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Abstract

Effective methods of performing diversity selection in wireless systems has been demon-
strated to significantly reduce bit error rate. Information about the noise on a channel
can allow accurate selection of the best diversity branch. This thesis, based on research
conducted at Telcordia Technologies (formerly Bell Communications Research) describes
a study of the PACS demodulator. The study was aimed at investigating possible meth-
ods of estimating the signal-to-noise (SNR) ratio on a wireless channel. In the interest
of maintaining the current system and of taking advantage of the primary features of the
PACS system, two quality metrics, based on the phase disturbance of the received signal,
were studied to determine their correlation to noise. A description of these metrics and
their proposed relationship to noise is provided. Methods to analyze the performance and
reliability of the metrics are described, along with a simulation environment for evaluating
their performance. Finally, initial results of the analysis is presented, accompanied by a
brief evaluation of these results.
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Chapter 1

Introduction

In the past decade, the demand for commercial mobile communications has risen dramati-

cally. Implicit in the demand for wireless communication is the need for highly reliable and

affordable service, equally accessible from a variety of environments: urban, suburban, and

rural; indoor and outdoor. In response to these demands, the telecommunications industry

has developed several standards designed to specify delivery of these services to the various

types of regions.

Two types of cellular service have been developed to meet the needs of an increasingly

mobile society: high-tier and low-tier cellular service. High-tier cellular is characterized by

high-power transmitters and macro-cell coverage and is designed for subscribers moving at

vehicular speeds. Low-tier systems feature low-power transmitters and micro-cell coverage

and provide the complementary service to subscribers moving at pedestrian speeds.

There are several high-tier and low-tier standards in place globally. GSM, TDMA, and

CDMA are the common high-tier standards in Europe and North America. They have

met with considerable success in their respective regions of operation. Low-tier standards

have been less widely deployed in the U.S., although the Personal Handyphone System

(PHS) has been well accepted in Japan. Two other low-tier standards, Digital European

Cordless Telecommunications (DECT) and Cordless Telephone second generation (CT2),

have formed the basis for private branch exchange (PBX) products [1].

One final standard, developed in the U.S., is Personal Access Communications Sys-

tem (PACS). A significant portion of the PACS development work was done at Telcordia

Technologies (formerly Bell Communications Research), and some unique technology has
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emerged relating to this standard. Currently, there is extensive work being done to develop

a PACS handset, which boasts a low-overhead burst coherent demodulator and a design

that takes advantage of many of the features of the PACS standard. Development work

in this area is continuing to expand to include not only the hand-held device, but also a

full-service wireless local loop and a third-generation wireless system with wireless LANs.

1.1 Personal Access Communications System (PACS)

PACS is an ANSI standard for 1900 MHz low-tier Personal Communications Systems (PCS)

service. It is characterized by micro-cell coverage, low transmit power, and low complexity,

and is ideal for neighborhood applications, such as indoor wireless, wireless local loop,

and pedestrian venues. It offers several advantages over macro-cell systems. For instance,

PACS equipment is simpler and less costly and operates with a lower delay, and yet is more

robust than indoor systems. Moreover, PACS has demonstrated satisfactory operability

under high-speed vehicular mobility conditions and is well-suited to deliver high capacity,

superior voice quality and ISDN data services. Therefore, PACS is a viable solution to

providing high user density in both indoor and outdoor environments [2].

PACS technology is being developed because it can be combined ideally with the tra-

ditional high-tier services, already in widespread use, for complete wireless service. PACS

is able to provide virtually land-line quality service using radio ports that are simple and

low-cost. With such an affordable and reliable low-tier standard, wireless technology could

easily become a viable alternative to traditional land-line phones. In particular, countries

with under-developed telephone switching systems could avoid costly installations of miles

of wires and switching centers.

Given this motivation for developing PACS technology, providing the best quality at

the fastest rate is a major goal.

1.2 Diversity Selection

In wireless environments, diversity selection becomes an important issue. The ability to

increase the quality of a received signal is essential. There are many techniques that can

be used to achieve this goal. Increasing the power of the transmitted signal, and thereby

increasing the signal-to-noise ratio (SNR), is one approach. In a typical additive white
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Gaussian noise channel, this method is quite effective in its ability to decrease the bit

error rate of the signal. However, practical constraints prevent wireless hand-held systems

from transmitting signals with unlimited power. Therefore, additional methods effective

in reducing error rate must be employed in combination with higher transmit power. For

instance, in a typical multipath fading channel environment, diversity selection has been

shown to improve SNR more efficiently than higher transmit power or additional bandwidth

[1].

In particular, branch diversity selection is often employed to mitigate the effects of

Rayleigh fading. This type of branch selection can be made on the basis of the best signal-

to-noise ratio. Therefore, being able to accurately estimate the SNR on a given channel

is central to this selection method and to the quality of the received signal [3]. Devel-

oping effective methods of diversity selection is crucial to the performance of a wireless

communications system.

We are therefore motivated to study methods that can improve diversity selection. We

describe an efficient method that is easily incorporated into the overall system. Minimizing

additional hardware and computational complexity are major constraints on the overall goal

of improving diversity selection. However, the PACS demodulation algorithm offers several

key features which can be exploited and used to estimate the SNR on a given channel and

ultimately to aid in diversity selection. This thesis studies the demodulation algorithm, its

unique features, and the design of the hardware system and presents results that may offer

insight into developing future methods of diversity selection based on symbol timing.

The following chapters will discuss various aspects of the project and the methods

investigated. Chapter 2 describes the PACS system and establishes the background for the

research described in the following chapters. Chapter 3 states the objective of the thesis

and provides a theoretical discussion of the principles underlying our study. Chapter 4 is

an overview of the design of the models used in the simulations and experiments. Chapter

5 describes the simulation and analysis systems applied to the data in order to provide

a measure of the metrics' ability to accurately estimate SNR and states the results from

these simulations. Finally, Chapter 6 summarizes the overall conclusions from this study,

including recommendations for future work, and gives the author's perspective on further

research and development in this area.
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Chapter 2

Background: System Overview

This chapter presents an overview of the pertinent elements of the PACS system design.

A block diagram of the stages of the demodulation process is shown in Figure 2-1. The

10.7 MHz Bandpass Pae Differential _ Smo

i22 AID to I & Q ' Rcvry Phase Tmn
(atan) sampled symbols

T=3.84MHz Frequency Carrier Differential Received Data

Estmte -fRecovery Decoding

Figure 2-1: Block Diagram of PACS Demodulator

initial portion of the demodulation, in which the baseband signal is converted into phase

information, also plays a crucial role and will be discussed in detail. Following this bandpass-

to-phase portion, the demodulator circuit is then divided into several stages: symbol timing

and frequency estimation, coherent carrier recovery, and differential decoding.

One of the primary motivations for this study is to improve the performance of current

diversity selection techniques. It is desirable to be able to choose a diversity branch early

in the demodulation process, and consequently, the majority of the research will focus

on the bandpass-to-phase portion of the circuit, which precedes the decoding of the signal.

Specifically, the symbol timing and frequency estimation portion of the demodulation circuit

will be the primary focus of this study because many of the intermediate values computed to

perform symbol timing contain information that is correlated with the noise and interference

in the signal and will therefore consider many of the same noise issues relevant to diversity

selection.
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2.1 Modulation

There are a number of issues involved in choosing a modulation technique for wireless

communication. For instance, some of the considerations include intersymbol interference,

spectral efficiency, power spectral efficiency, and out of band power. Quadrature phase shift

keying (QPSK) modulation is often preferred for its greater spectral efficiency. Furthermore,

phase modulation, in general, provides an advantage since amplitude information is more

vulnerable to the fading environments typical of wireless communication systems. The

PACS system uses }-shifted QPSK.

QPSK is a form of quadrature amplitude modulation (QAM), where the transmitted

symbol at time i is zi = e 6i', where the phase variable O takes on one of four equally-spaced

phase values. In 7r/4-shifted QPSK, the set of possible phase values shifts by r/4 at every

time i. In this manner, there is a guaranteed phase change between adjacent symbols, and

the differential phase

Aoi = 62 - Oi-1

is always equal to an odd multiple of 7r/4. In fact, this characteristic will be a significant

feature in the symbol timing circuit design and also in the method being described in this

thesis. Figure 2-2 illustrates the phase constellations of this particular modulation scheme

and the possible phase transitions between two adjacent symbols.

