and components of buildings become

more complex and numerous, the need for such systems will be inevitable.

Eventually all design may take place in a virtual world where even the site is pre-

existing in the model and designers add to the virtual world just as they add to the

real world.

VRML Solution

Although still in its infancy, the Virtual Reality Modeling Language (VRML)

provides the ideal environment for viewing and simulation within integrated

models. VRML is currently supported by

Internet browsers via a small plug-in, which _i_ _T _L _7

ISO/IEC 14772-1:1997

can be downloaded and installed free of
Figure 2-3 VRML 97 Logo

charge. VRML is a text-based system of

describing complex three-dimensional geometry with the capability of motion and

user-geometry interaction. Currently creation of such worlds can become

cumbersome, requiring a three-dimensional modeling package with VRML output

capabilities or great patience to hand code each piece. Using an existing package

such as 3D Studio MAX can greatly speed up the process, generating much of the

geometry in a rich 3-D design environment. At this point, it is back to text-based

programming to key in responses to user actions and add interactivity. With the

advent of recent VRML specifications, Sun's Java technology has been added to

15

Chapter 2 - History of Building Design Process

VRML, which seems an obvious step since both technologies are viewed on the Web.

This addition is in hopes of providing a more integrated design and viewing

environment where users can access all the potential of Java with the graphical

capability of VRML. Using Java, many more things are possible, such as linking

VRML to databases for more efficient data storage, interaction with users through

standard window interfaces, and networking between multiple users/designers.

VRML will not be able to replace traditional CAD systems, because VRML is

specifically geared toward the Web and graphics applications, and is merely a

consistent format for describing three-dimensional geometry. It does not have

integrated database support, which is key to efficient data storage and has no

efficient way to create complex objects. The addition of Java solves some of these

problems, allowing access to databases and other high-level language features. One

realm that VRML can be used in is the presentation and documentation of design.

Using VRML and Java's JDBC (Java DataBase Connectivity) features, Web users

can have access to the actual model file, through views only. This can be used as a

teaching tool to show virtual building environments and the implications of design

decisions. It can also be used to show the construction process providing a greater

level of detail that construction documents will never attain. On the client side, this

VRML environment will show the building from a user perspective, providing

information about specific features.

Although linking a VRML file to an integrated design environment is beyond the

scope of this paper, attempts will be made to show the potential of VRML in the area

16

Chapter 2 - History of Building Design Process

of design communication. The VRML specification is a designed to be platform

independent although the actual support is in the individual browsers used to

convert the VRML source file into the virtual world. In summary, VRML does

provide an environment that can be used to show potential features of a fully

integrated design environment and the improved communication it will accomplish.

17

Chapter 3 - Learning Systems

Chapter 3 - LEARNING SYST EMS

Introduction

Communication between design professionals is crucial to any project. In a typical

project, the architect coordinates communication between the engineers, architects

and other consultants. One issue that plagues design teams is the implication of

each of their decisions on other team members. Even the slightest change of

dimension on a particular item can have major consequences, especially given the

increased accuracy of current design and construction techniques. Each design

professional involved needs to understand the other systems in the building and how

they must all interact for the building to perform as a whole. A single model design

application would solve this problem, allowing one team member's model changes to

18

Chapter 3 - Learning Systems

register on other members' models. VRML tends to be the least applicable in the

design phases since those involved at this level require very powerful systems with

the highest degree up adaptability. However, VRML is a powerful format that is

quite portable and can be used in a scaled-down version of a fully integrated design

environment. Since the VRML format is easily available on the Internet with a wide

range of plug-ins to many browsers, virtual worlds can be an effective tool to

communicate design information between student and teacher. Typically in the

teaching environment, the examples discussed are only a portion of the scale of

problems seen in the workplace. Based on linking VRML with a programming

language such as Java, some components of an integrated design environment can

be accomplished.

Space Relations hip Example

Although not a direct benefit to those

involved in the design of actual !M

structures, a teaching tool to show the

effects of design decisions can be

implemented in VRML utilized a Java

scripting node. To illustrate the very

basic features of Java and VRML, I will

begin with an example of two rooms, Figure 3-1 Virtual Reality Model
of Two Rooms Example

directly adjacent to one another (Figure

3-1). Then, I will provide the capability to move the dividing wall back and forth,

demonstrating that by deciding to make one room bigger, another must get smaller.

19

Chapter 3 - Learning Systems

This example may seem trivial, but is directed at explaining the basics of using Java

and VRML in an example showing design decision implications. The goal is two

rooms with a single interior partition between them. Using VRML, apply sensors to

each of the two sides of the interior wall and then associate the sensors with a Java

program. Using Java, it is possible to control the movement of the two faces of the

interior wall to move in unison, away from the side of the wall that was clicked.

The first step is to create the basic geometry using 3-D Studio Max, composed of a

floor, four walls and two faces of an interior wall. The interior wall is composed of

two pieces to separate them from each other to allow for two sensors within the

VRML world. Once in VRML format, the .wrl files are incorporated into a Visual

Studio project, which contains the Java programs. Once in this environment,

TouchSensor nodes are added to the Transform nodes:

DEF IntTerorall2 Trasfor {

is~tie vetwchld r [hntemuecik nteojcit h vn

Shae.
appeaanceUSE it-ap

gemer.Bx..iz 1.0018.

DFWall2 Sensor TouchSensor {}

The TouchSensor node converts the entire object into a sensor, making the entire

wall a sensor, which allows the user to select the object by clicking anywhere on the

wall, even on the top of it. The TouchSensor sends two major events: one when the

user positions the cursor over the node and another when the user clicks. Route the

isActive event, which occurs when the mouse clicks on the object, into the event

20

Chapter 3 - Learning Systems

handler method of the Java class. The next step in the process is the addition of the

Script node, which defines the location of the Java .class file and any inputs, outputs

and extra information to send from the VRML file to the Java program.

DEF OneRoomContro Script {

gie heJv apiato heaiit odirectlupu TRUE aus oth RL ie

scae ode. hfield SFabel Uefn intermio a1 wntacsstro h

fil s fSFyode w2 s InteriorWa a

informti evecntaie hn hoo valicke norcsw ilepsigaVM

The first value set is the directOutput field of the Script node By setting this to true

gives the Java application the ability to directly output values to the VRML file.

This will be useful when we begin moving several objects, and we want them to be

moved directly from the Java application rather than passing an event back to the

VRML source file and then routing that event to the corresponding translation and

scale nodes. The field labels define information that we want access to from the

Java application. In our case we want to pass a reference to the two interior walls so

we specify that the variable use the existing nodes InteriorWalli and InteriorWall2.

We must also specify the data type of variables in order for Java to be able to use the

information contained within the variable. In our case, we will be passing a VRML

node(SFNode), which we will use to access the translation field to set the position.

The next field modified is the eventln and the eventOut fields that direct the input

and the output to and from the Java application. The eventln fields are the actions

that will be used to evoke the Java application, while the eventOut's are the output

from the application back to the VRML file. Since we have chosen to enable direct

21

Chapter 3 - Learning Systems

output to the VRML source file, we will not need any eventOut's to change the values

of the various nodes. Next in line is the URL or Uniform Resource Locator of the

Java .class file. The final step within the VRML source file will be the routing of

events from the TouchSensor's to the eventIn's of the Script nodes.

ROTE WalllSenor.isActive "'TO OneRoomControliclc~tked1
ROUTE. WallSensor isActive.TO'.ne~omonrol -clicked2

Notice that the two eventIns that were defined in the Script node are on the

receiving end of the TouchSensor's isActive eventOut's. These events are of a

Boolean type, true or false, true when they are touched and false when they are

released. This will be important when we trap the events coming into the Java

application because we do not want to move the wall twice, once when the mouse is

clicked and again when the mouse is released.

Moving on, the Java class file that contains the methods and properties necessary

for all the movement of the interior wall. In order to access any of the VRML nodes

and their associated properties, several packages will be imported. The vrml.node

packages contains the Script class, which the Java class must extend. This package

must be included in every application that is going to be called from the VRML

Script node. The other packages imported are the vrml and the vrml.field that

allows access to the VRML field types such as SFBool and SFVec3f and access back

to the VRML world and the viewer.

22

Chapter 3 - Learning Systems

Once inside the class, we have access to the VRML data types, allowing us to define

variables such as w1 and w2 that are of type SFNode. The initializeO method is

called when the VRML browser load the .wrl file just as a constructor would be

invoked during a new object creation. In this method, we get the field values defined

in the script node of the VRML file that reference the two nodes we need: interior

walls one and two. We specify the data type of the fields to convert them into the

Java data types that are equivalent to the VRML data types. These variables will be

used to reference the nodes directly to gain access to any of their properties,

specifically the translation field that contains the node's position.

