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Chapter 1

Introduction

Parallelism has played an important role recently in the quest to increase the perfor-

mance of modern computers. Current microprocessor designs rely heavily on execut-

ing instructions in parallel to reach their performance objectives. And while great

strides continue to be made in microprocessor performance, there are always applica-

tions that require more computing power than the current generation of processors is

able to provide. One way of overcoming this limitation is to use multiple processors

working in parallel.

Writing a program to run on multiple processors poses many new challenges,

and to make use of parallelism effectively, powerful new tools are required. The

Cilk programming language is one such tool. Developed at the MIT Laboratory

for Computer Science, Cilk provides abstractions that make it easy to code parallel

algorithms to execute efficiently on a variety of platforms, without worrying about

system-dependent details [1, 6, 9].

For many users, parallel computation will not be of much value unless it can be

used within a framework of existing tools. In many areas of scientific computation,

MATLAB is one such popular tool. It provides numeric computation, visualization

tools, a high-level programming language, and toolboxes of application-specific func-

tions, all in an integrated environment [8]. Ideally, a researcher could work within

this environment most of the time, implementing only the most performance-critical

parts of an application in Cilk.
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This thesis describes a system that integrates MATLAB and Cilk, making it pos-

sible to call Cilk code from the MATLAB environment easily and efficiently. Chapter

2 provides details on the design of the system, and Chapter 3 describes the example

functions provided. User documentation is supplied in Chapter 4. Chapter 5 de-

scribes a tool that simplifies the use of the Cilk library version. Concluding remarks

and a discussion of possible areas for future work can be found in Chapter 6.
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Chapter 2

System Design

This chapter describes the design of the Cilk/MATLAB system. First, Section 2.1

discusses the design goals for the system. Sections 2.2 and 2.3 provide brief intro-

ductions to MATLAB and Cilk, and particularly the mechanisms that they provide

for interfacing with other systems. Changes to the Cilk runtime system necessary to

make it conform to MATLAB's memory management requirements are discussed in

Section 2.4. Section 2.5 focuses on the issue of sharing a single copy of the runtime

system among all Cilk MATLAB functions. Finally, Section 2.6 comments briefly on

a remaining problem due to the existence of several incompatible versions of the Cilk

runtime system.

2.1 Design Goals

The basic goal of the Cilk/MATLAB system is to allow Cilk functions to be in-

voked from MATLAB easily and efficiently-that is, the system should be easy to

program for, and it should allow machine resources to be utilized efficiently. The

need for efficiency is clear: the reason for using parallelism in the first place is to

gain additional performance, and any unnecessary overhead will act to degrade this

performance advantage. The philosophy I used to determine what can be expected

of the programmer is the following: it is reasonable to require that he or she have

some knowledge of how to write a Cilk program, and also of how to write an external
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MATLAB function, since these are both fundamental to the use of the system. But

beyond these requirements, the system should make as few additional demands on

the programmer as possible-it should be no more difficult to program for Cilk and

MATLAB together than it is for both separately.

2.2 MATLAB Overview

Much of MATLAB's functionality is exhibited to the user in the form of functions.

Built-in functions that perform many common tasks are provided as part of the basic

MATLAB system, and users can also extend its behavior with their own functions.

These can be written in MATLAB's own high-level language, or can be platform-

specific compiled code written in either C or Fortran [7].

MATLAB follows the convention that the implementation of each external func-

tion is provided in a separate file. For functions written in MATLAB's scripting

language, these are simply text files, given the extension .m and referred to as M-

files. Compiled C or Fortran functions, referred to as MEX-files, reside in dynamically

linked libraries and are given platform-specific extensions such as .mexsol for Solaris

and .mexsg for SGI. While this separation of functions into different files is desirable

in general, it has implications for how to efficiently make Cilk code available within

the MATLAB environment.

2.3 Cilk Overview

A Cilk program consists of two main parts: the Cilk runtime system and the user's

compiled Cilk functions. The runtime system handles tasks such as creating worker

threads and scheduling the program for execution on multiple processors. Before any

of the user's code can be executed, the runtime system must be initialized. After

initialization, control passes to the compiled Cilk code. During the course of the

program's execution, there are many interactions between the runtime system and

the user's code. For instance, memory allocation in a Cilk program is performed
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via calls to the runtime system's memory manager. Also, scheduling decisions are

made through a series of cooperative interactions between the runtime system and

individual Cilk functions.

