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Abstract

This thesis develops a new statistical framework for analyzing and processing stationary non-
Gaussian signals. The proposed framework consists of a collection of mathematical techniques
for modeling such signals as well as an associated collection of model-based algorithms for solving
certain basic signal processing problems. Two inference problems commonly encountered in practice
are given special consideration: (i) identification of the parameter values of a non-Gaussian signal
source based on a clean observation of the source output; and (ii) recovery of the source output itself
based on a noisy observation and complete knowledge of the measurement model. These problems
are referred to, respectively, as source identification and signal estimation.

Two probabilistic signal models are considered. The first, which is termed the ARGMIX signal
model, is a direct generalization of the classical autoregressive (AR) linear-Gaussian model. Under
the ARGMIX model, a signal is characterized as the output of an AR linear time-invariant (LTI)
system driven by a noise process whose samples are independent and identically distributed accord-
ing to a Gaussian-mixture (GMIX) density, rather than a purely Gaussian density. For this model,
the source identification problem can be solved efficiently with an iterative technique designed to
estimate the AR parameters of the LTI system as well as the means, variances, and weighting coef-
ficients of the GMIX density. However, the problem of optimally estimating an ARGMIX signal in
independent additive noise is shown to require a number of computations growing exponentially with
the number of samples contained in the observation. For the signal estimation problem, therefore,
only approximate suboptimal algorithms are proposed.

A second signal model is introduced as a way of overcoming the computational complexity of the
ARGMIX structure. This new model is used to approximate an arbitrarily complicated stationary
signal by representing it as the output of a finite-state hidden Markov model (HMM). Such a
representation is generated by quantizing the underlying signal dynamics, i.e., by partitioning the
state space of the original signal, assigning each region within this partition to a unique state of the
Markov chain in the HMM, and specifying appropriate state transition probabilities for this Markov
chain; output densities are then assigned to the HMM states to complete the approximation. An
analytical method is given for determining the best HMM-based representation of a signal when the
signal density is precisely known. Computationally efficient algorithms are derived for performing
both source identification and signal estimation based on this new finite-state model. For the signal
estimation problem in particular, a potentially powerful technique is proposed for dealing with
independent additive noise whose samples may in general be both non-Gaussian and temporally
dependent.
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Chapter 1

Introduction

1.1 Subject Matter and Purpose

Many signals produced by real-world systems, whether natural or man-made, carry in-

formation in a form that is conveniently modeled as a random but structured pattern of

fluctuations over time. A primary objective in designing a signal processor is to extract this

information accurately and efficiently, so that meaningful inferences can be made about the

signal source at a reasonable computational cost. In this thesis, we concentrate on solving

such inference problems in cases where the signals involved do not necessarily obey the clas-

sical Gaussian probability law. The central goal of the thesis is to extend the traditional

linear-Gaussian signal processing framework by developing a new set of modeling concepts

and estimation techniques that can be used to solve certain basic non-Gaussian inference

problems.

1.2 Preliminary Assumptions and Problem Formulation

1.2.1 Assumptions on the Measurement Model

A block diagram emphasizing the main elements of a typical inference problem that we will

consider is shown in Figure 1-1. This diagram depicts a signal of interest, {Yt}, that is

initially generated by some physical source, is then subjected to an uncertain transforma-

tion (e.g., transmission over a noisy medium or passage through an imperfect measurement

device), and is finally converted, via an appropriately designed signal processor, into infor-

mation about the source to be used by an observer. The source signal {Yt} might be, for

example, a telecommunications waveform, a geophysical signal, or a financial time series.

We will assume throughout our work that {Y} is a discrete-time, scalar-valued, stationary

random process, and that it is completely characterized by a fixed, finite-dimensional pa-

rameter vector, which we denote by %F. Furthermore, we will assume that the probabilistic

mapping shown in Figure 1-1 takes the form of a stationary additive noise process which

is statistically independent of {Yt}; we denote this corrupting noise by {V}. The above

assumptions on the signal and noise imply that the observation, {Zt}, is also stationary and
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Figure 1-1: Block diagram depicting the key elements of a typical inference problem.

is defined by Zt = Yt + Vt.

1.2.2 Inference Problems to be Considered

In this thesis, we restrict our attention to two specific inference problems of the type depicted
in Figure 1-1. We refer to these problems as source identification and signal estimation. In
the source identification problem, it is assumed that the noise included in the observation
has negligible power; hence, we take the sequence {V} to be identically zero. In this
problem, we are given a mathematical model for the source signal {Y} as well as a finite-
length sequence yo, yi, - - - , YN-1 of uncorrupted realizations of the signal. Our goal is to
estimate the value of the signal parameter vector *. In the signal estimation problem, we
are given mathematical models for the source signal {Y} and for the additive noise process
{ Vt} (including the values of all model parameters), as well as a finite-length sequence of
noisy observations zo, zi, -- - , zN-1. Our goal is to estimate the underlying signal values
Yo, Yi, - - - yN-1 . We will give more specific estimation criteria for each of these problems
as we impose additional, more concrete structure on our measurement model. In general,
however, we will attempt to find a maximum likelihood (ML) estimate when solving the
source identification problem and a minimum mean squared error (MMSE) estimate when
solving the signal estimation problem.

1.2.3 Remarks on the Problem Formulation

The problems of source identification and signal estimation as defined above are clearly
idealizations of their more complicated counterparts arising in practice. For example, there
exist many practical situations in which we would like to identify the parameters of a

14 Chapter 1. Introduction
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signal, but we have only corrupted observations of the signal available. On the other hand,
there exist situations in which we would like to estimate a signal in noise, but we have

only partial knowledge of the parametric measurement model. Both types of situations

call for the solution of a joint problem involving aspects of both source identification and

signal estimation; however, a joint problem of this kind may be too complex to serve as
a starting point for the development of a new inference framework. Consideration of the
two simplified problems described above will allow us to explore a number of important
issues in non-Gaussian signal processing and still provide a suitable foundation for future
investigations.

We remark further that the stationarity assumption on both the signal and noise has

been introduced mainly to simplify later discussions and analysis. Although this assump-

tion may seem somewhat restrictive, in practice it usually does not pose a serious difficulty,
for many real-world signals can be considered stationary as a good working approximation.

In cases where we cannot legitimately regard the signal as being stationary over the entire

observation interval, we can often decompose the observation interval into a series of subin-

tervals, and then treat the portion of the signal in each subinterval as being stationary.

This strategy is commonly used, for example, in the analysis and processing of speech sig-

nals, whose statistical characteristics change dramatically over time but remain reasonably

stable over brief intervals [153, 47]. In other cases where stationarity does not hold for the

entire observation interval, it may be possible to transform the signal in some way so as to

induce approximately stationary behavior. This technique is often used for certain financial

or economic time series, which may be non-stationary only because they contain simple

deterministic growth or seasonal trends over time [70, 128, 196].

1.3 Traditional Approach to the Inference Problems

1.3.1 The Linear-Gaussian Measurement Model

In order to develop feasible, working solutions to the inference problems described above,
it is traditionally assumed that the stochastic structure of the source signal, as well as

that of any corrupting noise present when the signal is observed, is adequately described

by a Gaussian probability density function (pdf). This assumption is often synthesized
from a systems point of view, namely such that the source in Figure 1-1 is defined to

be a stable, linear, time-invariant (LTI) system driven by zero-mean, unit-variance white

Gaussian noise. The output of the source, {Y}, then possesses a Gaussian pdf whose specific
form is determined entirely by the impulse response of the LTI system. The corrupting noise,
{V}, is often assumed to be zero-mean white Gaussian noise having some fixed power level.
These assumptions placed on the signal and noise are typically referred to as the linear-

Gaussian model.

1.3.2 Advantages of the Classical Model

There are several reasons why the classical model described above has enjoyed immense

popularity in the past. Clearly, the linear-Gaussian assumption is often invoked for the
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sake of mathematical convenience, since it leads to the tractable derivation and analysis of
theoretically optimal signal processing algorithms. But the model has also been successfully
applied in a wide range of practical problems - including applications in signal analysis,
filtering, prediction, and control - over a span of many decades. Its continued use and
satisfactory performance in such diverse applications clearly validate the classical model
as a good first-order approximation of many real-world signals and systems. Indeed, in
certain situations, compelling physical arguments can be made that justify the use of the
linear-Gaussian assumption via the Central Limit Theorem [125].

The body of literature that has evolved around the linear-Gaussian model has become
quite rich and extensive; as a result, the mathematical theory associated with the model
is now fully developed and well understood. In addition, a number of elegant and pow-
erful algorithms have been developed in conjunction with the model. These include, for
example, the methods of Levinson [108], Durbin [51], and Burg [35], which are essentially
solutions to the source identification problem under the assumption that the LTI system in
the model is purely autoregressive, as well as the widely used techniques of Wiener [228]
and Kalman [88, 89], which are optimal solutions to the signal estimation problem under
somewhat more general model assumptions. These and other algorithms developed for the
linear-Gaussian model are, in general, computationally efficient, easy to implement, and
fairly straightforward to analyze.

1.3.3 Limitations of the Classical Model

In spite of its many desirable properties, the linear-Gaussian model also has a number of
limitations which cast doubt on its appropriateness in certain signal processing problems.
Invoking the traditional Gaussian assumption actually imposes rather stringent structural
constraints on the waveforms being modeled. For example, the Gaussian pdf is inherently a
symmetric function; hence, any non-Gaussian signal whose pdf exhibits pronounced asym-
metry is not likely to be adequately described by the classical model. In addition, we note
that the pdf of any zero-mean, stationary Gaussian signal is completely characterized by
the set of second-order signal moments (or, equivalently, by the autocorrelation function);
in contrast, in order to specify the pdf of a non-Gaussian signal, higher-order moments (pos-
sibly an infinite number of them) are required. Furthermore, if we combine this property
of sufficiency of second-order moments with the fact that the autocorrelation function is
symmetric, we find that the pdf of any stationary Gaussian signal is invariant with respect
to a time-reversal of the signal; on the other hand, the pdf of a stationary non-Gaussian
signal is typically quite sensitive to the orientation of the time axis [201].

Yet another major limitation of the linear-Gaussian model is that it is not suitable for
representing signals that exhibit sudden high-amplitude bursts or sporadic outliers. Such
signals constitute a broad and important class of non-Gaussian phenomena that arise in
practical settings; they are encountered in applications such as underwater acoustical anal-
ysis and signal detection [29, 52, 113, 230], low-frequency and other modes of communica-
tion [26, 107, 124, 126, 174], and exploration seismology [219], to name just a few. Signals
and noise that exhibit impulsive behavior cannot be accurately represented by a linear-
Gaussian model because the tails of a Gaussian pdf decay extremely rapidly, and they
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therefore cannot accommodate high-amplitude events. For this reason, as well as those

cited earlier, the classical model may lack the flexibility needed to provide an accurate fit

to certain waveforms encountered in real-world problems.

1.4 The Need for Non-Gaussian Signal Models

In practice, we rarely have perfect knowledge of the stochastic structure of either the signal

or noise; hence, in most cases where the linear-Gaussian model is used, it is intended only

as a nominal approximation. We have already mentioned several applications, however, in

which either the signal pdf or the noise pdf deviates considerably from this nominal Gaussian

assumption. A number of additional applications that are known to involve non-Gaussian

phenomena can be found in [91, 225, 226]. In such applications, a critical question that

must be addressed is whether a moderate amount of mismatch between the actual signal

and the nominal signal model will lead to only a moderate amount of degradation in overall

signal processing performance.

A commonly cited example demonstrating the potential loss in performance due to model

mismatch involves the coherent reception of a deterministic waveform in additive white

Gaussian noise. It is well known that the best possible detector for this problem (in the

sense that it minimizes the probability of decision error) is the matched filter, which consists

of a cross-correlation of the observation with the known waveform and then a comparison of

the result to a fixed threshold [76]. Though it is optimal when the noise is truly Gaussian,

the matched filter may suffer a dramatic decline in performance if the noise pdf deviates even

slightly from the nominal Gaussian form [80, 81, 169, 173]. On the other hand, incorporating

a modest amount of nonlinear signal processing based on a more realistic noise model can

yield a detector that is far superior to the matched filter [127, 107, 145, 120].

Other examples have been presented in the literature that demonstrate a similar lack

of robustness with the linear-Gaussian model in the problems of source identification and

signal estimation [90, 117, 118, 119, 122, 146]. Such examples underscore the need for more

accurate (and, unavoidably, more complex) signal models in situations where a severe loss

in performance cannot be tolerated.

1.5 Proposed Approaches to the Inference Problems

1.5.1 Developing Extensions to the Classical Model

In order to overcome the limitations with the linear-Gaussian model, we seek to develop

more realistic models that will allow us to solve the problems of source identification and

signal estimation when they involve non-Gaussian signals. We observe, however, that the

class of non-Gaussian signals is immense and extremely diverse, even when it is restricted to

include only those signals that are stationary. Indeed, to define a signal to be non-Gaussian

is to characterize it by default, i.e., by its failure to possess a specific, well defined statistical

property. For this reason, it is virtually impossible to develop a general, unifying framework

that applies equally well to all signals in the class.
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Therefore, our initial approach to creating a non-Gaussian inference framework will
be to focus on a narrow, well defined class of signals that is often considered under the
Gaussian assumption, namely the class of linear autoregressive (AR) signals. We make a
slight mathematical modification to this signal class so that it includes non-Gaussian as
well as Gaussian processes, and we then attempt to develop solutions to our two inference
problems with this modified model. We describe approaches based on this new model in
more detail in the following subsection; we then describe a second, decidedly different signal
model that has been designed to compensate for certain computational disadvantages of the
initial model.

1.5.2 The ARGMIX Signal Model

The first model we will consider is intended to be a direct generalization of the classical AR
linear-Gaussian model. Under the ARGMIX model, the source signal {Y} is characterized
as the output of an AR linear time-invariant (LTI) system driven by a white non-Gaussian
noise process of a special type. More specifically, {Yt} is assumed to obey the Kth order
difference equation

K

Y > = akYt-k + Wt, (1.1)
k=1

where {ak}lK are the real-valued AR coefficients of the process and {Wt} is a sequence
whose elements are independent and identically distributed (i.i.d.) according to a Gaussian-
mixture (GMIX) pdf, i.e., a pdf that is a weighted average of a finite number of Gaussian
densities having arbitrary means and variances. We refer to this representation for the
source signal as the ARGMIX model.

To solve the source identification problem for the ARGMIX model, recall that we must
generate an estimate for the signal parameter vector 1, which in this case consists of not
only the AR parameters, but also the mixture parameters (i.e., the means, variances, and
weighting coefficients that define the Gaussian-mixture pdf). Maximum likelihood (ML)
estimates for this problem have not been directly pursued in the past because the likelihood
function is unbounded in the vicinity of certain known, degenerate parameter values. In
general, these degenerate values are not useful as estimates, even though, strictly speaking,
they do maximize the likelihood function.

As we will see in Chapter 2, however, strategies based on finding non-degenerate local
maxima of the likelihood function yield solutions that are useful. Indeed, Titterington et
al [200] showed that the approach of locally maximizing the likelihood function is useful
for the related problem of estimating the mixture parameters only, i.e., the problem in
which the LTI system is known to be an identity system. These researchers, as well as
others [54, 121], have empirically studied the performance of several numerical hill-climbing
algorithms for computing ML estimates of the mixture parameters and have found that
these algorithms often produce reasonable results. To solve the more complex identification
problem in which all of the ARGMIX parameters must be estimated jointly, we show that
an efficient iterative algorithm can be constructed based on the expectation-maximization

Chapter 1. Introduction



Chapter 1. Introduction 19

(EM) principle [48]. We refer to this iterative technique as the EMAX algorithm.

Although we are able to make considerable progress in ARGMIX source identification,
unfortunately the problem of optimally estimating an ARGMIX signal in independent ad-

ditive noise appears to be computationally infeasible. In the latter part of Chapter 2, we

demonstrate, using the simple example in which an ARGMIX signal is corrupted by white

Gaussian noise, that generating an MMSE estimate requires a number of computations

growing exponentially with the number of samples contained in the observation. For the

signal estimation problem, therefore, we propose only approximate, suboptimal techniques.

1.5.3 The HMM-Based Signal Model

In Chapters 3, 4, and 5, we introduce and develop a second signal model as a way of over-

coming the computational difficulties encountered with the ARGMIX structure. This new

model is fundamentally different from the one considered above; it is intended to repre-

sent a given stationary AR signal only approximately as the output of a finite-state hidden

Markov model (HMM). A representation of this type can be constructed by quantizing the

underlying dynamics of the actual signal. To carry out the construction, we first partition

the state space associated with the original signal into several disjoint regions and assign

each region to a unique state of the Markov chain in the approximating HMM. We then

specify a set of appropriate initial state probabilities and state transition probabilities for

this Markov chain. After specifying the finite-state representation of the signal dynamics in

this way, we then complete the overall approximation by assigning an appropriate output

pdf to each state of the HMM.

This new signal model allows us to develop computationally efficient algorithms for

inference problems in which the source signal {Y} is described by the more general nonlinear

difference equation

Y = h(Yt_1 , Yt-K, Wt), (1.2)

rather than the traditional linear form given in (1.1). However, before the HMM-based

model can be used to perform either source identification or signal estimation, we must first

address the basic issue of random process approximation, i.e., we must determine how to

best represent the true signal by an HMM when the pdf of the signal is precisely known.

This problem, which we discuss in Chapter 3, can be solved by minimizing a properly chosen

distance measure between the approximate and actual densities. The solution provides us

with a number of theoretical criteria that must be satisfied by the components of the optimal

HMM-based approximation.

In Chapter 4, we use the theoretical criteria derived in the signal approximation problem

as guidelines for developing a practical source identification algorithm. This algorithm is

designed to iteratively adjust the region boundaries of the state-space partition to find the

best HMM-based approximation, using only a finite-length realization of the true signal.

The algorithm therefore allows us to obtain working HMM-based models of arbitrarily

complicated AR signals, which can then be applied to the problem of signal estimation.
Techniques for performing signal estimation based on the HMM paradigm are described
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in Chapter 5. The basic computational engine for these techniques is based on related
existing methods that have been developed for automatic speech recognition, where HMMs
are now widely used [78, 85]. Building on this previous research, we create a powerful new
technique for dealing with independent additive noise whose samples may in general be
both non-Gaussian and temporally dependent.

1.6 Prior Work on Non-Gaussian Inference Problems

1.6.1 Non-Gaussian Source Identification

The most popular methods for estimating parameters of non-Gaussian processes have been
based on higher-order statistics (HOS) (see, for example, [123, 133, 134, 135], and associated
references). Most techniques of this kind have been based on a signal model that is similar
to the ARGMIX model, in that the observed process is assumed to be the output of an LTI
system driven by white non-Gaussian noise. Early versions of the methods currently used
were first proposed by Giannakis [64], and were further analyzed and extended by Giannakis
and Mendel [65], Porat and Friedlander [148], and Tugnait [209, 210, 211]. These methods
are generally robust in the presence of observation noise, are fairly easy to implement, and
make few assumptions about the pdf of the AR process. However, according to Mendel [123],
because they extract much of their information about the observed process by computing
sample moments or cumulants above second order, HOS-based methods tend to produce
high-variance parameter estimates, particularly when the length of the data record is small.

The approach based on the ARGMIX model is fundamentally different from the HOS-
based approach in that it assumes a specific form for the pdf of the observed data, and is
therefore entirely parametric. The Gaussian-mixture model is capable of closely approxi-
mating many densities, and has been considered by a number of researchers for this purpose

(see, for example, [50, 200, 156, 54, 121]). Yet apparently only a few researchers, most no-
tably Sengupta and Kay [171] and Zhao [232], have previously considered Gaussian-mixture
models in conjunction with AR systems. Sengupta and Kay [171] have addressed the prob-
lem of ML estimation of AR parameters for ARGMIX processes in which only two Gaussian
pdfs constitute the mixture, each with zero mean and known variance, but with unknown
relative weighting. They used a conventional Newton-Raphson optimization algorithm that
is initialized by the least-squares solution to find ML estimates for the AR parameters and
for the single weighting coefficient, and showed that the performance of the ML estimate is
superior to that of the standard forward-backward least-squares method. However, a po-
tentially serious limitation of their algorithm is that it does not always converge. Moreover,
because they have examined such a highly constrained version of the ARGMIX model, it is
unclear whether the algorithm can be easily generalized.

In a separate investigation, Zhao, et al. [232] also considered ML estimation of the AR
parameters of ARGMIX processes and derived a set of linear equations whose solution gives
the ML estimate for the AR parameters when all the mixture parameters are known. When
the mixture parameters are unknown, they combine these linear equations with a clever ad
hoc clustering technique to produce an iterative algorithm for obtaining a joint estimate of
both the AR parameters and the mixture parameters. They do not guarantee convergence
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of this algorithm or optimality of the estimate in any sense, but they have demonstrated

empirically that the performance of their algorithm is superior to that of cumulant-based

methods in certain cases. The primary limitation of their algorithm is that it cannot produce

unbiased estimates of the means of the Gaussian densities in the mixture whenever two or

more of the true means coincide. This unavoidable bias in turn degrades the AR parameter

estimates.

1.6.2 Non-Gaussian Signal Estimation

Generating an MMSE estimate of a non-Gaussian signal in additive noise requires, in gen-

eral, a processing scheme that is nonlinear; hence, methods that have been developed for

the non-Gaussian signal estimation problem are commonly referred to as nonlinear filtering

techniques. Most of these techniques are based on a state-space measurement model having

the form

Xt = H(Xt_1, Wt) (1.3)

Yt = G(Xt) (1.4)

Zt = Y + Vt, (1.5)

where, in the Kth order AR case, the state vector Xt is defined (without loss of generality)
as Xt = (Yt, Y, - - - , Yt-K) and G(-) is a function that merely returns the first element of its

vector argument. When this model is used, the recursion that characterizes the evolution of

the density of the state vector Xt based on the vector of observations Zo:t = (Zo, Zi, -. , Zt)

is given by [189]

f(xt I ZO:t) = c - f(zt I xt)f (xt I ZO:t1) (1.6)

f (xt+1 I zot) = f(xt+1 I xt)f (xt I zo:t) dxt, (1.7)

where c is a normalizing constant. These two equations are often termed the measurement

update and time update formulas, respectively. Unfortunately the recursion defined by
these equations cannot usually be solved in closed form. Thus, most nonlinear filtering

techniques described in the literature are practical, ad hoc methods for computing approx-

imate solutions to (1.6) and (1.7).
By far, the most popular approach to the nonlinear filtering problem has been the

extended Kalman filter, or EKF [14, 181]. With this technique, a linear Taylor series

expansion of the system dynamics is calculated in the vicinity of the current state vector

estimate, and then the usual linear Kalman filtering formulas are applied. Variations on

the basic EKF technique have been proposed by Wishner et al [229] and by Gelb [63].
Further enhancements of the technique can be obtained by incorporating the second-order

terms from the original Taylor series expansion [16, 83, 182]. It has been demonstrated

empirically that the EKF and its variants often yield satisfactory estimation performance;

however, for many cases in which the signal-to-noise ratio is only moderate or low, or in

which the densities of certain model variables are not adequately characterized by their
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low-order moments, the EKF is known to diverge [188].

A wide range of alternative methods for solving (1.6) and (1.7), which are quite dif-
ferent from the EKF, have also appeared in the literature. Many of these techniques are
based not on a Taylor series approximation of the system dynamics, but rather on a direct
approximation of the posterior state density using a discrete grid of points in state space.
Among these alternative techniques are the point-mass approach [32, 34, 39], in which the
posterior state density is approximated by a probability mass function defined on the grid;
the Gaussian-sum approach [184, 11], in which the state density is represented by a weighted
combination of purely Gaussian densities (each centered at a different point on the grid);
and the spline-based approach [46, 99, 102, 221, 222], in which the density is approximated
using polynomial segments, and the grid points themselves serve as knots for the spline.

All of these grid-based approaches are implemented using the same basic sequence of
processing stages. First, an initial set of grid points is defined in such a way that the region
encompassed by the grid accounts for nearly all of the true posterior probability mass. Then,
at each new time index, the values associated with these grid points are updated using the
Bayesian formulas (1.6) and (1.7) and, simultaneously, the locations of the grid points are
adjusted so that the grid once again encompasses most of the true probability mass. For
most of the grid-based approaches, the approximate Bayesian updates are performed using
numerical integration; however, other methods of updating have been suggested which use
random sampling of the densities involved [38, 68, 192, 194]. In any case, the values as well
as the locations of the grid points are continually modified over time so that an adequate
representation of the actual state pdf is maintained.

Although reasonably good performance can be obtained using grid-based approaches
in many practical problems, there are several undesirable properties associated with the
methods that have been developed to date. A major drawback is that these methods
are, in general, very computationally expensive. Much of the computation is spent on
numerically evaluating the multidimensional integral in (1.7); specifically, if the grid contains
J points, then this numerical integration requires O(J 2 ) evaluations of the measurement
density. Another weakness of grid-based approaches is the lack of an optimality principle to
guide the assignment of the grid parameters. Although many researchers have pointed out
the flexibility of grid-based methods, none have apparently formulated the grid selection
procedure as an optimization problem; instead, they provide only coarse rules of thumb
indicating, for example, how the grid points should be arranged geometrically in state space
at each time. In certain cases, no rules are provided at all; rather, only the possibility for
redefining the grid in some useful manner (e.g., adding or removing particular grid points,
or changing the spacing between existing grid points) is suggested. Because the grid itself
is never optimized in any way, there exists the potential for wasted computation or for the
accrual of unnecessarily large errors in the density approximation as the grid evolves over
time.
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1.7 Thesis Overview and Outline

The thesis consists of a total of six chapters, including this introductory chapter. The

chapters that make up the core of the technical material, namely Chapters 2 through 5, fall

naturally into two main parts. The first part, which consists solely of Chapter 2, examines

inference problems involving the ARGMIX signal model; the second part, which consists

of Chapters 3 through 5, develops the theory and algorithms for the HMM-based signal

model. Below we give a brief description of the material contained in each of the remaining

chapters.

In Chapter 2, we focus exclusively on source identification and signal estimation when

the source signal is described by the ARGMIX model. The emphasis is placed heavily on

source identification, since this is more tractable of the two problems. We develop a general

iterative algorithm, which we term the EMAX algorithm, for estimating the AR parameters

as well as the means, variances, and weighting coefficients of the Gaussian-mixture pdf. In

the latter part of the chapter, we briefly examine the problem of estimating an ARGMIX

signal that has been corrupted by independent additive white Gaussian noise. We show

that an optimal solution to this problem can be readily derived, but that this solution is

impractical to implement because it requires too much computation.

In Chapter 3, we begin our development of the concept that an arbitrary stationary AR

process can be usefully represented by a finite-state HMM. The HMM-based signal model

is introduced as an alternative to the ARGMIX model to reduce the computational burden

incurred under the ARGMIX assumption. We first define optimization criteria that allow

us to determine how to best approximate the true random signal by an HMM of fixed order.

We then derive analytical formulas for the optimal HMM parameters. While much of our

initial analysis assumes the true signal is AR having order one, we show that the results

also apply to higher-order AR signals.

In Chapter 4, we develop a practical algorithm for estimating the parameter values of

the best HMM-based representation of a stationary signal using only a finite-length obser-

vation. This algorithm can therefore be viewed as a way of solving the source identification

problem, at least in an approximate sense. The algorithm is designed to iteratively adjust

the boundaries of the regions making up the state-space partition until the optimal partition

is reached. The basic ideas used to guide the iterative search are drawn from the theoretical

results derived in Chapter 3.

In Chapter 5, we describe how an HMM-based representation of a non-Gaussian process

can be used to solve the signal estimation problem. We begin by constructing a smoothing

algorithm for the simplest case in which the signal and noise are jointly characterized by

a Gaussian pdf. For this case, we show that only a few states are required in the finite-

state model for the measurement to achieve near-optimal estimation performance. We then

extend the basic smoothing algorithm so that it applies to the cases in which the additive

noise may be non-Gaussian and even temporally correlated.

In Chapter 6, we briefly summarize the highlights of our work, discuss the main thesis

contributions, and provide suggestions for future related research in non-Gaussian signal

processing.
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1.8 Remarks on Notation

We adopt the usual convention of writing random variables in upper case and particular
realizations of random variables in lower case. If X is a random variable, then we denote
its pdf by fx(-). If X takes values from a set containing finitely many elements, its pdf
will contain impulses (i.e., Dirac delta functions), but in such cases this pdf will be used
only under appropriate integrals. If Y is also a random variable, then the conditional pdf
of X given Y is written fxly(-). If these densities depend on a parameter 0 then they are
written as fx(-; 0) and fxIy(- I-; 0), respectively. Expectations and conditional expectations
associated with densities that depend on a parameter 0 are analogously denoted by E{.; 0}
and E{-|-;6}, respectively. Vector-valued variables, both random and deterministic, are
written in boldface. If x is an n-dimensional vector, then the ith element of x is denoted
by xi for i = 1, - - - , n. Finally, we use the function definition

1 5(w -p) 2

N(w po) = 1 exp - 2), -oo<w<oo, (1.8)
72=7o- 2o-2

as a compact notation for the Gaussian pdf, since this density is used frequently in the
remaining chapters. A summary of much of the additional notation used in the thesis can
be found in Appendix A.
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Chapter 2

Using the ARGMIX Signal Model
for Non-Gaussian Inference

2.1 Introduction

In this chapter, we begin the technical core of the thesis by developing an inference frame-

work for the ARGMIX signal model, which was briefly described in the introduction. In the

following two subsections, we outline the basic assumptions and notation that will be used

in conjunction with the ARGMIX model, and we give concise formulations of the source
identification problem and the signal estimation problem based on this model. In the third
subsection, we describe how the remaining material in the chapter is organized.

2.1.1 Preliminary Assumptions and Notation

We consider a discrete-time scalar-valued random process {Y} that satisfies the Kth-order
autoregressive difference equation

K

Yt = akYt-k + Wt, (2.1)
k=1

where {ak}K are the real-valued AR coefficients of the process, and {Wt} is a sequence
(termed the driving process or driving noise) that consists of i.i.d. random variables having
a Gaussian-mixture pdf defined by

M

fw (w) = pi .A(w; pi, oi), (2.2)

where the weighting coefficients {pi} iI satisfy pi > 0 for i = 1, 2, . , M and Ei p 1.
Alternatively, we can express the tth sample of the driving process as

Wt = o-(<Dt)Ut + P(D), ((2.3)
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where {Ut} is a sequence of i.i.d., zero-mean, unit-variance Gaussian random variables, 0-
and p are mappings defined by o(i) = oa and p(i) = pi for i = 1, 2, ... ,M, {bt} is a
sequence of i.i.d. discrete-valued random variables distributed according to the probability
law Pr(1t = i) = pi for i = 1, 2, - - - , M, and the processes {Ut} and {t} are assumed
statistically independent. The representation of the driving process given in (2.3) will be
very useful in the derivation of our parameter estimation algorithm in Section 2.2.

2.1.2 Problem Statement and Approach to Solution

2.1.2.1 ARGMIX Source Identification

For the source identification problem, we assume that the order of the autoregression, K,
and the number of constituent densities in the Gaussian-mixture pdf, M, are given, and
that the parameters

y = (pi, p12,* -- ,PM) (2.4)

a- = (o-1, o-2 ,- ,M) (2-5)

p = (pi, p2,--- ,PM) (2.6)

a = (ai, a 2 ,- , aK) (2.7)

are unknown. In addition, we assume that the random variables Y-K, Y-K+1, ,N-1

take the values y-K, Y-K+1,-- , yN-1, respectively, and we wish to estimate the parameter
vector

4 (p,-, p, a) (2.8)

based on our observation. For notational convenience, we define the random vectors Y =
(Yo, Y1, - - - , YN-1) and Yt = (Y_ 1, Y- 2 , - - Yt-K) for t = 0, 1,--- , N, and denote the real-
izations of these vectors by y and yt, respectively.

As mentioned in Chapter 1, we are not strictly seeking an ML estimate because, in most
cases, degenerate estimates exist that have infinite likelihood. To see how such degenerate
estimates can arise, one can easily verify that if we put, say, di = 0 for i = 1, 2, - - - , K,
(i, &i, pA) = (0, 1, 1/M) for i = 2,. .. , M, and A1 = yo, and then let &I --+ 0, then the likeli-
hood function fyo,y (yo, y; ') will increase without bound. This assignment of parameter
values corresponds to choosing the unknown AR system to be an identity system and one
of the Gaussian densities in the mixture to be an impulse centered directly on one of the
observations.

It is apparent from (2.2) that degenerate estimates can be obtained only if one or more
of the standard deviation estimates is chosen to be zero. We may be tempted to avoid
this problem by restricting all of the standard deviation estimates to be greater than some
prespecified positive threshold. However, if this minimum threshold is set too low, then
meaningless estimates can arise when the largest likelihood value occurs on the boundary
of the restricted parameter space near a singularity at which &j = 0 for some i. Yet if the
threshold is set too high, we risk excluding the best available estimate, since a component of
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the true Gaussian-mixture pdf may have a standard deviation smaller than the artificially

set threshold.

One alternative to maximizing the likelihood function is to find the parameters that

achieve the largest of the finite local maxima [50]. In general, no closed-form solution exists

for this estimate, and a numerical method must typically be used. Because the likelihood

surface may have numerous local maxima, there is no guarantee that classical optimization

techniques will find the largest local maximum. Yet Titterington [200] has found that

methods based on finding local maxima (not necessarily the largest finite local maximum)

yield useful estimates. Accordingly, we take the approach of searching for local maxima of

the likelihood function using the generalized expectation-maximization (EM) algorithm.

More formally, if we let P denote the set of all possible values for the parameter vector

'I', then the estimate we seek for %F is any T satisfying

4 E arg max log fy 0 ,y (yo, y; ) (2.9)

= arg max {log fy. (yo; ') + log fy ly. (ylyo; ')}, (2.10)

where the notation arg maxxCp{g(x)} stands for the set of all parameter values in P achiev-

ing finite local maxima of g.

Since the estimate * is defined in terms of the likelihood function, but is not obtained

through a standard global maximization, we refer to this estimate as a quasi-maximum like-

lihood (QML) estimate. In the sequel, we shall assume that N > K, i.e., that the number of

samples in the observed sequence is much greater than the number of AR parameters to be

estimated. Under this assumption, we may, as is standard in the derivation of ML estimates

for Gaussian AR processes, ignore the first term of the log-likelihood function appearing on

the right-hand side of (2.10) and assume that a QML estimate is any 'I satisfying

T E arg max (log fy 1y0 (yyo ; ")). (2.11)

2.1.2.2 ARGMIX Signal Estimation

In the signal estimation problem, we are not given a clean observation of {Yt}, as we were

in the previous case. Instead, we observe the signal only after it has been corrupted by
additive white Gaussian noise; hence, each element of the observed sequence {Zt} has the

form

Zt = Y + Vt, (2.12)

where {Vt} is a sequence of i.i.d. random variables, each having a pdf fv(-) defined by

fv (v) = j(v; 0, o-v). (2.13)

All random variables in the observation-noise sequence {V} and in the driving-noise se-
quence {Wt} are understood to be mutually independent.
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For this problem, we assume that we know the true value of the signal parameter vector
xF as well as that of the noise standard deviation ov. In addition, we assume that we are
given realizations of the first N samples of the sequence {Zt}. Given that we have observed
the event ZO:N-1 = Z:N-1, our objective is to produce an MMSE estimate of the underlying
signal realization YO:N-1- It is straightforward to show that the desired estimate yO:N-1 is
the conditional mean vector given by

O:N-1 = E {YO:N-1 ZO:N-1 = ZO:N-1; TI}- (2.14)

As we will discover later in the chapter, the specific mathematical form of this estimate
is fairly straightforward to derive, but the estimate itself is often impractical to compute.
Thus, we suggest several possible suboptimal estimators in this case.

2.1.3 Chapter Organization

The chapter is organized in the following way. We begin by providing a brief overview of
the EM and generalized EM principles. We then use this EM theory to derive an iterative
method, referred to as the EMAX algorithm, which jointly estimates the AR parameters and
mixture parameters of an ARGMIX process via the QML approach described above. Next,
we present and discuss four separate applications of the EMAX algorithm and compare,
through computer simulations, the performance of our algorithm to that of the standard
least-squares technique as well as to that of previously developed algorithms based on a
similar signal model. In the latter part of the chapter, we also derive a useful variant of
the EMAX algorithm; this alternative technique is designed to estimate the AR parameters
and the overall gain associated with the ARGMIX process based on the assumption that
the functional form of the driving-noise pdf is precisely known. We then derive and ana-
lyze a theoretical solution to the ARGMIX signal estimation problem. Finally, we discuss
the advantages, limitations, and possible extensions of the various estimation techniques
developed in the chapter.

2.2 ARGMIX Source Identification Using the EM Principle

2.2.1 Theory of the EM and GEM Algorithms

The EM and GEM algorithms, which were first proposed by Dempster et al. [48], are itera-
tive techniques for finding local maxima of likelihood functions. Although their convergence
rates are slow, these algorithms converge reliably to local maxima of the likelihood function
under appropriate conditions, require no derivatives of the likelihood function, and often
yield equations that have an intuitively pleasing interpretation.

The EM and GEM algorithms are best suited to problems in which there is a "complete"
data specification Z, from which the original observations Y can be derived, and such that
the expectation E{log fz(Z; ') I Y = y; V"'} can be easily computed for any two parameter
vectors ', '' E P. For our problem, we use the complete data specification Z = (Y, 4),
where b is the vector of pdf-selection variables defined by 4> = (450, , - - - ,N-1)- With
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this choice of complete data, the EM algorithm as applied to our problem generates a

sequence of estimates {'(s)}% according to the recursive formula

(s+1) = argmax E {log fy,1 IyO (Y, 4yo; 4') I Y = y, Yo = yo; I(S)}, (2.15)

where some starting estimate xI(o) must be chosen to initialize the recursion. We now show
that the sequence of estimates {'()}O defined above satisfies the inequality

log fy 1y 0 (ylyo; *(s+1)) ;> log fyiy 0 (ylyo; XF(s)) (2.16)

for s = 0, 1, 2, ... ; that is, we show that the log-likelihood value associated with our updated

parameter estimate is increased at each iteration. We begin by writing the log-likelihood
function for the observed data with parameters 4" C P as

log fyly 0 (ylyo; V) = log fytyo (y, #|yo; ') - log f-ly,y (#|y, yo; '"). (2.17)

Integrating both sides of (2.17) with respect to #P against the density fily,yo (#|y, yo; ,F(s))
gives

log fyIy 0 (yIyo; 4") = {log fy,;Iyo (y, <blyo; ) I Y = y, Yo = yo; AF(s)}

- f {log fily,yo (( ly, yo; ) Y= y, Yo = yo; %(s)}

(2.18)

'U(X', X(s)) - V('", XF(s)), (2.19)

where the functions U and V are defined in the obvious way. Then (2.15) can be written as

T(s+1) = arg max U(', T(s)). (2.20)
VI EP'

The definition of V together with Jensen's inequality allows us to conclude that V(<, (s))

V(xF(s), T(s)) for any 4" C P. Hence, we have

log fyly 0 (ylyo; 4')|j1,F(s+1) = U(XF(s+1), XF(S)) - V(XF(S+1), AF(s)) (2.21)

> U(F(s+'1), XF(s)) - V(XF(s), qf(s)) (2.22)

> U(XF(s), XF(S)) - V(T(s), %F(s)) (2.23)

= log fyly 0 (ylyo; V) |,/=4 (S), (2.24)

which implies that the EM algorithm gives a sequence of parameter estimates with increasing
likelihoods. If the function U is continuous in both of its arguments, the sequence of
estimates converges to a stationary point of the log-likelihood function [231].

The GEM algorithm is an alternative form of the EM algorithm that is often easier to
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implement. Such an algorithm chooses *(s+1) such that

U(%(s+1), T (S)) ;> U(41(s), q(s)) (2.25)

at each iteration s. It does not necessarily select T(s+1) such that (2.20) is satisfied. Using
the same reasoning we used to go from (2.21) to (2.24), we see that a GEM algorithm also
produces a sequence of parameter estimates with increasing likelihoods. Whether the limit
of this sequence of estimates is a stationary point of the likelihood function depends on
the particular rule for selecting T(s+1) from x(s). if T(s+1) is selected so that it is a local
maximum of U(', *(s)) over ' E P, then the sequence converges to a stationary point of
the likelihood function [112, 231]. We will use this local-maximum rule for selecting updated
parameters in our GEM algorithm. As is the case with all "hill-climbing" algorithms, the
limit of the sequence of estimates generated by an EM or GEM algorithm may not be a
global maximum of the likelihood function. Therefore, choosing XI(o) judiciously is the key
to obtaining a good parameter estimate. A simple method for choosing X(O) is given and
empirically shown to be adequate in Section 2.3.

2.2.2 Derivation of the EMAX Algorithm

We now derive the EMAX algorithm by using a GEM method that chooses P(s+1) to be a
local maximum of U(', 1jF(s)) over ' c P. We let V' = (p', a-', p', a') and write (2.20) as

4'(s+1) = arg max E{logfey 0 (#|yo;p')

+ log fyle,yo(yl J, yo; a', p', o-') I Y = y, Yo = yo; 4,(s) . (2.26)

This is equivalent to solving the following two maximization problems:

p(S+1) = arg maxE{logfely 0(|yo;p') | Y =y,Yo =yo;4'(S)} (2.27)

(a(s+1), (s+1),o.(s+1)) = arg max E {log fyIe,yo (y|b, yo; a', p', o')

Y = y, Yo = yo; *(s)} (2.28)

To find p(S+1) so that (2.27) is satisfied, we first define the functions {dj}"i and {Cj}Y1
by {(1 if=,

dj (#) = .'~j (2.29)
0 otherwise;

N-1

C (#0o, #1, - - N-1) = dj (0t); (2-30)
t=O

that is, Cj(4) is the number of times the symbol j appears in the vector 4. In addition,
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for notational convenience, we define the function Ptj by

Pt,(F') = Pr{1t = j I Y = y, Yo = yo; V} (2.31)

for all 4" E P, for t = 0, 1,- , N - 1 and j = 1, 2,.- , M. Using these definitions, the

maximization in (2.27), which is over all p' such that p > 0 and E i p = 1, can be
written

M
p( s+1) =argmax E logHpY = Y , Yo = Yo; (S}) (2.32)

p =arg max (2.33)HP/ j=1

M

= arg max E C () log p Y =Y, Yo =Yo; (S) (2.33)

MN1
M N-1

= arg maxE P>3 ,j('(s)) logp (2.34)
P/ 1 t=

N-1

= NEPt,j(* (s)), (2.35)

where the last equality follows from Jensen's inequality.

To attempt the maximization in (2.28), we use the knowledge that the driving process
is a sequence of i.i.d. Gaussian-mixture random variables to write the pdf for Y conditioned

on b and YO as

N-1

fy le,yo (yl, yo; a', p', o') = A/((yt - y'a', p ,' ) (2.36)
t=o
N - 1 1 

2( . 7
N-i 1 , exp - 2 (yt-yta' - p'4)2}.
t=o 4, 2o T

Notice that the term yt - yf a' represents the residual or prediction error obtained by using
a' as the AR parameter vector. The function being maximized in (2.28) can then be written
as

E {log fy 1 ,yo (yIb, yo;a', p', ') Y = yYo= yo; )}

N N-1 M N-1 M (Yt T a' 2

- - log27r - P optj(s))logo[ - P > t,j(X(S) t (2.38)
t=o j=1 t=o j=1 37

Taking derivatives of this expression with respect to the quantities p', o-', and a' and
setting the resulting expressions equal to zero yields three coupled nonlinear equations that
define a stationary point of the right-hand side of (2.38). Because we are unable to solve
these nonlinear equations analytically, it is difficult to find a global maximum. We instead
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use the method of coordinate ascent to numerically find a local maximum, resulting in a
GEM algorithm rather than an EM algorithm. Coordinate ascent increases a multivariate
function at each iteration by changing one variable at a time. If, at each iteration, the
variable that is allowed to change is chosen to achieve the maximum of the function while
the other variables are kept fixed, then coordinate ascent converges to a local maximum of
the function [112]. Coordinate ascent is attractive because it is simple to maximize (2.38)
separately over each variable as follows:

arg max E log fylg,yo (y i, yo; (a', p, ,M , -')) Y = y,Y O y (S)
P-t

N N -- (1arg ma E l ptf( I ))(y t _ y; a')

argrnaxE logfyl,,y(y~,yo;(a',p/AcTlI... I0/) a Ymo~o~L()
ai0 

)IY =YY O S

=4 EN-1 (s

(2.39)

(2.40)

arg max E log fy y (y I, yo; (a', I', o')) I Y = y, Yo = yo; %F ()}

N-1

t=Oj=1

N-1 M

LEoEG)2 (yt - p)ytJ
t=o j=1 0

(2.41)

Using the equations above, the coordinate-ascent algorithm is described as follows:

1,... , M

j 1, - - , M

INITIALIZATION:

#(0) ( S)
~i =Ij

_(O) ()

A(O) a(s)

ITERATION:

~(i+1) - 1  ,j( (s))(yt - y i(i))

N-t= t

~(i+1) N-1 ptj(%(s))(yt - y.(i) _ ,i+ ))2

a N-1 s) = ,-,M~jz+1) = t =O() Y"] ['p (s)

N-1 M t OF() T -1N-1 M j( ()

AI1i+1)( 2(Yt -

t=O j=1 (t=O j=1

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

i 1)Yt

(2.47)
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If this recursion is iterated for i = 0,- , J - 1, then we define our parameter updates by
a(s+1) = AJ, p(s+1) _ iJ, 0.(s+1) - &J. For sufficiently large values of J, the updated

parameters are, for practical purposes, local maxima of (2.38). Since the EMAX algorithm

is a GEM algorithm that chooses the updated parameter estimates to be local maxima
of (2.38), it converges to a stationary point. In summary, then, a single iteration of the
EMAX algorithm consists of computing {Ptj (,Q(s))}, applying (2.35), and iterating (2.45)-
(2.47) until convergence.

