
Software Floating-Point Computation on Parallel

Machines

by

Michael Ruogu Zhang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1999

@ Massachusetts Institute ofTechnology 1999. All rights reserved.

A uthor ----------------.

Departent o ectr eering and Computer Science
May 1, 1999

,AA A
Certified by

Anant Agarwal
Professor

Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Software Floating-Point Computation on Parallel Machines
by

Michael Ruogu Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on May 1, 1999, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

This thesis examines the ability to optimize the performance of software floating-point
(FP) operations on parallel architectures. In particular, instruction level parallelism
(ILP) of FP operations is explored, optimization techniques are proposed, and effi-

cient algorithms are developed. In our method, FP operations such as FP add, are
decomposed into a set of primitive integer and logic operations, such as integer adds
and shifts, and the primitive operations are then scheduled on a parallel architecture.
The algorithms for fast division and square root computation also enable the hard-
ware FP unit to be clocked at a faster rate. The design and analysis of such a system
is detailed and is tested on Raw, a software-exposed parallel architecture. Results
show that division and square root implementations achieve reasonable performance
compared to a hardware FP unit.

Thesis Supervisor: Anant Agarwal
Title: Professor

2

Acknowledgments

I would like to thank my thesis advisor, Professor Anant Agarwal, for giving me
the opportunity and freedom to work on the Raw project. He has been a source of
inspiration and direction.

I would also like to thank the members of the Raw group, especially Matt Frank,
Mike Taylor, Jon Babb for their comments and suggestions; Walt Lee and Rajeev
Barua for helping me getting started on rawcc and the timely bug fixes; Jason Kim
for staying up many late nights with me and all the late night Chinatown runs.

Finally, my deepest love and appreciation go to my parents, who have always been
there for me. Thank you so much, Mom and Dad!

3

4

Contents

1 Introduction
1.1 M otivation .
1.2 Approaches
1.3 Organization .

2 RAW Architecture

3 Floating-Point Representation and Multip]
3.1
3.2

Floating-Point Representation
Floating-Point Multiplication
3.2.1 Basic Multiplication Steps
3.2.2 Parallelism.
3.2.3 Assembly Code Implementation . .

4 Floating-Point Addition and Subtraction
4.1 Brief Review of Addition Algorithm
4.2 Parallelism in Floating-Point Addition . .
4.3 Software Floating-Point Addition

4.3.1 Detailed Implementation
4.3.2 Cycle Count Summary

4.4 Possible Optimization on Addition
4.4.1 Compiler Optimization to Eliminate
4.4.2 Providing Special Hardware for Expe

4.5 Case Study: Hardware FP Adder
4.5.1 Function Description
4.5.2 Pipelined Adder

ication 15
. 15
. 16
. 16
. 17
. 17

21
. 2 1
. 23
. 24
. 24
. 26
. 26
Pack/Unpack 27
nsive Software Operations 27
. 28
. 28
. 3 2

4.6 Sum m ary .

5 Floating-Point Division Algorithms
5.1 Introduction .
5.2 Common Approaches To Division

5.2.1 Newton-Raphson Algorithm
5.2.2 SRT Algorithm
5.2.3 Hybrid of Newton-Raphson and SRT and
5.2.4 Goldschmidt Algorithm

33
. 33
. 33
. 34
. 35
Use of Look-Up Table 37
. 37

5

11
11
11
12

13

32

6 A Fast Parallel Division Algorithm
6.1 Algorithm
6.2 Parallelism
6.3 Implementation of Division
6.4 Comparison with Goldschmidt

6.4.1 Area Comparison
6.4.2 Latency Comparison
6.4.3 Relative Error in Division Algorithms

7 Floating-Point Square-Root Operation
7.1 Generic Newton-Raphson Algorithm
7.2 Parallel Square-Root Algorithm

7.2.1 Algorithm G
7.2.2 Parallelism.

8 A Fast Square Root Algorithm
8.1 Algorithm

8.1.1 Basic Algorithm
8.1.2 Correctness

8.2 Improvement on the Basic Algorithm
8.3 Parallelism
8.4 Comparison with Algorithm G

8.4.1 Reduced Critical Path
8.4.2 Reduced Multiplication Width

8.5 Implementation

9 Summary

6

41
41
43
43
47
48
49
51

55
55
56
56
58

59
. 59
. 59
. 60
. 61
. 63
. 63
. 64
. 65
. 65

69

List of Figures

2-1 RawpP composition. Each RawpP comprises multiple tiles.

3-1 Data Dependency Diagram for Multiplication

4-1 Flowchart for Floating-Point Addition
4-2 Hardware Floating-Point Adder Pipelined
4-3 A Generic Hardware Floating-Point Adder
4-4 Hardware Floating-Point Adder Pipelined

5-1 Newton's Iterative Method of Root Finding
5-2 Data Dependency Diagram in Goldschmidt Algorithm.

6-1 Data Dependency Diagram in New Division Algorithm
6-2 Hardware for Two's Complementation
6-3 Hardware for Addition by One

7-1 Data Dependency Diagram for Algorithm G

8-1 Data Dependency Diagram for Algorithm B

7

13

. 17

. 22

. 23

. 29
. 31

. 34

. 39

. 44

. 48

. 49

. 58

. 63

8

List of Tables

3.1 Floating-Point Number Representations 15
3.2 Special FP Values . 16
3.3 Execution Trace of Multiplication . 18

4.1 Cycle Breakdown of Floating-Point Addition 27
4.2 Effect of Optimization of Pack/Unpack: A Comparison 28
4.3 Rules for Swapping the Operands . 30

5.1 Implementing Goldschmidt Algorithm 40

6.1 Two's Complement Delay and Area 49
6.2 Multiplication Widths for Algorithm A 50
6.3 Signed Multiplier Delay and Area . 51

7.1 Implementing Algorithm G . 58

8.1 Implementing Algorithm B. 63

9.1 Performance Comparison . 70

9

10

Chapter 1

Introduction

Most computer systems today that handle floating-point (FP) operations employ a
hardware FP co-processor. FP operations are implemented through hardware to ob-
tain high performance - software implementations are regarded as very slow. How-
ever, performing FP operations in parallel has been rarely considered. In our method,
FP operations such as FP add, are decomposed into a set of primitive integer and
logic operations, such as integer adds and shifts, and the primitive operations are
then scheduled on a parallel architecture.

1.1 Motivation

As more and more transistors can be placed on the silicon, traditional superscalars
will not be able to take advantage of the technological advances due to problems in
scaling, wire length, bandwidth, and many other issues. One approach taken is to
decentralize computing and storage resources [1, 2, 9]. Therefore, instruction level
parallelism (ILP) and memory parallelism, as well as the scheduling of the instructions
become increasingly important. The goal of this thesis is to study FP implementation
in software and examine the trade-off between using software and hardware in a
parallel architecture. The high level goal is to maintain high FP performance while
minimizing area.

1.2 Approaches

The three central parameters in any FP unit design are latency, cycle time, and area.
In order to optimize the performance in terms of these three parameters, the ap-
proaches that this thesis takes are the following:

1. Explore instruction level parallelism.
2. Compiler optimization.
3. Improve FP algorithms.
4. Provide hardware for expensive software operations.

11

This thesis presents the analysis, design, and implementation of a software FP unit.
The basic FP operations, i.e., addition, subtraction, multiplication, division, and
square-root, will be implemented.

The testbed for this software unit is Raw [1, 2, 9]. Raw is like a multiprocessor
on a single chip. It is a highly parallel architecture with each processing element
being a simple RISC-like chip and some on-chip reconfigurable logic. The processing
elements are statically connected. A more detailed description of this architecture
will be presented in Chapter 2.

Many FP units follow the IEEE 754 FP standard [6]. However, as a starting
point, implementations will not fully follow this in order to leave more time for the
investigation for other more interesting issues.

1.3 Organization

The following chapters detail the design of the software FP unit. They can be roughly
separated into two parts. Part 1 introduces the basic FP representation and analyzes
multiplication and addition by exploring parallelism in the algorithms, as well as dis-
cuss the trade-off between hardware and software through a case study. Part 2 mainly
focuses on division and square root algorithms and develops two fast algorithms for
division and square root. It then discuss the advantages of these two algorithms.
Specifically, the chapters are organized as follows:

1. Part 1

Chapter 2 briefly describes the Raw architecture, the target architecture of this
software FP unit.

Chapter 3 introduces the basic FP representation and, as a starting point,
analyzes the parallelism in multiplication.

Chapter 4 gives the analysis of addition and the discusses the trade-off between
software and hardware. Furthermore, it presents a case study of the comparison
between software and hardware implementations of the adder.

2. Part 2

Chapter 5 presents the three major division algorithms and a comparison be-
tween them. In particular, the only parallel algorithm, Goldschmidt algorithm
will be examined in detail.

Chapter 6 presents a fast algorithm of calculating FP division in parallel, algo-
rithm A. Comparison and advantages of algorithm A and Goldschmidt algo-
rithm will be presented.

Chapter 7 presents the current square-root algorithms. The parallel square-root
algorithm, algorithm G, will be discussed in detail.

Chapter 8 gives an fast alternative to calculate square-root in parallel, algorithm
B. Comparison between algorithms G and B will be presented.

Chapter 9 summarizes the result of this research.

12

Chapter 2

RAW Architecture

Advanced VLSI technologies enable more and more transistors to be placed on a
single chip. In order to take advantage of the technology, microprocessors need to
decentralize the resources and exploit instruction level and memory parallelism. Raw
is a radically new approach which tries to take this advantage. This architecture
is simple and easily scalable and exposes itself completely to the software so that
fine-grained parallelism can be discovered and statically scheduled to improve perfor-
mance [1, 2, 9].