Phase Constellation for pil4-shifted QPSK
z~~ I II

.5 -

1 - -

).5-

).5-

-1 -

1.5 -

Fiu -1e 5 -1 -0P5 h05 1 1.5 

Figure 2-2: Phase Constellation for !!-shifted QPSK
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Furthermore, a i-shifted QPSK modulation scheme offers several other design advan-

tages for wireless systems. For instance, it provides the spectral efficiency of QPSK systems

but with reduced amplitude fluctuations. Furthermore, not only does this method guarantee

phase changes with every symbol, it also avoids phase changes through the complex origin.

Zero-crossings require power amplifiers to maintain linearity across a wide-amplitude range

[5].

2.2 Square-Root-of-Raised- Cosine Nyquist Filtering

The data stream generated by the modulation must then be conveyed as the amplitude

values of a signaling pulse shape, g(t). The design of the pulse shaping signal is determined

by several constraints placed on its performance. The pulse shape should both minimize

intersymbol interference (ISI) and also make the most efficient use of the spectrum of a

band-limited channel. The PACS systems uses a square-root-of-raised-cosine transmit and

receive filters, or pulse shaping signals. It has been shown in [6] that a square-root of raised-

cosine pulse-shaping filter is the optimal choice for both the transmit and receive filters for

minimal ISI and maximum SNR.

Using this method, the symbol sequence {zi} is modulated by quadrature amplitude

modulation (QAM) using a square-root-of-raised-cosine transmit filter with impulse re-

sponse g(t). The transmit signal is

s(t) = R{x(t)ejwt} = Xr(t) cos(wt) - xi(t) sin(wt),

where Xr(t) and xi(t) are the real and imaginary parts of the complex signal

x(t) =zig(t - iT),

{zi} is the complex ir/4-shifted QPSK symbol sequence, g(t) is a real square-root-of-raised-

cosine impulse response, T is the symbol interval in sec, and w is the carrier frequency in

radians/sec.

For this study we will use a simple ideal additive white Gaussian noise (AWGN) channel

13



model. The received signal is simply

r(t) = s(t) + n(t),

where n(t) is AWGN with one-sided power spectral density No.

The receiver is a QAM demodulator using a matched square-root-of-raised-cosine receive

filter g(t). After demodulation to baseband, the received signal is the complex signal

r'(t) = ejoax(t) + n'(t),

where n'(t) is still AWGN with one-sided power spectral density No, and 60 is a phase offset

due to incorrect phase and/or frequency of the demodulating carrier. (It turns out that

in a differential-phase-modulated system the phase offset may be ignored.) The baseband

signal is then filtered in the receive filter and sampled every T sec.

The sample sequence ri is given by

ri = Jr'(t)g(iT - t) dt.

Because g(t) is real and even, this is equivalent to

ri = J r'(t)g(t - iT) dt;

Note that because a square-root-of-raised-cosine filter is square-root-of-Nyquist, the T-

shifted filter responses {g(t - iT)} are orthonormal; therefore

ri = ejo zi + ni,

where x is the transmitted symbol and {ni} is an i.i.d. Gaussian sequence with variance

U2 = No/2 per dimension.

In other words, there is no intersymbol interference and the phase offset 60 comes through

coherently.
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2.3 Bandpass-to-Phase

The bandpass-to-phase portion of the circuit will be emphasized because the majority of

the methods developed in this study will take place in this particular sub-system. From

Figure 2-1, this is the portion that receives the transmitted signal as its input and precedes

the decoding of the signal. A more detailed block diagram of the bandpass-to-phase portion

of the circuit is provided in Figure 2-3.

Lowpass]
Filter

Arctan +
A/D input Bandpass cos(2 n fkT )Lookup - 4

3WFilter 
(ROM) Dea

Lowpass]
Filter

sin(21c fkT)

x +- 20 Accumulations c(OM)
ROM R4M)

Proper Sampling Phase

mahovalue

x 2 -- 20 Accumulations i(OM)
ROM(RM

Figure 2-3: Block Diagram of Bandpass-to-Phase portion of the Circuit

The PACS demodulation algorithm begins with the received continuous signal at an

intermediate frequency of 10.7 MHz. An A/D converter digitizes this signal with a sampling

rate of 3.84 MHz. Because the signal contains frequency components greater than the

Nyquist rate, the sampling causes aliasing in the signal. The resulting sampled signal

appears to be at 820 kHz. Sampling at this smaller frequency can be thought of as down-

conversion using the third harmonic of the sampling frequency, which in effect is a high-side

injection with an associated phase inversion.

At this point, although the signal is at 820 kHz, the remainder of the circuit is clocked

at 960 kHz, resulting in a bulk frequency offset of 140 kHz. This offset is a compromise

resulting from a series of filter design decisions that sought to optimize the filter coefficients

to eliminate the need for multipliers in the digital circuit.1 The performance degradation

'There is some advantage to choosing 3.84 MHz as the sampling frequency because it is easy to create
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this offset causes is negligible and has been confirmed by experiment to be acceptable, and

as shown in Section 2.2, this constant phase offset has no effect on the remaining analysis.

The digitized signal is then passed through a bandpass filter to suppress DC compo-

nents and quantization noise outside the desired passband [2]. The filtered signal is digitally

mixed with sine and cosine carriers at 960 kHz, and two low-pass filters eliminate the double-

frequency components of the in-phase and quadrature (I and Q) components of the received

signal. Using an arctangent function, the I and Q components are translated into phase

information. The difference of the phases of consecutive symbols is taken to obtain the

differential phase. Recall that the !-shifted QPSK modulation scheme employed by the

transmitter ensures that the difference between the phase of two consecutive received sym-

bols is one of four differential phases, t} or ± . The differential phase is then quadrupled

to remove modulation [2]. This quadrupled differential phase is passed to the remainder of

the demodulating circuit.

2.4 Symbol Timing

The symbol timing stage of the circuit plays a critical role in this study. The need for

symbol timing is a result of the fact that the incoming signal is 20x over-sampled and may

experience an unknown delay in transmission. It becomes necessary to choose the correct

sampling phase in order to demodulate the signal reliably. Once the symbol timing portion

of the system has established the proper sampling phase, every twentieth sample is sent to

the remainder of the system to be demodulated.

Symbol timing is achieved by comparing a quality metric that indicates the maximum

average opening of the eye-pattern of the signal at each sample phase; the phase with the

"best" metric is chosen as the proper sampling phase. Figure 2-4 demonstrates what is

meant by average eye opening. When the signal is sampled at the incorrect phase, the eye

diagram will reveal an increasingly smaller opening, corresponding to signal distortion due

to ISI. However, at the correct sampling phase, the eye diagram should reflect the clear

separation of the I and the Q rails. This corresponds to the ideal sampling phase.

This method of selecting the proper sampling phase has demonstrated high performance.

that clock from standard crystal oscillators. 960 kHz is precisely one fourth of the sampling frequency. This
makes it easy to divide the sampling clock to use for the remainder of the circuit.
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Figure 2-4: An eye-diagram: the sampling point that produces the largest eye-opening is

the one closest to the correct sampling phase.

This suggests that this quality metric, or a similar one, may be used to indicate the quality

of the overall signal as well. While the eye separation is an indication of the amount of ISI

(minimal ISI indicates proper sampling phase) distorting the signal, any type of noise can

also distort this eye opening and degrade the system's ability to achieve accurate symbol

timing. Therefore, the quality metric used for symbol timing also inherently includes the

effects of other types of noise. This suggests that this metric may be useful in performing

diversity selection in addition to symbol timing. The desire to increase the efficiency of the

circuit by extracting additional performance from the current hardware and design provides

sufficient motivation to pursue this possibility.

17
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Chapter 3

Objective: Estimating SNR on a

Wireless Channel

We want to develop effective methods to compare the different noise levels of two wireless

channels. There are two types of comparisons that will be useful. One is a relative compari-

son of the noise levels of the two channels for purposes of diversity selection. It is important

to the quality of the signal to receive it over the channel with the least amount of noise and

interference. However, it is also useful to estimate the absolute level of the noise of a given

channel. The PACS standard specifically states that the phone demodulator must be able

to estimate within t3 dB the actual SNR level in the channel over which it is receiving the

signal. It is certainly desirable to be able to guarantee a certain level of quality of service.

For instance if a call cannot be received over a channel with a minimum SNR level, it should

be dropped in order to maximize the system's resources.