23

Chapter 3 - Learning Systems

The processEvent method is evoked each time any event is routed into the script

node, passing the event that called it as a parameter. Since we know all input

events are from TouchSensors, we immediately grab the value of the event, so we

only execute during true values corresponding to mouse clicks ignoring all false

mouse release events. Once we have decided to execute the movement, we use the

reference to the VRML node to gain access to the translation field that is a three-

dimensional vector data type.

Now that we have a reference to the actual location in the VRML file where the

position is stored, it is merely a matter of determining which wall has been clicked

and changing the value of the translation accordingly. We will use the getX, getY

and getZ methods of the variable that points to the translation field to set the new

value relative to the current position. Using this, the Java class file can be used

again with any other two walls, defined in a similar matter placed anywhere in

space. The only restraint is that motion will only take place in the X direction.

Once implemented, the once static VRML world now becomes dynamic allowing

geometric changes simply by clicking on the interior wall objects. Three views have

Figure 3-2 Plan, Room1 and Room2 Views

24

Chapter 3 - Learning Systems

been set up, giving positioning to move the wall in either direction and to view the

overall effect the wall position has on the two spaces (See Figure 3-2). Figure 3-3

Figure 3-3 Plan Views of Two Rooms World

shows various configurations of the wall within the space, ranging between two

square rooms to a hallway type room and a rectangular room. The source files for

the VRML world and the Java application can be found in Appendix A as with all

others in this paper. Now that we have some of the basics of the interaction between

Java and VRML, let's use the computation associated with structured programming

languages to provide intelligence in moving and scaling VRML world items.

Simple Beam Co lumn Example

As discussed, an interactive design environment in which the designer's decisions

affect all other components in the model can be a powerful tool during the design

process. Designing in a parametric environment where beams are specified as

spanning between two points and carrying specific loads can greatly increase

efficiency. If the designers choose to make changes to the model, such as moving a

beam or removing it altogether, the rest of the model can be automatically updated.

This is similar to performance-based specifications that are gaining popularity in the

building design community.

25

Chapter 3 - Learning Systems

Using performance-based specifications, the designer requires that a component of

the design meet certain requirements such as the stress shall be less than A or the

deflection under service loading shall be less than B. Many view this as a way to

shortcut designing all components in the building, but it is more of a necessity in

modern complex buildings. As buildings become more technologically advanced and

the materials used to construct these buildings become more complicated, designers

are required to be experts in more and more areas. This results in designers that

have a general knowledge base, but have no level of expertise in any one area.

These designers are under-qualified to design complicated uses of building materials

or handle complex situations. For example, if an engineer who has only designed

steel buildings for twenty years, was asked to design a concrete high rise, the

engineer may proceed to analyze the structure just as though it were a steel

structure, only substituting in the material differences. This may result in a

dangerous design because a concrete building behaves quite differently than a steel

building. For this reason, the engineer may find it useful to employ a concrete

design specialist, minimizing his liability and producing the best possible final

result.

In an interactive design environment, the computer application can be used to

provide the expertise of a specialist consultant. For instance, the designer specifies

requirements, such as the size of a space, while the consultant specifies the

relationship between the volume of a space and a particular component such as duct

sizes. It may appear that a specialist will no longer be needed using this

environment, but will be necessary to specify how the design is computed.

26

Chapter 3 - Learning Systems

Therefore, the design of a building will become more like developing a software

package. A building will have one set of inputs, the geometry and the components of

the building, and one set of outputs, the documentation allowing the building to be

built.

Many of the everyday programs can be re-used from design to design, such as the

placement of a new steel beam in the structural model. Each routine can have

specific requirements, such as the beam must span two support points and other

geometrical items can be placed on top of it. The engineer can program the beam

design or store the beam as an element and use it later in a three-dimensional

analysis program to size the member. Programs exist to manipulate geometric

information of a design based on the adjustment or addition of new elements,

however these programs typically lack the engineering aspect behind the

modifications, and thus lack some of the features needed in a building design

environment. With the use of Java as an application layer above VRML, such an

environment can be shown, but the creation of the objects themselves and the

programming behind each element must be hard-coded prior to running. Using Java

and VRML, this environment can be used as a teaching tool to students to show real-

time design changes and their effects on other elements within the building design.

27

Chapter 3 - Learning Systems

Size of beam changes
as a result of the new--, b1b1 geometry

c2 c2

c1 Move c2 to the c1

right

Figure 3-4 Effects of Design Decisions

The previous example was quite simple, but useful to show the basics of connecting a

VRML world to a Java program. As a more complex example, consider a simple

span beam with a uniformly distributed load along the entire length. All objects

within this world will be modeled as simple box-shaped objects for simplicity of

shape and ease of beam calculations. As the span is increased or any of the design

parameters are changed, the dimensions of the beam are computed and the model is

updated as seen in Figure 3-4. The calculations involved in sizing the beam are

based on three controlling conditions: shear failure, bending failure and deflection

limitations. For a rectangular cross section member, the equations are:

3V wL 3wL
Shear r , V =-; A =bh; ->T =

2A 2 4bh

M wL 2 bh 2 3wL 2
Moment 0- -=- M = -; S =- ; > =

S 8 6 4bh 2

5w L' bha 60w L'
Deflection 3 = ; I - ; 3 =

384EI 12 384Ebh3

The user inputs all values except those involved in the geometry of the beam, b and

h. For simplification, the height to width ratio is input in the above equations, so

they can be solved for b in terms of input values. The height can then be solved

28

Chapter 3 - Learning Systems

using the ratio specified by the user. The deflection input is a limit on the deflection

as a function of the span, limiting the deflection to the span divided by some limiting

number. Rearranging the above equations, three equations solving for b are used to

calculate three widths, of which the maximum can be selected.

//chec shea

bl= foa)Mt~pw(3* 1 (2b * 4 ta) (10

2.0));~,

(384 *.E *.Mathpow(h2b, 3)) (10 4.0))

Utilizing the power of the Java Abstract Windowing Toolkit package, an interface

has been employed in this application to provide additional user interaction. This

technique removes the need for event routing from the VRML source file to the Java

application. Only one event is routed to the Java file to provide a way for the user to

show the Java window if it is closed or it goes behind the browser.

Moto th above2 is siia t.h.peiu eape.Tefelsae sda

refrece to2 th clunsad hebem Since22 the~ Jaaitrae.ilb sdt

provie use inteactio, no ouch~nsornodesare neded o caue.moton. Oce i

the Jav file, ome cocepts hve beenapplie, incluing th newclas t'odan

the clas Binterface. The tr.'4ode class.,is2used,.to.provide .'a2more coveiet ccsst

2 9222222. . 424224 22 2.22

Chapter 3 - Learning Systems

the nodes within the VRML environment. Using these classes, many functions can

be created to interact with the VRML data and manipulate objects in a more

familiar way.

In the constructor, references to the scale and the translation fields are established

to allow easy access to the VRML geometry. Additionally, several methods are

provided to move and scale the object as a function of the existing size and position.

The main program uses these methods when columns are moved since their position

should only change relative to their existing position. Additionally, the getdistO

function provides a method to find a vector distance between two trNodes, which can

be useful in determining the span of the beam. The return value is a vector with the

three components (x, y, z) of the vector from trNodel to trNode2.

30

Chapter 3 - Learning Systems

The window class used

to add interactivity to

the VRML world is a

typical windowing class

and extends the Frame

class. In this class,

Binterface, inputs are

gathered from the user

and utilized to

calculate the beam

size. As seen in Figure

3-5, the inputs are

broken down into

Beam inputs and

Beam Inputs

Load:

HeightNVidth Ratio:

Modulus of Elasticity:

Design Values

Allowable Shear Stress:

Allowable Bending Stress:

Allowable Deflection:

Change column positions

Controlling Case:

I

Bending

Figure 3-5 Beam Sizing World Interface

Design inputs. Following the inputs are the two buttons allowing the user to

increase and decrease the span and a text display which tells the user which case is

the controlling case. As the beam span is changed, the text is updated based on the

requirements for the beam geometry. The window can be closed and can be recalled

by clicking on the beam in the VRML world.

The listener methods required to collect user inputs with the scrollbars and the two

interface buttons are located in the main program, beamSize.java. The Scrollbar

listener only recalls the resize function since there is no need to change any other

geometry in the VRML world. The Button listener, on the other hand, needs to

31

Chapter 3 - Learning Systems

determine which button was clicked and move the columns accordingly.