As shown in Figure 2-1, the EMAX algorithm can be conceptually decomposed into
three main steps, which are iterated to produce the final parameter estimates. Observe

that the filter 1 - Ei1 a(sz-i can be interpreted as the current estimate of the inverse of

the AR filter. In the first block of Figure 2-1, this inverse filter is applied to the observations

to produce the residual sequence w(s) _ y a(s), which can be interpreted as an estimate

of the driving noise. This residual sequence is used to compute the posterior probabilities

{Ptj(xF(s))}. Under the hypothesis that a(s) is the true AR parameter vector, these residuals
are statistically independent. Using the representation for the driving process given in

(2.3), we may take the view that each sample of the residual sequence is a particular

realization arising from one of M randomly chosen classes, where the pdf characterizing

the jth of these classes is V(.; pys) Is)). For the tth sample of the driving noise sequence,
the value of the class label j is determined by the pdf-selection variable <bt. Assuming

that the mixture parameters are p(s), 0 (s), and p(S), we can easily compute the posterior
probability Ptj (F(s)) that the tth sample is a realization from class j using Bayes' rule; this
is the operation being performed in the second block of Figure 2-1. With these posterior

probabilities, we first compute the updated estimate of the weighting coefficient vector

p(s+1) according to (2.35). We then compute pL(s+1), o.(s+1), and a(s+1) by iterating (2.45)-
(2.47) until convergence to some prespecified numerical tolerance is obtained; this operation
is represented by the third block. As shown in Figure 2-1, the process is repeated, starting
again from the first block, until convergence.

A single iteration of (2.45)-(2.47) has the following intuitive interpretation. The new
estimate for the mean of the jth class is a weighted time average of the residuals, where
the weight on the tth residual sample is proportional to the posterior probability that the
sample belongs to class j. The new estimate for the variance of the jth class is a weighted
time average of the square of residuals with the previously computed estimate of the mean

of the jth class removed; once again, the weight on the tth residual sample is proportional
to the posterior probability that the sample belongs to class j. The new estimate for the

AR coefficient vector is updated via a generalized version of the Yule-Walker equations [232]
using the most recent estimates of the means and variances.

We make the final observation that if the values of the parameters in any subset of
the 3M mixture parameters are known, then the update equations for the parameter esti-
mates can easily be modified, and the properties of the EMAX algorithm will be preserved.
Specifically, we simply replace the parameter updates in (2.35), (2.45)-(2.47) with the cor-
responding known parameter values. Clearly, updates for the known parameters would not
be performed in this case.
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Figure 2-1: Block diagram representation of the EMAX algorithm
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2.3 Numerical Examples

In this section, we present several examples to illustrate the behavior and performance of
the EMAX algorithm. An implementation of the EMAX algorithm using the MATLAB
programming language is given in the appendix, and was used in each of the examples
below. The examples were selected with several objectives in mind: (i) to verify that the
EMAX algorithm behaves as expected and produces results consistent with those obtained
by others on relevant ML estimation problems; (ii) to illustrate that the EMAX algorithm
performs significantly better in certain estimation problems than either conventional least-
squares techniques or previously proposed algorithms based on a similar data model; (iii) to
demonstrate that the EMAX algorithm can be used to obtain good approximations to ML
estimates in cases where the functional form for the pdf of the driving process is unknown;
and (iv) to show that the EMAX algorithm can be very useful in common signal processing
problems where the primary objective is to recover a signal from corrupted measurements.

For each of the examples presented here, we found that the following simple method for
generating an initial parameter estimate q,(O) - (p(O), o(O I(O) (), a( 0)) for the EMAX algo-
rithm yielded good average performance. The vector a(0) was computed using the forward-
backward least-squares technique from traditional AR signal analysis [92, 115]. Each of the
M elements of the mean vector p was randomly generated according to a uniform pdf hav-

ing region of support [mint{w(0 ) }, maxt{ 0 )}], where w() is the tth element of the residual

sequence w(0) produced by applying the filter 1 - Z[I afz-' to the sequence of obser-
vations. Each element of o- was randomly chosen according to a uniform pdf with region

of support [0, maxt fw } - mint Jw }]. Finally, the elements of the weighting coefficient
vector p(O) were all set equal to 1/M. For special cases in which certain elements of T were
assumed known, no initial estimate needed to be chosen.

2.3.1 Example 1: Comparison with Previous Work (Part I)

We begin with a simple example for which numerical results have already been reported by
Sengupta and Kay [171]. For direct comparison of the performance of our EMAX algorithm
to that of the Sengupta-Kay (S-K) algorithm, we have replicated the computer simulations
carried out in their previous work. The problem considered by those authors was the ML
estimation of the parameters of a fourth-order AR process whose AR coefficients are given
by

(ai, a2, a3 , a4 ) = (1.352, -1.338, 0.662, -0.240). (2.48)

The driving noise for this process was assumed to consist of i.i.d. samples distributed ac-
cording to the two-component Gaussian-mixture pdf

fw (w) = Pi (w; pi, u-) + P2K(w;1 2 , u 2 ), -00 < V < o, (2.49)

where the mixture parameters pi, pi, o-l, P2, P2, and 02 are defined by

( pi, -1 ) = (0.9, 0.0, 1.0); (
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Figure 2-2: Power spectral density of fourth-order AR process discussed in Example 1.

(P2, P 2, 0'2) = (0.-1, 0.0, 10.0). (2.51)

A plot of the power spectral density of this process is shown in Figure 2-2.

Sengupta and Kay assumed that the values of pi, p,2, o-1, and 02 were known, and that
the values of the remaining model parameters ai, a2, a3, a4, and pi (and, of course, P2, since

P2- = 1-p1) were unknown. They developed a Newton-Raphson algorithm for obtaining ML
estimates of the AR parameters and of the overall variance or2 associated with the driving

process, which is given by

a2 = pio1 + (1 - pi~J.(.52

Obtaining an ML estimate of a 2 is , in this case, equivalent to obtaining an unconstrained
ML estimate of p1. This is true because the parameters or2 and pi stand in one-to-one

correspondence, and the ML estimation procedure is invariant with respect to such invertible
transformations on the parameters of the log-likelihood function [149).

As was done in [171], we performed a total of 5000 trials. On each trial, a sequence
of 1000 data points was generated and processed using the EMAX algorithm. The sample
means and variances of the parameter estimates produced by the EMAX algorithm are
presented in Table 2.1 in the column labeled EMAX-KSD (where KSD stands for known
standard deviations). The results of a separate simulation in which the standard deviations
were assumed to be unknown are also listed in Table 2.1 in the column labeled EMAX USD
(where USD stands for unknown standard deviations). Remarkably, the sample variance of

the estimates of the AR coefficients increased negligibly for the case in which the standard

931"
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Sample Sample Sample Sample Sample Sample Cramer-Rao
True Mean Mean Mean Variance Variance Variance Bound
Value (S-K) (EMAX-KSD) (EMAX-USD) (S-K) (EMAX-KSD) (EMAX-USD) (USD)

ai 1.352 1.3527 1.3518 1.3518 1.0219 x 10-4 1.0727 x 10~4 1.0782 x 10-4 1.0491 x 10-4
1 4

a2 -1.338 -1.3391 -1.3378 -1.3377 2.4619 x 10~
4  

2.5955 x 10-4 2.6073 X 10-4 2.5961 x 10~~4

a3 0.662 0.6629 0.6619 0.6619 2.4253 x 10-4 2.6125 x 10-4 2.6225 X 10-4 2.5961 x 10~

a4 -0.240 -0.2404 -0.2402 -0.2402 1.0352 x 10-~
4  

1.0742 x 10-4 1.0753 x 10-4 1.0491 x 10-4

,-2 10.900 10.8544 10.8963 10.8946 1.2061 1.1655 2.8941 0.3149

Table 2.1: Sample means and variances for parameter estimates from Example 1. Entries

were computed using results of 5000 trials for (i) the algorithm of Sengupta and Kay (S-
K), (ii) the EMAX algorithm with known standard deviations (EMAX-KSD), and (iii) the
EMAX algorithm with unknown standard deviations (EMAX-USD). Cram6r-Rao bounds

on the estimation variances, as reported by Sengupta and Kay, are also listed for the case

of known standard deviations (KSD).

deviations were unknown. However, the sample variance of the estimate of the remaining

parameter or increased dramatically over that for the case in which the standard deviations

were known.

We observe from Table 2.1 that the estimate of a2 produced by the EMAX-KSD algo-

rithm has less bias and a smaller sample variance than the corresponding estimate produced

by the S-K algorithm. A possible explanation for this discrepancy is that Sengupta and

Kay did not constrain their estimate of pi (which is a function of a 2 ), whereas the EMAX

algorithm appropriately constrains its estimate of pi to be between 0 and 1. We make two

further observations from Table 2.1: (i) all of the sample means associated with the AR

parameter estimates generated by the S-K algorithm exhibit slightly more bias than the

sample means generated by the EMAX algorithm; and (ii) all of the sample variances of

these same estimates generated by the S-K algorithm are below the Cram6r-Rao bound,
whereas only one of the sample variances generated by the EMAX algorithm has this prop-

erty. These discrepancies may stem from the methodology used by Sengupta and Kay. They

report that in approximately one percent of the trials performed for this experiment (i.e., in

approximately 50 out of 5000 trials), their Newton-Raphson optimization algorithm did not

converge. Whenever convergence was not obtained, the results of the corresponding trial

were discarded; hence, these trials are not reflected in the statistics presented in Table 2.1.

In contrast, the EMAX algorithm converged in all of the 5000 trials; hence, the results

of all trials are represented in the table. The reduction in variance realized by the S-K

algorithm over the EMAX algorithm may be due to the discarded trials. This conjecture

is plausible if, on those occasions when the Newton-Raphson algorithm did not converge,
the ML parameter estimates were relatively far from the true parameter values. If such a
correlation exists between events, then it is precisely the estimates that are never obtained

because of lack of convergence that distort the sample variances reported by Sengupta and

Kay.
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2.3.2 Example 2: Comparison with Previous Work (Part II)

Our next example illustrates that the EMAX algorithm performs significantly better in
certain kinds of estimation problems than the algorithm previously proposed by Zhao et
al. [232], which is based on precisely the same statistical model for the observed data as that
presented in Section 2.1.1. The algorithm of Zhao, which is apparently not motivated in any
respect by the EM principle, is similar in structure to the EMAX algorithm. In particular,
both of these iterative algorithms use the same set of generalized normal equations to solve
for the estimates of the AR parameters when given the values of the mixture parameters. In
addition, at the beginning of each iteration, both algorithms use the resulting AR parameter
estimates to inverse filter the observation sequence. The main difference lies in the stage of
each algorithm that estimates the pdf mixture parameters from the sequence of residuals.
As discussed in Section 2.2, the EMAX algorithm uses the information available in the
residual sequence to climb the likelihood surface. In contrast, Zhao abandons a likelihood-
based approach (citing a desire to avoid the degenerate solutions mentioned earlier) in favor
of a heuristic clustering algorithm.

In the two-component mixture case, the clustering algorithm first sorts the residual
samples in ascending order and then seeks out the best point at which to divide these sorted
samples into two disjoint sets. The optimum point is defined as that which minimizes the
average value of the sample variances associated with these two sets. Once this optimum
point is found, Zhao's estimates of the means and variances of the constituent Gaussian
densities are the sample means and sample variances associated with the two sets, and the
estimate of the unknown weighting coefficient is simply the fraction of samples contained
in each set with respect to the total number of residual samples.

We have observed that the algorithm of Zhao does not perform well when the constituent
Gaussian densities in the driving-noise pdf have equal means. In this example we demon-
strate that in such a case the performance of the EMAX algorithm is markedly superior
to that of the Zhao algorithm. In particular, we considered the problem of estimating the
parameters of an ARGMIX process whose AR coefficients are given by

(ai, a2, a3 , a 4 ) = (-0.1000, -0.2238, -0.0844, -0.0294). (2.53)

The pdf for the driving noise in this case was assumed to be a two-component Gaussian-
mixture pdf as in (2.49), but now with mixture parameters defined by

(pi, pi1, o1) = (0.6, 0.0, 1.0); (2.54)

(p2, P2, 0'2) = (0.4, 0.0, 10.0). (2.55)

To compare the performance of the two algorithms, we performed a total of 500 trials.
On each trial, a sequence of 1000 data points was generated and processed with the EMAX
algorithm and Zhao algorithm. The sample means, variances, and mean square errors of the
parameter estimates produced by the two algorithms are presented in Table 2.2. We note
that the Zhao algorithm produces strongly biased estimates in this example. In addition, we
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Figure 2-3: Power spectral density of fourth-order AR process discussed in Example 2.

Sample Sample Sample Sample Sample Sample

True Mean Mean Variance Variance MSE MSE Ratio

Value (EMAX) (ZHAO) (EMAX) (ZHAO) (EMAX) (ZHAO) of MSE's

al -0.1000 -0.1000 -0.1150 4.975 x 10- 1.170 x 10-6 4.965 x 10-5 1.392 x 10-3 28.03
a2 -0.2238 -0.2238 -0.2390 5.564 x 10-5 1.198 x 10-3 5.553 x 10-5 1.427 x 10-3 25.71
a3 -0.0844 -0.0843 -0.0983 5.539 x 10-5 1.165 x 10-3 5.528 x 10- 5  1.355 x 10-3 24.52
a4 -0.0294 -0.0289 -0.0405 5.010 x 10-5 1.148 x 10-3 5.029 x 10-5 1.269 x 10-3 25.24

Table 2.2: Sample means, variances, and mean square error (MSE) values for parameter
estimates of Example 2. Entries were computed using results of 500 trials for (i) the Zhao
algorithm and (ii) the EMAX algorithm. Ratios of sample MSE values (MSE of Zhao to
MSE of EMAX) are also given.
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note that the mean square errors associated with the EMAX algorithm are approximately
25 times smaller than those associated with the Zhao algorithm. Clearly, contributions to
the mean square error for Zhao's estimates come not only from the bias term, but also from
the high variance associated with her estimator.

The difficulties with the Zhao algorithm in this case may be explained by its inability to
obtain good mixture parameter estimates. The quality of the mixture parameter estimates
is inherently limited because the clustering algorithm essentially assigns the individual den-
sities in the Gaussian mixture to be representatives of disjoint portions of the histogram
of the residual sequence. Thus, one of the most readily observable problems with the ap-
proach, as illustrated in Figure 2-4(a), is that all of the estimated means of the constituent
densities are necessarily distinct, even when the means of the true densities are identical.
Figure 2-4(a) shows the true marginal pdf for the driving noise as well as typical estimates
of this pdf produced by the Zhao algorithm on separate trials. Observe from the figure that,
for about half of the trials, the pdf estimate produced by the Zhao algorithm is off-center
to the positive side of zero, and for the other half it is off-center to the negative side. On
each trial, the estimated Gaussian-mixture pdf is dominated by a single component, which
attempts to model most of the histogram of the residual samples. However, the result-
ing overall estimate is always off-center because the smaller of the two components in the
mixture attempts to model the remaining outliers, which are either much greater or much
less than zero. In contrast, as shown in Figure 2-4(b), the EMAX algorithm produces pdf
estimates that better approximate the true driving-noise pdf.

2.3.3 Example 3: Autoregressive Process with Laplacian Drive

In many applications, we would like to obtain ML estimates for the parameters of an
AR system, but the ML problem is ill-posed because the marginal pdf characterizing the
driving noise is unknown. In certain cases, however, it may be reasonable to assume that
the true marginal pdf is accurately modeled by a Gaussian-mixture pdf, provided that
the means, standard deviations, and weighting coefficients defining the mixture are chosen
appropriately. In these cases, if we process our observations with the EMAX algorithm,
then we might expect the EMAX algorithm to find the mixture parameters that yield
a good approximation to the true driving-noise pdf and simultaneously to produce good
approximations to the ML estimates for the AR parameters. With the present example we
demonstrate the validity of this approach to the ML estimation problem.

In particular, we consider the parameter estimation problem for a fifth-order AR process
whose AR coefficients are given by

(ai, a2 , a3 , a4, a5) = (1.934, -2.048,1.072, -0.340, 0.027). (2.56)

The driving noise for this process consists of i.i.d. samples distributed according to a Lapla-
cian pdf defined by

fw(w) = exp { I , -o < W < o, (2.57)
20 #
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Figure 2-4: True marginal pdf (dashed curve) for driving process of Example 2 and typical

estimates of the pdf (solid curves) produced by (a) the algorithm of Zhao et al. (20 estimates
overlaid), and (b) the EMAX algorithm (20 estimates overlaid).

where the scale parameter 3 (which is related to the standard deviation a for this density

by a = v/-/3) was put at 3 = 5. A plot of the power spectral density of this process is

shown in Figure 2-5.
It is interesting to compare the performance of the EMAX algorithm to that of the exact

ML estimates, which can be computed in this case. It can be shown [49] that if the samples

of the driving noise for an AR process are i.i.d. and Laplacian, then the ML estimate for

the AR parameter vector a is given by the value of a' that minimizes the sum of absolute
residuals EN- 1 Ut - yTa'I. An algorithm for finding such a value for a' was proposed by
Schlossmacher [167]; this algorithm is based on the method of iteratively reweighted least

squares and is therefore easy to implement on a computer.
To find parameter estimates for this problem with the EMAX algorithm, we fixed the

number of Gaussian densities in the mixture at N = 3 and constrained the means of these
constituent densities to be zero. We performed a total of 500 trials. On each trial, a
sequence of 1000 data points was generated and processed with the EMAX algorithm. The
sample means and sample mean square errors of the parameter estimates produced by the
EMAX algorithm are presented in Table 2.3.

Also shown in Table 2.3 is a summary of the sample means and sample mean square
errors of the AR parameter estimates given by two other algorithms: (i) the forward-
backward least-squares method, and (ii) the ML algorithm of Schlossmacher. Experimental
results shown in Table 2.3 confirm our expectation that the ML-based estimator would
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Figure 2-5: Power spectral density of fifth-order AR process discussed in Example 3.

Sample Sample Sample Sample Sample Sample
True Mean Mean Mean MSE MSE MSE
Value (LS) (EMAX) (ML) (LS) (EMAX) (ML)

a1 1.934 1.9311 1.9323 1.9328 1.0751 x 10-3 6.3040 x 10 4  5.7711 x 10-4
a2 -2.048 -2.0413 -2.0447 -2.0449 5.1570 x 10-3 2.8784 x 10-3 2.7250 x 10-3
a3 1.072 1.0647 1.0685 1.0697 8.4001 x 10-3 4.7769 x 10-3 4.2887 x 10-3
a4 -0.340 -0.3358 -0.3383 -0.3390 4.9714 x 10-3 2.9190 x 10-3 2.4228 x 10-3
a5 0.027 0.0256 0.0264 0.0269 1.0509 x 10-3 6.2875 x 10-4 5.3948 x 10-4

Table 2.3: Sample means and sample mean square error (MSE) values for parameter esti-
mates of Example 3. Entries were computed using results of 500 trials for (i) the standard
forward-backward least squares (LS) method, (ii) the EMAX algorithm, and (iii) the ML
estimation algorithm developed by Schlossmacher.
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Figure 2-6: True Laplacian marginal pdf (dashed curve) for driving process of Example 3
and a typical estimate of the pdf (solid curve) produced by the EMAX algorithm, plotted
using (a) linear-magnitude scale (with horizontal axis spanning +3 standard deviations),
and (b) log-magnitude scale (with horizontal axis spanning ±15 standard deviations).

perform better than the EMAX and least-squares methods since it directly exploits the fact
that the driving noise is i.i.d. with a Laplacian distribution. Observe from the table that
the ratio of the mean square error of the least-squares estimate to that of the ML estimate
ranges approximately from 1.9 to 2.1. The ratio of the mean square error of the EMAX
estimate to that of the ML estimate ranges approximately from 1.1 to 1.2. Thus, in this case
the EMAX algorithm produces estimates that are much closer to the exact ML estimates
than the least-squares estimates.

The superior performance of the EMAX algorithm may be attributed to the ability of
its assumed Gaussian-mixture pdf to closely approximate the Laplacian pdf, as is shown for
a typical case in Figure 2-6(a). It is clear from this figure that the approximation is very
good over the region in which most of the samples of the driving noise reside. However,
since the number of Gaussian densities in the mixture is finite, an accurate model for the
Laplacian density may be obtained only over a finite region of support. Eventually, the tails
of the Gaussian-mixture pdf become bounded by a function of the form ki exp{-k 2w

2} for
appropriately chosen constants ki and k2 . Indeed, Figure 2-6(b) reveals this phenomenon
with the aid of a log-magnitude scale.
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2.3.4 Example 4: Blind Equalization in Digital Communications

Our final example is an application in digital communications that has been adapted
from [149]. In this example, we demonstrate that the EMAX algorithm can be used suc-
cessfully in problems where the primary goal is signal reconstruction, rather than parameter
estimation. In particular, we consider a communication system that uses amplitude-shift
keying (ASK). In this scheme, the transmitter communicates with the receiver using an
L-symbol alphabet A = {A}' 1 , whose elements we take to be real numbers. To send the
kth symbol of a particular message sequence {ut} to the receiver, the transmitter generates
a pulse (having fixed shape) and modulates this pulse with the amplitude Uk. The pulse
then propagates through the communication medium, which we assume is well modeled by
an LTI system. Finally, the receiver processes the waveform with a linear filter to facilitate
estimation of Uk.

If this filtered waveform is sampled at a rate of one sample per symbol, then the overall
communication system-i.e., the transmitter, the medium, and the receiver-can be repre-
sented with an equivalent discrete-time LTI system, which we refer to as the discrete-time
channel. In this case, the sampled output is the convolution of the transmitted symbol
sequence {ut} and the impulse response {ht} that characterizes the discrete-time channel.
If the impulse response {ht} is anything but a shifted and scaled unit impulse, then each
sample of the output sequence will contain contributions from more than one input sym-
bol, i.e., there will be intersymbol interference (ISI). If the characteristics of the medium
are known, then the discrete-time channel is also known and the receiver can compensate
for the ISI via linear equalization. Often, however, the characteristics of the medium are
unknown, and the impulse response of the discrete-time channel must first be estimated in
order to compensate for the ISI. One approach for accomplishing this is for the transmit-
ter to send through the medium a training sequence that is known to the receiver. The
receiver can then identify the impulse response of the discrete-time channel from the out-
put sequence and apply the corresponding inverse filter. However, if the medium is rapidly
changing, then this procedure must be performed frequently, and the effective data rate will
be substantially reduced. An alternative approach is to perform blind equalization-i.e., to
estimate the impulse response of the discrete-time channel from the output without knowing
the input, and then apply the appropriate inverse filter.

We consider a scenario in which blind equalization must be performed by the re-
ceiver. We assume an ASK modulation scheme that uses the four-symbol alphabet A =

{--3, -1, 1, 3}. A typical 200-point input sequence to the discrete-time channel, which was
generated randomly using the alphabet A, is shown in Figure 2-7(a). We assume that the
discrete-time channel has a finite impulse response {ht} with z-transform

H(z) = 1.0 - 0.65z- 1 + 0.06z- 2 + 0.4 1z- 3 . (2.58)

Figure 2-7(b) shows the received sequence, which is the convolution of the input sequence
shown in Figure 2-7(a) and the impulse response {ht}. It is evident from this figure that
detection of the input symbols from the received sequence would be difficult without further
processing.
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Our blind equalization approach consists of channel estimation followed by filtering with

the inverse of the estimated channel. We compare three methods for estimating the im-

pulse response of the channel from the output sequence shown in Figure 2-7(b): (i) the
forward-backward least-squares method, (ii) the fourth-order cumulant-based technique of

Giannakis and Mendel [651, and (iii) the EMAX algorithm. We configured all three algo-
rithms to estimate 18 AR coefficients. Such a configuration assumes that the discrete-time

channel inverse may be accurately modeled with a system having 18 zeroes and no poles.
We further configured the EMAX algorithm to estimate the means and variances of four
constituent Gaussian densities. Figures 2-7(c)-(e) show the restored input sequences gen-

erated, respectively, by (i) the least-squares method, (ii) the Giannakis-Mendel algorithm,
and (iii) the EMAX algorithm. It is clear from Figures 2-7(c)-(e) that the recovered se-
quence values produced by the EMAX algorithm are much more tightly distributed around

the four true symbol values than either the recovered sequence values produced by the least
squares method or those produced by the cumulant-based method. Hence, in this case we
would expect superior detection performance using the EMAX algorithm.

2.4 An Alternative Version of the EMAX Algorithm

In its original form, the EMAX algorithm is capable of solving an extremely broad class of
source identification problems because the ARGMIX model on which it is based offers many
degrees of freedom in signal representation. As we have seen, the ARGMIX model consists
of two main components for describing an unknown signal: (i) a pdf that characterizes the
statistical behavior of each sample of the driving noise; and (ii) an autoregressive linear

time-invariant system that induces temporal dependency among the samples of the driving
noise. The power of the EMAX algorithm over conventional least-squares techniques clearly
derives from the first of these components, i.e., from the flexibility of allowing the driving-

noise pdf to be unknown and to have an arbitrarily complicated shape.

There are many situations arising in practice, however, in which we do not require such

flexibility in a parameter estimation algorithm; in fact, in certain situations we would gladly

sacrifice the flexibility of the original algorithm in exchange for a reduction in its computa-
tional complexity. In this section, we consider a useful restriction of the original estimation
problem that affords such a trade-off. In particular, we focus on the case in which the driv-
ing noise is characterized by a fixed pdf whose functional form is precisely known except for
a scale factor (i.e., a positive real number that indicates the degree of dispersion in the data
distribution). In such a case, even though much prior information about the pdf is available,
implementing an exact ML procedure directly may still be extremely difficult because of
the complicated mathematical form of the pdf. On the other hand, using too simple an
approximation to the exact ML procedure (for example, using the classical approximation
based on the Gaussian-noise assumption) may lead to unacceptably poor results. For a
situation of this kind, the EMAX algorithm can easily be reconfigured so that it provides
a sufficiently sophisticated, yet also quite efficient and convenient, method of obtaining a
good approximation to the ML solution.

To explore this idea further, let us suppose that the true density fw(-) for the driving
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Figure 2-7: Illustration of channel equalization considered in Example 4: (a) original symbol
sequence; (b) received sequence; (c) restored sequence using standard forward-backward
least-squares method; (d) restored sequence using fourth-order cumulant-based Giannakis-
Mendel algorithm; (e) restored sequence using EMAX algorithm assuming four-component
Gaussian-mixture pdf.
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noise belongs to a parameterized family of densities that is invariant with respect to scale

(i.e., if the pdf for the random variable W is in the family, then the pdf for W/13 is also in

the family for any positive real number #). For example, the zero-mean Laplacian family

used in an earlier example is scale-invariant, as is the Gaussian family, and hence also

the Gaussian-mixture family for any fixed number M of mixture components. To indicate

explicitly that the driving-noise pdf belongs to a scale-invariant family of densities, we shall

write it as fw(-; #) in the remainder of this section, with the understanding that

fw (w; 13) = fw 1 (w), -oo < w < oo. (2.59)

For convenience, we shall also assume that fw(-; 3) is continuous at all but a finite number

of points on the real line and contains no impulses.

By allowing the scale factor on an arbitrary but known driving-noise pdf to be a free

parameter, we are essentially creating a generalization of the classical AR parameter esti-
mation problem in which the zero-mean driving noise is assumed to be Gaussian, but has

an unknown standard deviation that must also be estimated. The generalization follows

immediately from the fact that the quantity 1/ serves as a measure of the dispersion of

the distribution, since it is related to the standard deviation of the distribution through an

affine transformation. To make this interpretation as direct as possible, let us assume in

the sequel that the driving noise is indeed zero-mean and that the parameter value 3 = 1

corresponds to a standard deviation of unity, so that 1/# is exactly equal to the standard

deviation for all / > 0.

Because the functional form of the pdf fw(-; 3) is assumed known for any value of #,
a good approximation to this pdf for a particular value of 3 (say, 3 = 1) can be designed

off-line, using a Gaussian-mixture model, before any data are observed. Such a procedure

yields an approximation of the form

M

fw (W; #) 1:PiM(w; pi, 0-i), (2.60)
p=1 i=i

where the number of mixture components M is also chosen as part of the design process.

Once a suitable Gaussian-mixture approximation has been obtained for the case where

/ = 1, it can then be adjusted to approximate any other element in original family of

densities by performing a simple transformation on the mixture parameters. In particular,
by using the scale-invariance property of the original family of densities, we can write

fw (w;/3) = fw1 (w) (2.61)

= /fw(/w; 1) (2.62)
M

Z3piA(3w; pi, 0i) (2.63)
i:=1

M

= PiM(w; Pi/, i/), (2.64)
i=1
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where the last step follows from the fact that, for each Gaussian component NA(-; pi, a)
included in the mixture, we may write

ex(pw; Pi, ) xp W - Ii)} (2.65)
v7o-i 2o,?2o

= exp{ W (/_,p//3)]2 } (2.66)
A27(o-i /#1) 2(o-i/j)2

N(w; pi/3, o-//3). (2.67)

We conclude from the series of equalities (2.61)-(2.64) that an approximation for any pdf in
the original parameterized family can easily be generated from the initial approximation by
appropriately scaling the means {pim}, and standard deviations {ui}{ 1 of the Gaussian-
mixture components. The weighting coefficients {pi} 1 would remain unchanged from their
initial values.

Having made these observations about Gaussian-mixture approximations, let us now
derive a new version of the EMAX algorithm based on the assumption that the true driving-
noise pdf is itself a Gaussian mixture which is given by

M

fw (w; 3) = piN(w; pi // o-/13), (2.68)
i=1

where the values of the parameters M, {pi} 1 , {ai}{ 1 , and {pi}4i are again precisely
known. The goal of this alternative version of the EMAX algorithm will be to generate
joint QML estimates for the AR parameter vector a and for the scale factor / associated
with the driving-noise pdf. To reflect this restriction in the new estimation problem, we
re-define the parameter vector 'I as

=(#, a). (2.69)

The new algorithm for estimating the value of T is now specified by the iterative formula

(13(s+) a(s+1)) = arg max E {log fy 1 y 0 (yIbyo;/3',a') I Y = y Yo = yo -JF(s)1 , (2-70)
',a'

which is analogous to the original EM formula given in (2.28). (Observe that the complement
of the original formula given in (2.27) is no longer needed, since the weighting coefficients are
now considered fixed and known.) To obtain a more explicit expression of the function being
maximized in (2.70), we can borrow the previously derived formula in (2.38) and replace
the original variables p' and o with their new counterparts p/3' and u//#', respectively;
this substitution yields the modified formula

E log fyIp,y (yI<b, yo; a',/ ') | Y = y, Yo = yo; (S)} -
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- log 27r -
2

N-1 M

Z=0 Pt(T(S)) log Ll
t=O j=l of'

N-1 M [Tiya P/,]

N 1Z 2t,3 (%P t a.-
t=0 j=1 2(, )1

As a reminder that the search for a maximum is to be performed over only the two variables

0' and a', we introduce a new objective function H(.) defined by

N-i M N-i M [/3'(yt - y'a') _-j1
H(0', a') = - ] Ptj (%P(s)) log O - N 1 PtU -( -2j

t=0 j=1 3 t= =1 3

(2.72)

which is derived from the expression on the right-hand side of (2.71) by dropping the initial

constant term and substituting a somewhat more convenient (yet algebraically equivalent)
form for the final term. By taking a partial derivative with respect to the variable a' and
setting the result equal to zero, we have that the unique maximum occurs at the vector
location

arg max H(13', a')
a'

(2.73)
N-1 M -1 -

= N 1 (S)) t Nt 1F (s)) Y j Y

t=0 j=1 31 _t=0 j=1 03

If we now take a partial derivative of H(.) with respect to the scale variable 0', we obtain

OH 1 N-1 M (s N-1 M g . s) [/(yt -YTa) - pu] (Yt - YT a')
/3' 13 ~Pt ()) - 2

t=0 j=1 t=0 j=1 3

(2.74)

Observe that, for a fixed value of t, the M terms {Pt~j(P(s))} 1 necessarily sum to unity
because they form a probability mass function; it follows that the value of the double
summation in the first term above must be equal to N. If we first make this substitution and
then set the entire expression equal to zero, we obtain (after some algebraic manipulation)

the quadratic equation

N-1 M P
t'j C s) (Yt - yTa )2 2 -

= I
L =0 j=1 01

N-1 M
PJ(OF(s)) Pi (yt - YT a') ' - N= 0.

t=0 j=1 31

(2.75)

For notational convenience, we rewrite this equation in the more concise form

A'2 -B3 '-N = 0, (2.76)

where the definitions of A and B are readily inferred from (2.75). Next, by applying the
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quadratic formula, we obtain the two possible solutions

(13 + v 2+4NA) 2A (.7
O'=B iB2 1+4NA

2A

Note that since A is always positive, the expression under the square root sign must also be
positive. Moreover, this same expression has a value whose magnitude always exceeds the
magnitude of B. Thus, while we cannot know in advance whether B itself will be positive
or negative, we can say with certainty that the first solution given in (2.77) will always
be positive and that the second will always be negative. Moreover, it can be shown (by
taking a second derivative of H(.) with respect to 0') that either of these two solutions is
a local maximum of H(-) for a fixed value of a. Because we seek a positive value of 3' that
maximizes H(-), we know that the unique solution must be

N-1 EM Ptj'F8 - yTa/)
arg max H(3', a') = , +

'>0 2 N LA p(%(S)) yf a') 2

EN- 1 )M (Y,j( )p t - yTa )2 + 4N [N-1 (yt - yTa')2

2 :N 2 I PtJ (Yt -

(2.78)

Because (2.78) and (2.73) are highly coupled nonlinear equations, we once again resort to
the technique of coordinate ascent to evaluate the optimal solution. Using the equations of
optimality, we can express the coordinate-ascent algorithm as follows:

INITIALIZATION:

(O) = O(S) (2.79)

A(O) = a(s) (2.80)

ITERATION:

Ptj,3 ( ') P" (Yt - yT i(i))
#(i+1) - tE -J

Pt-(T'(s)) ±-i)
2 Et Lj ' 0J2 (yt - yt a

Pt ( p(s)),j (yt - yTA(i)) + 4N [ Lj (T 's)) yt - yT(i) )2

2 E Lt,('(s') (yt - y i(0)2

(2.81)
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N-1 M Ptj(%F(S) T -1 N-1 M(

t=0 j=1 3t=0 j=1 3

(2.82)

After this recursion has been performed for i = 0,1,--. , J - 1 (where J is chosen to

be a sufficiently large integer), our parameter updates are then defined by a(s+) = Aij)

and 0(s+1) - (J), and the entire process is subsequently repeated. In summary, then, a
single iteration of this modified EMAX algorithm consists of first computing the posterior
probabilities {Pj(W(s))} and then iterating (2.81) and (2.82) until convergence.

Recall that we must again choose values for a(0 ) and 0(o) to initialize our new algorithm.

A logical choice for a(0) is, as before, the parameter vector estimate obtained by applying the

Yule-Walker equations to the original observed sequence. Moreover, since the parameter #
is inversely proportional to the standard deviation of the driving-noise pdf, a logical choice
for #(O) is the reciprocal of the sample standard deviation associated with the residual
sequence w(0), which can readily be obtained after applying the approximate inverse filter

1- zf a 0)z_j to the sequence of observations.

2.5 ARGMIX Signal Estimation in Additive Noise

Up to this point, we have considered only the problem of source identification as it applies to
an unknown ARGMIX process. By developing a simple iterative techniques for solving this
problem, we have demonstrated that good parameter estimates for ARGMIX processes can
be generated by searching for local maxima of the likelihood surface. In fact, the techniques
we developed in earlier sections constitute an important extension to the existing collection
of classical methods, which were designed to solve the less complicated source identification

problem in which the unknown process is assumed to be autoregressive but purely Gaussian.

The degree of success we were able to achieve in the source identification problem now
leads us to question whether similar progress might be made in the equally important
signal estimation problem. In this section, we therefore turn our attention to the problem
of optimally filtering an ARGMIX process that has been corrupted by independent additive
noise, under the assumption that we are given the true parameter values for both signal
and noise. We soon discover, however, that the ARGMIX signal model is not well suited to
the development of filtering or smoothing techniques that are both computationally efficient
and globally optimal. Indeed, it appears that any algorithm designed to produce an optimal
estimate of an ARGMIX signal in Gaussian noise necessarily incurs a computational cost
that grows exponentially as a function of the length of the observed sequence.

After demonstrating the inherent algorithm complexity associated with the ARGMIX
signal model, we discuss several alternative solutions to the signal estimation problem; these

solutions are reasonable approximations which are much less computationally expensive, but
which naturally lack the property of global optimality. Our discussion of these alternative
methods will actually lead us to the creation of a new signal model which is altogether
different from the original ARGMIX signal model, but which appears to be more practical
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and more general than the ARGMIX model. It is the analysis and development of this new
model that will occupy us for the remaining portion of the thesis.

To demonstrate the difficulty we encounter when attempting to estimate an ARGMIX
process that has been corrupted by additive noise, let us now consider a very simple yet
illustrative problem of this kind. In particular, suppose we have a random signal {Yt} that
has been generated according to the first-order AR difference equation

Yt = aYt_1+ Wt, (2.83)

where a is the single real-valued AR coefficient of the process and {Wt} is a sequence of
i.i.d. random variables, each distributed according to a fixed Gaussian-mixture pdf, which
we denote by fw( ). For simplicity, we shall assume that this driving-noise pdf fw(-)
consists of only two zero-mean Gaussian components, so that we may write it as

fw (w) = pK(w; 0, UI) + (1 - p)K(w; 0, 0 2 ). (2.84)

To insure that the driving noise {Wt} is indeed non-Gaussian (i.e., to preclude an assignment
of ARGMIX parameter values that would yield a purely Gaussian signal), we impose the
further conditions 0 < p < 1 and 02 / a1 on the model parameters. We will assume for
convenience, however, that the autoregression in (2.83) is initialized randomly at time t = 0
according to a Gaussian probability law, so that the signal variable Y is characterized by
the pdf A(.; 0, ay).

In contrast to the setup for the source identification problem, a clean observation of the
signal {Yt} is not available in this case. Instead, we may observe the signal only after it
has been corrupted by additive white Gaussian noise; hence, each element of the observed
sequence {Zt} has the form

Zt = Y + V, (2.85)

where {V} is a sequence of i.i.d. random variables, each having a pdf fv(-) defined by

fv (v) = J(v; 0, Ov). (2.86)

All random variables contained in the sequences {Vt} and {Wt} are understood to be mu-
tually independent.

It should be clear from the description given above that our observation model is com-
pletely characterized by the parameter vector

XF = (a, p, a1,a 2, UYa V). (2.87)

Suppose, then, that we know the true value of each element of *, and furthermore that we
have been furnished with realizations of the first N samples of the sequence {Zt}. Then,
given that we have observed the event Z:N-1 = ZO:N-1, our objective is to produce an
MMSE estimate of the underlying signal realization YO:N-1. It is well known that the
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desired estimate S:N-1 is simply the conditional mean vector given by

YO:N-1 = E {Yo:N-1 Zo:N-1 = ZO:N-1; I - (2-88)

To understand why the computation of this optimal estimate becomes so complex as the
observation length N gets large, let us now explore the structure of the estimate for various
values of N. Our approach will be to build up the solution in a series of steps, starting with
the simplest case in which N = 1 and progressively working toward the case in which N is
allowed to be arbitrarily large.

First suppose that N = 1. By using our assumption about the initialization of the
autoregressive formula in (2.83), together with the above description of the additive noise,
we know that the observed variable Zo is constructed as a superposition of the independent
zero-mean Gaussian random variables Y and V, and is therefore itself a zero-mean Gaussian
random variable. Therefore, the value of the optimal estimate in this case is given by the
classical linear formula

2

Qo 2 2 zo. (2.89)
cry + o-

Note that the signal estimate has an extremely simple form when N = 1, and that this
estimate can be evaluated by performing only a single multiplication, provided that the
leading scale factor is computed off-line before the realization zo is received.

Now consider the case in which N = 2. In this case, the observed vector Z0 :1 no longer
possesses a Gaussian pdf, since one of its two independent components - namely the signal
vector YO:1 - is not Gaussian. To verify this latter assertion, we need only observe that if
the vector Yo:1 were Gaussian, then the variable Y 1 , when conditioned on the event Yo = yo,
would also be Gaussian. From our model assumptions, however, we know that this cannot
be true, because under such conditioning, Y consists of the constant ayo plus a random
innovation that is distributed according to a two-component Gaussian-mixture probability
law. This does not necessarily imply that we can no longer use the classical techniques from
linear-Gaussian estimation theory to construct an optimal estimate. On the contrary, we can
still apply such techniques once we are able to decompose the new non-Gaussian estimation
problem into a collection of separate Gaussian estimation problems. This point of view
will allow us to apply a conventional linear processor in each of the individual Gaussian
problems and then combine the resulting estimates using a special type of weighted average.

The key to decomposing the original non-Gaussian problem into purely Gaussian com-
ponents is to condition the original problem on the outcome of the unobservable event

b = #1, where the random variable DI is (as defined in our earlier development) the pdf-
selection variable corresponding to time t = 1. Such conditioning allows us to assume that
we know which of the two Gaussian densities in the mixture gave rise to the driving-noise
sample at time t = 1. For example, if we know with certainty that 4 i = 1, then we may
conclude that the conditional driving-noise pdf must be NA(-; 0, a 1 ). Under this assumption,
it now follows that the variable Yi is Gaussian when conditioned on the event Yo = yo;
hence, the entire signal vector Yo:1 is also Gaussian, as is the observed vector Z0 :1 .

Because we must now account for the two possibilities (DI = 1 and I1 = 2, we will
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need to further manipulate the expression in (2.88) in order to reduce it to simplest terms.
Specifically, we now express the optimal estimator as

yo:1 = E {Yo:I|Z o :1 = zo:1; P} (2.90)

JYfYo|zo: (Y Zo:I = zo:1; IF)dy (2.91)

2

Y E fYo: 1 ,1|Zo:1 (Y , I I Zo:i = zo:1; ')dy (2.92)
$=1
2

S y E Pr{l = #1Zo:1 = zo:1; *}fy 0 :1|Zo:1,D 1 (yjZo:1 = zo:1, 1 = #; I)dy (2.93)
$=1

2

- Pr{ 1 0 Zo:1 = zo:1 i F 0:1fYo|zoi,.iY Iy Zo:1 zo:1i= ; ;)dy (2.94)

2

= Pr{1 1 = #1Zo:1 = zo:1}E {Yo:IZo:1 = zo:1, 41 =, ; 4} (2.95)
$=1
2

= Pr{1 = #Zo:1 = zo:1; j'}Cy(#)(Cy(#) + oI)-1 zo:1 (2.96)
$=1
2

= Pr{1 1 = #|Zo:1 = zo:1; %F}Cy(#)Cp1 (#)zo:1 (2.97)
$=1

where I is the identity matrix, oj I is the covariance matrix of the Gaussian noise vector
V 0 :1 , and Cy(#) and Cz(#) are, respectively, the conditional covariance matrices of the
Gaussian signal vector Y0 :1 and the Gaussian observation vector Z0 :1 given that #1 = #.

One of the most immediately obvious properties of the estimate given in (2.97) is that
it is actually a weighted average of two elemental linear estimates, each accounting for a
unique choice of the true Gaussian pdf of the driving-noise sample at time t = 1. The overall
estimate does not inherit the property of linearity, however, because the weighting coefficient
for each term in the average is a nonlinear function of the observed data zO:1. Nonetheless,
this weighting coefficient Pr{1i = #|Zo: 1 = zo:1; [} can still be easily evaluated using
Bayes' rule, since the parameter vector T is precisely known. For example, in the case
where I1 = 1, we can write

Pr { 4D= l1Z 0:1 = zo:i;'}

Y Pr{1 = 1; %l}fZo l1,(zo:1|@1 = 1; X) (2.98)

$=1 Pr{1i =; x}fZoiil.1(zo:1|14 = #; T)

ICZ(1)|1/2 x exp{-jzr i C(1(1)z}:1}
P 2 0: z(2.99)

z()12exp {-jzer C-1(1)zo:1) + Iz2)/ exp {j~ - Cz1C (2)zo:1}
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where we have used the explicit form for a bivariate zero-mean Gaussian density.

