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Abstract

The work described in this thesis examined a new approach to speech enhancement.
Enhancement algorithms to estimate clean speech from a noisy signal and a limited
amount of side information were developed and implemented. The work evaluated al-
gorithms that used linear predicitive (LP) coefficients and zero-phase impulse response
coefficients as side information. An approximate maximum likelihood estimator for
the case of LP coefficient side information, an exact ML estimator for the case of
zero phase impulse response side information, and a linear least squares error (LLSE)
estimator for the case of LP side information were implemented and tested.
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Chapter 1

Introduction

Processing speech to reduce the impact of additive noise is a long-standing research

problem. Additive noise models many disturbances that can impair the performance

of speech processing systems. For example, the fidelity of a speech compression

system's output may degrade rapidly as background interference is added to the

input. Additionally, persistent distortions in a speech signal, even if minor, can

annoy human listeners. An appropriate enhancement system can improve the fidelity

of the vocoder output or make the distorted speech more pleasant to hear. Thus,

speech processing systems intended to operate in the presence of disturbances often

incorporate noise reduction algorithms.

Noise reduction is a subset of the general enhancement problem. Enhancement

systems process a speech signal to improve its characteristics for human listeners or

use in another speech processing algorithm [5]. In addition to reducing additive noise,

enhancement systems reduce distortions such as degradations from a communications

channel or reverberations. Enhancement systems may even process an undistorted

signal to improve its clarity.

The performance of an enhancement system is judged by the application for which

it is intended. Many enhancement systems are designed to improve the character-

istics of speech for human listeners. In other cases, the enhancement system may

be intended to improve the robustness of another speech processing algorithm, such

as a vocoder or recognition system. In these cases, the speech enhancement system
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succeeds if it produces output perceptually pleasing to human listeners or allows a

subsequent processing system to operate successfully in the presence of disturbances.

These goals are difficult to describe using quantitative measurements of the output

of the enhancement system. Even systems designed through optimization of some

function of the output may perform poorly in practice. Thus, many enhancement

systems are evaluated through qualitative testing.

Since accurate performance criteria for enhancement systems are difficult to de-

velop, many enhancement systems are designed using models based on the physics

of speech production. A quasi-stationary linear system driven by appropriate excita-

tions captures many key features of speech acoustics [12],[8]. The frequency response

of the filter models the resonant frequencies of the vocal tract, and the filter input

approximates the excitation from the glottis. Pulse train excitations model voiced

sounds and white noise excitations model unvoiced sounds. If the vocal tract filter

has only poles, this model reduces to linear prediction. Well-known algorithms can

calculate the filter taps that best model a speech waveform [11], [12]. Linear predic-

tive (LP) models have been widely used because they capture the structure of speech,

lead to tractable calculations, and perform well in practice.

Some noise reduction algorithms exploit LP models of speech [6]. For example, LP

analysis/sythesis has been applied to noise reduction. Algorithms that estimate LP

parameters from the noisy speech and then synthesize an enhanced speech waveform

have been used for several decades. Unfortunately, as the signal-to-noise ratio (SNR)

falls, estimating the model parameters becomes difficult. The inaccurate coefficients

limit the quality of the enhanced speech.

The robustness of noise reduction algorithms can be improved by by obtaining

more information about the clean speech. A noise reduction system can exploit side

information describing the clean speech to form acceptable output at SNRs where

single channel algorithms perform poorly. If performance in this SNR range is im-

portant, the cost of the extra hardware needed to obtain the side information may

be justified.

Contexts in which an enhancement system has side information about the clean

8
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speech can arise in distributed sensor or communications networks. For example, a

distributed sensor network may have multiple sensors observing a signal source. Some

sensors may be far from the source and consequently are disturbed by background

interference. Other sensors may be close to the source and therefore receive the signal

with minimal interference. If limited communication resources prevent transmission

of the clean signal to a human listener at a far field sensor, a low-bandwidth side

information signal can be transmitted instead. An enhancement system can use the

noisy signal from the far field sensor and the side information from the near field sensor

to improve the speech signal. In a communication scenario, a hybrid analog/digital

channel can use side information. A speech signal transmitted over an analog channel

encounters distortions that are modeled as additive noise. A low-bandwidth digital

link from the signal source to the receiver can transmit side information without

degradations. Using such a link, an enhancement system can combine the analog

signal and the side information on the digital channel to estimate the clean signal. It is

possible to imagine other scenarios where side information is available to enhancement

systems.

This thesis examines the noise reduction problem when side information describing

the clean speech is available. In certain situations, a reliable side channel between

the signal source and receiver is available. It is assumed that the side channel has

limited capacity and cannot transmit the entire speech signal. Instead, a compressed

version of the clean speech is sent to the receiver. There, the noisy signal and the

side information are combined to estimate the speech.

The side information estimation problem can be formulated in a variety of ways.

Depending on the models chosen for the speech and side information, many estimators

can be used to design enhancement algorithms. This thesis tests algorthms based on

the side information estimation framework developed by Barron, et. al. [1]. In

general, the enhancement problem involves the choice of side information and the

design of an enhancement algorithm. Barron, et. al. simplified the problem through

an ad hoc choice of side information. They used the linear predictive (LP) coefficients

of the clean speech as the basis for an iterative algorithm to calculate maximum
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likelihood (ML) estimators for clean speech degraded by additive white Gaussian

noise (AWGN).

These ML estimators are compared with linear enhancement algorithms based

upon Wiener filtering. Since the LP coefficient side information is related to the

power spectrum of the speech, it can be used to generate an approximate Wiener filter

for the noisy signal. This algorithm is not iterative and has much lower complexity

than the ML algorithms. The comparison tests whether the added complexity of the

iterative ML algorithms is justified.

The ML and Wiener filter estimation algorithms were implemented and their

outputs were compared. Additionally, their performance was compared with single

channel iterative Wiener filtering algorithms over a range of SNRs. At SNRs greater

than 20dB, the side information algorithms produced outputs of comparable quality

to the single channel algorithm. At SNRs below OdB, the output from the algorithms

using side information was preferable to the output from iterative Wiener filtering.

