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Chapter 1

Introduction

1.1 What a Bug Tracking System Should Do

When maintaining any large program, or set of programs, there are always problems

discovered by the users and the developers. Receiving, organizing, and assigning

reports on these problems is important to the successful maintenance of any major

piece of software. A "bug tracking" system attempts to perform this task.

There are a number of important considerations for the success of a bug tracking

system. First, people using the software on which the bug reports are based, should

find it easy and convenient to submit reports. This means that the interface for

submitting bug reports should be simple and familiar. If it is not, reports will not get

submitted and the system will be ineffective. Second, the interface for organizing the

reports should be acceptable to the people who have to read, analyze, and respond

to the reports. If the people responsible for fixing the software for which the bug

reports were submitted will not use the tracking system, the system will, again, not

serve the purpose for which it was designed. Third, the system should be flexible in

how it deals with the information contained in the bug reports and the information

that the people addressing the reports wish to add. This means it should be easy

to add new fields, new methods of searching the database, and new ways of finding

similar reports, so that the person fixing an error can have as much information as

possible. Finally, the system itself must be easy to maintain. It should be comprised
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of modular code with good documentation and a logical design.

1.2 Common Problems

1.2.1 Scalability

A successful software system will be in production for a long time, and a single sub-

system will be used for many packages of code. For this reason, a successful bug

tracking system should be able to run correctly, and with consistent performance,

even when there is a large number of reports. It is important to ensure that the

reports are stored in such a way that they do not require an excessive amount of

resources.

1.2.2 Reliability

Losing a report can have serious consequences. It might, for example, have contained

a crucial clue to reproducing the bug, or it might have been a report regarding a

security problem. For this reason, it is useful to have the option to implement a

design that facilitates reliable storage of the reports, reliable searching, and regular

backups.

1.2.3 Accommodating a Variety of Support Processes

With every software package, or with collections of software, there is, or should be,

some sort of support and release process. Distributions are made, patches are sug-

gested and reviewed, and many other considerations have to be accommodated. Once

a bug is fixed, the new version is usually not instantly accepted into the main code

repository. For this reason it is important that a bug tracking system allow for hav-

ing bugs solved but not resolved, and must fit in with any reviewing and releasing

procedure. Additionally, the bug tracking system should have the ability to retain

the status of the bug as it goes through the other systems of support.
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1.3 Other Bug Trackers

There are, to date, countless bug tracking programs, each written for a different

purpose. Some are well-known and some are home-grown for use within a single

company. I will highlight a few to provide a basis for this thesis.

1.3.1 netprob

Netprob is a bug tracking system which is client/server based, and has two user

interfaces: a Motif graphic user interface (GUI), and text. It has abilities to classify,

chain, and archive bug reports. It also has a facility for configuring the default

selection of reports it will display when started, and the reports for which it will

generate reminders on a weekly basis. Submission of bug reports is by email.

1.3.2 GNATS

GNATS is an email-based system with a relational database back-end. It has been

used for multiple tasks, and there has been a web interface developed for it. It

efficiently searches by field, and displays the collected reports. Its submission program

enforces certain fields to contain valid values and it has abundant submission entry

slots. All changes to reports are made with an editor interface.

1.3.3 jitterbug

Jitterbug is a web-based tracking system which receives reports either by email or

in web form. It allows users to add notes, and it has categorization by authentic

users. Authentication is dependent on the browser. Jitterbug has email notification,

searches, personal configuration, and it keeps records of all changes to reports. Instead

of a database, it uses flat, separate files to store the reports.
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1.4 Case Studies

To better understand the real problems with bug tracking systems, I asked a group

of computer scientists what features they liked or disliked in the production sys-

tems which they already used. A sufficient number of the people used GNATS, that

section 1.4.2 is devoted to it.

1.4.1 A Collection of Comments on Bug Tracking Systems

Opinions were collected on the bug systems Clarify, P V/Bug Works,1 RAID, discuss, 2

netprob, PureDDTS, Vantive, Debian, QARadar, and simple email.

The comments which were made can be summarized in the following categories:

" Platform dependence: A lot of these systems are only accessible from one plat-

form, and in many of the cases, it was not a platform which the user was

currently using.

" A variety of user interfaces: Many people either complimented their bug system

for having many user interfaces, or scorned it for lack of adequate user interfaces.

One of the most important user interfaces that respondents requested was a

command-line interface. This allows for quick queries without starting up a

bulky GUI. Text-based interfaces can also be used over any remote access, such

as telnet, or even one as primitive as a text dialup connection, and it can be

adapted by the blind or other handicapped users who cannot use a graphical

interface or a mouse. Interfaces should also be interactive. Interfaces purely

based on email, for example, do not give you realtime feedback for viewing and

altering the reports.

" Buggy systems: If a system crashes frequently, loses or corrupts information, or

does not consistently do what it should, people will not use it.

1SGI's home-grown system. It has many user interfaces and an SQL database.
2This is an MIT system which archives messages. It has a search tool, but other than that,

nothing which allows for efficient sorting and viewing of bugs and their progress.
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See also section 1.2.2.

" Abundant information: Clear and flexible information categorization facilitates

ordering, searches, and accountability for the bugs and associated knowledge.

" Posting of new information: Since new information can be added to old reports,

it is desirable to have a method to identify what information is new. Realtime

updates, to either the software maintainers or a company's clients, are also

important to keep everyone informed.

" Database segregation: It is sometimes useful to have multiple sets of information

accessible using the same server/client pair. There should also exist a method

for transfering information between two such databases.

" Multiple field searches: There are often times when one wishes to search a set

of fields, rather than only one.

" Keyword searches: If there is a collection of words which are deemed represen-

tative of the bug report, searches are more likely to return relevant reports.

" Trustworthy and flexible security: There is no single correct method of security.

Security methods also become obsolete over time. It is also important to be

able to adjust which functions of the system are controlled by security.3

" Configurable work flow: It is important that there be as many, or as few states

as needed to classify a bug. One application of the system might have more

levels of the bug fixing process than another.

* Scalability: A system should perform well when the problem gets bigger.

See section 1.2.1.

3The bug tracking system netprob had the problem that anyone who had permissions to close
and archive bugs also had permissions to do much more drastic things. For example, if a user with
archiving permissions were using the text client, they could kill the netprob server with the single
character 'K'. Restarting the server was not as trivial.
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Many of these points, (platform independence, user interfaces, categorization,

posting new information, multiple field searches, keyword searches, trustworthy and

flexible security) either already exist in my system as features, or can easily be added.

When the "bug status" field is in place, it is trivial to add configurable work flow. A

discussion of database segregation can be found in section 5.1.2 and of scalability in

section 5.4.

Every system has software bugs; it depends upon the authors and the maintainers

how well or how badly a system performs. My system, as I explain in the implemen-

tation chapter, is easy to maintain. I have done all I can to ensure that this aspect

would be present in the system.

1.4.2 A Comparison to GNATS

Many of the people who responded have had experience with the GNATS system.

Since it is one of the more usable systems available, this section focuses on it.

Primary attributes which GNATS handles well:

* Good incorporation with email

" Solicits relevant information clearly and rigorously

" Low overhead to view and alter bug reports

All of these features are present in my design and are explained in following

sections. The solicitation of bug report information in my system is a function of

sendbug which can be easily altered to include more information.