By comparing (2.89) and (2.97), we see that the optimal estimate derived for the case
N = 2 requires considerably more computation than does the estimate for the case N = 1.
Of course, part of this increase in computational cost - for example, the evaluation of a
matrix-vector product rather than a product of two scalars - is a direct consequence of the
increase in the length of the observation; this portion of the additional cost would be incurred
even in a purely Gaussian estimation problem. The remaining amount of computation is our
primary concern, for this is the amount we incur solely because of the non-Gaussian nature
of problem. Clearly, the same kinds of matrix-vector operations that would be required to
form an estimate in the purely Gaussian case must now be performed two times (i.e., for two
distinct contingencies) to obtain the final estimate in (2.97); moreover, for each of the two
elemental estimates computed, an associated weight factor must also be computed. Hence,
when N = 2, the amount of computation that is needed to generate an optimal estimate in
the non-Gaussian problem is at least twice the amount required in the analogous Gaussian
problem.

As we might expect, the computational expense doubles yet again when N = 3, because
in this case we must account for each of the four possible events (b1:2 = (1, 1), 41:2 =
(1, 2), 41:2 = (2, 1), and 41:2 = (2, 2) in order to reduce the problem to a collection of
familiar Gaussian sub-problems. The exponential growth in the number of possible pdf-
selection sequences (and hence the amount of computation) continues as the observation
length N increases; this phenomenon is depicted in Figure 2-8. Indeed, when N is allowed
to be arbitrarily large, we must account for every possible event of the form #1:N-1 =

(#1, #2, - - - , #N-1), of which there are 2 N-1 in all. For this general case, the expression for
the estimate y:N-1 is given by

YO:N-1

2 2 2

-S - 5- Pr{ = #IZo:N-1 =ZO:N-1 ;'CY(N) (CY( ) I ZO:N-1,

#1=1#02=1 #N-1=1

(2.100)

which is seen to be a direct extension of the expression given in (2.97). The above estimate is
clearly a weighted average of 2 N-1 elemental estimates, each tailored to a unique realization
of the state sequence (1:N-1-

It should now be evident that the amount of computation involved in evaluating the
optimal estimate in (2.100) will be prohibitive even when N is only moderately large. Specif-
ically, evaluating yO:N-1 would take more than 2 N-1 times as many arithmetic operations
than would evaluating an estimate of the same length in the case where the signal and noise
vectors are independent and purely Gaussian. We further note that, although there exist
alternative methods for computing the exact value of the optimal estimate in (2.100), it
appears that each of these methods incurs a computational cost that grows exponentially
as a function of the observation length N.

For example, one such alternative technique would be to optimally combine the output
signals produced by a bank of Kalman smoothers operating in parallel on the observation
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Figure 2-8: Binary tree diagram depicting exponential growth in the number of possible
pdf-selection sequences that could be realized from time 0 up to time t. Vertical dashed
lines correspond to fixed time indices. Each potential value of the underlying state sequence

<pt is shown in parentheses next to its associated node on the tree.

ZO:N-1. But it is well known that the classical Kalman smoother is able to produce a globally
optimal estimate of a signal in additive noise only if the signal and noise are jointly Gaussian
and all distributional parameters are known. With this approach, therefore, each Kalman
smoother would have to be configured to operate under the assumption that a particular
value of the underlying state sequence 41:N-1 is in fact the true value; this is the only
way that the Gaussian assumption would hold. Thus, even though each of the recursively
implemented Kalman smoothers might be considered to be computationally efficient when
operating in isolation, a total of 2 N-1 such smoothers (one for each possible state sequence)
would still be required to generate the overall optimal estimate.

A number of suboptimal techniques have been proposed in the literature to overcome the
computational complexity of the ARGMIX signal estimation problem. One of the earliest of
these techniques was put forth by Ackerson and Fu [1], who suggested that the posterior pdf

t =o0
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of the signal variable be modeled as purely Gaussian at each time. Under this assumption,
the signal estimate at a given time index would be the mean of the posterior density; at

the following time index, the pdf of the predicted signal value would consist of M Gaussian

components (owing to the M-fold branching process depicted in Figure 2-8), but these

would be subsequently reformed into a single Gaussian pdf through a moment-matching
procedure. Several methods similar to that of Ackerson and Fu were proposed a short time

later [31, 165, 227].
A very different approach based on the notion of random sampling was taken by Akashi

and Kumamoto [8]. They viewed the collection of all possible underlying driving-noise

state sequences as a population, and they generated a suboptimal signal estimate using a

relatively small number of these state sequences chosen at random from the population.

This technique had the theoretical advantage that it could produce an estimate arbitrar-

ily close to the optimal estimate if a sufficiently large number of sequences were selected.

Other proposed approaches to ARGMIX signal estimation have been based on the con-
cept of pruning the tree in Figure 2-8 to allow only the most likely branches as candidate

hypotheses [179, 204]. Many such techniques bear strong similarities to methods used for

tracking moving targets in a dense multi-target environment [18]. In the remainder of the

thesis, we shall pursue an entirely different approach to the non-Gaussian signal estimation

problem; our method is based on approximating the underlying signal with a finite-state

Markov dynamical model. We begin exploring this approach in detail in Chapter 3.

2.6 Discussion

2.6.1 Remarks on the EMAX Algorithm

The computations that constitute the EMAX algorithm have an intuitively pleasing form,
are easy to implement in computer code, and consume little computer memory. The em-

pirical results presented in Section 2.3 suggest that the EMAX algorithm has at least three

distinct advantages over other techniques proposed for similar estimation problems: (i) it

produces high-quality estimates, since it uses the likelihood function as a guide for find-

ing solutions, (ii) it converges reliably to a stationary point of the likelihood function, by
virtue of being a generalized EM algorithm, and (iii) it is extremely versatile because the

Gaussian-mixture pdf is able to model a wide range of densities very well.

Although the EMAX algorithm is a powerful method for estimating non-Gaussian signal
parameters, a number of issues must still be addressed before it can be transformed into

a robust signal analysis tool. For example, we have given only cursory consideration to
the initialization of the EMAX algorithm in the analysis presented here. For the examples
given in Section 2.3, we adopted an initialization method based on its conceptual and com-
putational simplicity. This method worked reasonably well for the limited set of examples
addressed in that section. However, since initial estimates are the key to good performance,
we need an initialization procedure that will consistently lead to points of high likelihood
after the algorithm has been iterated to convergence. This would be a useful direction for

future work in ARGMIX parameter identification.
In addition, for certain problems (particularly those for which the Gaussian-mixture pdf
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contains many components), it would be useful to speed up the convergence of the EMAX
algorithm. This might be accomplished by iterating the algorithm until reaching the vicinity
of a local maximum, and then applying a more efficient method (e.g., the Newton-Raphson
technique) to move to the peak. Also, it would be useful to detect, during the operation of
the algorithm, whether a degenerate parameter estimate is being approached, so that the
algorithm could be restarted elsewhere in the parameter space. Furthermore, we note that in
any practical setting, our observations of the signal of interest will be corrupted by additive
noise. For example, the digital communications application presented in Section 2.3.4 is a
typical case in which additive noise is unavoidable. Hence, a modification of the EMAX
algorithm should be devised for estimating the parameters of an ARGMIX process when
noise is present.

Another issue that must be addressed is how to estimate the parameters K (the order
of the autoregression) and M (the number of constituent densities in the Gaussian mixture)
when these parameters are not given in advance. Moreover, we need to be able to assess
the effect that incorrectly chosen values for K and M would have on the variances of the
remaining parameter estimates. Because the Gaussian mixture model is quite flexible even
when M is very small (say, 2 or 3), the selection of a suitable value for M could probably
be easily accomplished by trial and error in most cases. A number of criteria have already
been proposed for selecting an appropriate value for K. The most widely used among
these include the information-theoretic criterion [6] and final prediction error metric [4],
both of which were developed by Akaike, as well as the minimum description length, which
was developed independently by Rissanen [158] and Schwarz [168]. The approach used in
each of these criteria is essentially to augment the log-likelihood function with a penalty
term which increases monotonically with the parameter K. Adding such a penalty term
has the effect of counteracting the monotonic decrease of the prediction error variance
that typically results when the model order is increased. It is conceivable that a new EM
algorithm could be derived to identify ARGMIX signal parameters (including the parameter
K) upon incorporating one of the model order estimation criteria mentioned above.

2.6.2 Suggested Future Direction for ARGMIX Signal Estimation

There is a relatively simple approach to the problem of suboptimal ARGMIX signal estima-
tion which appears to have been overlooked in the literature, and which we mention here as
a possible direction for future research. The motivation for using this approach is similar
to that for using an FIR Wiener smoother as an alternative to the true Wiener smoother
in the purely Gaussian case. The basic idea is to generate an estimate of the signal at each
time t using only a finite-length portion of the observation in the vicinity of time t. The
underlying assumption for this finite-memory estimation scheme is that any given portion
of the observation is accurately characterized by a multivariate Gaussian-mixture pdf hav-
ing a fixed number of components. Under this assumption, the processor itself would be
a nonlinear combination of the outputs of a fixed number of FIR Wiener smoothers (one
for each component in the mixture), as was the case for the optimal smoother discussed
in Section 2.5. A potential difficulty in implementing the approach, however, is that the
parameters characterizing the best Gaussian-mixture approximation of a portion of the
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observation cannot be expressed easily in terms of the parameters of the ARGMIX mea-

surement model. Moreover, the approach may perform poorly if the dependence length

induced by the AR filter in the model is large relative to the length of the portion of the

observation that has been chosen for processing.
However, there exists an alternative method of implementing this approach which may

overcome these difficulties. In particular, we can first pass the noisy measurement through

an invertible LTI system, S, then apply a nonlinear estimator to the filtered result, and

finally pass this nonlinearly processed waveform though the inverse of the original LTI sys-

tem, S- 1 . From the principle of reversibility [215], we know that if the nonlinear estimator

applied in the second stage of this system were truly optimal for the result produced by

S, then the overall system would be optimal for the original noisy measurement. A con-

venient choice for the LTI system used in the first stage is the inverse of the original AR

filter. Since this inverse filter is linear, we can examine its effect on the signal and noise

separately. In particular, the signal becomes whitened, i.e., transformed back into the orig-

inal i.i.d. Gaussian-mixture driving sequence; on the other hand, the observation noise,
which was originally white and Gaussian, becomes colored by the inverse filter, but remains

Gaussian. Hence, the roles of signal and noise are now essentially reversed.

Once this initial transformation has been carried out, the non-Gaussian samples in the

measurement exhibit are no longer mutually dependent. Since any finite-length portion

of the processed observation is now truly characterized by a multivariate Gaussian-mixture

pdf, there exists a clear link between the parameters of the original ARGMIX model and the

finite-memory processor that should be used for smoothing. Let us denote the transformed

signal and observations by {Qt} and {it}, respectively. Then to generate an optimal esti-

mate of Qt using, say, the subsequence of observations zt-J:t+J, we would need to combine

estimates produced by M2J+1 distinct finite-length Wiener smoothers, each operating on a

unique assumption about the true value of the subsequence of driving-noise states <t-J:t+J.
(Recall that M is the number of components in the original Gaussian-mixture driving-noise

pdf.) The appropriate weighting coefficients used to combine these estimates would be the

posterior probabilities of the individual state subsequences, based on the value of zt-J:t+J-
Once this estimation procedure has been performed for all samples of the transformed sig-

nal, the resulting sequence of estimates can then be passed through the original AR filter

once again to obtain the final signal estimate.

59



60 Chapter 2. Using the ARGMIX Signal Model for Non-Gaussian Inference



Chapter 3

Approximating Stationary Signals
with Finite-State Markov Models

3.1 Introduction

The analysis in the latter half of Chapter 2 identified some of the practical difficulties

involved in developing an optimal technique for estimating a non-Gaussian signal in additive

noise. Throughout that analysis, our attention was focused on an estimation problem with a

particularly simple structure; specifically, the signal was a stationary ARGMIX process, the

noise was a stationary white Gaussian process, and the signal and noise were assumed to be

independent. It was demonstrated through a simple example that the optimal estimation

scheme for the ARGMIX problem was not particularly difficult to derive or to understand;

in fact, because we were able to decompose the original non-Gaussian problem into more

familiar, purely Gaussian subproblems, we could express the final solution in closed form

as a (nonlinear) weighted average of many different Wiener filters. However, this optimal

estimation scheme was, practically speaking, impossible to implement because it consumed

a prohibitive amount of computation, even in cases where the observed sequence contained

only a modest number of samples.

Our immediate temptation in this situation is to search for a tractable, yet sufficiently

sophisticated approximation to the best processor, with the hope that the resulting approx-

imate scheme will perform satisfactorily in place of the optimal scheme. As we mentioned

at the end of Chapter 2, this basic approach has been taken by many researchers for solving
non-Gaussian problems similar to the ARGMIX signal estimation problem. In this chapter,
however, we shall take a much different approach toward developing approximate signal

processing algorithms - an approach which reflects a fundamental shift in paradigm for

the remainder of the thesis. In particular, we will attempt to approximate the true random

process with another random process whose structure is much simpler and which gives rise

to algorithms that are much more computationally efficient.

The collection of random processes that we will consider as approximations is the class of
finite-state hidden Markov models, or HMMs. An HMM consists of two basic components:

(i) a Markov chain, which characterizes the underlying temporal structure of the HMM in
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terms of transitions on a discrete set of states; and (ii) a collection of probability density
functions (one for each state of the Markov chain), which characterize the output of the
HMM. In general, the state values assumed by the underlying Markov chain in the HMM
are not directly observable. Instead, at each time index, the HMM output is actually a
function of the current state; this function is random, rather than deterministic, and is
completely characterized by the pdf assigned to that state.

This class of finite-state random processes was introduced as a statistical modeling tool
in a series of papers by Baum and his colleagues [19, 20, 21, 22, 23]; since that time, various
properties and algorithms associated with HMMs have been developed extensively by other
researchers. The most widespread practical use of these models has been in the area of
speech processing; specifically, they have been applied to such problems as automatic speech
recognition, speaker identification, and language identification, to name just a few [78, 84,
85, 139, 144, 150, 155, 233]. More recently, HMMs have been used to approximate certain
types of low-dimensional dynamical systems (e.g., systems that are chaotic), for the purpose
of either predicting the output of such systems or enhancing the output after it has been
contaminated with additive noise [97, 130, 157].

We develop the HMM-based approximation concept further in the next two subsections;
we first outline the basic assumptions and notation that will be used in connection with the
signal approximation problem, and we then give a concise formulation of the problem itself.
In the third subsection, we describe how the remaining material in the chapter is organized.

3.1.1 Preliminary Assumptions and Notation

3.1.1.1 Assumptions on the True Source Signal

Our use of HMMs as approximating processes will allow us to solve problems involving a
very broad class of AR signals, which includes the ARGMIX subclass as a special case. In
the sequel, we will assume that the source signal being approximated, {Yt}, is a stationary
AR process described by the Kth-order nonlinear difference equation

Y = h(Yt_1, Y-2, - - - , Yt-K, Wt), (3.1)

where h(.) is a deterministic function and {Wt} is a sequence of i.i.d. random variables,
each distributed according to the pdf fw().

When seeking an approximation to {Yt}, we will find it convenient to represent this
signal as the output of a nonlinear dynamical system driven by the white noise process
{Wt}. In view of the process description given in (3.1), we see that a suitable definition for
the state vector Xt of such a dynamical system is given by

Xt = (Yti Yt1, - -- , Yt-K+1)- (3-2)

This definition allows us to decompose (3.1) into a dynamical equation and an output
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(a) (b)

Figure 3-1: Depictions of possible transitions of the state vector from time t - 1 to time t

under (a) the true dynamical structure; and (b) the quantized dynamical structure within
the partitioned state space.

equation, as shown by

(3.3)

(3.4)

Xt = H(Xt1, Wt)

Yt = G(Xt),

where the state transition function H(.) transforms Xt_ 1

regression function h(.)) according to

H(Xt_1,Wt) =

and Wt into Xt (via the original

0 0 .. 1 ~
1 0 ... 0 0 0
0 1 --- 0 0 Xt-1+ 0 h(Xt_1,Wt)

_ 0 0 ... 1 0 . _ 0 _

(3.5)

and the output function G(.) merely extracts the first element of its vector argument. This
representation of the source signal is useful because it allows us to think of the underlying
dynamics of the signal in a linear-algebraic sense, i.e., in terms of a transformation of
the state from one time to the next within a K-dimensional vector space, as depicted in
Figure 3-1(a).
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3.1.1.2 Assumptions on the HMM-Based Signal Approximation

Our approximation to the true dynamics is represented by an L-state HMM, which is
required to satisfy certain constraints. In particular, we will insist that set of HMM states
stand in one-to-one correspondence with a collection of regions in the original K-dimensional
state space.1 We denote these regions by R1, R 2 ,-- , RL, and we require that they satisfy
the conditions

R1 UR2 U ... URL = K (3.6)

and

Ri n Ri = 0,) fj (3.7)

so that any point in RK is contained in exactly one of the Ri. With the regions defined in
this way, we can explicitly specify a mapping between the original continuous-valued state
space and the discrete-valued state set of the HMM (which we take to be, without loss of
generality, the set {1, 2,--- , L}). This mapping, which we denote by 0(.), is given by

11 if x E Ri;

0() 2 if X E R2;1(38{()= (3.8)
L if X E RL.

We will refer to the constraint imposed on the HMM by this mapping as the state-space
partitioning constraint. A notional depiction of the resulting approximate dynamics in the
partitioned state space is shown in Figure 3-1(b).

We will denote the underlying L-state Markov chain in the HMM by {Et}, and we will
assume that this chain is homogeneous, i.e., that any conditional probability of the form
Pr{et+1 = jlt = i} depends only on the values of i and j and is entirely independent
of the value of the time variable t. The stochastic structure of a homogeneous Markov
chain is completely characterized by two distinct sets of parameters: (i) a collection of
state transition probabilities, which we denote by {Q(i, j)} - 1 ; and (ii) a collection of

initial state probabilities, which we denote by {P(j)}j_ 1 . These parameters are defined,
respectively, by

Q(i, j) = Pr{Et+1 = jlEt = i}, i j 1, 2, ,L (3.9)

'The term region, as it is used here and in the sequel, should be understood in an intuitive sense as a set
that consists of a single piece. To be more technically precise, we may consider a region to be a nonempty
connected set [2, 163], i.e., a set having the property that any two of its points can be joined by a polygonal
line which also lies in the set. This technical definition will be used only on rare occasions in the remainder
of the thesis, however.
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and

P(j) = Pr{8o = j}, j = 1,2,- , L. (3.10)

Because we will be exclusively considering the approximation of stationary processes,
we impose the additional constraint that the HMM-based representation must itself be

stationary. Under this constraint, the pmf of the initial state variable is identical to the

marginal pmf for every other state variable in the chain. As a consequence, the initial

state probabilities and state transition probabilities of the chain are related through the

equation [27]

L

P(j) = P(i)Q(i, j), j 1,2,- , L. (3.11)
i=z1

In addition, the joint pmf characterizing a pair of successive random variables (0t, Ot+1) is
constant for all time. We will have occasion to refer to this joint pmf later in the chapter;
its elements will be denoted by {R(i, j)}_ 1 .

To complete the definition of the HMM, we now require only a collection of L densities,
one for each of the L states of the Markov chain. We shall assume that these densities, once
specified, remain fixed for all time, as do the parameters characterizing the Markov chain.

However, we will adopt two separate notations for these HMM output densities, depending
on whether we are describing an approximation for the sequence of state vectors {Xt} or
the sequence of signal variables {Yt}. In the former case, we will denote the output densities

by {fi(-)}$_1 ; in the latter case, we use the notation {gz(-)}[ 1. It is understood that the
densities f (-) and gj (-) correspond to state j of the underlying Markov chain, so that we
may write

f3 (x) = fktJEt(x8t =j), J = 1, 2,- - ,L (3.12)

and

gj(y) = ie (YOt = j), j 1, 2, ... , L (3.13)

for all values of the time index t. We will assume that any output pdf included in an HMM
is continuous throughout its domain (except possibly on a subset having zero measure) and
contains no impulses.

3.1.2 Problem Statement and Approach to Solution

We will assume that all of the quantities that define the true source signal - i.e., the order
of the autoregression, K, the regression function itself, h(.), and the driving-noise pdf, fw(-)
- are precisely known. Under these assumptions, together with the stationarity constraint,
we can (at least in principle) derive the exact form of the pdf that characterizes the true
source signal {Yt }, or equivalently, the pdf that characterizes the true state-vector sequence

{ Xt}. Hence, we will freely assume that these pdfs are also given. The problem we consider
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in this chapter will concern a finite-length portion of the true state-vector sequence given
by

XO:N-1 = (XO, X 1 , ,XN-)- (3.14)

We can think of this subsequence as the collection of underlying state vectors associated
with a measurement of the source signal that we will make at some point in the future.
Our objective is to approximate the random subsequence X:N-1 with another subsequence

XO:N-1 given by

X0:N-1 = (X0, X1, * * ' N-1), (3.15)

where the elements of 10:N-1 are the outputs of an L-state HMM. Our HMM-based ap-
proximation must satisfy both the stationarity constraint and the state-space partitioning
constraint described earlier.

Our approach to finding a suitable approximation will be to attempt to fit the pdf of the
approximate subsequence X:N-1 to the pdf of the true subsequence XO:N-1. The attributes
of an optimal fit must be defined in an appropriate statistical sense to be made more precise
later in the chapter. Observe that the approximating pdf is entirely characterized by the
parameters of the HMM, i.e., by the initial state probabilities {P(i)}' 1 , the state transition
probabilities {Q(i, j)} , and the state output densities {f1()} . Thus, we seek optimal
values for these parameters expressed in terms of the true pdf. Because all of the HMM
parameters depend upon the mapping 0(.) defined in (3.8), our selection of the best possible
state-space partition will be a critical part of the overall optimization procedure.

In most situations, our actual objective is not to approximate the state-vector subse-
quence X:N-1, but rather to approximate the signal subsequence YO:N-1 defined by

Y0:N-1 0 Y, Y1,'''- , YN-1)- (3-16)

It turns out, however, that the optimal state-vector approximation XO:N-1 is not only much
easier to derive, but can also be used to generate an optimal approximation

YO:N-1 0(Y, 1 , * ,YN-1) (3.17)

of the true signal subsequence. In particular, the elements of YO:N-1 are individually defined
by

Yt = G(Xt), t=0,1,--. N-1, (3.18)

where the function G(.) returns the first element of its vector argument. It is straightforward
to show that the signal approximation YO:N-1 is once again the output of an HMM; in fact,
this HMM has exactly the same Markov chain parameters as those derived for XO:N-1-
However, an important change to the model is that a univariate pdf gj(.) must now be
assigned to state i of the HMM to take the place of the K-variate pdf fi(.) that was
assigned earlier. In light of the relationship in (3.18), we see that this new pdf can readily
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be derived from the old pdf by integrating out the unnecessary elements, as shown by

gi(y) = /YYt1tK)j fi(y, Y-1t--K) dytI:t-K- (3-19)

3.1.3 Chapter Organization

The remainder of the chapter is organized in the following way. We begin by motivating

and defining a figure of merit by which we can assess the quality of a given HMM-based

approximation; this allows us to formulate the approximation procedure as a well defined

optimization problem over a subclass of HMMs. We then give a detailed formulation and

solution of the approximation problem in the case where the true signal is taken to be a sta-

tionary, first-order random process which is in general non-Gaussian. The results obtained

through this theoretical analysis are then implemented using a numerical, gradient-based
algorithm; with this algorithm, we develop several different HMM-based approximations
for a specific first-order AR linear-Gaussian random process, and we demonstrate that the

accuracy of the approximation improves as the number of states included in the model is

increased. We then show that our theoretical results can be readily generalized so that they

apply equally well to higher-order stationary AR processes. Finally, we provide a discussion

of the key concepts developed in the chapter, including an analysis of the advantages and

limitations of certain assumptions we have placed on the true and approximate processes.

3.2 Establishing Criteria for a Good Approximation

Thus far we have stated that the mathematical structure of our signal approximation will

take the form of an HMM, but we have not yet established criteria that would allow us to

determine whether a particular approximation is the best within a specified class. We begin

this section by describing a universal metric by which the best possible signal approximation

can be identified. The optimization procedure based on this metric would, roughly speaking,
seek to maximize the confusion of an observer who is trying to distinguish between the

true and approximate processes using complete statistical information about each process.

Because this metric is difficult to analyze, however, we ultimately settle on an alternative,
information-theoretic figure of merit known as Kullback-Leibler distance, which provides a

measure of similarity between the pdf of the true signal and the pdf of the approximate
signal.

3.2.1 Minimax Probability-of-Error Approach to Approximation

Let us first consider the following experiment, which, for the sake of simplicity, involves the
approximation of only a single random variable, rather than an entire random process: Let

fy(-) be the known pdf of the random variable Y, and let = {fgk(.)} be a collection of
feasible approximations of fy(-). We wish to find the best approximation contained in the

set F. To determine the quality of a particular approximation, we seek the assistance of

an independent observer and carry out our quality test in the form of a game. Specifically,
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suppose the observer is informed that he will be given, in each of a series of experimen-
tal trials, a set of realizations {zt}'N 1 from the N random variables {Z}IN 1 , which are
independent and identically distributed according to the pdf fz(). His task during each
experimental trial is to render a decision indicating which of the following two hypotheses
is true:

Ho : fz(H- fg- (-
Hi : fz(-) = fy (-)

The observer is furnished with complete descriptions of both fy (.) and f, (.), and he is told
that the hypotheses Ho and H 1 are equally likely to be true. Our game is structured such
that, when the observer guesses correctly, we must pay him a fixed amount of money; when
the observer guesses incorrectly, he must pay us a fixed amount. The goal of either player
in the game is to maximize his total winnings over the series of experimental trials.

Clearly, with his complete knowledge of the experimental setup, the observer can im-
plement the best possible statistical test for deciding between Ho and H 1 , namely the
likelihood ratio test (LRT) or Neyman-Pearson test [15, 94, 132, 147, 215]. Thus, to render
his decision, he uses the optimal rule

H0 true (3.20Declare when f(ZO:N-1) 0, (320)

where f(.) is the log-likelihood ratio defined by

f(ZO:N-1) =log 0fYO:N-1 (ZO:N-1) (3.21)
f0:N-1 (ZO:N-1)

Of course, we are well aware that the observer will use the best available decision rule on
each trial; to do otherwise would be to unnecessarily increase the chance of a monetary loss.
It can easily be shown that, when the observer uses this optimal rule, his expected winnings
will increase directly with the probability that he makes a correct decision. If we now use
our knowledge of the two densities involved, as well as our knowledge of the observer's
gaming strategy, we can quantify his winnings simply by calculating this probability. This
calculation yields

Pr { Correct decision}

= Pr{Ho true, Declare Ho} + Pr{Hi true, Declare H1 } (3.22)

= Pr{Ho true}Pr{Declare Ho | Ho true}

+ Pr{H1 true}Pr{Declare Hi I Hi true} (3.23)

= Pr{f(Zo:N-1) < 0 1 Ho true} + 1Pr{e(Zo:N-1) ;> 0 1 H1 true} (3.24)

=] ff|Ho( jfz = f ,) < + f f|H 1 ('I fz = fy) d, (3.25)

where fi|Ho (-) and fe|H 1 (-) are the conditional densities of the log-likelihood ratio f(.) given
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that HO is true and that H1 is true, respectively. Note in the final step above that we

have indicated explicitly the dependence of the observer's winnings on the approximate pdf

fg,(- ).
The probability expressed in (3.25) will be fixed once we have specified the pdf fg(-).

We are allowed to select any pdf from the set F. Clearly, if we are to maximize our winnings,
we should choose the pdf that makes the above probability as small as possible. That is,
the optimal pdf f$!(-) will be the one that satisfies

= argmin { feIH(fzfV)d±+ f fe|Hi(6IfZfy)d} (3.26)

Although we have expressed the optimal density here in terms of the observer's probability

of correct decision, we could equivalently represent it in terms of his probability of error.

From this alternative perspective, the optimal density in F is the one causes the most

confusion for an observer who is trying to discriminate between fy(-) and fg (-) using a

statistically optimal test.

3.2.2 Kullback-Leibler Distance as a Figure of Merit

While it is very useful to reason through an experiment such as the one described above to

find the best, most general measure of approximation quality, unfortunately the conclusions

we have drawn cannot be readily applied because the optimization problem in (3.26) is

extremely difficult to solve. We must therefore search for an alternative metric which

also indicates the degree of similarity between two distributions, but which is much more

mathematically tractable. Although several such metrics are available, we now turn our

attention to a popular information-theoretic metric that is particularly well suited to our

approximation problem, namely Kullback-Leibler distance.2

If fy (-) and f, (.) are univariate probability density functions, then the Kullback-Leibler

distance between them, which we denote by D(fy, fp), is defined by

D(fy, fp) = j fy (y) log fC dy, (3.27)
fy fg, (y)

where Y represents the region of support for fy (-). If, instead, fy (.) and fg (-) are univariate

probability mass functions, then the appropriate definition of Kullback-Leibler distance is

D(fy, fp) = E fy (y) log f (Y), (3.28)
yECfY (y)

2The Kullback-Leibler distance measure derives its name from the authors who originally introduced it
into the information theory literature [105]. This metric is also discussed at length in [106], and has since
been investigated extensively by a number of other researchers [13, 43, 53, 175, 176]. It is referred to by many
different names in the literature, including cross entropy, relative entropy, directed divergence, information
divergence, I-divergence, and discrimination information.
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where Y now represents the set of possible outcomes under the pmf fy(.). When applying
either of the above definitions in the sequel, we will use the conventions

lga 0 ifa=0andb>0; (3.29)
b oo ifa>Oandb=0,

which follow from limiting arguments using the continuity of the function a log(a/b) on
the set {(a,b)|(a,b) C (0,oo) x (0,oo)}. Note that both (3.27) and (3.28) have obvious
extensions to the case in which the functions fy(.) and fg(-) are multivariate.

The Kullback-Leibler distance serves as a convenient measure of our ability to discrimi-
nate between two classes of random observations. Suppose, for example, that fy (y) = fg, (y)
for y E R (except possibly on a set of measure zero). In this case, if we were given obser-
vations that were equally likely to be realizations of Y or of Y, we should not expect to
be able to determine the true source of the observations any better than could a simple
coin flip. This is a very special case in that it represents the smallest achievable degree of
discriminability between two distributions and simultaneously yields the smallest possible
value of D(-), for we have from (3.27) that D(fy, fp) = 0. Now let us consider the opposite
extreme in which fy(.) and fg(.) have non-overlapping regions of support, i.e., the case in
which fg (y) = 0 whenever fy(y) > 0, and vice versa. In this case, we could determine
the true source of any observations given to us with absolute certainty, even if we were
given only a single realization from either Y or Y. Accordingly, in this case we have that
D(fy, fp) = oc. This demonstrates that using Kullback-Leibler distance as a measure of
discriminability is at least reasonable in each of the two extreme cases.

Strictly speaking, the function D(.) is not a true distance function by the standard
mathematical definition [161]. In particular, although it is true that D(fy, fp) > 0 with
equality if and only if fy(y) = fg(y) almost everywhere, it is not true in general that D(.)
satisfies either the symmetry property

D(fy, fp) = D(fg, fy) (3.30)

or the triangle inequality

D(fy, fp) < D(fy, f y) + D(f y, fp,). (3.31)

Nonetheless, it is useful to adopt the notion that the "distance" between the fy(-) and fg (-)
increases as D(fy, fp) increases, in the sense that the associated random variables Y and k
become easier to distinguish. In Appendix D, we discuss in detail how the Kullback-Leibler
distance relates to other, more familiar statistical measures of approximation quality.

3.3 Optimal HMM-Based Approximation of a First-Order
AR Process

Having established a suitable metric for assessing approximation quality, we now seek to
apply the above concepts in a very simple, illustrative case. Specifically, in this section we
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derive an optimal HMM-based approximation to a stationary signal {Yt} which is assumed

to obey the first-order nonlinear difference equation

Yt = h(Y_ 1 , Wt), (3.32)

where h(-) is a deterministic function and {Wt} is a sequence of i.i.d. random variables
described by the pdf fw(). We assume that complete descriptions of the functions h(.) and

fw(-) are given. In addition, since the pdf of the random process {Yt} can be determined
exactly from this given information, we assume that it, too, is known.

3.3.1 Some Preliminary Observations

Before attempting a detailed problem formulation, let us first discuss certain basic aspects
of the first-order signal approximation problem. Observe from (3.32) that the scalar-valued
signal variable Y by itself constitutes a suitable state vector for the dynamical system at
time t. Thus, since the state vector is only one-dimensional in this case, we can consider
the state space to be the real line, and we can think of the disjoint "regions" in state space
referred to earlier to be disjoint intervals whose union makes up the real line. In this one-
dimensional example, therefore, a segmentation of the state space into L regions can be
conveniently described by a collection of L + 1 distinct points do, di, - - - , dL on the real line,
as depicted in Figure 3-2. We refer to these as breakpoints, and we assume that they satisfy
the conditions

-oo = do < di < -.-- < dL-1 < L =(3.33)

We will sometimes use the vector notation d to refer to the ordered collection of breakpoints
(do, di, - - - , dL)-

The above conditions imply that the mapping 0(.), which enforces the state-space par-
titioning constraint, is now defined by

1 if -oo < y < di;

2 if di < y < d2 ; (3.34)

L if dL_1 < y < 00.

We will make extensive use of this mapping as we derive the optimal finite-state approx-
imation to the first-order AR signal {Y}. Recall from our definition of an HMM-based
representation that the densities {f(-)}f_ 1 describing the state vector were restricted in
that their regions of support were not allowed to overlap. In the present case, since the
state variable at time t and the signal variable at time t are identical, these same region-
of-support constraints also apply to the densities {g,(.)}t 1 . In particular, the region of
support for the function gi(.) will be the interval [di_ 1 , di].
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di d2 d3 -.-. d _-

Figure 3-2: Partitioning of the state space in the first-order signal approximation problem
via the breakpoints do, di,--, dL. The resulting segmentation of the state-variable pdf is
also indicated.

3.3.2 Formulation of the Approximation Problem

The Kullback-Leibler distance between the densities for the true signal vector Y and the
HMM-based approximate signal vector Y' is given by3

U I fd ) fy (y) log dy. (3.35)
fi, (y)

For our purposes, however, it will be more convenient to work with the alternative version

of this expression given by

D fy, fg ) = fy (y) log fy (y) dy - Ify (y) log f (y) dy. (3.36)

Because the true pdf fy(-) is fixed and known, the first term on the right hand side above is

completely independent of the parameters we will choose for the approximating pdf fi(-).
Thus, minimizing the original objective function D(fy, f ,) is equivalent to maximizing the
modified objective function D'(fy, f,.2) defined by

D'(yI f_0 = fy (y) log fg (y) dy. (3.37)

The maximization of D'(fy, fi ) is to be carried out over a set of approximate densities
having a very special structure. Specifically, each density in the set can be character-
ized by a tuple, which we denote by V, consisting of all parameters needed to specify an
L-state HMM-based representation of the true signal; these parameters include the break-
po e d, theoin of itial state probabilities ceZ the sal transition probabilities

3In this section and in m any of the remaining sections in the chapter, we will use the symbol Y to refer
to the signal vector being approximated, in place of the more cumbersome symbol Y:N-1-
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{Q(i, j)} =1, and the output densities {gi(-)}f 1. Let us denote by P the collection of all
such tuples that satisfy the constraints mentioned in the preceding subsection as well as
those outlined in the introduction to the chapter.4 Our problem is then to find the best
such tuple 1'*, which is defined by

%*= argmax fy(y)logfv(y;')dy. (3.38)

3.3.3 Derivation of the Approximate Signal Density

We now wish to derive an expression for the pdf of the approximate signal vector Y
(Yo, Y1, - - - , kN-I) in terms of the parameters that characterize its associated HMM. We
proceed in the usual way by first accounting for all possible values of the underlying state
sequence E = (6 0, 8 1, - - - , EN-1) and then conditioning the HMM output on each of these
contingencies. By following this approach, we arrive at the initial pdf expression

fg (y) = 1 Pr{E = 6}file (y 1e = 6). (3.39)
0

We can introduce a bit more detail into this expression by taking advantage of two special
properties of the HMM structure, namely that (i) the state sequence E obeys the Markov
property; and (ii) the elements of the output sequence Y are statistically independent when
conditioned on a particular value of E. Using property (i), we can write

N-1

Pr{E = 6} = Pr{Eo = Oo} -H Pr{8O = Ot I t1 Ot-i} (3.40)
t=i

N-1

= P(OO) -7 Q(Ot-i, Ot). (3.41)
t=1

From property (ii), we have that

N-1

fvie (y IO 0) J fi E(yt t t) (3.42)
t=O
N-1

=11 got (yt). (3.43)
t=o

4For the moment, we leave the structure of each pdf gi (-) unconstrained. This will not pose any difficulty
during the analysis presented in this chapter. In later chapters, however, we will find it convenient from a
practical standpoint to restrict this pdf to be a Gaussian mixture with a fixed number of components.
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By substituting (3.41) and (3.43) back into (3.39), we obtain the alternative expression for
fv (-) given by

L L L N-1 N-1

f(y) = -E ... P(00) - 1 Q(Ot-1, 0) go, (yt). (3.44)
00=1 61=1 ON-1=1 t=i t1O

Based on this new expression, it appears, at least upon first inspection, that the pdf of Y
is a very complex function; specifically, the pdf is represented above as a sum of LN terms,
where each term accounts for a possible realization of the underlying state sequence. In
fact, almost all of of the terms appearing in the summation in (3.44) are equal to zero; the
sole exception is the term corresponding to the particular state sequence

0 = (0(yo), 0(y), - , 6(yN-1)). (3.45)

Using this fact, we can now express the pdf of Y in the much simpler form

N-1 N-1

f(y) = P (6(yo)) - Q (6 (yt_1), 6(yt)) - go (Y) (yt). (3.46)
t=1 t=O

3.3.4 Decomposition of the Objective Function

Now that we have derived an expression for the pdf of the approximate signal vector, let us
once again turn our attention toward the maximization of our objective function D'(fy, ft).
It is apparent from (3.37) that we first need an expression for the natural logarithm of the
pdf fi(-). Using (3.46), we easily have that

N-1 N-1

log fA (y) = log P(9(yo)) + E log Q ((yt_1), 0(yt)) + E log go(Y')(yt). (3.47)
t=1 t=o

Upon substituting this expression into (3.37), we obtain a more explicit form of the objective
function given by

D'(fy, fj) f fy (y) log P(0(yo)) dy

+ f y~y)N-1f fyE(y) log Q ((yt-1), 0(Yt)) dy
t=1
N-1

+ f y (y) E log go (Y')(yt) dy (3.48)
t=1

D1 + D2 + D3, (3.49)

where the terms Di, D2, and D3 are defined in the obvious way. Observe that these
three terms involve different components of the HMM, and can therefore be maximized
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separately. 5 This is precisely the strategy we shall pursue in the next three subsections.

3.3.4.1 Maximization of Di

We begin by solving for the values of the initial state probabilities {P(i)}_ 1 that maximize
the term D1 . Note first that D1 can be written as

D1  J fY (y) log P(0(yo)) dy

= fyo (yo) log P(0(yo)) dyo,

(3.50)

(3.51)

where in the latter step we have eliminated the superfluous variables y1, Y2, - - , YN-1 by
integrating them out. To simplify the expression for D1 even further, it will be convenient
to represent the integral in (3.51) as a sum of integrals taken over disjoint portions of the
real line. In particular, we use collection of breakpoints {do, di,. -, dL } to segment the real
line according to

R = [do, d1 ] U [di, d2] U -.. U [dL-1, dLl, (3-52)

and then write D1 as

L d

j=1 d

fy (yo) log P(0(yo)) dyo. (3.53)

Next, recall that the function 0(-) is, by definition, constant over
[dj-1, dj], and can therefore be factored out of each of the above
the expression

fyo (yo) dyo log P(j).

any interval of the form
integrals. This leads to

(3.54)

Under the assumption that the breakpoints are fixed and that all constraints on the initial
state probabilities are satisfied, the above sum will be largest if we use the assignment

P jl
P(J) =

dj_1
fy (yo) dyo, (3.55)

A proof of this claim can be found in Appendix B.

5 Actually, this is not entirely true, since the initial state probabilities {P(i)}-1i and the state transition
probabilities {Q(i, j)}f,=1 are coupled through the stationarity constraint given in (3.11). However, as we
shall soon discover, a fruitful strategy in this case is to proceed with maximizing the terms separately and
then to verify that the optimal solutions do indeed satisfy the constraint.
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3.3.4.2 Maximization of D 2

We now turn to the problem of maximizing D 2 through an appropriate choice of the state
transition probabilities {Q(i,j)}L _1 . First, observe that we can write D 2 as

N-1

D2 = fY (y) log Q((yt-1), 0(yt)) dy (3.56)
t=1

N -1

fy (y) log Q (0(yt-1), 0(yt)) dy (3.57)
t=1
N -1

- fYt-1,Y (t-1, yt) log Q ((yt- 1), 0(yt)) dyt_1 dyt, (3.58)
t=1

where in the second step we have interchanged the order of summation and integration,
and in the last step we have once again eliminated the superfluous variables within each
integral, i.e., all variables having indices other than t - 1 or t. At this point, however, we
can simplify (3.58) even further by using the fact that the process {Yt} is stationary, and
therefore that the condition

/Yt _1Y= (yo, Y1) = fyo,Yi (yo, yi) (3.59)

is satisfied for all yo, yi E R and for t = 1, 2,- , N - 1. This implies that (3.58) can be
written as

N-1 c o
D2 = fyo,y (yo yy) log Q(O(yo), O(y1)) dyo dy1  (3.60)

t1 f-00 -00

= (N - 1)f fro,y (yo, y1) log Q(O(yo), (y)) dyo dy1. (3.61)

As a final step in reducing this expression to simplest terms, we once again invoke the
two-part strategy in which we first decompose each integral into a sum of L integrals over
segments of the form [dj_ 1 , dj], and then use the fact that the function 0(-) is constant over
each such segment so that we can factor it out of the integral. Applying this strategy yields
the new formulas

L L di djD2 (N - 1) fyo,y (yo, yi) log Q(6(yo), O(yi)) dyo dy1  (3.62)

LL( d d

= (N - 1) iI fy0,y (yo, yI) dyo dyI log Q(i,j). (3.63)
i=1 j=1 di_1 d .. 1

The decomposition of the joint bivariate pdf fyo,y (-) implied by (3.63) is depicted in Fig-
ure 3-3.

Now observe that, for a fixed value of i, the elements Q(i, 1), Q(i, 2), - , Q(i, L) must
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d L

I I
I I I
I I I

I I I

d --- --

2
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- --- - - - - - - - -

di d2

Figure 3-3: Contour plot of
corresponding decomposition

joint bivariate pdf of two successive state variables and its
into rectangular regions by the breakpoints do, dl, - - - , dL.

form a pmf. Moreover, there are L such pmfs that make up the entire collection of state

transition probabilities {Q(i, j)}{g_1, and each of these L pmfs is entirely independent of

the others; hence, we can solve for each pmf separately. It can be shown (as before, using

the arguments given in Appendix B) that the elements Q(i, j) that maximize D 2 , subject

to the usual normalization constraints, are given by

f i 1 f . fyoy (yo, y1 ) dyo dy1 = 1,2,--- L.

d fyo (yo) dyo
(3.64)

3.3.4.3 Maximization of D3

Finally, we consider maximizing the term D 3 . As before, we can apply the usual manipu-

lations to integrals and summations within D3, taking advantage of the stationarity of the

process {Yt} as well as the special structure of the indexing function 6(-) and the breakpoint
vector d, to obtain

N-1

3 fY (y) log go(y,) (yt) dy
t=1

N -1

1:ffy (y) log go6(y,)(yt) dy
t=1

(3.65)

(3.66)
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N-1 m0

frJ (yt) log go(y,)(yt) dyt
t=1 -00

=N f 0fyo (yo) log gotyo) (yo) dyo

L dj

j= j-1

(3.67)

(3.68)

(3.69)fyo (yo) log gj(yo) dyo

Under the assumption that d is fixed, we can now maximize each of the L terms in (3.69)
separately, since they are entirely uncoupled. Once again, from arguments presented in
Appendix B, it follows that the optimal output densities {gj(-)}L I of the HMM are given
by

fro (Y)
gj(y) = f y(u)du

0
j = 1, 2 , ... , L.

otherwise;

3.3.4.4 Verification of the Stationarity Constraint

Thus far, we have adopted the strategy of maximizing each of the terms DI, D2 , and D3
without regard to the constraint that the derived Markov chain {e} must be stationary.
This requirement has no effect on the output densities associated with the states, but it does
place a simultaneous restriction on the initial state probabilities and the state transition
probabilities. We now verify that the solutions obtained to the unconstrained maximization
problems above actually meet this constraint. Recall that we must have

L

P(i)Q(i, j) = P(j, j = 1, 2,. .. , L. (3.71)

If we now insert into this expression the optimal values we have already obtained for P(i)
and Q(ij), we find that

fyo:1 (Yo:1) dyo:1
-j1

di

fyo,yi (yo, Yi) dy1 dyo

fyo,yi (yo, Yi) dy1 dyo

fyo: (yo:1) dyo:1

Sfyo (yo) dyo

(3.70)

Id

L 1  di

L di -

i
1 d3 

_

f 
d, 

oo

d 3-1 -Co

(3.72)

(3-73)

(3.74)

(3.75)
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fyo (yo) dyo (3.76)

= P(j), (3.77)

which is what we wished to show.