Additionally, the resize function needs to be called to change the beam geometry. At

the heart of the beamSize class is the resize function that performs all the

engineering on the beam and returns the output to the VRML world. The contents

of this function are listed below:

32

Chapter 3 - Learning Systems

The first thing this function does is to identify the input values from the window

according to the Scrollbar values. Next, the three required widths are computed

based on the earlier equations. These are compared to determine the worst case,

which is written to the window for user interpretation. The maximum width is then

set and used to move and re-scale the beam in the VRML world. Additional output

is provided in the format of a series of system prints that will print to the Java

Console within Netscape Navigator 4.5. This output is used to check the

computation behind the world and provide a relative difference between the three

cases. The only other function in this class is the processEventO function to capture

the VRML eventIn, which is being used to show the window interface only.

Use of the interface is quite straightforward. As the world loads, the interface

appears (Figure 3-5), allowing the user to begin changing the components. The two

buttons provided increase and decrease the span, as discussed. Inputs are in the

form of scrollbars and, for the purpose of this exercise, are unitless. The output of

each successive change in configuration can be seen in the Java Console window of

Netscape Navigator (Figure 3-6). Increasing and decreasing each of the values

modifies the data in the model and the result can be seen at the interface bottom

where the controlling case is displayed. This environment allows each viewer to

position himself or herself in the exact position they so desire. Allowing students to

control the view results (Figure 3-7) in a customized learning environment

increasing the effectiveness of teaching.

33

Chapter 3 - Learning Systems

SN .Java Console

Netscape Communications Corporation -- Java 1.1.5
Type '7for options.
Symantec Java! ByteCode Compiler Version 210.065
Copyright (C) 1996-97 Symantec Corporation
Sizing Data
Load = 5000.0 Length = 20.0
E = 3.0E7 HIB Ratio = 1.0
Max Shear Stress = 15000.0 and b = 2.236068
Max Bending Stress = 20000.0 and b = 4.2171636
Max Deflection = [/350.0 and b = 2.9221783
Sizing Data
Load = 5000.0 Length = 30.0
E = 3.0E7 HIB Ratio = 1.0
Max Shear Stress = 15000.0 and b = 2.738613
Max Bending Stress = 20000.0 and b = 5.526047
Max Deflection = L350.0 and b = 3.9607291
Sizing Data
Load = 5000.0 Length = 40.0
E = 3.0E7 HIB Ratio = 1.0
Max Shear Stress = 15000.0 and b = 3.1622777

Clear Close

Figure 3-B Java Console

Figure 3-7 Various Views of Beam Size World Showing Effect of
Parameters on Section Profile

34

I

Chapter 4 - Documentation Applications

Chapter 4 - DOCUMENTATIO N APPLICATIONS

Introduction

The uses of virtual reality can be extended into the workplace with simple

modifications to existing practices. The communication between designers and

builders is key in every project. Any way communication can be improved will most

likely be appreciated by everyone involved in the design process. Currently,

architects and engineers are limited to communication via two-dimensional

drawings and ideas they can voice to others. Providing an additional communication

medium gives designers supplemental tools to convey their ideas. In order for this

medium to become standard, the generation needs to be streamlined and designers

need to become more familiar with it.

35

Chapter 4 - Documentation Applications

There are already capabilities to generate VRML worlds from AutoCAD 14 and 3D

Studio as well as many other drafting and solid-modeling programs. At this point,

the VRML world can be used to supplement the design information, providing a

model for others to investigate details and key components. By utilizing

applications within the VRML world, additional information can be attached to the

world, providing the viewer with an extremely information-rich environment,

including all the information typically found on construction document drawings.

Utilizing this format motion can be added to static details, thus illustrating the

construction sequence of a building.

Design Details

Using a traditional paper-based delivery system, the builder is usually given two-

dimensional drawings of buildings to build three-dimensional structures.

Occasionally, isometric drawings will be added to clarify a complex detail or show all

components of a system, such as an interior wall. Once in the hands of the builders,

these drawing are dissected and annotated further to indicate construction-specific

notes, and in some cases, construction drawings are generated solely for construction

purposes.

The representation of three dimensions on two-dimensional drawings often causes

confusion during construction, resulting in various requests for information (RFI's).

A typical problem is a miss-representation within two-dimensional drawings,

especially when complex geometry is involved. To solve this problem, many

36

Chapter 4 - Documentation Applications

designers create three-dimensional computer models to solve the geometry issue,

then create two-dimensional drawings from the model. Although the model often

provides checks to prevent common mistakes made during drawing construction, it

is wasted because it is not utilized throughout the entire design and construction

process. The builder could effectively utilize a three-dimensional model much more

than two-dimensional drawings. With a model, the builder can generate any

drawing from any view, with access to the exact information needed. Another

feature is the ability to access information directly, without the need to produce

physical documents. As the modern way of business become more and more

paperless, the design environment can adapt its current presentation, transport and

storage of documentation to conform. Currently, some limits apply to this

methodology, for example, a steelworker on the top of a building will not carry a

small portable CAD display window to find out specific details to save one piece of

paper.

As an example of VRML's r

application to

construction detailing,

consider a typical

component of any steel-

framed building: the

frame. The model for the

frame is created in

AutoCAD 14 to maintain Figure 4-1 Design Details Model

37

Chapter 4 - Documentation Applications

accuracy of the steel sections and components. Two columns are constructed and a

simple beam is framed in between and connected by simple shear plates and three

bolts at each end as seen in Figure 4-1. Although this detail is not complex, it shows

one important feature of VRML: the dynamic display of information. Information is

a major concern for designers when constructing design drawings; how much

information to display is often determined by the scale of the drawing and the size of

the font in order to maintain the readability of the drawings. Using the VRML

environment, it is possible to display an information window with any amount of

information about any component of the world.

The example will display some predetermined information about different

components of the detail, although Java is capable of connecting to text files or

databases to access this information. If this VRML detail was generated from a

database of design information, the Java Script node would read the extended data

within the same database to display all pertinent information to the builder or

anyone who requests information. This level of accessibility provides the builder

with the same level of detailed

information that each design

professional has, without having to

access three physical sets of drawings:

architectural, structural and

mechanical.

Figure 4-2 Detail of Joint

38

Chapter 4 - Documentation Applications

Notice that when the cursor moves over various pieces of the VRML world as shown

in Figure 4-2, including bolts and plates, information is displayed in the Design

Details window (Figure 4-3). Although the information is very simple and limited to

structural data, all of the information for an
N D esign D et ails Ex x... Rigi

entire building could never be provided in Name: Bolt

one location. Even if this were just the Material: A325 Steel

Size:. 3/4in. Diameter
structural model, the amount of

Other Info: Typical thru bolt
information on a single drawing would IS

f" 1_33igned by:
make it unreadable, while that same

Figure 4-3 Information Window
amount of information in the VRML world,

in merely a click away. To accomplish this, a Java class is created to extend the

Frame class providing the window of information. As the user interacts with the

elements in the model, the window displays information about the item.

The example used is a simple steel frame composed of two columns connected by a

beam. Each end of the beam is connected to the column by a single shear plate and

three bolts. This type of detail would be provided by the engineer and refined by the

steel erector with the final dimensions. Using this information, a contractor would

erect the steel structure based on a three-dimensional model where all the necessary

information could be easily accessed. The typical information found on erection

drawings accompanying an order of steel would be greatly accentuated when applied

to a three-dimensional model with geometrical data as well as piece names and

overall dimensions.

39

Chapter 4 - Documentation Applications

This example utilizes the same process for Java and VRML discussed in Chapter 3.

The VRML file utilizes TouchSensors on every element in the VRML world, all of

which are routed to the Java file; the processing is quite straightforward. Each

event is tested as it enters the Java file. Depending on the source of the event, bolt,

beam, or column, predetermined information is routed to the Java window about the

particular element. If the full power of Java were used, the Java Database

Connectivity (JDBC) package could access a database over a network to query

information about the model, therefore allowing a model constructed of old data to

be updated and received by the viewer on a real-time basis. Virtual reality provides

the next level of visualization in the construction documentation process, giving the

viewer control of what is seen and how it is seen.

Process Animati on

Static models of construction details provide several advantages over the traditional

two-dimensional detail included in construction documents. One dimension is still

excluded: time. Including time incorporates motion into the virtual reality model,

responding to user interaction. Typically, when modeling buildings, motion is rarely

discussed for good reason: buildings aren't supposed to move! Any structural

engineer will tell you that although a building really does move, there is no reason to

show a motion in the model. The period of time before construction of a building is

finished is a very motion-oriented process. Each building element must be

transported to the site and then distributed according to its final location and

timeframe. This process is not new to those involved in the construction industry, so

40

Chapter 4 - Documentation Applications

why illustrate it to those who see it every day? The reason lies in the fact that as

technology advances, so do the components of a building.