The Raw microprocessor chip comprises a set of replicated tiles, each tile contain-
ing a simple RISC like processor, a small amount of configurable logic, and a portion
of memory for instructions and data. Each tile has an associated programmable
switch which connects the tiles in a wide-channel point-to-point interconnect. The
compiler statically schedules multiple streams of computations. The interconnect
provides register-to-register communication with very low latency and can also be
statically scheduled. The compiler is thus able to schedule instruction-level paral-
lelism across the tiles and exploit the large number of registers and memory ports.
Raw also provides backup dynamic support in the form of flow control for situations
in which the compiler cannot determine a precise static schedule. Figure 2-1 shows
the structure of the microprocessor.

RawpP

IMEM DE
DMEM s

PREGS [
CL

SM

PC

SWITCH

Figure 2-1: RawpiP composition. Each RawpiP comprises multiple tiles.

13

This thesis gives detailed analysis and design of how floating-point operations can
take advantage of such a highly parallel architecture with configurable logic. Specifi-
cally, communication cost between the tiles will be considered. The implementations
will also take advantage of the reconfigurable logic to perform some expensive software
operations quickly.

14

Chapter 3

Floating-Point Representation and
Multiplication

In this Chapter, the basics of floating-point representation is introduced. FP multi-
plication, the simplest of the FP operations, will also be presented and analyzed.

3.1 Floating-Point Representation

Floating-point numbers generally follow the IEEE 754 format and have several com-
mon precisions - single, double, and quadruple precisions. Certain architectures
might support even higher precision. An ordinary single-precision FP number has 4
bytes and double, 8 bytes. This thesis limits its scope to single-precision FP num-
bers. Extension of FP algorithms for single precision to double precision is straight
forward. FP numbers contains three fields - sign, mantissa, and exponent. The
format is summarized in Table 3.1.

Two things in particular should be paid attention to. First of all, the exponent
is offset by half of the exponent range. In single precision numbers, the exponent
is offset by 127, and in double precision numbers, the exponent is offset by 511.
Secondly, the mantissa bits contain only the fractional part of the value, that is, all
mantissas are normalized and assume an inexplicit 1. This also means that the value
of the significant will always be in the range [1, 2). For example, given an decomposed
single precision FP number with sign s, exponent e, and mantissa f, the actual value
of the number is

Sign Exponent Mantissa
Single-Precision < 31 > < 30 23 > < 22 : 0 >
Double-Precision < 63 > < 62 : 52 > < 51: 0 >
Quad-Precision < 127 > < 126 :112 > < 111 : 0 >

Table 3.1: Floating-Point Number Representations

15

(-1)s x 1f x 2e127

In addition to the basic representations, the IEEE 754 standard specifies a variety
of special exponent and fraction values in order to support the concepts of plus and
minus infinity, plus and minus zero, "denormalized" numbers and "not-a-number"
(NaN). Refer to Table 3.2 for the detailed representations. Special attention should
be paid to denormal numbers. Denormal numbers are numbers whose values are
very small thus cannot be normalized within the range of the exponent. They are
supported by IEEE for gradual underflow.

Table 3.2: Special FP Values

In this thesis, the focus will be to explore the parallelism in the basic FP oper-
ations, as well as various optimizations that can be used to improve performance.
Therefore, the IEEE 754 standard will be relaxed to leave more time and effort to
explore the above. However, common exceptions such as overflow and underflow will
be supported.

3.2 Floating-Point Multiplication

Among all FP operations, multiplication is the simplest. As a starting point, the
basic steps involved in multiplication will be examined. Parallelism that exists in
multiplication will be exploit in this section.

3.2.1 Basic Multiplication Steps

The basic steps of multiplication can be broken down into the following, assuming
that numbers are given in IEEE format,

1. Unpack the operands, this step includes extraction of the sign, exponent, man-
tissa fields, as well as tagging on the inexplicit one for the mantissa.

2. Perform sign calculation, which is a simple xor.

3. Perform exponent calculation, which simply adds two exponents together.

4. Perform mantissa calculation, which is an integer multiplication.

16

Exponent Mantissa Value
-127 0 ±0
128 0 +00

128 $ 0 NaN
-127 $ 0 f x 2-1 2 7

5. Perform mantissa normalization.

6. Perform exception checks.

7. Pack results back into the IEEE format.

3.2.2 Parallelism

The parallelism in multiplication operation exists among sign calculation, exponent
calculation, mantissa calculation. Figure 3-1 shows the data dependency diagram.
From the data dependency digram, it is clear that it is a three-way parallelism. The
darkened arrows forms the critical path of the calculation. The operations that must
be performed sequentially are the significant multiplication, the normalization of the
resulting significant, as well as the exponent adjustment. Theoretically, sign and
exponent calculation can be placed on different processors. However, the number of
cycles required to walk through the critical path is longer the the number of cycles
required to calculate both sign and exponent. Therefore, it is not necessary to separate
sign and exponent calculation onto different tiles.

Figure 3-1: Data Dependency Diagram for Multiplication

3.2.3 Assembly Code Implementation

As described in the previous section, the parallelized multiplication can be imple-
mented using two Raw tiles. Table 3.3 shows the trace of the execution. This im-
plementation closely follow the algorithm described in the last section. It also takes
into consideration the cost of communication. The code is describe in detail in this
section. In future sections, focus will be placed on analyzing algorithms and ILPs
instead of describing assembly code.

17

There are a few parts of the implementation should be paid attention to, the rest
will be very easy to follow given the algorithm. First of all, during sending and receiv-
ing data over the static network, the instruction can compute and send/receive in one
step in some cases. For example, computing sign of a x b requires four instructions,
assuming $4 contains the value of a and $5 contains the value of b.)

xor $8, $4, $5
srl $8, $8, 31
s1l $8, $8, 31
or $2, $2, $8

Theoretically, these instruction cannot be parallelized since they have direct data
dependency one after another. But using communication instructions and clever
scheduling, these computation can easily be hidden and thus be able to reduce the
latency in half. Most branch delay slots are utilized also to reduce latency.

Code and Comments

cycle tile 0 communication tile 1
1 add $csto,$4,$0 a -+ tile 1 addiu $at,$0,127
2 add $csto,$5,$0 b - tile 1 sll $4,$csti,1
3 xor $csto,$4,$5 a xor b -tile 1 s11 $5,$csti,1
4 lui $at,32768 srl $8,$csti,31
5 s1l $14,$4,8 ---

6 or $14,$14,$at ---

7 s1l $25,$5,8 srl $12,$12,24

8 or $25,$25,$at srl $11,$11,24
9 multu $14,$25 add $11,$11,$12
10 lui $at,128 subu $11,$11,$at
11 lui $24,Ox7FOO blez $10,main.UNDER
12 ... lui $at,32767

13 mfhi $15 tile 0 -z. Exp s1l $csto,$11,23
14 srl $16,$15,31 tile 0 z.Sign s1i $csto,$8,31
15 bne $16,$0,main.L1 ---
16 s11 $15,$15,1 ---

17 add $2,$csti,$at ---

18 bit $2,$24,main.OVER_ ---
19 srl $15,$15,9 ---
20 or $2,$2,$15 ---
21 or $2,$2,$csti -.. -

Table 3.3: Execution Trace of Multiplication

18

On tile 0, first three instructions send over the data to tile 1. Instructions 4 to
8 unpack the mantissa and tags on the inexplicit 1. Instructions 9 to 13 perform
the integer multiplication of the significants. Instructions 14 to 16 normalize the
resulting significant. Instructions 17 to 18 performs exponent adjustment and checks
for overflow exception. Instructions 19 to 21 pack the result.

On tile 1, all necessary data are received after cycle 6. Instructions 7 and 8 unpack
the exponents. Instructions 9 and 10 calculate exponent. Instructions 11 and 12 check
underflow exception. Lastly, resulting exponent and sign are sent to tile 0.

Performance

The above execution trace requires 21 cycles using two tiles. If multiplication is to
be done sequentially, 30 cycles are required. Therefore, parallelism in multiplication
actually can achieve approximately 30% speed-up. It turns out that multiplication
has a good amount of parallelism compared to the rest of the operations. In the
next chapter, we will examine addition as well as some of the optimizations might be
useful.

19

20

Chapter 4

Floating-Point Addition and
Subtraction

In this section, floating-point addition and subtraction algorithm is examined. Par-
allelism is explored. As a case study, at the end of this chapter, a generic hardware
floating-point adder is presented and compared to the software version so that some of
the issues that exist in deciding whether to choose customized hardware will become
clear.

4.1 Brief Review of Addition Algorithm

Most FP addition algorithms are generically performed in the following steps. Fig-
ure 4-1 shows the flowchart of this algorithm. Assuming that operands are already
unpacked.

1. Compute exponent difference expDiff = a.Exp - b.Exp. If expDiff < 0 then
swap a and b. If expDiff = 0 and a.Sig < b.Sig, also swap a and b. This
step makes sure that first operand is greater than the second one.

2. If a. Sign 0 b. Sign, convert b. Sig to its two's complement format and negate
it. By always turning the second operand into negative in a subtraction, the
resulting mantissa will be positive, thus eliminates the need to check for polarity
after addition is performed.