There are two standard ways of starting up the Cilk runtime system. When a

Cilk program is compiled as a standalone executable, it is automatically started up

upon execution and used to invoke the Cilk main function. To allow Cilk code to

be called from a C program, the Cilk library version is provided, which allows the

runtime system to be invoked explicitly. The user first calls Cilk-init and then can

execute Cilk functions as many times as desired by passing function and argument

pointers to Cilk-run. The Cilk-finish function is used to shut down the runtime

system.

2.4 Runtime System Modifications

With the Cilk and MATLAB interfaces as described above, it seems that one could

simply use the Cilk library version to call a Cilk function from C, and then compile

that C code as a MATLAB MEX-file. While this approach basically works, one

problem arises. Sufficiently complex systems tend to perform certain operations in

proprietary, and conflicting, ways; in the case of Cilk and MATLAB, the culprit is

memory management.

MATLAB requires that MEX-files allocate and free memory using MATLAB-

specific functions, rather than the standard malloc and free C library routines.

These specialized functions allow MATLAB to provide features such as automatically

freeing allocated memory when a MEX-file terminates, as well as perhaps optimizing

memory usage in other ways. Needless to say, neither Cilk user code nor the Cilk

runtime system ordinarily allocates memory in this way. Therefore, they need to be

modified to do so.

Like MATLAB, the Cilk runtime system performs its own memory management,

requiring users to allocate memory via functions such as Cilkimalloc and Cilk-

free. In this case, the custom memory handling is an advantage, because it means
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Cilk MEX-files:

Figure 2-1: Without a mechanism for sharing the Cilk runtime system among several
MATLAB functions, many runtime system instances may be in use at once.

that only internal Cilk memory allocation code needs to be modified to work under

MATLAB. Since user code already allocates memory through Cilk, it inherits any

changes automatically.

The necessary changes are confined to a single source file, malloc. c. A modified

version is provided that passes all requests to allocate and free memory along to

the appropriate MATLAB functions. It can be compiled and linked with the rest

of the Cilk runtime system to produce a MATLAB-specific version, and from the

programmer's perspective, using it is no different from using the standard Cilk library

version.

2.5 Sharing the Runtime System

While the modified version of the Cilk runtime system makes it possible to call

a Cilk function from MATLAB, problems begin to arise when there are many such

functions. Because MATLAB expects to find each function in a separate file, the most

straightforward thing to do is to compile each Cilk MATLAB function separately.

But this strategy causes each function to have its own private copy of the runtime

system. When a MATLAB application uses several of these functions at once, each
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Cilk
cilkfunctions.mexsol RTS

f ft plus mtimes

AA

MATLAB
cilk_ fft.mn

cilkplus.m

cilk mtimes.m

Figure 2-2: Multiple Cilk functions can be compiled into a single MEX-file and still
be callable with different names using M-files. This strategy permits sharing of the
runtime system, but the functions can no longer be developed independently, a fatal
disadvantage.

runtime system instance resides in separate memory, incurs separate startup overhead,

manages its own private collection of worker threads, etc. (see Figure 2-1). In contrast,

the Cilk library version allows multiple Cilk-run calls to be made, executing different

Cilk functions, all within the same instance of the runtime system. Ideally, this ability

could be passed on to Cilk functions running under MATLAB.

A simple way of allowing multiple Cilk functions to share one copy of the runtime

system is to compile them all into a single MEX-file, perhaps using an extra argument

to determine which function is to be executed. The user can call these functions in a

more natural way by creating M-files with different names that pass their arguments

on to the single MEX-file (see Figure 2-2). The disadvantage is that the functions can

no longer be developed independently. Ideally, Cilk MEX-files should be compiled

and even distributed separately, just like their C and Fortran counterparts, while still

benefiting from a shared copy of the runtime system.