With their higher performance level, building components demand additional

requirements for their placement with respect to other components. Construction

process information is included in the specifications given to builders, whose

responsibility it is to correlate that information with the information in the

drawings. Although some information is best left in the specifications, such as

material specifications for concrete slump and steel strength, other information,

such as how to assemble complex features, can be incorporated into a virtual

environment. For instance, in a building using viscous dampers to reduce the

motion effect of dynamic loads, special care should be taken installing the dampers

to insure correct performance. The manufacturer of the damper provides guidelines

for their use and construction information, but if detailed animations were produced

to show the damper connections, designers could incorporate the animations into the

building model. Combination models would give builders the exact process as it

applies to the particular building and not just a generalized procedure that can be

easily misinterpreted. It will also force designers to address the interface of a

specialty item handled by an outside consultant with their standard design

components. Catching potential problems at this interface will result in smoother

construction and allow designers to solve the problems without requiring any

physical change to a partially constructed building.

41

Chapter 4 - Documentation Applications

A review of the history of construction documentation shows an increase in details

and information. The necessity of more detailed information require designers to

think more about the construction process preventing builders from having to

manipulate interfaces between the many building systems, therefore focussing on

actually getting the building constructed. This may seem to relieve the construction

industry of responsibility, but the fact remains that catching a mistake before

construction has begun is ideal compared to finding mistakes with special

components at the first floor after ten stories of a building is erected. This area of

the design process is quite open to those involved in construction because they

generally have a better idea of how field construction is performed and can aid the

designers in their decisions.

In a similar manner to the example discussed earlier, information can be attached to

the pieces in the animation to describe the process-taking place, such as tightening

bolt to specified torque, etc. Similar to linking information to the database,

information within a VRML world can be linked to project management software to

reference dates that large components are to be completed. If additional information

can be provided in the scheduling program, the generation of process animations

may be automatically generated for larger pieces of the building, such as the

substructure, superstructure, enclosure, interiors, etc. This form of output can also

be a very effective form of communicating design ideas to a client when discussing

the future construction of a project.

42

Chapter 4 - Documentation Applications

To illustrate this use of

virtual reality, consider a

simple wood floor-framing

scheme consisting of two

beams with floor joists at

sixteen inches on center

as seen in Figure 4-4.

Plywood is place on top of

this and secured using

nails. While this is an Figure 4-4 Sequence World

easy process to describe

and most builders know how to do it, the familiarity with the process will allow the

example to focus on the method of using virtual reality. The geometrical model is

created in AutoCAD using solids. First the beams are created, followed by the joists,

which run from face to face of the beams. At the end of each joist is a joist hanger

which is attached to the beam prior to placing the joists. On top of the joist, just

before laying the plywood, is a bead of caulking used to prevent the floor from

squeaking when it is loaded. On top of the flooring system is a series of four feet by

eight feet plywood panels that are attached with nails. On top of this system, the

architect places the sub-flooring system followed by the finishing material.

The example model focuses on the structural model, although other models can be

incorporated into the sequence at any time. From AutoCAD, the model is exported

to 3D Studio where the animation of the components is completed. Within the

43

Chapter 4 - Documentation Applications

animation time scale, each piece is locked at a specified time depending on the

sequence of construction. Prior to the final, locked position, the elements are moved

to another location within the model, to represent their storage away from their final

position within the model. The sequence of this animation is verified using the

previewing capabilities in 3D Studio, ensuring the process is proceeding as planned.

Following process approval, the model is exported to VRML format where the

addition of the scripting node and the Java application creation begins. Within the

VRML source file, several fields are added to allow access to the TimeSensor nodes

from the Java application. This is used to stop the animation by setting the enabled

field of the TimeSensor nodes to false.

In the Java application, as seen in Appendix A, a Frame is N

created to display the pause button, allowing the user to stop

the animation (See figure 4-5). This functionality can be
1,|Siged by:

accomplished using sensors within the VRML environment, Figure 4-5 Pause

however, using Java, the sensor can be removed from the Button

world and additional information can be displayed about the component being

constructed. A Boolean variable is declared to determine the state of the world,

either paused or running. An array of Nodes is initialized to point to the various

fields specified in the Script node of the VRML file, which is done to allow looping

through each of the nodes, turning them off one at a time, as can be seen in the

button's listener method. As the button is clicked, the application tests the state of

the world, paused or running, and either resumes or stops animation. Using the

44

Chapter 4 - Documentation Applications

array to hold all of the Node references enables a loop through them all, setting their

enabled fields to false, regardless of what they actually point to.

While browsing the world, the pause button in the floating window can be clicked to

examine the semi-complete state. The lag between the time the pause button is

clicked and the time the animation stops is partly due to the use of Java to listen

and respond to the input to directly manipulate the VRML world, which the browser

must then update. With the ability to stop the sequence at any time, the viewer has

control over the information they receive. This may be particularly useful if the

viewer is having problems at a specific phase of construction or they wish to study

each sequence as in Figure 4-6. If careful studies could be made of a partially-

completed sequence, then builders would be at an advantage as they approached the

next phase of the construction. Additionally, smarter controls can easily be built

into the control panel of such sequences to further refine the animations and better

streamline the information flow that the user needs at any particular time.

Figure 4-6 Sequence Worlds During Animation

45

Amos,

BONN

Chapter 4 - Documentation Applications

Case Study

As an example of this technology and it's applications I will discuss the work that

was done on the High Performance Structures Project within the Master of

Engineering Program at the Massachusetts Institute of Technology. The project was

to develop conceptual designs for a new Civil and Environmental Engineering

Building. The designs began with rough sketches and were taken into a more

finalized state where static and dynamic analyses were performed. The architecture

of the building was also developed using various visualization techniques. Computer

models of various pieces were generated for use in both the visualization models and

the analysis models.

To accomplish the visualizations, still renderings were completed, as well as

animations of various components. The culmination of the animations was the

creation of a building walkthrough featuring the outside and the inside of the

design. From the models used to create the renderings, virtual reality models were

created to add another level of user interaction. Models were created for the site,

including the new building, each of the floor plans and other components. Each

model was placed on the project Website to increase their availability to others

involved or interested in the project.

In addition to providing links to the virtual worlds, objects within the virtual worlds

were specified as hot spots, similar to TouchSensors, and linked to other virtual

reality files. One example is apparent in the final presentation sample of the virtual

46

Chapter 4 - Documentation Applications

reality work. Here, the user begins in the site model, floating high above campus as

seen in Figure 4-7.
~ j I ~ 4 i

Several views have been
q- * 4 Z; ***- *4~ ~ v

provided to allow the user

to move around in the .

world and gain different

viewpoints (Figure 4-8)

easily without having to

move manually. From

each of viewpoint, the

building is easily visible
Figure 4-7 Initial View of Site Model

and is actually an active link. When clicked, the user is linked, just as a hyperlink

functions in a web page, to another virtual world.

Figure 4-8 Site Model Views

47

Va.s.,sar-St-Cam

Chapter 4 - Documentation Applications

For the purpose of the presentation, the model of the third floor was used as the

direct link. For practical uses, the building would be linked to a list of available

models, such as floor models. Once in the model of the third floor (Figure 4-9), the

user again has several

views to choose from,

including the typical

entrances to the floor:

each stairway and the

central atrium space

elevator. While in this

world, the user will notice

that there are two active

links, one at the location Figure 49 3rd Floor Model

of the central atrium stair

and the other at each of the exterior columns. The stair link is quite obvious, and it

links to a detailed world of the atrium stair, containing one floor to floor section of

the stair that spans between the atrium and the third floor of the building (Figure 4-

10). The column link takes the viewer to the world containing a detail cutaway

section of the interface that occurs at the column-floor interface (Figure 4-10). This

world starts by moving in a circular pattern around the joint to allow the viewer to

see it from all angles. The viewer can then move in to particular locations to see the

clips that attach the window mullions to the steel framing or any other view they

want.

48

Chapter 4 - Documentation Applications

Figure 4-10 Stair and Framing Detail Models

Although this example uses only the built-in components of VRML, it shows its

power as a tool to increase information about design issues. By providing these

forms of information, the group felt that the viewer had a better sense of the design

concept. The format also allows the viewer to see the details of the models used and

the lack of detail, in some cases. This can be very useful if a consultant or a client is

trying to track the progress of the design. If the model is not updated for quite some

time and details are not begin filled in, it is obvious that the design has not been

progressing as scheduled. Using the easy to access Web format also provided the

greatest portability between systems. Since the VRML technologies used did not

take advantage of the new Java specifications, the worlds were easily viewed from

any platform using several different VRML browsers.