As the SNR was lowered from this point, the artifacts produced by the algorithms

increased, specifically, the ML estimation algorithms produced high frequency tones

that distracted the listeners. The Wiener filter muffled the high frequency charac-

teristics of the speaker's voice. Generally, the tonal artifacts from the ML algorithm

were more distracting to human listeners.

As an auxiliary study, the ML algorithm was applied to single channel noise

reduction. An LP coefficient model was generated from the noisy speech and used

in place of the side information. This approach was compared with iterative Wiener

filtering. In informal tests at SNRs below 10 dB, the ML algorithm again produced

tonal artifacts and the iterative Wiener filter muffled the speech. Despite the presence

of artifacts, the speech estimate from the modified side information algoirthm was

judged to be clearer than iterative Wiener filtering.
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Chapter 2

Estimation and Side Information

The side information algorithms in this thesis use additional communication capacity

between the signal source and receiver to improve the performance of a noise reduction

system. The extra capacity is assumed to be expensive, so the cost of transmitting

a significant portion of the clean speech on the side channel is prohibitive. In our

work, the LP coefficients of the clean speech are used as side information due to

their successful application in other speech processing systems. With the additional

information from this side channel, estimation algorithms performed by the receiver

ought to achieve higher speech quality than single channel algorithms.

This chapter explains the side information estimation work of Barron, et. al.,

which presents the general form of estimators with side information and develops

algorithms to calculate the ML and linear least squared error (LLSE) estimates of

the clean speech given the LP parameters. The first section derives the maximum

a posteriori probability (MAP), minimum mean squared error (MMSE), and ML

estimators using deterministic side information. Next, simplifications to the ML esti-

mator in the presence of AWGN are described and an iterative algorithm to calculate

it is developed. Finally, the Wiener filter is derived from the LP parameters of the

speech.
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Figure 2-1: Side Information Framework

2.1 MAP, MMSE, and ML estimators

The LP side information used in the estimation algorithms is a deterministic function

of the clean speech signal. Figure 2.1 shows the side information framework in terms of

a communication system. The vector x represents the signal of interest. It is distorted

during transmission on a communications channel. The distortions are modeled by

an additive random noise signal w. The random vector y represents the output of

the noisy channel. The transmitter performs some deterministic processing of the

original signal before transmission, producing the side information signal s. The side

information is transmitted over a reliable channel and is received without errors.

The deterministic side information imposes constraints on the possible estimates

for the clean speech waveforms. In general, a many-to-one function, g(x) = s, gener-

ates the side information. There is a unique value of s for every clean speech signal

x. Multiple waveforms, however, may be mapped to the same value of s. When the

side information is observed, the space of possible x values can be divided into two

sets. The first set, S = {x| g(x) = s}, contains all possible clean speech signals

given s. Its complement contains the x values ruled out by the side information. If

x is modeled as a random process, the side information restricts the set of signals

that have non-zero probability of being transmitted. Instead, if x is modeled as an

unknown, non-random signal, the side information reduces its set of possible values

to the elements of S. The restrictions on the values of x give the estimators more

information about the clean speech and increase their accuracy.

The model chosen for the speech waveform determines which estimators can be
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used as a basis for designing noise reduction algorithms. When x is modeled as

a random process, the MAP and MMSE are two common estimators for the clean

speech. Under this model, the original signal x, the noisy channel output y, and the

side information s are related by a joint probability density p(x, y, s). Both estimators

depend on the a posteriori density for x given the observation of y and s, p(xly, s). The

MAP estimate is the mode of the density and the MMSE estimate is the conditional

expectation of x. The a posteriori density is

_ p(x, y, s) _ p(y)p(x, sly)

p(y, s) p(y)p(sjy)

Since y and s are generated from x by unrelated processes, they are conditionally

independent given x. Knowing s does not affect the distribution for y if x is already

known. Likewise, y does not give extra information about s if x is known. Thus, the

probability density p(x, sly) can be simplified to

p(x, sly) = p(xly)p(slx, y) = p(xly)p(slx).

Using this result, the density in equation 2.1 is

p(xy, s) = p(xly)p(slx) (2.2)
p(sly)

With the observed data s and y, the denominator of equation 2.2 is a constant.

Additionally, the density p(sjx) is 0 if x # S and is 1 otherwise. The traditional

form of the MAP estimator can be used as long as the probability density p(xjy) is

maximized over the set S defined by the side information s. The formula is

argmax
XMAP = xES p(xIy). (2-3)

The new MMSE estimator is the conditional expectation of x given s and y. The

estimator is

XMMSE = E[xls, y] = xp(xy)dx. (2.4)
p(sly)Ires
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The estimator is proportional to the centroid of the distribution p(xly) over the region

S. If S is not a convex set, then XMMSE may not belong to S.

When x is modeled as a non-random parameter, the ML estimator can be used.

In this case, the signals s, y, and x are related by a parameterized probability density.

The observations y and s are random quantities and the signal x is an unknown param-

eter of the probability density p(y, s; x). The ML estimator, XML (Y, s) ap(Y, s; x),

now depends on the observations of both random vectors.

The side information restricts the ML estimate to a maximum over the constraint

set S. The likelihood function is

p(y, s; x) = p(y; x)p(sly; x)

= p(y; x)p(s; x) (2.5)

p(y;x) x E S

0 otherwise.

The second equality follows because y and s are conditionally independent given

the parameter x and the third equality follows because p(s; x) is 1 over S and zero

otherwise. The ML estimate is obtained by maximizing p(y; x) over the set S. It is

argmax
iML (y, s) = XES p(y; x). (2.6)

2.2 ML Estimation in Additive White Gaussian

Noise

Barron, et. al. present ML algorithms using two related forms of side information.

The first calculates an approximate ML estimator using LP side information. The

second algorithm calculates an exact ML estimate using the zero-phase impulse re-

sponse as side information. Both algorithms are similar in structure. They express

the constraints imposed by the side information as the intersection of several con-

vex sets and use an iterative projection algorithm to calculate the minimum distance

projection onto this intersection.