3. Shift b. Sig to the right by expDif f, aligning the significants.

4. Perform z.Sig = a.Sig + b.Sig. Notice z.Sig will always be positive.

5. Count Leading Zeros in z. Sig and perform normalization - mantissa shift and
exponent adjustment.

6. Check for Overflow/Underflow.

7. Perform rounding and pack results.

21

a

z = NaN

Z

Figure 4-1: Flowchart for Floating-Point Addition

22

b

4.2 Parallelism in Floating-Point Addition

Unlike multiplication, there is little parallelism in FP addition. The data dependency
diagram for the computation is shown in Figure 4-2. The dotted arrow lines are the
imaginary execution traces that can be run in parallel. We notice that the computa-
tion on tile 1 is the critical path of the entire addition. Most of the work is directly on
the critical path. Only a few operations can be performed in parallel. For example,
sign comparison and exponent subtraction can be performed in parallel; exponent
adjustment and mantissa normalization can also be performed in parallel. However,
each of these operation costs at most two cycles. Weighing in the communication
cost, it is actually faster and much simpler to keep computation on the same tile.

Tile 0 Tile 1 Tile 2

Figure 4-2: Hardware Floating-Point Adder Pipelined

23

4.3 Software Floating-Point Addition

Software implementation of FP addition follows the algorithm described in the Sec-
tion 4.1. Refer to Figure 4-1 for the flowchart of the code. We first assume that a
and b are stored in registers $4 and $5 in standard IEEE format.

4.3.1 Detailed Implementation

1. Unpack Operands

The following seven instructions unpack the mantissa and tag on the inexplicit
leading one. The values are right shifted by 2 bits to both avoid overflow in
the adding step as well as to leave the most significant bit as the sign bit after
optional conversion of operands to two's complement format.

lui $at,8192
s1l $24,$4,9
srl $24,$24,3
or $24,$24,$at
sll $25,$5,9
srl $25,$25,3
or $25,$25,$at

The next four instructions unpacks the exponent by a left shift to shift off the
sign bit followed by a right shift.

s1l $11,$4,1
srl $11,$11,24
sl $10,$5,1
srl $10,$10,24

Unpacking sign bits takes two cycles.

srl $9,$4,31
srl $8,$5,31

2. Compute exponent difference

subu $12,$11,$10

3. We need to consider three cases of exponent difference, namely, expDiff > 0,
expDiff = 0, and expDiff < 0. The first and the last cases are the same if we
swap the operands. We choose to take two different paths in the code to avoid
swapping the unpacked form of the operands which would involve the swapping
of signs, significants, and exponents.

24

4. We will look at the path taken when expDiff > 0. We compare the sign of
the the operands, if they are different, we know this is a subtraction and thus
negate the smaller of the significants and place it in two's complement form. If
signs are the same, we directly jump to shifting of the operands.

comparing signs
beq $9,$8,main.GTSIGNEQ

conversion to 2's complement
lui $at,65535
ori $at,$at,65535
xor $25,$25,$at
addiu $25,$25,1

5. This step shifts the smaller of the significants to align the two's complement
form decimal point for addition. The shift is an arithmetic shift to maintain
the polarity of the significant.

main. GTSIGNEQ :
srav $25,$25,$12

6. Perform addition.

addu $2,$24,$25

7. This step tests for the special case that the result is zero. The result is zero
if and only if the resulting significant is zero. If so, return zero and exit the
program.

beq $2,$0,main.ZERO
addiu $at,$0,3

8. If the value is not zero, we need to normalize the result, i.e., shift off all the
leading zeros. Currently counting leading zero is done in the reconfigurable logic.
A straight forward implementation of leading zero count would cost around 20
cycles. The leading 1 is also shifted out in the same step. In the future, an ALU
instruction could be implemented to perform leading zero count. The number
of digits needs to be shifted off is placed in register $14.

version without RCL would cost ~ 20 cycles
or $rlo,$2,$0
addiu $14,$rli,1

9. Perform normalization and adjust exponent. This include shifting off all the
leading zeros and subtract the number of leading zeros to the exponent. The
leading 1 is also shifted out in the same step.

25

slly $2,$2,$14
sub $14,$14,$at

sub $11,$11,$14

10. Performing checks to overflow and underflow. If the exponent is out of the range
of [1, 254], an overflow or underflow occurred and we return NaN as result.

slti $10,$11,OxOOOOOOFF
sit $12,$0,$11
and $10,$10,$12
beq $10,$0,main.OVERFLOW
lui $at,32767

11. Lastly, pack the result into standard IEEE format.

srl $2,$2,9
s1l $7,$9,31
s1l $11,$11,23

addu $11,$7,$11

addu $2,$11,2

4.3.2 Cycle Count Summary

The total cycle count for this path is 60 cycles. Out of the 60 cycles, 20 cycles are
spent counting leading zeros, 18 cycles are spent unpacking and packing the operands
and result. For the remaining cycles, 4 cycles are spent determining which path
the code should take; 1 cycle is spent computing exponent difference; 5 cycles are
spent checking whether the operation is actually a subtraction, and if so, negate the
smaller operand and put into two's complement form; 2 cycles are spent shifting the
smaller operands and adding; 7 cycles are spent checking for zero and over/underflow
exception; 3 cycles are spent normalizing the resulting significant and adjusting the
exponent. The cycle count can be summarized in Table 4.1.

When the exponents are equal and signs are different, mantissas are compared to
decide which operand to negate. In this algorithm, the smaller one is, which produces
a positive result. The cycle count for this path is 62, which includes the 2 cycles to
compare mantissa of the operands.

4.4 Possible Optimization on Addition

Since there is little parallelism in FP addition, we have to look for other means of
optimization. There are two major improvements that could be achieved and they
will be presented in turn.

26

Function Cycle Count I% of Total Cycle Count

Count Leading Zero 20 33%
Packing/Unpacking 18 30%
Exception Checks 7 12%

Computing 2's Comp. 5 8%
Choosing Path 4 7%

Normalizing Result 3 6%
Mantissa Alignment Shift 2 3%
Compute Exp. Difference 1 1%

Total Cycle Count 60 100%

Table 4.1: Cycle Breakdown of Floating-Point Addition

4.4.1 Compiler Optimization to Eliminate Pack/Unpack

From Table 4.1, we notice that the effort spent on packing and unpacking takes ap-
proximately 30% of the work. It is obvious that some of the packing and unpacking
is unnecessary because the result of one FP operation will be the input of another.
We will give an example to demonstrate this point.

Example: Compute the length of the hypotenuse of a right triangle with sides of
length a and b:

H = v'a2 + b2

This is a very common operation in scientific computation or graphics computation.
Table 4.2 shows the comparison between the naive implementation and an implemen-
tation with desired optimization.

From this example, it is very clear that the naive approach is doing much wasteful
work by packing and unpacking the intermediate results. Since packing and unpacking
takes a significant part of the calculation, this optimization could extremely useful.
The naive approach takes about 145 cycles to execute the above operations, where as
the optimized version takes about 73 cycles, which is a 2X speed up.

4.4.2 Providing Special Hardware for Expensive Software
Operations

A second performance improvement could be made possible if a small amount of
special purpose hardware can be provided to perform operations that cost heavily
in software. The count leading zero operation is a very good example of this opti-
mization. Normally, count leading zero could take as many as 25 cycles to perform
directly in software, which takes more than one third of the cycles count in addition.
However, if we can implement this operation using special purpose hardware, possibly
in reconfigurable logic, latency is greatly reduced.

27

Naive Implementation Optimized Implementation

unpack a
unpack b
compute a2

compute b2

compute a2 + b2

compute H = v/a2 + b2

pack H

Table 4.2: Effect of Optimization of Pack/Unpack: A Comparison

Other than count leading zero, exception checks and rounding are also good places
to put in small amount of hardware to trade significant reduction in latency.

4.5 Case Study: Hardware FP Adder

In this section, a hardware implementation of the FP adder is analyzed to explain the
difference in performance compared to software. The hardware FP adder also roughly
follows the algorithm described in Section 4.1. A straight forward implementation of
the hardware FP adder is shown in Figure 4-3. The components of this circuit and
their function will be described in Section 4.5.1.

4.5.1 Function Description

1. Sign Comparator
Input: a.Sign, b.Sign
Output: signDiff
Explanation: It determines whether two operands have different signs.

2. Exponent Difference
Input: a.Exp, b.Exp
Output: expDiff
Explanation: It computes the difference between the two exponents.

28

Optimized Implementation
'

unpack a
unpack a
compute a2

pack ti = a2

unpack b
unpack b
compute b2

pack t2 = b2
unpack ti
unpack t2
compute t 3 = t 1 + t 2

pack t3
unpack t 3
compute H = 3

pack H

Naive Implementation

aSign

Figure 4-3: A Generic Hardware Floating-Point Adder

29

Table 4.3: Rules for Swapping the Operands

3. Significant Swapper
Input: a.Sig, b.Sig, expDiff, SignDiff
Output: S1, S2, sigSwap
Explanation: Produces S1 and S2 according to the following table. Sets sigSwap
bit when the operand is swapped.

4. Sticky Shifter
Input: expDiff, S2
Output: F2
Explanation: It shifts F2 to the right by expDiff bits and retains the sticky bit.