49

Chapter 5 - Conclusion

Chapter 5 - CONCLUSION

Summary

As demonstrated, the VRML can greatly improve existing tools used to convey

design ideas and intent. Although this is cutting-edge technology and the format is

very unfamiliar to most people involved in the design process, small-scale

demonstrations show how beneficial this tool can be. Beginning with examples to

aid young design professionals, specific applications were shown that gave the

student another tool to visualize what is actually occurring when decisions are

made. These demonstration tools can be scaled up to tools more applicable to higher

level students, showing more involved concepts, such as building motion.

50

Chapter 5 - Conclusion

Often it is difficult to visualize how a building is moving from a three-dimensional

stick model in a typical analysis program. This could be greatly augmented using a

virtual environment in which the building frame moves along with the envelope

giving the student a better idea of how the building is moving. If developed

properly, each of these tools can be developed to work within a larger environment of

teaching tools, which can be re-used by future teachers and students as components

of more advanced virtual worlds.

Although hard to envision, the design applications discussed are entirely possible

and have many benefits to offer the profession. However, many designers cannot

imagine creating complex virtual worlds for use by the builders and owners of a

building. This belief can be attributed to the young age of the American building

industry and the speed with which it advances. Europeans, by contrast, are

traditionally more technologically advanced builders and are the first to incorporate

technology into the design process at any level. As the global market becomes more

diverse and more international designers enter the American market, the push to

incorporate new technologies will be on the rise.

The need for improved documentation can be justified by the increase in paperwork

that is associated with any particular job. Some design consultants hire people to

manage the paperwork on a single job. The virtual environment enables this

process to become electronic and the tracking and filing of paperwork to become

automated, thus creating a smoother process. Additionally, the virtual environment

allows the designer to embed information that cannot normally be transmitted via

51

Chapter 5 - Conclusion

traditional documentation. Since this format is highly Web-based, audio / video

recordings can be attached to details, explaining, in the designers words, the intent

and how the designer envisioned the building being built. As we move into the

information age, the design community will need to redefine it's documentation

procedures to allow for the increase in information that is transmitted from the

point of design concept to complete design realization.

New Technologi e s

Even as we speak, new Internet technologies are being developed. Web-based

virtual reality is no exception. As mentioned previously, the VRML specification

was released in 1997 and is already being taken over by the new Java 3D API. As I

have demonstrated, linking VRML with Java gives the VRML world limitless

possibilities. Databases of objects can be embedded into VRML worlds using the

Java interface in an empty world.

With the Java 3D API, the power of Java can be taken one step further, taking over

the browser's function. This will allow developers to embed a Java applet into an

HTML page and allow the user to view the VRML world directly, requiring no plug-

in. This will improve the user's experience because only a browser is required.

However, this method does require that the developer spend more time on the

interface between the user and the world. Java 3D also provides better ways to

store VRML objects and to create VRML objects, similar to the creation of objects in

object-oriented software design. This will make developing interactive worlds an

52

Chapter 5 - Conclusion

extension of the typical object-oriented programming paradigm that is prevalent in

software design.

One area this package will have problems addressing is the geometrical generation

of the virtual worlds. Designers are familiar with high-powered geometrical editors

used to generate drawings and three-dimensional models. Using Java3D to create

models will be more cumbersome since everything must by input in a text file, and

the creation of a geometry editor within Java would be quite an undertaking. For

this reason, Java 3D may be limited to using existing geometrical data to create

virtual worlds, adding functionality to the components depending on existing

properties.

The introduction of Java 3D is a major advancement in the development of tools to

aid the virtual-world developer. It is unsure at this time whether Java will continue

to be the major programming language for use on the Internet, but if the trend

continues the advancement of the Java 3D API will surely take over the VRML

specification. The syntax of both languages is similar, as is the process of geometry

generation and positioning. Java 3D's major advantage is the underlying

programming language that it is based on, to which the VRML cannot compare.

Where do we go from here?

At this time, it is quite obvious that the design profession is behind the current

technology available. In the coming years, the profession as a whole will need to

incorporate more information technologies into their daily routines. As the Internet

53

Chapter 5 - Conclusion

has developed, business has been changed, allowing companies to conduct business

without a word between them. The business of design is much more people driven,

as the decisions made affect the appearance of a physical object in our world.

However, the daily practice of information sharing can be greatly augmented by

utilizing emerging computer technologies.

Virtual reality is just a step away from where the profession is currently.

Architecture offices have begun to utilize the power of three-dimensional computer

modeling to augment their design tools. Engineers use sophisticated design

programs to analyze structures in minutes, rather than days. The next step in static

three-dimensional worlds is to add interaction, providing real-time response to user

action. If a couple of nicely rendered still images of a building help visualize a

building design, imagine what an interactive model could achieve where the user is

in control of the rendered view.

In conclusion, with its portable format and the ability to embed a highly function

programming language, the Virtual Reality Modeling Language specification is a

tool to improve design communication. Although the VRML format is generalized

and not specific to the building industry, the profession can see the potential of use

of such systems to the design environment. Ultimately, the profession will need to

adopt their own standards to present and design buildings with some, if not all, the

features incorporated into existing web-based virtual reality formats.

54

References

REFERENCES

Ames, Nadeau and Moreland. VRML 2.0 Sourcebook. Wiley and Sons Inc., New
York, 1997.

James Gere and Stephen Timoshenko. Mechanics of Materials, Third Edition.
PWD-Kent Publishing Company, Boston, 1990.

Lea, Rodger. Java and VRML 2.0 Part 1: Basic Theory. Available:
http://www.vrmlsite.com/feb97/a.cgi/spot2.html. 12 April 1999.

Lea, Rodger. Java and VRML 2.0 Part 2: Putting Theory into Practice. Available:
http://www.vrmlsite.com/mar97/a.cgi/spot3.html. 12 April 1999.

Rikk Carey, Gavin Bell, Chris Marrin. ISO IIEC 14772-1:1997, Virtual Reality
Modeling Language, (VRML97). Available:
http://www.vrml.org/Specification/VRML97. 12 April 1999.

Scott, Adrian. The Marriage of Java and VRML. Available:
http://www.vrmlsite.com/sep96/spotlight/j avavrml/javavrml.html. 12 April 1999.

55

Appendix A - Source Files

Appendix A - SOURCE FILES

General

The content of this paper is based around the four examples discussed and the one

case study. The Java source code has been reproduced here for greater detail and

complete syntax on how to link the two technologies together. The Virtual Reality

files are quite large, as the method for describing even simple geometry can be quite

complex. I will include portions of the files that are pertinent to the linking of Java

and VRML. Much of the geometry has been edited out to keep the information to a

manageable amount.

56

Appendix A - Source Files

Space Relations hip Example

VRML - "twoRooms.wrl"

#VRML V2.O utf8

WorldInfo { ...}
NavigationInfo {...}
DEF PlanView Viewpoint {...}
DEF Room1 Viewpoint {...}

DEF Room2 Viewpoint {...}
DEF wall-app Appearance {...}
DEF intapp Appearance {...}

DEF Floor Transform {...}

DEF LeftWall Transform {...}

DEF RightWall Transform {...}

DEF RearWall Transform {...}

DEF FrontWall Transform {...}

DEF InteriorWall1 Transform

DEF WalllSensor TouchSensor {

DEF InteriorWall2 Transform

DEF Wall2Sensor TouchSensor {

DEF OneRoomControl Script
directOutput TRUE

field SFNode wl USE InteriorWall1

field SFNode w2 USE InteriorWall2

eventIn SFBool clickedl

eventIn SFBool clicked2

url "moveWall.class"

ROUTE WallSensor.isActive TO OneRoomControl.clickedl
ROUTE Wall2Sensor. isActive TO OneRoomControl .clicked2

Java - "moveWall.java"

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class moveWall extends Script{

private SFNode wl, w2;

public void initialize()
//Connect java nodes with vrml nodes

wl (SFNode) getField("wl");

w2 = (SFNode) getField("w2");

public void processEvent(Event e)

ConstSFBool v = (ConstSFBool)e.getValue(;

//Only perform the movement on mouse click, not release

if (v.getValue() {

57

Appendix A - Source Files

SFVec3f t1, t2;
t1 =

(SFVec3f) ((Node)wl.getValue() .getExposedField("translation");

t2 =
(SFVec3f) ((Node)w2.getValue).getExposedField("translation");

if (e.getName().equals("clickedl")==true)
tl.setValue(tl.getX()+10.0f, tl.getY(),

tl.getZ();
t2.setValue(t2.getX(+10.0f, t2.getY(),

t2..getZ();
}else if (e.getName().equals("clicked2")==true) {

t1.setValue(t1.getX()-10.0f, t1.getY(),

tl.getZ();
t2.setValue(t2.getX()o-10.0f, t2.getY(,

t2.getZ);

Simple Beam Co I umn Example

VRML - "Span.wrl"