3.1 Objective

One of the primary components of the PACS system is the demodulating algorithm. Data

is modulated onto a carrier using '-shifted QPSK modulation with Nyquist square-root

of raised-cosine spectral shaping. The data is then recovered using a low-overhead burst-

coherent demodulation technique. The demodulator has several functions that contribute

to the demodulation. A full description of the system can be found in Chapter 2. Once

again, a key advantage of this implementation is the joint estimation of the symbol timing

phase and the carrier frequency offset, described in Section 2.4. The demodulator also
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employs a diversity selection technique that is based on a quality measure derived as part

of the symbol timing/frequency offset estimation process.

Performing diversity selection as a "consequence" of the symbol timing/frequency off-

set estimation process provides an efficient manner of increasing the performance of the

algorithm; furthermore, simulations have shown that this technique presents performance

advantages over the traditional method of diversity selection based on power and is almost

as effective as diversity selection after channel decoding [1]. The method is founded on the

premise that a channel quality metric derived as part of the algorithm can indicate the

"noisiness" of the channel.

The effectiveness of this method has been verified in both simulations and laboratory

hardware experiments. However, while the utility of this method has been confirmed, its

accuracy has not been adequately determined. Also, only its effectiveness as an indicator

of relative SNR levels between diversity branches or different symbol timing candidates

has been demonstrated; it has not been shown to explicitly convey information about the

absolute level of SNR. Establishing a method of quantitatively estimating SNR in the chan-

nel can provide improvements in both physical-layer signal processing and higher-layer link

management protocols that rely on physical-layer measurements.

The aim of this thesis is to establish the reliability of the quality metric as an indicator

of SNR in a channel and to determine its ability to convey specific information about SNR

levels. Clearly, part of the objective includes selecting the least noisy channel without

incurring heavy costs in terms of additional hardware or computational complexity. In

order to optimize efficiency, emphasis has been placed on seeking methods that might be

able to incorporate the channel selection method into the demodulation by establishing a

clear relationship between SNR and a quantity derived from the demodulation process.

3.2 Experimental Models

All simulations and conclusions in this thesis will assume an additive white Gaussian noise

channel model. This is simulated by adding complex Gaussian noise the input signal. That

is, we let the noise, n = x + iy, where x and y are independent, identically distributed

Gaussian random variables. The variance, o = , of x and y is determined by the
SNR

signal-to-noise (SNR) level in the channel (in dB) as follows: oa = 10- 10 . This complex
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Gaussian noise is added to the transmitted signal and undergoes the same treatment at the

receiver end as the actual signal. The goal of this study is to characterize the effects of this

additive noise on the signal.

Once the channel is characterized and the behavior of the hardware can be simulated

effectively, then it remains to establish several metrics which will indicate the "quality" of

the signal. Our hope is that the signal quality will be directly related to the channel noise.

This is a reasonable expectation, since noise clearly degrades the signal. However, it is

important to note that noise may not be the only factor that affects signal quality. In this

study, it will be assumed that these other effects are either negligible or independent of the

channel noise.

If the noise level can be correlated to the value of a metric, a form of statistical estimation

based on the metric can be established and become the basis of symbol timing selection,

diversity selection, and frequency channel selection and link maintenance. This study will

focus on determining if a metric can be developed that is useful for diversity selection. If

its utility in this respect can be shown, it will be assumed, but not explicitly shown, that

it can also be adopted to perform these other functions.

As described in Section 2.4, the current quality metric is derived from the in-phase and

quadrature components of the transmitted differential phase. This is a likely candidate

because it represents the phase information that is central to the demodulation algorithm

and can be integrated easily into the demodulation process. It also effectively indicates the

average eye opening of the eye-pattern of a burst. Furthermore, if the effectiveness of this

metric can be determined, it may be possible to derive alternative metrics which may offer

greater precision or accuracy.

The following subsections will offer a discussion on the derivation of the metric based

on the in-phase and quadrature components and will provide an explanation as to why this

metric presents itself as a reasonable indicator of noise. The introduction of an alternative

metric will also be made with a brief comparison of the two. A more vigorous comparison

will be given during the analysis and results sections.
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3.2.1 Quality Metrics

Ideally, with no noise present and zero frequency offset from any source, the received dif-

ferential phase multiplied by four yields t7r or ±37r, all of which collapse to ir. That is,

A6O = 4(6i - Oi- 1 ) = (3.1)

Therefore, the quadrupled differential phase provides an absolute ideal phase value, 7r.

Furthermore, the in-phase component is at its maximum magnitude of 1, and there is no

quadrature component.

Noise and residual and bulk frequency offsets cause the actual value to deviate from the

ideal. Recall, the system undergoes a bulk frequency offset of 140 kHz, causing the ideal

phase to actually be: AO = 7r - 4 - 2r - foff - T, where ff f represents the bulk frequency

offset of 140 kHz and T = 3.84 MHz, the sampling period.

Any additional deviation can be thought of as representing the various forms of impair-

ments experienced by the system, such as noise and intersymbol interference. The greater

the noise level, the larger the deviation from the ideal. Assuming an ideal sampling phase

and minimal ISI, the deviations represent only noise and interference other than ISI. How-

ever, the deviation of a single symbol does not provide a precise measure of the noise level

because noise and interference may introduce random errors at any sampling phase. Rather,

it is more accurate to use a block of symbols and to average the error over this block in

order to average out these random errors. Assuming that the channel conditions do not

vary widely over the length of one burst (60 symbols), a burst can be used as a block of

symbols. By accumulating over the center N symbols of a burst, we avoid symbols from

the beginning and the end of each burst which may be affected by the signal ramping up

or ramping down due to the filtering. With a sufficiently large N, where we take N to be

the 47 center symbols in a burst, the "signal-to-impairment" ratio is maximized at the ideal

sampling phase [3].

Note that although this discussion has included the effects of the bulk frequency offset,

in reality the analysis that follows is unaffected by this additional bias. Compensating

for this bulk offset so that we still deal with an ideal differential phase of 7r simplifies the

analysis and has no bearing on the noise since the effects of the random noise and this bulk

offset are separable. Similarly, we can also subtract this bias of -x, so that what remains
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is a zero-mean variable. For this reason, the remainder of the discussions will refer to an

ideal quadrupled differential phase A#, whose ideal value is zero, referring to an unbiased

version of the differential phase, where

Aoi = 4(O6 - i - 1) - 7r. (3.2)

Each A/i is a zero-mean Gaussian with variance 16on where non-adjacent A#'s are in-

dependent. However, adjacent phases are dependent. For example, Ai is correlated with

both Aoi_ 1 and Aqi+1 but independent of any Aq# for any j 5 i - 1, i, ori + 1.

QI

The actual metric, called "Q", is derived from the in-phase and the quadrature components

(the I and the Q) of the phase. Specifically, it is the sum of the in-phase components squared,

added to the sum of the quadrature components squared,

N N

QI = (E sin(Ai ))2 + (E cos(Aoj)) 2  (3.3)
i=1 i=1

which is effectively the squared magnitude of the sum of the N symbols. The QI essentially

represents the cumulative magnitude of the phase deviation and can indicate the "signal-

to-impairment" ratio. The phase of this resultant vector should approximate the average

of the N individual differential phases.

Summing a block of unit length vectors with an ideal phase, AO = 0 would yield a

larger vector pointing in the same direction. This is illustrated in Figure 3-1 (a). However,

noise and residual frequency offset due to differences in the carrier frequency references

between the transmitter and the receiver cause the phases to fluctuate around the "ideal"

phase so that AO' = 0 noise + Ooff, where 0 noise and 9 off represent random errors. Now,

instead of N angles all equal to A#, there is a set of angles {AO1, #'2, --- , AOM}, where

the elements are uncorrelated random variables. However, the resultant vector sum over a

block of N symbols could be viewed as approximating the "average" of these vectors, as

shown in Figure 3-1 (b).

The sampling phase with the largest magnitude would signal the most accurate phase.

Indeed, it has been observed and demonstrated in simulations, that there is an increasing
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(a) (b)

Figure 3-1: (a) Ideal Phases: Vectors line up perfectly. (b) When the individual phases

vary, the resultant vector has a phase that is the "average" of the composite phases.

monotonic relationship between SNR and the magnitude of QI. This result suggests that

some significant relationship may exist between the two factors, and that the QI may be

used as an estimator of SNR level. However, as the SNR becomes large, this best QI will

approach a fixed value of N, so QI may not be a very sensitive indicator of SNR when the

SNR is large. We will therefore investigate another quality metric which may be a more

sensitive indicator of SNR.

Differential Phase

It may also be possible to reveal a useful correlation between SNR and the differential phase

error itself. Ideally, the quadrupled phases will always wrap around to ir . Any deviation

from 7r will be due to channel noise, ISI, or quantization noise. ISI and quantization noise are

negligible at the correct sampling phase and can be ignored for the present time, although

it is important to note that their contribution may still be non-trivial. A second metric, the

differential phase error (DP), can be defined as variance of the deviation of the quadrupled

differential phase from 7r.