3.3.5 Identification of Optimal Breakpoints

When solving each of the maximization problems above, we assumed the values of the

breakpoints do, di, - - - , dL were fixed. Consequently, for any given collection of valid break-

point values, we can now obtain optimal solutions for the HMM parameters directly from

the formulas in (3.55), (3.64), and (3.70). Clearly, however, any change in the values of the

breakpoints will bring about a corresponding change in the values of these conditionally op-

timal solutions. The only remaining part of the overall maximization problem, and the part

which we presently consider, is the optimal selection of the breakpoints. To find the optimal

breakpoints, let us first reconstruct the original objective function D' = D1 + D2 + D 3 using

all of the optimal solutions just obtained for a fixed value of the breakpoint vector d.
Note that if we take the optimal values of the initial state probabilities from (3.55) and

substitute them back into the derived expression for Di (given in (3.54)), we find that the

largest possible value of D1 , conditioned on a particular value of d, is given by

fyo (yo) dyo )
d.

log fyo (yo) dyo
(Jd -1

Next, if we take the optimal values of the state transition probabilities from (3.64) and

substitute them back into the derived expression for D 2 (given in (3.63)), we conclude that

the maximum conditional value of D2 is given by

D2 = (N - 1)
L L

i=1 j=1

( di

fdi _ 1

L L /fdi

(N - 1)E (
i=1 j=1 di

fd,
J d_1

dj1

I d_

-._1

fyo: (yo:1) dyo:1)

fyo: (yo:1) dyo: )

log

di

log (d-

d -

fdi

dJi

fd,-

fY 0:1 (yo:1) dyo:1

1 fyo (yo) dyo

fyo:1 (yo:1) dyo:1I

fyo0: (yo:1) dyo:1 )
di

log (i fo (yo) dyo
di-1

L

=(N - 1)
L di

j=1 di
I d,

d_ 1
fyo: (yo:1) dyo:1 )

di
log (d- I djdi_1

fyo:i (yo:1) dyo:1)

fyo (yo) dyo)
di

log (d- fo (yo) dyo )

where in the last step we have simplified the double integral in the second term by first

(3.78)

L -- di
-(N - 1) d

(3.79)

79

Id j

L (d-
DI =E d7

j=1 -1

L L di dj
-(N - 1) E1

i=1 j=1 (di-i fd J-1
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interchanging the order of the inner summation and the outer integration, and then by
integrating out the superfluous variable yi.

Finally, if we take the optimal values of the HMM output densities from (3.70) and
substitute them back into the derived expression for D 3 (given in (3.69)), we find that the
maximum value of D3, conditioned on the value of d, is given by

L

D 3 = NE
j=1

d_

L d
=NE

j = Ifdj_

L d,
-N E

j=1 d_ 1

fy0 (yo) log ddyo
fdJ fyo(u) du

fy(yo) log fy(yo) dyo

dj

fy. (yo) log fo (u) du dyo
(d J_ 1

fy (yo) log fyo(yo) dyo

L dj

N E
j=1 (dJ_1

fyo (yo) dyo)
dj

log
( d 1

fyo (yo) dyo ).

Let us now reconstruct the maximum conditional value of the overall objective function
by calculating the sum of the three components above. This yields the expression

' = D1 + D2 + D3 (3.83)
L L

=(N-1)E
i=1 j=1 ( 

di

fdi_1
I dj

dJ 1
fyo:i (yo:1) dyo:1) -

log I
\ di_1 Jd J 1

fy (yo) dyo )
di

log (d-

fyo0: (yo:1) dyo:1)

fyo (yo) dyo)

L di
- N El d- fy(yo) log fyo (yo) dyo. (3.84)

Observe, however, that the last term on the right-hand side above can be written as

fyo (yo) log fy (yo) dyo = NJ fyo (yo) log fyo (yo) dyo,

and is therefore invariant with respect to the breakpoint vector d. This allows us to drop

(3.80)

(3.81)

L d
=NE

1 =Ifdj_

(3.82)

(di
di_1

L di
N 

fd- (3.85)
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the final term from the objective function D', and subsequently remove the factor of N - 1
that multiplies the two remaining terms. We can then restate our present goal as

(3.86)arg max D"(d)
-oC=do<dl<...<dL=0C

where D" is the new objective function given by

L L

D"(d) = (N - 1) E
i=1 j=1 (idi dIfdi-1 f J _ 1

L d, (
~~ E Yo (o )

=1 ( d j-1

L di

d, 1

fyo0: (yo:1) dyo:1 -

log (d! dj

(di_1 d J_1

dyo )

fy1 (yi) dy )

d,

log
d f_

di
log

fyo: (yo:1) dyo:l

fyo (yo) dyo

fy1 (yi) dyi .

Although the above expression for D"(d) may at first seem cumbersome (particularly in
view of the fact that the last two terms are equal and could therefore be consolidated), we
have written it in such a way that it can now be easily identified as a familiar information-
theoretic measure. In particular, D"(d) represents the mutual information between any

pair (8t, t+1) of successive state variables in the underlying Markov chain whose param-
eter values are conditionally optimal given d. Hence, maximizing D"(-) is equivalent to

maximizing I(Ot, 8t+1), the mutual information between the discrete random variables at
and 8t+-.

To see this more directly, let us assume, without loss of generality, that the variables in

question are 00 and 01. Then for a given value of d, the marginal pmfs for these random

variables, which we denote by Po and P 1, respectively, are given by6

Jdc,Po (j; d) =

Pi(i; d) =

fyo (yo) dyo j = 1,2,--. ,L (3.88)

(3.89)

and their joint pmf is given by

fyo0: (yo:1) dyo:1 (3.90)

'Of course, from our earlier derivation, we know that P0 and Pi must be identical (owing to the sta-
tionarity constraint), but we nonetheless use distinct symbols here to emphasize the mutual information
concept.

(3.87)

81

fy, (y1) dy1 i = 1, 2,. - - , L

R(i, j; d) = Ii d

fdi_1 fd J_1
i, j = 1, 2, -- -, L.
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By substituting these expressions back into (3.87), we can write the objective function much
more plainly as

L L

D"(d) = R(i, j; d) log R(i, j; d)
i=1 j=1

L L

+ Po(j; d) log Po(j; d) + Pi(i; d) logP1(i; d) (3.91)
j=1 i=1

= I(EO, 01; d). (3.92)

This representation makes it clear that we should choose the value of the breakpoint vector
d that yields the largest possible mutual information between successive state variables of
our HMM. While there exists no general closed-form solution for such a value, we now have
a very useful rule for finding an optimal set of breakpoints.

3.4 Generation of Numerical Approximations

We now demonstrate that an optimal HMM-based representation of a particular AR signal
can be constructed using a special gradient-descent technique derived in Appendix E. At
the core of our example lies the true signal to be approximated, which, for the purpose of
analytical tractability, we have chosen to be a first-order AR Gaussian process. We compare
realizations generated by several different approximations of this process and present tables
of the parameters characterizing each HMM. In addition, at the end of the section, we
examine the probability of error of an optimal detector, which is designed to determine
whether it has been given a realization of the true process or an approximate process.

3.4.1 Statistical Characterization of the True Random Process {Y}

Throughout this section, we assume that the true source signal {Yt} obeys the first-order
linear difference equation given by

Y = aYt_1 + Wt, (3.93)

where a is a real number satisfying -1 < a < 1 and {Wt} is a sequence consisting of i.i.d.
Gaussian random variables whose pdf fw( ) is given by

fw (w) = A(w, 0, 1). (3.94)

Observe that we can equivalently describe the process {Yt} as the output of a linear time-
invariant system whose impulse response {ht} is the discrete-time sequence defined by

a0, t ;> 0,
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and whose input is the white Gaussian noise sequence {Wt}. The constraint imposed on the
autoregressive parameter a insures that the system described by the above impulse response

is stable, and hence that the output of the system, {Y}, is stationary,

From our discussion in earlier sections, we know that, in order to solve for the best
parameter values of any HMM-based representation of {Yt}, we will require the marginal
pdf for the random variable Y as well as the joint pdf of the pair of random variables
(Yt, Yt+ 1 ). Since {Y} is zero-mean, both of these densities are completely characterized

by their second-order moments. Let us first calculate the variance of the single random

variable Y. Using the fact that the elements of {Wt} are statistically independent and have

unit variance, we can write

Var {Yt} VarE a kWt k (3.96)
k=0

= (ak) 2 Var {Wt-k} (3.97)
k=O

1 (3.98)

Therefore, the pdf for the random variable Y can be expressed as

fy (y) = a)xp }( - 2)y2 (3.99)

Next, let us solve for the covariance of the pair of random variables (Y, Yt+1). Using the

autoregressive equation that relates these two variables, we have

Cov {Yt, Yt+1} = {Y(aY + Wt)} (3.100)

= aVar {Yt} (3.101)

= a2. (3.102)
1-a 2

From the results in (3.98) and (3.102), we conclude that the covariance matrix C of the

random vector Yt:t+1 must have the form

a 1
C= -a a2  1 -a 2  (3.103)

1- a2 1-a 2 J

It is straightforward to show that the determinant of this matrix is given by

ICI 1
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1.00

i di P(i) Q(i, -)
0 -00 - -

1 00 1.00 1.00

Table 3.1: Diagrammatic representation and parameter definitions for 1-state HMM-based
approximation of the AR Gaussian process Y = 0.8Y- 1 + Wt.

and that its inverse is

C-1 =[ a (3.105)
1-a 1

Using these expressions, we can express the pdf of Yt:t+1 as

fYt:tw (Y) = -a 2 exp {IYT[ I -a -] (3.106)
27r -a 1

3.4.2 Descriptions of Various HMM-Based Approximations of {Y}

To conduct our finite-state modeling experiment, we arbitrarily selected the parameter value
a = 0.8. Then, using the expressions for the signal densities given in (3.99) and (3.106), to-
gether with the numerical optimization technique derived in Appendix E, we created several
distinct HMM-based approximations for the true signal. The single factor distinguishing
these approximations was the number of states making up the underlying Markov chain
within each HMM.

Our collection of approximations consisted of a 1-state HMM, a 2-state HMM, a 3-state
HMM, a 5-state HMM, and a 7-state HMM. Complete parametric descriptions of these
finite-state approximations are given in Tables 3.1, 3.2, 3.3, 3.4, and 3.5, respectively. Note
that each of the first three tables have been augmented with a corresponding diagram of the
components of the HMM so that its dynamics and its output can be more easily visualized.
Such diagrams become rather unwieldy for higher-order models, however, so they have been
omitted from the remaining two tables. We remark in addition that the probabilities listed
in each table have been rounded to two decimal places for succinctness. Thus, although
certain probabilities appear to be equal to zero, all probabilities are, in fact, strictly positive.
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0.79 0.79

0.21

<2

0.21

idi P (i) Q(i, -
0 -00
1 0.00 0.50 0.79 0.21
2 oo 0.50 0.21 0.79

Table 3.2: Diagrammatic representation and parameter definitions for 2-state HMM-based
approximation of the AR Gaussian process Y = 0.8Yt- 1 + Wt.

0.58

0.70 0.70

i di P(i) Q(i, .)
0 -00 - - -

1 -0.86 0.30 0.70 0.28 0.02
2 0.86 0.40 0.21 0.58 0.21
3 00 0.30 0.02 0.28 0.70

Table 3.3: Diagrammatic representation and parameter definitions for 3-state HMM-based
approximation of the AR Gaussian process Y = 0.8Yt- 1 + Wt.
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i di P(i) Q(i,.)
0 -00
1 -1.89 0.13 0.58 0.34 0.07 0.01 0.00
2 -0.59 0.23 0.18 0.45 0.30 0.07 0.00
3 0.59 0.28 0.03 0.25 0.44 0.25 0.03
4 1.89 0.23 0.00 0.07 0.30 0.45 0.18
5 oo 0.13 0.00 0.01 0.07 0.34 0.58

Table 3.4: Parameter definitions for 5-state HMM-based representation of the AR Gaussian
process Y = 0.8Yt_1 + Wt.

Table 3.5: Parameter definitions for 7-state HMM-based representation of the AR Gaussian
process Y = 0.8Yt_1 + Wt.

Some additional notable aspects of our HMM-based approximations are highlighted in
Figures 3-4 through 3-8. Each of these figures characterizes a particular finite-state model
from the set of five models that were constructed; the information presented in each figure
allows us to better understand the underlying dynamics of the associated HMM and to
compare the attributes of the output of the HMM to that of the true Gaussian process.

In the top portion of each figure, we show a contour plot of the critical bivariate Gaus-
sian pdf from (3.106) as well as a plot of its univariate projection (i.e., the associated
marginal pdf), whose functional form is given in (3.99). Superimposed on each of these
plots is a collection of lines corresponding to the optimal breakpoints determined for the
model; these lines help us to see how both the original one-dimensional state space and the
two-dimensional coordinate plane were segmented into appropriate regions of integration.
In the bottom portion of each figure, we show realizations from the HMM and from the
true Gaussian process, as well as corresponding scatter plots that were constructed from
successive sample values occurring within each realization. These two sets of plots allow us
to quickly assess, by means of a direct visual comparison, the quality of a given HMM-based
representation of the original signal.

From the plots shown in Figure 3-4, we can examine the key characteristics of our 1-state
approximation. Recall that any 1-state HMM is inherently a memoryless process, i.e., the
random variables that make up the process exhibit no temporal dependence whatsoever.
This fundamental property of the 1-state model is clearly evident in both the realization
and the scatter plot shown in Figure 3-4(b). Specifically, note from the scatter plot in
this example that, although the marginal distribution of the samples from each realization

i di PWi QW, -
0 -00 - - - - -

1 -2.51 0.06 0.52 0.34 0.12 0.02 0.00 0.00 0.00
2 -1.40 0.13 0.16 0.38 0.31 0.12 0.03 0.00 0.00
3 -0.45 0.19 0.04 0.21 0.35 0.27 0.11 0.02 0.00
4 0.45 0.21 0.01 0.08 0.24 0.34 0.24 0.08 0.01
5 1.40 0.19 0.00 0.02 0.11 0.27 0.35 0.21 0.04
6 2.51 0.13 0.00 0.00 0.03 0.12 0.31 0.38 0.16
7 00 0.06 0.00 0.00 0.00 0.02 0.12 0.34 0.52
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appear closely matched, the dispersion pattern of the points about the origin is approxi-

mately the same in all directions - an indication that successive samples of the process are

independent.
In Figure 3-5, we can see the temporal correlation structure of the approximate process

begin to take shape, owing to the the dynamics of its underlying 2-state Markov chain.
Nonetheless, the output of the 2-state HMM still appears to be a rather coarse represen-
tation of the true process, since it is capable only of switching back and forth between an

approximate positive random value and an approximate negative random value.
As we can see from Figures 3-6, 3-7, and 3-8, however, the finite-state approximation

gets progressively better as more states are incorporated into the model. In particular,
from the plots shown in Figure 3-8, we see that the 7-state HMM is capable of producing a

realization that is nearly indistinguishable - at least in its observable statistical attributes

- from a realization of the true random process.
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Figure 3-4: Modeling of the AR Gaussian process Ye = 0.8Y-1 + We using a 1-state HMM:
(a) (left) contour plot of bivariate Gaussian pdf for the pair of random variables (Yit, Yt+1);
(right) plot of its univariate projection, the marginal pdf for the single random variable Yt;
(b) (left) realization yo9gge from 1-state HMM; (right) corresponding scatter plot of the pairs
(9t Pt+1); (c) (left) realization yo:9g9 from true AR Gaussian process; (right) corresponding
scatter plot of the pairs (yt, yt+1)-
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y(t)

(a)

(b)

500

(c)

Figure 3-5: Modeling of the AR Gaussian process Y = 0.8YtI + Wt using a 2-state HMM:

(a) (left) contour plot of bivariate Gaussian pdf for the pair of random variables (Y, Yt+1);

(right) plot of its univariate projection, the marginal pdf for the single random variable Yt;

(b) (left) realization yo:999 from 2-state HMM; (right) corresponding scatter plot of the pairs

(Qt, 9t+i); (c) (left) realization yo:999 from true AR Gaussian process; (right) corresponding
scatter plot of the pairs (yt, yt+i).
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Figure 3-6: Modeling of the AR Gaussian process Y = 0.8Y- 1 + Wt using a 3-state HMM:
(a) (left) contour plot of bivariate Gaussian pdf for the pair of random variables (Yt, Yt+1);
(right) plot of its univariate projection, the marginal pdf for the single random variable Yt;
(b) (left) realization yo9ggg from 3-state HMM; (right) corresponding scatter plot of the pairs
(9t, 9t+1); (c) (left) realization yo:999 from true AR Gaussian process; (right) corresponding
scatter plot of the pairs (yt, yt+~1)-
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Figure 3-7: Modeling of the AR Gaussian process Y = 0.8Yt-1+ We using a 5-state HMM:
(a) (left) contour plot of bivariate Gaussian pdf for the pair of random variables (Yt, Y+1);
(right) plot of its univariate projection, the marginal pdf for the single random variable Yt;
(b) (left) realization yO9gge from 5-state HMM; (right) corresponding scatter plot of the pairs
(Qt,QPt+1); (c) (left) realization yo:ggg from true AR Gaussian process; (right) corresponding
scatter plot of the pairs (yt, yt+1)-
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3.4.3 Verification that Approximation Improves with Model Order

While it is useful to assess the relative quality of various finite-state models - as we have
just done with the aid of Figures 3-4 through 3-8 - it is also very important to verify such
comparisons by using quantitative methods that are well understood. In this brief section,
we demonstrate, using a classical quantitative test, that our earlier qualitative assessment
was correct, i.e., that the finite-state approximations do indeed become progressively better
as more states are added to the underlying Markov chain.

Specifically, let us consider the following experiment: Suppose we are given an observa-
tion of length N, and we know that it is a realization of either the true AR Gaussian process
defined earlier or an HMM-based approximation of this process. Moreover, we know that
these possibilities are equally likely to be true. All parameters of both processes, including
the finite-state model order, L, are assumed known. We wish to determine, with minimum
probability of error, which process gave rise to the observation.

It is well known that the best test to apply in this case is the likelihood ratio test (LRT).
If we denote the realization by ZO:N-1, and we let H0 and H1 represent the hypotheses that
the realization was generated by the approximate and true processes, respectively, then the
LRT for this situation can be expressed as

Declare Hi true when fO(ZO:N-1) fl(Z:N-), (3.107)

where fo(-) and fi(.) are the log-likelihood functions associated with the approximate and
true processes, respectively, and are given by

N-1

L0(Z:N-1) = log P(O(zo)) + E log Q(0(zt-J),0(zt))
t=1

N-1 2 L

- N log ( 2oy) - 3 - YNj(ZO:N-1)P(j) (3-108)
t=0 Y j=1

and

2

fl(ZO:N-1) =-log( 2 y) - N

- (N - 1) log( 2iorw) - Z (zt - az1 ) 2  (3.109)
t=1 W

Here we have used the notation Nj(ZO:N-1) to represent the number of occurrences in the
realization ZO:N-1 of a value that would have been generated in state j of the HMM.

An analytical expression for the probability of error, which we denote by Perr, is very
difficult to obtain for this problem. Thus, we have resorted to approximating Perr by
applying the above LRT in a series of experimental trials. Specifically, after fixing values
for L and N, we generated a total of 10000 realizations (of which half were from the true
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Figure 3-8: Modeling of the AR Gaussian process Y = 0.8Yt_ 1 + Wt using a 7-state HMM:
(a) (left) contour plot of bivariate Gaussian pdf for the pair of random variables (Y, Yt+1);
(right) plot of its univariate projection, the marginal pdf for the single random variable Yt;
(b) (left) realization y:999 from 7-state HMM; (right) corresponding scatter plot of the pairs

(Pt, 9t+1); (c) (left) realization yo:999 from true AR Gaussian process; (right) corresponding
scatter plot of the pairs (yt, yt+1).
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10o
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1 0 0 : : . .. . . . . 1

NUMBER OF STATES IN HMM

Figure 3-9: Results of applying an optimal detector to determine whether an observed
data sequence is a realization of the true AR Gaussian signal Ye = 0.8Y_ 1 + We or an
approximation to this process by an L-state HMM. Plots of probability of error versus L
are shown for observation lengths of N = 12, N = 25, and N= 50.

process and the other half from the approximate process) and applied the test in (3.107) to
each realization. The fraction of incorrect decisions made by the optimal test served as the
estimate of Perr-

In Figure 3-9, we present a plot of the probability of error versus the number of states
included in the HMM. A total of three curves are shown on this plot, corresponding to the
cases in which the length of the observed sequence was 12 samples, 25 samples, or 50 samples.
As we can clearly see from these curves, the HMM-based approximations do indeed become
better as L increases; that is, a high-order approximation leads to greater confusion on
the part of an optimal detector than does a relatively low-order approximation. We note in
addition that no pair of curves plotted in this figure ever intersect; this demonstrates simply
that, for a fixed model order L, the ability of an optimal processor to discriminate between
the true and approximate processes increases uniformly (or equivalently, Perr decreases
uniformly) as the number of observed samples, N, increases.

3.5 Generalization of the Optimal Solution to Higher-Order
AR Signals

Thus far in the chapter, we have focused our attention almost exclusively on the problem of
approximating a first-order stationary AR process. For this first-order case, we found that
the state vector of the associated dynamical system was merely a scalar, and that the state
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space was therefore just the real line. In fact, it was precisely because of this uncomplicated
structure that we were drawn to the first-order approximation problem as a starting point;
it made certain theoretical concepts easy to visualize and to understand.

As we shall soon discover, however, a number of subtleties and complexities crop up as we
begin to consider problems of higher dimension. In this final section, we discuss many of the
important issues that arise when we attempt to apply the concepts developed for the first-
order case to the approximation of AR processes having order K > 1. We remark in addition
that much of the material in this section is presented purely for heuristic purposes; our main
objective is to identify and understand the issues involved in higher-order problems, rather
than to develop techniques for generating concrete numerical solutions to these problems.

3.5.1 Specification of the State-Space Partition

Recall from our earlier discussion that, when using the finite-state approach to approximate
the dynamics of a one-dimensional system, we first decomposed the real line into a collection
of L disjoint intervals and then created a one-to-one correspondence between this collection
of intervals and the set of L states of the approximating Markov chain. The intervals
themselves could be readily specified via the L + 1-dimensional tuple of ordered breakpoints
(do, di, - - - , dL), in which the first and last elements were constrained, respectively, by the
equations do = -oo and dL = +00. Once values were specified for the remaining L - 1
elements in the tuple, corresponding expressions could be written down immediately for the
optimal values of the HMM parameters, i.e., for the initial state probabilities {P(i)} 1, the
state transition probabilities {Q(i,j)}fr- 1 , and the output densities {g,(.)}L . The search
for the best values of the remaining L - 1 breakpoints formed the core of the approximation
problem.

In the higher-order case, however, the state space is RK, rather than R, and the relevant
subsets of the state space thus become full-fledged regions, rather than mere intervals.
Consequently, a partitioning of this higher-dimensional space into L disjoint regions can no
longer be accomplished simply by specifying the values of L - 1 numbers on the real line as
before. Instead, we must now specify a collection of contours or surfaces that would form
the region boundaries within R:K. We demonstrate this notion in Figure 3-10 for the case in
which K = 2. Clearly, even in this two-dimensional case the definition of region boundaries
is considerably more complex than it was in the one-dimensional case.

Indeed, even if a suitable description of the region boundaries could be found (say,
for example, some low-order polynomial description), then for any given set of boundary
values we would still be left with the problem of evaluating the best corresponding set of
HMM parameters. This in turn could only be accomplished through the involved procedure
of integrating the signal pdf over irregularly shaped regions in a multi-dimensional space.
Moreover, even if this latter step could be achieved using a reasonable amount of compu-
tation, we would then require a method for determining the optimal set of boundaries, i.e.,
the partition of RK that ultimately yields the best finite-state approximation of the actual
signal according to the Kullback-Leibler distance metric.

It is straightforward to show, however, that the fundamental optimization principle
guiding the search for the best partition remains exactly the same for the case K > 1 as
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Figure 3-10: Partitioning of a two-dimensional state space into L disjoint regions.

it was for the case K = 1; in particular, to find the optimal partition of RK , we should
adjust the boundaries of its L constituent regions so as to maximize the mutual information
between successive state variables of the underlying Markov chain.

3.5.2 Evaluation of the HMM Parameters

Let us suppose for the moment that a tractable description of the region boundaries (or
equivalently, of the regions themselves) is available, so that we may concentrate on the
subsequent step of finding the best HMM parameters associated with a particular set of
boundaries. Throughout this section, we will assume that a partition of the state space
has already been specified, and we will denote the L regions that make up the space by

By using the same basic principles of optimality that were applied in the first-order
problem, we readily conclude that the best choice for the ith element of the initial state
pmf for the underlying Markov chain is given by

P(i) = fYtt+K-1(y)dy (3.110)
IyERi

i.e., it is equal to the unconditional probability that the original state vector Xt will lie in
the region Ri. Furthermore, we conclude that the best choice for the output pdf associated
with the ith state of the Markov chain is given by

fy (x) if xE R,
fi { P)W 

(3K+111

0 otherwise,
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i.e., it is defined to be nonzero only on the region Ri, but on this region it is a scaled version

of the original pdf for Xt. If we prefer to work instead with the univariate output densities

{gi(-)}Ii, we can derive the optimal choices for these from their multivariate counterparts

{f.()}L I defined above. In particular, the optimal output densities are given by

gi (y) = fy,_,~ (Y, yt-1:t-K) dyt-1:t-K - (3-112)
=P(i) f

With regard to these univariate densities, we note that there is a significant difference
between the case in which K > 1 and the previously considered case in which K = 1.
Specifically, in contrast to the first-order case, the collection of functions {g (.)}{ may now
have overlapping regions of support on the real line, despite the fact that the original regions
in state space are disjoint. For example, in Figure 3-10 we can see that the projections of

Region 1 and Region 2 onto the real line will certainly not be disjoint.

The above solutions for F(i) and fi(.) (or, equivalently, for P(i) and g,(.)) are straight-
forward extensions of the results we obtained for the case K = 1. However, the solution for

the critical state transition probability Q(i, j) is somewhat less direct. Recall that Q(i, j)
can be expressed as

Q (i, j) = , (3.113)
P(i)

where R(i, j) = Pr{Et = i, Ot+1 = j}. It therefore suffices to find an expression for R(i,j).
We know from our earlier analysis that, in terms of the dynamics of the original process,
the optimal value for the quantity R(i, j) is simply the joint probability that the following

two events will occur:

(i) Xt C Ri

(ii) Xt+1 E Rj

To get a concise expression for this joint probability, let us first go back to the definitions

of Xt and Xt+1, which are given by

Xt = (Yt, Yt_1, Yt-K+1) (3.114)

Xt+1 = (yt+1, t, t-K+2)- (3.115)

Now, if we insist on the condition Xt E Ki, but place no constraints on the subsequent
sample in the process, Yt+1, then for the augmented state vector (Yt+1, Xt) we have that

(Yt+1, Xt) E R x Ri. (3.116)

Similarly, if we impose the restriction Xt+1 E Rj, but place no constraints on the preceding
sample in the process, Yt-K+1, then for the augmented vector (Xt+1, Yt-K+1) we have that

(Xt+l, Yt-K+1) C Kj x R.
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But observe that since

(Yt+ 1, Xt) = (Xt+1, Yt-K+1) (yt+, Yt,** , Yt-K+1), (3.118)

we can immediately combine (3.116) and (3.117) to obtain the consolidated condition

(Yt+ 1, Yt, ' - ' , Yt-K+1) C Rig, (3.119)

where Ril denotes the region in IRK+1 given by the set intersection

Ri (JR x Ri) n (Th x R) . (3.120)

From this last result, we finally have that

R(i,j) = f fYt:t+K(y) dy. (3.121)

This is the appropriate extension of our result from the first-order case, in which we had

R(i, j) = fyt:t+i (y) dy. (3.122)

The issues that arise in the approximation of higher-order autoregressive processes will
also be encountered in Chapter 4. There, we address the related modeling problem of
finding optimal HMM parameter values under the assumption that we are given a finite
number of observations of the true AR random process, rather than the actual pdf of the
process. Since the true AR process may have order K > 1, obtaining a solution will require
practical methods for representing irregularly shaped regions in a high-dimensional space,
as well as methods for estimating densities and integrals of densities over such regions.

3.6 Discussion

3.6.1 Necessity of Constraints for Finite-State Approximation

In the formulation of the signal approximation problem stated at the beginning in the chap-
ter, we imposed a number of rather stringent constraints on our finite-state signal model.
Here we attempt to explain why these constraints were needed to make the approximation
problem mathematically tractable.

First, recall that we made extensive use of the state-space partitioning constraint, the
purpose of which was to enforce a mapping between the L disjoint regions making up a
partition of the original state space and the L states of the signal model. To maintain
logical consistency with this constraint, we also defined the support set for the output
pdf associated with each state to be precisely the same as the region assigned to that state;
hence, the support sets themselves were not allowed to overlap. When taken together, these
constraints enabled us to infer the state of the Markov chain unambiguously from the HMM
output at each time step, and they therefore greatly simplified the resulting optimization
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problem. It is important to note that if these constraints had not been imposed on the
model, the optimization problem might have been intractable. If, for example, we had

allowed the support sets for the HMM output densities to overlap, then in order to calculate

the probability of a given output sequence, we would have had to account for every possible

underlying state sequence of the Markov chain that could have produced this output. This

may well have consumed a prohibitive amount of computation, since the number of such

state sequences grows exponentially with the observation length.

We also imposed the constraint that the underlying dynamics of our finite-state ap-
proximation were to be structured in the form of a Markov chain. While this constraint

was intuitively appealing since the true signal was in fact known to be Markov, it too was

introduced to make the optimization problem tractable. Recall that we had already de-

fined a quantization function, 0(-), to effect the mapping between the original state space

associated with the true signal and the finite state set associated with the approximation.
Therefore, in the absence of the Markov-chain constraint, the most direct method of creating
a finite-state approximation of the true state vector sequence {Xt} would simply have been

to apply this quantization function to each vector in the sequence. This would have created

an entirely new random process {O(Xt)} in which each element assumed values on the set

{1,2, ... , L}; however, this new process would not necessarily possess the Markov property.
Thus, when evaluating the probability of a given finite-state sequence under this approach,
we would not have realized the computational savings made possible by the Markov-chain

constraint.

3.6.2 Alternative Criteria for Assessing Approximation Quality

The criteria we proposed earlier in the chapter for determining the quality of an approxi-
mation - i.e., the maximin probability-of-error criterion and the Kullback-Leibler distance

metric - were based on the principle that we should match the shapes of the true and

approximate signal densities in an appropriate way. Such criteria are useful from the stand-

point of general-purpose signal representation; that is, the criteria themselves are actually

independent of any specific signal processing task, but nonetheless allow us to develop a

signal model that is likely to perform reasonably well at most tasks, provided that the order

of the model is sufficiently high.
Sometimes, however, it may be desirable to use other, more task-specific ways of as-

sessing approximation quality. In the context of a well defined signal processing task, the

most logical criteria for determining what makes the best signal approximation are usually

obvious once we know how the approximation is going to be used in performing the task.

Consider, for example, the task of signal estimation, in which the objective is to produce

an estimate of the source signal {Y} that has been corrupted by an independent additive

noise process {V}. Suppose that the noise has a simple statistical description (e.g., it is
white and Gaussian) and that {Yt} is our HMM-based representation of {Yt}. Furthermore,
suppose that, under the structural constraints imposed by this HMM assumption, an op-
timal processor to the signal estimation problem can easily be derived. Let us denote by

Yt(Z; %[) the value generated by such a processor at time t, where Z is our finite-length
corrupted observation and % is a multi-dimensional tuple representing all of the parameters

99



Chapter 3. Approximating Stationary Signals with Finite-State Markov Models

needed to completely specify the HMM for {Yt}. Then, if the signal estimate we desire is
an MMSE estimate, we should select the optimal tuple of HMM parameters according to
the rule

xP = arg min E ((t(Z; ') - Yt)2, (3.123)

where P is the collection of all tuples '1P that yield a valid HMM-based signal approximation.
Once we know the value of the optimal tuple, we would then have a precise characterization
of the best approximate signal {Yt}.

If an approximation can be obtained by solving (3.123), its performance in the signal
estimation problem is guaranteed to be at least as good as the performance achieved by
any other approximation in P, including an approximation which is optimal under the
Kullback-Leibler measure. However, the solution to (3.123) may not perform well when
applied to a task other than signal estimation, simply because any two distinct signal
processing tasks can have radically different objective functions. In view of this lack of
"task robustness," we may require a number of different signal approximations, one for
each task that must be performed. These might include, for example, the tasks of detection,
classification, enhancement, or compression. A task-dependent approach of this kind may
indeed yield better overall performance, but it will also lead to a considerable increase in
complexity in the design of a signal processing system. In particular, each new signal model
obtained would require additional storage, and all of the models together would have to
be manipulated by a higher-level, centralized decision system, whose purpose would be to
determine which model is appropriate for the particular task at hand.

3.6.3 Advantages and Limitations of Using HMMs

We have seen that a hidden Markov model can be used to approximate a real-world signal
concisely by capturing the dynamical behavior of the signal's most important statistical
features; consequently, it has the potential of greatly simplifying any signal analysis that
must be performed. In addition, if the true signal is known to be stationary and can be
described as the output of a known dynamical system, then it is clear, at least in principle,
that an HMM could be designed to represent the signal with arbitrarily high accuracy
(via the quantization approach described earlier) by partitioning the state space infinitely
finely. Another clear benefit of using HMMs is that their mathematical properties have
been investigated by researchers from widely varied disciplines over a period of more than
three decades; as a result, such models are now very well understood. Moreover, a number
of sophisticated, computationally efficient algorithms have already been developed for many
signal processing applications involving HMMs.

On the other hand, the use of HMMs for signal approximation also has a number of
limitations. These limitations must also be taken into account, since the set of signals
that we might attempt to approximate with HMMs is virtually limitless. We begin by
observing that an HMM is capable of modeling temporal dependencies in the true signal
only to the extent allowed by its coarse, finite-state dynamical structure, i.e., its underlying
Markov chain. Among all conceivable dynamical models, the Markov chain possesses one
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of the simplest of memory structures available, second only to that of a process that is

entirely memoryless. In contrast, the signal that is being approximated might be extremely
complex, and it might not even obey the Markov property. Thus, perhaps the most serious

limitation of HMMs is that the probabilistic structure of an HMM may be too simplistic to

capture the intricate detail in the true signal - detail that might be critical in successfully
performing the signal processing task for which the HMM will be used.

There are undoubtedly many cases in which an HMM-based approximation would be

suitable, provided that we allow a sufficient number of states in its Markov chain and a

sufficient number of degrees of freedom to describe each of its output densities. In such cases,
however, we may discover another of the potentially serious limitations of using HMMs,
namely that the specification of an HMM could require solving for an enormous number of

parameters. For example, it is not inconceivable that an HMM-based representation of a

given signal may require as many as 50 states, and that specifying the output pdf in each

state may require as many as 10 parameters. This means that we would need 50 initial
probabilities, 2500 state transition probabilities, and 500 pdf parameters in order to specify

the HMM completely. Even if we could find optimal values for more than 3000 parameters,
the resulting model would be considered impractical in many signal processing situations.

Fortunately, as we will discover in Chapter 5, it is not always necessary or desirable to

incorporate a large number of parameters into an HMM simply so that we can represent
the true signal at its finest level of statistical detail. Quite the contrary, in certain signal
processing applications, a rather coarse HMM-based approximation of the true signal is

adequate to achieve nearly optimal performance.
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Chapter 4

Building Finite-State Markov
Models from Observations

4.1 Introduction

In Chapter 3, we considered the problem of how to find the best HMM-based representation
of a stationary random signal given exact knowledge of the signal pdf. This was a useful
starting point for our analysis of HMMs because it compelled us to consider how finite-state
modeling should be performed when complete information about the true signal is available.
In a real-world signal processing situation, however, we rarely have such a large amount of
prior knowledge about any of the signals that make up the measurement. Thus, although
our analysis from the previous chapter produced a number of useful theoretical guidelines
for finite-state modeling, certain assumptions associated with the approximation problem
addressed there were somewhat unrealistic.

In this chapter, we adopt a more practical viewpoint and consider the problem of how
to construct an HMM-based representation of the true random process when we have only
a finite-length observation of this process available, rather than a complete probabilistic
description of it. Thus, the problem we consider here is essentially one of HMM source
identification. In the following two subsections, we give an outline of the assumptions and
notation that will be used in connection with the HMM source identification problem, and
we provide a concise formulation of the problem itself. In the third subsection, we describe
how the remaining material in the chapter is organized.

4.1.1 Preliminary Assumptions and Notation

In the latter part of Chapter 3, we discussed some of the complexities involved in the finite-
state modeling of AR processes having order greater than one. Clearly, we must address the
issues raised in that discussion before developing our source identification algorithm. We
pointed out, for example, that arbitrary multi-dimensional regions in a state-space partition
cannot be easily represented or manipulated with finite memory and computing resources.
In addition, the optimal output densities associated with the states of the HMM (which
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Figure 4-1: Depiction of a typical Voronoi partition in two-dimensional space.

were expressed directly in terms of the true signal pdf in Chapter 3) are free of restrictions,
and hence may also require a large amount of storage to represent accurately.

A further complication is that, in addition to addressing the issue of computational
complexity, we must also deal with the issue of uncertainty, since the exact signal pdf is
unknown. In particular, observe that quantities such as the optimal initial state probabilities
and state transition probabilities of the Markov chain, as well as the mutual information
between successive state variables in the chain, are all unambiguously defined when the
pdf of the true random process is given. In the present case, however, these quantities will
have to be estimated using only a finite-length signal realization. In the remainder of this
subsection, we describe the techniques that will be used to address these issues.

We will represent regions in RK efficiently using a simple geometric construction known
as a Voronoi partition [152]. A Voronoi partition having L regions can be completely
characterized by L distinct points in the space. Let us denote these points by ci, c 2 , - CL ,L
and their corresponding regions by R 1 , R 2 , - -- , RL . The region Rj is defined by

R = {x e RK I D(x, cj) < D(x, ci), i = 1, 2, ... ,L} (4.1)

where the notation D(x, c) represents the Euclidean distance between the points x and c.
In other words, the set R3 contains all points in RK that are closer to the point cj than to
any other point ci, i $ j. We will occasionally refer to the region Ri as a Voronoi region
and to its associated point ci as the anchor point for the region. An example of a randomly
generated Voronoi partition in two-dimensional space is shown in Figure 4-1. In view of
the simple rule given in (4.1), we see that a major advantage of using this construction
is savings in memory and computation; at the end of the chapter, we will discuss several
limitations associated with using this type of partition.
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At certain stages of our source identification algorithm, we will need to know which
region within the current Voronoi partition contains the data point xt. For this purpose it
is convenient to introduce a class label for the tth data point, which we denote by wt. This
class label will take exactly one of the values in the set {1, 2, - -- L}. Once a set of anchor
points {c 1 , C2 , - L , CL} has been fixed, the value of wt is defined according to the formula

wt = arg min D (cj, xt). (4.2)
jG{1,2,.-.,L}

The tuple consisting of all such class labels will be denoted by

0 = (WO, W1, - - - , WN- 1) (4-5)

and will be referred to as the classification sequence.

Suppose we have fixed a set of anchor points and have performed the categorization by
region described above. In order to assess the quality of the partition represented by this
set of anchor points, we must then estimate the value of mutual information associated with
this categorization. Recall from Chapter 3 that for this calculation we require values for
both the joint and marginal pmfs for the state variables of the underlying Markov chain.
We will use empirical estimates for these pmfs given by

IN-1
P(j; f) = N (wt), j = 1, 2,**- ,L (4.4)

t=O

and

N-1

R(i, j; f2) = N E- 1 yij(wt1, wt), i, j = 1, 2, , L, (4.5)
t=1

where 7j(-) and yij (.) are binary-valued indicator functions defined respectively by

S(w)=1 tew e (4.6)
f0 otherwise

and

- fI if (wi, W2 ) = (i, (4.7)

0 otherwise

Observe from (4.4) and (4.5) that we have expressed the pmf estimates with an explicit
dependence on the classification sequence fl. These pmf estimates measure, respectively,
the fraction of times that the symbol j occurs in this classification sequence and the fraction

of transitions of the form (i, j) that occur in the sequence. Using these pmf estimates, we
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can compute the associated estimate of the mutual information given by

L L R(i, j;)
I(n) = R(ij; ) log . (4.8)

i=1 j=1

Because our goal is to find the classification sequence f that maximizes this measure of

mutual information, we will often refer to the function I(-) as the objective function in the

remainder of the chapter.

Finally, we will assume for convenience that the output pdf associated with the ith state

of our HMM is a Gaussian mixture having Mi constituent elements, and is defined by

Mi

gi(y) E Nf(y; p-ij, oij), -o < y < oo. (4.9)
j=1

4.1.2 Problem Statement and Approach to Solution

We will assume that the autoregressive order of the signal, K, the number of states in the
HMM-based signal approximation, L, and the number of components in each Gaussian-
mixture output pdf, Mi, are precisely known. In addition, we assume that we have a
finite-length realization of the source signal given by

Y-K+1:N-1 = (Y-K+1, Y-K+2, ' YN-1) - (4-10)

Under the same state vector definition used in Chapter 3, i.e., Xt = (Y, Yt_ - , Yt-K+1),
the assumption that we have the sequence of signal values above is equivalent to the as-
sumption that we have the sequence of state vector values given by

XO:N-1 = (XO, Xi, - - - , XN-1), (4.11)

since Y-K+1:N-1 could be reconstructed perfectly from X:N-1 and vice versa. From this
sequence of N data points in K-dimensional space, we wish to estimate the parameter
values of the best HMM-based representation of the source signal; these include the values
of the initial state probabilities and state transition probabilities of the underlying Markov
chain, as well as the means, standard deviations, and weighting coefficients of the Gaussian-
mixture densities associated with the states of the chain. It is understood that the HMM to
be estimated must satisfy both the stationary constraint and the state-space partitioning
constraint described in Chapter 3.

Our approach to finding the best HMM-based representation of the source signal will
be to construct an iterative, ad hoc algorithm which implements the theoretical guidelines
established in Chapter 3. We decompose the algorithm into two basic parts: (i) estimation of
the optimal Voronoi partition of the state space; and (ii) estimation of the HMM parameters
based on this optimal partition. To solve the first of these two subproblems, we develop an
algorithm which selects an appropriate initial state-space partition and then systematically

adjusts the boundaries of this partition to increase the value of the objective function (i.e.,
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the mutual information between successive state variables of the Markov chain) at each

step. Once the best partition has been reached, the state-vector realizations contained in

each region of the partition are used to generate empirical estimates of the HMM parameter

values.

4.1.3 Chapter Organization

The chapter consists mainly of a description of the components of our HMM source iden-

tification algorithm. First, we describe a procedure for finding the best partition of the

state space associated with the observed signal; then, we describe how this partition can

be used to estimate the parameters of the Markov chain as well as the parameters of the

densities associated with the states of the chain. At the end of the chapter, we discuss a

number of advantages and limitations of our algorithm, and we identify several open issues

as potential directions for future work.

4.2 Estimation of the Optimal State-Space Partition

The purpose of the first part of our HMM source identification algorithm is to estimate

the best Voronoi partition of the state space based on the given sequence of state-vector

realizations XO:N-1. This part of the algorithm is made up of three stages: (i) selection of a

suitable initial Voronoi partition of the state space, (ii) iterative refinement of the Voronoi

partition, and (iii) termination of the iterative procedure. We describe each of these parts

of the algorithm in the following three subsections. In Figure 4-2, we show plots of the

output produced by this part of the algorithm in a particular source identification problem.