#VRML V2.O utf8

WorldInfo (...}

NavigationInfo {...}
DEF View1 Viewpoint {...}

DEF Column1 Transform {...}

DEF Column2 Transform {...}

DEF Beam1 Transform

DEF sizer TouchSensor {}

DEF SizeSpan Script {
field SFNode c1 USE Column1

field SFNode c2 USE Column2

field SFNode bl USE Beam1

eventIn SFBool size

directOutput TRUE

url "sizeBeam.class"

ROUTE sizer.isActive TO SizeSpan.size

Java - "sizeBeam.java"

import vrml. *;
import vrml.field.*;
import vrml.node.*;

import java. awt . event. *;

public class sizeBeam extends Script implements ActionListener,

AdjustmentListener

58

Appendix A - Source Files

private trNode coll, col2, bml; //Nodes to get data from VRML file

private Binterface bint; //Interface to provide input

public void initialize)

coll = new trNode((SFNode) getField("cl"));
col2 = new trNode((SFNode) getField("c2"));
bml = new trNode((SFNode) getField("bl"));

bint = new Binterface(this);

this.resize);

public void shutdown)
bint.dispose();

//Scrollbar listeners to catch when scrollbar events...
public void adjustmentValueChanged(AdjustmentEvent ae)

this.resize();
}
//Action Listeners to catch button events...
public void actionPerformed(ActionEvent ae)

if (ae.getSource().equals(bint.getIncrease()) {
coll.moveZ(-5f);
col2.moveZ(5f);
this.resize();

}else if (ae.getSource().equals(bint.getDecrease()) {
coll.moveZ(5f);
col2.moveZ(-5f);
this.resize(;

}
public void resize()

float w, 1, E, h2b;
float tau, sigma, delta;
float b, bl, b2, b3;
w = bint.getLoad(.getValue();
1 = (coll.getdist(col2)).getZ(;
E = bint.getModulus(.getValue(;
h2b = bint.getRatioo.getValue(;

tau = bint.getShearStress().getValue(;
sigma = bint.getBendingStress().getValue();
delta = bint.getDeflection().getValue(;
//check shear
bl = (float)Math.pow((3 * w * 1) / (h2b * 4 *

//check bending
b2 = (float)Math.pow(((3 * w * Math.pow(l, 2))

Math.pow(h2b, 2) * sigma)), (1.0 / 3.0));
//check deflection
b3 = (float)Math.pow(((60 * w * Math.pow(l, 3)

(384 * E * Math.pow(h2b, 3))), (1.0 / 4.0));
if (bl > Math.max(b2, b3)) {

bint.writeCase("Shear");
}else if (b2 > Math.max(bl, b3)) {

bint.writeCase("Bending");
}else if (b3 > Math.max(bl, b2)) (

bint.writeCase("Deflection");

tau), (1.0 /

/ (4 *

* delta) /

b = Math.max(bl, Math.max(b2, b3));

" + bl);

b = " + b2);

System.out.println("Sizing Data");

System.out.println("Load = " + w + " Length = " + 1);

System.out.println("E = " + E + " H/B Ratio = " + h2b);
System.out.println("Max Shear Stress = " + tau + " and b =

System.out.println("Max Bending Stress = " + sigma + " and

59

2.0));

Appendix A - Source Files

System.out.println("Max Deflection = L/" + delta + " and b
= "+ b3);

bml.setlocation(0, 100 + b * h2b / 2, 0);

bml.scaleX(b/2); //Width of beam

bml.scaleY(b * h2b / 2); //Height of beam

bml.scaleZ(1/2); //Respan beam

//Catch the vrml events...

public void processEvent(Event e)
ConstSFBool v = (ConstSFBool)e.getValue(;
//Only perform the movement on mouse click, not release
if (v.getValue() {

bint.show(;

Java - "Binterface.java"

import java.awt.*;
import java.awt.event.*;

public class Binterface extends Frame implements WindowListener

private sizeBeam sB; //Reference to main class

private Label lLoad, lRatio, lModulus, lShearStress,

lBendingStress, lDeflection, lCase, lCase2;

private String sLoad, sRatio, sModulus, sShearStress,

sBendingStress, sDeflection, sCase;

private Scrollbar scbLoad, scbRatio, scbModulus, scbShearStress,

scbBendingStress, scbDeflection;

private Button btnIncrease, btnDecrease;

public Binterface(sizeBeam s)

sB = new sizeBeam();
sB = s;

//Initialize gui objects

sLoad = new String("Load: ");

sRatio new String("Height/Width Ratio: ");
sModulus = new String("Modulus of Elasticity: ");
sShearStress = new String("Allowable Shear Stress: ");

sBendingStress = new String("Allowable Bending Stress: ");

sDeflection = new String("Allowable Deflection: ");

sCase = new String("Controlling Case: ");

lLoad = new Label(sLoad);
lRatio = new Label(sRatio);
lModulus = new Label(sModulus);
lShearStress = new Label(sShearStress);
lBendingStress = new Label(sBendingStress);
1Deflection = new Label(sDeflection);
lCase = new Label(sCase);

lCase2 new Label("');

scbLoad = new Scrollbar(Scrollbar.HORIZONTAL, 5000, 500,
1000, 10000);

scbLoad.setUnitIncrement(500);
scbRatio = new Scrollbar(Scrollbar.HORIZONTAL, 1, 1, 1, 5);

scbRatio.setUnitIncrement(1);
scbModulus = new Scrollbar(Scrollbar.HORIZONTAL, 30000000,

5000000, 10000000, 40000000);
scbModulus.setUnitIncrement(5000000);

60

Appendix A - Source Files

scbShearStress = new Scrollbar(Scrollbar.HORIZONTAL, 15000,

500, 10000, 20000);
scbShearStress.setUnitIncrement(500);

scbBendingStress = new Scrollbar(Scrollbar.HORIZONTAL,
20000, 1000, 10000, 30000);

scbBendingStress.setUnitIncrement(1000);
scbDeflection = new Scrollbar(Scrollbar.HORIZONTAL, 350,

50, 100, 1000);
scbDeflection.setUnitIncrement(50);

btnDecrease = new Button("Decrease Span");
btnIncrease = new Button("Increase Span");

//Set up gui
this.setSize(300, 350);
this.setTitle("Beam Sizing Example");
this.setLayout(new GridLayout(ll, 2));

this.add(new Label("Beam Inputs"));
this.add(new Label());
this.add(lLoad);
this.add(scbLoad);
this.add(lRatio);
this.add(scbRatio);
this.add(lModulus);
this.add(scbModulus);

this.add(new Label("Design Values"));
this.add(new Label());
this.add(lShearStress);
this.add(scbShearStress);
this.add(lBendingStress);
this.add(scbBendingStress);
this.add(lDeflection);
this.add(scbDeflection);

this.add(new Label("Change column positions"));
this.add(new Label)));
this.add(btnDecrease);
this.add(btnIncrease);
this.add(lCase);
this.add(lCase2);

//Add listeners...
this.addWindowListener(this);
scbLoad.addAdjustmentListener(sB);
scbRatio.addAdjustmentListener(sB);
scbModulus.addAdjustmentListener(sB);
scbShearStress.addAdjustmentListener(sB);
scbBendingStress.addAdjustmentListener(sB);
scbDeflection.addAdjustmentListener(sB);
btnDecrease.addActionListener(sB);
btnIncrease.addActionListener(sB);

//show the form
this.show);

public void shutdown)
this.setVisible(false);

public Scrollbar getLoad()
return scbLoad;

public Scrollbar getRatioO)
return scbRatio;

public Scrollbar getModulus)
return scbModulus;

public Scrollbar getShearStress)

61

Appendix A - Source Files

return scbShearStress;

public Scrollbar getBendingStresso)
return scbBendingStress;

public Scrollbar getDeflection()
return scbDeflection;

public Button getDecreaseo)
return btnDecrease;

public Button getIncreaseo)
return btnIncrease;

}
public void writeCase(String s)

lCase2.setText(s);

//Listener Methods...
public void windowClosing(WindowEvent e) {

this.setVisible(false);

public void windowClosedWindowEvent e)
public void windowopened(WindowEvent e) {}
public void windowlconified(WindowEvent e) }
public void windowDeiconified(WindowEvent e) }
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) }

Java - "trNode.java"

import vrml.node.*;
import vrml.field.*;

public class trNode

private SFNode n;
private SFVec3f t, s;

public trNode(SFNode nn)
n = nn;
t = (SFVec3f)

((Node)n.getValue().getExposedField("translation");
s = (SFVec3f)

((Node)n.getValue()).getExposedField("scale");
}
public SFVec3f getTranslation)(

return this.t;

public SFVec3f getScaleo(){
return this.s;

public void setlocation(float x, float y, float z) {
t.setValue(x, y, z);