The following is a list of areas where GNATS needs improvement:

" Faster and simpler queries

" More query functionality

" A linkage between the reports and the code with which they are associated, so

that one can see the progress which has been made to fix the bug

14



" A smaller input questionnaire, with less redundant information and more field

consistency, as well as easier customization of that questionnaire

" A better maintenance interface; the current one requires editing rather than

being request-based, which seems more robust and scriptable

* Interface to a user call support service

" Better handling of historical archiving and indexing of older bugs

Section 3.9.3 provides an explanation of how my system might accommodate

chaining. My system was planned to deal with the listed weaknesses and to pro-

vide an easy, command-line maintenance interface.

Because it would depend on the specifics of the other system involved, and the

research of user call support systems is not within the scope of this project, I have

not addressed the issue of interfacing my system with other systems. However, if such

a system could be established with a generic report structure, then one could create

another database group, as discussed in section 5.1.2, and interfacing would not be a

difficult task.

1.5 The Plan

The scope of this project, if implemented to its completion, is far more than one

could do in the time allotted for this thesis. Therefore, I proposed to build a system

which has the basic features of a bug tracking system: bug entry, organization and

assignment, security, and archiving. I proposed to implement a client-server pair with

the above functionality and a design that could support additions which address the

concerns stated above. I will have succeeded if I can present a functioning client/server

pair that accepts, categorizes, accesses, and archives bug reports, and I can explain

how the design will easily accept the further features.
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Chapter 2

The Design

This chapter describes the design of the main module for the project, the consider-

ations which were taken for each object, and the choices I made before the actual

implementation of the project.

Originally the project was to be written in C++ and it was intended to be only a

functional stub of the system exhibiting the ability to eventually include the features

described in the introduction.

Figure 2-1 provides a graphical representation of the dependencies of the modules

involved in the design.

Figure 2-1: Modular Dependency Diagram for the Initial Design
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2.1 Generic Modules

This section describes the individual modules that will be used by both the client and

the server.

2.1.1 Encryption

Since privacy is a concern, the transmissions between the client and the server need

to be encrypted. I chose to use Kerberos[6] (a shared key encryption method) as a

convenient tool to do the encryption, but since I do not want to force the production

system to use Kerberos, or any single encryption method (since each has different

difficulties, limitations, and level of security), this part of the project will have four

basic functions: get-key, encrypt, decrypt and authenticate.

The get-key module is called with a server name and acquires a shared encryption

key between the client and the server specified. This allows clients to acquire keys

for communication with the server, as well as servers acquiring keys for communica-

tion with other servers. It is assumed that a server will not wish to use encrypted

communication with a client which has not already established a connection.

Once the key has been acquired, the client or server can use encrypt (giving it

the key, the sender, and the message), to prepare a message for transmission. Once

received, the server can use decrypt, giving it the sender and the message. Internal

to the encryption object, there is a key table that will hold a mapping of all senders

to their shared key.

Authenticate will verify that a request made by a client or server is an actual

request from that privileged server. This takes a sender name and an authentication

string and returns a boolean affirmation of that sender's authenticity.

2.1.2 Communications

Since both servers and clients will want to make information requests to a server,

the communications module should be universal. The module should contain all the

hand-shaking required to make a request, format it correctly for the server, and to
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wait for the reply. It should also deal with timeouts, the acceptance of large amounts

of data which has been sent in smaller chunks, and any other error checking or security

overhead.

The two main modules are send and receive. Send takes a destination and a

message, and returns a status. Receive takes no arguments and returns a message,

which may be an error report from the authentication module signaling failure.

2.2 Server

The server is expected to be run remotely, connected to the clients via the Ethernet,

and to service requests from many different clients simultaneously. This means that

the design needs to be efficient and have the potential for simultaneous processing.

It also needs to be robust, and able to survive power outages, system failures, and

other interruptions in service without loss of data. It should be easy to maintain and

configure the system, and produce backups.

The server consists of a database and a process which accepts and deals with

requests.

2.2.1 The Database

According to Database Design and Implementation by L.A. Maciaszek, the data stor-

age system for this server is not a database but an "information retrieval system." [5]

For this reason, the design of the database has none of the classical database struc-

tures. Since there is little cross-referencing of information, the system can be simple.

Any cross-referencing of whole reports can be provided more efficiently with other

mechanisms.

The basic functions of the database module are to add a report, get a report at a

client request, run a search, and update all time-related attributes of a report. When

a report is added, there will be a set of defaults for any field which the submitter of

the report did not specify. When a report is requested, the server will process the

client request and return the report. When a search is requested, the server will use

18



whatever abilities it has to return the set of reports which satisfies the search. Lastly

periodic report updates will happen during times when the server is not being used

or on a nightly basis.

2.2.2 Report Groups

To truly understand a bug, one needs as much information as possible. Report group-

ing allows for related information to be organized for easier viewing, to help the person

fixing the bug. Grouping should be as automatic as possible while still preserving

sane groups so that time is not wasted creating and maintaining the groups. There

should also be different strengths of groups so that, for instance, a direct response to

a particular report can be more closely grouped than two reports which merely have

a few attributes in common.

Any grouping which is preserved, will be done with a group object which contains

references to the reports. The basic functions will be to add a report to a group,

remove a report from a group, and show all reports in a group. Reports can be in

more than one group, so each report will have a list of groups to which it belongs.

There should also be an automatic grouping process whereby groups are prepared,

periodically, for human confirmation. As it gets better, less human intervention will be

needed to check its work. This module can be simple, or it can use a very intelligent,

complex algorithm.

2.2.3 Access Control List Manipulation

In conjunction with the transmission security, and authentication that the generic se-

curity model gives, there is an access control list (acl) system to allow selective reading

and writing to the database. Since this is a very useful, but non-essential feature,

the implementation could be simple; the acls could be merely lists of authorization

names. Also, since other systems for acling (such as MIT's Moira) have already been
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developed, this feature, as well as other extended features, such as recursive lists'

(where lists may include both users and names referring to other lists) is available by

adopting one of these systems.

In this project, acls could be a list of non-recursive strings which, in conjunction

with the security module's authentication, can be looked up to verify that a client

has the correct permissions for the function it is requesting. The basic functions of

the module are add, list, remove and check.

Some sort of acl caching should eventually be added so that the acls are not

checked for every transaction of a similar nature.

2.2.4 Configuration Files

Since the server configuration files should not, in practice, be changed very often,

the configurations can simply be files kept directly on the server machine, in a flat

file. The maintainer of the system can alter the files by hand until more flexibility

is needed. At that time, an extra maintenance client could be written for more

convenience.

The set of configuration files can be changed by a remote client. Reasonable de-

faults will be provided for unspecified fields. These higher level files can be treated

differently in the system, and can control any aspect which should be a highly ad-

justable component of the server. Examples include identification of fields which are

by default in a report, levels of priorities a report can have, how reports are indexed

in the database, or any other feature which needs to be a configurable system default.

2.3 Staff Client

The staff client is the client being used by the people who are maintaining the software,

or those who need to access the reports and do the investigations of the bugs. Since

the staff client will be mostly using the modules generic to the system, there are only

'This adds extra complexity since it is necessary to differentiate between users and list names,
resolve the list names and not get into infinite resolution loops, as well as other technical problems.
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a few modules which need to be explained here. The staff client uses the encryption

and communication modules. In an effort to make the staff client as universal as

possible, it is independent from any complex user interface. Because of this it only

needs a simple way of displaying the information received by the server in either a

convenient human or computer readable format.

So as to produce a system that is convenient to use, the design specifies a basic

user interface embedded in the staff client. To facilitate this, the client also has

get-command and process-command methods.