The correct approach seems to be to put the Cilk runtime system into one MEX-

file, and somehow allow Cilk functions in other MEX-files to be executed under this

copy of the runtime system. To see exactly how to achieve this goal, I first had to
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determine how isolated MATLAB keeps MEX-files from one another. It turns out

that MEX-files can access each other's memory by exchanging pointers encapsulated

in MATLAB data types, but unfortunately one MEX-file cannot see the symbols of

another, and thus cannot directly call the functions it contains.

At first glance, it seems that all a MEX-file containing a Cilk function would

need to do is pass a function pointer, via MATLAB, to the MEX-file containing the

Cilk runtime system. Then a single MEX-file would have access to both the runtime

system and the function to be executed, and it could simply pass the function pointer

along to Cilk-run. Unfortunately, the solution is not so simple. The problem is that

compiled Cilk code itself contains many calls to functions in the runtime system, for

tasks such as scheduling and memory allocation. Making every one of these calls

via MATLAB is not really an option. MATLAB is fundamentally a serial program,

and it is not prepared to handle calls coming from multiple threads simultaneously.

Perhaps if the MEX-file containing the runtime system supplied the calling MEX-file

with pointers to all of its functions, these could be used to make the calls directly.

This strategy is fairly complex, and it requires substantial changes to compiled Cilk

code to allow it to run under MATLAB.

Instead, I found a way of allowing Cilk MEX-files to reference the symbols of

the runtime system directly. First, the runtime system is compiled as a shared li-

brary, libcilkmatlab. so, rather than a statically linked library as is ordinarily done.

Shared libraries are accessed via calls such as dlopen, disym, and dlclose, which

permit an application to look up and call functions that a library contains. The

dlopen function can also be given a special flag, RTLDGLOBAL, indicating that the

symbols in the library should be made available globally-within the entire applica-

tion. If the Cilk runtime system is accessed using this flag from within a MEX-file,

all other MEX-files will then be able to reference Cilk symbols directly-Cilk is effec-

tively imported as a part of MATLAB itself (see Figure 2-3). The advantage is that

no changes must be made to the way Cilk user code is compiled.

A word of caution is in order: Importing the symbols of a shared library globally

from within a MEX-file is not likely to be supported by The MathWorks. Provided
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Cilk ,- - - - -
RT

cilkload.mexsol
cilkinit.mexsol
cilk-finish.mexsol

MA+LA cilk_ f ft.mexsol

cilk plus.mexsol

++cilk mtimes.mexsol

Figure 2-3: The current Cilk/MATLAB system effectively makes the Cilk runtime
system a part of MATLAB, so that it is available automatically to any Cilk MEX-file.
Auxiliary MEX-files handle loading, initializing, and terminating the runtime system.

that the symbols are named so as to avoid conflicts (all beginning with Cilk_ for

instance), however, there is not likely to be a problem, and I expect that this trick

would work on any platform supporting similar functionality to dlopen.

Once the Cilk runtime system has been made available to all MEX-files, it is

straightforward to write a Cilk function that can be called from MATLAB. The

programmer need only conform to the standard interfaces for MATLAB C language

MEX-files, and invoke the Cilk function using Cilk-run. Only two things must be

done differently to take advantage of the shared runtime system. First, there is

no need to call Cilk-init and Cilk-finish. The user controls when to start up

and terminate the shared runtime system via auxiliary MEX-files provided for that

purpose. Second, the file should of course not be linked with the runtime system, if

the shared copy is to be used.

2.6 Cilk Compile-Time Options

One additional difficulty arises due to the fact that Cilk supports several options

which must be specified at compile time. These options control whether or not code
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for debugging, timing, and statistics collection is compiled into a user's program.

Currently, the same set of options must be supplied when compiling both the runtime

system and each of the Cilk functions it will be used to execute. This presents

a problem when trying to share a single copy of the runtime system among many

different Cilk functions, which may be developed or distributed separately. One set

of options must be chosen for the shared runtime system, and only Cilk functions

which conform to this choice will be able to take advantage of it.