}
public void setscale(float xs, float ys, float zs) C

s.setValue(xs, ys, zs);

public SFVec3f getdist(trNode n2) {
SFVec3f d;
d = new SFVec3f(n2.getTranslation).getXC)-t.getXo),

n2.getTranslationC).getYC)-t.getYC), n2.getTranslationC).getZC)-t.getZC));
return d;

public void moveX(float f)
t.setValue(t.getX)+f, t.getYO), t.getZC));

62

Appendix A - Source Files

public void moveY(float f) {
t.setValue(t.getX(, t.getY+f, t.getZ));

public void moveZ(float f) {
t.setValue(t.getX(), t.getY(, t.getZ)+f);

public void scaleX(float f)
s.setValue(f, s.getY(), s.getZ();

public void scaleY(float f) {
s.setValue(s.getX(), f, s.getZ());

}
public void scaleZ(float f) {

s.setValue(s.getX), s.getY(), f);

Design Details Example

VRML - "DesignDetails.wrl"

#VRML V2.O utf8

WorldInfo (...}

NavigationInfo {...}
DEF DefaultView Viewpoint {...}

DEF BEAM Transform

DEF beamSNS TouchSensor {}

DEF RCOLUMN Transform

DEF rcolumnSNS TouchSensor {

DEF LCOLUMN Transform

DEF lcolumnSNS TouchSensor {

DEF RPLATE Transform

DEF rplateSNS TouchSensor {}

DEF RBOLT1 Transform

DEF rboltlSNS TouchSensor {

DEF RBOLT2 Transform

DEF rbolt2SNS TouchSensor {}

DEF RBOLT3 Transform

DEF rbolt3SNS TouchSensor {}

DEF LPLATE Transform

DEF lplateSNS TouchSensor {}

DEF LBOLT1 Transform

DEF lboltlSNS TouchSensor {}

63

Appendix A - Source Files

DEF LBOLT2 Transform

DEF lbolt2SNS TouchSensor {}

DEF LBOLT3 Transform

DEF lbolt3SNS TouchSensor {}

DEF ddControl Script

eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn

SFBool
SFBool
SFBool
SFBool
SFBool
SFBool
SFBool
SFBool
SFBool
SFBool
SFBool

Lcol
Rcol
bm
Lpl
Rpl
Lbl
Lb2
Lb3
Rb1
Rb2
Rb3

ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE

import
import
import

url "DDinfo.class"

lcolumnSNS.isOver
rcolumnSNS.isOver
beamSNS.isOver
lplateSNS.isOver
rplateSNS.isOver
lboltlSNS.isOver
lbolt2SNS.isOver
lbolt3SNS.isOver
rboltlSNS.isOver
rbolt2SNS.isOver
rbolt3SNS.isOver

TO
TO
TO
TO
TO
TO
TO
TO
TO

TO ddControl.Lcol
TO ddControl.Rcol

ddControl.bm
ddControl.Lpl
ddControl.Rpl
ddControl.Lbl
ddControl.Lb2
ddControl.Lb3
ddControl.Rbl
ddControl.Rb2
ddControl.Rb3

vrml.*;
vrml.field.*;
vrml.node.*;

public class DDinfo extends Script{

private DDinterface info;

public void initialize()
info = new DDinterface();

public void processEvent(Event e) {
ConstSFBool v = (ConstSFBool)e.getValue(;
//Only perform the movement on mouse click, not release
if (v.getValue() {

info.show();
String ename;
ename = e.getName(;
if (ename.equals("Lpl")==true)

info.write("Left Plate", "Steel",
OxO.5", "Typical shear Plate");

}else if (ename.equals("Rpl")==true) {
info.write("Right Plate", "Steel",

OxO.5", "Typical shear Plate");
)else if (ename.equals("Lcol")==true) {

info.write("Left Column", "Steel", "W10x
"120 inches long");

49",

}else if (ename.equals("Rcol")==true) {

64

}

Java - "DDinfo.java"

"PL11xl

"PL11x1

Appendix A - Source Files

info.write("Rigth Column", "Steel",

"Wl0x49", "120 inches long");
}else if (ename.equals("bm") ==true)

info.write("Only Beam", "Steel",

"108 inches long");
}else if (ename.equals("Lbl")==true)

info.write("Bolt", "A325 Steel",

Diameter", "Typical thru bolt");

}else if (ename.equals("Lb2")==true) {
info.write("Bolt", "A325 Steel",

Diameter", "Typical thru bolt");
}else if (ename.equals("Lb3")==true)

info.write("Bolt", "A325 Steel",

Diameter", "Typical thru bolt");
}else if (ename.equals("Rbl")==true) {

info.write("Bolt", "A325 Steel",

Diameter", "Typical thru bolt");
}else if (ename.equals("Rb2")==true) {

info.write("Bolt", "A325 Steel",

Diameter", "Typical thru bolt");
}else if (ename.equals("Rb3")==true) {

info.write("Bolt", "A325 Steel",

Diameter", "Typical thru bolt");

}

}else {

}

"Wl6x31",

"3/4in.

"3/4in.

"3/4in.

"3/4in.

"3/4in.

"3/4in.

info.write("", "", "", "");

Java - "DDinterface.java"

import java.awt.*;
import java.awt.event.*;

public class DDinterface extends Frame implements WindowListener

private Label lname, lmaterial, lsize, linfo;

private String txtName, txtMaterial, txtSize, txtInfo;

public DDinterface()

}
public

}

txtName = new String("Name: ");
txtMaterial = new String ("Material: ");

txtSize = new String("Size: ");
txtInfo = new String("Other Info: ");

this.addWindowListener(this);
this.setSize(200, 150);

this.setTitle("Design Details Example");

this.setLayout(new GridLayout(4,1));

lname = new Label(txtName);
lmaterial = new Label(txtMaterial);
lsize = new Label(txtSize);
linfo = new Label(txtInfo);
this.add(lname);
this.add(lmaterial);
this.add(lsize);
this.add(linfo);
this.show();

void write(String nm, String ma, String sz, String in)

lname.setText(txtName + nm);
lmaterial.setText(txtMaterial + ma);
lsize.setText(txtSize + sz);
linfo.setText(txtInfo + in);

65

}

Appendix A - Source Files

public void windowClosing(WindowEvent e)
this.setVisible(false);

public void windowClosed(WindowEvent e)

public void windowopened(WindowEvent e) {}
public void windowlconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e)

Process Animati on Example

VRML - "studfloor.wrl"