The other requirement for the staff client will be to read, create, and alter the

personal configuration files local to the client. These files will affect the default

information that is included in a request, as well as add and control any added

features that the client might have. Since the client will be, in normal usage, restarted

more often than the server, it should not share the configuration file modules, even

though their basic functionalities will be similar. The overall designs, therefore, make

optimizations specific to each application.

2.4 User Client

The user client is used for submission of the original reports and possible viewing

of the reports' progress within the system. Currently, the user client has a simple

design which brings up a formatted email message template and requests that the

user fill in the blanks. Later in the evolution of this project, the user client could be

more structured, and allow the user to follow up on the report, be presented with a

list of stock answers, or view reports similar to his problem. This would be an easy

extension to the requests made by the user client, with modified acling, and can fit

conveniently into the existing design described here, but it is not part of the ultimate

thesis.
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Chapter 3

Implementation

3.1 Introduction

The previous design chapter illustrated the preliminary design and the initial decisions

made, as well as describing some of the modifications to the plan. This section

explains the actual implementation and the design decisions made during the process.

The system described here was implemented in Perl.[4]

For a quick picture of the dependencies of the actual modules, see Figure 3-1.

every module

Figure 3-1: Modular Dependency Diagram for the Final Implementation
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3.2 Parser

The parser is a simple script which takes incoming reports in the form of email, and

tries to canonicalize them for the database. It also adds report specific information,

such as a tracking number and default priority.

Initially there is an email message created by a program which prompts the user

for information, and sends the email to the proper data logging address. For the

purposes of this system, it was configured to work with the existing sendbug in the

Athena environment.'

The server machine's sendmail was configured to deliver the emailed report to the

script. The script then adds the prerequisite values, and tries its best to get useful

information from the report, and assign it to fields. 2 I used the assumption that the

report would be delivered in a format which would be useful to the parser (arranged

predictably by sendbug), but the system is also flexible enough to take non-formatted

email and attempt to categorize as much information as possible, for the purposes of

classifying it in the database.

The script is configured by a list of lists, implemented as a two dimensional array,

which appears at the top of the code in Appendix A.1. Each internal list consists

of three parts. The first is a Perl regular expression which is expected to match a

line in the email. For example, when sendbug sends a subject line such as "Subject:

sgi 8.1.15: emacs," the script is configured to pull the platform, release number and

application name out of that line and place them into the proper fields. In the

configuration section of the code one can express an action which would correctly

classify and install those fields. For example, if a line matches "Subject: (.*):(.*),"

one can specify that the information found before the colon be put into the field

"platform" and the information after the colon be placed in the field "application."

Lastly, one can specify what the current default field should be. This default field

'All of the testing was done with hand-composed email, since that was the easiest way to mimic
sendbug.

2Fields are, simply, labeled pieces of information. For instance, the piece of information "Calista
Tait" would be categorized and placed in the "name" field.
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is used if none of the regular expressions in the list of possible expressions matches.

The default field starts out as "unknown," and can be changed so that the system

can classify multi-line fields correctly. For instance, text describing what actually

occurred when the bug was triggered is highly likely to be more than one line. Since

one wants to make sure that the entire explanation gets classified, one would match

an initial line which would signal the beginning of such a description and then set

the default field to "what happened" or other standard name for the field which is

to contain all the description. This allows it to be grouped properly without losing

embedded line break information.

Because the second part of the configuration is an action, this can be used to

discard unwanted information by making the action null. In normal email there are

many fields, such as the "Message-Id:" field which are not relevant in most contexts.

Even though all this configuration is in the parser script itself, it will be fairly

easy for a maintainer of this system to add any additional expressions and actions,

because it is at the top and only requires simple alterations. Most actions do not

require writing any code, just writing the field name and the information to be placed

in that field.

3.3 Database Interface

For the purpose of this implementation, I used Berkeley DB (a database management

program) and its interface to Perl as the database. Most of this implementation was

simply applying a standard abstraction over the given database functions, since the

flexibility at that level was important. The rest of this section explains the items of

interest which went beyond that.

3.3.1 The Database Configuration

The database module dealt with a set of Berkeley DB files, all of which retain the

same information, but each of which has a different field as the key. To make things

easier, the files are named in a header file. The maintainer can specify a short name
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which will be used as the actual file name, and the internal name between the servers

and the database function calls. A longer "translation name" can be specified which

matches the field name used in the internal protocol and format of the report, which

can be longer and clearer. This field name will also be used by the client to convey

the classification of the information in that field. For example, a Berkeley DB file

which is indexed by the field "tracking number" will have a translation name which

is exactly that, but internally it may be referred to as "by-no."

Because there are multiple files, the function create goes through the list of all

Berkeley DB files and creates each one. It then puts the reference returned by the

creation into an associative array indexed by the short name. This allows for flexibility

in performing functions on all the Berkeley DB files as a group, since to perform an

action on all files, one need only cycle through the array, performing the action on

each reference contained in it.

3.3.2 Put and Putcommit

This implementation is a wrapper around the provided Berkeley DB functions. The

provided functions which were used are put, which places a value in the database,

get, which retrieves a value, sync, which forces a write to disk, and seq, which would

sequentially go through the entire database. Instead of writing a put function and a

separate commit function, I chose to write put and put-commit functions, where the

put-commit function does both the put and a final sync, since I could not think of an

application which would need a commit that would not also need a put. The close

function takes care of the final write to disk, upon cleanup.

3.3.3 Add

Add takes a bug report and inserts it into all of the existing Berkeley DB files. It

uses the field specific to that file to reference it. For each file, it takes the translation

name and finds the line which has been denoted by the parsing function. It uses the

line which is denoted by that name, as the key for the entry into the Berkeley DB
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file, and then the remaining data is used for the value. The remainder of the report

retains the delimiters on the beginning of the line. For an exact printout of how these

values look, see appendix B.2. This is inefficient in several ways. A relevant revision

of the system is discussed in section 4.2.2.

3.3.4 Select

This function selects a collection of reports from the database. I designed this function

to take advantage of any efficiencies that the underlying database mechanisms would

allow. The function accepts a short name specifying which Berkeley DB file to search

in, a search pattern, and a range. It has been made as generic as possible so that it

could serve multiple uses, such as listing all reports or listing some subset of reports,

for example, those which include the word "more."

Because of the way Perl interfaces to Berkeley DB, specifying a range does not

help with the efficiency of a lookup. It is still an important feature, however, because

once the database gets big, the user will not want to search all requests but some

subset of them. Another database system might be better able to use the range

function.

3.4 Communications and Authentication

This module takes care of the transmission of requests from the client to the server and

the transmission and receiving of the reply from the server to the client. Originally

I wanted to do this with TCP/IP[10] sockets, but that proved more difficult than I

had originally estimated, so I decided to use Zephyr3 to serve for testing the validity

of the design.

Zephyr was set up to act as the lower level protocol, while ignoring most of the

advanced features it provides. I did, however, take advantage of the authentication

built into Zephyr. In this implementation, the authentication check would simply
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verify that the message had been received with a valid Zephyr authentication flag.

The module is intended to be shared by both the client and the server to ensure

consistency, but internal specializations were necessary. The init procedure, for in-

stance, had to be different for each, since the server had to acquire server specific

tickets,4 where the client could simply use the user's tickets. This would also be a

consideration when using TCP/IP sockets, because the client has to initiate the con-

nection, whereas the server just needs to listen and then do the right thing when it

receives a connection. The send function also required client and server specialization,

since the client is always sending directly to the server, while the server is returning

a message to one of many clients which may have contacted it.