For the case depicted here, the true AR signal has order two, and therefore the state space

is two-dimensional.

4.2.1 Selection of an Initial Partition

We specify an initial Voronoi partition of our K-dimensional state space by choosing values

for the L anchor points c1 , c 2 , - - - , CL. To simplify the selection process, we restrict the

anchor points to lie in the given set of N state vector realizations {xo, x 1, - - , xN-1}-

In particular, we use a randomized procedure whereby we choose each of the L anchor

points successively from the set of N realizations, without replacement, assuming after each

selection that all remaining realizations are equally likely candidates. This procedure has

the advantage that it yields an approximate random sample from the true marginal pdf

of the state vector, provided that N is large relative to L and to the dependence length

associated with the original random signal {Yt}.

Once the initial partition has been specified in this way, we can assess the quality of

the partition by computing its associated objective function value. We evaluate the objec-

tive function by performing the following three steps: first, we categorize each state vector

realization according to its region number using the minimum distance formula in (4.2);

then, from the resulting classification sequence, f, we compute the empirical estimates
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(a) (b)

(c) (d)

Figure 4-2: Voronoi partition at various stages of the iterative refinement algorithm: (a)
initial partition; (b) partition after 5 iterations; (c) partition after 10 iterations; (d) partition
after 20 iterations.
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{P(i; 2)}'= 1 and {R(ij; )}- using (4.4) and (4.5); finally, we calculate the corre-
sponding estimate of mutual information using (4.8).

This process of selecting a set of anchor points and evaluating the corresponding parti-
tion can be repeated to find a different set with a higher objective function value. In fact, we
could in principle find the best such partition by testing all distinct sets of L anchor points
that could be drawn from the pool of N data points. However, even for modest values of L
and N, the amount of computation required to find the best initial set using this technique
would be prohibitive. An attractive alternative to this exhaustive search is to choose a fixed
number of sets of anchor points at random (say Jinit, where Jinit < N,(!L), compute the
mutual information corresponding to each set, and retain the set that yields the largest
mutual information as the specification of the initial partition. A detailed step-by-step
description of this initialization procedure is given in Figure 4-3.1

'In this figure and in the following two figures, we use several new notational symbols, which we define
here. First, we refer to the set of time indices associated with our observations as T = {0, 1, - - - , N - 1}.
We also use the expression S' = RS(S; j) to indicate that S' is a randomly selected subset of S consisting
of j elements. Finally, we define ot to be an ordered tuple of length N whose tth element is equal to 1 and
whose remaining elements are equal to 0.
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INITIALIZATION PROCEDURE I
DESCRIPTION:

Initialize loop counter and objective function value.

OPERATION:

n +- 0

Imax < 0

DESCRIPTION:

Select L points at random from the given set of N and use these as anchor points
for the next Voronoi partition to be tested.

OPERATION:

{tlI, t2, -- ,tL }I< RS(T; L)

cj+-xt,, j =1, 2,---L

2] DESCRIPTION:

Compute the class label for each data point by determining the identity of the nearest
anchor point.

OPERATION:

wt +- argmin D(cj,xt),
jeJi,2,--- ,t}

t E T

S (WO, W1,- -- WN-1)

DESCRIPTION:

Calculate empirical estimates of the marginal and joint probability mass functions
associated with state variables of the underlying Markov chain.

OPERATION:

N-1

P j) <- (ot)P , j ,
t=o

1 N-1

R -i, j) N1- 1 1, ot),
t=1

2,** ,L;

i,j = 1, 2, - - , L.

Figure 4-3: Description of algorithm for selecting an initial Voronoi partition. (Continued
on following page.)

F]
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DESCRIPTION:

Compute the value of the objective function, which is the estimated mutual informa-
tion between successive state variables of the Markov chain.

OPERATION:

L L I(,j
I Z Z R(i, j) log P(iPj)

DESCRIPTION:

Check if the current value of the objective function is the largest value encountered
thus far. If so, store this value as well as the classification sequence that produced
it; if not, proceed to the next step.

OPERATION:

if I>Imax then

Imax +- I

Qmax <- Q

else

endif
goto [

DESCRIPTION:

Increment the loop counter and check if a sufficient number of subsets of the data
have been tested. If so, proceed to the body of the algorithm; if not, test another
subset.

OPERATION:

n +- n+ 1

if n = Jinit then

goto ITERATIVE REFINEMENT PROCEDURE

else
goto 1

endif

Figure 4-3: (Continued from previous page.) Description of initialization algorithm.
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4.2.2 Iterative Refinement of the Iteration

To improve upon the Voronoi partition generated by the initialization procedure, we now
make a series of small adjustments to the anchor points of the partition in such a way that
the objective function value increases at every step. This stage of the algorithm, which we
refer to as the iterative refinement procedure, is described in detail in Figure 4-5.

During the iterative refinement procedure, we remove our original restriction that the
anchor points be elements of the set of data points {xo,x1,. , xN-1}, so that the locations
of the anchor points will now be unconstrained. However, the anchor points will not be
adjusted directly during the refinement, since this could entail a computationally expensive
search in the vicinity of each anchor point within RK. Instead, at each iteration we will
adjust the anchor points indirectly by making small changes to the regions that they repre-
sent. These changes to the regions will in turn be implemented by changing the class labels
of certain data points contained in each region.

Thus, adjustments to the partition are ultimately made by reassigning data points to
different regions. Observe that several alternative class labels can be hypothesized for each
data point in order to find the best label for this point under the current partition. (The
definition of the best class label for a particular point will be given later; roughly, it is the
label which is most likely to yield the greatest increase to the objective function value when
the labels of all other points are held constant.) To eliminate unnecessary computation, we
make use of two key principles at each iteration. First, we use the principle that it is more
important to examine data points that are near boundaries of the current partition than
to examine those that are far away; second, for each point that is examined, we use the
principle that it is more important to test class labels corresponding to nearby anchor points
rather than those of distant anchor points. Accordingly, each iteration performed within
the iterative refinement procedure consists of the following sequence of steps: (i) finding
data points near boundaries; (ii) finding anchor points in the vicinity of each boundary
point; (iii) testing the profitability of reassigning each data point to a nearby anchor; (iv)
switching class labels of points under test, if appropriate; and (v) defining an updated set
of anchor points based on the new class labels.

The first step of each iteration is therefore to separate all of the data points into those
that are interior points and those that are boundary points. For each data point, we make
this determination based on the class labels of the m other points closest to it. (Here we
assume m is an algorithm parameter that must be specified in advance.) In particular, if
all m of the neighboring points have the same class label as the point under test, then this
point is defined to be an interior point. Otherwise, the point is defined to be a boundary
point. We show examples of interior and boundary points in Figure 4-4. If, after this
boundary test, a given data point has been classified as an interior point, then its class
label will remain fixed for the current iteration. However, if the point has been classified
as a boundary point, then at least one alternative class label will be tested. The set of
candidate labels for this point will be precisely those of its m neighboring points; hence,
the m nearest neighbors not only indicate whether a particular point is a boundary point,
they also give us a convenient way of determining which anchor points are nearby.

Suppose now that xt is known to be a boundary point. We wish to determine whether
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0
0

0 0

0 0 0
OX10 0 0 0

00 0 00

0 0

0 0

X2 0
0

0 0

0
X 2 

0 
0

0o0 0

0 00

0
0

Figure 4-4: Depiction of a portion of the Voronoi partition during an iteration of the
algorithm. In this case, the five nearest neighbors of a given point determine whether it is
an interior point, such as x 1 , or a boundary point, such as x 2 -

the value of the objective function would increase or decrease as a result of changing its class
label wt. We will make this determination under the assumption that the class labels of all
data points other than xt remain fixed. Under this assumption, the current classification
sequence

n (wo,wi, - , t_1, wt , wt+1, - - , WN-1) (4.12)

would change to the new classification sequence

= (wo,w1, w- 1,7wt+1, (4.13)

where w' represents a class label (different from wt) of one of the m nearest neighbors of
xt. To calculate the effect of this change on the value of the objective function, we first
determine its effect on the marginal pmf P(-; f) and the joint pmf R(., -; f). Let us express
the modified pmfs P(.; W') and R(., -; O') as additively perturbed versions of the original
pmfs given by

P(i; f') = P(i; fl) + AP(i; f, ') (4.14)

and

R(i, j; f') = R(i, j; fl) + AR(i, j; f, ')
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for i, j = 1, 2, ... , L. Then, relative to the original classification sequence, the new classifi-
cation sequence has one more element with the class label w and one fewer element with
class label wt as a result of the change; hence, the perturbation AP must have the form

AP(i; f, O') = 1-Yi(Pt) - -7i Pt) (4.16)
N N

Moreover, since the new classification sequence now contains the transitions (wt_1, o') and

(ow, ot+1) but no longer contains the transitions (ot 1, wt) and (wt, wt+1), we conclude that
the perturbation AR must have the form

AR(i, j; O,fO') =- 17;~t1 t 1

1 t 1 (4.17)

N - I N - 1 'Ij(tW+

Working with these simple perturbations allows us to quickly assess the effect on the ob-
jective function, since it essentially saves us from recalculating the marginal and joint pmfs
using the original formulas in (4.4) and (4.5). Once the above perturbations have been
applied via (4.14) and (4.15), the value of the objective function I(f') resulting from the
change in the classification sequence can now be computed using (4.8) with rl replaced by
f'. The net change in the objective function is given by

AT(n, O') = I(f') - I(n). (4.18)

If, for a particular boundary point, there is only a single alternative class label to be
tested via the above marginal measure, and if this new label would yield an increase in
mutual information according to (4.18), then the current label is replaced by the new label;
otherwise, the current label is left unchanged. If there are multiple alternative labels to
be tested in this way, then the current class label is replaced by the alternative label that
yields the largest change in the objective function (provided that this change is greater than
zero). The remaining data points are then processed in a similar way. In the descriptions
given in Figure 4-5, we refer to boundary points whose labels could be changed to increase
mutual information as positive-potential boundary points.

The new class labels for the data points are only tentative, however. This is because the
points themselves do not necessarily fall into disjoint Voronoi regions under their present
categorization; their new labels merely indicate the general directions in which region bound-
aries should be modified. Class labels become permanently reassigned through a two-step
procedure. First, the anchor points of a new Voronoi partition are defined based on the
tentative class labels; then, each data point is once again re-labeled according to its nearest
anchor point. To obtain the new value for the anchor point cj, we compute the centroid of
all points xt having the class label wt j. That is, cj is now given by

N-1

ZC Et=-(w)xt (4.19)
ZEi- 1 Y(w't)

114



Chapter 4. Building Finite-State Markov Models from Observations 115

Once these anchors have been computed, each new class label wt is calculated using (4.2).
It is hoped that the Voronoi partition resulting from this change will have a greater

objective function value than did its predecessor. However, this is not always the case for
at least two reasons. First, the decision to change a class label is made individually for
each boundary point, rather than jointly over all boundary points; second, the two-stage
construction of the partition at the end of the iteration may introduce some error through
the approximation of boundary surfaces. (As we will demonstrate in the discussion at the
end of the chapter, the final partition boundary is always a portion of a K-dimensional
hyperplane under the Voronoi constraint, even though the most recent class label changes
may collectively indicate that the boundary should be curved in some way.) Nonetheless,
the iterative refinement proceeds as described above until the value of the objective function
undergoes a decrease, rather than an increase. When this occurs, the termination procedure
is invoked.
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ITERATIVE REFINEMENT PROCEDURE

[_ DESCRIPTION:

Assign initial values for the classification sequence and construct the set of m nearest
neighbors for each data point.

OPERATION:

0 < Omax
ro (t ) <-t, t E T

Ti(t) <- T\ {ro (t), - - - , ri_1(t)}, t E T; i 1,2, m

-ri(t) +- arg min {D(x,, xt)}, t E T; i 1,2,
-ET(t)

DESCRIPTION:

For each data point, construct the set of class labels associated with its m nearest
neighbors. Once this set has been determined, remove from it all class labels having
the same value as that of the point itself. Define the set of boundary points to be
those data points having at least one neighbor labeled differently from itself.

OPERATION:

Wm _ Wri (0) 1 () W - - - 0 - 1r (1} t E T

Wm <- {w E WI"' I o 5 wwt} t E T

Tbdy {t E T | : 01

[2 DESCRIPTION:

For each boundary point, test alternative classifications for it and determine which of
these would result in the greatest gain in the value of the objective function, assuming
that the labels of all other points remain fixed. Define the set of positive-potential
boundary points to be those that would increase the current value of the objective
function if given the best class label.

OPERATION:

Wt -arg max {AM(f, f + ( -wt)t)}, t E Tbdy;

TbdY +- {t T I J(, 0 + (Wt* - Wt)
5 t) > 0} .

Figure 4-5: Description of algorithm for iteratively refining the Voronoi partition. (Contin-
ued on following page.)
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DESCRIPTION:

Define a new classification sequence by replacing the current class labels associated
with positive-potential boundary points with the best alternative class labels.

OPERATION:

DESCRIPTION:

For each set of data points with a given class label, compute the
and make this the new anchor point for the class.

centroid location

OPERATION:

j = 1, 2, . , L

DESCRIPTION:

Re-compute the class label for each data point by determining
nearest anchor point.

the identity of the

OPERATION:

Lo <-- arg min {D(c,xt)} ,
jE{1,2,--- ,L}

t ET

'<- - (Lao, , - - -. ,W ' -1)

DESCRIPTION:

Check if the new classification sequence yields an overall increase in the value of
the objective function. If so, then update the current classification sequence accord-
ingly and perform another iteration; if not, proceed to the termination stage of the
algorithm.

OPERATION:

if AI(f, f2') > 0 then

f2 -- 2

else

endif

goto

goto TERMINATION PROCEDURE

Figure 4-5: (Continued from previous page.) Description of iterative refinement algorithm.
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4.2.3 Termination of the Iterative Refinement Procedure

The termination procedure is designed to test whether the most recent partition refinement
has yielded a local maximum or a global maximum of the objective function. This proce-
dure introduces random perturbations into the current partition as a way of probing the
parameter space and testing whether the objective function value can be further increased.
If a particular perturbation is successful, the termination procedure then sends control back
to the iterative refinement procedure for further adjustments to the partition. Thus, the
termination procedure may actually be invoked more than once during a single execution
of the overall algorithm. We give a detailed description of this procedure in Figure 4-6.

The procedure is furnished with the identities of the positive-potential boundary points
from the most recent partition refinement, as well as the corresponding alternative class
labels that have been deemed individually the most profitable. Clearly, when the current
labels of all of these points are switched to their best alternatives and the new partition
is subsequently specified, the objective function value does not increase; otherwise, the
termination procedure would not have been invoked. Therefore, rather than switching the
labels of all of these points at once, the termination procedure switches the labels of only
a subset of these points; this subset is chosen at random from all possible subsets of the
positive-potential boundary points.

If switching the class labels of the particular subset selected does not increase the value
of the objective function, then another subset is tried. This procedure continues until either
the objective function value is increased or the maximum allowable number of subsets, say

Jterm, is reached. (The number Jterm is an algorithm parameter that must be specified in
advance.) If the maximum number of subsets has been tried and the objective function
value has not been increased, the algorithm terminates, and the current partition (i.e., the
one supplied to the termination procedure upon invocation) is declared to be the best one.
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TERMINATION PROCEDURE

DESCRIPTION:

Initialize the loop counter.

OPERATION:

n +- 0

DESCRIPTION:

Select at random a subset of the positive-potential boundary points.

OPERATION:

n2

{kj} - RS({0, 1}; 1),

I -r+bI
k+- Z ki

i=1

isy -- RS(Ty;k)

DESCRIPTION:

Define a new classification sequence by replacing the current class labels associated
with the randomly selected subset of positive-potential boundary points with the best
alternative class labels.

OPERATION:

n,' - n+ I:> *-W6
tETby

DESCRIPTION:

Compute the centroid location associated with the points in each class and make this
the new anchor point for the class.

OPERATION:

N-1
Et=O - j(w')Xt

ci N-1
Et=.

Figure 4-6: Description of algorithm to terminate the iterative refinement procedure. (Con-
tinued on following page.)
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DESCRIPTION:

Re-compute the class
nearest anchor point.

label for each data point by determining the identity of the

OPERATION:

w +- argmin {D(cj,xt)}
jE{1,2,.. ,L}

- (w, Wil - 1)

DESCRIPTION:

Check if the new classification sequence yields an increase in the value of the objective
function. If so, then update the current classification sequence accordingly and return
to the iterative refinement procedure; if not, then increment the loop counter and
test another subset of positive-potential boundary points.

OPERATION:

if MV(f2, f') > 0 then

goto ITERATIVE REFINEMENT PROCEDURE

else
n <- n + 1

if n= Jterm then

end
else

endif
goto

endif

Figure 4-6: (Continued from previous page.) Description of termination algorithm.

t E T
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4.3 Estimation of Optimal HMM Parameters

Once a suitable state-space partition has been found using the three-stage algorithm de-
scribed above, we can compute estimates of the HMM parameter values. In particular,
we need to estimate the initial state probabilities and state transition probabilities for the
Markov chain as well as the means, standard deviations, and weighting coefficients for the
Gaussian-mixture densities associated with the states of the chain. Since the estimation of
Markov chain parameters is decoupled from the estimation of output density parameters,
the algorithms used to generate these estimates can be executed in any order.

Let us denote by 4I,* the tuple of final class labels for the data points {xo, -, xN- }-
To estimate the Markov chain parameters, we use the empirical formulas given in (4.4)
and (4.5), as was done during the search for the best partition. However, an additional pro-
cessing step is now required to obtain the final estimates, namely the conversion of the joint
state probabilities {R(i,j; **)}L= to the state transition probabilities {Q(i, j; *) } _.
This step can be carried out via the formula

Q(ij;l P*) - ',R( ik;x *) (4.20)
ELI R(i, k; qV*)'

which normalizes the rows of the array R such that each row becomes a valid pmf.
Estimating the densities associated with the states of the Markov chain is somewhat

more involved. For this problem, we use the procedure presented in Figure 4-7, whose
computational structure is based on the EM principle. This procedure must be applied
separately to the data points in each region of the optimal partition to estimate all L
densities. It need not be applied directly to the data points in RK, however. If we wish to
build an HMM having scalar-valued output (so as to approximate a sequence of signal values
rather than state vector values), we can simply extract the first element of each state-vector
realization in a given Voronoi region and proceed to estimate a univariate output pdf based
on these scalar measurements. We will concentrate on this univariate case here.

To estimate a given output density, the algorithm must be supplied with initial estimates
of all of the Gaussian-mixture parameters. To generate these initial estimates, we could,
for example, try many different randomly selected sets of mixture parameters and then
use the particular set that yields the highest likelihood value. After the algorithm has
been initialized, a single iteration then proceeds as follows. The new estimate for the
weighting coefficient associated with the jth mixture component is defined to be the average
posterior probability that each observation was produced by component j. The new estimate
for the mean of the jth mixture component is defined to be a weighted average of the
observed samples, where the weight placed on the tth sample is proportional to the posterior
probability that this sample was generated by component j. The new estimate for the
variance of the jth component is a weighted average of the squares of the observations (after
the previously computed estimate of the mean of the jth component has been subtracted
out); the weights used in this calculation are precisely the same as those used to update the
jth mean. This iterative updating procedure continues until there is a negligible change in
the tuple of estimated parameter values from one iteration to the next.

121



Chapter 4. Building Finite-State Markov Models from Observations

PDF ESTIMATION PROCEDURE I1
DESCRIPTION:

Assign initial values to the means, standard deviations, and weighting coefficients of
the M-component Gaussian mixture. In addition, assign values to the N observed
samples.

OPERATION:

pj <-- P i) j = 1, 2, --- ,M

(0)

o-j (0)
J j

- (po-, p)

yt +- y "),

j= 1, 2,- , M

t =0,1, ,N - 1

DESCRIPTION:

Using the current pdf parameter estimates, compute the posterior probability that
the tth observation came from the jth mixture component.

OPERATION:

Ptj <-
'M p1 (yt -yk)2

Ek=1 exk - 2 I

t =0, 1, N - 1
j 1 27. M

Figure 4-7: EM algorithm for estimating parameters of HMM output pdf. (Continued on
following page.)
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DESCRIPTION:

Update the pdf parameter estimates using the posterior probabilities just computed.
Define the weighting coefficient for the jth mixture component to be the arithmetic
average of all posterior probabilities associate with that component. Define the jth
mean to be a weighted average of the observed values, where the weights are the
posterior probabilities associated with the jth mixture component. Using these same
weighting terms, define the jth variance to be a weighted average of the squares of
the mean-adjusted observed values.

OPERATION:

1 N-1

p --- N Pti,
t=0

j = 1, 2,- .. , M

N-1

pI <- NtO Ptjt j= 1, 2, - -- ,M
Et=0

o-j ,- j = 1, 2, -- M
V t=0 Pt'j

0A+ (, a, p)

DESCRIPTION:

Check if the distance between the current and previous parameter vector estimates
is below a predetermined tolerance level. If so, then terminate the algorithm. If not,
then save the current estimate and return to step 1 and perform another iteration.

OPERATION:

if D(4I, ') < T then

end

else

endif
goto

Figure 4-7: (Continued from previous page.) EM algorithm for estimating parameters of
HMM output pdf.
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4.4 Discussion

4.4.1 Prior Work in HMM Parameter Identification

A number of algorithms have been developed by other researchers for estimating the pa-
rameters of an HMM under various assumptions, including a key assumption that we have
used here, namely that the output pdf for each state of the HMM is a Gaussian mixture.
The most popular of these existing algorithms is referred to as the Baum-Welch algorithm,
which was originally developed and analyzed in a series of papers by Baum et al [20, 22, 23].
This technique is now recognized as an implementation of the EM algorithm; it has been
used extensively in the construction of HMM-based phonetic models for modern speech
recognition systems [78, 84, 154]. Alternative algorithms have also been developed within
the speech processing community; these include, most notably, the gradient-based algo-
rithm developed by Levinson et al [109]. However, none of the existing techniques just
mentioned can be used to solve the HMM-based source identification problem as we have
defined it here, for these algorithms have been designed to optimize a likelihood-based crite-
rion rather than a mutual information criterion; moreover, they are not equipped to handle
the critical state-space partitioning constraint, and they therefore generally produce HMM-
based approximations which lie outside of the set of valid solutions defined in the chapter
introduction.

4.4.2 Quality Assessment for the Initial Partition

We note that the random selection approach that we have used in the initialization procedure
described in Section 4.2.1 allows us to assess, in a probabilistic sense, the quality of our initial
partition relative to all possible initial partitions. Specifically, observe that each of the L-
element subsets of {xo,x1,- , xN-1} specifies a unique initial partition (provided that the
N original data points are distinct), and that each partition can in turn be evaluated using
its associated mutual information. In fact, these subsets can be arranged in ascending order
according their objective function values. It is straightforward to show that a randomly
chosen subset among these ordered subsets has an objective function value in the (100a)th
percentile with probability 1 - a, where 0 < a < 1. Furthermore, if Jinit of the subsets are
chosen at random, then the subset among these with the largest objective function value
lies in the (100a)th percentile with probability 1 - aJinit. Therefore, if we wish to know,
for example, the smallest number of initial subsets that should be tested so that the subset
with the largest objective function value is in the 95th percentile with probability 0.9 or
higher, we need only solve

Jinit = min {J E {1, 2,3,- - - 1 - 0.95J > 0.9} (4.21)

The above minimization yields a value of J = 29; thus, in this case we would find the best of
29 L-element subsets chosen at random from the N given data points. Alternatively, rather
than starting with a required exceedance probability, we might instead place a restriction
on the amount of computation we wish to perform in the initialization procedure. Such a
restriction would translate directly into a bound on Jinit. With this bound, we could then
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assess the quality of our partition by computing performance values represented by the pair
(100a,1 -- aJinit) for 0 < a < 1. A similar quantitative analysis to the one just described
would also apply to the termination procedure, since this procedure also makes use of the
random subset selection technique.

4.4.3 Implicit Constraints Imposed by the Voronoi Assumption

Our decision to use the special Voronoi construction for our state-space partition was made
in order to minimize computational complexity and memory consumption. But this decision
actually places a severe constraint on the form of an admissible region within a partition.
In particular, any Voronoi region is inherently a convex set; hence, as we will demonstrate
below, the region boundaries in such a partition must always be planar (i.e., portions of K-
dimensional hyperplanes). The cost incurred (in terms of sacrificed approximation quality)
as a result of using the Voronoi structure, rather than a more general partition structure
which could model curved region boundaries, is unknown and may be extremely difficult to
measure.

The convexity property of a Voronoi region can be derived directly from its definition.
To see this, suppose the point x E RK is known to be an element of the Voronoi region Rj,
so that it satisfies the distance inequalities

D(x, cj) < D(x, ci), i = 1, 2, - , L. (4.22)

Upon squaring both sides of each inequality, the entire set of L inequalities continues to
hold and can be expressed in the form

(x - cj)T(x - c) (x - ci)T(x - ci), i = 1,2,.- ,L. (4.23)

Though at first it may appear that the above inequalities are quadratic in x, in fact the
terms of second order cancel each other; thus, the expressions are actually linear in x and
can, after considerable algebraic manipulation, ultimately be written as

(x- (ci + cj))T (cj - ci)

||cj - cill>

In Figure 4-8, we give a geometric interpretation (in two-dimensional space) of a typical
inequality from this latter set of L inequalities. Observe that the ith inequality above is
actually imposed on the inner product of two vectors, namely x = x - }(ci + cj), which
is simply a re-expression of the vector x relative to the midpoint between ci and cj, and
c = (cj - ci)/Iicj - cil|, which is the unit vector that points in the direction from ci to c3 .
The inequality itself implies that only those points x E RK yielding an inner product that is
either positive or zero can lie in the region Rj. In other words, each of the inequalities above,
with the exception of the trivial one in which i = j, can be thought of as representing a
closed half-space in K dimensions. The hyperplane forming the boundary of this half-space
is the plane that bisects the line segment connecting ci and c. It follows that if we take all
of the (nontrivial) inequalities simultaneously, we have a new representation of the Voronoi
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Ci
0 ---

Ci
----------------

Figure 4-8: Representation of a Voronoi region as an intersection of many half-spaces. The

inner product of x and c must be positive for any point x in the region zj.

region lZj as the intersection of L - 1 half-spaces; hence, the bounding surface enclosing the

Voronoi region is formed from portions of the associated L - 1 bounding hyperplanes. Since
the line segment connecting any two points in a closed half-space is itself contained in the

half-space, we have that a closed half-space is a convex set. Finally, since the intersection

of a finite number of convex sets is a convex set, it follows that a Voronoi region is convex.

4.4.4 Assumptions on the HMM State Output Densities

As part of the HMM source identification algorithm described in this chapter, we assumed

that the output pdf associated with each state of the HMM was a Gaussian mixture. Of
course, we know that this assumption cannot be true in general, since the region of support

for a Gaussian-mixture pdf is all of R, whereas the actual projection of a Voronoi region onto

the real line is often a bounded interval. However, in practice this violation of the assump-

tion does not typically cause any difficulties. In addition, as we will discover in Chapter 5,
the Gaussian-mixture assumption is convenient not only because it can be specified by a
small number of parameters, but also because it offers several practical advantages in the
signal estimation problem and other related problems.

Furthermore, we can use the EM-based iterative algorithm presented in Section 4.3
to estimate the parameters of such a density; this algorithm is very easy to implement
and is reasonably efficient. Other algorithms (many of them similar to the one described
in Figure 4-7) for solving this estimation problem have been proposed independently in
several different contexts and could also be used [3, 77, 136, 191]. For situations in which
the Gaussian-mixture assumption does not provide an adequate representation of the true
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signal, we can choose from a wide range of other, more general density estimation methods

(see, for example, [104, 129, 140, 159, 203, 214, 218, 223, 224] for a number of classical
approaches to density estimation, or [170, 178, 198, 199] for an overview of more modern
techniques.

4.4.5 Open Issues in HMM Parameter Identification

For the purpose of developing our source identification algorithm, we assumed that the
parameters K, L, M 1 , M 2 ,- -- , ML were given. In practice, however, the values of these
parameters are not typically known and therefore must be estimated. More precisely, we
must estimate K, which is truly an unknown parameter of the signal, and we must select
reasonable values for the remaining parameters, which are merely being used to approximate
the signal. As we mentioned in Chapter 2, several methods already exist for estimating the
autoregressive order, K, even in cases where the signal has been generated by a nonlinear
system. However, there appear to be no clear guidelines for choosing values of the remaining
model parameters. Undoubtedly, the most critical of these remaining parameters is the
HMM order, M, since this parameter is the only one that affects the dynamical structure
of the approximation. In general, the most appropriate choice for M will depend on the
specific signal processing task for which the HMM-based approximation will be used. A
potentially rich area for future research is to develop a technique for optimally selecting the
HMM order, a priori, based on a description of the signal processing task, so that a tedious
process of trial and error can be avoided.
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Chapter 5

Using Finite-State Markov Models
for Signal Estimation

5.1 Introduction

In Chapter 4, we developed a set of practical numerical techniques for performing source
identification based on the finite-state signal model introduced earlier. However, these
techniques constitute only a part of our overall finite-state signal processing framework as
defined in the early portion of the thesis. To complete the framework, we now turn our
attention to the inference problem that we have not yet addressed, namely the problem of
signal estimation. In the next two subsections, we give some assumptions and notation that
will be used in connection with the signal estimation problem, and we provide a concise
formulation of the estimation problem itself. In the third subsection, we describe how the
remaining material in the chapter is organized.

5.1.1 Preliminary Assumptions and Notation

As usual, we will assume that {Yt} is a stationary signal of interest, and that our corrupted
observation of this signal, {Zt}, consists of samples defined by

Zt = Y + Vt, (5.1)

where {Vt} is a stationary noise process which is statistically independent of {Y}. Through-
out the chapter, we will assume that {Yt} is the output of an L-state HMM whose state
space is, without loss of generality, the set of integers {1, 2,. .. , L}. The underlying Markov
chain from which {Yt} is generated will be denoted by {Et}; as in previous chapters, the
initial state probabilities and state transition probabilities of this Markov chain will be
denoted, respectively, by {P(i)}f_1 and {Q(i,j)} 1 . We denote the output densities of

the HMM by {g(-)}[_1 . Although these output densities can in general be arbitrarily com-
plicated functions, in the sequel we will assume that the ith density, gi(.), is a Gaussian
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mixture made up of Mi constituent elements, and is defined by

Mi

gi(y) Z PikJV(Y;; Pi o-ik), -oo < y < 00. (5.2)
k=1

Because we will be examining several different types of signal estimation problems, the
definition of the additive noise process {Vt} will be modified as appropriate as we progress

through the chapter. In all cases, however, this noise process will also be viewed as the

output of a finite-state HMM. In most of the cases considered, {V} will be made up of i.i.d.

random variables; hence, the HMM representing {V} will be degenerate, i.e., it will consist

of only a single state. When it becomes necessary to refer to the temporal dynamics of the

noise, we will use the notation {E'} to represent the underlying Markov chain from which

the noise samples are generated. We will assume that this Markov chain has L' states, given

by {1, 2, ... , L'}, and that the initial state probabilities and state transition probabilities for

this chain are given by {P'(i)}L 1 and {Q'(i,j)}S;., respectively. As in the HMM-based
representation of the signal, each of the output densities will be taken to be a Gaussian

mixture. The ith output density, which we denote by g(-) and which is assumed to consist

of Mj Gaussian components, is defined by

gi (v) = p'ikJV(V; Ik, Cjk), -o < v < oo. (5.3)
k=1

5.1.2 Problem Statement and Approach to Solution

We assume throughout the chapter that only the finite-length portion of the observed signal

{Zt} between t = 0 and t = N - 1 is available for estimating signal values of interest. When
given a realization of the random vector ZO:N-1, our goal is to attempt to determine the

value that has been taken by the underlying signal vector Y:N-1. More precisely, our

objective is to obtain, for each signal value yt (t = 0, 1, - - - , N - 1), the MMSE estimate

Qt(ZO:N-1) defined by

Qt(ZO:N-1) = argminE {(Y - y(ZO:N-1)) 2 IZO:N-1 = ZO:N-1 , (5.4)
y()EY

where Y represents the set of all real-valued functions of a real N-dimensional argument. 1

This type of estimation problem is commonly referred to as a smoothing problem, and its

solution is typically termed an optimal smoother [14, 164, 193, 197]. For this problem, all
parameter values characterizing both the signal and the noise are assumed to be precisely
known.

As we have already pointed out in earlier chapters, the solution to (5.4) is given by the

'To simplify notation in the remainder of the chapter, we will often suppress the argument in the func-

tional expression yt(ZO:N-1) and use the abbreviated symbol yt to refer to the estimate.
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conditional expectation

B= {Y tIZo:N-1 = Z:N-1}- (5.5)

However, from the standpoint of generating a specific numerical estimate of the signal based
on our observations, this symbolic expression is not immediately helpful. Rather, it provides
only a starting point from which we may ultimately derive a more concrete solution. Much
of the material this chapter is aimed at exploiting the stochastic structure of the signal and
noise outlined above in order to develop computationally efficient techniques for evaluating
the right-hand side of (5.5).

5.1.3 Chapter Organization

The chapter is organized in the following way. First, we examine the form of the above
conditional expectation in the case where the corrupting noise is white and Gaussian, and
we describe an efficient recursive algorithm for evaluating the expectation in this simple
case. We then analyze the various components of this estimation algorithm to determine the
approximate number of arithmetic operations required to generate the final signal estimate.
Next, we compare the estimation performance achieved using several different HMM-based
representations of a stationary AR Gaussian signal, so that we can quantify the improvement
in estimator quality as a function of the number of states in the HMM and as a function of
the SNR. We then extend the basic estimation algorithm developed for the case in which the
noise is white and Gaussian to more complex cases in which the noise is allowed to be both
non-Gaussian and non-white. We also demonstrate how these algorithms can be configured
to perform signal separation, i.e., the estimation of each of several statistically independent
non-Gaussian signals that have been additively combined. Finally, we describe how the
finite-state modeling paradigm can be effectively applied to signal processing problems other
than smoothing, including the problems of filtering, prediction, and multi-class hypothesis
testing. We also suggest a general method for applying the finite-state framework to the
problem of signal estimation in non-stationary noise.

5.2 Estimating a Signal in Additive White Gaussian Noise

5.2.1 Characterization of Signal, Noise, and Observation

We begin by examining the simplest possible case in which the noise process {V} is made
up of zero-mean i.i.d. Gaussian random variables. This constraint on {V} implies that it
can be represented by a one-state HMM whose output pdf is a one-component Gaussian
mixture. In keeping with the notation established in (5.3), we define the pdf for each noise
sample V by

g((v) =K (v;0, uii). (5.6)

From this definition of the additive noise process, it should be immediately evident that
the observed process {Zt} is itself the output of an HMM whose structure is very similar to
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the HMM for {Yt}. In particular, because the noise is white and therefore contributes no

additional complexity to the temporal structure of the observation when it is combined with

the signal, the initial state probabilities and state transition probabilities in the HMM for
{Zt} are exactly the same as those in the HMM for {Yt}. In fact, the only difference between
these two HMMs lies in the output densities associated with the states of their respective
Markov chains. Fortunately, we can easily derive the output pdf for the observed signal
when its Markov chain is in state i. Since the signal and noise are statistically independent,
this output pdf, which we denote by hi(.), is obtained by convolving the signal and noise
output densities gi(-) and g'(.), and hence is given by

hi (z) =gi (z) * g' (z) (5.7)

Mi

= pikN/ z;I p ,+ 12, -oo < z < oo. (5.8)
k=1

5.2.2 Decomposition of the Conditional Signal Mean

Having established the stochastic structure for the signal, the noise, and the observation in
this case, let us now take a closer look at the conditional expectation in (5.5), and attempt
to decompose it into more manageable pieces. We begin by expressing this expectation in
the form of an integral, and we then introduce further conditioning on possible values of
the discrete state variable for the underlying Markov chain. This yields

E{Yt|ZO:N-1 ZO:N-1}

f Yt|lZO:N - 1 (YtZO:N-1 = ZO:N-1) dyt (5.9)

Sj t [ Ytt|ZO:N-(t IZO:N-1 = ZO:N-1) dyt (5.10)

Yt Pr(Et = ZIZO:N-1 = ZO:N-1}

fYt|Et,Zo:N-1 (Ytt = , 0:N-1 = Z0:N-1) dyt- (5.11)

We can now simplify this last expression somewhat by observing that

fYt|E,Z0:N-1(Yt = ,ZO:N-1 ZO:N-1)

= Ye let'zt (Y1|t = Z, Zt = zt), oo < y < 00. (5.12)

This equality follows directly from the properties of our HMM-based signal model, for if we
are given the true value of the underlying state variable Ot, then the quantity Y is inde-
pendent of all other signal variables {YIs # t}, and therefore (owing to the independence
of the additive noise) is independent of all other observations {ZIs $ t}. Indeed, when we
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are given the value of E8, the only observed signal variable that contains any information
about Y is Zt itself. If we now introduce this simplification into (5.11), and reverse the
order of integration and summation, we can write

E {Yt I Z:N-1 = ZO:N-1}

L 0

r{8t i0:N-1 = ZO:NJ-1} YtfY|I E,Z,(Yt I t = i, Zt zt) dyt

L

= Pr{ = iIZo:N-1 = ZO:N-1}E {YtEt = i, Zt = zt} . (5.13)

Now recall that when 8t = i, the conditional density characterizing Y is a Gaussian mix-
ture made up of Mi Gaussian components. Thus, we can think of the process of generating
the output Y in two separate stages, where the first stage consists of selecting at random

(according to the pmf constructed from the weighting coefficients) exactly one of the M
Gaussian components from the mixture, and the second stage consists of generating a real-
ization according to the selected Gaussian pdf. Based on this two-stage output-generation
paradigm, we can introduce an additional discrete state variable to keep track of the Gaus-
sian component that has been selected at time t. Let us denote this state variable by -IDt.
Then the expectation appearing on the right-hand side of (5.13) can be decomposed further
by conditioning on all possible outcomes for 4Dt. This yields the new expression

E {YtE8 =', Zt = zt}

Mi

=Z Pr{1t = jlt = i, Zt = zt}E {Yt = i,It =j, Zt = zt}. (5.14)
j=1

Upon combining (5.14) and (5.13), we find that the optimal estimate of Y given Z:N-1
can be written as

L

St Pr(8t = iIZO:N-1 = ZO:N-1}
i=1

Mi

Pr{1t = jI8t = i, Zt = zt}E{Yt =j, E0 i, Zt = zt}. (5.15)
j=1

Although this estimate now appears to have a more complex structure than it did originally
in (5.5), it is nonetheless in a form that is much more amenable to the development of an
optimal estimation algorithm, as we will see in the coming sections.

5.2.3 Analysis of Components of the Optimal Estimate

Note that the right-hand side of (5.15) is made up of three basic types of components: (i)
posterior state probabilities associated with the underlying Markov chain, which have the
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form Pr{ t = iZO:N-1 = ZO:N-1}; (ii) posterior sub-state probabilities associated with the

Gaussian-mixture pdf for a particular state, which have the form Pr{@J t = j =" i, Zt = zt};
and (iii) expectations conditioned on state and sub-state outcomes, which have the form

E{YtIIt = j,8 = i, Zt = zt}. We shall refer to these quantities as terms of type I, type II,
and type III, respectively. In the remainder of this subsection, we will examine and attempt

to evaluate each of these terms, beginning with terms of type III and working in reverse

order until we finally consider terms of type I.

To begin, observe that if we know the events eO i and bt j have occurred, then the

conditional pdf for Y is purely Gaussian. Moreover, if we know that Zt = zt, then, although

this additional knowledge may affect the parameters of the conditional pdf, the pdf itself

remains Gaussian, since Y and Zt are (conditionally) jointly Gaussian by assumption. It

follows that a term of type III is linear (or, more correctly, affine) in the observed quantity

zt. Specifically, for such a term we can write

2

E {Yt8 I = bt = j, Zt = zt} = - (.zt - Ai). (5.16)
± 1 1

Let us next consider terms of type II. Note that a term of this kind is merely the posterior

probability that the Gaussian-mixture state variable 4D has taken the value j given that

the Markov chain is currently in state i and the current value of our observation is zt. This

probability can be expressed via Bayes' rule as

Pr{t = iEt = i ~fztle),<1>,(zt|8E = i, 'It =)
Pr{t =4jt = i,O Z = Zt} = fztiet(ztlt = 0

PAf (zt; lii ±. (5.17)

k= 1 PikN (zt; Pik, o- 11+1

In this form, the posterior sub-state probabilities can now be easily computed in terms of

known model parameters.

The only remaining quantities that must be computed in order to produce the optimal

estimate are terms of type I. It turns out, however, that these terms are the most difficult

of all three types to evaluate, owing to the fact that they depend on the entire observed

sequence Z:N-1, rather than only on a single observed sample, as did terms of type II

and type III. A term of type I can still be calculated efficiently, but the procedure for

performing this calculation is rather involved. A description of this procedure can be found

in Appendix F.

5.3 Analysis of Computation for HMM-Based Estimation

In this section, our goal is to determine the amount of computation required to generate

an estimate with the formula in (5.15). For the analysis presented here, we assume for

convenience that the Gaussian-mixture pdf assigned to each state has a fixed number of

134



Chapter 5. Using Finite-State Markov Models for Signal Estimation

components, say M, rather than a state-dependent number. We wish to derive an expression
for the total computational cost as a function of the model parameters M and L, and as a
function of the number of samples N in the given realization ZO:N-1. To accomplish this,
we first determine the cost incurred in producing individual terms of types 1, 11, and III,
and we then quantify the amount of computation required to combine these terms when
forming the final estimate. Throughout the following analysis, we assume that the basic
arithmetic operations of addition, subtraction, multiplication, and division all require the
same number of primitive computer instructions; thus, any such operation will be assigned
a single unit of computational cost.

It turns out that the components of the estimation formula above are listed in order of

decreasing complexity. Thus, let us consider these components in reverse order, beginning
with terms of type III. Recall that any term of type III has the form

E{Yt|<Dt j, O i, Zt = zt} = pij + T 3 (Zt - pi). (5.18)
ij +11

Although this expression contains certain quantities that could, in order to reduce com-
putational expense, be computed and stored in advance for use during the algorithm, its

most important attribute from a computational standpoint is that it requires a fixed num-
ber of arithmetic operations (let us say J operations altogether), independent of the model

parameters L and M.

A term of type II has the form

PijN (zt; pzj, + 12
Pr{<blt = j = i, Zt = zt} =K (. (5.19)

These posterior probabilities, which are derived using Bayes' rule, can be constructed during

the estimation algorithm by normalizing a collection of M weighted Gaussian pdf values so
that they sum to unity. If we assume that each evaluation of a Gaussian pdf consumes G
arithmetic operations, then computing all M of the unnormalized likelihood values would

take M(G + 1) multiplications. Now suppose that, once these values have been computed,
they can be stored in memory temporarily until all of them can be appropriately scaled.

Computing the normalizing denominator in the above expression then requires M - 1 ad-

ditions, and the subsequent scaling of the original values requires M divisions, bringing

the total number of operations performed to M(G + 3) - 1. However, we can view these

operations as being distributed over all M terms; hence, in order to evaluate a single term

of type II, we need essentially G + 3 operations.

Let us finally determine the amount of computation needed to evaluate terms of type I.

Such terms are computed during the estimation algorithm using special recursive formulas

(derived in Appendix F), and are therefore inherently more complicated to analyze. A term
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of type I is given by

ZYt W at (i ) 3t (5.20)
dE at( (j)t (j)

where at(-) and Ot(-) are the recursively computed forward and backward variables. The
above expression represents the normalization of L likelihood values, one for each state of the
underlying Markov chain. By the same reasoning we used earlier, we see that evaluating all

L of the probabilities requires L initial multiplications to obtain the unnormalized likelihood
values, then L - 1 additions to compute the scaling term, and finally L divisions to perform
the normalization, for a total of 3L - 1 operations. Because these operations are distributed

over the L terms, each term requires essentially 3 operations after at(.) and Ot(-) have been

computed.
But we must now turn our attention to the evaluation of these forward and backward

variables. First, we observe (see Appendix F for details) that the expression for the partic-
ular value at(i) is given by

L

at+1(i) =E Q(i, j)at(j) hi(zt). (5.21)
_j=1

Since each term in the bracketed summation requires one multiplication, and there are L

terms in all, the sum itself requires L multiplications and L - 1 additions, for a total of
2L - 1 operations. After the sum has been computed, it is multiplied by an M-component
Gaussian-mixture pdf value, which consumes GM operations (plus one operation for the

subsequent multiplication). Thus, to evaluate the single quantity at(i), we need 2L + GM
operations. 2

A somewhat different result holds when computing the quantity #t(i), which is given by

L

,t (i) = Q(i, j)hj (zt+ 1)t+1 (j). (5.22)
j=1

Evaluating the pdf again takes GM operations, but this pdf value is multiplied by two other
numbers, yielding a total of GM +2 operations for each term in the summation. Since there

are L terms in all, the sum requires (GM + 2)L multiplications and L - 1 additions, for a

grand total of (GM + 2)L + (L - 1) operations. Combining the computational requirements
for at(i), /3t(i), and -yt(i), we see that (GM+5)L+GM+2 operations are needed to evaluate
a term of type I.