14



2.2.1 ML Estimation with LP Coefficient Side Information

In the case of estimation in additive white Gaussian noise, the ML estimator simplifies

to a minimum distance projection. The noise vector w = y - x models the difference

between the clean and noisy speech. For a zero-mean, AWGN model, its probability

distribution is given by

1N-1
p(w) = (27row)-T exp -2 .:2 W

(_ mr i=0

The distribution of the received data is

1 N-1
p(y) = (27rou2)- exp (2 2 (y[i] _ X[i])2

m i=0

If x is viewed as a parameter, this probability density is also the likelihood function

p(y; x). The LP coefficient side information defines a constraint set S of allowable

clean signals. By equation 2.6, the ML estimate maximizes p(y; x) over the set S.

The maximum occurs when the term Z__1 (y[i] - x[i]) 2 is minimized. This term is

the Euclidean distance between y and a signal in the constraint set. Thus, the ML

estimator is given by
argmin N-1

i=O

The minimization in equation 2.7 can be analyzed in the frequency domain. By

Parseval's Theorem, the ML estimate is

argmin r 2
XM (ea) = xes IX(esw) -Y(e3')\ dw. (2.8)

This estimate minimizes the distance between X(esw) and Y(ew) at each frequency.

The integrand |X(ejw) -y(ejw)|2 is always positive. If it is greater than the minimum

value at any frequency, the integral can be further reduced. At a specific frequency w0 ,

the Fourier transforms are X(ewo) = IX~eiex and Y(eiwo) = |Yle'er. The distance
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Y

X

Figure 2-2: Minimum distance between IX| and |Y| at a fixed frequency.

at a fixed frequency is

X(e-j) - Y(e |= (|Xjej'x - |Yje))(|Xje-sx -|Yje (2.9)

= X|2 + |Y| 2 - |X||Yjei(x~Y) - |X||Yjei(Y~x)

= |X12 ± 1y 2 - 2|XIIYIcos(#x - #y).

For fixed wo, the distance is minimized by choosing a vector with the same phase

function as the noisy speech, y. For any choice of jXj, the third term of equation

2.9 is minimized when #x = #y. This choice of phase does not conflict with the side

information constraint set. LP side information does not restrict the phase of the

signal, so any choice of phase is possible as long as IX(ew) I belongs to the constraint

set.

Figure 2.2 shows the situation at a specific value of frequency. The large vector

represents Y(ewo), and the circle represents a constraint on |X(ewo)|. The distance

between the estimate and the received value is minimized when the two vectors are

collinear. Thus, the phase of the estimate and the phase of the received signal ought

to be the same.

Once the phase has been chosen, the magnitude function that minimizes equation

2.7 must be determined. It can be calculated by a minimization over the set of all

allowed magnitude functions, S' = {x E S| 4x(w) = 4y(w)}. The desired magnitude

16



function minimizes the expression

/ HX(ejw)| - |Y(ejw)|| 2dw. (2.10)

The distance measure in expression 2.10 does not permit an easy solution. The

minimization takes place over a constraint set that is not a vector space, so standard

quadratic optimization algorithms cannot be applied. The set S' requires the signal

with magnitude IX(ejw)| to have the LP coefficients given in s. This in turn requires

the signal to match the deterministic autocorrelation coefficients defined by the LP

coefficients. A set of vectors with matching autocorrelation coefficients, unfortunately,

is not a vector space. If both x and y are members of S', the sum may not be. The

autocorrelation of x + y contains cross correlation terms that may be non-zero.

Barron proposed a modified distance measure that leads to a soluble minimization

problem. The distance measure

S X(e)2 IY(ew)2 2dw, (2.11)

maps directly to a problem that has a convenient characterization in terms of the LP

coefficients. Using Parseval's Theorem, the form of the modified distance measure is

argmin
S= xes' (Kxx[i] - Kyy[i]. (2.12)

Here, Kxx[i] and Kyy[i] are the autocorrelation functions of the estimate and received

data vectors. The set S' maps to a constraint on the autocorrelation Kxx[i]. The LP

parameters transmitted as side information are directly related to the autocorrelation

of the clean signal, xo. If the side channel transmits M + 1 LP parameters, the

autocorrelation from Kx2[-M] to K.x[M] is fixed. For this choice of side information,

all allowable values of the autocorrelation for the estimate x are contained in the

constraint set SK = {Kx2J Kxx[i] = Kxoxo[i1, i = -M,..., M}. The estimate in

equation 2.12 is the minimum distance projection of Kyy onto the set SC.

The new distance measure does not produce an ML estimate of IXI. There is not
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a monotonic mapping from each element in the set under the first distance measure

in expression 2.10 to the modified distance measure in equation 2.11. The estimator

derived from this distance measure does not minimize the same distance measure as

the true ML estimate.

2.2.2 Projection onto Convex Sets

The autocorrelation function that minimizes the distance in equation 2.12 can be

calculated through projection onto convex sets (POCS). The constraints imposed on

the autocorrelation function of any signal x E SC can be expressed as a group of

convex sets in the Hilbert space of finite norm sequences (12). Any sequence in SK

will have an autocorrelation sequence that lies in the intersection of the sets. The

orthogonal projection of the noisy speech's autocorrelation onto the intersection solves

equation 2.12. With proper corrections, a sequence of projections onto the individual

constraint sets will converge to this solution [2]. Since there is a 1-to-1 relationship

between the autocorrelation function and the spectral magnitude of the sequence,

this iteration calculates the magnitude function that solves equation 2.11.

A sequence that is a valid autocorrelation function of an element in SI must

satisfy several constraints. First, it must be real and even, and possess a real, even,

and positive Fourier transform. Additionally, the value at sample 0 must be the

maximum value of the sequence. Once the sequence is a valid autocorrelation, it

must match the constraints from the side information, i.e. it must belong to the set

SK.

Two constraint sets guarantee that these conditions are fulfilled. The two con-

straint sets are

C1 = {u E 12 | u[i] = Kx(O[fi], i = -M, ..., M} (2.13)

C2 = {u E 12 1 U(ew) real, positive Vw}. (2.14)

The first set guarantees that the sequence belongs to Sr. The second set ensures

that it is a legitimate autocorrelation function. If a sequence is in C2, its Fourier

18



transform is real and positive, and its maximum sample is u[O]. Since u is real, its

Fourier transform satisfies U(ejw) = R{U(eiw)} and is even. Thus the sequence is

u[n] = 2 j U(es") cos(wn)dw. (2.15)

This expression is maximized when n = 0. Thus, these two sets guarantee that an

element in their intersection is a valid autocorrelation function for a sequence in Sk.