The maintain function is used for upkeep tasks. In the case of Zephyr, it would

serve to renew tickets. It can have other functions when used for other connection

styles. In general, most communication methods need some function to verify if the

connection is still established, to check if there is something waiting to be received,

or to determine if the connection otherwise needs to be maintained at times other

than when there is a specific send or receive.

The receive function is fairly straightforward. It returns a connection identifier as

well as the received message, so that a response may be sent to the correct client. In

the case of Zephyr, the connection identifier is just a string containing the username of

the sender; in a socket implementation, it would be socket address information. Since

the user identifier is used only by the communication module, it can be simply a string

with the needed information, which is correctly interpreted by the send function.

Lastly there is the close function. In this case, it serves more as the cleanup

function (which prepares for the process to exit by ensuring that all processes that

have not already been taken care of are properly closed or dismissed) than as the

close function (which simply closes a current dialog),' because with Zephyr it is not

4Tickets is the name given to the shared key distributed by Kerberos, which is used by Zephyr
to authenticate the sender.

'In most cases the server must always continue to listen for new requests. When a request is
received, a communications channel needs to be created between the server and the client until the
request has been satisfactorily serviced, at which time the server closes the communications channel
but keeps listening for new requests. Upon cleanup, the listening channel will also be closed.
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necessary to close the connection after the information has been received. It would

be more generic to have two functions, close and clean-up.

3.5 Server

The server is a process which is always running, to receive and service client requests

for reading and altering the database.

3.5.1 Dispatch

Dispatch is the function within the server, which takes a request and determines

how to service it. This dispatch function runs through a set of regular expressions,

attempting to match the received request, and then executes a function associated

with the matched command. The dispatch function itself is fairly robust. To add

additional commands, the maintainer adds a regular expression and action pair, and

then a function definition, if required, for that action. This makes extending the

system easy, though not trivial.

3.6 Client

The client is as plain as possible. It is a human-readable, as well as a computer-

readable, tool which communicates with the server. The client, as of this writing,

does not have any internal checks for correctness of commands,6 nor does it have

user-configurable manipulation of the output.

The client is text-based. It gives a short startup message and a simple "request:"

prompt. It accepts a single line input, sends it to the server and receives the reply.

The data sent back from the server is printed to standard output. A lot of the

6For the purposes of developing the system, it was easiest to leave this out, since the server was
not going to be overloaded by my testing, and I did not have a perfect way to keep the commands
available to the client and the actual functionality of the server synched. In retrospect, the dispatch
configuration array used in the server could be made available to the client to do a preliminary
validity check, while keeping the functionality and client checks in sync.
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simplicity, here, is by design, since such pure text can easily be read by any other

interface, and then the user interface can be very simply changed. For more details

on how the client looks, see appendix B.2.

3.7 Logging

For the sake of simplicity, logged error and status messages from all modules were

simply written to a local file. Later, a more robust and common system could be

used.

3.8 Protocol

The internal, high level protocol is very simple, but overly verbose in an attempt to be

clear, flexible, robust and easy to debug. Some of its inefficiencies can be corrected,

however, as mentioned in section 4.2.5. Messages are transmitted in a line-based

format where each line is prefaced with the classification of that line. For example,

the client sends all requests with "request:" before the request, and all errors are

transmitted lines with "error:" at the beginning of the line. This is also used for

transmitting reports and their field names. In those cases, the field classification

names would preface the line. Any field which is not yet identified, is prefaced with

"unknown:" and all other lines are similarly labeled. If multiple reports are being

sent, they would be separated by a line matching "-Entry start-" followed by a blank

line. This delimiter could also be used to separate summary information as well as

full reports. In such a case, selected fields and partial information will be transmitted.

This can be indicated with the word "partial" and then the field name. For further

examples of how the protocol looks, see appendix B.2.

My intention was to make it very easy to extend the number of fields, since one

could just add a new line with a new preface. Some special allowance would be

made to prevent new fields from conflicting with keywords, such as "error". This

format means that it is easy for fields to hold multi-line, tabulated, and white space
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formatted lines.

I chose to use plain text, because that made debugging simpler. This requires

that more information be transmitted, but at this stage that is not a large concern.

This protocol is overly simple. Further discussion on how to improve it appears

in section 4.2.5.

3.9 To Be Finished

3.9.1 Further Database Development

The database is functional, as implemented, but it is missing some key features. One

of the simplest is the change function, which would have been used to alter reports

and make additions to their information in all databases.

I did not implement locking on the databases. If there are multiple servers at-

tempting to alter the same database, the system needs to make sure that the informa-

tion is consistent. To ensure that one server's changes are completed before another

server deals with the database would require locking the databases. Since Berkeley

DB, and other database packages, have locking implemented as part of their basic

features, this will not be difficult to add.

Also not implemented, but provided for, is the server process which would do

nightly maintenance of the database, updating time-dependent fields, compressing

older parts of the database, gathering statistics, and sending reminder notices to

users. There would also be another database function which would check for newly

created databases which did not yet contain older information, and transfer existing

information to the new databases.

3.9.2 Ads

Implementing an acling system was beyond the scope of this project, so except for

the dummy procedure, no support was put in for it. On every request made to the

server, there should be an acl check with the function involved. It could have some
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number of permissions levels. Each level would have a list of tasks which could be

performed at that level, which might include specific functions that could be called or

certain reports, classified by attributes, that it would be allowed to affect. An outside

system would take the name and the level, and determine if that user had sufficient

permission.

There would be an extended command set for the client which would add and

remove people from acls, and create and change acl lists. This could then interface

to an established acling system.

3.9.3 Chaining

One of the more important features of this system was going to be the ability to chain

bugs, with a focus on eventually having an automatic system (probably the nightly

maintenance program) to chain the bugs. Most likely I would have implemented this

by making another database where bugs which were associated with each other were

in a list indexed by the report which was currently being look at. All reports in

a group would have a list, indexed by their number, of the rest of the bugs in the

group. This creates redundancy, since every group will be listed as many times as the

number of bugs in that group. However, since it would be just the tracking number,

and most reports would only be associated with a small collection of other bugs, I

believe that this redundancy would not cause a problem. It would, however, solve a

problem evident in the bug tracking program netprob.7

3.9.4 Other

The last two features which are not yet included, are configurable fields and reasonable

tracking numbers. Some of the configurable field functionality was mentioned in the

discussion of the protocol. With that established, the only features which need to be

7The netprob problem is as follows: Given three reports A, B and C. The user chains B to A and
then chains C to B. With netprob you could only see reports which are chained to the head report.
So you could see A and B or B and C but not all three, even though the intention is to relate them
all.
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implemented, are support in the server, and the database change function. Lastly,

the tracking number is currently the Unix time at which the report arrived. This was

quick and functional, however this tracking number should be replaced with something

which is easy to remember by a human and is guaranteed to be unique. The suggested

replacement would be the current year followed by four letters, a decimal point, and

a short number. The letters alone will account for 52 reports an hour. If there are

more than that, the short number can be used.
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Chapter 4

Evaluation

4.1 What Worked Well

Much of what I implemented worked well, but has already been sufficiently explained.

This section will highlight those areas which were not explained in the preceding

chapters.