Now let us begin putting the above pieces together to determine the computational

2 We have implicitly assumed here that all values of the forward variable (and, for that matter, the
backward variable as well) are computed only once and then stored in computer memory for the duration of
the HMM-based estimation algorithm, so that they can later be accessed on demand at no expense. If this
were not the case, the amount computational cost would clearly be much greater than the amount stated
here.

136



Chapter 5. Using Finite-State Markov Models for Signal Estimation

requirement for the original estimation formula in (5.15). To begin, we note that each
term in the inner summation of the estimation formula requires the multiplication of a
term of type II and a term of type III. Thus, each term takes J + G + 4 operations to
evaluate. Since there are M such terms to be computed for a fixed value of i in the outer
summation, the inner sum takes (J + G + 5)M - 1 operations to evaluate, including the
M - 1 additions needed to form the sum. After the inner sum has been computed, it is
multiplied by a term of type I, and thus a single term in the outer summation consumes
(GM + 5)L + (J + 2G + 5)M + 2 operations. Finally, since the outer summation consists of
L such terms, the overall number of operations required (including the L -1 final additions)
is (GM + 5)L 2 + [(J + 2G + 5)M + 3]L - 1. In later sections, we shall assume that the first
term of this expression is the dominant term, so that a reasonable first-order approximation
to computational cost is cML 2 operations per sample, where c is an appropriately chosen
constant. Thus, assuming all other parameters are held fixed, we see that total computation
is linear in the number of Gaussian components in each output pdf, M, and is quadratic in
the number of states in the underlying Markov chain, L.

Of course, the expression we have just derived represents the computational requirement
only for a single time index t. To obtain the number of operations needed to evaluate the
entire waveform estimate, we multiply this number by N, the number of samples in the
observation. Thus, the amount of computation required to generate a waveform estimate
depends linearly on N when the model parameters L and M are held constant.

5.4 HMM-Based Performance Evaluation for the Gaussian
Problem

Thus far in this chapter, we have discussed only the methods involved in HMM-based
estimation. In later sections, we will also discuss certain extensions of these methods so
that they can be applied in more complex signal processing problems. But for the moment,
let us shift our focus away from the details of algorithm derivation, and instead consider how
our HMM-based procedure performs in a specific signal estimation problem. We devote this
section to a discussion of an experiment which uses computer-simulated signals and noise
to determine how the performance of our new HMM-based method changes as a function
of two major parameters: (i) the number of states in the finite-state signal model; and (ii)
the signal-to-noise ratio (SNR) characterizing the observation.

The experiment is designed to address a simple, purely Gaussian signal estimation prob-
lem, so that the globally optimum processor is known exactly and can be implemented with
ease. In particular, the true source signal {Y} for this problem is assumed to obey the
second-order difference equation

Y = 0.75Y-1 + 0.2Yt- 2 + Wt, (5.23)

where the sequence {Wt} consists of i.i.d. Gaussian random variables, each having a mean
of zero and a standard deviation of unity. The additive noise sequence {V}, on the other
hand, is assumed to consist of i.i.d. Gaussian random variables, each having a mean of zero
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Table 5.1: Parameter definitions for 1-state HMM representation of the AR Gaussian pro-
cess Y = 0.75Y_1 + 0.2Yt-2 + Wt. From top to bottom: specification of initial state
probability and state transition probability for Markov chain; specification of the mean,
standard deviation, and weighting coefficient for Gaussian-mixture pdf associated with the

single state.

and a standard deviation o',, whose value is specified according to the SNR level being

tested.
We will examine the signal estimation performance achieved by using each of five dis-

tinct HMM-based representations of {Yt}, specifically representations containing one, two,
three, five, and nine states. The parameter values for each signal model used in the exper-

iment are generated directly from realizations of {Yt} using the model-building algorithms

described in Chapter 4. Because the true signal {Y} can be characterized with a state-space

representation in which the state vector is two-dimensional, the states in each HMM-based
representation of {Y} are made to correspond to disjoint regions in the two-dimensional

coordinate plane. The output pdf assigned to each state of each HMM (with the exception

of the one-state HMM) is a Gaussian mixture having three components. For the one-state

HMM, the output pdf is taken to be the Gaussian marginal pdf of the true signal {Y}.

The parameter values for all five of the finite-state signal models are given in Tables 5.1
through 5.5.

Before we begin to assess the estimation performance associated with each of the finite-

state models defined above, let us first try to gain an appreciation for the differences among

these models by examining the statistical structure of their output signals. A simple,
qualitative way of doing this is to generate a suitably long realization of the output signal
from each HMM, and then visually compare and contrast the temporal patterns that are
present in the resulting collection of realizations. In Figures 5-1(a) through 5-1(e), we
show plots of output waveforms generated by each of the finite-state models used in the
experiment. This series of plots is ordered from top to bottom according to the number
of states in the signal model. Note that each successive waveform in the series possesses
the same basic shape as its predecessor, but also contains a significant amount of detail
that was not present before. The similarity among these waveforms results from the fact
that the underlying sequence of state variable values for each waveform was generated from
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i P (i) 01i -)
1 0.50 0.93 0.07
2 0.50 0.07 0.93

i o(i) P(i)
1 -4.60 -2.14 -0.59 1.63 1.16 0.78 0.23 0.46 0.30
2 0.59 2.14 4.60 0.78 1.16 1.63 0.30 0.46 0.23

Table 5.2: Parameter definitions for 2-state HMM representation of the AR Gaussian pro-
cess Y = 0.75Yt-I + 0.2Yt- 2 + Wt. From top to bottom: partitioning of underlying two-
dimensional state space (superimposed on an elliptical equi-probability contour of the true
state-vector pdf); specification of initial state probabilities and state transition probabilities
for Markov chain; specification of means, standard deviations, and weighting coefficients for
Gaussian-mixture pdf associated with each state.
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iPWi Q(i,
1 0.31 0.91 0.09 0
2 0.38 0.07 0.86 0.07
3 0.31 0 0.09 0.91

i(i) o(i) P(i)
1 -5.48 -3.90 -2.31 1.31 0.71 0.71 0.22 0.25 0.53
2 -0.86 0.15 1.09 0.64 0.56 0.58 0.38 0.37 0.25
3 2.31 3.90 5.48 0.71 0.71 1.31 0.53 0.25 0.22

Table 5.3: Parameter definitions for 3-state HMM representation of the AR Gaussian pro-

cess Y = 0.75Yt_1 + 0.2Yt- 2 + Wt. From top to bottom: partitioning of underlying two-

dimensional state space (superimposed on an elliptical equi-probability contour of the true

state-vector pdf); specification of initial state probabilities and state transition probabilities

for Markov chain; specification of means, standard deviations, and weighting coefficients for

Gaussian-mixture pdf associated with each state.
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Table 5.4: Parameter definitions for 5-state HMM representation of the AR Gaussian pro-
cess Y = 0.75Y_1 + 0.2Yt- 2 + Wt. From top to bottom: partitioning of underlying two-
dimensional state space (superimposed on an elliptical equi-probability contour of the true
state-vector pdf); specification of initial state probabilities and state transition probabilities
for Markov chain; specification of means, standard deviations, and weighting coefficients for
Gaussian-mixture pdf associated with each state.

iP(i) Q(i,
1 0.16 0.86 0.14 0 0 0
2 0.23 0.10 0.74 0.16 0 0
3 0.22 0 0.17 0.66 0.17 0
4 0.23 0 0 0.16 0.74 0.10
5 0.16 0 0 0 0.14 0.86

ii) -(i) P(i)
1 -6.57 -4.96 -3.38 1.03 0.94 0.76 0.10 0.26 0.64
2 -2.12 -1.38 -0.67 0.63 0.50 0.50 0.43 0.39 0.18
3 -0.74 -0.11 0.45 0.43 0.36 0.52 0.25 0.28 0.47
4 0.67 1.38 2.12 0.50 0.50 0.63 0.18 0.39 0.43
5 3.38 4.96 6.57 0.76 0.94 1.03 0.64 0.26 0.10
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ia-(i) p(i)
1 -7.10 -6.04 -4.86 1.13 0.58 0.56 0.27 0.27 0.46
2 -4.18 -3.50 -2.86 0.49 0.49 0.53 0.25 0.41 0.34
3 -2.70 -2.40 -1.75 0.47 0.42 0.50 0.12 0.27 0.61
4 -1.57 -1.18 -0.58 0.46 0.35 0.44 0.24 0.27 0.49
5 -0.74 -0.27 0.28 0.37 0.41 0.48 0.11 0.29 0.60
6 0.58 1.18 1.57 0.44 0.35 0.46 0.49 0.27 0.24
7 1.75 2.40 2.70 0.50 0.42 0.47 0.61 0.27 0.12
8 2.86 3.50 4.18 0.53 0.49 0.49 0.34 0.41 0.25
9 4.86 6.04 7.10 0.56 0.58 1.13 0.46 0.27 0.27

Table 5.5: Parameter definitions for 9-state HMM representation of the AR Gaussian pro-
cess Y = 0.75Y_ 1 + 0.2Yt- 2 + Wt. From top to bottom: partitioning of underlying two-
dimensional state space (superimposed on an elliptical equi-probability contour of the true
state-vector pdf); specification of initial state probabilities and state transition probabilities
for Markov chain; specification of means, standard deviations, and weighting coefficients for
Gaussian-mixture pdf associated with each state.

i P(i) Q (i,
1 0.074 0.85 0.15 0 0 0 0 0 0 0
2 0.111 0.10 0.69 0.20 0.01 0 0 0 0 0
3 0.126 0 0.18 0.59 0.22 0.01 0 0 0 0
4 0.125 0 0 0.22 0.52 0.24 0.02 0 0 0
5 0.128 0 0 0.02 0.23 0.50 0.23 0.02 0 0
6 0.125 0 0 0 0.02 0.24 0.52 0.22 0 0
7 0.126 0 0 0 0 0.01 0.22 0.59 0.18 0
8 0.111 0 0 0 0 0 0.01 0.20 0.69 0.10
9 0.074 0 0 0 0 0 0 0 0.15 0.85
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(a)

SAMPLE NUMBER

(b)

(c)

SAMPLE NUMBER

(d)

(e)

Figure 5-1: Waveforms generated by increasingly accurate HMM representations of the AR
Gaussian process Y = 0.75Y_ +0.2Yt- 2 + Wt: (a) output of one-state HMM; (b) output of
two-state HMM; (c) output of three-state HMM; (d) output of five-state HMM; (e) output
of nine-state HMM.
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a common pseudo-random noise sequence. The progressive increase in signal detail is a

natural consequence of the corresponding increase in model complexity.

The waveform produced by the one-state HMM, shown in Figure 5-1(a), is the coarsest

possible finite-state representation of the actual signal, because any HMM with only a single

state is capable of modeling only the marginal statistics of the signal. (Such an HMM

cannot model any temporal dependence exhibited by the original signal, since the output

samples of a one-state HMM are necessarily statistically independent.) On the other hand,
the waveform produced by the two-state HMM exhibits some temporal correlation, but

the representation is coarse, abruptly switching back and forth between two gross output

levels over time. As we continue to scan through this series of plots, we observe a greater

and greater degree of refinement in signal structure, until finally we come to the waveform

produced by the nine-state HMM. This waveform, which is shown Figure 5-1(e), is almost

indistinguishable in character from a waveform that would be generated by the original

autoregressive linear model in (5.23).
Although it is both interesting and useful to examine realizations of the output signals

of various finite-state models, as we have done with Figure 5-1, this exercise does not

necessarily help us to predict the estimation performance that will be achieved by each

HMM. In the remaining portion of this section, we will quantify the performance associated

with each model and compare its performance to that of the optimal Wiener smoother. For

the particular estimation problem we have chosen, where the observation is a Gaussian signal

combined with independent white Gaussian noise, a reasonable measure of performance is

the gain in signal-to-noise ratio (SNR) achieved by the estimator. Of course, in order to

calculate this gain, we must have suitable definitions for both the input SNR and the output

SNR, which we denote, respectively, by SNRi, and SNRout. For the first of these quantities,
SNRin, we will use the classical definition given by

E{Yt2}
SNRin 10 E ogi 0  . (5.24)

For the remaining quantity, SNRout, the definition is not as straightforward, for it requires

that we view the output estimate Yt as being composed of the original signal value Y

together with an additive noise component Ut, which actually represents the estimation

error. In other words, we need to express Y in the form

Yt = Yt +Ut (5.25)

= Y + (t -Yt). (5.26)

With this construction, we can define the output SNR as3

E{Y 2}
SNRout = 10logio E{(Yt -yt)2 } (5.27)

3Because the term (Yt - Yt) is more naturally viewed as an error term rather than an additive noise term,
the quantity SNRout is also commonly referred to as the signal-to-error ratio, or SER.
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In all cases, the value of SNRin can be expressed in closed form in terms of the signal
covariance matrix Cy and the noise variance o-12 that is needed to achieve the desired SNR
level in a specific case. The input SNR is given by

tr (Cy)SNRin = 10 log10  No- , (5.28)

where tr(.) represents the matrix trace operator and N is the observation length. Further-
more, whenever the Wiener smoother is applied to the observation, the quantity SNRout
can also be expressed in closed form. This quantity is given by

SNRout = 10logio . (5.29)
tr (Cy - Cy(Cy + o-j-I)-CY)(

Whenever one of the HMM-based smoothers is applied, however, we must resort to an
estimate for the denominator in the expression for SNRout. This estimate is obtained
simply by taking the arithmetic mean of the squared values of the actual error waveform.

For our experiment, estimation performance was measured for each signal model at
input SNR levels of -10 dB, -5 dB, 0 dB, 5 dB, and 10 dB. For each input SNR level,
a total of 1000 waveforms were processed by each of the finite-state estimators described
above. In addition, each waveform was processed by the Wiener smoother, whose output is
given by

Y:N-1 = Cy(CY + o- 1  Z0:N-1 (5.30)

Each input waveform was 300 samples in length. In Figure 5-2, we show the results of
a single experimental trial for which the input SNR level was 0 dB. The collection of
waveforms plotted in this figure includes realizations of the original source signal, the noisy
observed signal, and the estimates generated by each HMM-based smoother and by the
Wiener smoother. Each of these waveforms is shown next to its associated residual, which
was created by subtracting the original from the estimate.

In Figures 5-3(a) and 5-3(b), we give a graphical summary of the performance of the
HMM-based smoothers, as well as that of the globally optimal Wiener smoother. Let us
now consider each of these plots in turn. Observe that a single curve on the plot shown
in Figure 5-3(a) indicates the output SNR that was achieved by a particular finite-state
estimation algorithm as a function of the input SNR.4 It is clear from this figure that the
nine-state HMM performs nearly as well as the optimal Wiener smoother. (Note that we

4 To interpret these curves properly, we must be aware that the plotted values for the output SNR are
somewhat deceiving, for in certain cases they seem to suggest that extraordinary estimation gains have been
made, especially at low input SNR levels. For example, it appears that the one-state HMM achieves an
estimation gain of more than 10 dB when the input SNR is -10 dB. To understand why this is true, we must
keep in mind that an optimal estimator will produce a value close to the prior mean of the underlying signal
whenever the input SNR is extremely small, since very little new information can be extracted from the
observation itself. In this case, since our one-state HMM-based estimator is nothing more than an optimal
memoryless Wiener smoother (i.e., a one-sample FIR Wiener filter), and since the underlying signal has a
prior mean of zero, the estimator tends to produce values very near zero. Of course, this produces a residual
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Figure 5-2: Plots of estimated versions of the original waveform (left-hand column) and their

corresponding residual waveforms (right-hand column) after subtracting out the original:

(a) original waveform; (b) original waveform combined with additive noise (0 dB SNR); (c)

estimate of original waveform produced by one-state HMM, and its residual; (d) estimate

and residual produced by two-state HMM. (Continued on following page.)
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Figure 5-2: (Continued from previous page.) (e) estimate and residual produced by three-
state HMM; (f) estimate and residual produced by five-state HMM; (g) estimate and resid-
ual produced by nine-state HMM; (h) estimate and residual produced by optimal Wiener
smoother.
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have labeled the performance curve associated with the Wiener smoother as "INF-STATE"

to indicate that this curve could be also achieved by using an HMM with an infinite number

of states.) In addition, we see that the performance of the five-state HMM is within 1 dB of

the performance of the Wiener smoother over the entire range of input SNR levels tested.

Thus, we have the rather surprising conclusion that, for this purely Gaussian problem,
near-optimal performance can be achieved by using only a very coarse (albeit well-designed)

finite-state signal model. 5 As one might predict, however, performance can degrade rapidly

if the model becomes too coarse. This conclusion can be drawn from the performance curves

associated with the three-state, two-state, and one-state models. We note in particular that

the estimator based on the one-state HMM (which is, as we have already mentioned, the

best possible memoryless operation that can be performed on the observed signal), yields

only a slight improvement in SNR, even at the highest input SNR level tested; in fact, for

this case, its performance lags behind that of the Wiener smoother by approximately 3 dB.

Figure 5-3(b) displays exactly the same data shown in Figure 5-3(a), but in a slightly

different format. Specifically, a single curve on this plot now indicates the output SNR

that was achieved at a fixed input SNR level as a function of the number of states used in

the HMM-based estimation algorithm. Thus, each successive point on the curve explicitly

indicates the marginal value of adding the corresponding number of states to the model.

5.5 Extensions of the Basic Signal Estimation Algorithm

In the previous section, we addressed only the problem of estimating a stationary Gaussian

signal that has been corrupted by independent additive white Gaussian noise. We chose to

consider this classical estimation problem first not only because of its analytical simplicity,
but also because a theoretical bound on performance was available for this case. Specifically,
the performance of the globally optimal solution - i.e., the Wiener smoother - could be

calculated in advance and compared directly to the performance achieved by using various
finite-state HMMs for the underlying signal and noise combination. Clearly, the recursive

algorithms we used to solve this purely Gaussian problem could be applied just as easily

to the problem of estimating a non-Gaussian signal in additive white Gaussian noise. The

only modification required in such a case would be to replace the original HMM, which

was designed to represent the Gaussian signal, with a new HMM designed to represent the

non-Gaussian signal. The sequence of computations subsequently performed to generate

a signal estimate would be exactly the same as before. Thus, we already have at our

disposal a method for estimating any stationary signal (provided, of course, that the signal

is adequately characterized by an HMM) - either Gaussian or non-Gaussian - that has

error signal that is approximately the same as the original signal, which in turn causes the output SNR to

be approximately 0 dB, even though the input SNR was -10 dB. Therefore, because the estimation gains

will usually appear to be substantial at very small input SNR levels, the output SNR must be interpreted

with care. At moderate to high input SNR levels, the difference SNRout - SNRin can be interpreted more

directly as a reduction in the original noise power.
5 We will present examples later in the chapter suggesting that this same conclusion may extend to more

complicated non-Gaussian estimation problems as well.
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Figure 5-3: Performance comparison among different HMM-based estimators for the AR
Gaussian process Yi = 0.75Y 1 ±+0.2Y- 2 +4 Wt in various levels of additive Gaussian noise:
(a) output SNR as a function of input SNR for each of the HMMs used; (b) output SNR
as a function of the number of states in the HMM for each noise level.
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been additively combined with white Gaussian noise.

A problem we have not yet discussed, however, is that of estimating a stationary signal

in the presence of additive non-Gaussian noise. For this more challenging problem, there

are two fundamental variations to be considered, according to whether the samples of the

noise are temporally independent or temporally dependent. These two variations of the

problem - which will be addressed, respectively, in the next two subsections - lead to

modifications of the basic estimation algorithm that have different degrees of complexity

and, accordingly, that require different amounts of computation per output sample. When

addressing either of these variations, we shall restrict the scope of the estimation problem

in the usual way by assuming that any non-Gaussian density characterizing either signal or

noise can be adequately modeled by a Gaussian-mixture density, provided that the mixture

contains a sufficient (but finite) number of elements.

After we have considered these two main variations of the estimation problem in some

detail, we then show, in the third subsection, how the corresponding algorithms can be

extended even further by applying them to the related problem of signal separation - i.e.,
the reconstruction of many individual signals of interest that have been additively combined

(and perhaps also corrupted by additive noise).

5.5.1 Estimating a Signal in Additive White Non-Gaussian Noise

We begin our discussion by demonstrating how to extend the previously derived estimation

algorithm to handle the case in which the samples of additive non-Gaussian noise are i.i.d.

As before, we assume that the signal and noise are independent, and that the tth element

in our sequence of observations {Zt} is given by

Zt = Yt + V. (5.31)

Here, the sequence {Y} once again represents the output of a stationary L-state HMM, but

the sequence {V} consists of i.i.d. random variables, each now having a Gaussian-mixture

pdf g'() defined by

M'
'(v) = p'gN(v; p'i -'ig). (5.32)

j=1

As we will soon see, even though this modest change in the density of the noise is the

only modification to the observation model considered earlier, it leads to a substantially

more complex estimator than the one we derived in the Gaussian-noise case. The added

complexity stems from the need to keep track of a new discrete-valued state variable at

each time t that indicates which of the M' Gaussian components in the above Gaussian-

mixture pdf was the true density for the noise sample added at time t. Recall that a discrete

variable of this kind was introduced earlier during the development of the original estimation

algorithm; specifically, we used the sub-state variable 4D to indicate which component of the

Gaussian-mixture pdf (associated with the current state of the Markov chain) was selected

to generate the signal value at time t. We now introduce an analogous variable (' to indicate

150



Chapter 5. Using Finite-State Markov Models for Signal Estimation 151

which component of the Gaussian-mixture pdf for the noise was selected at time t.

With these state variables defined, we can develop a new estimation formula similar to
the one developed for the Gaussian-noise case. Specifically, through appropriate condition-
ing on the potential outcomes for the state variables of the model, we may write

E{Yt|Z0:N-1 Z:N-1}

L

S Pr{0t = ilZo:N-1 = ZO:N-1}E{Yt 10t = i, Zt zt} (5.33)

L

= Pr{Et = ilZ0:N-1 = Z:N-1}
i=1

Mi M'

Pr{GDt = , ' =j'6t= Zt = zt}
j=1 j'=1

E{Y| et = i, i, ' = j1, Z = Zt}. (5.34)

We see from this last expression that there are three basic types of quantities that must
be computed in order to produce the desired estimate. In particular, we need to com-
pute posterior probabilities of the form Pr{et = IZo:N-1 ZO:N-1} (appearing in the
outer summation), posterior probabilities of the form Pr{1t = j, V' ='l8t i, Z = z}
(appearing in the inner summation), and conditional expectations of the form E{YtDt =

, t I', 8t = i, Zt = zt}. Once we have shown how each of these quantities is com-
puted, our algorithm for estimating a stationary signal in white non-Gaussian noise will be
completely specified.

Let us first consider the conditional expectation appearing in (5.34). Note that, under
the conditions assumed for this expectation, the random variable Y has a purely Gaussian
pdf. The parameters of this pdf will naturally depend on the values given for the state
variables 8t, 4 t, and 4', as well as for the observed variable zt; the conditional expectation
itself will be affine in zt. It is straightforward to show that this expectation is given by

2

E{Yt8t = i, ,Dt = j, i = j', Zt = zj} = Ig + (zt - - p'9. (5.35)
i3 lj'

To describe how the remaining posterior probabilities are computed, we first reiterate
a key observation about the sequence {Zt} that we made in our earlier discussion. In
particular, this sequence, like the sequence {Yt}, is the output of a stationary L-state HMM.
In fact, the parameters defining the underlying Markov chain for {Zt} (i.e., the initial state
probabilities and the state transition probabilities) are exactly the same as those for {Y}.
The only difference between the HMM for {Zt} and the HMM for {Yt} lies in the output
densities associated with the states of their respective Markov chains. If the Markov chain
for {Yt} is in state i at time t, the conditional pdf characterizing the output sample Y is
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given by

Mi

gi (y) =E pijAN(y; pij, oij). (5.36)
j=1

Since the signal and noise are assumed statistically independent, we can derive the corre-

sponding conditional pdf for Zt simply by convolving the two pdfs gi(.) and g'(-). For the

previously considered case in which the noise was purely Gaussian, this convolution resulted

only in a modification of the variance of each component in the original Gaussian-mixture

pdf for the signal; consequently, the overall number of components in the resulting Gaus-

sian mixture did not change. However, because the pdf for the noise is now also a Gaussian

mixture (which in general has more than a single component), the convolution procedure

could greatly increase the number of components in the conditional pdf for Zt. In fact, it

can be readily verified that the result of the convolution in this case is given by

M M'

h(z) = pp'1N (z;ij +p',, o + o-, , (5.37)
j=1 j1=1

which is a weighted sum of M 2M' Gaussian components. But note that, in spite of the

M'-fold increase in the number of parameters needed to describe the conditional output

pdf, the pdf itself is still merely a Gaussian mixture with a finite number of constituent

elements. Therefore, the fundamental mathematical structure of the observed signal {Zt} in

the non-Gaussian-noise case is identical to that of the observed signal in the Gaussian-noise

case; specifically, either signal is the output of an HMM defined such that the conditional

pdf associated with each state of its underlying Markov chain is a Gaussian-mixture pdf.

Moreover, in view of the foregoing description of {Zt}, it is clear that the values of all

parameters defining this structure can be easily calculated in advance once {Yt} and {Vt}
are specified.

This is a significant observation because it means that precisely the same algorithms

that were used in the Gaussian-noise case can be used once again to compute all of

the required posterior state probabilities. In particular, we can calculate the probability

Pr{et = iIZo:N-1 = Z:N-1} by applying the recursions already developed for the forward

and backward variables at(i) and 3t(s), and subsequently by combining the resulting values

to form the equivalent quantity yt(i). Moreover, we can calculate the remaining probability

Pr{t = j, ' = j'IEt = i, Zt = zt} through a direct application of Bayes' rule, which in

this case is given by

Pr{1t =j,' ='It = i, Zt = zt}

Pr{t 4t V = jlt = i}Pr{Zt = zt|4t = j, ' = j', 8t = i}

Em'Q Z~I 1 Pr{1)t = k, V - k'Iet = i}lPr{Zt = ztI4)t = k, VJ = V', Ot = i}
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Pij P1'K zt; I-ij + p1, + ? ) + O(38
(5.38)

k=i~1 Zk'=l APk'A (Zt; Pik + PaI" V; 2? + o I )

With these rather straightforward modifications to the original estimation algorithm, we are
now equipped to handle the case in which the added noise is non-Gaussian and white. Note,
however, that in return for this added capability we must pay a premium in the form of an
increase in computation. To see this, suppose for convenience that all of the Mi are identical,
e.g., that Mi = M for i = 1, 2, - - - , L, and recall from our earlier computational analysis that
the required number of operations in the Gaussian-noise case was approximately cML2 per
sample. Now, since the number of components in each output pdf is MM', rather than M,
the computational expense increases directly by a factor of M' to approximately cMM'L 2

operations per sample.

5.5.2 Estimating a Signal in Additive Colored Non-Gaussian Noise

We now turn our attention to the case in which the additive noise is not only non-Gaussian,
but also colored (i.e., consists of samples that are temporally dependent). For this case,
we assume that the corrupting sequence {V} possesses a probabilistic structure similar
to that of the signal {Y}, i.e., it is the output of an stationary finite-state HMM. More
specifically, we assume that at each time t, the Markov chain {e'} associated with the

corrupting sequence can be in any of the L' possible states {1, 2,... , L'}, and we denote the
initial state probabilities and state transition probabilities for this chain by {P'(i)}I1 and

{Q'(i, j)}[ J1, respectively. Furthermore, we assume that the output pdf associated with
the ith state of the Markov chain is a Gaussian mixture having Mil constituent elements,
and we express this pdf as

Mil

gi(v) = Zpij(v; p'i, oJ), i = 1, 2, , L'. (5.39)
j=1

It is understood that the L' output densities specified above remain constant for each time
t. All parameters defining both the HMM for the noise and the HMM for the signal are
assumed known.

Because the noise sequence now has temporal dynamics induced by its underlying
Markov chain, the optimal estimation formula for this case includes an additional layer
of complexity that was not present in the previously considered white-noise case. To derive
the new formula, we will use the variables 8t and 0' to indicate the states of the respective
Markov chains for the signal and noise at time t, and, just as before, we will use the vari-
ables <Dt and <' to indicate the components of the respective Gaussian-mixture densities
that were selected to generate the signal and noise values at time t. Once again, through
appropriate conditioning on the potential outcomes for these state variables of the model,
we may write

E{Yt|Z0:N-1 = Z:N-1}
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L L'

r{t =, = i'0Zo:N--1 = ZO:N-1}
i=1 '=1

E{Yt = i = i0 ', Z = zt} (5.40)
L L'

Pr{®t = i, e 0I'Zo:N-1 = ZO:N-1}
i=1 i'=1

Mi M,

Pr{G = DtJ, t = j'I~ =t i, ' ' Zt zt}
j=1 j'=1

E{YtI 't = =, j' 't, Zt = zt. (5.41)

Note that this last expression has the same basic form as (5.34), except that we have now

incorporated the additional state variable 0' into both the posterior probabilities and the

conditional expectation. As in the previous case, the expectation in this expression is easy

to compute, since the random variable Y has a Gaussian pdf when conditioned on the

values of the model variables Ot, 0', '
1 t, V', and Zt. In this case, the expectation takes the

slightly different form

E{YtI8t = i, 0' = i', (t = j',Z = zt}

= Paj + 2 j (Zt - /I - 1_<11). (5.42)

To compute the posterior probabilities appearing in (5.41), we can use the same techniques

developed earlier, but we must first establish that the observed sequence {Zt} is again the

output of a finite-state HMM (albeit one with many more possible states than the one de-

rived in the white-noise case just considered). To see that {Zt} can indeed be characterized

in this way, first observe that at a given time t, the values of 8t and 0' provide current and

complete descriptions of the individual processes {Yt} and {V}, respectively, in the sense

that no further information could be provided about either process that would improve our

predictions about its future behavior. Since {Zt} is merely the sum of {Yt} and {Vt}, it

follows that the pair of values (8t, ') also summarizes all relevant information currently

available about the underlying dynamics of {Zt}, and therefore may be considered a suitable

state variable for {Zt}. Now, since the individual signal state variable 0 t may assume any of

the L values {1, 2,... , L}, and the noise state variable 0' may simultaneously assume any

of the L' values {1, 2,- - , L'}, we conclude that the new composite state variable (0 t, 0')
may assume any of the LL' values {(1, 1), (1, 2),- - , (L, L')}.

Furthermore, based on the parameter specifications for the individual Markov chains

{Et} and {8E'}, as well as on the assumption that these two chains are statistically inde-

pendent, we can directly calculate the parameter values that characterize the new Markov

"super-chain" {(Ot, E)')}. In particular, the initial state probabilities for this super-chain,
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which we denote by {P"((i, i'))}, are given by

P"((i, i')) = Pr{o =, = ' =i'} (5.43)

= Pr{0 = i}Pr{E'O = i'l =} (5.44)

= Pr{0o = i}Pr{%'O = i'} (5.45)

P(i)P'(i'). (5.46)

The state transition probabilities, which we denote by {Q"((i, i'), (j, j'))}, are given by

Q"((i, Z'), (j, j')) Pr{t+1 8+ 1 = = i, et = 0' (5.47)

Pr{Et+1 = '16t Of = V'

Pr{'t+1  = 5', a= i, 0 +1 j} (5.48)

Pr{0t+1 = 'Iet = i}Pr{E'+ 1  t =i'} (5.49)

= Q (i,j)Q'(i',j'). (5.50)

Note that in each of the above derivations, we have used the fact that the original Markov
chains for the signal and noise are statistically independent.

The output density associated with state (i, i') of the new Markov super-chain can be
obtained, as before, by convolving the corresponding signal and noise densities gi(.) and

gif (.). Performing this convolution yields the new pdf

M M,'

h(,yi)(z) = ( pijp'.,NA (z; pig ± p, o 2 + of ) (5.51)
j= 1 j'=i

This completes the parameter specification of the new HMM for the observed signal {Zt}.
Clearly, the required posterior probabilities Pr{8Et i, ' = i'lZO:N-1 = Z:N-1} and
Pr{<= j,4<' = j'It = i, 8 = i', Zt = zt} can now be computed exactly as they were
in the previously considered non-Gaussian-white-noise case (i.e., through the use of stan-
dard recursions on the forward and backward variables ot(-) and /3t(.), and through the
application of Bayes' rule, respectively).

However, we once again must pay a substantial premium in computation, this time for
the added capability of handling temporally dependent non-Gaussian noise. To determine
how much additional computation is needed, let us first assume for convenience that Mi =
M for i = 1, 2,... , L, and that Mj = M' for i = 1, 2,-.. , L'. Also, let us recall from
our earlier computational analysis that the required number of operations in the Gaussian-
white-noise case was approximately cML 2 per sample. Now, since the number of states in
the underlying Markov chain is LL', rather than L, and the number of components in each
output pdf is MM', rather than M, the computational expense has grown to approximately
cMM'L 2 L'2 operations per sample. Thus, for this case, we see that total computation
increases by a factor of M'L'2 over the original Gaussian-white-noise case, and by a factor
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of L' 2 over the non-Gaussian-white-noise case.

5.5.3 Separating Multiple Linearly Combined Non-Gaussian Signals

In the preceding sections, we have addressed the problem of estimating a stationary signal
of interest that has been corrupted by additive stationary noise, and we have developed

extensions of our basic estimation technique in order to deal with increasingly complex

signal and noise waveforms. In this section, we extend our basic technique even further by
demonstrating that it can be applied to the more general problem of signal separation, i.e.,
the problem in which multiple signals of interest have been added together and corrupted
by noise, and in which each individual signal must be optimally recovered from a single

finite-length observation.

We have seen in earlier derivations of our estimation technique that, under the HMM-
based formulation in which each output density is a Gaussian mixture, the estimation

of an entire waveform ultimately reduces to solving numerous scalar Gaussian estimation

problems at each time t, and then nonlinearly combining these intermediate estimates (with

appropriately defined posterior probabilities) to produce the final signal estimate at time

t. Remarkably, this same basic sequence of operations (with only slight modifications) may

also be used to solve the more general problem in which the values from many signals,
rather than just one, have been additively combined with noise at each sample.

Before delving into a demonstration of an HMM-based signal separation technique, we

first briefly summarize the main idea behind it. Note that this new nonlinear technique rests

on the assumption that all of the signal and noise waveforms contained in the observation
are mutually independent. With this assumption in mind, let us consider the problem of

optimally extracting only one of the many signals of interest included in the observed sum.

We can generate an estimate of the desired signal using the tools we have already developed,
once we recognize that all other processes contained in the observation - both signal and
noise - can be effectively lumped together and viewed as a single, monolithic noise process
that is to be filtered out. Of course, the parameters that characterize this newly defined

lumped noise process will vary according to the identity of the signal we are currently

attempting to estimate. Nonetheless, once the appropriate changes have been made to the

definition of the noise structure, the basic estimation technique can be applied exactly as

before. In this way, each of the signals contained in the observation can be estimated in
turn.

Our objective in the remainder of this section is to give a concrete example of a non-

Gaussian signal separation problem, and to compare the performance of our HMM-based
smoothing technique in this problem to the conventional Wiener smoothing technique. In
particular, we shall consider an example in which the given observation is a sum of three
independent waveforms, two of which are temporally dependent non-Gaussian signals of
interest, and the other of which is white Gaussian noise.

Let us begin by specifying the statistical structure of the two signals of interest contained
in the observation. The first of these signals, which we denote by {Xt}, is defined to be the
output of a nonlinear autoregressive system driven by white noise. Specifically, we assume
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that {Xt} obeys the difference equation6

Xt+1 = 0.5Xt + 25X + 8 cos(1.2t) + Wt, (5.52)
1 + X c

where the elements of the sequence {Wt} are i.i.d. Gaussian random variables, each having
a mean of zero and a standard deviation of unity. A finite-length realization of {Xt}
is depicted in Figure 5-4(a). Also, in Figure 5-4(b), we show a scatter plot of pairs of
consecutive samples {(Xti-, xt)}, which have been constructed directly from the realization
shown in Figure 5-4(a). This scatter plot reveals the unusual nature of the probability
distribution that characterizes the state variable of the nonlinear system described above.

The second signal of interest, which we denote by {Y}, is defined to be a discrete-time
version of the classical telegraph signal, which switches back and forth between two distinct
values according to a simple probabilistic rule. Specifically, we assume that the values taken
by {Y} are -20 and +20, and that consecutive samples of this signal obey the symmetric
Markovian probability laws

Pr{Yt+1 = +20|Yt = +20} = Pr{Yt+1 = -20Y = -20} 0.97 (5.53)

and

Pr{Yt+1 = +20IYt = -20} = Pr{Yt+1 = -20|Yt = +20} = 0.03 (5.54)

for all integer values of t. For this example, we assume the telegraph signal is initialized at
time t = 0 according to

Pr{Y = +20} = Pr{Y = -20} = 0.5. (5.55)

Finally, the corrupting noise sequence contained in the observation, which we denote by
{ Vt}, is assumed to consist of i.i.d. Gaussian random variables, each having a mean of zero
and a standard deviation of 5.0.

Given these specifications for the signal and noise components, our problem is now to
estimate - in the MMSE sense - the particular values taken by the random vectors XO:N-1
and YO:N-1, based only the value of the observed vector Z:N-1, which is defined by

ZO:N-1 = X:N-1 + YO:N-1 + V:N-1- (5.56)

If we are to apply our HMM-based smoothing technique to solve this signal separation
problem (at least in an approximate sense), we must first have appropriate models for
each component of the observation. Fortunately, for the noise waveform {Vt}, an exact,
degenerate HMM-based representation is readily available. In particular, the corrupting
noise sequence can, in its present form, be viewed as the output of a one-state HMM, whose

6 This particular random process has appeared frequently in the literature on non-Gaussian signal estima-
tion. For example, it has been previously used in the work of Netto et al [131], Kitagawa [99], and Gordon
et al [68].
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Figure 5-4: Plots showing the temporal and statistical character

described in text: (a) 300-point realization of signal; (b) scatter
of the non-Gaussian signal

plot of pairs {(xtz1, Xt)}.
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i P(i) Q(i, -)
1 0.50 0.97 0.03
2 0.50 0.03 0.97

1 p(i) 0-(i) p
1 -20.0 0.1 1.0
2 20.0 0.1 1.0

Table 5.6: Parameter definitions for 2-state HMM representation of the discrete-time tele-
graph signal {Y} discussed in the text. From top to bottom: specification of initial state
probabilities and state transition probabilities for Markov chain; specification of means,
standard deviations, and weighting coefficients for the (one-component) Gaussian-mixture
pdf associated with each state.

initial state probability and sole self-transition probability are both 1.0, and whose output
density g,(-) is defined by

g9 (v) = N,(v; 0, 5). (5.57)

The discrete-time telegraph signal {Y} can also be represented exactly by an HMM,
provided that we allow Dirac delta functions in the definitions of the output densities.
To see this, observe that the underlying Markov chain associated with this HMM could
consist of two states, one for each possible value that can be taken by {Yt}. The initial
state probabilities and state transition probabilities for such a Markov chain can be inferred
directly from the formulas given in (5.53), (5.54), and (5.55). The output densities for the
two states, which we denote by gi(-) and 92(-), would then be defined as

91(y) =(y - 20) (5.58)

and

92(y) =6(y + 20), (5.59)

where 6(-) is the Dirac delta function. This definition causes some practical difficulty, how-
ever, for we can not evaluate densities such as those defined above during the implementation
of our HMM-based estimation technique. Instead, we must settle for an approximation to a
translated Dirac delta function, the most convenient of which is a Gaussian pdf having the
same mean value (i.e., either +20 or -20), but with an extremely small standard deviation.
In Table 5.6, we give a complete specification for the HMM used to approximate the signal
{Y} in this example.

To create an HMM-based representation for the more complicated non-Gaussian signal
Xt}, we must rely on the model-building methods developed in Chapter 4. For the pur-

poses of this example, we chose to model {Xt} using a 16-state HMM in which the output
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pdf associated with each state was a three-component Gaussian mixture. Furthermore,
although it is clear from the autoregression in (5.52) that a scalar state variable would be

sufficient to describe the state of the original nonlinear system at any time, we chose to

use a two-dimensional state vector in order to improve the accuracy of the rather coarse

finite-state approximation. For this reason, the 16 states of the underlying Markov chain

actually represent 16 disjoint, collectively exhaustive regions in a two-dimensional state

space. (Recall that such a space was depicted in Figure 5-4(b).) In Table 5.7, we give a

complete specification of the HMM used to approximate the signal {Xt} in this example.

Using the finite-state models just described for the signals and noise, we can now easily

perform signal separation by applying our new nonlinear HMM-based estimation algorithm

to a specific realization of the random vector ZO:N-1. In order to establish a useful point

of reference by which we can assess the resulting estimation performance, we shall compare

the results of our nonlinear algorithm to those of a conventional linear technique, namely

the Wiener smoother. Although the Wiener smoother is not a globally optimal MMSE
estimator for this problem (owing to the fact that the observation contains non-Gaussian

signals), it is nonetheless the best possible linear estimator that we can use.

The Wiener smoother associated with each signal of interest can be implemented through

straightforward matrix-vector multiplication. However, we must first know the values of the

covariance matrices associated with the three constituent random vectors XO:N-1, YO:N-1,

and V:N-1 making up the observation. Since each of these random vectors represents

a section of a stationary signal, each associated covariance matrix possesses a Toeplitz

structure; moreover, because the random vectors are all zero-mean, each covariance matrix

is specified entirely by the first N values of the associated autocorrelation function (i.e.,
autocorrelation values ranging from the 0th lag up to and including the (N - 1)th lag).

In light of the definitions given earlier, we see that the kth lag of the autocorrelation

function for the noise waveform {V} is given by

E{VVt+k} = 25 - ot,k, (5.60)

where ot,k is the Kronecker delta sequence (i.e., a sequence which has a value of unity if

k = t, but otherwise is identically zero). It follows that the covariance matrix for the vector

VO:N-1 is just a scaled version of the identity matrix, where the scale factor is the value of

the noise variance at each sample.

The autocorrelation function of the discrete-time telegraph waveform {Yt} can also be

obtained in closed form. In fact, it can be shown (after a significant amount of analysis

of the structure of the underlying Markov chain) that the kth lag of the autocorrelation

function for the telegraph waveform is given by

E{YtYtk} = 0 .94 |k . 400. (5.61)

Using this formula, we can construct the covariance matrix for Y:N-1 simply by repeating

the value of the kth lag along both the kth sub-diagonal and the kth super-diagonal of the

N x N matrix, for k = 0, 1,--. , N - 1.

Unfortunately, the mathematical definition of the remaining non-Gaussian signal {Xt}
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i P(i) Q(i, 1),--- Q(i, 8)
1 0.065 0.125 0.225 0.540 0.025 0 0 0 0.080
2 0.056 0 0 0 0.125 0.220 0.280 0.360 0
3 0.061 0 0 0.065 0.760 0 0 0.100 0.070
4 0.059 0 0 0 0.045 0.915 0.040 0 0
5 0.073 0 0 0 0 0.105 0.545 0.350 0
6 0.058 0.055 0 0 0 0 0 0.010 0.940
7 0.053 0.665 0 0.085 0 0 0 0 0.190
8 0.075 0.120 0.070 0.125 0 0 0 0 0
9 0.065 0.005 0 0 0 0 0 0 0
10 0.056 0 0 0 0 0 0 0 0
11 0.061 0 0 0 0 0 0 0 0
12 0.059 0 0 0 0 0 0 0 0
13 0.073 0 0 0 0 0 0 0 0
14 0.058 0 0 0 0 0 0 0 0
15 0.053 0.020 0.025 0.015 0 0 0 0 0
16 0.075 0.110 0.460 0.110 0 0 0 0 0

SQ(i, 9), - Q(i, 16)
1 0.005 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0.020 0.025 0.015 0 0 0 0 0
8 0.110 0.460 0.110 0 0 0 0 0
9 0.125 0.225 0.540 0.025 0 0 0 0.080

10 0 0 0 0.125 0.220 0.280 0.360 0
11 0 0 0.065 0.760 0 0 0.100 0.070
12 0 0 0 0.045 0.915 0.040 0 0
13 0 0 0 0 0.105 0.545 0.350 0
14 0.055 0 0 0 0 0 0.010 0.940
15 0.665 0 0.085 0 0 0 0 0.190
16 0.120 0.070 0.125 0 0 0 0 0

i p(i) a-(i) p(i)
1 5.60 3.75 1.76 0.75 0.91 0.91 0.24 0.30 0.46
2 16.51 12.52 14.20 1.67 0.45 0.93 0.34 0.22 0.44
3 9.88 8.24 11.09 0.77 0.92 0.64 0.31 0.45 0.23
4 14.21 16.34 15.02 1.86 0.91 1.08 0.21 0.13 0.67
5 16.45 12.52 14.62 1.10 1.27 1.07 0.17 0.27 0.56
6 7.02 6.72 5.09 1.40 1.44 1.02 0.25 0.23 0.52
7 2.55 1.29 3.38 0.90 1.01 0.60 0.37 0.35 0.27
8 -0.42 -0.12 -1.72 0.79 1.18 0.54 0.39 0.50 0.11
9 -5.60 -3.75 -1.76 0.75 0.91 0.91 0.24 0.30 0.46

10 -16.51 -12.52 -14.20 1.67 0.45 0.93 0.34 0.22 0.44
11 -9.88 -8.24 -11.09 0.77 0.92 0.64 0.31 0.45 0.23
12 -14.21 -16.34 -15.02 1.86 0.91 1.08 0.21 0.13 0.67
13 -16.45 -12.52 -14.62 1.10 1.27 1.07 0.17 0.27 0.56
14 -7.02 -6.72 -5.09 1.40 1.44 1.02 0.25 0.23 0.52
15 -2.55 -1.29 -3.38 0.90 1.01 0.60 0.37 0.35 0.27
16 0.42 0.12 1.72 0.79 1.18 0.54 0.39 0.50 0.11

Table 5.7: Parameter definitions for 16-state HMM representation of the non-Gaussian
signal {Xt} discussed in the text. From top to bottom: specification of initial state proba-
bilities and state transition probabilities for Markov chain; specification of means, standard
deviations, and weighting coefficients for Gaussian-mixture pdf associated with each state.