Unfortunately, no easy solution exists to this problem. The possibility has been

discussed of a future version of Cilk providing a unified runtime system that can

support user code compiled with any set of options. Until these changes are made,

the only alternative is for functions compiled with different options to use different

copies of the runtime system. To allow individual functions to deviate from the set of

options in use by the main Cilk/MATLAB system, a statically linked version of the

MATLAB-modified runtime system is also provided. Each of these functions must

have its own copy of the runtime system-the method for sharing the runtime system

does not permit multiple versions to be shared simultaneously.
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Chapter 3

Example Functions

This chapter describes the example functions provided as part of the Cilk/MATLAB

distribution. These examples demonstrate the mechanics of writing a Cilk MEX-file,

as well as some of the issues that arise when converting existing Cilk code to run

under MATLAB.

3.1 Shared Runtime System Examples

The following examples are designed to work with MATLAB's shared copy of the

Cilk runtime system; thus, they do not include calls to Cilk-init or Cilk-finish,

only Cilk-run.

Matrix Addition

CILKPLUS(X,Y)

This function is a simple parallel matrix addition example. It handles both real and

complex inputs, matrices and N-dimensional arrays, and can add a scalar to an array

or matrix as well as adding two identically sized matrices.

15



Remarks

This function is a good example of a MEX-file that attempts to mimic all of the

different behaviors of a built-in MATLAB function. It checks its arguments carefully,

and falls back gracefully to MATLAB's built-in PLUS function if it receives any input

that it is not prepared to handle.

Matrix Multiplication

CILKMTIMES(X,Y)

This function implements a divide-and-conquer matrix multiplication algorithm using

a blocked matrix representation. It is based on rectmul. cilk from the standard Cilk

distribution, modified to handle complex as well as real matrices. Multiplying a scalar

by a matrix or N-dimensional array is also supported.

Remarks

This example illustrates the problem of differing data representations commonly en-

countered when modifying existing code for use with MATLAB. MATLAB stores

matrices in column-major order, so to multiply them with the rectmul code, they

must be converted between this representation and the blocked row-major represen-

tation that the algorithm expects.

Fast Fourier Transformi

CILKFFT(X)
CILK-FFT(X,N)
CILKFFT(X, [, DIM)
CILKFFT(X,N,DIM)

1This FFT code seems to be several times slower than MATLAB's built-in version on some inputs.
For a fast, portable FFT implementation, consider FFTW [4, 5], which includes a parallel version
written in Cilk. FFTW comes with a MATLAB MEX-file designed for calling the serial version,
which I was easily able to modify to execute the Cilk version using the shared copy of the runtime
system.
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This function is a MATLAB version of the Cooley-Tukey [3] one-dimensional Fast

Fourier Transform code found in fft . cilk from the standard Cilk distribution. It

implements the same semantics as MATLAB's FFT command, including the N-point

FFT and computing the FFT of each column of a matrix or across an arbitrary

dimension of an N-dimensional array.

Remarks

MATLAB stores the real and complex parts of a matrix in separate arrays. This

FFT code expects both parts of a number to be stored together, so some conversion

is necessary. Extra code "deinterlaces" the input if multiple FFTs are being performed

across any dimension of an array other than the first.

Overloading Functions

The three example functions described above are designed to be able to replace their

built-in MATLAB counterparts. MATLAB allows a built-in function to be over-

loaded by placing an M-file or MEX-file of the same name in a special directory

called @double (for functions operating on matrices of doubles) somewhere in the

MATLAB path. The example Cilk MEX-files themselves should not be placed in

this directory, because then they will be called even if the Cilk runtime system has

not been initialized. Instead, M-files should be created which test the CILK-RUNNING

global MATLAB variable and only call the Cilk versions if Cilk has been initialized.

Three M-files which do this for the above examples, plus.m, mtimes .m, and f ft.m,

are provided.

3.2 A Standalone Example

A Cilk MEX-file can be compiled with its own private copy of the Cilk runtime system.

In this case, the MEX-file must handle starting up and shutting down the runtime

system. The following function provides one example of how this can be done.
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Fibonacci Numbers

FIB(N)

This function calculates the Nth Fibonacci number using a slow, doubly recursive

algorithm.