4.1.1 Extensibility and Maintainability

Because of how the code was implemented, it is very easy to add additional function-

ality, to configure it, and to maintain it. The interfaces for the modules which were

designed to be swapped out (i.e. replacing Zephyr with something more specialized,

the database with something which deals better with large amounts of data, and the

security with stronger protection) were not dependent upon assumptions about the

specifics of the modules actually used, as I have discussed. Keeping the parts of the

system which needed to be configured separate, and easily extensible, made adding

new features after the system was working, very easy and in most cases required little

debugging.
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4.1.2 Portability

Writing this project in Perl makes the system portable to any Unix system with

Zephyr available. Though the system was not tested under MS Windows, Perl is

available for Windows, so with a bit of conversion of the Zephyr interface, it can be

expected to work effectively.

Since I would like to see this system rewritten in another language, I will point

out the inherent portability of the design. The client/server communication is simple,

and since the client itself is simple, it will be easy to make clients which can connect

and accept the information from the server on a variety of platforms without much

complication. The largest problem will be to ensure that the communications module

could be written on each platform.

4.2 What Did Not Work Well

4.2.1 Parser

Dissecting the mail message line by line with only the default field as a state keeper

was not flexible enough to properly deal with mail messages. Fields which might have

multiple lines, and also might precede unmatched lines, could not be accommodated.

The addition of a flexible flagging system where one could indicate that a state exists,

but should only exist for a limited amount of time, or other, more complex indicators

would help this problem. Additionally having the default field revert to "unknown"

or some other default, after some number of lines might also help this problem. In

general though, the parser did work effectively.

4.2.2 Database

Most of the problems with the database were efficiency issues rather than actual

non-functionality.

The first problem is that the select function assumed that the keys of the database

could be given in a sorted order. Sorting is a costly operation, so instead of sorting

34



each time the function is called there are two solutions. Many databases can be kept

in a sorted fashion,I or a separate, sorted list of keys can be kept, then when select

cycles through the keys, it uses that list rather than something provided from the

database. The latter might also be in a data structure which ensures that the ranges,

which select accepts as arguments, can be used optimally to avoid accessing reports

which do not need to be accessed. The former would reduce the overhead and space

of keeping the list, if the database allows it, but may not be the optimal form for the

database for other functions.

The second problem is the method for storing the multiple Berkeley DB files,

each with different indexing. This is very wasteful of space. A relational database

would eliminate this problem easily. Alternatively, if that is not the option which

a maintainer wishes to use, the current database system could simply use tracking

numbers instead of keeping entire reports in the other files. This would only slow

down access marginally and would reduce space requirements greatly.

Another problem with select is that it does not allow specification of what fields

to search. I would add another argument, which is a list of fields to search. It

is important to be able to specify multiple fields, since I wanted the search to be

sufficiently flexible that there would be enough information for an automatic chaining

program to be installed. It should also have some facility for doing "and" or "or"

specifications on which fields to use.

4.2.3 Perl

Perl is a wonderful language for regular expressions and scripting. It is also good

for getting a basic system working quickly. However, because I kept most of the

code in modules, the clients and server scripts were hard to move from the original

directory because of the code's dependency on its location. This system, if it were to

be rewritten, finished, and put into production, needs to be in a compiled language,

or at least an efficient language where it is easy to move parts around without large

'Berkeley DB, for instance, has an option to store all the keys in a binary tree

35



dependence on other files. Perl can be compiled, but I feel that C (and C++) and

C compilers are more common and consistent over platforms and more people have

stronger backgrounds in C-like languages. A C-like language would probably be better

than compiled Perl for efficiency and maintainability.

4.2.4 Communications

For efficiency and to keep the communication protocol consistent between the client

and the server, the communications module was shared by both the client and the

server. This, however, caused other problems. The send and receive functions both

had to be specialized, as described earlier. This made the functions hard to maintain.

For instance, there was a mildly annoying situation when the server and the client

would not run on the same machine. This is not a large problem, but the simple fix it

required could not be implemented without uncoupling the client and server functions

entirely. This would be even more of a problem using TCP/IP sockets, because the

initialization is even more specialized. These problems are significant enough that in

a redesign, the client and the server communications modules should be separate.

4.2.5 Protocol

Efficiency

The protocol used was designed to be easy to debug. There are many places where

it could be optimized for transmission speed, rather than clarity. The easiest way

to improve speed is to use a unique numerical sequence for each field. Because the

system still needs to be flexible, yet systematic, it would still have a delimiter byte

(for example, the colon is the current case) but the text (for instance, "subject")

can be replaced by a single number. I would constrain the numbers to be an integer

number of bytes long, so that it would be easy to detect the delimiter byte.
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Robustness

The protocol's flexibility causes a small problem. Part of a good protocol is ro-

bustness. My protocol, though it could robustly identify a line, did not enforce any

canonicalization of the fields. If the system were to be actually used, users could

create a field which was similar to, or exactly the same as, another field. This would

cause information to be cluttered and not well organized because of the flexibility of

the protocol to gleefully accept new fields, without consideration for repetition.

In addition, robustness could be improved by including some sort of checksum,

and line and text lengths. As well as making sure that that a report has not been cut

off, these devices could be used by a client to predict how best to format the output.

For instance, if a GUI client is told that a field is bigger than the allocated space, it

can adjust the space, given the size information, or create a paging mechanism to view

all the information. Getting the contents of a field could be done more generically

using the line numbers as an indication of when to stop reading information.
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Chapter 5

The Future

This section describes the features which this system should have if it were to be

used or further developed. These are attributes which are non-essential but are still

important. These are also the attributes for which I have reasonable (though not

necessarily perfect) suggestions, and ones which would require much more research,

development and experimentation to find the optimal solution for the situation.

5.1 Replacing the Current Modules

Since the design had a secondary focus of allowing the user to replace modules

with customized implementations, it is not imperative to discuss replacement of the

makeshift pieces I chose. I will address this issue, however, with some brief sugges-

tions, because I feel that the current system has acquired too many limitations.

5.1.1 Replacing Zephyr

Zephyr would best be replaced with some specialized code written with this specific

purpose in mind. It should be an efficient, low level protocol with provisions for

checksums and optional encryption and security. It should also be written so that

portability is preserved.

Since in this application, Zephyr also takes care of authentication, it could be
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replaced with Kerberos methods, as well as using Kerberos for encryption or other

security issues.

5.1.2 Database Replacement

One of the possibilities for the database replacement would be a relational database.

This will take care of the wasted space problem mentioned earlier which is associated

with having several databases which are indexed by different fields. And, as with any

of the other replacements, the user can choose from the variety of finished systems

to get the options and optimality that they want. If nothing else, however, a reliable

atomic commit system should be deployed, so that the database will be consistent

and fairly up-to-date after recovering from system interruption due to power outage

or fatal machine error. These protocols exist and are a simple and important step

toward reliability. [9]

To address the issue of having multiple, but distinct databases, database segre-

gation can be implemented by adding another level of grouping. There is already

a field hierarchy in the reports, reports are grouped in the set of databases, and in

turn those sets of databases can also be grouped. The create function can be called

on each group of databases, making them separate, but still accessible by the same

set of commands. Another specifier can trivially be added to tell the system which

database group is being accessed. Transfering reports between the two groups would

require the implementation of another simple function.