5. Integer Adder
Input: F1 F2
Output: FSig
Explanation: It adds the two inputs.

6. GRS
Input: F1 F2
Output: grs
Explanation: Determines rounding information.

7. CLZ
Input: FSig
Output: LZ
Explanation: It counts the number of leading zeros in the adder output.

8. Shifter
Input: LZ, FSig
Output: FSig'
Explanation: It shifts off the leading zeros as well as the first one.

30

expDiff signDiff a.Sig vs. b.Sig Swap?
<0 X X Yes
> 0 X X No
=0 Yes a.Sig < b.Sig Yes
=0 No X No

bExp aSig

grs

I- |

I Register |
zSig L - - - _

Figure 4-4: Hardware Floating-Point Adder Pipelined

31

F2

zExp

aSign bSigbSign aExp

9. Exponent Adjust
Input: LZ
Output: zExp, Exception
Explanation: It adjusts the resulting exponents according to the number of lead-
ing zeros. Exceptions are raised when exponent is out of range after shifting.

10. Sign Logic
Input: expDiff, sigSwap
Output: z . Sign
Explanation: It determines the sign of the result.

11. Rounder
Input: FSig', Exception, grs
Output: z.Sig
Explanation: It does the proper rounding and produces the final significant.

4.5.2 Pipelined Adder

The adder described in the last section can be easily pipelined into three stages to
increase the throughput. During the first stage, all the swapping of operands and
mantissa alignment are done. During the second stage, addition is performed and
rounding information is determined. The last stage does the leading zero count,
exponent adjust, normalization of mantissa, as well as rounding. The pipelined block
diagram is shown in Figure 4-4. Most commercial architectures have fully pipelined
adders with 3 cycle of latency.

4.6 Summary

Addition is the most performed FP operations in most applications. Much research
has been done to optimize the latency. After presenting the two different approaches,
it is clear that performance difference between the software and hardware is a simple
area-performance trade-off. Much specialized hardware is dedicated to perform addi-
tion. For example, implementing a hardware leading zero counter that uses one cycle
would save around 20 cycles if this operation is done in hardware. Having a sticky
shifter would save 6 cycles if there is none. Unpacking and packing which is required
in software is completely unnecessary in hardware. There is also little parallelism in
FP additions to take advantage of parallel machines.

32

Chapter 5

Floating-Point Division Algorithms

5.1 Introduction

Previous chapters show that there is still a large gap between software and hardware
implementations of addition and multiplication. In most designs, multiplication and
addition units are very carefully designed to have high performance since they are
very frequently used. On the other hand, division and square root operation are
much less frequently used since they are inherently slow operations and take much
longer to execute. In the remaining portion of this thesis, focus will be placed on
parallel floating-point division and square root algorithms and implementations to
pursue software implementations that at least achieve comparable performances of
the hardware. Since the percentage of the floating-point division and square root is
small, comparable software performance makes it possible for the designers to consider
not to have hardware floating-point divider and square-root units.

As the result of this research, two fast parallel algorithms are developed, one for
division and one for square-root. Comparison between these two algorithms and the
two existing parallel algorithms will be presented in detail.

5.2 Common Approaches To Division

There are many different approaches in calculating floating-point division. Each one
might have a different underlying mathematical formulation, or different convergence
rate, or different hardware implementation challenges. In this section, a few common
approaches to floating-point division will be briefly described.

Most division algorithms use reciprocal approximation to compute the reciprocal
of the divisor then multiply by the dividend. This section briefly describes some
of these algorithms and compares the performance. In Section 5.2.1, a functional
iterative algorithm, the Newton-Raphson algorithm is presented; in Section 5.2.2, a
digit recurrence algorithm, the SRT algorithm is presented; in Section 5.2.4, a parallel
algorithm, the Goldschmidt, algorithm is presented.

33

5.2.1 Newton-Raphson Algorithm

The classic Newton-Raphson algorithm is an iterative root-finding algorithm. Equa-
tion 5.1 is the recurrence equation for finding a root of f(x) and is demonstrated in
Figure 5-1.

Xi+1 = Xi - (Xi)
f'(xi)

(5.1)

The Newton-Raphson algorithm is a quadratically converging algorithm, i.e., the
number of significant digits doubles during each iterations. It is commonly used if
the result does not require proper rounding. In calculating 1/D,

f (x) = 1/x - D. (5.2)

Therefore, the iteration equation is

1- - D
xi+1 = Xi + X 1 = xi(2 - D * xi)

The algorithm is, for Q = N/D

1. initialization step: P = 0.75. This is
of the range of 1/D E (0.5,1].

the initial guess, which is the mid-point

2. iteration step: P+1 = P(2 - D * P).

3. final step: Q = Poo x N

This algorithm has a quadratic convergence rate with initial guess having two
bits of accuracy. Therefore, in order to achieve single precision, four iterations are
necessary, for double, five iterations, and for quadruple, six iterations.

2 -+ 4 -+ 8 -+ 16 -+ 32 -+ 64 -- 128

Each iteration in this algorithm contains two multiplies, one subtraction, and one
two's-complementation.

Ff RXn
ftxi)-

Figure 5-1: Newton's Iterative Method of Root Finding

34

(5.3)

5.2.2 SRT Algorithm

SRT division algorithm is a common digit recurrence division algorithm. It is also
iterative with each iteration reduce a fixed number of quotient bits. SRT is very
simple to implement but has a relatively long latency. We call a SRT algorithm
radix-r SRT algorithm if the number of precision digits produced after each iteration
is r.

The basic idea behind SRT is to use a trial and error process. We first estimate
the first quotient digit and then obtain a partial remainder. If the partial remainder
is negative, we successively try smaller digits until the remainder turns positive. This
is also the reason why SRT has a longer latency. Higher radix SRT algorithms will
need to do less iterations but each iteration will take longer. We call a SRT algorithm
radix-r when each iteration produces lg n significant bits.

Assume that we are to implement a radix-r SRT algorithm for N/D. The initial
look-up for the initial guess of the partial remainder is

PO = N (5.4)

During iteration, lg r bits are produced. These bits are determined through by a
quotient-digit function. It is a function of three parameters, radix, partial remainder,
and divisor:

qji+1 = F(rP, D) (5.5)

and to obtain the next partial remainder, the iterative formula is:

Pi+1 = rP - qi+1D (5.6)

The final result is the sum of all the quotient bits properly shifted:

k

Q = Z qi x r-' (5.7)
i=1

There are a few parameters we can change to gain better performance. The sim-
plest of them is to increase the radix of the algorithm, therefore, reduces the number
of iterations necessary. However, it should noted that as the radix increases, the la-
tency of each iteration also increases because the quotient selection function becomes
much more complex, therefore lengthen the critical path as well as the practicality
of the hardware for the selection function becomes infeasible. Therefore, what is the
best radix to use is decision which should be based on individual cases.

The most complex part of the algorithm is the quotient bits selection function.
The function selects a quotient from a quotient digit set that is composed of symmetric
signed-digits. For example, if we are producing b = lg r bits per iteration, the quotient
set would contain:

Quotient - Set= {-r+ 1,-r+2, ... , -1, 0,1, - -, r - 2, r - 1} (5.8)

We will not detail the quotient selection function but rather give an example of a
radix-2 SRT algorithm. For a radix-2 algorithm, the quotient selection function is:

35

qj = 1 (5.9)
qj = 0 (5.10)
gj = 1 (5.11)

Example: Use radix-2 algorithm to compute N/D where

N = 0.00110012

128 1J0
D =0.0112

1. Iteration #0:

P= N
2Po = 0.0011001 << 1

= 0.0110010

According to the quotient selection function, we assign qi = 0.

2. Iteration #1:

P1 = 2Po - qoD

= 0.0110010

Thus,
2P1 = 0.1100100 (5.12)

we assign q2 =1-

3. Iteration #2:

P 2 = 2P 1 -D
= 0.0110100

2P2 = 0.110100 (5.13)

leads to q3 = 1-

4. Iteration #3:

P3 = 2P 2 -D

= 0.011100

2P 3 = 0.111000 (5.14)

leads to q4 = 1.

36

5. Iteration #4:

P4 = 2P3 -D

= 0.000000

Therefore, the quotient is 0.0111002 = 1 and the remainder is zero.

5.2.3 Hybrid of Newton-Raphson and SRT and Use of Look-
Up Table

Many practical division algorithm has been a hybrid of the Newton-Raphson and
SRT algorithms. Moreover, an initial look-up table is very frequently used to give
initial estimates of the reciprocal. Look-up tables usually saves one to two iterations
in the beginning with a reasonable size. High radix SRT algorithms have also been
heavily studied. For example, in Cyrix floating-point coprocessors, two iterations of
Newton-Raphson were used with an initial look-up table, then a high-radix SRT is
used to obtain the final result.

5.2.4 Goldschmidt Algorithm

After examining Newton-Raphson and SRT algorithms, it should be noticed that
both algorithms are completely sequential, i.e., the data necessary to start each new
iteration can only be obtained after the previous iterations is done. There is very
little ILP to be explored in these algorithms. Goldschmidt algorithm, on the other
hand, can be run in parallel. This algorithm was proposed by R. E. Goldschmidt [4].

The Algorithm

The basic idea of the algorithms is to keep multiplying the dividend and divisor by
the same value and converge the divisor to one, thus the dividend converges to the
quotient:

No
Do
No P1

D o P1
No P1 Pi
Do P1 Pi
Ni

where Di -> 1 and P is the correction factor calculated in iteration i.
We now describe Goldschmidt algorithm. Assume that we are calculating N/D.

First of all, an initial table look-up is used to give an rough estimate of the reciprocal
of the divisor.