Remarks

The key feature of this example is that it handles initializing and terminating the

Cilk runtime system transparently to the user. It keeps track of whether or not it

has been called before, and on the first call only, runs Cilk-init. It also registers an

exit function using MATLAB's mexAtExit call, so that when the MEX-file is cleared

from memory or MATLAB exits, it has the chance to call Cilk-finish.
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Chapter 4

User Documentation

This chapter is a users and programmers guide for the Cilk/MATLAB system. Section

4.1 gives an overview of the system, and Section 4.2 covers compilation and instal-

lation. The tools provided to manage the system within MATLAB are described in

Section 4.3, and Section 4.4 explains what must be done to create a Cilk MATLAB

function.

4.1 Overview

The purpose of the Cilk/MATLAB system is to allow Cilk code to be used within

external MATLAB functions (MEX-files). The basic approach is to write a C lan-

guage MEX-file that uses the Cilk library version to invoke Cilk code from C. Because

MATLAB expects MEX-files to allocate memory via its memory manager, a MAT-

LAB version of the Cilk runtime system with modified memory management code is

provided.

A mechanism for sharing a single copy of the Cilk runtime system among all Cilk

MEX-files is also provided. The runtime system is compiled as a shared library, and

an auxiliary MEX-file loads this library as part of MATLAB in such a way that other

MEX-files can reference its symbols. Additional commands are provided which allow

the user to initialize and shut down the shared runtime system within MATLAB.

The Cilk/MATLAB system is based on Cilk version 5.2. It was developed using
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MATLAB 5.0, though it should work with any MATLAB 5.x release. Currently it

has only been tested on Solaris.

4.2 Installation

To install the Cilk/MATLAB system, you will first need to obtain both the base Cilk

5.2 distribution and the Cilk/MATLAB archive. These can be downloaded from the

Cilk web page at http://supertech.1cs.mit.edu/cilk/. Note that Cilk requires

gcc as well as GNU's make utility. You will also need to have your system set up to

compile MEX-files using MATLAB's mex command.

To compile and install the Cilk/MATLAB system, perform the following steps:

1. Unpack the Cilk 5.2 archive by running gunzip <filename>. tar. gz and tar

xvf <filename>. tar. Below, <cilk dir> refers to the top-level directory of

the Cilk distribution (usually named cilk).

2. Unpack the Cilk/MATLAB archive inside the Cilk directory, as <cilk dir>/

matlab.

3. Edit the file <cilk dir>/matlab/Makef ile .matlab. common, changing MATLAB_

INCLUDEDIR to point to the directory where MATLAB's include files reside on

your system.

4. In <cilk dir>/matlab, run . /install to modify the necessary files from the

Cilk distribution to compile a MATLAB-specific version of the Cilk runtime

system.

5. In <cilk dir>, run ./configure -- with-os-threads -- enable-matlab and

make to compile the runtime system. Other Cilk compile time options can be

supplied to configure as well.

6. In <cilk dir>/matlab, run make to compile the shared library version of the

runtime system, the auxiliary MEX-files needed to operate it, and the example

functions.
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7. Copy the following M-files and MEX-files into a directory in MATLAB's search

path:

" <cilk dir>/matlab/cilkengine/*.mex*

* <cilk dir>/matlab/examples/*.mex*

" <cilk dir>/matlab/M-files/*.m

8. Copy <cilk dir>/matlab/lib/libcilkmatlab. so to wherever you would like

it to reside, and edit cilk-load.m to point to that location.

9. If you wish to overload MATLAB's built-in FFT, PLUS, and MTIMES functions

with the Cilk versions, create a directory called double somewhere in MAT-

LAB's search path, and copy <cilk dir>/matlab/M-f iles/@double/*.m into

that directory.

4.3 Operating the Cilk/MATLAB System

The following functionsi are provided for controlling MATLAB's shared copy of the

Cilk runtime system (see Figure 4-1):

cilk-load This command uses diopen to dynamically link to the shared copy of the

runtime system, making it available to all MEX-files. Calling this function is

not strictly necessary, because cilk-init calls it automatically if the runtime

system has not yet been loaded.

cilk-init This command is the MATLAB equivalent of the Cilk-init library ver-

sion call, which initializes the runtime system and prepares it to execute Cilk

functions. Runtime system options may be supplied, e.g. cilk-init ('-nproc

4').