5.2 Concurrent Servers

If this system is to be further developed, the server should be enhanced so it can

handle parallel processes. Currently, the database accesses are the main concern when

considering concurrent processes. They are time-consuming and are usually required

when responding to a request. Since there are multiple databases, separate locks could

be set on each one, and then two requests, if they concern different databases, could

be serviced at the same time. Also, if writing to the database became more efficient,
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it would then not require long locking of the database. Reads need not hold the same

lock as writes to further aid parallelism. Lastly, the communication module, when it

gains information from processing a Zephyr, needs to keep the information consistent

by parsing a whole Zephyr message without interference from another process.

5.3 Reports and Statistics

One important issue that I have not already addressed, is how to implement reports,

statistics, and nightly reminders in the system. It is often important to know how

big the database is, what the average lifetime of a bug is, what the average lifetime

of the bugs which have not been serviced is, who is doing the most closing of reports,

and many other types of information which can be used to evaluate the effectiveness

of the bug fixing process and find better ways to service the customer.

Some of these statistics can easily come directly from the database as it stands

now. A nightly process, for instance, could count the total number of reports which

meet a set of requirements, such as who is working on the report, the number of open

reports, the number received today, etc. Other additions could be made, such as "date

entered" and "date closed" fields or simply a "time open" field to keep information

on the time processed.

Finally, the nightly script, while it is getting this information, can compile nightly

reminders to the relevant people, including managers and customers who are con-

cerned about the progress of the reports.

5.4 Scalability

Scalability is, in this case, how well the system performs when both the bug database

and the number of users get large. This system's ability to do this will depend on the

nature of the database replacement, since the reading of the database is the slowest

part of the system. The easiest, most general way to make things more scalable,

would be to replicate the database in several places and then have a set of servers,
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each of which can accept client connections based on load balancing.

Options should also be considered for how to make the large database manageable;

for instance, the clients should not, by default, do entire database reads. Older reports

should be archived and classified by topic and relevance, so that if someone needs that

information it is not lost in the large number of unorganized old reports. Even with

search procedures, it is hard to make sense of so much information if it is badly

organized.
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Chapter 6

Conclusion

In this thesis I have explored the difficulties of making a good bug tracking system,

I have taken those common problems and have designed and partially implemented

a system which begins to satisfy the needs and concerns for such a system, and I

have shown where efforts still need to be made, as well as suggested solutions for

the problems which are not yet solved. This design, implementation, and evaluation

demonstrates that it can be a relatively direct procedure to build a bug tracking

package which is straightforward, adaptable, and extensible, while being easy to use

and versatile. The method proposed here is essentially sound, and incorporates a

number of important elements which should be included in any good bug tracking

system. Considerable further development is required before the proposed method

would approach the ideal. However, if the designer of the next system is careful to

retain the underlying attributes of simplicity, flexibility, and maintainability in the

design, as has been highlighted in this project, then the system can grow with, and

adapt to, the many needs of the people who will be using it.
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Appendix A

Code

A.1 The Parser

#!/ afs/ athena/ contrib/perl5/ bin/perl
use lib '/af s/athena.mit. edu/user/c/a/cat/project/thesis/newcode/server';

use db;

# this is the script that parses incoming messages, and places those
# reports into the databases.

# It is assumed that the information is coming in on stdin and is in a
# nice, happy, text format.

# I think that using an multi- dimensional array for reg exps/function calls, is
# better than if statements, so:

10

# reg exp line to add current field
@apattern-do = (["Subject: (.*) (.*)", "\"platform: \$1\napplication: \$2\n\"", "subject"],

["Subject: (.*)", "\"subject: \$1\n\"", "subject"],

["System name:\w*(\W*) ", "\"machname: \$1\n\"", "machname"],
["From: (.*)", "\"sender: \$1\n\"", "sender"],
["Date: (.*)", "\"date: \$1\n\"", "date"], 20

["Message-Id: ", "", "unknown"],
["To: '', " ''", "unknown"],

["Received: ", "", "unknown"]

db::inito;

$entry = ' ';

# add the tracking number
$time = time;
$entry = "tracking number:

30

$time\n";
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&error::log(" sbtp.-parser: Entering $time");

$cfield = "unknown"; #current feild
while($line = <STDIN>) {

$usedf = 0;
foreach $i (0 .. $#patterndo) {

$tempexp $pattern do[$i][0]; 40

if ($line =~ $tempexp) {
$usedf = 1;
$entry = $entry . eval $patterndo[$i][1];
$cfeild $chatarray[$i][2];
last;

}
}
if (!$usedf) {

$entry = $entry . "$c-field: $line";

} 50

}

&db::add($entry);
&db::cleanup(;

exit(0);

A.2 The Communications Module

# Welcome to the perl module comm

# this will take care of all your communication needs, including
# authentication, encryption and general transmission of information.

# this is the lower level of the protocol and will have an upper level

# which takes care of field delimiters and various other infomational

# protocol aspects.

# I have combined the server and the client communications here because 10
# they will only differ in how they initially get a connection.

# For example, in using zephyr, they will not differ at all, since each

# new write will require a new zwrite process and the client and the

# server will both have to have a zwgc running. The client, however,
# will have to identify itself to the server.

# in a lower level implementation with raw TCP/IP sockets, however, the
# difference will have to be much different, since the client will

# have to establish a socket with the server and the server will have 20

# to accept that connection.

# when converting to c++, one might just replace zwgc and zwrite with
# a lower level package only seen by the shared code.
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package comm;
require Exporter;
@ISA = qw(Exporter);
@EXPORT = qw(clientinit serverinit read write update);

30

use header;
use security;
use acl;
use error;

# declaring package variables.
$readhandle;
$serverflag = FALSE;

sub clientinit { 40

$mdir = $header::home;

# use the user's tickets.

# start zwgc
$ENV{WGFILE} = "/tmp/wg.sbtp";
open(ZWGC,

"/usr/athena/bin/zwgc -nofork -ttymode -f"
" $mdir/.zwgc.desc -subfile $mdir/.zephyr. subs I");

}
50

sub serverinit {
#get server tickets
&security::init( "sbtpserv\@ZONE . MIT. EDU");
# for zephyr, you just wnat to start zwgc as well.
$serverflag = TRUE;
&clientinit 0;

}

sub maintain {
60

# TCP/IP needs to check and

# send the things that are in the buffer.
# this function will also renew server tickets.

if (serverflag) {
#check tickets (or ticket timer?)
#renew if expired

}
}

70

sub csend {
local($message) = @_;
&send(" sbtpserv\@ZONE. MIT. EDU", $message)

}

sub send {
# arguments: string message
local($to, $message) = @_;
open(ZOUT, "Izwrite -c sbtp $to > /dev/null")
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or &error::log("Send Open failed: $! \n");

print(ZOUT $message);
close(ZOUT) or &error::log("Send Close failed, perhaps server is down");

}

sub receive {
# arguments:
# returns: string, connection identifier
# on error returns: permissions denied

90

# So I have to do something here that remember who we are talking
# to. The problem with this is that there is only one return value.