Both sets are convex. If a[i] E C1 and b[i] E C1, then Aa[i] + (1 - A)b[i] satisfies

the condition for C1 since a[i] = b[i] = K,0 z0 for i = -M,..., M. The convexity of

C2 follows directly from the linearity of the Fourier transform.

The minimum distance projections onto each set are written P, where P is an

orthogonal projection to the set Ci. These projections guarantee that the result is the

minimum distance from the initial vector to the convex set. The projection Pi is best

defined in the time domain, and the projection P2 is best defined in the frequency

domain. The projection operations are

( [n Kx0xO[n] n = -M, ..., M
Pitnrn] = (2.16)

u[n] otherwise

U(ew)) if U(ew) > 0
P2 U (C") = (2.17)

0 otherwise.

A conventional POCS algorithm starts with uo = Kyy and uses the iteration

Ui = P1 P2ui. The sequence {ui}o converges to some point in the intersection. As

an example, consider figure 2.3. It shows a two dimensional case where the POCS

algorithm converges to a point in the intersection of C1 and C2 after one iteration.

The fixed point, however, is not the minimum distance projection from the starting

point to the intersection of the sets.

A correction term in the iteration forces the algorithm to converge to the minimum

distance projection onto the constraint sets. The modified algorithm starts with

19



uO

Figure 2-3: Standard POCS procedure does not converge to minimum distance pro-
jection.

UO = Ky, and performs the iteration
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(2.18)

lim
The limit of the projections, E =i- u , is the desired autocorrelation function. Its

Fourier transform is the squared magnitude function that minimizes expression 2.11.

The correction terms prevent convergence to an undesired fixed point. If ui is

in the intersection of the constraint sets, the correction term moves it out of one of

the sets and allows the iteration to continue. Figure 2.4 shows an example of the

20
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Figure 2-4: POCS with correction term converges to a minimum distance projection.

correction term action. The sets and starting point are the same as figure 2.3. In the

figure, the correction term moves the iteration from u2 to a point inside C1. From

this point, a projection onto C2 produces the minimum distance projection onto the

intersection.

2.2.3 Maximum Likelihood Estimation for Zero-Phase Im-

pulse Response Side Information

Barron, et. al. also suggest modification of the projection algorithm that produces

a true ML estimate of the clean speech. The POCS algorithm was obtained by

modifying the distance measure in expression 2.10 to simplify the side information

constraint. The constraint can also be simplified by modifying the side information.

A problem with similar structure to equation 2.12 results when zero-phase impulse

response coefficients are transmitted on the side channel.

The zero-phase impulse response of a signal is the inverse Fourier transform of its

spectral magnitude. For a signal x[n], the zero-phase impulse response is x2,[n] -

F- 1 { X (ew) I }. For real sequences, it is a real, even sequence with a real, even, and

positive Fourier transform.
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This sequence contains information similar to the LP coefficients of the clean

speech. There is a 1-to-1 mapping between the Fourier transforms of the autocor-

relation function and the zero-phase impulse response. The transform of the auto-

correlation sequence is IX2 and the transform of the zero-phase impulse response

is jX|. Even though it is not derived directly from a physical model for speech, the

zero phase impulse response is closely related to the LP parameters, and it provides

similar constraints on the clean speech estimates.

The zero phase side information signal has a direct relationship to the distance

measure in expression 2.10. In the time domain, the criteria for an ML estimator is

argmin
X = XES' (xzy -- - yzp1i]. (2.19)

This structure is analogous to the condition in equation 2.12. The distance measure

depends on the Euclidean distance between xz, and yz,, and the side information

fixes %z, over the range i = -M,. .. , M.

The POCS algorithm developed for the LP side information problem can solve

equation 2.19. Changes in the initialization of the algorithm and the constraint set C1

produce an algorithm that calculates the minimum distance projection for zero-phase

impulse response side information. The new constraint set enforces the restrictions

imposed by the side information. It is

C1 = {u E 12 | u[i] = Xo,2,[i], i = -M, ... , M}. (2.20)

The new projection in the time domain is

(zxo,2,[n] n = -M, ... ,M

Pi n] X'ZP[]n=-M.. (2.21)
u[n] otherwise.

The second constraint set and projection are unchanged because the frequency domain

properties of the autocorrelation and zero-phase impulse response sequences are the

same. The algorithm is initialized with uO = yzp and the iteration follows equation

2.18 with the new P1. The iteration ultimately converges to the sequence that solves
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equation 2.19.

2.3 Linear Least Squares Estimator for LP Side

Information

A linear least squared error (LLSE) estimator was also constructed for the LP side

information. The LP coefficients give information on the power spectrum of the

original signal. Using the random process model of speech, a speech vector is assumed

to be the output of an all-pole filter driven by white noise. For a set of LP coefficients

{9 2 , a[k], k = 1, ... , M}, the transfer function modeling the vocal tract is

A(ew) = - a[k.jw' (2.22)

When a random process with power spectrum S(ew) is filtered by the vocal tract filter,

the resulting power spectrum is IA(ew) 12S(ejw). Since the model assumes that the

filter's input is unit variance white noise, the output power spectrum is |A(ew)12 . The

LP side information is sufficient to estimate the power spectrum of the original signal.

Additionally, the variance of the channel noise can be calculated when the transmitter

is silent. Thus, the receiver has all of the information necessary to compute a Wiener

filter for the noisy signal.

A non-causal Wiener filter for a received speech vector can be constructed in the

frequency domain. The frequency response of the non-causal Wiener filter is

Sy (ejw)
HS(e") = "w). (2.23)

Since the LP model assumes that the speech and noise are uncorrelated, all of the

quantities in the expression are known and the Wiener filter for this problem is

-A(esw)
H(ew) = A(e.) (2.24)

A (etfu) + or

Given the frequency domain expression, the received signal can be filtered to produce
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the LLSE estimate of the clean speech based upon side information.
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Chapter 3

Implementation and Results

The estimators described in Chapter 2 were implemented on sampled speech data.