37

1 1
Po ~ -- = - 1+ Eo (5.15)

D D
Term EO represents the error/difference between the actual value and the value

obtained from the look-up table. We then multiply D by P to obtain

Do = D x PO

=D x (- + Eo)
D

- 1+D*Eo
= 1+Xo (5.16)

where X0 is the new error term and PO is the correction term. We then multiply
the dividend by P also, obtaining:

No = N x Po

- x (1 + Xo) (5.17)
D

Next step is the key step in the algorithm. The goal of this algorithm is to
iteratively reduce error term Xi and when Xi is close enough to 0, Ni is the quotient.
To reduce X, a simple equality is used: (1 + E)(1 - E) = 1 - 2. When E < 1, the
value reduces quadratically. Therefore, the error correction term P±i+ is:

P+ 1 = 2 - Di = 2 - (1 - X,) = 1+ Xi

A clever way to eliminate the need of this subtraction is to use two's complemen-
tation. When the value of x is between 1 and 2, 2 - x = 2 where -T represents the
two's complementation of x.

Example: Compute 2 - x when x = 1.7510 = 1.1102

Solution: 2 - x = x = 0.0012 + 0.0012 = 0.0102 = 0.2510

Therefore, putting everything together, the algorithm runs as follows:

1. Initialization Step:

1

D
Do = D x X

No = N x X

2. Iteration Step:

P+1 = 2 - Di

Ni+1 = Ni x P+ 1

Di+1 = Di x P+1

38

3. Q = Neo

Table Look-up
and Initialization

Iterations

Final Answer

Figure 5-2: Data Dependency Diagram in Goldschmidt Algorithm

Parallelism in the Algorithm

Unlike to Newton-Raphson or SRT, Goldschmidt algorithm can be performed in par-
allel. In the initialization step, Do and No can be calculated in parallel after the table
look-up of PO. In the iteration step, as soon as P+1 is calculated, Ni+1 and Dj+1 can
be computed in parallel. Refer to the data dependency diagram shown in Figure 5-2.

During each iteration, there is one two's complementation, and two multiplica-
tions. The multiplication can be done in parallel. Notice that two's complementation
is performed as part of a cycle that performs multiplication. In next chapter, a new
approach will be presented which reduces the critical path by eliminating the two's
complementation on the critical path.

Pipelined Multiplier Implementation

Flynn et. al. presented an implementation using a two-stage pipelined multiplier for
Goldschmidt algorithm as follows [8]:

39

Cycles: 0 1 2 3 4 5 6 7 8 9
X: X0 X1 X2
D: Do Do Di D1 D 2 D 2

N: No No N1 N1 N 2 N 2 N3 N3

Table 5.1: Implementing Goldschmidt Algorithm

This timing diagram assumes that the multiplier has a throughput of one multi-
plication per cycle and latency of two cycles.

Minimum Cycle Delay

One important point which should be examined closely is how does the algorithm
calculate the two's complementation. During the iteration,

X+1 = Di.

In the timing diagram, however, Di and Xj+1 appears in the same cycle, e.g., cycles
2 and 4. Therefore, in cycles 2 and 4, the time required to perform the computation
is at least the time required to propagate through the second stage of the multiplier
and the time required to propagate through the two's complementer, which include
an adder that takes both area and time.

For precisely this reason, an approach that commonly taken is to approximate
the two's complementation using one's complementation which eliminates the need
to propagate through the adder. However, this approach would introduce error in
every iteration of the algorithm and could require larger initial look-up tables or
more iterations to obtain the necessary precision.

In the next chapter, an alternative to Goldschmidt algorithm is presented which
has the same performance but removes two's complementation from the critical path,
thus reduces the minimum cycle delay.

40

Chapter 6

A Fast Parallel Division Algorithm

In this section, a new parallel algorithm will be presented. It is similar to Goldschmidt
algorithm. The comparison between the two will be presented later this chapter.
The key difference between this algorithm and Goldschmidt algorithm is that this
algorithm does not need to compute two's complementation. Instead, it performs an
addition by one at the most significant bit. We will first describe the algorithm. For
convenience, let us call this algorithm Algorithm A.

6.1 Algorithm

Algorithm A is based on the following observation:

1 _ +
(6.1)

-y 1 -y 2

_ (1 + y)(1 + y2) (6.2)
1-y

_ (1 + y)(1 + y2)(1 + y4) (6.3)
1-y

_ (1 + y)(1 + y2)(1 + y4)(1 + y8) (6.4)
1 - y16

....... -(6.5)

Notice that the quantity 1- y16 is very small for a small y. Therefore the following
is proposed - in performing a/b, shift b to fall in the range [0.5, 1). and select
1 - y = b, Algorithm converges quadratically since y < 0.5. We will first describe
the algorithm, and in Section 6.4, the algorithm will be compared to Goldschmidt to
demonstrate its advantages.

The beginning of the algorithm is the same as Goldschmidt algorithm, i.e., a table
look-up.

1

41

1=1 + Eo
D

=- (1+ Xo)
D

Again, term EO represents the error/difference between the actual value and the
value obtained from the look-up table. Term Xo is the y term in Equation 6.1, which
is the actual error term that the algorithm tries to correct.

Next step would be to obtain the approximate quotient by multiplying N with
KO:

No = N*L (6.6)

= N* -(1 + Xo) (6.7)
D

= Q*(1-+ Xo) (6.8)

In order to decrease the error term X, we need to compute 1 - Xo. Therefore, we
first compute -Xo.

1-D*Ko = 1-(1+X o)

=-x0

We then add one to -Xo to obtain the desired term,

Ni No * (1 - Xo)

Q * (1+ XO)(1 - XO)
= Q * (1- X2)
= Q * (1 - X1)

where X1 = X2. The error term, Xj, is decreasing quadratically.
During the next iteration, we need the term 1 + X 1. Since we already know the

value of Xo, 1+X 1 can be easily obtained by squaring X0 and add one to it. Therefore,

N2 = N * (1 + X2)
= Q * (1 - X1)(1 + X 1)
= Q * (1 - X2)
= Q * (1 - X 2)

Again, the error term converges quadratically. Thus, Neo = Q. For a single-
precision division, 5 iterations are necessary without the use of look-up table, and
2 iterations with a reasonably sized look-up table. For double precision, one more
iteration is needed.

Therefore, the entire algorithm is:

42

1. Initialization Step:

L 1 (6.9)
D

No N*L (6.10)

X = 1- D * L (6.11)

2. Iterative Step:

P = 1+Xi (6.12)

N+1= Nz * P (6.13)

Xi+ = Xi (6.14)

3. Final:
No= Q (6.15)

6.2 Parallelism

Similar to Goldschmidt algorithm, algorithm A also has a two-way parallelism. Re-
fer to the data dependency diagram shown in Figure 6-1. During each iteration,
one addition and two multiplications are required. There are two key differences be-
tween algorithm A and Goldschmidt algorithm which give algorithm A an edge over
Goldschmidt algorithm. We will compare the two algorithms in Section 6.4.

6.3 Implementation of Division

We will use two Raw tiles to implement algorithm A. Tile 0 will be computing Ni
and tile 1 will be computing Xi in Equations 6.13 and 6.14. For convenience, we will
describe the task of tile 1 first.

Instructions assigned to Tile 1

1. Loading constants and wait for divisor. Divisor is stored in $5.

lui $7,126
lui $8,32768
add $5,$csti,$O

2. Check for division by zero.

s1l $10,$5,1
beq $10,$0,main.DIVBYZERO

3. Computing offset in the look-up table.

43

Table Look-up
and Initialization

Iterations

Final Answer

Figure 6-1: Data Dependency Diagram in New Division Algorithm

s1l $15,$5,8
and $14,$15,$7

4. Unpack mantissa and do initial table look-up to obtain L in Equation 6.9.

lui $at,(divtable>>16)
ori $at,$at,(divtable\&Oxffff)
addu $at,$at,$14
1w $4,O($at)

5. Send over the value of L to tile 0 and finish unpacking mantissa.

add $csto,$4,$O
or $15,$15,$8

After table look-up, we compute the initial values of X.

6. Calculation of X0.

multu $15,$4
mfhi $15
srl $15,$15,1
sub $15,$at,$15

44

7. Send over the value of X 0 to tile 0. Notice the term that tile 1 needs is 1 + Xo.
This addition is hidden using the instruction to communicate between the tiles.

add $csto,$15,$at

By now we have finished the initialization step and ready to enter the first it-
eration.

8. Iteration #1, calculates X1 = X02

multu $15,$15
mfhi $15

9. Send over X1 to tile 0.

s1l $csto,$15,3

10. Iteration #2, calculates X 2 = X2

multu $15,$15
mfhi $15

11. Send over X 2 to tile 0.

s1l $csto,$15,7

For single precision floating-point division, only two iterations are necessary
after the initialization step. Therefore, tile 1 is done.

Now let's describe the task of tile 0, given that error term X is calculated else-
where, tile 1, and fed into tile 0 properly. We assume that dividend N is stored in
$4, and divisor D is stored in $5.

Instructions assigned to Tile 0

1. First, we route the divisor to tile 1

add $csto,$5,$0

2. Check for division by zero

s11 $10,$5,1
beq $10,$0,main.DIVBYZERO

45

3. Unpacking

" unpack mantissa

s1l $15,$4,8
or $15,$15,$at

" unpack sign and exponent of N sign of N is placed in $14 and exponent
of N is placed in $13.

srl $14,$4,31
s1l $13,$4,1
srl $13,$13,24

" unpack D. $11 contains sign of D, $10 contains exponent of D.

srl $11,$5,31
sl $10,$5,1
srl $10,$10,24

4. We will first compute the resulting exponent and sign since tile 1 will not be
able to finish the table look-up and route the result back to tile 0 yet. Resulting
exponent will be stored in $10 and resulting sign will be stored in $11. It also
checks for underflow before computing sign.

addiu $13,$13,127
sub $10,$13,$10
srl $12,$10,31
bne $12,$0,main.UNDERFLOW
xor $11,$14,$11
sli $24,$11,31

5. We now enter the initialization step, calculating No = N * Xo. Term X0 is
routed from tile 0.

add $9,$csti,$0
multu $15,$9
mfhi $15

6. We are now ready for iterative step. Iteration #1 calculates N1 = No * X1

sii $9,$csti,1
multu $15,$9
mfhi $15

7. Iteration #2, calculates N2 = N1 * X2.

46

add $9,$csti,$at

multu $15,$9

mfhi $9

Two iterations are sufficient for the accuracy required by single-precision calcu-
lations. Therefore, we enter the final steps to pack the result.