# I could send a reference, as I would in C, but I get the feeling you
# don't want to do that in perl... I could keep it around in some

# magic array, or return an array.... neither sounds all that good. I

# need to think about this, which is why I'm writting this here,
# trying to sort things out.

# I could make the requirement that I'm only accepting one connection

# at a time, therefor the current connection could be kept internal 100

# to the procedure. This would be reasonable for the server, but
# limits things. Maybe some queueing system...

# I really want something that will allow for servicing of requests

# while waiting on a request that might take a long time... but maybe
# this is not reasonable.

# since perl treats zwgc as a file handle, it takes care

# of all the buffering that needs to happen for TCP/IP. This is 110
# where we would just pull out what we could from the buffer. }
$class = "";
$instance = "";
$body =

$sender =

$sig = ""

$time = time;

$_ = <ZWGC>;
while(!/done/) { 120

if (/sender: (.*)/) {
$sender = $sender . $1;

}
if (/body: (.*)/) {

$body = $body . $1 ."\n"

}
if (/auth: (.*)/) {
$auth = $auth. $1;

}
if (/class: (.*)/) { 130

$class = $class . $1;

}
$_ = <ZWGC>;
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}
if (($sender =~ /ZWGC/) 11 ($class ne "sbtp")) {

# this is to get rid of that annoying first zephyr or any
# personals
&receive(;

I
if (&security::auth check($sender, $auth)) { 140

return(($body, $sender));

I
else {

return((" comm: permissions denied", $sender));

}
}

sub close { 150

close(ZWGC);
}

A.3 The Support Files for Zephyr

A.3.1 .zwgc.desc

if (downcase($opcode) == "ping") then
exit

endif

case downcase($class)
default

fields signature body
if (downcase ($recipient) == downcase ($user)) then

print "personal\n"
endif 10
while ($opcode != "") do

print "opcode: " lbreak($opcode, "\n")
print "\n"
set dummy = lany($opcode, "\n")

endwhile
while ($class != "") do

print "class:" lbreak($class, "\n")
print "\n"
set dummy = lany($class, "\n")

endwhile 20

while ($instance != "") do
print "instance: " lbreak($instance, "\n")

print "\n"
set dummy = lany($instance, "\n")

endwhile
while ($sender != "") do

print "sender:" lbreak($sender, "\n")
print "\n"
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set dummy = lany($sender, "\n")
endwhile 30

while ($time != "") do
print "time:" lbreak($time, "\n")
print "\n"
set dummy = lany($time, "\n")

endwhile
while ($auth != "") do

print "auth: " lbreak($time, "\n")
print "\n"
set dummy = lany($auth, "\n")

endwhile 40

while ($date != "") do
print "date:" lbreak($date, "\n")
print "\n"
set dummy = lany($date, "\n")

endwhile
while ($fromhost !- "") do

print "fromhost: " lbreak($fromhost, "\n")
print "\n"
set dummy = lany($fromhost, "\n")

endwhile 50

while ($signature != "") do
print "s ignature: " lbreak($signature, "\n")
print "\n"
set dummy = lany($signature, "\n")

endwhile
while ($body != "") do

print "body:" lbreak($body, "\n")
print "\n"
set dummy = lany($body, "\n")

endwhile 60

print "done\n"
put "stdout"
exit

endcase

A.3.2 .zephyr.subs

sbtp,*,%me%
!message,personal,%me%

A.4 Server

A.4.1 srvh.pm

# This file contains the things that the three servers and their sub

# modules need to know.

package srvh;
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use lib ' /af s/athena/user/c/a/cat/proj ect/thesis/newcode/share ';

# this is a list of all the databases. For a system, one should add

# any field which is used to search on regularly.

@databases = ("by-no", "by-app");

# this is for field translations that might occur between the
# sendbug type application and the server. This will allow for a bit
# of flexibility in the application, without having to redo the
# databases.

# the format is field name, database name

%field-tr = (
'byno', 'tracking number',
'by-app', 'application name'

A.4.2 db.pm

package db;
require Exporter;
@ISA = qw(Exporter);
@EXPORT = qw(add init archive delete);

use lib '/u2/DBFile-1.60/blib/lib';
use lib '/u2/DBFile-1.60/blib/arch';
use lib '/u2/DBFile-1.60';
use DBFile;

use lib '/af s/athena/user/c/a/cat/project/thesis/server';

use srvh;
use error;

$dbdir = "/u2/sbtp/";

%dbarray = ;

# to add:
# if a new database is introduced (zero length) but other
# database has info, have it update

# locks

sub create{
local($name) = @_;
$temp = dbmopen %{$name}, $dbdir. $name
if (!$temp) {

30

. "_db", 0600;
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&error::log("db: create: error opening dbf ile $dbdir$name". "-db");
exit(-1);

}
$dbarray{$name} = $temp;

}

sub close{
local($name) = @_; 40

dbmclose(%{$name});

}

sub put{
local($name, $key, $value) = @_;
$db = $dbarray{$name};
if ($db) {

$status = $db->put($key, $value);
&error::log("DEBUG: calling put with $key and $value");

1 50
else {

&error::log("db: put: no such database $name");

}
}

sub putcommit {
local($name, $key, $value) = @_;
$db = $dbarray{$name};
&put($name, $key, $value);
if ($db) { 60

$status = $db->sync(;

}
else {

&error::log("db: putcommit: no such database $name");

}
}

sub get {
# returns: $value
local($name, $key) = @_; 70

$db = $dbarray{$name};
$status = $db->get($key, $value);
return($value);

}

sub add {
# This takes an entire bug report in "system internal std format" and

#adds it to all of the databases

# $entry is a string with the data 80

local($entry) = @_;

# I'm going to make this inefficient for the sake of complexity of code.

# I'm sure that this part could be rewritten to only take one pass at the file.
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Alines = split(/\n/, $entry);
while (($name, $db) = each %dbarray) {

# for each database

# find it's offical feild name
$fieldexp = $srvh::field-tr{$name}
$key = >';

$value= '';

foreach $line (@lines) {
if ($line =~ $fieldexp) {

# incase the key is multiline

$key = $key . $1;
}
else {

$value = $value . $line . "\n";

i
}
putcommit($name, $key, $value);

}

sub select {
local($name, $reg, $start, $stop) = @_;

110

# so this doesn't make much sense in an unsorted db, but we could
# switch to Btree and all would be grand.

# to be finished: through all of the keys of a db and return the
# ones which match the reg exps.

$db = $dbarray{$name};
$out= ' ';
$status - 1;

# seq reportably starts at the beginning and goes from there, so we
# need to cycle until we hit the start place.
# yes this is inefficient.

&error::debug(" select: starting seq. reg: $reg");

$status = $db->seq($key, $value, RFIRST);
&error::debug("db: select: init status: $status");
&error::debug("db: select: key: $key start: $start stop:
while (($key ne $start) && ($status != 1)) {

&error::debug(" select: seq until start\n\tkey: $key\n
"\n\tstart: $start");

$status = $db->seq($key, $value, RNEXT);

}

$stop");
130

\tstatus: $status".

while (($key ne $stop) && ($status != 1)) {
if ($value =~ $reg) {

$out = "$out--Entry start--\n\n$value";

}
$status = $db->seq($start, $value, RNEXT);
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&error::debug("select: seq until end");

I
return($out);

I

sub first {
local($name) = @_;
$db = $dbarray{$name}; 150

$start = ' ';
$db->seq($start, $value, RFIRST);

return($start);

}

sub last {
local($name) = @_;
$db = $dbarray{$name}; 160

$db->seq($start, $value, RLAST);
return($start);

I

sub init {
# opening it all.
foreach $dbname (@srvh::databases) {

&create($dbname);

}
} 170

sub cleanup {
foreach $dbname (@qsrvh::databases) {

&close($dbname);

}
}

sub change {
# takes old, new

180

# this will be for changing fields of an existing entry. In some

# DB's this will be the same as rewriting the entry, but in others

# it might be a more elegant change.

# makes changes in ALL databases

I

sub update {
190

# this procedure should go through all of the old entries and reinsert

# them into to any new database separations. This should only be
# called if people have changed which databases are relevent, but want

# to make old database information fit into the new database
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# structure.