This chapter describes the approximations used to form practical noise cancellation

algorithms and compares their output. First, techniques to capture the time varia-

tion of the speech signal are described. Next, the implementations of the ML and

Wiener filter algorithms are presented. Finally, the comparisons of these algorithms

are described

3.1 Short-Time Algorithm Implementation

The mathematical models used in Chapter 2 do not consider the time variation of

the speech signal. The LP parameter model of speech works well on time scales

where the acoustic characteristics of the vocal tract do not change significantly [12],

[8]. A single set of parameters does not accurately describe long speech segments

such as multiple-syllable words or sentences. If the LP side information available

at the receiver is intended to describe such long speech segments, it will not provide

accurate constraints on the estimates of the clean speech. Inaccurate side information

descriptions violate the fundamental assumption of Chapter 2 and the estimation

algorithms described there are likely to perform poorly.

The implementation of the algorithms used block processing to preserve the ac-

curacy of the side information. The estimation algorithms were applied separately to
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short vectors of data that were well-modeled by their LP parameters. The individual

vectors were selected by windowing the data. Consecutive vectors overlapped each

other by half of the data window length. After the windowing was complete, the

side information was calculated from the clean speech vectors. Next, the appropri-

ate POCS algorithm estimated the clean speech vector from the corresponding noisy

speech vector and side information. Once the POCS algorithm was complete, an

estimate of the entire clean speech waveform was formed from the individual vector

estimates. Because the clean speech vectors were generated by overlapped data win-

dows, each sample in the clean speech waveform could be expressed as the sum of

samples from consecutive clean speech vectors. Summing the corresponding samples

from the estimated speech vectors generated the samples of the final speech estimate.

3.2 Data Windowing

The block processing approximation produces LP coefficient side information that

accurately parameterizes the speech. Without careful design, the window used in

the algorithm can introduce unnecessary distortion in the final speech estimate. Two

mechanisms can produce errors in the estimate. First, the window can cause spectral

smearing or leakage in the Fourier transform of the clean speech vectors. The dis-

tortions in the transform are consequences of the well-known windowing theorem of

Fourier analysis [10]. Windows that have desirable frequency domain properties such

as a narrow mainlobe and low sidelobes reduce these distortions and are assumed to

lead to good estimates of the LP parameters [8].

A second source of distortion arises from the time domain properties of the win-

dow. As discussed in section 3.1, the final speech estimate is constructed by adding

overlapping vectors of speech together. The overlap and add reconstruction of the

speech can produce a modulation at the window frame rate. Even if the POCS al-

gorithm estimates the individual windowed speech segments accurately, the estimate

of the whole waveform will be noticeably distorted. Figure 3.1 shows the modulation

introduced by a generic window. Distortions this severe are audible in the final speech
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Figure 3-1: Windows can produce significant distortion

estimate. It is assumed that this distiortion can be avoided if the window selected

sums to a constant sequence when overlapped and added.

3.2.1 Additive Reconstruction

Windows that sum to a constant sequence when overlapped and added are said to

possess the additive reconstruction property. Windows that possess this characteristic

must satisfy a set of linear constraints on their shape. Consider a finite length window,

w[n], that has N non-zero samples. The window's region of support is n = 0, ... , N -

1. It is shifted by increments of k samples and then added together. If w[n] possesses

the additive reconstruction property, the window must satisfy

00

f [n] = E w[n - tk] = 1 Vn. (3.1)
t=-oo

For any window, the sequence f[n] is periodic. This can be seen because

00 00

f [n+ k] = w[n+ k -tk] = w[n - t'k]= f [n].
t=-00 t=-oo

27



a)

0

0a.8-

z0.- ..

0.4 -

0.2-

0 -
0 50 100 150 170 200 250 300

n

b)
0.7 b

0.6-

50.5-

3: 0.4

0.3-

0.1

0
0 20 50 70 100 120 150

n

Figure 3-2: Additive reconstruction condition

Thus, to determine whether the window satisfies the condition for additive recon-

struction, we only need to examine a single period of f[n], say the period from

n= 0,... , k - 1. If this period is constant, then the window possesses the additive

reconstruction property.

The requirement for additive reconstruction yields a set of k linear equations. The

constraints are derived by identifying which samples sum to form f[0] to f[k - 1].

Figure 3.2 shows that all of the samples of w[n] that sum to a value of f have the

same remainder modulo k. For example, f[0] is the sum of w[O], w[k], w[2k], and so

forth. The additive reconstruction condition is expressed by the equations

r

Zw[p + ak] = 1 for 0 < p < k - 1, (3.2)
a=o

where r is the greatest integer less or equal to than y. These equations are a discrete-

time analog of the Nyquist criterion for avoiding intersymbol interference in a PAM

communication system [4]. The conditions for additive reconstruction do not have a

unique solution. Many common window functions, such as the raised cosine window,

satisfy equation 3.2.
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3.2.2 Window Design

The final window used in the block processing needed desirable frequency domain

characteristics and the additive reconstruction property. The window was designed

through a convolution procedure. A base window that met the frequency domain

requirements of the processing algorithm was convolved with a square window. The

resulting window met the same requirements in the frequency domain and had the

additive reconstruction property.

Convolving a length a + 1 sequence with a length i square window produces a

sequence that satisfies the additive reconstruction condition for shifts of k = $. If

a[n] is the base window and s[n] is the square window, the resulting sequence is

N

w[n] = 0 a[k]s[n - k]

E== a[k] 0 < n <N - 1
N (3-3)

= E 2 N a[k] N < n < N - 1
k=n+1-- -

0 otherwise.

For a half-overlapped window, the additive reconstruction condition is

N N
w[n] + w[n + -] = 1 for n = 0, ... , -_1.

2 2

Using equation 3.3 the additive reconstruction sum is

N N
n ~22

L a[k] + E a[k] =Z a[k]. (3.4)
k=O k=n+1 k=O

This is constant over all values n 2 0... 1, so the additive reconstruction

property is satisfied.