8. Normalization

addiu $9,$9,4
or $rlo,$9,$O

addiu $14,$rli,1
slly $9,$9,$14
srl $2,$9,9

9. Check for overflow

subu $10,$10,$14
addiu $10,$10,3
slti $11,$10,OxOOOOOOFF

sit $12,$0,$10
and $11,$11,$12

beq $11,$0,main.OVERFLOW

10. Final packing

s11 $10,$10,23

or $2,$2,$10

or $2,$2,\$24

The entire algorithm takes 50 cycles to execute. If packing and exception checks
can be done in hardware, the latency is reduced to 36 cycles.

6.4 Comparison with Goldschmidt

From the surface, algorithm A is simply a different implementation of Goldschmidt
algorithm. However, the advantages of algorithm A over Goldschmidt algorithm will
be presented here. There are two key differences between the two algorithms.

1. The subtraction on Goldschmidt algorithm's critical path is replaced by an
addition on algorithm F's critical path.

e For Goldschmidt algorithm:

P -i = 2 - Di (6.16)

47

* For algorithm A:
Pi1 = 1I+ X, (6.17)

2. During each iteration of Goldschmidt algorithm, two multiplications are per-
formed,

Ni1 Ni * P±i

Di1= Di * Pi

where N, = Quotient and D, = 1.
However, during each iteration of algorithm A,

Ni1 Ni * P

Xi+ 1 =Xi

where N, = Quotient but unlike Goldschmidt, X, = 0.

6.4.1 Area Comparison

The first key difference replaces the subtraction in the critical path of Goldschmidt
by a addition. From the software point of view, the two variations would have the
same latency. However, in actual hardware implementation, algorithm A wins.

As shown in the example on page 38, the subtraction 2 - X in Goldschmidt
algorithm is cleverly done using a two's complement given X < 2. Performing a
two's complement requires a inverter and a ripple-carry adder that are either 24-bit
or 53-bit according the precision requirement. Refer to Figure 6-2.

Di -1 24 or 53 bit

Inverter

24 or 53 bit

Carry-Ripple Adder

p1,1 -+ 24 or 53 bit

Figure 6-2: Hardware for Two's Complementation

In algorithm A, 2-X is replaced by 1+X. This addition is different from the one in
the two's complementation. In Goldschmidt, the one is added at the least significant
bit. Therefore, a full-width adder is necessary. However, in algorithm A, the addition
adds one, which is the most significant bit in the representation. Therefore, a trivial
solution is available to avoid using the integer adder for it. We know that X will
always be less than 1 since X is the error term and X keeps decreasing quadratically.
Therefore, to perform the addition, simply hard wire the most significant bit to be 1.
Refer to Figure 6-3. Thus algorithm A completely eliminates the area necessary to

48

implement the hardware used to perform two's complementation. At the same time,
it also greatly shortens the critical path. In particular, a 53-bit ripple-carry adder
uses a considerable number of gates and takes a long time to finish computation.

X.

PI+ 1

Figure 6-3: Hardware for Addition by One

Parameter Values

WIDTH64
WIDTH32

Delay
C

3.18
2.93

(ns)
E

2.05
1.78

by Power
H

1.66
1.48

Level
J

1.71
1.50

Area
C

1350
606

(cells) by
E

1413 1
636

Power
H
686
768

Level
J

1799
853

Table 6.1: Two's Complement Delay and Area

Table 6.1 shows the delay and area of their two's complementer. We see that
the slowest delay among the 64-bit two's complementation takes 3.18 nanoseconds,
which is close one cycle on a 300 MHz machine and more than one cycle on a 333
MHz machine. Even the fastest one takes 1.71 nanoseconds which takes more than
half a cycle on a 333 MHz machine. Similarly, it takes a considerable amount of area
too. The area it takes is roughly the same as a leading zero counter. Algorithm A
completely eliminates the need to use any of these hardware and reduces the latency
directly off the critical path. Therefore, the hardware unit can be clocked at a much
faster rate.

6.4.2 Latency Comparison

Another advantage of algorithm A over Goldschmidt algorithm is that one of the two
multiplications during each iteration doesn't have to be a full-width multiplication.
As pointed out earlier, one multiplication is to square the error term Xi. Since the
error term is approaching 0, after each iteration, the number of leading zero bits are
doubled.

Example: Assume that there is no initial look-up table, all input start on the same

49

initial guess. Since the range of the mantissa is [1, 2), the range of the reciprocal is
(0.5, 1]. Therefore, the hardwired initial guess chosen is 0.75.

Assume initially that:
XO < 0.01000 ... 0002

We have:

Iteration #0: 2 leading zeros

Iteration #1: 4 leading zeros

Iteration #2: 8 leading zeros

Iteration #3: 16 leading zeros

Iteration #4: 32 leading zeros

Iteration #5: 64 leading zeros

Table 6.2 shows the multiplication widths necessary during each iteration.

Table 6.2: Multiplication Widths for Algorithm A

As we can see, towards the end of the iterations, the number of non-zero significant
digits decrease dramatically. Therefore, not all multiplications are required to be
full-width multiplications. The latency required to perform multiplication with less
bit-width are generally smaller than wider bit-width ones.

Table 6.3 shows the delay and area of a signed multiplier. Notice that during iter-
ations 3 and 4 during a single-precision division, only 16-bit and 8-bit multiplications
are necessary. According to Table 6.3, a 32-bit multiplier uses 22967 cells. However,
during iteration 3, a 16-bit multiplier is necessary, which only uses 6432 cells. Fur-
thermore, a 8-bit multiplier, which is sufficient for iteration 4, only uses 1875 cells.
Algorithm A introduces significant savings for the hardware area. And by the same
token, it also reduces latency.

This advantage could also have impact on high precision operations. Let's look
at the following example.

50

Iteration # Multiplication Width
Single Double Quadruple

1 22 51 111
2 20 49 109
3 16 45 105
4 8 37 97
5 - 21 81
6 -_ - 49

Parameter Values Delay (ns) by Power Level Area (cells) by Power Level
C E H J C E H J

N4_M4 5.24 4.11 3.24 3.07 554 560 633 717
N8_M8 7.00 5.20 4.25 4.01 1875 1902 2190 2470

N16_M16 9.47 6.32 5.39 4.67 6432 6491 7535 8477
N32_M32 11.72 7.87 6.71 6.19 22967 23217 26878 29919

Table 6.3: Signed Multiplier Delay and Area

Example: If quadruple precision is required and architecture only supports 64-bit
multiplication.

To perform the mantissa multiplication, a 128-bit multiplier is required. However,
when we only have 64-bit multipliers, we need to perform four 64-bit multiplications
and three 64-bit additions. In Goldschmidt algorithm, every multiplication has to be
done as described. However, in algorithm A, the number of significant bits during the
last iteration is less than half of the width of the initial multiplication. Therefore, in
the context of this example, only one 64-bit multiplication is necessary, considerably
reduces latency.

6.4.3 Relative Error in Division Algorithms

There are three sources of error that affect division algorithms in general. First
source of error is caused by the termination of the algorithm since we can not keep
multiplying correction terms indefinitely. Second one comes from the truncation of
the the significant bits after multiplications, i.e., we can only retain a finite number
of bits. The third source of error, however, is introduced by approximating two's
complementation using one's complementation in the algorithm to reduce the cycle
latency. In this section, each one is briefly discussed.

Termination

The termination error is the error caused by the inability to keep multiplying correc-
tion terms forever. For example, for single precision division, 5 iterations are used,
i.e., term

00.

1 y2' (6.18)
i=3

is not multiplied to the final result. Let us give an upper bound on the value of
term expressed in Equation 6.18.

51

The following formulas are useful in the analysis:

1+ x < ex < 1+ X + x 2 (6.19)

when x is a small number and e is the base of natural log.

we have

1 < (1 + y)(1 + y 1 6)(1 + y 32) ...

< ey8 * e 1 * 232

< e+Y16 +32+---

< e ' 1.1*Y8

< 1 + 1.1 * y8 + *y 8) 2

< 1+1.2 * y 8

The value is very close to 1. The error caused by termination is very small.

Truncation Error

After each multiplication, only a finite number of bits are retained for the next itera-
tion. The truncated bits, even though represent a very small value, cause error. This
is a common problem to both Goldschmidt algorithm and algorithm A. The error it
introduces is the same for both algorithms. Therefore, extensive analysis will not be
done here.

Approximating Two's Complement Using One's Complement

Since Goldschmidt algorithm uses two's complementers which requires considerable
amount of area and time. In many practical applications, the two's complementation
is approximated by one's complementation so that the hardware can be clocked faster.
The difference is that the addition by one at the least significant bit is ignored.
However, there is significant disadvantage with this approach. This approximation
takes place during every iteration and the error it introduces keeps propagating into
all future iterations.