'These functions are implemented as M-files. The actual work is done by the MEX-files cilk_
load-internal, cilk-init-internal, and cilk-f inish-internal.
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>> a=rand(1000,1000); >> cilkinit('-nproc 2')
>> b=rand(1000,1000); >> tic; c=cilkmtimes(a,b); toc
>> cilkload
>> cilk-init('-nproc 1') elapsed-time =

>> tic; c=cilkmtimes(a,b); toc

9.0914
elapsed-time =

>> cilkfinish
18.0821 >> cilkclear

>> cilkfinish

Figure 4-1: An example of how to execute Cilk MEX-files using MATLAB's shared
copy of the Cilk runtime system.

cilk-finish This command is the MATLAB equivalent of the Cilk-finish library

version call, which shuts down the Cilk runtime system. Calling cilk-f inish is

useful if no more calls to Cilk MEX-files will be made, or if the runtime system

needs to be reinitialized with a different set of options.

cilk-clear This command uses dlclose to release the shared library. It also clears

the Cilk-related MEX-files (cilk-load-internal, cilk-init-internal, and

cilk-f inish-internal) from memory.

The above functions maintain two global MATLAB variables, CILKLOADED and

CILKRUNNING, which can be tested to determine whether or not the shared copy of

the Cilk runtime system has been loaded or initialized, respectively.

It is important to load and initialize the shared runtime system before attempt-

ing to call a Cilk MEX-file that depends on it. If the Cilk library has not been

loaded, MATLAB will reject the MEX-file because it references Cilk symbols that

are undefined. If the runtime system has been loaded but not initialized, or if it has

been shut down by calling cilk_finish, attempting to use a Cilk MEX-file may have

unpredictable results.

4.4 Writing a Cilk MEX-file

The reader is assumed to have some familiarity with how to program in Cilk and how

to write a MATLAB C language MEX-file. Information on programming in Cilk is
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available in [2], and the MATLAB API is described in [7].

A Cilk MEX-file is basically a C MEX-file which calls Cilk code via Cilk-run.

Thus you must still define the standard mexFunction entry point for MATLAB,

which should be a C function. You can use all of the standard MATLAB API calls to

get information about arguments, allocate space for output matrices, etc. It is rec-

ommended that all calls to MATLAB API functions be made from C before invoking

a Cilk function with Cilk-run. While it should be possible to make these calls from

Cilk code, care must be taken not to have more than one call outstanding at a time,

because MATLAB is not designed to support multithreaded MEX-files.

If a MEX-file will be using the shared copy of the Cilk runtime system, it should

not include calls to Cilk-init or Cilk-f inish-the user bears responsibility for

initializing the runtime system in MATLAB prior to calling any Cilk MEX-files. If

the MEX-file will have its own private copy of the runtime system, it must handle

making these calls itself. One convenient way of initializing and terminating the

runtime system transparently to the user is demonstrated in the f ib example function.

Cilk MATLAB source files are compiled like any other Cilk files, and linked

using MATLAB's mex command. To use a private copy of the runtime system,

cilk-matlab-rts .a and cilk-lib. a should be specified as arguments to mex. These

libraries are both included in the shared Cilk runtime system, so neither should be

linked with a MEX-file that uses the shared copy. Because Cilk uses gcc, it is nec-

essary to link in libgcc. a in both cases. To get everything set up properly, you

may find it convenient to copy the Makefile from the examples directory to use as

a starting point. Remember to change CILKDIR to point to the location where Cilk

is installed on your system.
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Chapter 5

The makestubs Tool

The Cilk library version allows a Cilk function to be invoked from C via Cilkrun,

but the function must have a specific type-it must take a single argument of type

void * and return an int. While it is possible to use this mechanism to call a Cilk

function with arbitrary argument types, doing so can be cumbersome. Typically, a

C structure is created to contain all of the desired arguments, and a pointer to the

structure is passed via Cilk-run. Extra code is required on both the C side to copy

the arguments into the structure, and on the Cilk side to extract the arguments and

pass them to the Cilk function being called. Also, if the Cilk function returns a value

needed by the calling C code (of some type other than int), it must be passed back

as another field in the structure.