N

DP= Ap. (3.4)
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The smallest error indicates the phase closest to the correct sampling phase. An illustration

of the differential phase variance is given in Figure 3.2.1.

Figure 3-2: Differential Phase - measure the deviation from the ideal A#= 0

QI and DP are similar since the QI represents the two rectangular coordinates of the

differential phase. The relationship between differential phase and SNR resembles the one

described above for QI; in fact, it is the inverse. Therefore, it appears reasonable to compare

the performance of these two metrics. They have a similar relationship to SNR and represent

similar information in two different forms. QI is already in place as a quality metric in the

current design of the demodulator; however, if DP is shown to offer performance advantages,

the additional computation will be minimal, particularly since the calculation of QI and the

calculation of DP have significant overlap.

In fact, there is reason to believe that DP may be a better measure of the noise. As

SNR levels get larger, the ability of the QI metric to distinguish between levels weakens.

The averaging effects of the vector summation will cause some loss of sensitivity. At close

SNR levels, a direct representation of the differential phase itself may be able to yield finer

distinctions.
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3.3 Phase Jitter

Both QI and DP are dependent on the amount the differential phase of two adjacent symbols

deviates from some "ideal" phase. This deviation of the quadrupled differential phase from

ir is called the "phase jitter" and can be considered to be due to perturbations in the system.

Specifically, DP measures the variance of that "jitter". The mean of DP is expected

to be zero, that is zero "jitter" from the ideal phase. The smaller the variance, the less

disturbance the signal is assumed to undergo. Similarly, QI measures the projection of the

phase angle onto the real axis. Therefore, larger values of QI indicate a phase closer to the

ideal phase, or small "jitter", and corresponds to lower noise levels.

Given these relationships, it is clearly advantageous to be able to approximate what the

expected variations will be. These calculations will confirm the real data collected through

the modeled channel. If the two sets of data do match, that will verify the model and also

provide a means on which to base an estimation technique to determine the noise levels.

3.3.1 Approximations to the Probability Distribution of the Phase Dis-

turbance

The detection method being developed in this study is based purely on signal phase informa-

tion and employs maximum likelihood detection based on the signal phase in the presence

of noise. The model approximates the combined effects of ISI, noise, and interference as a

Gaussian process and aims to measure the phase disturbance of the signal due to different

levels of interference. It is known that such a phase disturbance of a received waveform in

complex Gaussian noise has a probability density function (pdf) given by:

1- 1O -0os 22
p(0) = re (1 + 1ry cose cos20 1)Je 2 dx) (3.5)

SNR
where -y is the SNR per symbol ( = = 10 10 ) [7]. Figure 3-3 displays p(O) for several

values of -y. Clearly, as -y increases, corresponding to increasing SNR, p(O) becomes narrower

and more peaked about 0 = 0. This represents a phase "jitter" that approaches zero as

SNR increases. This also corresponds to the discussion above, where the variance of DP,

around its mean of zero, decreases as SNR increases.

Although the distribution of 0 is given in its exact form in Equation 3.5, it is clumsy and
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Probability Distribution of Phase Jitter
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Figure 3-3: Probability density of p(9) for -y = 1, 5, 15, 20 dB

difficult to manipulate in calculations. However, we can see that when SNR is large and 0 is

small, 9 is approximately just the quadrature noise component, which is a Gaussian variable

of mean zero and variance 1. Figure 3-4 illustrates that p(6) is well approximated by a

zero-mean Gaussian with variance n for SNR values of 10 dB and higher. The analysis2

in the following section will evaluate how QI and DP are expected to be affected by noise

given by this approximation in the specified range of SNR levels.
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Figure 3-4: Probability density of p(O) of phase error 0 due to additive noise and its ap-

proximation function K(0,')

3.3.2 Expected Results

Based on the Gaussian noise-ISI-interference approximation model, it is possible to derive

a set of expected results for both QI and DP. Recall that QI is defined as

N N

QI = (Z sin(Aoi)) 2 + (1 cos(A0,)) 2

i=1 i=1

where each Aoi = 4(6i - Oi-1) - 7r and Oji and 0 i2 each has a probability distribution as

given in Equation 3.5. For higher SNR levels, it has been shown that 0, the deviation of

the phase from the ideal is small and has a distribution that approximates a zero-mean

Gaussian with variance Z. Consequently, Ai, being the scaled sum of two Gaussian ran-

dom variables, is also another Gaussian random variable with mean zero and variance 16o0.
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Furthermore, because A# is expected to be small for higher levels of SNR, sin(Aosmaui) can

be approximated as /\smau and cos(Aqsmaui) can be approximated as (1 - A"). This

yields the following approximation for QI, given and SNR level greater than 10dB:

N N A0 2

Q A) 2 + (Z (1 - i ))2. (3.6)
i=1 i=1

QI can be viewed as a random variable, and the calculations of both its mean and its

variance can be greatly simplified using the approximations derived above.

From Equation 3.6, the expected value of QI (E[QI]) is

N N Ao 2

E[QI] = E[(Z Aq,) 2 + (1(1 - %)2]
i=1 i=1

= N 2 - (N 2 - 1)(16U) + 1(N2 + 3N - 1)(16U) 2  (3.7)

and the variance of QI is given by

var(QI) = E[(QI) 2 ] - E 2[QI]

= (3N 3 + N+ N - 4)(16un)2+ (-5N3 - 23N 2 + 11N + 20)(1622)3

1
+ -(9N 3 + 82N 2 + 99N - 208)(16 n)416

(3.8)

The second-order statistics for DP follow a similar derivation. Recall,

N

DP = Z(A~i -

Once again, A# is zero-mean Gaussian; therefore, DP = Z' 1 Ao? and E[DP] can be given

as

N

E[DP] = E[Z Ao?]

= 16Nor (3.9)
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and the variance of DP is given by

var(DP) = E[(DP) 2] - E 2 [DP]

N

= E[(Z A02) 2 ] - (16No-2) 2

i=1

= (3N - 1)(16o-2)2 (3.10)

These are the expected results for QI and DP. It will be demonstrated in Chapter 5 that

these match closely with the actual results, within this range of interference, confirming

the Gaussian approximation to Equation 3.5. Using these values, it is possible to detect

maximum likelihood SNR level present in the channel, for SNR levels of 10 dB and higher.

Unfortunately, similar results for smaller SNR levels is not available.
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Chapter 4

Experiments

Quantitative data can confirm the theoretical results developed in Chapter 3. For the

purposes of analysis, it is preferable to avoid complications that may occur from generating

and using a data set taken from an actual handset. Rather, data generated from simulations

in a controlled environment can be analyzed and used to develop a reasonable model which

can be extrapolated to approximate real behavior. Therefore, it is important to develop

experiments that accurately reflect the behavior of a real-time system and that consider

the major issues that will impact the real data. The following chapter will describe the

development of such an experiment and will also discuss some of the simplifications and

modifications made in order to aid analysis of the data.

4.1 Design of The Experiment

The design of the approach used to study the observed behavior of the metrics in the

demodulating algorithm was based on the assumptions and analytical results detailed in

Chapter 3 and can be divided into two levels. The first level is the simulation of the

hardware and the modeling of the Gaussian channel to generate data. The second level is

an analysis system to characterize the data using many probabilistic concepts and taking

advantage of the forms of many random variables which can be reasonably presumed from

the discussions in previous chapters.

Simulations of the system behavior at the hardware level were designed in Matlab. In

this way, a random sequence can be generated to create a signal similar to one that would

be transmitted under ideal conditions; complex additive white Gaussian noise is added to
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simulate how the signal would be distorted under an actual channel, according to our model.

The signal then undergoes demodulation according to the PACS algorithm. The I and the

Q information is extracted at the end of the bandpass-to-phase portion of the circuit, and

QI and DP are calculated. If a large set of QI and DP samples are collected for various

channel conditions, then statistical analysis can be performed on the data characterize the

expected behavior of the metrics.

4.2 Hardware Simulations

The first level of the experiments involves simulating the hardware implementation of the

PACS system to generate a data set to use for further analysis. Essentially, this behavior

follows that described by Figure 2-3 and in Section 2.3. A copy of the Matlab file that

implements this procedure can be found in Appendix A.