Algorithm A eliminates most of the error from this source by removing the two's
complementation out of the computation in all iterations except the first one.

In the following, a more detailed analysis of how much error is introduced by
approximating two's complementation by one's complementation is presented. This
analysis is done for algorithm A, i.e., only the first iteration creates this error. For
Goldschmidt algorithm, this analysis has to be done for every iteration.

Assuming that we are performing N/D. We use the following notation:
Based on the representation, the following hold:

B N(1 + y)(1+ y 2)(1 + y 4)
A N(1 + f)(1+ f 2)(1 + f 4)
Q = N(1 + y)(1+ y2)(1 + y 4)/(1- y 8)

52

We notice,

B
< 1-Y 8

<1I

thus,
B < Q.

Next, we can claim that y = f + e, thus we have

y < f
1+y < 1+f

1+y 2 < 1+f 2

Therefore,
B> A

Next, let us examine the difference between A and Q.

A

Q
_ (1I + f)(1 + f 2)(1 + f 4)(1 - y8)

(1 + y)(1 + y2)(1 + y4)
= (1 + f)(1 + f 2)(1 + f 4)(1 -y)

(1I + f)(1 + f 2)(1 + f 4)(1 - (f + e))
(1 -f 8) -e(+f)(+f 2)(1+f 4)
B

= -+(y-f)-e(1+f)(+f 2)(1+f 4)Q

Since y = e + f, we have e = y -f:

B+ e(y + f)(y 2 +
Q f2)(Y4 + f 4) - e f

53

symbol meaning
y y = 1 - D, the error term
f y modified using one's complement
e the value of last bit
A final result of the division N/D using one's complement
B final result of the division N/D
Q the theoretical value of N/D

A

B 1i-f 8)> --- el
Q 1'-f
B e

Q 1-f

We also know that,

B
1> -

A

Q
B e

Q 1-f
Y - e

= 1-y 8
1 -f

Since e << f < d << 1, the additional relative error caused by using one's
complements is bounded by e/(1 - f). It is on the order of e, the least significant bit,
which is tolerable.

54

Chapter 7

Floating-Point Square-Root

Operation

In this section, we will first introduce the generic square-root algorithm. Then, a
parallel one which parallels Goldschmidt for division will be presented as well as the
implementation on RAW and it's performance.

7.1 Generic Newton-Raphson Algorithm

Equation 5.1 gives the iterative formulation used in Newton-Raphson algorithm. A
straight forward implementation of the algorithm would use

f (x) = 2 - B (7.1)

where B is the input to the square-root operation. According to Equation 5.1, the
iterative formula for the naive Newton-Raphson would be

X, + B
zi+1 = 2 (7.2)

Notice that there is a division involved in every iteration which can take many
cycles to complete. Therefore, a simple modification to the naive approach is to
compute 1/v/5 and then multiply by B. In this case, the equation used for Newton-
Raphson is

1
B (7.3)

Plugging into Equation 5.1, we obtain

x -
= (3 - B * X2) (7.4)

Equation 7.4 is the iterative formula for the modified Newton-Raphson algorithm.
Notice that the division previously existed in each iteration is removed by better
formulation of the algorithm.

55

Algorithm N

Therefore the algorithm is described as following, for v'B

1. initialization step: Initial table look-up:

Ko ~~i|/5v

2. iteration step:

K - Ki (3 - B K,2) (7.5)
i+1 2

3. final step:
V = KO x N

During each iteration, there are three multiplications and one subtraction. This
algorithm is completely sequential.

7.2 Parallel Square-Root Algorithm

Flynn et. al. detailed a parallel algorithm in [8], algorithm G, which we will present
in this section.

7.2.1 Algorithm G

On calculating I/N:

1. initialize:

1
ro ~ (7.6)

Bo =N (7.7)

X 0 = N (7.8)

2. iterate:

SQri ri *ri (7.9)

Bz+1 =B * ri (7.10)

X + Xi * SQrj (7.11)

r + 1 + 0.5 * X 1 (7.12)

3. final:
N B. (7.13)

56

We briefly show how this algorithm works. The term Xi is the convergence factor
and X, = 1.0. Initially, table look-up gives

1

1

V/N

leads to

SQro = + 2c 2

N +
1 2E

N +

X1= 1+2e NK

The term 2edv is the error term and it converges quadratically.
Assume that Xi = 1 - 6 where 6 is the error term.

ri = 1 -0.5* X/

= 1+0.5*6

Therefore,

62
SQr = 1+6+-

4
~ 1+6

leads to

Xai = 1 - 62.

We notice that

X = X* SQro* SQr1 * ...

= N*lU1OSQri
=1

Therefore,

110 SQr, = (flo ri)2

1
N

which means flri = 1/v'. Finally

= Bo * ri

= N *r r

vN

57

7.2.2 Parallelism

This algorithm has some parallelism that we can explore. Figure 7-1 shows the data-
dependency of this algorithm. The critical path is the path along the left. On this
critical path, there are two multiplications, and two subtraction.

Iteration i

Figure 7-1: Data Dependency Diagram for Algorithm G

Using a two-stage pipelined
shown in Table 7.1 [8]:

multiplier, this algorithm can be implemented as

Cycles: 0 1 2 3 4 5 6 7 8 9 10
T: rTo ri r2

SQr: SQr1 SQr1 SQr2 SQr2
B: B1 B1 B 2 B2 B 3 B3
X: X 1 X1 X 2 X 2

Table 7.1: Implementing Algorithm G

In the next chapter, a different square root algorithm will be presented. It parallels
algorithm A as algorithm G parallels Goldschmidt algorithm.

58

Chapter 8

A Fast Square Root Algorithm

In this section, a new parallel square-root algorithm will be presented. It is similar
to algorithm A and has a few advantages over algorithm G in a similar fashion. For
convenience, we call this the following algorithm algorithm B. Algorithm B parallels
algorithm A as algorithm G parallels Goldschmidt algorithm.

8.1 Algorithm

In this section we will first introduce the basic algorithm. Section 8.1.2 shows the
correctness of the basic algorithm. In Section 8.2, further improvement will be added
onto the basic algorithm.

8.1.1 Basic Algorithm

The basic steps of algorithm B are as follows:

1. Initialize:

P ~ (8.1)

Bo N*P (8.2)

eo= BO* P - 1 (8.3)
(8.4)

2. Iterate:

SQei = ei*e (8.5)

Qi -3 (8.6)
4

Rj~j = 1 - (8.7)

59

Bi+1 = Bi * Rj+1 (8.8)
ei+1 = SQej * Qj (8.9)

3. Final:
IKZB-Bo (8.10)

This algorithm converges in a quadratic fashion since the error term. ej, decreases
as:

e3 - 3 * e?2
ei+1 - 4 (8.11)

Each iteration contains three multiplications, one two's complementation, two
shifts and two additions. From the surface, it seems that algorithm B has a bit
more work compared to algorithm G. But in Section 8.3, we will show how can
these operations be performed in parallel and critical path can be reduced compared
to algorithm G. Before that, the correctness of the algorithm will be presented in
Section 8.1.2.

8.1.2 Correctness

Let's take a look at how this algorithm works. To best understand it, let's introduce
one more variable which does not appear in the algorithm. Let Xi = 1+ ej. We make
the following claims:

1. Term X, = 1 with quadratic convergence.

2. Xi+1 = Xi * R,.

3. Boo = VV*l H90 Ri

Claim 1

The first claim is trivial to verify since X, = 1 + eo and ec = 0.

Claim 2

Now let us verify claim 2. Assume first that,

Xj = 1+ ej

Ri = - -.
2

Following the algorithm, we obtain that

Xi+1 =I + ei+1
e - 3 * e?

=1+ 2 4

60

Squaring Ri gives:
2

Rf= 1 - ei +I 'p2 4e

Lastly,

Xi+1 Xi R +1* R+ 1

2

=(1 + ej)(1 - ej + -)

ei' - 3 *e?
=1+ * *

= 1+ ei+

Base Case

Initially, table look-up gives

P 1

1

IN
BO = N*P

- (/(1 + 6vN)
= /N* Ro

leads to

X = 1 + eo

= 1+ 26VN + (6V/N)2

= R2

Result

B00 = N IiR

N- N* VB0

SN

8.2 Improvement on the Basic Algorithm

A simple change in the basic algorithm could eliminate one two's complementation in
each iteration except the first one. Recall that during each iteration, the calculation
required are:

61

SQei =ei * e
ei - 3

4

Ri+1 =1 -
2

Bi+1 =Bi * Ri+1

ei+1 SQei * Qi

Notice that at the start of every iteration, term ei is always negative except maybe
the first iteration due to the table look-up. This is because SQei_1 is always positive
and Qi_1 is always negative. However, if we modify calculation for Ri to the following,

Qi = 3 + ei4 (8.12)

then ei will always be positive. Therefore, calculation for Ri can be changed to

Ri+1 = 1 + -' (8.13)
2

thus eliminating the two's complementation. However, this change can be made
only if term e is positive at the beginning of iteration i. Therefore, during the first
iteration, we need to use the basic algorithm. To briefly justify the modification,
assume that

X = 1 - ei

Ri =I + -*.
2

With the modification,

Xi+1= 1 - ei+1

e - 3 * e?
1 -

4

Squaring Ri gives:
2

Ri =1+ei + -*-
4

Leads to,

Xi+1 * Xi R +1
2

= (1 - ei)(1 + ei + -)
4

4
= 1 -ei+1

The benefit of this modification will be shown in Section 8.4.