Figure 3.3 illustrates the convolution result. The two windows cover the samples

that sum to form w[n] and w[n+ ]. Shifting the windows does not change the overall

sum. In all cases, the windows cover the complete sequence.

If A(ew) has desirable frequency domain characteristics, then W(ew) is likely
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Figure 3-3: Design of window with additive reconstruction by convolution

to have desireable characteristics as well. The mainlobe of S(eiw) is narrower than

the mainlobe of most other windows. Usually, the mainlobe of W(ew) is narrower

than the mainlobe of A(ew). The peaks of W(ei") at the same frequency as the first

sidelobe of A(ew) are lower than the sidelobe in A(ei"). The first sidelobe of W(e")

falls between the first zeros of S(eiw) and A(e"). It is not guaranteed to be lower

than the sidelobes of A(eiw). In practice, however, it is usually not large enough to

cause significant distortion through the windowing operation.

The convolution procedure was used to generate the final data window. A 129

sample Kaiser window with parameter # = 5 was convolved with a 128 sample square

window. The resulting 256 sample window had the additive reconstruction property

for shifts of k = 128 samples. Since the sample rate was 10 KHz, the window duration

is 256 ms, and the time resolution was 128 ms. For someone speaking at a normal

rate, the vocal tract behavior was approximately constant on this time scale, and the

LP parameter side information described the signal well [12].

In addition to its time domain characteristics, the window possessed good behavior

in the frequency domain. Its mainlobe width was 0.0157r radians and its first sidelobes

were -25 dB down . Despite the attempt to design the window with time and fre-

30



quency domain properties specified independently, the resulting window had similar

properties to the familiar raised cosine window. Both windows had nearly identical

mainlobe widths, but the sidelobes of the raised cosine window were actually 3 dB

lower than the window designed through convolution.

3.3 Side Information Computation

The estimation algorithms discussed in Chapter 2 used two types of side informa-

tion. For each algorithm, the side information was calculated from the vectors of

clean speech. The estimation algorithm discussed in section 2.2.2 and the Wiener

filter discussed in section 2.3 used LP parameters as the side information. In the case

of the ML algorithm, the final constraints on the estimate were expressed through

an equivalent set of autocorrelation coefficients. Determining the LP parameters re-

quired computation unnecessary for the POCS algorithm, so only the autocorrelation

sequences of the clean speech vectors were calculated. The Wiener filter, however,

required a power spectrum estimate, so the LP parameters were calculated from the

autocorrelation sequence.

The exact ML algorithm discussed in section 2.2.3 used zero-phase impulse re-

sponse coefficients as side information. In practice, this sequence was calculated

approximately. An exact determination of the coefficients required a continuous rep-

resentation of the spectral magnitude of the clean speech vector. In the digital com-

puter implementation, however, only a discrete representation was available. The

magnitude was approximated by the clean speech vector's discrete Fourier transform

(DFT) magnitude. The inverse discrete Fourier transform (IDFT) of this sequence

produced the approximate side information.

The approximation for the zero-phase impulse response introduced errors into

the side information. In general, zero-phase impulse responses are infinite length

sequences, so finite-length approximations are distorted by time aliasing. To reduce

the effects of this error, the side information was estimated with discrete transforms

four times longer than the data window. The window was 256 samples long and
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1024 sample transforms were used for each vector. It was judged that the additional

reduction in error from a longer transform did not justify the extra computation

required.

3.4 POCS Implementation

The discrete transform representation of the frequency domain also necessitated ap-

proximations in the POCS algorithms. The approximations counteracted errors in

the implemenation of the projections. Again, the first source of error was time alias-

ing. The signals at each stage of the POCS algorithm were not restricted to be finite.

The finite-length, discrete implementation of the algorithm could create time aliasing,

distorting the final speech estimates. Additionally, the discrete frequency domain rep-

resenation prevented an exact implementation of the P2 projection defined in equation

2.17. The exact P2 operation set U+i1(eiw) to zero over any interval where Ui(eiw)

was negative. In discrete realizations of the projection, negative samples were set to

zero. This implementation of P2 satisfied the requirements of equation 2.17 at isolated

values of w. Portions of the frequency axis between samples were not guaranteed to

be positive.

To counteract the errors in the POCS algorithm, the sequences used in the itera-

tion were 1024 samples long. Just as in the case of the zero-phase impulse response

computation, this implementation reduced the impact of time aliasing. In the fre-

quency domain, the long sequences reduced errors in the P2 operation. The intervals

between samples were smaller than those in 256 sample sequences, so deviations from

the ideal P2 projection were reduced.

The POCS procedure's convergence behavior was verified empirically. The al-

gorithm required many iterations to converge to an estimate. Some experiments

were performed to determine the appropriate number of iterations. Figure 3.4 shows

the Euclidean distance between successive sequences after P1 has been performed.

The vertical axis measures the distance in a logarithmic scale. The horizontal axis

measures the number of iterations. As the distance between successive sequences
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decreases, the algorithm converges. After 1000 iterations, the distance between suc-

cessive sequences was on the order of 100. In practice, the procedure was performed

100 times to generate the clean speech estimates.

The result of the POCS algorithm was used to estimate the spectral magnitude of

the clean speech. The algorithm converged to an estimate of either the autocorrelation

or zero-phase impulse response of the clean speech vector. As described in Chapter 2,

these sequences are related to the spectral magnitude of the speech vector estimate by

a Fourier transform. The DFT of the speech estimate was produced by combining the

spectral magnitude estimate from the POCS algorithm with the phase of the noisy

speech vector. The IDFT was taken and the first 256 samples were selected as the

final estimate of the clean speech vector.

3.5 Wiener Filter Implementation

The approximate ML estimates using the LP parameters were compared with an

LLSE estimate from the same side information. In Chapter 2, the non-causal Wiener

filter was given in equation 2.23. The non-causal filter was used in this case be-
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cause the data was transmitted and processed in vectors, and the noise cancellation

algorithm had access to all of the data at once.

The Wiener filter was implemented as time-varying linear filter. Using the formula

in equation 2.23, a 1024 point frequency sampled filter was calculated for each speech

vector. The IDFTs of these sequences produced FIR filters approximating the Wiener

filter for each vector. The time variation of the impulse response was obtained by

linearly interpolating between the approximate filters. The interpolation avoided

distortions present in signals filtered in the frequency domain caused by sudded jumps

of the frequency response at frame boundaries.