The demodulator expects to receive an input signal that has been encoded by the trans-

mitter with a !-shifted QPSK modulation scheme and that has experienced a random

amount of interference in the channel. To simulate the transmitter, a random differential

phase sequence is generated and used to derive the actual phases for a random encoded

signal. This sequence is altered to resemble a 20x oversampled signal, as specified by the

PACS transmitter design. Typically, the transmitter will filter the signal with a square-root

of raised-cosine shaping filter to help reduce ISI. Once the signal has been transmitted,

additive white Gaussian noise is added to simulate signal distortion under an actual chan-

nel. A square-root of raised-cosine receive filter identical to the transmit filter shapes the

incoming signal in an attempt to remove some of the noise and to reduce ISI. The signal is

then down-sampled to 820kHz and mixed with sine and cosine functions to generate the I

and the Q rails. These are then translated into phase information via inverse tangent func-

tions and differenced to retrieve the differential phase information. The differential phase

is quadrupled to remove modulation, and at that point, the simulations will diverge from

demodulation and begin to generate the metrics of interest.

Equation 3.6 describes how the QI metric will be constructed. Recall that the signal

is 20x oversampled. Therefore, a QI value must be calculated for each of the 20 different

sampling phases. Once all twenty QI values have been calculated, the phase with the highest

QI value is chosen, and that index represents the proper sampling phase. The same will be
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done for the DP metric at each of the twenty sampling phases. However, in the DP case,

the smallest of the twenty values is chosen to represent the metric.

4.2.1 Issues and Modifications to the Model

It is important to note that while these simulations attempt to accurately reflect what hap-

pens in the hardware, simplifications to the actual logic design included several quantization

steps. For instance, lower order bits were often truncated, and transcendental and algebraic

functions were performed using look-up tables with fixed-length outputs. Extensive testing

has been performed to determine what level of quantization yields acceptable results with

minimum degradation in probability of symbol error as a function of SNR. However, the

non-linear nature of such simplifications complicates analysis of the underlying algorithms.

Therefore, for the purposes of this study, "unquantized" simulations have been used. That

is, all look-up tables are eliminated and replaced with full machine-floating point accuracy

for all variables. Although the data will not reflect the actual values produced by the

hardware, the analysis presented here will nonetheless provide important insight into how

the signals are affected by channel noise. These results can be adopted to account for the

quantization effects ignored here.

4.3 Establishing a Data Set

Following the method described Section 4.2, it is possible to derive a QI and a DP value

for a particular signal. However, data from a large number of trials is needed to be able

to develop a statistical characterization of the metrics. Therefore, random data will be

gathered through Monte Carlo simulations under various channel conditions. Specifically,

SNR levels of 0 dB to 30 dB will be simulated with 0.5 dB increments; 1000 bursts, each

60 symbols in length, will be run through the simulated demodulator at each SNR level.

Given a large enough set of simulations, the data collected will represent a random set

whose average behavior should approximate the metric's distribution.

4.4 Statistical Analysis of Data

The second level of the experiments is to devise a method to analyze the results drawn from

the experiments described above. One of the first things to investigate is the general rela-
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tionship between the metrics and SNR. The most immediate observation is the monotonic

relationship between the QI and the SNR levels. This relationship is illustrated in Figure

4-1. QI increases with increasing SNR; this suggests that a low QI implies a low SNR.

DP exhibits similar behavior, with an inverse relationship to SNR, as expected. It is clear

that the effects of noise do, indeed, reduce the demodulator's ability to extract the correct

symbol timing phase and will directly impact the value of the metrics' as measures of the

channel noise. The important question, however, is how high is the correlation between

channel noise and the metrics and which of the two metrics is more closely correlated to

SNR. Once that is determined, it will remain to evaluate how that metric can be used to

convey additional information about the channel noise.

Mean QI Mean DP
104 10,

10 

-

10

co-

SNR(dB) SNR(dB)

Figure 4-1: Plot of Mean QI and Mean DP Values over SNR levels from OdB to 30dB

Furthermore, it is pertinent to use the simulated data to verify the models developed in

previous chapters. As detailed in Chapter 3, the expected phase jitter can be modeled as

having a Gaussian distribution for SNR levels greater than 10 dB. Section 3.3.2 derives the

expected results for both the QI and the DP using this approximation. Verifying that the

simulated and the expected results match will confirm the model and the results.

4.4.1 Deriving Distributions and Goodness-of-fit Testing

Once a relationship between the metrics and SNR has been established and their expected

behavior has been verified, further characterization of the metrics is possible. The second-
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order statistics discussed in Section

probability densities of the metrics

function in Matlab, it is possible to

to plot a bar graph representing the

this binning is shown in Figure 4-2.
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Using this data, it is possible to test for particular
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Figure 4-2: Sample Histograms of QI (a) and DP (b) samples at SNR = 15 dB

distributions.

Goodness-of-fit testing methods have been developed to provide a means to confirm the

suspected distribution of a particular random variable. Both QI and DP can be treated as

random variables with some unknown distribution. The Monte Carlo simulations provide

us with observations of the the metrics at particular SNR levels. The means and the

variances can be calculated empirically, and goodness-of-fit testing can be used to confirm

a distribution using these second-order statistics. [9] documents the method of testing

followed in this study. Using the binning information derived from the hist function, it is

possible use these methods to test for particular distributions.

Accurately characterizing the distributions of the metrics is crucial to continuing statisti-

cal analysis on the data. Knowing the distribution of the metric, there are many well-defined

methods of estimating SNR from a given QI or DP value that can be applied. For instance,

if the distribution is unimodal, then we can use maximum likelihood estimation techniques

to formulate a mapping between SNR levels and particular metric values.
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4.4.2 Discriminating Between SNR Levels

Finally, a measure of a metrics' ability to successfully discriminate between two different

SNR levels is difficult to capture. From the sections above, we know that we can calculate

the mean and standard deviation of each metric as a function of SNR. For a given SNR

level, we can define the expected range of that metric to be its mean plus or minus one

standard deviation. This should represent the range in which the majority of the probability

density falls; that is, it represents the most likely values the metric will take on given that

the channel conditions are as defined by the particular SNR level.

In this way, two SNR levels are "distinguishable" if their expected ranges do not over-

lap. The distance between distinguishable SNR levels will vary for each metric. Clearly,

one metric is better than the other if it distinguishes between two SNR levels that are

indistinguishable by the other.

Evaluating the metrics in this manner makes some statement on its ability to perform

diversity selection. If the expected ranges are too large, the ability to discriminate between

nearby SNR levels is hampered. Likewise, if the means at different SNR levels are too

similar, this may also inhibit the metrics' ability to distinguish between levels. Therefore,

a metric with distinct means for each SNR level and small variances will exhibit a greater

ability to perform diversity selection.
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Chapter 5

Results

Following the methods described in Chapter 4, a set of random QI and DP data was estab-

lished at 61 different SNR levels (for SNR=0 dB to SNR=30 dB with 0.5 dB increments).

Statistical analysis was performed on the data, and the results are presented in this chapter.

This presentation will include a characterization of the data, where the possible probability

distribution of the metrics are discussed. If a suitable distribution can be verified, the met-

ric will undergo further analysis according to the experiments detailed in Section 4.4. For

instance, it will be shown how the data can be used to derive information about the SNR

level given certain assumptions. Finally, a treatment of the expected performance of these

metrics will be offered. The following chapter will discuss some conclusions based on these

results and propose several suggestions and possibilities for further or future work in this

area.

5.1 Q1

The simplest way to begin a classification of the distribution of QI is to calculate the em-

pirical means and standard deviations of the metric at particular SNR levels. This is easily

done in Matlab using the test vectors generated by the Monte Carlo hardware simulations

described in Chapter 4. Plots of the calculated means and the calculated variances of QI

against a log scale of the dB levels at which they were measured is shown in Figure 5-1.

Several things are observable from these plots. One is the monotonic relationship between

the expected QI and the SNR level in the channel. It is clear that the effects of noise do, in-

deed, affect QI values in a distinct relationship, and does thereby, reduce the demodulator's
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Figure 5-1: Plot of Mean Q1 Values and its Standard Deviation over SNR levels from 0dB
to 30dB

ability to extract the correct symbol timing phase. It is also notable that the QI begins to

saturate after a certain SNR level, leading to the belief that a certain amount of degradation

occurs from ISI, and not inherently from other sources of noise. These are not effects that

were considered as significant in the channel model, and therefore are not included in the

analysis. However, they clearly have a role in affecting QI. These effects may reduce the

power of the proposed methods in this study, and that degradation in performance will be

addressed in the conclusion.

From these plots, it is hoped that QI can be shown to have a direct relationship to SNR,

whereby a QI value can give reliable information on the SNR level present on the channel.