}
# pm files need to return a true value... go figure.
1

A.4.3 server.pl

#!/ afs/ athena! contrib/perl5/ bin/perl
use db;
use comm;
use error;

&comm::serverinit();
&db::init(;

@dispatch_a = (["request:
["request:
["request:
["request:

find (.*) in (.*)", "&find(\$1, \$2)"],
list all", "&list-all()"],
listby (.*)", "&list-by(\$1)"],
get ( ]*) ([^ ]*)", "&db: :get(\$1, \$2)")

&error::log("Server started");

while (1) {

# this should eventually get some signal handling so it can clean

# up on exit, but for right now this will work fine.

local($string, $conid) = &comm::receive(;
&error::debug("server: mess: $string \nid:
if ($string ne "permissions denied") {

# I should make the above test more robust
$out s = &dispatch($string);
&comm::send($con-id, $out-s);

I
else {

$con_id");

30

&comm::send($con-id, "error: permission denied");

sub dispatch {
local($line) = @_;

$usedf = 0;
foreach $i (0 .. $#dispatch a) {

$tempexp = $dispatch a[$i][0];
&error::debug(" server: dispatch:

if ($line =~ $tempexp) {
$usedf = 1;
&error::debug(" sever: Dispatch:
$response = eval $dispatch-a[$i][1];

40

'$tempexp' matching '$line'");

evaluating $dispatch.a[$i][1]");
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last;

}
}
if (!$usedf) {

return("error: Unknown request\n");

}
else {

return($response);

}

}

sub listall {

# list all, which in general will probably not be used

# often, will list things by tracking number.
&error::debug("listing all");
return(&list-by("by-no"));

}

sub list-by {
local($cat) = @_;

# the client will be expected to have translated things into the

# cannonical category names
&error::debug(" list-by: calling select");
return(&db::select($cat, ".*", &db::first($cat), &db::last($cat)));

}

sub find {
local($reg, $cat) = @_;
return(&db::select($cat, $reg, &db::first($cat), &db::last($cat)));

}

A.5 Client

A.5.1 ch.pm - the client header file

package ch;

use lib '/af s/athena/user/c/a/cat/project/thesis/newcode/share';

# grr... perl want's true, I'll give it true

1

A.5.2 client.pl

#!/ afs/ athena/ contrib/perl5/ bin/perl
use ch; # client header
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use comm;

#initialize the client/server connection
&comm::clientinit();

$quit = 0;

print "stpb client started\n";
while(!$quit) {

# until we're asked to quit will take the requests and feed them to the
# server.

#for now, we'll let the server deal with checking valid requests. For
# the interest of load, the client should ultimately do some checking.

10

20

print "request:

$request = <STDIN>;
if ($request =~ /^quit/) {

$quit = 1;
}
else {

&comm::csend("request: " . $request);
local($string, $conid) = &comm::receive();
print($string . "\n);

I

&comm::close(;

30

40

A.6 The Shared Header

# This is a file which contains all the configuration information for
# the shared packages.

package header;

$home = "/afs/athena/user/c/a/cat/project/thesis/newcode";

# grrr...
1
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A.7 The Error Module

package error;

require Exporter;
@ISA = qw(Exporter);
@EXPORT = qw(log debug);

require "ctime.pl";
require "timelocal.pl";

$debugf = 1; 10

sub log {
# this will syslog when the
local($message) = @_;

system is a bit more up and running

$times = &ctime(time);
Stime-s =~ /([\w]+) +([\w]+) +([\d]+) +([\d]
open(LOG, ">>/var/adm/sbtp. log");
print(LOG "$2 $3 $4: $message\n");
close(LOG); }

sub debug {
local($message) = @_;
if ($debugf) {

print "DEBUG: $message\n";

i
}

# pm files need to return a true value.., go figure.
1

A.8 The Acl and Security modules

A.8.1 acl.pm

package acl;

sub aclcheck {
local($user, $permission) = @_;
#just a stub for now.
return(1);

}

1

A.8.2 security.pm

# this is the authentication checking mechanism and encyrption.
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package security;
require Exporter;
@ISA = qw(Exporter);
@EXPORT = qw(init authycheck);

# for kerb, we'll assume everything we need is in a srvtab for now.

$srvtab = "/var/cat/sbtp/sbtp.keyf ile"; 10

sub authcheck {
# arguments: string sender, string authenticator

# returns: boolean

# tests the authenticator and returns true if the send is authentic
return(1);

}

sub init {
local($id) = @_; 20

system("kinit -k -t $srvtab $id");

I

# grrr..
1
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Appendix B

Examples

B.1 A Typical Athena Sendbug Script Output

To: bugs@MIT.EDU

Subject: sgi 8.2.15: netscape

System name: oliver.mit.edu

Type and version: IP32 8.2.15 (with mkserv)

Display type: CRM

What were you trying to do?

Quit netscape.

What's wrong:

Instead of exiting gracefully, it reported ''bus error'' and

dumped core.

What should have happened:

It should have exited gracefully and not given me a large core
file.

Please describe any relevant documentation references:
None that I can think of.
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B.2 An Example ranscript of Using the Client

This is only a few of the commands, but it gives an idea of both how the client
requests and receives the data, and how the internal protocol looks, since the client
simply prints out the text of the internal protocol. The "request:" is printed by the
client. The text after it is the user-entered request, and the output after that is the
response from the server.

See section 3.8 for an explanation of some of the fields.

request: finger more in by-no
error: Unknown request

request: find more in by-no

--Entry start--

unknown: From cat~mit.edu Sun Jan 10 21:36:56 1999

date: Sun, 10 Jan 1999 21:36:55 -0500 (EST)

sender: Calista E Tait <catemit.edu>
subject: This is some MORE test data.

unknown: content-length: 31

unknown:
unknown:
unknown: This is some more test data.

request: list all
--Entry start--

unknown: From cat@MIT.EDU Sun Jan 24 15:30:33 1999

unknown: id AA11790; Sun, 24 Jan 99 15:30:48 EST

date: Sun, 24 Jan 1999 15:30:32 -0500

sender: Calista E Tait <cat@MIT.EDU>
platform: sgi 8.2.15

application: netscape
unknown: content-length: 425
unknown:
unknown:

machname:

unknown: Type and version: IP32 8.2.15 (with mkserv)

unknown: Display type: CRM

unknown:
unknown: What were you trying to do?

unknown: [Please replace this line with your information.]

unknown:
unknown: What's wrong:
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[Please replace this line with your information.]

unknown:

unknown: What should have happened:

unknown: [Please replace this line with your information.]

unknown:

unknown: Please describe any relevant documentation references:

unknown: [Please replace this line with your information.]

--Entry start--

unknown: From cat@mit.edu Sun Jan 10 21:36:56 1999

date: Sun, 10 Jan 1999 21:36:55 -0500 (EST)

sender: Calista E Tait <cat@mit.edu>

subject: This is some MORE test data.

unknown: content-length: 31

unknown:

unknown:

unknown: This is some more test data.

--Entry start--

unknown: From cat@mit.edu Sun Jan 10 21:36:39 1999

date: Sun, 10 Jan 1999 21:36:38 -0500 (EST)

sender: Calista E Tait <cat@mit.edu>

subject: This is some test data.

unknown: content-length: 26

unknown:

unknown:

unknown: This is some test data.

request:

60
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