62

L - - - feed backfor next iteration

Figure 8-1: Data Dependency Diagram for Algorithm B

8.3 Parallelism

There exists parallelism in algorithm B that we can explore to speed up the calcu-
lation. As usual, let us look at the data dependency diagram, shown in Figure 8-1.
We see that R's, SQe's, and Q's can all be calculated in parallel. The only true
dependence is that ei+i depends directly on SQei.

8.4 Comparison with Algorithm G

We first give the timing diagram for the algorithm, assume that we use a two-stage
pipelined multiplier. The timing diagram is shown in Table 8.1. It shows that the
number of cycles required for square-root is the same as algorithm G. A total of
10 cycles are required and six multiplications are performed. If the algorithm is
performed serially, then it uses one less multiplication then algorithm G.

Table 8.1: Implementing Algorithm B

There are two major advantages algorithm B
be presented in the following sections.

possess over algorithm G. Each will

63

Cycles: 1 0 1 2 3 4 5 6 71 8 9 1 10
P: P
B: Bo BO B 1 B1 B2 B2
e: eo eo ei ei
SQe: SQeo SQe1

R: R1 R2
Q: I Q1

- - - - - - - - - - - - - - n

8.4.1 Reduced Critical Path

The first key difference here is that the critical path of algorithm B is shorter com-
pared to algorithm G. To recap, during each iteration algorithm G performs:

SQri ri ri

Bi+ = Bi * ri

Xi+ = Xi SQrj

ri+1= 1 + 0.5 * X/ 1

out of the four variables being updated, B is not on the critical path, i.e., the
critical path contains two multiplications and a two's complementation.

SQrj =r ri

Xi+1 Xi * SQri

rj+1= 1+0.5*Xf+1
During each iteration of algorithm B, the algorithm performs:

SQei =e ei

Q ej - 3
4

R+1 = 1 - 2
Bi+1 = Bi * Ri+1

ei+1= SQej * Qj

However, out of the five variables being updated. The critical path only contains

SQej =e ej

ej+1 = SQej * Qj

which contains only two multiplications. Compared to algorithm G, the two's
complementation on the critical path of algorithm G is no longer on the critical path
of algorithm B.

Notice that when calculating the last value of B, the value of R is required. In the
basic algorithm presented in Section 8.1, computing R requires a two's complemen-
tation, which is in the critical path of algorithm B. However, with the modification
made in Section 8.2, this two's complementation is eliminated for all iterations except
the first one. Therefore the computation of R required by the last multiplication does
not need to propagate through the adder.

Refer to Table 6.1 for a rough idea of the delay through a two's complementation.
Therefore Floating-point square root unit implemented using algorithm B can be
clocked at a much faster rate.

64

8.4.2 Reduced Multiplication Width

Similar to algorithm A, One of the three multiplications performed by algorithm B
does not require a full multiplication, which is the step to square the error term

SQei = ei * ei.

Since error is approaching zero, this multiplication does not need all of the accuracy
of a full-width multiplier. Section 6.4.2 already discussed this advantage.

8.5 Implementation

In this section, we show how algorithm B is implemented in assembly code. Again, we
employ two Raw tiles since the critical path is longer than all the rest of calculation
combined.

Instructions assigned to Tile 1

1. First check for negative operands by checking sign.

srl $8,$4,31
bne $8,$O,main.NAN

2. Unpack the rest of field

s1l $9,$4,1

srl $9,$9,24
sli $10,$4,8
or $10,$10,$11

3. Fix the exponent. That is, if the exponent is odd, then significant is rightshifted
by one and exponent is incremented. Otherwise the significant is right shifted
by two and exponent adjusted accordingly. This step puts the range of the
significant to [0.25,1).

fix exponent
s1l $24,$9,31
beq $24,$11,main.EXPNOFIX
addiu $9,$9,1
addiu $9,$9,1
j main.EXPNOFIX1
add $0,$0,$0

main.EXPNOFIX:
srl $10,$10,1

65

4. Table look-up for initial guess.

main.EXPNOFIX1:

load initial guess rO into $5
compute offset in the table
srl $25,$10,25
sll $25,$25,2

lui $at,(sqrttable>>16)
ori $at,$at,(sqrttable&Oxffff)
add $at,$at,$25

lw $5,OxFF80($at)

lui $15,65535

5. Initialization, calculate BO, eo and send BO to tile 1.

multu $5,$10

mfhi $24

send over B_0 to tile 1
add $csto,$O,$24

multu $24,$5

srl $11,$11,3
mfhi $25
calculate eO
sub $25,$25,$11

6. Send term eo over to tile 1. Compute SQeo and R 1 .

sll $24,$25,3
add $csto,$0,$25
mult $24,$24

subu $12,$8,$25

sll $12,$12,2
mfhi $15

7. Calculate ei.

multu $15,$12

lui $11,32768

mfhi $25

8. Calculate R 1.

66

or $25,$25,$11

9. Calculate final value of B and exponent.

sl $12,$csti,3
multu $25,$12
calculate exponent
srl $9,$9,1
add $2,$9,$13
sl $2,$2,23
mfhi $5

10. Packing final result.

sl $at,$5,4
srl $at,$at,9
or $2,$at,$$2

Instructions assigned to Tile 0

1. Waiting for value of BO and eo. Compute R1 using the communication instruc-
tion.

lui $at,16384
add $24,$O,$csti
add $25,$at,$csti

2. Calculate B1 and route it to Tile 0.

multu $24,$25
mfhi $csto

The algorithm runs in 55 cycles. Without packing, it runs in 47 cycles.

67

68

Chapter 9

Summary

This thesis conducts a investigation at performing floating-point operations in par-
allel using software. A software floating-point unit is constructed and tested on the
Raw parallel architecture. The approaches taken are to explore instruction level par-
allelism; using compiler optimization; improve floating-point algorithms; and provide
special hardware for expensive software operations.

The four basic floating-point operations are implemented. For multiplication, a
two-way parallelism existed and can be easily parallelized and achieve good speed up.
For addition and subtraction, however, calculation is sequential. For both division
and square-root, parallel algorithms exist.

For all operations, unnecessary packing and unpacking for intermediate results
can be eliminated. As shown in Chapter 4, packing and unpacking takes around 30%
of the calculation and many of them are done for intermediate results.

Providing some special hardware for expensive software operations might greatly
reduce the latency. For example, If a hardware leading-zero counter can be provided,
it reduces around 20 cycles on the critical path of addition. Also, sticky shifter and
rounding logic can also reduce the length of the critical path but require little area.
On the Raw architecture, they could be implemented in the reconfigurable logic.

For both division and square-root, improved algorithms are constructed to opti-
mize the existing algorithms. Both algorithm A and algorithm B have better critical
path than their corresponding algorithms, Goldschmidt algorithm and algorithm G.
Therefore, they have shorter latency when implemented in software. Reduced criti-
cal path enables much faster clocking in hardware and reduced multiplication width
reduces the area.

Table 9 provides the comparison of performance between software and hardware.
A few things can be concluded from the data. First of all, it is difficult for software
addition and multiplication to catch up with the performance of hardware. Both
floating-point multiplication and addition are fully pipelined and have latencies of 3
cycles, where as a fast integer multiplication could take 4 cycles . Moreover, addition
and multiplication are heavily used and thus require high performance.

However, the data shows that, with good implementation and appropriate opti-
mizations, division and square-root can achieve a comparable performance as hard-
ware. If only a very small percentage of the floating-point operations are division and

69

Table 9.1: Performance Comparison

square root. It might be realistic to perform them in software whenever they appear
and save the hardware division and square root unit.

70

MUL ADD DIV SQRT
Hardware 3 3 10 12
Software 21 42 55 55

SW (w/o Packing) 14 25 40 50
SW (w/o Excep. Chk.) 8 21 34 48

Bibliography

[1] Anant Agarwal, Saman Amarasinghe, Rajeev Barua, Matthew Frank, Walter
Lee, Vivek Sarkar, Devabhaktuni Srikrishna, and Michael Taylor. The raw com-
piler project. In Proceedings of the Second SUIF Compiler Workshop, Stanford,
CA, August 1997.

[2] Rajeev Barua, Walt Lee, Anant Agarwal, and Saman Amarasinghe. Memory
bank disambiguation using modulo unrolling for raw machines. In Proceedings of
the Fifth International Conference on High Performance Computing, Chennai,
India, December 1998.

[3] William J. Dally. Micro-optimization of floating-point operations. In Proceedings
of the Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 283-289, Boston, Massachusetts, April
3-6, 1989.

[4] Robert E. Goldschmidt. Applications of division by convergence. Master's thesis,
M.I.T., June 1964.

[5] John Hennessy and David Patterson. Computer Architecture, A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., second edition, 1996.

[6] IEEE. IEEE Standard for Binary Floating-Point Arithmetic, 1985.

[7] Stuart F. Oberman. Design Issues in High Performance Floating Point Arith-
metic Units. PhD thesis, Stanford University, November 1996.

[8] Eric M. Schwarz and Michael J. Flynn. Using a floating-point multiplier's inter-
nals for high-radix division and square root. Technical Report CSL-TR-93-554,
Stanford University, January 1993.

[9] Elliot Waingold, Michael Taylor, Vivek Sarkar, Walter Lee, Victor Lee, Jang
Kim, Matthew Frank, Peter Finch, Srikrishna Devabhaktuni, Rajeev Barua,
Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring it all to
software: The raw machine. In IEEE Computer, September 1997.

[10] Shlomo Waser and Michael Flynn. Introduction to Arithmetic for Digital System
Designers. Holt, Rinchart, and Winston, 1982.

71