Note that what is shown in the plots in Figure 5-1 are QI values given a particular SNR level.

These correspond to the distribution calculated in Chapter 3. Figure 5-2 demonstrates that

the compiled data matches the expected results calculated in Section 3.3.2. Although the

curves are not exact matches, they do, indeed, approximate each other. From this, the

results derived in Chapter 3 can be considered valid approximations for the range of SNR

levels specified.
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Figure 5-2: (a) Mean QI vs. E[QI] (b) Calculated vs. Derived Variance of QI The solid

line represents the measured means and variances of QI's for 1000 different simulations at
SNR levels 10dB and higher. The dotted lines are the curves given by Equation 3.7 and

Equation 3.8.

5.1.1 Goodness-of-Fit Testing

From the discussion above, a partial characterization of p(QIISNR) can be derived from the

random data sets. Furthermore, Section 3.3.2 derives QI as a combination of A# 4 and A# 2 ,

where the A#'s each have a Gaussian distribution. The higher order terms make it difficult

to characterize QI in a form suitable for further statistical analysis. This is unfortunate

because without full knowledge of the form of the distribution, it is difficult to evaluate the

expected behavior of the metric.

Some goodness-to-fit testing was done to determine if the combined effects of the compo-

nents of QI might approximate a Normal or a gamma distribution. QI failed both goodness-

to-fit tests. Therefore, it is difficult to use analytical methods to form an estimate of SNR

from QI. It is possible to continue running Monte Carlo simulations and to form a numerical

model of the behavior. However, these will necessarily be subject to the data observed and

will rely on the simulations of the models. Hence, although it is not possible to continue

with a vigorous statistical analysis, its ability to discriminate between two channels should

still be verified. Confirming its reliability in this sense continues to be important, as this is

the metric currently used in the system to perform diversity selection. If its reliability can

be established, using numerical methods to continue to characterize QI would be a feasible
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as the next step.

5.1.2 Ability to Discriminate Between SNR Levels

As described in Section 4.4.2, the ability of a metric to discriminate between different SNR

levels is measured by the range of values over which the metric will most likely take on values.

The tighter the range, the greater the metric's ability to distinguish between different SNR

levels. Figure 5-3 shows a plot of the means of QI with error bars indicating a range of plus

or minus one standard deviation. From the figure, it is apparent that the QI's ability to

Plot of the Mean of QI with Errorbars
2500

2000 -

1500

E

1000-

500

-5 0 5 10 15 20 25 5
SNR (dB)

Figure 5-3: Mean QI values with Error Bars to indicate plus or minus one Standard Devi-
ation

discriminate between adjacent SNR levels is pretty low, but the average distance between

distinguishable levels is about 3.7 dB.

Figure 5-4 offers a closer view of the ranges, and demonstrates what is meant by "distin-

guishable" SNR levels by marking some sample distances between distinctly separated SNR

levels. Note that from 0 dB to about 5 dB, the SNR levels are virtually indistinguishable

from one another. The ranges are almost identical, implying that QI cannot distinguish

in any way between those SNR levels. Figure 5-4 (a) shows that the next distinguishable

SNR level from any of these is approximately 9 dB. The inability to discriminate between

these lower SNR levels may degrade the performance of QI. However, the argument can be

made that there is little advantage in accurately distinguishing between SNR levels this low.
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Signal quality will be poor enough that the user may not perceive an improvement even if

the stronger channel is reliably chose. Accurate diversity selection is more important when

choosing between a poor to moderate SNR levels and one that can clearly offer a better

quality signal. Figure 5-4 (b) demonstrates that from about 7 dB, shortly after the Mean QI

curve begins to increase, the distance to the next distinguishable level is only 3 dB. At more

intermediate SNR levels, the distance becomes even smaller, indicating that performance

improves in the band of interest. For instance, Figure 5-4 (c), QI can distinguish between

SNR levels as close as 14 dB and 16.5 dB.

5.2 DP

Section 3.2.1 introduced a new metric defined by the mean-squared variance of the quadru-

pled differential phase of the signal. This differential phase metric, or DP, is premised on

many of the same concepts as the ones from which QI was drawn. Therefore, if QI was an

accurate metric to use in symbol timing, DP promises to demonstrate similar performance.

However, where QI was not able to provide easy access to an estimate of SNR, DP may be

more robust in this sense.

Once again, analysis of this metric begins with a classification of the distribution by

calculating the empirical means and standard deviations of the metric at particular SNR

levels. Figure 5-5 depicts plots of the calculated means and the calculated variances of

DP against a log scale of the dB levels at which they were measured. Similar to the QI

metric, DP has a monotonic relationship between its expected value and the SNR level

in the channel, and once again, the metric begins to saturate at higher SNR levels. This

is consistent with the idea that some amount of the expected degradation comes from

interference sources not included in the model. Figure 5-7 presents a comparison of the

empirically determined second-order statistics for QI versus DP. Furthermore, these values

seem to correspond well to the approximations shown in Chapter 3. Figure 5-6 illustrates

that the empirical results (solid line) follow the analytically derived results (dotted line)

well.

Figures 5-7(c) and 5-7(d) illustrate the normalized variance of the metrics, that is the

variance normalized by the mean at that particular SNR value. The means demonstrate

similar behavior, implying that DP should also offer similar performance. However, from
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the plots of the variances, it is interesting to note that the normalized variances of DP are

significantly smaller than that of QI. This implies that the DP metric may prove to offer

greater sensitivity to the effects of noise. If the DP metric varies less greatly, it's expected

value offers a more reliable estimate of the actual results.

5.2.1 Goodness-of-fit Testing

As described in Section 4.4.1, goodness-of-fit testing can verify if a particular variable

exhibits behavior that can be characterized by a given probability distribution. In the QI

case, we were not able to successfully characterize the distribution. However, DP may offer

a simpler analysis than QI, allowing more extensive verification of its utility and a more

robust tabulation of it's results. For instance, Section 3.3.2 derives QI as a combination

of A# 4 and A0 2 , where the A#'s have Gaussian distributions. This does not imply any

common probability distribution form. However, DP is a combination of AO#2 . This is

a simpler distribution to estimate. A combination of squared Gaussians imply a gamma

distribution, given as

a-1e-

PX(X) = , (5.1)
(a - 1)!ba

where E[x] = ab and a = ab2 . Using the calculated means and variances of DP, it is

easy to solve for the parameters a and b. Performing goodness-of-fit testing on the DP

data verifies that it is distributed according to a gamma distribution. Figure 5-8 depicts a

sample histogram of a set of 1000 random DP data points generated at 15dB SNR. From

the figure, it can be seen that the distribution of DP resembles a gamma distribution.

From this analysis, we see that DP can be characterized by a distribution with a known

form. It is possible to take advantage of the behavior of this form and perform further

statistical analysis on the metric. In this manner, we can obtain a concrete model for the

expected behavior of the metric. With knowledge of the expected behavior, it is a matter

of inverting this relationship to be able to form an estimate of SNR given an observation of

DP.
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5.2.2 Ability to Discriminate Between SNR Levels

Similar to the analysis described in Section 5.1.2, DP can be evaluated for its ability to

discriminate between SNR levels. Figure 5-9 shows a plot of the means of DP with error

bars indicating a range of plus or minus one standard deviation. This is analogous to Figure

5-9, and this section will both describe the findings on DP's average ability to discriminate

between SNR levels and also compare this performance to that of QI described in Section

5.1.2.

On average, DP can distinguish between SNR levels separated by approximately 3.5 dB.

This is very similar to the results derived for QI. Again, Figure 5-10

offers a closer view of the ranges to offer some perspective on its ability to distinguish

between SNR levels. Once again, the ranges are virtually indistinguishable from 0 dB to

about 4 dB. This is slightly better than the QI performance observed, but not significantly

better. However, once again, the argument can be made that these lower SNR levels are

less critical than higher ones. Figure 5-10 (a) shows that the next distinguishable SNR level

is approximately 8.5 dB. Again, this is only slightly better than the first distinguishable

level for the QI. Once we get beyond the lower SNR levels, the performance improves. For

instance, in Figure 5-10 (b), the DP can distinguish between 5.5 dB and 9 dB. At more

intermediate levels of SNR, it can successfully distinguish between 14 dB and 16.5 dB. This

last result is identical to that of QI at the same SNR levels. QI and DP do not seem to

differ much in their ability to discriminate between SNR levels.