#VRML V2.0 utf8

WorldInfo (...}
NavigationInfo {...}

DEF Overall-View Viewpoint {...}

DEF BEAM1 Transform

ROUTE BEAMl-TIMER.fraction-changed TO BEAM1-POS-INTERP.setfraction

ROUTE BEAMl-POS-INTERP.value-changed TO BEAM1.settranslation

DEF HANGER Transform

ROUTE HANGER-TIMER.fraction-changed TO HANGER-POS-INTERP.set-fraction

ROUTE HANGER-POS-INTERP.value-changed TO HANGER.set-translation

DEF JOIST1 Transform

ROUTE JOIST1-TIMER.fraction-changed TO JOIST1-POS-INTERP.set fraction

ROUTE JOIST1-POS-INTERP.value-changed TO JOIST1.settranslation

DEF JOIST2 Transform

ROUTE JOIST2-TIMER.fractionchanged TO JOIST2-POS-INTERP.set fraction

ROUTE JOIST2-POS-INTERP.value-changed TO JOIST2.settranslation

DEF JOIST3 Transform

ROUTE JOIST3-TIMER.fraction-changed TO JOIST3-POS-INTERP.set fraction

ROUTE JOIST3-POS-INTERP.value changed TO JOIST3.set-translation

DEF JOIST4 Transform

ROUTE JOIST4-TIMER.fraction-changed TO JOIST4-POS-INTERP.setfraction

ROUTE JOIST4-POS-INTERP.value-changed TO JOIST4.settranslation

DEF JOIST5 Transform

ROUTE JOIST5-TIMER.fraction changed TO JOIST5-POS-INTERP.setfraction

ROUTE JOIST5-POS-INTERP.value-changed TO JOIST5.settranslation

66

Appendix A - Source Files

DEF JOIST6 Transform

ROUTE JOIST6-TIMER.fraction changed TO JOIST6-POS-INTERP.setfraction

ROUTE JOIST6-POS-INTERP.value changed TO JOIST6.settranslation

DEF JOIST7 Transform

ROUTE JOIST7-TIMER.fraction-changed TO JOIST7-POS-INTERP.setfraction

ROUTE JOIST7-POS-INTERP.value-changed TO JOIST7.settranslation

DEF JOIST8 Transform

}
ROUTE JOIST8-TIMER.fraction changed TO JOIST8-POS-INTERP.setfraction

ROUTE JOIST8-POS-INTERP.value-changed TO JOIST8.settranslation

DEF JOIST9 Transform

ROUTE JOIST9-TIMER.fraction-changed TO JOIST9-POS-INTERP.setjfraction

ROUTE JOIST9-POS-INTERP.value-changed TO JOIST9.settranslation

DEF SEALER Transform

ROUTE SEALER-TIMER.fraction-changed TO SEALER-POS-INTERP.setfraction

ROUTE SEALER-POS-INTERP.value-changed TO SEALER.set-translation

DEF PLYWOOD1 Transform

ROUTE PLYWOODl-TIMER.fractionchanged TO PLYWOODl-POS-INTERP.setjfraction

ROUTE PLYWOOD1-POS-INTERP.valuechanged TO PLYWOOD1.settranslation

DEF PLYWOOD2 Transform

ROUTE PLYWOOD2-TIMER.fraction-changed TO PLYWOOD2-POS-INTERP.setjfraction

ROUTE PLYWOOD2-POS-INTERP.value-changed TO PLYWOOD2.set-translation

DEF PLYWOOD3 Transform

ROUTE PLYWOOD3-TIMER.fraction-changed TO PLYWOOD3-POS-INTERP.setfraction

ROUTE PLYWOOD3-POS-INTERP.valuechanged TO PLYWOOD3.settranslation

DEF PLYWOOD4 Transform

ROUTE PLYWOOD4-TIMER.fraction-changed TO PLYWOOD4-POS-INTERP.setjfraction

ROUTE PLYWOOD4-POS-INTERP.valuechanged TO PLYWOOD4.settranslation

DEF NAILS Transform

ROUTE NAILS-TIMER.fraction-changed TO NAILS-POS-INTERP.set-fraction

ROUTE NAILS-POS-INTERP.value-changed TO NAILS.settranslation

DEF Sequence Script {
field SFNode b1t USE BEAM1-TIMER
field SFNode h1t USE HANGER-TIMER

field SFNode jlt USE JOIST1-TIMER
field SFNode j2t USE JOIST2-TIMER
field SFNode j3t USE JOIST3-TIMER

field SFNode j4t USE JOIST4-TIMER
field SFNode j5t USE JOIST5-TIMER
field SFNode j6t USE JOIST6-TIMER

67

Appendix A - Source Files

USE
USE
USE
USE
USE
USE
USE
USE
USE

JOIST7-TIMER
JOIST8-TIMER
JOIST9-TIMER
SEALER-TIMER
PLYWOOD1-TIMER
PLYWOOD2-TIMER
PLYWOOD3-TIMER
PLYWOOD4-TIMER
NAILS-TIMER

field S

field S
field S
field S

field S
field S

field S

field S
field S

eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn
eventIn

directOutput TRUE

url "sequence.class"

BEAM1-TIMER.fractionchanged
HANGER-TIMER.fraction changed

JOIST1-TIMER.fraction-changed
JOIST2-TIMER.fraction-changed
JOIST3-TIMER.fraction-changed
JOIST4-TIMER.fraction-changed
JOIST5-TIMER.fraction-changed
JOIST6-TIMER.fraction-changed
JOIST7-TIMER.fraction changed

JOIST8-TIMER.fraction changed

JOIST9-TIMER.fraction-changed
SEALER-TIMER.fraction-changed
PLYWOOD1-TIMER.fractionwchanged
PLYWOOD2-TIMER.fraction-changed
PLYWOOD3-TIMER.fraction-changed
PLYWOOD4-TIMER.fraction-changed
NAILS-TIMER.fractionchanged

TO
TO
TO
TO

TO Sequence.b
TO Sequence.h
TO Sequence.jl
TO Sequence.j2

TO Sequence.j3
TO Sequence.j4

TO Sequence.j5
TO Sequence.j6
TO Sequence.j7

TO Sequence.j8
TO Sequence.j9
TO Sequence.s

Sequence.pl
Sequence.p

2

Sequence.p
3

Sequence.p
4

TO Sequence.n

vrml.*;

vrml.field.*;
vrml.node.*;
java.awt.*;
java.awt.event.*;

public class sequence extends S
private Frame f;
private Button bt;
private boolean pause;
private SFNode[] timers;

cript implements ActionListener {

public void initialize()

pause = false;

68

FNode
FNode
FNode
FNode
FNode
FNode
FNode
FNode
FNode

j7t

j8t
j9t
slt
plt
p2t
p3t
p4t
n1t

b
h
j1
j2
j3
j4
j5
j6
j7
j8
j9
s
p1

p2

p
3

p
4

n

SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat
SFFloat

ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE
ROUTE

Java - "sequence.java"

import
import
import
import
import

Appendix A - Source Files

timers = new SFNode[17];

timers[0] = (SFNode)getField("b1t");

timers[1] = (SFNode)getField("hlt");

timers[2] = (SFNode)getField("jlt");
timers[3] = (SFNode)getField("j2t");

timers[4] = (SFNode)getField("j3t");
timers[51 = (SFNode)getField("j4t");

timers[6] = (SFNode)getField("j5t");
timers[7] = (SFNode)getField("j6t");

timers[8] = (SFNode)getField("j7t");
timers[9] = (SFNode)getField("j8t");

timers[10] = (SFNode)getField("j9t");
timers[11] = (SFNode)getField("slt");

timers[12] = (SFNode)getField("plt");

timers[13] = (SFNode)getField("p2t");
timers[14] = (SFNode)getField("p3t");

timers[15] = (SFNode)getField("p4t");
timers[16] = (SFNode)getField("n1t");

f = new Frame();
f.setSize(100, 100);

f.setTitle("Stop/Start Animation");

f.setLayout(new FlowLayout());

bt = new Button(;
bt.setLabel("Pause");
bt.addActionListener(this);
f.add(bt);
f.show();

public void shutdown()
f.dispose();

}

public void actionPerformed(ActionEvent e)

SFBool sfb;
if (pause==true) { //Paused, now restart

pause = false;
for (int i = 0; i<17; i++)

sfb = (SFBool)

((Node)timers[i].getValue().getExposedField("enabled");
sfb.setvalue(true);

bt.setLabel("Pause");
}else (//Running, now stop

pause = true;
for (int i = 0; i<17; i++)

sfb = (SFBool)

((Node)timers[i].getValue()).getExposedField("enabled");
sfb.setValue(false);

bt.setLabel("Restart");

/*
public void processEvent(vrml.Event e)

//if ((ConstSFFloat)e.getValue()==new ConstSFFloat(l.0f))

if (e.getName().equals("b")==true) (

System.out.println("Placing Beam");

}else if (e.getName().equals("h")==true) {

System.out. println ("Attaching joist hangers to

beam");
}else if (e.getName().equals("jl")==true) {

System.out.println("Placing Joist #1");

}else if (e.getName().equals("j2")==true) {

System.out.println("Placing Joist #2");

}else if (e.getName().equals("j3")==true) {

System.out.println("Placing Joist #3");

}else if (e.getName().equals("j4")==true) {

System.out.println("Placing Joist #4");

69

Appendix A - Source Files

}else if (e.getName().equals("j5")==true)
System.out.println("Placing Joist #5");

}else if (e.getNameo).equals("j6")=true) {

System.out.println("Placing Joist #6");

}else if (e.getName().equals("j7")==true) {

System.out.println("Placing Joist #7");

}else if (e.getName().equals("j8")==true) {

System.out.println("Placing Joist #8");

}else if (e.getName().equals("j9")==true) {

System.out.println("Placing Joist #9");

}else if (e.getNameo.equals("s")==true) {

System.out.println("Laying Caulking bead");

}else if (e.getName().equals("pl")==true) {

System.out.println("Placing plywood");

}else if (e.getNameo.equals("p2")==true) {

System.out.println("Placing plywood");

}else if (e.getNameo.equals("p3")==true) {

System.out.println("Placing plywood");

}else if (e.getNameo.equals("p4")==true) {
System.out.println("Placing plywood");

}else if (e.getNameo.equals("n")==true) {

System.out.println("Attaching plywood with nails");

}

*/

70

Appendix B - Software List

Appendix B - SOFTWARE LIST

Software List

The following software was used to complete the design and viewing of the

interactive virtual environments in this paper.

VRML World Creation

AutoCAD V14.0

3D Studio MAX v2.5 and 3D Studio VIZ 2.0

Java and VRML source code editing and compilation

Microsoft Visual J++ 6.0

Sun Java Development Kit 1.2

71

Appendix B - Software List

Internet Browsers and Viewers

Microsoft Internet Explorer 4.0

Netscape Navigator 4.05

Sony community Place 2.0

CosmoSoftware Cosmo Player 2.1

72