161



Chapter 5. Using Finite-State Markov Models for Signal Estimation

makes it extremely difficult to solve for the covariance matrix of XO:N-1 in closed form.

Thus, for this signal we resort to the numerical technique of computing the sample autocor-

relation function based on a very long realization of {Xt} (specifically, a realization having
a length of 100,000 samples); we can then construct the corresponding covariance matrix

just as we did before, by specifying its diagonals one at a time based on the lags of the

autocorrelation function.
Having defined all of the necessary elements for implementing both the Wiener smoother

and the HMM-based smoother, let us now consider performing signal separation using a
specific realization of the observed vector Z:N-1- In Figures 5-5(a) through 5-5(d), we
show, respectively, realizations of the individual vectors XO:N-1, YO:N-1, and VO:N-1, and

their sum ZO:N-1; here, we have arbitrarily chosen the observation length N = 150. When
the Wiener smoothing technique is applied to the observed waveform shown in Figure 5-
5(d), we obtain the estimated waveforms shown in Figure 5-6. Recall that, because there

are three distinct random processes that make up the observation in this example, there

are, accordingly, three distinct Wiener smoothers that must be applied to the observation

in order to separate these processes. The smoothers that are designed to extract the vectors

X0:N-1, YO:N-1, and VO:N-1 generate the estimates shown in Figures 5-6(a), 5-6(b), and
5-6(c), respectively. The sum of these estimated waveforms is also shown in Figure 5-6(d).

Let us now compare these baseline estimates with the corresponding estimates produced

by the HMM-based smoothing technique, which are shown in Figures 5-7(a) through 5-7(d).
By visually comparing and contrasting the estimated waveforms displayed in Figures 5-
6 and 5-7, along with their true original counterparts shown in Figure 5-5, we see that
the results of the HMM-based smoothing technique appear to be superior to those of the

Wiener smoothing technique. In a moment, we will provide quantitative evidence supporting

this assertion. Interestingly, an attribute shared by both of the signal separation methods

presented here is that the sum of the three estimated waveforms is always the same as

the sum of three original waveforms. Hence, the plots appearing in Figures 5-5(d), 5-6(d),
and 5-7(d) are actually identical. This property follows directly from the mathematical

definitions of the estimates produced by each technique.
To obtain a more precise numerical characterization of the performance of each smooth-

ing technique, we repeated the above signal separation experiment a total of 1000 times

using randomly generated observations. On each trial, we recorded the error incurred by
each smoothing technique after estimating each signal of interest from the observation. (Es-

timation of the noise waveform was considered unimportant, and hence the results for this

waveform were not examined.) The measure of performance used on each trial, for each

signal of interest, was the realized mean squared error (MSE) value, i.e., the arithmetic

average of the 150 real numbers obtained by subtracting the actual waveform from the

estimated waveform and squaring the resulting residual value at each time index. After all

1000 trials had been performed, we were left with a collection of 1000 such MSE scores for
each of four separate cases, representing the results of applying each of the two smoothing
techniques to extract each of the two signals of interest.

The sample mean and sample standard deviation of the MSE value for each possible
case are displayed in Table 5.8. Observe that, when the non-Gaussian signal {Xt} is being
estimated, the HMM-based smoother yields, on the average, an MSE value that is nearly
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Figure 5-5: Plots of constituent waveforms used for signal separation problem: (a) realiza-
tion of non-Gaussian signal; (b) realization of discrete-time telegraph signal; (c) realization
of white Gaussian noise; (d) superposition of waveforms shown in (a), (b) and (c).
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Figure 5-6: Plots of signal separation results using Wiener smoother: (a) estimate of non-

Gaussian signal; (b) estimate of discrete-time telegraph signal; (c) estimate of white Gaus-

sian noise; (d) superposition of waveforms shown in (a), (b) and (c).
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Figure 5-7: Plots of signal separation results using HMM-based smoother: (a) estimate of
non-Gaussian signal; (b) estimate of discrete-time telegraph signal; (c) estimate of white
Gaussian noise; (d) superposition of waveforms shown in (a), (b) and (c).



ESTIMATION OF {Xt} GIVEN (Zt}
Type of Sample Mean Sample St. Dev.

Estimator of MSE Value of MSE Value

LINEAR 51.6 9.8

HMM-BASED 18.1 5.9

ESTIMATION OF {Yt} GIVEN (Zt)
Type of Sample Mean Sample St. Dev.

Estimator of MSE Value of MSE Value

LINEAR 71.8 12.9

HMM-BASED 11.6 10.4

Table 5.8: Results of the 1000-trial experiment designed to compare the performance of the

optimal linear estimator and the optimal HMM-based estimator in the signal separation

problem. Sample means and sample standard deviations of the MSE value are shown for

both estimation techniques for the non-Gaussian signal {Xt} (top) and for the telegraph

signal {Yt} (bottom).

three times smaller than the value given by the Wiener smoother. When the telegraph signal

{Yt} is being estimated, the HMM-based smoother yields an MSE value that is more than

six times smaller than the value given by the Wiener smoother. Moreover, in both of these

cases, the standard deviation of the MSE value associated with the HMM-based method

is lower than the standard deviation associated with the Wiener method. Thus, we see

that the HMM-based smoother performs significantly better than the conventional Wiener

smoother for the particular non-Gaussian signal separation problem considered here.

5.6 Discussion

5.6.1 Using Finite-State Models for Problems Other than Smoothing

Although we have focused exclusively in this chapter on the problem of signal smoothing,
it should be clear that our fundamental approach of finite-state signal modeling can be

applied to a variety of other signal processing problems as well. Specifically, some of the

most obvious and immediate applications of our basic modeling paradigm would include

other variations on the signal estimation problem, e.g., variations such as signal filtering and

signal prediction. In this section, we draw heavily from the concepts developed earlier for the

smoothing problem in order to explain how these alternative signal estimation problems can
also be solved. We then turn our attention to an entirely different class of signal processing
problems - namely problems in signal detection and classification (i.e., M-ary hypothesis
testing) - and show that approximate solutions to these problems can also be constructed
using the finite-state approach.
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5.6.1.1 Extensions to Filtering and Prediction Problems

We begin by considering the problems of signal filtering and prediction. The filtering prob-
lem differs fundamentally from the smoothing problem in that we are allowed to use only
those observations that are available at or before time t to produce an estimate of the true
signal value at time t, i.e., we are prohibited from introducing a delay in order to use any
additional observations that become available in the future. On the other hand, in the
prediction problem, we use observations that are available at or before the current time t
to estimate the true signal value at some future time t + k.

In either type of problem, HMM-based estimation techniques can still be employed
successfully. Whenever such techniques are used, whether for filtering or prediction, the first
and most important step to be performed is the calculation of the posterior pmf - based
on all data observed up to time t - for the state variable of the underlying Markov chain
at time t. This critical first step can be carried out by using a simple recursive procedure,
whereby, at each time index, the previously computed values of the posterior state pmf
become updated at the moment the current sample in the observed sequence becomes
available. It is straightforward to show that a recursive procedure for accomplishing this
task can be constructed directly from the forward recursion described in Section F.1. In
fact, we note that the desired posterior probabilities in this case can actually be expressed
in terms of the forward variable at(i) defined earlier, as shown by

Pr{Ot = ilZo:t = zo:t} fzo:t,et(zo:t, 8 = i) (5.62)
fzo:t (zo:t)

fzo:t,e (zo:, 8t = (5.63)
Ei1 fzost,et(zo:t, 7 =(j)

at(i)

Z~iat(J)(5.64)Ej_1 at(j)

Once the current posterior pmf has been computed, the remaining steps in generating
an estimate differ according to whether filtering or prediction is being performed. The steps
involved in prediction are quite simple. In this case, we merely need to project the posterior
state pmf for the current time t out to the future time t+k, so that it actually represents the
state pmf at time t + k based on all data observed up to time t. This projection is achieved
by multiplying the current posterior state pmf (taken to be a row vector) by the kth-order
state transition matrix (i.e., the matrix which is constructed by multiplying the ordinary
state transition matrix by itself k times, and whose (i, j) entry represents the probability
that the Markov chain will be in state j at time t + k given that it is in state i at time
t). Once this projection has been accomplished, the optimal prediction of the signal value
at time t + k is simply a weighted average of the mean values associated with the output
densities of the HMM; the weighting coefficients used in this average are just the elements
of the (projected) posterior state pmf at time t + k.

In the filtering problem, the remaining steps in generating a signal estimate are carried
out exactly as they were in the smoothing problem. In particular, for each state of the
Markov chain, the posterior sub-state probabilities at time t are first computed based on

167



Chapter 5. Using Finite-State Markov Models for Signal Estimation

the value of the observation at time t. (Recall that each sub-state probability indicates

the relative likelihood that a particular component of the Gaussian-mixture pdf associated

with that state was active at time t, given that the Markov chain was actually in that

state at time t.) Once these probabilities have been computed, a conditional mean value

can be obtained for a given state of the Markov chain by taking a weighted average of
the mean values associated with the conditional densities in the Gaussian mixture for that

state; the weighting coefficients used in this average are simply the posterior sub-state

probabilities. Finally, the optimal estimate of the signal value at time t is a weighted

average of these resulting conditional mean values associated with the states of the Markov

chain; the weighting coefficients used in this final average are just the elements of the

posterior state pmf at time t.

5.6.1.2 Extension to Multi-Class Hypothesis Testing

To demonstrate that certain signal processing problems other than signal smoothing, filter-

ing, or prediction can also be addressed using the finite-state modeling paradigm, let us now

turn our attention to the problem of binary (or, in the more general case, M-ary) hypothesis

testing. In the general version of this problem, the waveform we observe is known to be a

realization from one of M distinct signal distributions or classes. Our goal in processing the

observation is to determine the true class from which it came, based on our prior knowledge
about each of the signal classes involved. A simple, classical example of M-ary hypothesis

testing is the signal detection problem, in which we have only a signal-plus-noise class and

a noise-only class, and we wish to determine whether the signal of interest is present or

absent in the given observation.

It is well known that the optimal decision rule for the M-ary hypothesis testing problem
- in the sense that it yields the smallest probability of making a classification error -
is the maximum a posteriori (MAP) rule [15, 166, 215]. To express this rule precisely, let
us denote the N-sample observed signal by Z:N-1, the given realization of this signal by

ZO:N-1, the M classes themselves by {1, 2, ... , M}, and the hypothesis that class k is the

true class of the observed signal by Hk. In addition, let k represent our estimate of the true

class. Then, by the MAP rule, this estimate k is defined as

k = argmax log Pr{HkIZo:N-1 = ZO:N-1}, (5.65)
kE{1,2,---,M}

That is, class k is, among all M classes, the one whose posterior probability is largest after
we have observed the event ZO:N-1 = ZO:N-1. The logarithm in the above expression (which
is a monotonically increasing function and therefore has no effect on the argument of the
maximization) has been introduced only to simplify later calculations.

We will find it convenient to re-express the above posterior probability (through an

application of Bayes' rule) as

= : PrNHk-fZON1 Ik (ZO:N-1 (5.66)

fZO:N-1 (ZO:N-1)
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where Pr{Hk} is the prior probability of the event Hk, fzo:N-|Hk (-) is the conditional
density of ZO:N-1 given that the event Hk has occurred, and fZO:N-1 (-) is the unconditional
density of ZO:N-1. Because the denominator in the above expression is a positive constant
independent of k, we can ignore it when performing the maximization over all classes. With
this modification, we can then express Ic equivalently as

k= argmax {log Pr{Hk} + log fzO:N-l1Hk (ZO:N-1IH)}. (5.67)
kE{1,2,---,M}

Since each prior probability Pr{Hk} is known, the only remaining quantity that must be
computed is the value of the conditional density fZ0:N-1Hk (ZO:N-1|Hk) for each k.

We now invoke the assumption that the observed signal Z:N-1 is (either exactly or
approximately) the output of a known, unique finite-state HMM under each of the M
hypotheses. With this assumption, we can use algorithms derived earlier to compute the
associated forward recursion variable akt(-) for each hypothesis Hk and for each time index
t. This forward variable is important because it can be manipulated to give the density
value we need, as shown by

L

log fz 0:N-1IHk(Z0:N-1|Hk) = logffz 0 :N-1,)N-l1Hk(ZO:N-1,E)N-1 = jlHk) (5.68)
j=1

L

= logE ak,N-1(j). (5.69)
j=1

As we discuss in Appendix F, however, the forward recursion variable cannot be evaluated
directly on a computer (unless N is very small), because the arithmetic operations required

to evaluate it at each time index will eventually exceed the dynamic range of essentially any

machine without the use of a special scaling procedure. Ironically, it is also demonstrated
in Appendix F that, as a by-product of the properly conditioned version of the forward
recursion, we obtain a set of scaling coefficients that are in fact the key to evaluating the
remaining terms needed in (5.67).

If we denote the set of scaling coefficients associated with hypothesis Hk by {ckt}N-O
then, based on arguments put forth in Appendix F, we see that the desired value of the
conditional density of the observation can be computed in terms of these scaling coefficients
as

N-1

log fz0:N-1[Hk(Z0:N-1|Hk) = logckt, k = 1, 2, ,M. (5.70)
t=O

With the ability to evaluate these remaining M terms, we can now easily solve the maximiza-
tion in (5.67), and thus make efficient use of the MAP rule under the finite-state modeling
paradigm. In many cases, using this technique could allow us to attain near-optimal M-ary

signal classification performance, provided that we use signal models of sufficiently high
fidelity.
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5.6.2 HMM-Based Signal Estimation in Non-Stationary Noise

A potentially useful avenue for future research would be to explore the design of HMM-
based signal estimation schemes for environments in which the noise is non-stationary. To
develop this idea further, let us return briefly to the Gaussian estimation problem considered
in Section 5.4 and make some additional observations concerning the results plotted in
Figure 5-3(b). In particular, observe from this figure that for the two smallest tested values
of SNRi,, the performance curves become relatively flat after only three states have been
included in the signal model. This implies, at least for the Gaussian estimation problem
considered in our example, that using an HMM containing any more than three states is
wasteful in an environment where the SNR is low.

One way in which we might apply a conclusion of this kind is to incorporate it into an
SNR-dependent metric for choosing the appropriate HMM order as part of the model design
process. Alternatively, we could use it to develop an estimator that is capable of filtering out
a white Gaussian noise process whose power level is changing over time. In this generalized
version of the original estimation problem, we might not always insist on having the best
available signal estimate; instead, we may prefer to have a reasonably good estimate which
can be produced at a modest computational cost. The associated estimation algorithm
would require access to multiple HMM-based representations for the signal, each having a
unique number of states and hence a unique degree of fidelity. This estimator would use a
predetermined rule for optimally trading off computation for performance as a function of
the current SNR. Future work could be aimed at developing the overall estimation algorithm
for this more complex situation. One must determine, for example, how to estimate the
current noise level, how to decide whether to switch from the current signal model to a
different model (as well as how often this switching decision must be made), and how to
select the best model among all available models.

170



Chapter 6

Summary and Future Directions

6.1 Synopsis

The central goal of this thesis has been to develop a new statistical framework for ana-
lyzing and processing stationary non-Gaussian signals. A unifying theme of the concepts
presented in the thesis has been our consideration of two fundamental inference problems
that often arise in practical situations, namely (i) source identification (i.e., estimation of
the parameters of a signal source based on a mathematical model of the source and an
uncorrupted observation of the source output); and (ii) signal estimation (i.e., recovery of
the signal values themselves based on complete parametric knowledge of the measurement
model and a noisy observation of the signal). The results following from our analyses of
these two inference problems constituted the technical core of the thesis.

The main body of technical material, which was presented in Chapters 2 through 5,
was logically divided into two parts, according to the type of mathematical model that was
used to define the structure of the source signal. The first part, which consisted solely
of Chapter 2, dealt with the two basic inference problems under the assumption that the
signal was produced by an ARGMIX source (i.e., an autoregressive LTI system driven by
i.i.d. Gaussian-mixture noise). The second part, which consisted of Chapters 3, 4, and 5,
developed an entirely new signal model in order to overcome some of the computational
difficulties imposed by the ARGMIX assumption. In this part of the thesis we developed the
notion that a stationary non-Gaussian signal could be approximated by a finite-state hidden
Markov model (HMM); we then showed how such an approximation could be manipulated
to produce accurate and efficient solutions to the two basic inference problems.

Through our investigation of these alternative signal models, we developed a new set
of concepts and techniques for dealing with non-Gaussian problems, and we encountered a
number of potentially rich areas for further exploration. In the remainder of this chapter,
we provide a summary of the main contributions of the thesis and suggest several topics for
future investigation. A number of open issues and potential research topics have already
been identified in the individual chapter discussions and therefore will not be repeated here.



6.2 Summary of Thesis Contributions

6.2.1 Development of ARGMIX Parameter Identification Algorithm

We developed a new iterative technique for identifying the parameters of an ARGMIX
process based on a finite-length realization of such a process. This technique, which we refer
to as the EMAX algorithm, was derived using the generalized expectation-maximization
principle. The strength of the EMAX algorithm lies in its ability to identify both the shape
of the driving-noise pdf and the LTI system that gave rise the signal. We demonstrated in
several numerical examples that the estimation performance of the EMAX algorithm was
superior not only to that of traditional least-squares techniques, but also to that of other
existing algorithms that are also based on the ARGMIX signal model. We also developed
an alternative form of the EMAX algorithm to solve a restricted version of the original
ARGMIX source identification problem. The assumptions of this restricted problem were
more closely matched to those of the classical AR Gaussian source identification problem,
in that the basic shape of the driving-noise pdf was assumed known but the scale of the pdf
was assumed unknown. Although this alternative version of the EMAX algorithm required
more a priori signal information than the original, it had better convergence properties
because it was designed to operate on a likelihood function that had no singularities.

6.2.2 Formulation of HMM-Based Signal Approximation Concept

We formulated and developed the novel concept that an arbitrary stationary AR signal
could be approximated as the output of a finite-state hidden Markov model. The HMM-
based signal model was introduced as an alternative to the ARGMIX model to reduce the
computational burden incurred under the ARGMIX assumption; a reduction in computation
was deemed possible because an HMM has a simple probabilistic structure that can be
specified using only a small number of parameters. To develop this new model, we considered
the optimization problem in which exact knowledge of the true signal pdf is given and the
best HMM-based approximation to this pdf is to be found. The optimization was carried out
under the constraint that the states of the underlying Markov chain represent a collection
of disjoint regions making up a partition of the original state space. Using the Kullback-
Leibler distance as our figure of merit, we first derived optimal parameter values for the
approximating HMM directly in terms of the true signal pdf, under the assumption that the
state-space partition was fixed. We then showed that the best partition was the one that
maximized the mutual information between state values of the underlying Markov chain at
successive time steps. Although most of our initial analysis assumed that the true signal was
a first-order AR process, we also showed that the same basic results applied to higher-order
AR processes.

6.2.3 Development of HMM Parameter Identification Algorithm

We constructed a practical iterative algorithm for estimating the parameters of an optimal
HMM-based approximation of a stationary AR process based only on a finite-length realiza-
tion of such a process, rather than on a complete description of its pdf. This algorithm can
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thus be viewed as an approximate solution to the general AR source identification problem.
The algorithm was configured to select a feasible initial partition of the original state space,
then to iteratively adjust the region boundaries of the partition until the optimal partition
is reached, and finally to compute the HMM parameter estimates based on the distribution
of data points among the resulting regions. The basic ideas that guided the iterative search
portion of the algorithm were based on the theoretical results derived in the HMM-based
signal approximation problem. Although several techniques have been developed by other
researchers for estimating the parameters of an HMM, these techniques are typically de-
signed to optimize a likelihood-based criterion rather than a mutual information criterion;
moreover, they are not equipped to handle the state-space partitioning constraint.

6.2.4 Development of HMM-Based Signal Estimation Techniques

We developed a collection of techniques for performing MMSE signal estimation based on the
assumption that both the signal and noise processes are outputs of finite-state HMMs. These
techniques also relied heavily on the assumption that the pdf associated with any state of
either HMM is a Gaussian mixture. We began our development by constructing a smoothing
algorithm for the simple case in which the signal and noise were, respectively, colored and
white Gaussian processes. For this case, we also evaluated estimation performance as a
function of the order of the HMM-based approximation and compared the results to those
of the globally optimal Wiener smoother; we found that near-optimal performance could
be achieved when this HMM contained only a small number of states. We then extended
the basic smoothing algorithm so that it applied to the case in which both the signal and
noise were allowed to be colored non-Gaussian processes. In addition, we indicated how
similar algorithms could be developed for the problems of filtering and prediction. These
HMM-based estimation algorithms are quite general and powerful signal processing tools;
they consume only a modest amount of computation and can be applied in an extremely
broad range of non-Gaussian problems.

6.3 Directions for Future Research

6.3.1 Consideration of More Realistic Inference Problems

Clearly, the problems of source identification and signal estimation, as they have been
defined in the thesis, are idealized versions of more complicated problems encountered in
practice. There are many practical situations, for example, in which we would like to identify
the parameters of a signal, but we have only noisy observations of the signal available
to carry out the identification procedure. On the other hand, there are also situations
in which we would like to estimate a signal in additive noise, but we have only partial
knowledge of the parametric measurement model. Both types of situations call for the
solution of a joint inference problem involving aspects of both source identification and
signal estimation. Consideration of such a problem was well beyond the scope of the thesis,
mainly because it was too complex to make a convenient starting point for the development
of an inference framework. Now that we have made some initial progress on the idealized
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inference problems, however, it appears that a logical direction for further investigation is

to address more realistic versions of these problems using either of the two signal models

we have introduced.

6.3.2 Streamlining of HMM-Based Signal Estimation Algorithm

An area in which future research will almost certainly be beneficial is the streamlining of

computation in the basic HMM-based signal estimation algorithm described in Chapter 5.
In several examples presented throughout the thesis, we have observed that an HMM-based

approximation of a random process can typically be described using only a small number of

non-zero state transition probabilities. That is, upon constructing an approximation with

the method described in Chapter 4, we have found that a transition of the original state

vector from, say, time t to time t + 1 often begins and ends in adjacent regions (or in the

same region) within the optimal state-space partition. Moreover, state-vector transitions

between regions that are far apart tend to occur with either negligible or zero probability.

However, since this special attribute of a typical state trajectory has not been exploited

in the basic signal estimation algorithm, it is likely that the algorithm performs many

unnecessary computations to produce the final signal estimate. With a modest amount of
work, one could develop a more sophisticated algorithm which spends computation only to

deal with state trajectories that have non-negligible probability. In certain cases where the

state transition matrix of the approximating Markov chain is very sparse, it is conceivable
that the computational cost of the algorithm could be reduced from O(L2 ) to O(L).

6.3.3 Further Development of HMM-Based Approximation Concept

Although the notion of representing random signals approximately using finite-state HMMs

appears to hold enormous potential, we have taken only the first steps toward exploiting
this concept in the thesis. A number of theoretical issues must still be resolved before the

HMM-based signal model can serve as a basis for routine signal processor design. It is easy

to imagine a complex signal processing or decision system in which signals are optimally

represented as finite-state HMMs, as we have discussed earlier. Within such a system, a

particular signal may undergo a variety of known, well defined transformations, e.g., it

may pass through a linear system, become corrupted by noise, or perhaps be subjected

to a memoryless nonlinearity. For each stage of processing within the system, it would be

useful to know precisely how to best represent the output of the transformation as an HMM

when we are given an optimal representation of the input as an HMM. Moreover, in cases
where two random processes become combined during the transformation (e.g., signal and
noise), we would like to know how to jointly design the HMM-based representations of both
processes so that overall system performance is optimized. (Recall that in Chapter 5, we
merely combined the existing HMMs for signal and noise to obtain a new, more complex
HMM for the observation; however, the two original HMMs had been optimized individually,
rather than jointly.) If problems such as these can be solved through further research, then
many functions carried out within a complex signal processing system could ultimately
be cast in terms of optimal operations on HMMs. Because an HMM has a particularly

Chapter 6. Summary and Future Directions174



Chapter 6. Summary and Future Directions 175

simple stochastic structure, we expect that such operations would be fairly straightforward
to derive.

6.3.4 Application of HMMs to Other Signal Processing Problems

Our investigation of the HMM-based approach to non-Gaussian inference problems was
necessarily limited in scope; specifically, we restricted our attention to the two basic prob-
lems of source identification and signal estimation. Furthermore, for the signal estimation
problem in particular, we focused almost exclusively on the development of a smoothing
algorithm. As we pointed out in Chapter 5, however, filtering and prediction algorithms
could be developed in a similar manner. We also provided a fairly detailed outline indicating
how HMMs could be used to solve detection and classification problems efficiently. Still,
there remain many signal processing problems in which the HMM paradigm could be suc-
cessfully applied. Thus, another potentially fruitful direction for future work is to develop
HMM-based solutions to problems such as deconvolution (in which the distorting system
may be either known or unknown), joint detection and estimation, signal enhancement,
signal quantization, or compression.
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Appendix A

Notational Conventions and
Abbreviations

The notational conventions and abbreviations used in the thesis are generally introduced
and explained in detail as they are needed. For convenient reference, we summarize some of
the most important symbols and abbreviations below. These definitions should be assumed
to hold unless otherwise stated.

A.1 Abbreviations

AR a

ARGMIX -

ASK-S

cdf -

EM -

FIR-+

GEM-a

HMM-a

HOS-+

i.i.d. -+

IIR-*

ISI -+

LRT-+

LTI-

ML

autoregressive

autoregressive Gaussian-mixture

amplitude-shift keying

cumulative distribution function

expectation-maximization

finite impulse response

generalized expectation-maximization

hidden Markov model

higher-order statistics

independent and identically distributed

infinite impulse response

intersymbol interference

likelihood ratio test

linear and time invariant

maximum likelihood
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MAP -

MMSE -+

MSE -+

pdf-+

pmf -

psd -

SER -+-

SNR -+

maximum a posteriori

minimum mean squared error

mean squared error

probability density function

probability mass function

power spectral density

signal-to-error ratio

signal-to-noise ratio

A.2 Notational Conventions

R - the set of real numbers

R+- the set of nonnegative real numbers

R" - the set of n-dimensional real-valued tuples

Z -4 the set of integers

Z+ - the set of nonnegative integers

0 - the empty set

U - union operator for sets

n -+ intersection operator for sets

log x - the natural logarithm of x

exp x - the exponential ex

Pr{A} -+ probability of the event A

Pr{A, B} joint probability of the events A and B

Pr{AIB} -+ probability of the event A conditioned on the event B

E{Y} - expected value of the random variable Y

E{YIZ = z} - expected value of Y conditioned on the event Z = z

Y - estimate of the random variable Y

{Yt} - discrete-time random process

{Yt} - approximation of the random process {Y}

Yi:j - the vector (Yi, Yi+ 1 ,- ,Yj) if i <j or

the vector (Yi, Yi_1,- , Y) if i>j

fy(.) -+ pdf of random variable Y
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fy(-; *)

fy,z- -)

fylz(IZ = z)

'D(fx, fy)

I(X, Y)

max{h(x)}
XCP

min{h(x)}
XGP

arg max{h(x)}
xE'P

arg min{h(x)}
XC'P

- pdf of Y which depends on the parameter vector T

-- joint pdf of random variables Y and Z

-+ conditional pdf of Y given the event Z = z

-+ Gaussian pdf with mean y and standard deviation a

-+ Kullback-Leibler distance between densities fx(.) and fy(-)

- mutual information between the random variables X and Y

- largest value of the function h(-) on the set P

-+ smallest value of the function h(.) on the set P

-+ element in P yielding the largest value of h(.)

- element in P yielding the smallest value of h(.)

- state vector of a dynamical system at time t

-+ source signal at time t

- observed signal at time t

- driving noise of a dynamical system at time t

- additive observation noise at time t

- parameter vector characterizing a pdf or a dynamical system

- order of an autoregressive process

-+ number of states in a Markov chain or an HMM

- number of components in a Gaussian-mixture pdf

-+ number of samples in a finite-length observation

-+ component of a Gaussian mixture selected at time t

-+ state variable for a Markov chain at time t

-+ initial state probability Pr{0 = i}
- state transition probability Pr{Et = jlEt-i = i}

- joint state probability Pr{Et_1 = i, e= j}
- HMM output density fgiet(.IEt =)

- HMM output density fit,(-|8t = i)

A.3 Context-Specific Symbols

Xt
Yt

Zt
Wt

Vt
41

K

L

M

N

t

P(i)

Q(i j)
R(i, j)

gi(-)

fi(-)
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Appendix B

Maximization of a Function
Related to Cross-Entropy

In this appendix, we derive solutions to two closely related optimization problems that arise
repeatedly throughout the thesis. One of these problems deals with finite-length tuples
whose elements are positive real numbers, and the other deals with positive functions of
a real variable. In the first optimization problem, we are given an M-dimensional tuple
a = (ai, a 2 , ... , am) whose elements are all positive real numbers, and we seek the tuple
b*= (b*, b..-- , b* ) specified implicitly through the maximization

M

b* = arg max E a log bk,
bcB k=1

(B.1)

where B represents the set of
and satisfy the constraint

all tuples b = (bi, b2 , - - , bM) whose elements are positive

M

bk

k=1

(B.2)

For this discrete case, we will prove that the elements b*, b*, --- b* of the optimal tuple
are given by

b * = M aj'j
k = 1, 2, * - , M. (B.3)

In the second optimization problem, we are given a real-valued continuous function a(.)
which is strictly positive on the open interval (x 1 , x 2 ) and has the property that

0 < a(x) dx < oc. (B.4)
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The function we seek, which we denote by b*(-), is specified implicitly as the solution to the

maximization problem

b* arg max a(x) log b(x) dx, (B.5)
b(-)CC fx1

where C is the set of all real-valued, continuous, strictly positive functions b(.) defined on

(X1 , x2 ) that satisfy the constraint

j b(x)do = 1. (B.6)

For this continuous case, we will prove that the maximizing function b*(.) is given by

b*(x) = 2 ,1 < X < 2. (B.7)
fX1 a(u)du'

Before proceeding with our proofs, we remark that, although both of the assertions above
are made with the assumptions of strict positivity on the variables involved, analogous proofs
can easily be constructed when the variables are taken to be merely nonnegative.

Let us denote by A = (&1, &2, -.. , 5iM) the normalized version of the given tuple a, so
that the elements of a are defined by

&k = ak , k = 1, 2, ,M. (B.8)
j=1 aj

Clearly, we have that a E B. Our strategy in proving that a is the unique solution to the
maximization taken in (B.1) will be to show that

M M

Eak log bk Eak log k (B.9)
k=1 k=1

for all b E B, and furthermore that equality holds in this expression if and only if b = a.

A proof of the above inequality can be developed by using certain key properties of the
function g(x) = x log x, which is defined for x > 0. Consider the second-order Taylor series
expansion of g(-) about the point x0 , given by

g(x) = g(Xo) + g'(Xo)(x - Xo) + Ig"I(X*)(X - X0 )2 , (B.10)

where x* is a number lying between x and x0 whose value is dependent on both x and

xo (although we have not indicated this dependence explicitly) and whose existence is
guaranteed by Taylor's theorem [160]. Observe that because

d
g'(x) = (X log ) = 1 +log X (B.11)

dx
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3
x

Figure B-1: Plots of g(x) = x log x (upper curve) and h(x) = x - 1.

and

d 1
g"(x) d (1 + log x) = -, B12

we have that g"(x) > 0 whenever x > 0. This implies that the final term IgII(X*)(x - zo)2

in the Taylor series expansion given above is always nonnegative, and in fact is zero only in
the case when x = xo. If we now rewrite the Taylor series expansion for the particular value
zO = 1, making use of the facts that g(1) = 0, g'(1) = 1, and g"(x*) = c > 0, we obtain

xlogx = (x - 1) + jE(X - 1)2. (B.13)

From this representation we conclude that

Xlogx > X - 1 (B.14)

with equality if and only if x = 1. This inequality provides a foundation for the proof of
(B.9). In Figure B-1, we show plots of the functions g(x) = x log x and h(x) = x - 1 in the
vicinity of the point xO = 1.

If we now replace the positive variable x in (B.14) with the positive ratio ak/bk, we
obtain the expression

ak && aj&
log bk > k (B.15)

bk bk - bk
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or equivalently, after multiplying both sides by bk,

&k log > &k - bk, (B.16)

which holds with equality if and only if bk = &k. This last expression actually represents

not one but M distinct inequalities, one for each value of the tuple index k. The left-hand

and right-hand sides of these M inequalities may then be separately summed to yield

M M M

EdklogT > bk- ak (B.17)
k=1 k=1 k=1

=1-1 (B.18)

=0, (B.19)

which holds with equality if and only if all of the constituent inequalities hold with equality,
i.e., if and only if bk = dk for k = 1, 2,. .. , M. If in (B.19) we write the logarithm of the

ratio as a difference of logarithms, we obtain

M M

Sak log bk < ( dalog k. (B.20)
k=1 k=1

Finally, upon multiplying both sides of this expression by the positive quantity ak,

which removes the normalization from the coefficients dk in each summation, we obtain

M M

Eak log bk < Iak log k, (B.21)
k=1 k=1

which is what we wished to show.

To prove the analogous result in the continuous case, we need to revisit the original

Taylor series expansion given in (B.13). In particular, from (B.13) we have

&()log = 1X X + 1,E(z) -X 1), (B3.22)
b(x) b(x) (b(x) 2 b(x)

where &(.) is the normalized function given by

5(x) = 2a < X < X 2  (B.23)
f1 a(u) du'

and c(x) is a positive function whose existence is guaranteed by Taylor's theorem. Upon

multiplying both sides of (B.22) by b(x) and then integrating from xi to X2 , we obtain

jX2 &(x) log d = jX2 &(x) dx - jX2 b(x) dx + jX2 c(x)b(X) () 12 dx
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= 1 - 1 + X2E(z)b(z)() - 12 dx (B.24)fX2 aix" 2

1-1E(})b() -(X) _ 12 d d, (B.25)

or, after a bit of straightforward algebraic rearrangement,

X2 a(x) log &(x) dx = a(x) log b(x) dx + A Xc(x)b(x) - 1) dx, (B.26)

where A = fl2 a(u) du is the positive normalizing term taken from &(.). Note that the
second term on the right-hand side of this last expression is always nonnegative. Moreover,
owing to the continuity of &(-) and b(.), this term is zero if and only if &(x) = b(x) for all
X E (Xi, X2 ). This observation gives the desired result that

X a(x) log b(x) dx < a(x) log 5(x) dx, (B.27)

with equality if and only if &(x) = b(x).
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Appendix C

Computer Implementation of the
EMAX Algorithm

The following source code listing, which is written in the MATLAB programming language,
represents one implementation of the EMAX algorithm derived in Chapter 2.

function [mu,sig,rho,a] = EMAX(y,muO,sigO,rhoO,aO,tol,n-iter)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX Description of variables

XX Input arguments:

XX y ........ vector of observations to be processed

XX muO ...... .. vector of initial values for means
XX sigO ..... vector of initial values for standard deviations

XX rhoO ..... vector of initial values for weighting coefficients
X7 aO ....... vector of initial values for autoregressive parameters
XX tol ...... .numerical tolerance for terminating algorithm

XX n-iter ... number of iterations for coordinate ascent

XX Output arguments:

XX
XX mu ...... vector of final estimates for means
XX sig ..... vector of final estimates for standard deviations
XX rho ..... vector of final estimates for weighting coefficients
XX a ....... vector of final estimates for autoregressive parameters

XX Compute dimension of autoregression vector, number of components
XX in Gaussian-mixture pdf, and number of input observations.
XX7.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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XX Update estimates for means, standard deviations, and AR
XX parameters via coordinate ascent by iterating update formulas

XX n-iter times.

for k = 1:n-iter,

z = y - H*a;

mu = ((sum(P.*(z*ones(l,M))))./sum(P))';

zmu = z*ones(1,M)-ones(N,1)*mu';
sig = sqrt(diag(zmu'*(P.*zmu))./sum(P)');
wgt = sum((P.*(ones(N,1)*((1./sig').~2)))')';
u = sum(((P.*(y*ones(l,M)-ones(N,1)*mu'))./(ones(N,1)*((sig').^2)))')';
a = inv((H'.*(ones(K,1)*wgt'))*H)*H'*u;

end

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX Update estimates for weighting coefficients.

rho = mean(P)';

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX Reassign parameter vector psi and compute Euclidean distance
XX between this value and the previous value.

psi-old = psi;
psi = [a' mu' sig' rho'];

err = norm(psi_old - psi);

end
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Appendix D

Relationship of Kullback-Leibler
Distance to Other Metrics

In this appendix, we demonstrate that the Kullback-Leibler distance is closely related to two
other important statistical measures, namely probability of detection and log-likelihood. A
discussion of these relationships gives us a better intuitive understanding - from the points
of view of classical detection theory and parameter estimation - about the distributional
properties that are actually measured by the Kullback-Leibler distance.

D.1 Connection with Probability of Detection

To describe the nature of the link between Kullback-Leibler distance and probability of
detection, let us first recall our earlier discussion from Section 3.2.1 in which we cast the
problem of quality assessment in terms of a particular type of game played with an indepen-
dent observer. In this game, the observer was furnished with descriptions of two densities,
and his goal was to correctly guess which of them gave rise to a given set of realizations.
We, on the other hand, were able to select one of the two densities in advance from a
given class Y; our goal was to choose a density that would confuse the observer more often
than would any other density in Y. Because we knew that the observer would always use
a statistical test that maximized the probability of a correct decision, we argued that the
optimal density in F was that which yielded the minimum possible value of this probability.

Recall that one of the two components making up the probability of a correct decision
is the probability of detection, or Pd, which is given by

Pd = Pr{Declare H1|Hi true} (D.1)

= Pr{f(ZO:N-1) > OIHi true} (D.2)

f fe I|H1 i true) d. (D.3)
0o

This component is a particularly important one to examine because it involves hypothesis
H 1, which is the only hypothesis that ever occurs in an actual signal processing situation.
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(That is, any observations that must be processed in a realistic scenario are precisely those

that arise from the true source, and not from some approximation to the true source.) It

may be just as reasonable, therefore, to define the quality of our approximation exclusively

in terms of Pd as it was to define it in terms of the probability of a correct decision.

Note that Pd can be viewed as the area under the tail of the conditional density of

f(Z:N-1) given Hi. We can learn more about the specific shape of this distributional tail

by rewriting the discrimination statistic f(ZO:N-1) as

f(ZO:N-1) = log fYO:N-1 (ZO:N-1) (D4)
?0:N -1 (ZO:N-1)

= log N-1 (D.5)
]l N - 1 f (Zt)
N-1

- log 11 fy (Zt) (D.6)
_=0 /P-(Zt)

N-1 
A

= log (D.7)

N-1

= : ft, (D.8)
t=0

where we have used the definition

= 1og fy() (D.9)
ofg(Ze).

We can easily see from this re-expression that f(ZO:N-1) is merely the sum of N i.i.d. of

random variables {ftN}N 1 , which have been derived from the original set of i.i.d. observa-

tions {Zt}N-1. Therefore, if we assume that the number of observations, N, is very large,
then we have by the Central Limit Theorem that f(ZO:N-1) behaves approximately like a

Gaussian random variable [42, 55, 57].

Because f(ZO:N-1) is ultimately compared to a threshold of zero in the optimal test, we

now introduce a more convenient, normalized version of this statistic given by

I I N

00:N-1 0 f :N-1) = N1 ft. (D. 10)
t=1

Since this normalized statistic will also be approximately Gaussian for large N, we write

fil H1 (IH1 true) ~~ A((; y, o-), (D.11)

where the mean and standard deviation parameters, y and a, are understood to be depen-

dent on the particular density fg(-) that is selected from F.

To simplify the remaining exposition, let us now suppose that, as we vary fg(-) over the
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entire set Y, the range of values taken by o- is extremely small in comparison to the range
of values taken by p, so that o- can be considered essentially constant. Then, if we wish
to confuse the observer by minimizing his probability of detection (i.e., by putting as little
area as possible under the positive tail of fiH (-)), we need only choose the density in F
associated with the smallest value of p. But observe that the value of p is given by

y = E{l(Z:Nl-)|H true} (D.12)

= E N t H1 true (D.13)
t=0

= E {foIHI true} (D.14)

E log 1 y o H1 true (D.15)

f fy (y) log dy (D.16)
J_,0 fg (y)

= D(fy, fg ). (D.17)

In other words, p is precisely the Kullback-Leibler distance between the true and approx-
imate densities. We conclude, therefore, under the assumptions stated above, that as the
number of observations becomes very large, minimizing the Kullback-Leibler distance be-
tween fy and fg is approximately equivalent to minimizing the observer's probability of
detection.

D.2 Connection with Log-Likelihood

We now show that there is a direct connection between Kullback-Leibler distance and log-
likelihood, in the sense that minimizing the Kullback-Leibler distance to obtain the best
parametric description of a pdf is equivalent to maximizing the log-likelihood function in
a closely related problem. Before describing the relationship between these two measures
more precisely, let us first consider the two optimization problems that link them. These
problems may be stated as follows:

(i) (Minimization of Kullback-Leibler Distance.) Let Y be a discrete-valued random
variable which is distributed on the finite set {1, 2,... , L} according to the pmf fy (.).
Assume that the pmf values {fy(J)} 1 are given. Let Y be a parameterized set of
pmfs defined by F = {fg(-; I) xF E P}, where P represents a collection of admissible
parameter values. Determine the set of all parameter values 1 KL E P that satisfy

L

TKL = arg min fy (j) log (D.18)
41EP ,_1 fg_ U; XF)

(ii) (Maximization of Likelihood Function.) Let {Yt}IN-1 be a set of i.i.d. discrete-valued
random variables, each distributed on the finite set {1, 2,... , L} according to the pmf
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fy (-), and let {yt}'N be a corresponding set of realizations of these random variables.

Assume that the pmf values {fy(j)}u 1 are unknown, but that the parameterized

collection of pmfs T = {fg(-; *) I C P} is hypothesized (possibly incorrectly) to

contain fy(-). Determine the set of all parameter values *ML c P that satisfy

N-1

'ML = arg max [I fg(yt;"') (D.19)
%PEP t=o

We will demonstrate that, as N -+ oc in problem (ii), the sets {'%ML} and {f KL} become

identical, i.e., any parameter value that asymptotically maximizes the hypothesized likeli-

hood function also minimizes the Kullback-Leibler distance between the hypothesized pmf

and the true pmf, and vice versa.

To establish this result, it will be convenient to introduce a function known as the

empirical pmf (also sometimes termed the type [41]), which we denote by fy(.). In the

context of problem (ii) above, the empirical pmf is defined in terms of a particular realization

YO:N-1 of the random vector YO:N-1 according to the formula

Yj =1, 2,... ,L, (D.20)
t=0

where oj,k is the Kronecker delta function, defined by

6j,k = {' irx=e (D.21)
0 otherwise,

The empirical pmf may be viewed alternatively as a histogram having L distinct bins (one

for each of the L symbols that could occur within the realization) whose bin totals have

been normalized so that they sum to one; in other words, the empirical pmf merely provides

a record of the relative frequency of occurrence of each symbol.