5.3 SNR Discrimination

It was originally postulated that DP would be able to offer greater sensitivity to the per-

turbations to the differential phase caused by the noise. It has been shown in the above

sections that this is not the case. In fact, QI and DP exhibit approximately the same ability

to discriminate between SNR levels. A possible explanation of this can be found in looking

at the expected results derived in Chapter 3.

Defining a quantity, D, as the ratio of the mean expected perturbation of the metric

from its ideal (QI = N 2 = 2209, DP = 0) to the standard deviation of that perturbation.

Using the expected results from Section 3.3.2 and assuming large N and large SNR, it can

be shown that D approaches . Note that because we are assuming large SNR, the terms
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including higher orders of a, drop out of the ratio and simplify the computation.

In other words, for QI this would be:

_ (2209 - E[QI|SNR])
DQI|SN R - std(QI|SNR)

N 2 (16oU)
3N3((16o )2

Similarly, for DP this would be:

E[DPISNR]
DDP|SNR =std(DPISNR)

16Nou

(3N - (1602

16No-

3N(16o) 2

Clearly, the performance of QI and DP are expected to be very similar. They do

not demonstrate remarkable differences in their ability to detect perturbations from their

ideal values. Instead, they appear to offer very similar expected results. Of course, these

approximations are only valid for high SNR, and furthermore, the approximations derived

in Section 3.3.2 were also only valid for SNR levels of 10 dB and higher. For lower order

SNR, the ability of one metric to discriminate between SNR levels may be higher, but there

is no numerical mechanism by which we can measure that. Instead, we will rely on the

results of simulations to evaluate their ability at lower SNR levels.
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Figure 5-4: Sample Distances Between Distinguishable SNR levels for QI metric

44

600

(a)

0 dB to 9 dB

500

400-

300

200-

100-

E

2000

1500

9dB
C

E

0

1000

0 5
SNR (dB)

10
500'

1' 20

1200

1000

800

600

400

200

5
C

E

4 dB
. .

-

-

2

2.5 dB



Mean DP
10"

102

CO

E 101

10 -
0

SNR (dB)

103

S102

10

10 2

10O

Variance of DP

10
SNR (dB)

Figure 5-5: Plot of Mean DP Values and its Variance over SNR levels from OdB to 30dB

Measured vs. Derived Mean DP

20
SNR (dB)

30

Variance of DP

10 1s 20 25 30
SNR (dB)

Figure 5-6: The solid line represents the calculated means and variances of DP's for 1000
different simulations at SNR levels 10dB and higher. The dotted lines are the curves given

by Equation 3.9 and Equation 3.10. (a) Mean DP vs. E[DP] (b) Calculated vs. Derived

Variance of DP

45

20 30

102

10'

100

LU

10-1-
10

-Z
C'S

as

rx-
P,



Mean Qi Normalized Variance of QI
'('10 2

0

U

0
CO
C 10
0

100
N

0-
C IA

10

CO

10 -
C0

)
0

M~ 3
C 10
0

C

a)
E

10 2-
0

300 10 20
SNR (dB)

(b)

CO)

0)
0

CZ
0

0

N

C

0 10 20
SNR (dB)

(ac e
Normalized Variance of DIP

0 10 20
SNR (dB)

(d)

Figure 5-7: Second-order statistics of QI versus DP.

46

10 20 30
SNR (dB)

(a)
Mean DP

103

0I)
0)

C

0

C

a)
E

30

30

1



250

200-

5150-
0

100-

50-

Sample Distribution of DP at SNR = 15dB

0'
5 10 15 20 25 30 35 40 45 50 55

DP

Figure 5-8: Sample Distribution of 1000 DP data points at 15dB SNR.

-5 0 5 10 15 20 25 30 35

Figure 5-9: Mean QI values with Error Bars to indicate plus or minus one Standard Devi-
ation

47



(a)
0 dB to 8.5 dB

70

(c)
14 dB to 16.5 dB

60-

50*
CL
040-
C:

U) 30E

20

01
120 5 10

SNR(dB)
14 16 18 20

SNR (dB)

5.5 dB to 9 dB

4 6 8 10 12
SNR (dB)

(b)

6-

5-

4

3-0

E
2

1 .

0-
24

26 dB to 30 dB

26 28 30 32
SNR (dB)

(d)

Figure 5-10: Sample Distances Between Distinguishable SNR levels for QI metric

48

a

Ca
a)
E

70

140

120

100
C:
a)
E 80

60

40

10F



Chapter 6

Conclusion

6.1 Summary

This thesis proposed to investigate a method of estimating the signal-to-noise ratio on

a wireless channel for the purposes of performing diversity selection. It aimed to do so

within the context of the PACS demodulating circuit and to take advantage of the features

of the system so as to minimize the additional complexity these methods would apply.

The previous chapters provide a description of the PACS system, a justification for the

metrics chosen and details their relationship to noise, a description of the simulations and

models used to test and verify these proposals, and a summary of the results. The method

studied involved simulating the hardware, observing controlled outputs, and characterizing

the statistical behavior of particular outputs. Specifically, two metrics derived from the

symbol timing portion of the demodulator circuit, the QI and the DP, were proposed as

two plausible candidates to be used for performing diversity selection because of the close

relationship between their behavior and the noise level on the channel.

Chapter 4 describes the steps that lead up to developing a maximum likelihood estima-

tion method for the SNR level in a channel given a particular observation of either DP or

QI. We took both an analytical and a numerical approach, and the results are presented

in Chapter 5. They demonstrate the correlation between the expected results derived from

the analytical models to the empirical results computed from simulated data. From this, we

propose that it is possible to form a maximum likelihood estimate of the noise on the chan-

nel. Through numerical methods similar to those used in this study, it is clearly possible to

form an estimation scheme. In some cases, it is more difficult to confirm this analytically,

49



and some of these issues will be discussed in the next section when we address possible

methods that can be applied but were not included within the scope of this thesis.

We also use the data to evaluate the metrics' ability to accurately discriminate between

SNR levels, which returns to the ultimate purpose of performing diversity selection. Two

metrics were chosen and a comparison was done in the hopes that one metric would demon-

strate better performance than the other. There is some intuitive justification for presuming

that DP may offer greater sensitivity than QI. QI is a representation of the projection of

a unit length vector with some phase onto the real axis. Clearly, if one were to compare

two QI values, if the phases of the two vectors were very close but still distinct, it may be

possible, at large enough SNR values, that the projection would not be sensitive to these

slight differences. DP, on the other hand, is a direct measure of the phase angle. This

suggests that DP would be a better discirminator. However, the results show that, indeed,

it is only slightly better, and for the most part, cannot offer any significant advantage over

QI.

However, that is not to say that integrating DP into the system will not offer other

advantages to QI. DP does have the disadvantage that in order to calculate it, we require

its mean to be calculated by the system. This may create minor delay in the computation

of the metric and raise issues in having to store a block of intermediate values. However,

one advantage that came out of the analysis shows that DP is easily characterized into a

known probability density, namely a gamma. It has passed goodness-of-fit testing for a

gamma distribution, whereas the QI could not be fitted to any common. In that sense, a

model using QI can only be numerically formed. While this is generally reliable, it is not

possible to confirm it with any analytical results. The following section summarizes some

future work that could be done to continue the analysis done in this study. Included in this

address will be some numerical and statistical methods for evaluating the nature of QI and

DP further.

6.2 Future Work

6.2.1 Possible Numerical Methods

As discussed above, an analytical model cannot be easily applied to the evaluation of QI

without any first-order knowledge of its distribution. Instead, we must rely on numerical
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methods and simulation if we hope to be able to form some one-to-one relationship between

QI and SNR. The observed data can be collected at a given SNR level. The distribution

of the data represents the probability density distribution of the QI conditioned on SNR if

taken over a large number of samples.

If the distribution is unimodal, which is a characteristic we observed in Section 5.1.1,

then the most likely value of QI given a particular SNR level is easily identified as the peak

of the distribution. Naturally, using discrete samples to approximate a distribution requires

some binning, and therefore, the peak will, in reality, be associated with a range of QI

values. Taking the center of this bin as the absolute value associated with the particular

SNR level naturally introduces some error into the approximation, but given small enough

bins, it may have only a nominal effect. Running Monte Carlo simulation of the system at

different SNR levels will result in a collection of QI values, each associated with a particular

SNR. Using these tabulated results, it is then possible to match an observed QI value with

its most likely associated SNR level.

6.2.2 Possible Analytical Methods

However, if a relationship between a metric and SNR can be established, as is the case with

DP, and its expected behavior has been verified, further characterization of the metrics

is possible. The second-order statistics discussed in Section 3.3.2 and Section 4.4 help to

derive and verify the probability densities of the metrics conditioned on a given SNR level.