3.6 Results

Three types of comparisons were performed between the noise reduction algorithms

implemented in this thesis. First, the side channel noise reduction algorithms were

compared with an iterative Wiener filtering algorithm described in Chapter 4. Next,

the algorithms were compared as the amout of side information available was in-

creased. Finally, the ML and Wiener filter algorithms were compared when the SNR

was varied.

The data used to test the algorithms consisted of several sentences sampled at 10

KHz and 16 bits of precision. The data was processed on a workstation using floating

point arithmetic. Male and female speakers were used in the experiments to test the

algorithms on the frequency characteristics of different speakers.

The noise in these experiments was artificially generated and added after the signal

was digitized. The noise was generated with the pseudorandom number generator

provided with MATLAB and had approximately unit-variance, Gaussian statistics.

The SNR was controlled by scaling the noise vector by an appropriate fraction of the

signal power.

All of the comparisons were performed through informal listening. The goal of

this research was to implement the side information noise reduction algorithms and

qualitatively characterize their behavior. No attempt was made to perform formal
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trials and generate quantitative performance scores for these algorithms.

The first comparison measured the performance of the Wiener using side infor-

mation against a single channel noise reduction algorithm. Out of a wide variety

of options for a single channel algorithm, the iterative Wiener filter was chosen [6],

[7]. This algorithm, as described in Chapter 4, estimates the LP parameters from

the noisy speech signal and processes the speech with a Wiener filter based on these

estimates. This algorithm is related to the Wiener filter described in section 2.3, and

it was thought that the comparison between them would show the impact of accurate

side information on noise reduction performance. Qualitatively, the output of both

algorithms was similar at SNRs above 20 dB. At SNRs below 10 dB, however, the

Wiener filter using side information was judged to have superior output in a casual

comparison. As the SNR increased, the accuracy of the LP parameter estimates

degraded and the performance of the iterative Wiener filter suffered relative to the

Wiener filter with side information.

The second set of comparisons tracked the performance of the algorithms as the

amount of side information was increased. Initial experiments were performed with

twelve coefficients of side information per speech vector. These experiments simu-

lated a side channel with a data rate one-tenth the rate of the noisy channel. For

every 128 speech samples transmitted on the noisy channel, twelve coefficients of side

information were transmitted on the side channel. This was seen as a reasonable ratio

between the channel bandwidths for practical side information algorithms. Addition-

ally, twelve LP parameters are viewed as an adequate number of coefficients to model

speech on a short-time basis [12], [8].

As the amount of side information was increased, the performance of the ML

estimation algorithm steadily improved. In casual listening, the presence of artifacts

in the output was less noticeable and the similarities with the clean speech increased.

As the number of side information coefficients was increased, larger portions of the

autocorrelation sequence or zero-phase impulse response of the clean speech vector

were specified and the constraints imposed by the side information became tighter.

As more coefficients were transmitted, the errors in the signal came primarily from
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the phase estimate.

The Wiener filter displayed diminishing returns from additional side information.

Appropriate LP models for speech usually use ten to twelve coefficients. Larger

amounts of side information did not appear to improve the performance of the Wiener

filter. For example, the differences between the output of filters using 12 and 64 LP

coefficients were difficult to hear in casual listening. This behavior is reasonable

considering the frequency domain interpretation of the Wiener filter. It attenuates

frequences where the power spectrum of the noise is greater than the power spectrum

of the signal and passes frequencies where the power spectrum of the signal is greater

than the power spectrum of the noise. Thus, the frequency response of the Wiener

filter is defined by the location and strength of the peaks in the power spectrum of

the signal, corresponding to the formant frequencies of the speech. The formants can

be accurately described by the tenth to twelfth order LP models initially used. The

higher-order LP models do not change the locations of the peaks in the estimated

power spectrum enough to affect the output of the Wiener filter.

The final set of experiments compared the performance of the POCS-based al-

gorithms and the Wiener filter as the SNR was varied. The algorithms were tested

with twelve coefficients of side information. The two estimation algorithms produced

distinct artifacts when applied to the noisy speech data. The Wiener filter was a

lowpass filter for most of the frames where speech energy was strong. Many of the

speech vectors had the majority of their energy in the lower frequency bands and little

energy in the high frequency bands. The Wiener filter passed low frequencies almost

unattenuated, but reduced the high frequencies significantly. The system based upon

the Wiener filter generally muffled the speech and the noise. It reduced the noise

audibility and worked without noticeable distortion down to SNRs of 20dB. Below

this level, the noise power was strong enough to make the low pass filtering muffle

the speech and produce audible distortions in the signal.

The ML side information algorithms had a different effect on the signal. They were

more successful at preserving the high-frequency content of the speech signal. The

original speech was not as muffled in the POCS-based estimate as it was in the Wiener
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filter estimate. The POCS-based estimators, however, produced musical artifacts in

the background at SNRs below 10 dB. The tones were generally more annoying to

listeners than the muffled quality of the Wiener-filtered speech. The musical tones

arose from the second projection in the POCS algorithms. The P2 step often left

sharp peaks in the frequency spectrum that were not zeroed. The peaks produced

coherent tones which were noticeable to the human ear despite having low power.

The frequencies of peaks shifted between frames, producing the chiming quality of

the background interference.

An example of the sharp peaks in frequency is shown in figure 3.5 This figure

shows one windowed segment of data after 100 iterations of the projection algorithm.

The spectrum contains many sharp peaks in the high frequencies. The peaks do not

correspond to frequencies where the clean speech possesses significant energy. They

therefore sound like coherent tones in the background of the speech. The frequencies

of the peaks change from frame to frame, producing the chiming artifacts heard in

the output of the ML based algorithm.
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Chapter 4

Single-Channel Enhancement

Algorithms

As an auxiliary study, the POCS-based estimator was modified for use as a single

channel enhancement algorithm. The algorithm was implemented with LP parameters

estimated from the noisy speech instead of exact LP parameters transmitted on a side

channel. This single channel enhancement algorithm was compared with iterative

Wiener filtering.