We first seek to establish that the maximum likelihood parameter estimation problem

given in (D.19) explicitly involves the empirical pmf. Observe that by taking the logarithm

of the right-hand side of (D.19) and then pre-multiplying by a factor of 1/N, we arrive at

an equivalent expression of the maximum-likelihood problem given by

N-1

F = arg max - log fg (yt; ). (D.22)
EP t=0

Now, since any given observation yt must assume exactly one of L values, each of the

N terms in the above summation can be placed into one of L categories according to its

value. After all of the terms have been categorized in this way, the jth category would

then contain a total of EN 1 6,yt terms. This suggests that we can rewrite the above
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log-likelihood function as

N-1 L N-1

tlog fg(yt; N) 6J,yt log fg (j; P) (D.23)
t=O j=1 t=0

L

- fy (j) log fg (j; P). (D.24)
j=1

Therefore, we can express (D.19) equivalently as

L

i arg max fy (j) log fg (j; ). (D.25)
XICP j=1

As an intermediate step, let us now examine the Kullback-Leibler distance between the
empirical pmf fy(-) and the hypothesized pmf fg(-; T), which is given by

D (fy, fp-) = fy (J) log .f 1 (D.26)
j=1 f-U

L L

Sfy (j) log fy (j) - fy (j) log f- (j; ) (D.27)
j= 1  j=1

In this last equality, we note that the first term is a constant and is therefore entirely
independent of the parameter T. Thus, in order to minimize the Kullback-Leibler distance
given above, we may simply ignore the first term in (D.27) and then attempt to maximize
the second term (after dropping the leading minus sign). But this once again yields the rule

L

4 arg max fy (j) log fg (j; X), (D.28)
*'IgP j=1

which is identical to (D.25). We have therefore shown that maximizing the log-likelihood
function in (D.25) leads to precisely the same result as minimizing the Kullback-Leibler
distance between the empirical pmf fy(-) and the hypothesized pmf fg(-; 4).

But, in the limit as N -+ oc, we have that the empirical pmf fy(-) converges in proba-
bility to the true distribution fy(-), as shown by

lim E {(y(j) - fy(j))

=lim E {f (j) - 2fy (j)fy(j) + fy(j)
N--+oo ( N-1 )2 1N-1
lim E 6j, -2E ( E jy fy(I )+ fj)N-+ KNt=0 t=0 I
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N-1 N-1~
=lim 12E {,y - 1,y, I - 2fy (j) + fy(j)

N -+oo LN __ 01

N 2 -=+ 1=2N-*ooE 16Ny I NE LE {6j~}
L S: s t tJ

= lim Ny
N-*oo N2 N

= lim [-fy()(1 - fy(j))
N-+oo N

= 0. (D.29)

We conclude, therefore, that choosing a parameter value that minimizes the Kullback-

Leibler distance between the hypothesized pmf and the true pmf is equivalent to choosing a

parameter value that maximizes the hypothesized likelihood function formed from an infinite

number of independent realizations from the true pmf. This close connection between

estimates formed by minimizing Kullback-Leibler distance and by maximizing the likelihood

function has been recognized previously by several authors, including Kullback [106], Kriz

and Talacko [1031, Hartigan [73], and Akaike [71.
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Appendix E

A Gradient-Descent Technique for
Evaluating HMM Parameters

Throughout much of Chapter 3, we focused exclusively on finding an abstract, theoretical
solution to our problem of finite-state signal approximation. In this appendix, we develop
a simple gradient-based algorithm to implement our solution. The goal of this algorithm is
to produce explicit numerical values for the parameters of the best HMM-based represen-
tation of an arbitrary stationary first-order AR process {Yt}. We shall assume throughout
the appendix that we are given the true bivariate signal pdf fyo,y (-), which, as we have
demonstrated in Section 3.3, summarizes all information relevant to the search for the best
HMM. Such an assumption entails no loss in generality, since this bivariate pdf can, at least
in principle, be derived from a complete specification of the original AR process. Because
the vector of breakpoints d = (do, di, - - - , dL) will ultimately determine the parameter val-
ues of the approximating HMM, we concentrate on finding the best value of d based on the
given function fy,y (.).

E.1 Formulation of the Optimization Problem

We begin by reviewing the basic components involved in the finite-state approximation
problem, and by introducing a slight variation of our previously established notation for
these components. Recall that the joint probability mass function characterizing the pair
of successive state variables (00, 6 1 ) in the approximating Markov chain is defined by the
formula

R (i, j; d) =fo,yl (yo, yi) dyo dy1, (E. 1)
fdj di_1

where we have now shown an explicit dependence on the vector of breakpoints d. In
addition, the marginal pmf for the single state variable 6 0 is given by

P(i; d) = fyo (yo) dyo, (E.2)
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or equivalently, via the joint pmf R(-; d), by the expression

L L

P(i; d) = ZR(i, j; d) = ZR(j, i; d). (E.3)
j= 1  j=1

Our objective is to find the particular value of d that maximize the mutual information

between the state variables 00 and 0 1. The mutual information corresponding to a given

value of d is defined by

L(d L'~~ R(i j; d)
I(d) = R(i, j; d) log P(i; d)P(j; d) (E.4)

i=1 j=1

Thus, we wish to solve the maximization problem

d arg max I(d), (E.5)
dED

where D can be viewed as a subset of RL+1 that enforces the strict ordering constraint

-oo = do < d1 < d2 < <dLoo. (E6)

Once the optimal breakpoint vector d* has been obtained, we can easily compute the critical

joint state probabilities {R(i, j; d*)}[%_1 by numerically integrating the pdf fy0 ,y (-) over

appropriate rectangular regions in R2 , as suggested by (E.1). Similarly, the remaining HMM

parameter values can also be easily computed.

E.2 Finding an Optimal Solution with a Classical
Hill-Climbing Algorithm

Because the maximization problem in (E.5) cannot be solved in closed form, we will pursue

a simple iterative, hill-climbing procedure based on the principle of steepest ascent. Such a

procedure generates a sequence of breakpoint vector values {d(0), d(l), d( 2), - } according

to the recursive formula

d(s+1) = d(s) + A(s)VI(d(s)), (E.7)

where s is the iteration index, VI is the mutual information gradient vector defined by

VI(d) - (E.8)
(ado' ad1' ' dL

and A(s) is a real number chosen such that

A(s) = arg max {I (d(s) + AVI(d(s))) . (E.9)
AER
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The core of the steepest-ascent algorithm therefore consists of two steps: (i) calculation
of the gradient vector VI(d(s)); and (ii) solution of the univariate maximization problem
in (E.9) (often referred to as the line search portion of the algorithm) to obtain the proper
scalar multiplier A(s).

We remark that it is sometimes difficult - through purely analytical means - to obtain
an exact, globally optimal solution during the line search in step (ii). This should not be
surprising, since the original L + 1-dimensional maximization of the same objective function
was sufficiently complicated that it required a numerical optimization procedure in the first
place. In many such cases, it is desirable to abandon an intensive search for the optimal
solution in favor of an alternative method that yields a somewhat coarse, approximate
solution but consumes far less computation. In the present case, it is reasonable (from the
standpoint of minimizing computational expense) to choose a pseudo-optimal value of P)
by searching over a small, finite set of candidate values f , - -) , Afs) }, which may be
allowed to change at each iteration; hence, the modified line search will take the form

A(s) = arg max {I (d(s) + AVI(d(s))). (E.10)
AE{A 1 A2,.-- Ai}

A number of methods are available for determining which candidate values should be in the
above search set, as well as for determining the appropriate cardinality of this set (see, for
example, [101, 112, 2021).

To complete the description of the steepest-ascent algorithm, we need to include suitable
procedures for both initialization and termination of the recursion in (E.7). To initialize the
algorithm, we must assign a reasonable value to the vector d(o). Of course, since the first
and last elements of this vector are, as always, constrained by the equations d) = -oo and

d(0) +oo, we need not be concerned with finding values for these elements. However, for

the remaining elements d , d), ... , we can use the values that result from imposing
the simultaneous conditions

()(0)(0jd~ (~~ ~(~Y.._ fry (y) dy =, (E.11)

so that all intervals initially have equal probability. This method of assigning starting
breakpoint values tends to work well in practice. To terminate the algorithm, we can
simply iterate the recursion in (E.7) until we reach a point at which the magnitude of the
applied perturbation A(s)VI(d(')) is below some prespecified threshold value.

E.3 Derivation of the Mutual Information Gradient

The only ingredient that is missing from the above description of the steepest-ascent algo-
rithm is a formula for the gradient of the mutual information with respect to the breakpoint
vector d. Because this quantity is an essential part of the algorithm, and because the math-
ematical expression for it is rather involved, we devote this subsection to a derivation of
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VI.
We begin by applying basic principles of differential calculus to the expression in (E.4).

Specifically, after some calculation we find that the partial derivative of I(d) with respect
to the element dk is given by

01(d) L L [OR(i, j; d) 1+1 R(i, j;d)

adk . dk P(i*; d)P(j; d)1=1 j=1 -(E. 12)

_R(i, j; d) 8Pli; d) . P(j; d) ~ ~;d.O(;d- P(j; d) + P(i; d).
P(i'; d)P(j; d) adk Odk

While this expression is also true for the special index values k = 0 and k = L, in these

cases we have that

BI(d) _ I(d)
0Id0 - d 0 (E.13)
ado odL

owing to the fact do and dL are constants; thus, in the following derivation we shall focus

only on the intermediate index values k = 1, 2, .. , L - 1. We note in addition that the

right-hand side of (E.12) involves derivatives of both of the probability mass functions R

and P. However, since we have already established the identities

a P i; d ) _ L LR(i j ; d ) L ( E .14)

Odk = E dk =I .dk (E.14)
J=1 j=1

we know that the derivatives of I actually depend on the derivatives of R alone; therefore,
in our remaining calculations, it suffices to focus our attention only on the function R.

From (E.1) we see that the functional dependence of R on the elements of d is expressed

implicitly through the upper and lower limits of a definite double integral. Because of this

unusual implicit dependence, the calculation of a partial derivative such as 0R(i, j; d)/Odk
will require some rather careful bookkeeping. We begin by making some simplifying obser-

vations. First, note that each double integral in (E.1) is evaluated over a rectangular region

of the form [di_ 1 , d] x [dj_1, dj] within the coordinate plane, and furthermore that there

are a total of L2 such regions making up the entire plane. When the value of a single break-

point dk is modified slightly, only certain of these regions are affected, and therefore only

certain partial derivatives with respect to dk are nonzero. The relevant question is whether

the perturbed breakpoint dk coincides with at least one of the breakpoints di_ 1, di, dj- 1 , dj,
which define a particular rectangular region.

For any given region, exactly one of the following four cases will be true regarding the

relationship between the breakpoint indices i, j, and k:

(a) k g {i - 1, i} and k ( {j - 1,j}

(b) k {i - 1,i} and k C {j - 1,j}

(c) k E {i - 1,i} and k V {j - 1,j}
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(d) kE {i - 1,i} and kE {j - 1,j}

These four cases are depicted in Figures E-1(a) through E-1(d), respectively. The heavy lines
shown in the horizontal and vertical dimensions in each figure correspond to the breakpoint
dk that is being perturbed. All of the figures depict the same partitioning of the coordinate
plane into L 2 rectangles, but each figure highlights a different subset of these L 2 rectangles
through special shading. For example, the shaded rectangles shown in Figures E-1(a) are
those whose associated index sets {i - 1, i} and {j - 1, j} satisfy condition (a) from the
above list. Similarly, the index sets associated with the shaded rectangles in Figures E-1 (b)
through E-1(d) satisfy conditions (b) through (d), respectively.

Observe that none of the shaded rectangles shown in Figure E-1(a) is affected by a
change in dk; hence, we have that

DR(',j;d)= 0 (E.15)
odk

whenever condition (a) is true. In Figure E-1(b), however, each of the shaded rectangles
will be affected in some way by a change in dk. In particular, the rectangles situated below
the heavy horizontal line (i.e., those that have dk as an upper limit), will increase in area
if dk increases; on the other hand, the rectangles situated above heavy line will decrease in
area if dk increases. More specifically, if we change the value of dk by a very small amount
to the new value dk + A, then the value of the double integral over a rectangle just below
the line - say, the rectangle associated with the index set {i - 1, i} on the horizontal axis
- will change by approximately the amount A f fy,y (yo, dk) dyo. Moreover, an equal
and opposite change will occur in the value of the double integral over the corresponding
rectangle just above the line. Thus, in the limit as A -+ 0 we can write

M d ) = [6, - 6 kj _1] fyo,y(yo, dk) dyo, (E. 16)

where 6
k,j is the Kronecker delta function defined by

6kJ j 1 = f~ (E. 17)
'0, if k /4 J.

An analogous argument holds for condition (c), which is depicted in Figure E-1(c). When
this condition is true, we have that

OR(i, j;d) fd
jd = [

6
ki - ki-] fy 0 ,y (dk, yi) dy1, (E.18)

Finally, when condition (d) is true, each of the shaded rectangles shown in Figure E-1(d)
undergoes two different kinds of changes when dk changes, one in the vertical dimension
and one in the horizontal dimension. The overall affect on the value of the double integral
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d k

dk

(a)

di dk

(c)

d dk

(b)

dk

di dk

(d)

Figure E-1: Depiction of four separate cases encountered in calculation of the gradient
vector. Shaded rectangular regions undergo the following types of changes when the value
of dk is perturbed: (a) no change at all; (b) change in the vertical dimension only; (c) change
in the horizontal dimension only; (d) change in both the vertical and horizontal dimensions.

d k

d k
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over each rectangle is simply the sum of these two individual changes. Thus we can write

OR(i, j; d) - [ekj 6 kj- difyoY

o&dk Jd-

+ [k,i - 6k,i-11
J d_

(yo, dk) dyo

(E.19)
fyo,y (dk, yi) dy1.

In fact, though it may not be evident at first, this last expression concisely represents each
of the conditions (a) through (d). A careful inspection reveals that (E.19) is valid regardless
of whether dk is an upper or lower limit in the inner integral, an upper or lower limit in the
outer integral, or not a limit at all. Although applying the formula in (E.19) may require
the use of a standard numerical integration procedure, the formula itself now allows us
to easily evaluate all other derivatives needed during the operation of our steepest-ascent
algorithm, namely those expressed in (E.14) and (E.12).
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Appendix F

An Algorithm for Computing
Posterior HMM State Probabilities

During our analysis of the signal estimation problem in Chapter 5, we demonstrated that,
if the signal and noise are independent, additively combined processes, and if each is the
output of a finite-state HMM whose state densities are Gaussian mixtures, then the ob-
servation is also the output of an HMM of this same type (albeit one with many more
parameters). The special HMM-based structure of the observed signal gives rise to an ex-
tremely efficient recursive algorithm for computing the posterior probabilities associated
with the states of the underlying Markov chain [19, 47, 78, 154, 155]. In this appendix,
we shall construct the overall algorithm in three distinct steps. First, we develop a re-
cursion that runs forward in time, accounting for all past observations at any given time
by computing the quantity fzo:t,et(zo:t,Ot = i). Next, we develop a complementary re-
cursion that runs backward in time, accounting for all future observations at any time by
computing the quantity fzt+1:N-1 et(Zt+1:N-1jt = i). Finally, we combine the results of
the forward and backward recursions to get the value of the desired posterior state prob-
abilities Pr{Et = iIZo:N-1 = ZO:N-1}. After considering each of these steps in turn, we
then describe a special numerical conditioning procedure that must be incorporated into
the recursive algorithm when it is implemented on a digital computer.

F.1 Developing the Forward Recursion

We begin by deriving the recursion that runs forward in time. Let us define the forward
variable at(i) as

at (i) = fzo:t,et (ZO:t, 8, = i), (F.1)

where it is understood that the time index t lies in the set {O, 1, ... , N - 1} and the state
index i lies in the set {1, 2,... , L}. To develop a recursive procedure for computing all of
the values at (i), we require a method for starting the recursion (the initialization step) and
a method for carrying the recursion forward in time (the induction step). The initialization
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step follows directly from quantities we already know; in particular, we have

ao fzo,eo (zo, Oo = i) = P(i)hi(zo), i = 1,2,- , L. (F.2)

The induction step requires a little more work. Let us assume that the values {a(j)} of

the forward variable have already been computed for the time indices s = 0, 1,-- , t and

for the state values j = 1, 2,.- , L. We wish to relate these known values to the new, as

yet unknown value at+1 (i). Using the definition of at+1(i), we may write

Ot+(i) fzo:ti+,et+ (zo:t+1, Et+ 1 = i) (F.3)

L

Z fzo:t+1,et,0t+1(zo:t+1, et = 3, t+1 = i) (F.4)
j=1

L

= fzo:,zt+1,t,Et+1(zo:t, zt+1, Ot = t+1 (F.5)
j=1

L

= Pr{Et+1 = ilet = j*
j= 1

fzt+11t+ 1(zt+1lEt+1 = i)fzo:t,e,(zo:t, Ot = j) (F.6)

L

=at(j)Q(j,i) hi(zt+1). (F.7)
-j1

This is the desired recursive relationship. In Figure F-1, we give a graphical depiction of the

computations that are required to generate the future forward variable value at+1 (i) from

the L currently available values {at(j)}%_1 . The figure depicts a trellis whose dimensions

are state and time. A feasible trajectory of the state variable over the entire length of the

observation can be envisioned on this trellis as a polygonal path that intersects exactly one

state node at each time index between 0 and N - 1.

The figure shows the path segments that could lead to state i at time t + 1 from the

L possible states at the immediately preceding time t. Recall that the quantity at(j) is

the joint probability that (i) the vector zo:t was observed, and (ii) the state at time t was

j. This means we can interpret the product at(j)Q(j,i) as the joint probability that (i)
zo:t was observed, and (ii) state i was reached at time t + 1 by way of state j. If we then

add together all of the products of this form (i.e., the products for all possible values of

j, holding fixed the time value t and state value i) we obtain the joint probability that (i)
the vector zo:t was observed, and (ii) the state at time t + 1 was i. Once this probability

has been computed, we see that the new quantity at+1(i) can be evaluated by multiplying

the summed quantity by the output pdf value hi(zt+1); this accounts for the fact that zt+1

was observed while in state i. An analogous computation is carried out for each possible

state value i at time t + 1. To keep the recursion moving forward, we then repeat this same

overall sequence of computations at the subsequent time index.
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STATE 1

STATE 2

STATE 3

STATE L

TIME 0 TIME 1

STATE j

" " " TIME t TIME t+1

STATE I

S

0

- " "TIME N-1

FORWARD RECURSION .

Figure F-1: Illustration of the forward recursive procedure used to compute the new quantity

at+1(i) from the L values {at(j)}j_1 just computed. Recursion is depicted on an L x N

trellis whose nodes represent possible states of the underlying Markov chain at each time

index. Shaded sets of nodes are those for which forward variable has already been evaluated.

Vertical dashed line indicates current stage of computation.

We summarize the forward recursion with the following two formulas:

INITIALIZATION

ao(i) = P(i)hi(zo),

INDUCTION

L

aet+1(i) = aet(j)Q(j,%i) hi(zt+1)'
-j=1

i=1, 2,- ,L

i = 1,2, - N -I L-
t = 0, 1, -. - I N - 2.

F.2 Developing the Backward Recursion

We now derive the recursion that runs backward in time. For this procedure, we define the

backward variable #t(i) as

t(i) = fzt+l:N-1let (Zt+1:N-1 Et = i), (F.10)

which holds when the state index i is contained in {1, 2,-- , L} and the time index t is

contained in {0, 1, ... , N - 2}. For the final time index t = N - 1, we no longer use the

(F.8)

(F.9)
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definition in (F.10), but instead arbitrarily specify that

3N-1(i) = 1, i 1, 2,- , L. (F.11)

Once this initialization is done, we can develop the recursion for ft(i) just as we did for

ot(i), now progressing backward in time rather than forward. Specifically, we can write

#t (i) =fzt+1:N -119t (Zt+1:N-1JE9t = 0) (F. 12)

L

E fzt+1:N-1,t+1JEt (Zt+1:N-1, (t+1 = = i) (F.13)
J- 1

L

fZt+1,t+2 :N-1,Et+1 I(Et(Zt+1, Zt+2:N-1, Ot+1 = t = i) (F.14)
=1

L

Pr{et+1 = jI t = i}fzt+11et+i(zt+I(t+I =J)'
j=1

fZt+ 2 :N-1 Et+1 (Zt+2:N-1 Et+1 = ) (F.15)
L

Q (i, j)h (zt+1)3t+1(j)- (F.16)
j=1

This last formula is the desired recursive relationship. In Figure F-2, we give a graphical

depiction (analogous to the one given in Figure F-1) of the computations that are required

to generate the backward variable value /3t(s) from the L values {0t+1 (j)}I- just computed.

The figure shows the path segments leading from state i at time t to the L possible states

that could be reached at time t + 1. Recall that the quantity 0t+1 (j) is the probability

that the vector zt+2:N-1 was observed given that the state at time t + 1 was j. This

means that we can interpret the product hj(zt+1)ft+1(j) as the probability that Zt+1:N-1

was observed given that the state at time t + 1 was j. Furthermore, we can interpret the

product Q(i,3j)hj(zt+1)3t+1 (j) as the joint probability, conditioned on the event that the

state at time t was i, that (i) zt+1:N-1 was observed; and (ii) j was reached at time t + 1

by way of state i. If we then add together the products of this form for all j, we obtain

probability that the vector Zt+1:N-1 was observed given that the state at time t was i, which

is simply it(i). An analogous computation is carried out for each possible state value i at

time t. To keep the recursion moving backward, we then repeat this same overall sequence

of computations at the immediately preceding time index.

We summarize the backward recursion with the following two formulas:

INITIALIZATION

#N-1IND U 1, =12, - L (F.17)

INDUCTION
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S . . . 9. * STATE1

STATE I STATE 2

S. @ . STATE3

STATE j

* 0 0 0 STATE L

TIME 0 " TIME t TIME t+1 " TIME N-2 TIME N-1

BACKWARD RECURSION

Figure F-2: Illustration of the backward recursive procedure used to compute the new
quantity #t(i) from the L values {3t+1(j)J-1 just computed. Recursion is depicted on an
L x N trellis whose nodes represent possible states of the underlying Markov chain at each
time index. Shaded sets of nodes are those for which backward variable has already been
evaluated. Vertical dashed line indicates current stage of computation.

L 
._1

#3(i) = #I3t+1(j)Q(i,j)hj(zt+1), t = 2 - - - 3 - -0. (F.18)
j=1

F.3 Combining the Forward and Backward Results

Once the forward and backward recursions have been applied to the observed sequence, we
can easily combine the results generated by these recursions to obtain the desired HMM state
probabilities. Let us introduce the more concise notation yt(i) to represent the probability
that the Markov chain is in state i at time t based on the value of the observation ZO:N-1-

Observe that, from the definition of conditional probability, we can immediately write

yt(i) = Pr{et = iIZ0:N-1 = ZO:N-1} (F.19)

fzo:N-1,t (ZO:N-1, et = i) (F.20)
fZO:N-1 (Z:N-1)

fz0:N-1,0t(Z0:N-1, Et = )

Ej=1 fZ:N-1,Et (ZO:N-1, = j) (
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Furthermore, since we have the natural decomposition

fZo:N-1,t (Zo:N-1, e = ()

= fzo:t,Et (ZO:t, t = i) - fzt+1:N -1j t(Zt+1:N-11(t = i) (F.22)

= at (i)13t (i), (F.23)

we obtain the simplified expression

,(i) = atd F.24)

EL=1 at (j)#t (j.)I

which reveals explicitly the functional dependence of the posterior state probabilities on the

output from the recursive procedures derived earlier.

F.4 Conditioning the HMM-Based Recursions

Unfortunately, the recursive formulas for the forward and backward variables that we de-

rived in Sections F.1 and F.2 will produce distorted results when implemented directly on

a digital computer, even for moderate values of the observation length N (e.g., values of

approximately 100 or more). To understand why this is true, let us first re-examine the

mathematical structure of the forward variable a(-). By unraveling the recursive definition

of this variable at each successive time index, starting at time 0, we can determine its com-

position explicitly at a general time t. Assuming that our HMM consists of L states, and

that a particular realization of the HMM output is represented by Z:N-1, we can write the

following non-recursive formulas for the forward variable:

ao(io) = P(io)hio (zo) (F.25)

L

a1 (ii) = ao (io)Q (io, Zil)hil (zi)
i=1

L

E P~s (io , ii) hio (zo) his (zi) (F.26)
io=1

L

a2(i2) = a 1(il)Q(ii, i 2 )hi 2 (z2 )

L L

(Z P(io)Q(io, i1 )Q(i1 , 2 )hio (zo)hi 1 (zi)hi2 (z2 ) (F.27)
ii=1 io=1
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L

at+1(it+1) =at (it)Q(it, it+1 )hit+ (zt+1)
it+i-1

L L L t t+1

- - P(io) 17 Q(ik, ik+1) 17 hik (zk) (F.28)
it=1 it __1=1 io=1 k=1 k=0

From these expressions, we can see that the forward variable is made up of products of
probabilities (which are, by definition, confined to the interval [0, 1]) as well as products of
pdf values (which may exceed unity, but are usually much closer to zero). Because these
terms are typically quite small, and because the number of terms in each product grows
linearly with t, the products themselves eventually tend toward zero at an exponential rate.
Furthermore, the summing of many such vanishing products (which is done to produce the
final value of the forward variable) has virtually no mitigating effect on this exponential
decay in magnitude. Thus, when the recursive algorithm from Section F.1 is implemented in
its original form, and t is allowed to become sufficiently large, the dynamic range required in
the computation of at(-) cannot be accommodated by the finite-length registers in a typical
computer, even if the computation is performed using double-precision arithmetic.

To avoid the problem of eventual register underflow, we must somehow numerically
condition the forward variable so that all computations performed for t = 0, 1, - - - , N - 1
occur well within the dynamic range of the computer. We can achieve the desired condi-
tioning by multiplying the forward variable at each time index by an appropriately chosen
time-dependent scale factor. As we will see, such a scaling procedure essentially creates a
normalized version of the original set of forward variables at each time index, but nonethe-
less allows us to compute the new set of scaled forward variables recursively, as we did
originally.

To describe the scaling procedure in detail, we first introduce the notation a' (.) to
represent the scaled forward variable at time t. The values assumed by this variable are
propagated forward in time using a method similar to that used for the original variable
at(.), except that now the recursive step consists of two distinct parts. In the first part, the
scaled variable from the previous time, a' 1 (-), is projected ahead to time t through the
usual inductive formula

L

'4'(j) = a'i (i)Q(i, j)hj (z), j = 1,2,--- ,L, (F.29)

where the new variable a'() has been introduced to represent the preliminary, unscaled
result of this transformation. In the second part of the recursive step, the unscaled variable
a'"'(-) is transformed back into its properly scaled counterpart according to the formula

a'(i) = cta't'(i), i = 1,2, - - , L,
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where ct is the normalization factor given by

1
Ct = . (F.31)

j=1 at')

Note from (F.30) that at time t, the same scale factor ct is applied to each of the L terms

{a'(i)}f 1 ; thus, although the scale factor does indeed vary with the time index t, it is

completely independent of the state index i. The recursive procedure for the scaled forward

variable is initialized by the equations

a'o'(i) = a 0 i) i = 1,2,- , L (F.32)

1
CO = (F.33)

a'o(i') = coa''(i) i = 1, 2, -- L. (F. 34)

Once this initialization is performed at t = 0, the recursion then consists of a repeated

application of the pair of operations given in (F.29) and (F.30) for t = 1, 2, - - - , N - 1.

With the new recursion now fully specified, let us attempt to express our scaled forward

variable a'(.) in terms of the original forward variable at(-) at an arbitrary time t. We claim

that the relationship between these two variables is given by

- t ~

a' (i) = IJ CS at (i). (F.35)
s=0 .

From the initialization formulas in (F.34), it is easy to verify that this relationship holds at

time 0. Proceeding inductively, then, let us assume that it also holds for each time up to

and including time t - 1. Then using (F.29) and (F.30), in addition to the original recursive

formula for at(-), at time t we may write

a'tUj) = cta't'(j) (F. 36)
L

= c a'i (i)Q (i, j)hj (zt) (F.37)

= c c. c at_ i(i)Q (i, j)hj (zt) (F.38)
i=1 .S=0
t ~S L

= E c at_-1 (i)Q (i, j hy (zt) (F.39)
S=0 i=1

S c at(i), (F.40)

which proves the claim. Now, by substituting (F.35) into the recursive formula for a'(.),
we can derive a more direct expression of the relationship between the scaled and original
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forward variables that does not involve the scale factors {cS}. In particular, we have

L

a'(j) = c a'i(i)Q(i, j)h (zt) (F.41)

_1 a'/_ i)Qi jh (zt)i=1 t ')Q~i(F.42)
_ 1 '_ it Q i k (zt)

1L ]- [ csa_1iQi )hj (zt)

r (F.43)
1 _1 [L - 1cs at-1(i)Q(i, k)hk(zt) ( .3

at) 
(F.44)

k=1 at (k)

From this last equation, we see that the new scaled forward variable a'(j) is truly just a
normalized version of the original forward variable at(j) at each time t, even though this
may not be immediately evident from the definition of the new variable.

Thus far, we have discussed only the scaling procedure that applies to the forward
recursion. A similar scaling procedure must also be employed during the computation
of the backward variable #t(-), since this variable also exhibits an exponential decay in
magnitude when the original recursive formula is used. However, we need not calculate a
new set of scale factors for the new backward variable; instead, we can simply re-use the
ones that were generated at the corresponding times during the forward recursion. Although
this method does not guarantee that the scale factor applied at time t will restore the sum
of the backward variables to unity at time t, it nonetheless yields accurate final results,
since the magnitudes of the forward and backward variables are comparable. Moreover,
this strategy of using common scale factors for the two sets of variables has the obvious
advantage of reducing the overall computational expense associated with the HMM-based
estimation algorithm.

The new backward recursion is defined in a similar manner to the forward recursion
described above. In particular, once again we use the two basic formulas

L

13"(j) = Z#'+1(i)Q(j,%i)hi(zt+1), j = 1, 2,-- ,L (F.45)
i:=1

and

3(i) = ct3"(i), i = 1, 2,... , L, (F.46)

where the first formula is used to project the scaled variable values back from time t + 1 to
time t, and the second is used to adjust the magnitude of these projected values. This new
recursion is initialized by the equation

-i3N (i) = CN-lN-1(i) i = 1, 2,-- ,L. (F.47)
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After this initialization is performed at t = N - 1, the recursion then consists of a repeated

application of the pair of operations given in (F.45) and (F.46) for t = N - 2, N - 3, - - - , 0.

By using an inductive argument analogous to that used for the forward variable, we

can show (although the proof will be omitted) that the scaled backward variable can be

expressed in terms of the original backward variable at time t as

N-1~

#3'(i) = c Z# () (F.48)
.s=t+ 1.

Furthermore, by combining this identity with its counterpart from the forward recursion

(given in (F.35)), we find that the product of a scaled forward variable and a scaled backward

variable, taken at time t and for state i, is given by

t N-1~
at = [1 cS at(i) iIcl #3(i) (F.49)

1s=0 . s=t+1 .
N-1 ~

= cS at (%i)#t (i). (F.50)

This is a significant equation from the standpoint of calculating the posterior state proba-

bility 7t(s), for we can immediately use it to write

'yt (i) t (F.51)

N- cs( t )t i

E L N-1(F.52)
N= 1fs= cs at (A 13t (A)

_ a'(i)#/,(i) .(F.53)

Ej=1at~)t(s)

This last equation implies that we can operate on the new scaled forward and backward

variables in exactly the same way that we operated on the original variables when computing

the value of -yt(i), a critical quantity in the HMM-based estimation algorithm. This is quite

convenient, for it means that we will not incur a premium in computational cost to recover

certain key quantities needed for signal estimation, despite the fact that the underlying

recursive procedure has been modified significantly by the numerical conditioning strategy.

Another desirable property of our new scaling procedure is that the coefficients {ct}

generated during the forward recursion can be used to compute the log-likelihood value

log fZO:N-1(Z:N-1), which is very useful in problems such as signal detection and signal

classification (see, for example, Section 5.6.1.2). If the scaling procedure were not required

at all (i.e., if all computations from the original recursions could somehow be performed
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with infinite precision arithmetic), then this log-likelihood value could be computed as

L

log fzO:N- 1 (ZO:N-1) =log fzO:N-1 ,N-1 (Z:N-1, EN-1 = i) (F.54)

L

= log aN-1(i), (F.55)
i=1

where in the latter equation we have merely exploited the definition of the original forward
variable at time N - 1. As we know from our earlier discussion, the summation appearing
in this expression cannot be evaluated directly. However, we can still obtain the desired
log-likelihood value by using the fact that

L1

zN1i = N1 ,(F.56)
i=1 Ot=0 ct

which follows easily from the previously derived identities (F.35) and (F.44). Of course,
this last equation can be rewritten as

1
fzO:N- 1 (ZO:N-1) = N- , (F.57)

t=0 C

or equivalently, after taking logarithms of both sides, as

N-I

log fzO:N-1 (ZO:N-1) =- lOgCt- (F.58)
t=O

This demonstrates that the scale factors by themselves constitute an extremely valuable by-
product of the new forward recursion, since they can be used to compute the log-likelihood
value of the observation.
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Appendix G

Using a Gaussian Mixture to
Approximate a Nonlinear
Estimator

In this appendix, we demonstrate that using a low-order Gaussian-mixture approximation
in place of the true signal pdf can lead to the development of a nearly optimal, compu-
tationally efficient estimation scheme. We examine a simple but illustrative non-Gaussian
signal estimation problem. In particular, we consider a problem in which we are allowed to
observe only the sum of two statistically independent, scalar-valued random variables, each
having a pdf that is precisely known. One of these random variables is assumed to have
a non-Gaussian pdf and is designated as a signal variable; the other is assumed to have a
Gaussian pdf and is designated as a noise variable. On the basis of our single observation,
we wish to generate an MMSE estimate of the value assumed by the signal variable.

We begin our discussion with mathematical description of the elements of the estimation
problem, and we then immediately introduce a Gaussian-mixture approximation for the non-
Gaussian signal pdf. Using this pdf approximation, we in turn develop an approximation
for the true globally optimal processor that should be applied to the observation. We are
able to decompose the approximate processor into a collection of linear terms, and we can
therefore easily make predictions concerning how the optimal processor behaves when the
observation lies in various ranges. We show that using such an approximation can provide a
deeper, more intuitive understanding of the structure of the optimal estimator. Finally, we
derive the exact mathematical form for the optimal processor and show that this estimator
does indeed behave as we had predicted.

G.1 Observation Model and Problem Statement

Let Y and V be statistically independent random variables representing, respectively, the
signal and noise components of our scalar-valued observation Z, which is defined in the
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usual way as

Z = Y + V. (G.1)

Suppose further that the signal variable Y is characterized by a zero-mean Laplacian pdf,
defined by

fy(y) = exp , -oo < Y < o0 (G.2)
2# 1

and that the noise variable V has a zero-mean Gaussian pdf, which is given by

1 5 v2
fv (v) =exp - -oo<v<oo. (G.3)

For the sake of concreteness, we assume throughout the following discussion that the pdf

scale parameters associated with the signal and noise variables (i.e., 3 and ov, respectively)

take the values 3 = 2 and orV 3. (Our choice for the value of 3 implies that the standard

deviation for the signal is given by oy = v3 ~ 2.83; hence, the signal-to-noise ratio for

this problem is approximately 0 dB.)

Ultimately, we would like to determine the explicit form for the function Q(z) = E{Y IZ

z}, which is known to yield the globally optimal estimate (in the MMSE sense) of the signal

value y based on our observation of the event Z = z. However, the fact that the signal

variable Y is Laplacian makes the estimation problem considerably more complicated than

it would be if Y were Gaussian. As we will soon discover (following a rather involved deriva-

tion), the optimal data processor for this problem is indeed nonlinear and has a complex

mathematical structure. Before delving into the details of this derivation, however, let us

first try to predict the basic form for this optimal processor by reasoning - in an approxi-

mate sense - about what action this processor should perform over various ranges of the

input value z.

G.2 Using the Gaussian-Mixture Approximation

We can develop our intuitive understanding of the optimal data processor by introducing

an approximation for the Laplacian signal pdf itself. Recall from the example we presented

in Chapter 2 - specifically, the example from our discussion on the source identification

problem involving Laplacian-distributed driving noise for an AR process - that we have

already obtained such an approximation in the form of a three-component Gaussian-mixture

pdf. In fact, numerous approximations of this kind were generated in that example, one

for each of the experimental trials that was performed. For the purposes of the present

example, we have arbitrarily selected one of these approximations, specified by the collection

of parameter values

(pi, i, pi) = (0.0, 0.87,0.28) (G.4)

(p2, 02, P2) = (0.0, 2.76, 0.61) (G.5)
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Figure G-1: (a) True Laplacian density with scale parameter 13 = 2; (b) Individual Gaussian
densities making up approximating Gaussian mixture.

(P3, 0-3, P3) = (0.0, 5.47, 0.11). (G.6)

In Figures G-1(a) and G-1(b), we show, respectively, a plot of the original Laplacian density
and the three individual Gaussian densities that make up the Gaussian-mixture approxima-
tion. (The densities shown in Figure G-1(b) were scaled in such a way that they could be
conveniently superimposed on a single plot. As depicted in this figure, the scaled densities
appear in approximately the same relative proportions as they would if each original pdf
had been multiplied by its associated weighting coefficient pi.)

Now that we have a simple and reasonably accurate Gaussian-mixture approximation for
the pdf of the signal variable, we would like to develop an optimal estimator for the signal
value based on the assumption that our approximation is exact. Recall that we have already
carried out such a development in Chapter 5. The key technique used in that development
was to condition the problem on each of the three possible choices for the purely Gaussian
pdf that could give rise to the signal value. Under each condition, the optimal processor
is a Wiener smoother, since the noise is also Gaussian. For this scalar case, implementing
the Wiener smoother for each condition is carried out by multiplying the measurement by
an appropriately chosen positive coefficient. The overall approximate processor is therefore
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given by

3 2

y (z) Pr{<D = ilZ = z} or? z. (G.7)
i=1 o2 + o2

Although the basic components of this processor are linear terms, the overall processor itself

is clearly nonlinear, since the posterior probability Pr{4 = iIZ = z} multiplying the ith

linear processor is actually a nonlinear function of the observed data z.

All three linear processors included in (G.7) are plotted in Figure G-2. Based on the

form of (G.7), we see that the slope of each line is determined by the relationship between

the standard deviation of its associated signal component, o-i, and the standard deviation

of the noise, ory.1 Note that each line shown in the figure consists of a dotted portion and

a solid portion. Each line appears solid throughout the region where the corresponding

Gaussian component of the signal pdf has non-negligible posterior probability; hence, in

regions where the line is dotted, the effect of the linear processor can essentially be ignored.

This suggests that the overall data processor operates in three separate regimes, depending

on whether the magnitude of the observation z is small, intermediate, or large. These

regimes are labeled in Figure G-2 as Regimes 1, 2, and 3, respectively.

Let us now try to predict what the processor will do in each of its three regimes. In

Regime 1, while it is true that any of the three Gaussian components of the signal pdf could

have produced the signal value, clearly the first two components (i.e., those with the smallest

standard deviations) account for most of the probability. We expect that the processor will

be approximately linear throughout this regime and will be situated somewhere between the

two lines of smallest slope depicted in the figure. On the other hand, in Regime 3, it is very

unlikely that any but the third Gaussian component of the signal pdf (i.e., that with the

largest standard deviation) could have produced the signal value. In this case the processor

will also be approximately linear, but it will now virtually coincide with the line of largest

slope. Finally, in Regime 2, the processor will once again be approximately linear, but it

will be structured in such a way that it connects the other linear functions from Regimes 1

and 3. In fact, as we can see from Figure G-3, this is precisely how the nonlinear processor

given in (G.7) appears when plotted.

G.3 Derivation of Globally Optimal Processor

To assess the accuracy of our prediction, let us now derive the functional form of the actual

optimal processor E{YIZ = z} for this non-Gaussian problem. We begin by going back to

'In general, the slope of each line can range from zero to unity. If ai is extremely small relative to cv,

then the slope of the corresponding line will be near its minimum value of zero; this represents the case in

which there is almost no information to be gained from a single observation of the corrupted signal value.

As the value of oi increases relative to ov, the corresponding line becomes steeper, and hence more weight is

given to the observation. Finally, if ci is extremely large relative to cv, the slope of the corresponding line

approaches its maximum value of unity; in this case, the observation is rich in information and, accordingly,

the optimal data processor is approximately the identity function.
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n
0

20

Figure G-2: Optimal linear processors associated with the three Gaussian densities in ap-
proximating mixture. Solid portion of each line indicates region where the corresponding
density has non-negligible probability.

the definition of conditional mean, from which we can write

E{YIZ = z} = yfylz(ylZ = z)dy

fj, yfy,z(y, z)dy

f0fy,z(y,z)dy

(G.8)

(G.9)

where in the latter step we have used the fact that the conditional pdf of Y, given that
Z = z, is simply a normalized version of the joint pdf of Y and Z when this joint pdf is
viewed as a function of y alone (i.e., when z is assumed fixed). From the definitions given
in (G.2) and (G.3), we have that

fy,z(y, z) = fy(y)fZIY(zIY y)

= fy(y)fv(z - y)

= ' exp exp {- (zy)
2/2k7o-v 0 2o.2

e-__2/2__ y2  zy |y| -
= exp 2+ - (

23 v2-v 20v o12 3j

(G.10)

(G.11)

(G.12)

(G.13)
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If we now substitute this expression into (G.9) and then cancel like terms from the numerator

and denominator, we obtain the equivalent estimation formula

E{YIZ = z} =
f_" y exp y-2 + -yjy dy

0_ exp Y- + -2IY dy
(G.14)

Now, by selecting appropriate limits of integration and introducing a simple change of

variables, we can rewrite the above expression so that terms of the form jy| never appear.

The new formula is given by

E{YlZ = z}

f00 y exp - 00z

fO exp{- - (o-V 3z)

y dy - fo" yexp{- +#z y} dy

y dy+fo exp{- 2  _ (-c--) y} dy

(G.15)

Each integral appearing in this expression can easily be evaluated using standard integral

tables [69]. From the tables, we have, for given constants A and B, that

y exp y 2 - By dy = 2A - 2ABv7 - exp(AB 2 ) - erfc(v'ZB)
/o 2

exp -A By dy = r - exp(AB 2 ) - erfc(VfB),

where erfc(-) is the complementary error function given by

erfc(x) = 2fJ0e- t2dt.

(G.16)

(G.17)

(G.18)

For each of the four definite integrals appearing in (G.15), the constants A and B are

easy to identify. Upon substituting the integral values back into (G.15), we find, after a

considerable amount algebraic manipulation, that the optimal data processor in this case

reduces to

E{Y Z = z} (z - <//3)G(z) + (z + <//)H(z)
G(z) + H(z)

z(G(z) + H(z)) - (oa /3)(G(z) - H(z))

G(z) + H(z)

zV G(z) - H(z)
# [G(z) + H(z).'

(G.19)

(G.20)

(G.21)
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where G(-) and H(-) are the rather complicated nonlinear functions defined by

(o 2 -/z 2 ,2 - Z

G(z) = exp v2jIoz erfc v(jVI, (G.22)

and

2 ±+z\2 o+#2
H(z) = exp clv + erfc . (G.23)

Sv/-'d/3uJ v'3uo-

It can be proven without too much difficulty (although the details will be omitted here)
that the following three limits hold for the ratio [G(z) - H(z)]/[G(z) + H(z)]:

G(z) - H(z)lim = -1 (G.24)z-*-oo G(z) + H(z)

G(z) - H(z)lim = 0 (G.25)z-o G(z) + H(z)
G(z) - H(z)

lim = + 1. (G.26)z-oo 0G(z) + H(z)

From these three facts alone, we can begin to envision the form that the optimal processor
must possess. Specifically, using (G.21), we have that the optimal processor is zero at z = 0,
approaches the positively biased linear function z + (o2/#) as z - -oc, and approaches the
negatively biased linear function z-(o2 /0) as z -* +oo. A. plot of the true optimal processor
is shown as the solid curve in Figure G-4. Also shown in this figure is our approximation
to the optimal processor that results from using our three-component Gaussian mixture
specified in G.6.

Because the optimal processor and its approximation are so close in this example, they
yield nearly identical mean squared error values of about 4.07. Since the Laplacian pdf
represents a deviation from a Gaussian pdf that is not very severe, a linear processor would
probably be adequate in this case. A logical choice for a linear estimator would be the
optimal processor associated with a Gaussian signal pdf whose standard deviation is the
same as that of the Laplacian pdf, namely cry = f# = 2V'2; applying such a processor in
this example yields a slightly higher MSE value of about 4.24.
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Figure G-3: Linear data processors (dashed curves) associated with individual components

of the Gaussian mixture and the resulting approximate nonlinear data processor (solid

curve) associated with overall mixture.
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Figure G-4: Optimal processor (solid curve) and approximate processor (dashed curve) for

estimating a Laplacian random variable in additive Gaussian noise.
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