However, QI is the parameter actually observed and measured, and the distribution

being verified is really p(QIISNR) Ultimately, some relationship must be drawn that will

lead to the ability to estimate SNR levels given a QI.

Since the distribution of QI conditioned on SNR can be approximated by the data, only

the a priori density of SNR needs to be assumed before the joint probability density of QI

and SNR can be estimated. Once the joint pdf has been calculated, over quantized levels

of SNR and QI, the density of SNR conditioned on QI is given by a simple instantiation of

Bayes' Rule.

p 1Yy(XIY) = p' '(XY) (6.1)
Py (Y)

This line of analysis was not pursued in this study because the nature of the a priori
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probabilities is difficult to characterize. However, given enough information about the design

of the system and the statistical specifications of the receive, it may be possible to formulate

a reasonable model of the behavior of SNR on the channel. From this, the Bayesian analysis

described above would be extremely helpful in developing an exact estimation technique for

SNR on the channel.

6.3 Concluding Remarks

This study aimed to develop an effective method of estimating SNR given an observation of

a metric produced by the system. It was originally hoped that the QI, already in place as a

symbol timing metric, might be able to offer this function. Although the analysis of QI did

not yield promising results, they did provide some interesting insight into its dependence

on the SNR levels of the channel, the algorithm, and the model developed to analyze its

behavior. In fact, QI is clearly linked to SNR in a statistical fashion. Unfortunately, the

degree of correlation is too low to establish any reliable estimation rules. The fact that

QI did not prove useful in estimating SNR genuinely motivates research into alternative

metrics. As a result, DP was the second metric investigated. While the analysis on this

metric was much more defined and reliable, it was not able to demonstrate significantly

better performance than the QI.

However, several useful analysis systems appear to be well-suited to further investigation

of these metrics and others. The current diversity selection method implemented on the

PACS system does not appear to be less reliable than the new one proposed in this study,

and it seems to be capable of performing the discrimination required. However, even more

reliable performance may be attainable. It is the hope that the methods described in this

study can be easily applied to the evaluation of other metrics as well.
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Appendix A

Simulation Code

X QIDPsim.m

% Parallel implementation of demodulator code for QI amd DP testing

% Symbol timing implemented one burst vector at a time.

X no carrier recovery implementation

invpl=ones([1 1200]); % bit to account for any inversions in IF

invp2=ones([1 1200]); % note using ZEROS with 10.7 MHz IF sampling!

X since 3*3840 - 10700 is HIGH SIDE injection

% but so is 960 kHz into 820 kHz actual IF

% IF compensation to add 140 kHz

X done as 9,9,10,9,9,10 brad per sample! (9,9,9,... would give

X only 135 kHz)

% deal with wraparound

if comp=modulo ((0:1199)*140/3840*2*pi,2*pi);

stmaxl=zeros([1 3]); % symbol timing results nmetric, gate val, freq offset

stmax2=zeros([1 3]);
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X filter coefficients

bpfilt=[1,0,-i];

lpfilt=[1,2,2,2,1];

nburst=100;

clip=input('Clipping fraction of peak-to-peak? ');

X assume first sample in data sequence is beginning of burst;

% allow offset for tcburst timing

soff=input('Number of samples to offset tcburst timing? ');

psrc=sqrtrc((-60:60)/20,0.5); X square-root RC response

X NOTE: length 121 - for 6 extra symbols + 1 for convolution

X (for one burst)

dph=pi/4*[1 3 -1 -3]; %matrix of differential phases

foff=0;

for SNR = 0:0.5:30,

for burstcnt=1:1000,

% generate a differential phase sequence - JL 7/6/98

dphseq=dph(floor(4*rand(1,53))+1);

%generate a phase sequence

phseq=cumsum([0, dphseq]);

phseq-modulo(phseq,pi); XX

%generate 20x oversampled baseband sequence

phseq20=[exp(j*phseq);zeros(19,54)];

bbseq=phseq20(:)';

fbbseq=conv(bbseq,psrc);
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Xadd AWGN

Xmultiply variance by 20 to compensate for 20x oversampling

var=20*10^(-SNR/10);

dev=sqrt(var/2);

nI=dev*(randn(size(fbbseq)));

nQ=dev*(randn(size(fbbseq)));

nseq=nI+j*nQ; %making complex noise

fbbseql=fbbseq+nseq;

fbbseq2=conv(fbbseql,psrc)/20; X does sqrt RC filtering - divide by 20

fbbseq2=fbbseq2(61:length(fbbseq2)-60);

%throw away first and last 60 samples

X optional frequency offset <foff>

X now mix up to IF

% the actual IF frequency is -820 kHz (10700 - 3*3840)

ifseql=real(exp(j*2*pi*(foff-820)/192*(0:1199)/20) .* fbbseql);

ifseq2=real(exp(j*2*pi*(foff-820)/192*(0:1199)/20) .* fbbseq2);

X clear accumulators

stIa=zeros([1 20]);

stQa=zeros([1 20]);

stIb=zeros([1 20]);

stQb=zeros([1 20]);

% bandpass filtering and mix down from IF /

% image reject low pass filter (throw away first 7 samples)

fifseql=conv(ifseql,bpfilt);

fifseq2=conv(ifseq2,bpfilt);

fifseql=fifseql(3:1202);

fifseq2=fifseq2(3:1202);
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xoutl=conv(fifseql.*cos(pi*(0:length(fifseql)-1)/2),lpfilt);

youtl=conv(fifseql.*sin(pi*(0:length(fifseql)-1)/2),lpfilt);

xoutl=xoutl(5:1204);

youtl=youtl(5:1204);

xout2=conv(fifseq2.*cos(pi*(0:length(fifseq2)-1)/2),lpfilt);

yout2=conv(fifseq2.*sin(pi*(0:length(fifseq2)-1)/2),lpfilt);

xout2=xout2(5:1204);

yout2=yout2(5:1204);

romout1=atan2(youti,xout1);

romout2=atan2(yout2,xout2);

X compensate for IF offset

X nominal 820 kHz (3*3840 kHz - 10700 kHz), but expecting 960 kHz

ph8a=modulo(romout1-ifcomp,2*pi);

ph8b=modulo(romout2-ifcomp,2*pi);

% update input to x & y accumulation in symbol timing

X NOTE another do2scomp for case diff phase > 127 ?

% pad dph8 to 1200 samples for consistency, with 20 leading zeroes

dph8a(1:20)=zeros([1 20]);

dph8a(21:1200)=ph8a(21:1200)-ph8a(1:1180);

dph8b(1:20)=zeros([1 20]);

dph8b(21:1200)=ph8b(21:1200)-ph8b(1:1180);

XXXXX calculations for QI XXXXX

X simulate sin4theta and cos4theta lookup ROMs

c4a=cos(4*dph8a); X cos4theta lookup picks vals at address VECTOR indices
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s4a=sin(4*dph8a); % sin4theta lookup picks vals at address VECTOR indices

c4b=cos(4*dph8b); X cos4theta lookup picks vals at address VECTOR indices

s4b=sin(4*dph8b); % sin4theta lookup picks vals at address VECTOR indices

XXXX calculations for DPe XXXXX

dph4a=modulo(4*dph8a,2*pi)-pi;

dph4b=modulo(4*dph8b,2*pi)-pi;

X 14 bit signed accumulation (-8192 to +8191)

X use zerov to accum middle of burst

X 6 symbols LOW; 47 symbols HIGH; 7 symbols LOW - JL 7/6/98

start=120+soff;

finish=1060+soff;

% this is right - sum up every 20 samples over a block of 20

for zzz=1:20,

stIa(zzz)=sum(c4a((zzz+start):20:finish));

stQa(zzz)=sum(s4a((zzz+start):20:finish));

stIb(zzz)=sum(c4b((zzz+start):20:finish));

stQb(zzz)=sum(s4b((zzz+start):20:finish));

norma(zzz)=norm(dph4a((zzz+start):20:finish))^2;

normb(zzz)=norm(dph4b((zzz+start):20:finish))^2;

end

nmetricl=stIa.^2+stQa.^2;

nmetric2=stIb.^2+stQb.^2;

dpmetricsa(SNR*2000+burstcnt)=min(norma);

dpmetricsb(SNR*2000+burstcnt)=min(normb);
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qimetricsa(SNR*2000+burstcnt)=max(nmetric1);

qimetricsb(SNR*2000+burstcnt)=max(nmetric2);

end

end
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