4.1 Iterative Wiener Filtering

One of the standard problems in speech enhancement is estimating clean speech from

a single channel transmitting only noisy data. A wide variety of approaches to this

problem have been attempted [7]. The iterative Wiener filter was chosen for testing

because it estimates the LP parameters of the speech in addition to estimating the

speech waveform. The iterative Wiener filter is a special case of the Expectation-

Maximization (EM) algorithm. The EM algorithm calculates an estimate of the

underlying LP parameters of the speech from the observation of the noisy data [3],
[9]. Generally, EM algorithms determine a set of parameters underlying a random

process through two iterated steps. The first step produces an estimate of the un-

known parameters using noise corrupted data. Once the parameters are known, a
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better estimate of the clean data can be made. From this data, a second estimate

of the parameters is formed. This procedure is iterated, eventually converging to an

estimate of the clean data and its parameters. It can be shown that the EM algorithm

converges to a local maximum of the likelihood function relating the clean data and

the underlying parameters [3].

The problem of single sensor speech enhancement can be mapped to an EM algo-

rithm. In this mapping, the LP coefficients are the underlying parameters, the clean

speech is the clean data, and the noisy speech is the corrupted data. An EM-based

procedure estimates of the LP parameters and the clean speech. In the first step, the

LP parameters for the noisy speech are generated. Using these estimates, an approx-

imate power spectrum is generated and an approximate Wiener filter is calculated.

The noisy speech is filtered and the steps are repeated. The next estimate of the LP

parameters is calculated from the output of the Wiener filter. Another Wiener filter

is calculated using these LP parameters. The noisy speech is filtered again, gener-

ating a second estimate of the clean speech. This iteration is repeated until some

convergence condition is met.

4.2 Adaptation of the Side Information Algorithm

In the experiments described in Chapter 3, two competing algorithms were compared.

The first algorithm used the exact LP side information to model the power spectrum

of the speech and used a Wiener filter to generate an estimate. The second algorithm

used the LP parameters in the POCS iteration. This comparison was repeated using

the estimated LP parameters generated by the iterative Wiener filter.

The iterative Wiener filter described in section 4.1 produced estimates of the LP

parameters and the speech. Based on the recommendations of previous work on the

algorithm [6], the Wiener filter was iterated three times. In the first two iterations, the

filtering was performed in the frequency domain. The final estimate of the speech was

constructed by the time-varying Wiener filter described in section 3.5. The estimates

of the LP parameters generated by the iterative Wiener filter were used in place of
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exact side information in the POCS algorithm. The algorithm was implemented in

exactly the same fashion as the POCS algorithm described in section 3.4.

Both the iterated Wiener filtering algorithm and the side information algorithm

were tested on speech at SNRs below 10 dB. The estimates from both algorithms

sounded rough in casual listening. The output from the POCS-based algorithm,

however, was thought to be less distorted than the estimate formed by the iterative

Wiener filter. The added processing of the side information algorithm provided a

modest improvement in the quality of the speech estimate. These results indicate

that the POCS algorithm can produce speech estimates comparable to those from

accepted single channel speech enhancement techniques.
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Chapter 5

Conclusions

This thesis examines the noise cancellation problem when side information describing

the clean speech is available. In certain situations, a reliable side channel between the

signal source and receiver is open, but a cost constraint may prevent the channel from

having adequate bandwidth to transmit the entire speech signal. Since the bandwidth

of the side channel is limited, a compressed version of the clean speech is sent to the

receiver. There, the noisy signal and the side information are combined to estimate

the speech.

Chapter 2 reviews the framework for estimation with side information developed

by Barron, et. al. Section 2.1 considers the MAP, MMSE, and ML estimators for

a generic side information signal. Each of these estimators is calculated in a similar

fashion to their counterparts without side information. The remainder of the chapter

describes algorithms to calculate ML and LLSE estimators using LP parameters or

zero-phase impulse response coefficients as side information.

Implementations of the ML and the LLSE estimators using the LP side informa-

tion and the ML estimator using the closely related zero-phase impulse response side

information were compared. The approximate ML estimates for both the LP and

zero-phase side information were generated through a POCS procedure. The LLSE

estimator was implemented by a time-varying filter approximating the Wiener filter.

Comparisons between the three algorithms showed that the ML estimators pre-

served the high-frequency content of the original speech but also contained chiming
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noises. The approximate ML estimate based upon the LP side information sounded

less pleasing than the exact ML estimate using the zero phase impulse response side

information. The chiming tones were more noticeable in the LP-based estimates

of the speech. The LLSE estimate sounded muffled but lacked the chiming noises.

Generally, listeners rated the LLSE estimate most pleasant because the distracting

background tones were absent from the Wiener-filtered speech.

Additionally, the side-information procedure was adapted to use as a single chan-

nel speech enhancement procedure. The traditional iterative Wiener filtering ap-

proach, a form of the EM algorithm, was implemented to form an estimate of the LP

parameters of the speech directly from the noisy data. The estimated LP parameters

and the noisy speech were input into the POCS algorithm. The side information

processing improved the intelligibility of the speech over the results of the iterated

Wiener filter.

While the performance of the speech enhancement algorithms is hard to mea-

sure, this work has shown that side information can improve the quality of enhanced

speech. Over a restricted range of SNRs, the estimation algorithms considered in

this thesis produced output judged to be superior to that of a single channel iterative

Wiener filter. While these algorithms have not been compared with a wide variety

of existing single channel enhancement algorithms, the preliminary result indicates

that side information can provide an advantage over certain single channel noise re-

duction systems. In situations where the disturbances in a speech signal prevent a

speech processing system from achieving its performance goals and cost constrains

the amount of hardware that can be deployed to reduce the noise, side information

algorithms may be a feasible solution.

In future work, the side information approach can be applied to other signals

besides speech, or the algorithm based upon projection onto convex sets can be im-

proved. Procedures to mitigate the chiming artifacts produced by these algorithms

can be investigated. Additionally, different choices of side information can be ex-

plored. A different set of side information may provide better constraints on the

speech estimates and could lead to algorithms that have less annoying artifacts.
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