The makestubs program automates the process of writing wrapper code to call an

arbitrary Cilk function from C. It reads in an input file containing one or more Cilk

function prototypes and generates the code necessary to call these functions easily

from C via the Cilk library version. For each Cilk function, it creates a structure

whose fields correspond to the arguments of the function. A C wrapper function with

the same argument and return types as the Cilk function is created, having the same

name with lib appended. This function copies its arguments into the structure

and then calls Cilk-run. The Cilk stub function called by Cilk-run is also created.

Its job is to call the original Cilk function using the contents of the structure as

arguments. If the Cilk function has a non-void return type, these wrapper functions
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cilk double * foo(double *A, double *B, int n);

(a)

double * foojlib(double *A, double *B, int n);

(b)

#include <cilk.h> double * foo_lib(double * A,
double * B,

typedef struct foo-argstruct { int n)

double * A; {
double * B; foo-argstruct arg;

int n;

double * _retval; arg.A = A;

} foo-argstruct; arg.B = B;

arg.n = n;

cilk int foostub(foo-argstruct *arg)

{ Cilkrun(foo-stub, &arg);
arg->_retval =

spawn foo(arg->A, arg->B, arg->n); return arg._retval;

sync; }

return 0;

}

(c)

Figure 5-1: (a) foo .1: An example Cilk function prototype, given as input to
makestubs . pl. (b) f oo.1. h: The corresponding C wrapper function prototype, used
to invoke the Cilk function from C code. (c) f oo .1. cilk: The wrapper functions
themselves.

also handle passing the return value back to the calling C code. A value of type

int is returned directly by Cilk-run; other types are placed in an extra field of the

argument structure.

In addition to the Cilk source file containing all of the wrapper functions and

structure definitions, a C header file is created which contains prototypes for the C

wrapper functions. This file can be included by any C source file needing to execute

the Cilk functions.

Figure 5-1 shows sample input and output files of the makestubs tool. For other

examples of its use, see the cilk-plus and cilkamtimes functions in the examples

directory of the Cilk/MATLAB distribution.
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The makestubs program is implemented as a Perl script, makestubs .pl. On the

command line it takes the names of files containing Cilk function prototypes, typically

given the extension .1. For each file listed, it produces the two output files described

above, given the extensions . 1. cilk and .1. h.

The parsing job that makestubs does is fairly simple. It assumes that each ar-

gument in a function prototype consists strictly of a type followed by an identifier.

The type can consist of any string of characters, but the identifier must come last.

Thus all arguments in the function prototype must be given names, and syntax such

as int a[] and function pointer types are not handled properly.
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Chapter 6

Conclusion

In this thesis I have presented a system that permits Cilk code to be used within the

MATLAB environment easily and efficiently. It includes the following components:

" A modified version of the Cilk runtime system that allocates memory via MAT-

LAB's memory manager in order to be able to run within a MEX-file

* A dynamically linked library version of the runtime system and associated tools

that allow it to be shared by all Cilk MEX-files

" Several example functions which demonstrate the use of the Cilk/MATLAB

system

" User and programmer documentation

From the programmer's point of view, writing a Cilk MEX-file is no more difficult

than using the library version of Cilk to call a Cilk function from C, and compiling

that C code as a C language MEX-file. Within MATLAB, a user need only make a

single call to cilk-init to have access to all MEX-files that use MATLAB's shared

Cilk runtime system.

Performance of the system seems to be good. The overhead of calling a Cilk MEX-

file from MATLAB is small, and test data indicates that Cilk code running under

MATLAB exhibits the same type of speedup on multiple processors as is typical in

standalone Cilk applications (see Figure 6-1).
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Figure 6-1: This graph compares execution times to multiply two 1000 x 1000 matrices
with the cilkmtimes example using from one to six processors. Speedup is defined
as the ratio between the execution times on 1 and n processors. For comparison, the
dashed line represents MATLAB's built-in serial matrix multiplication code.

The Cilk/MATLAB system has been made available for download from the Cilk

web page, and can be used by anyone wishing to use parallel computation from the

MATLAB environment.

Further Work

There are a number of opportunities for further work on the Cilk/MATLAB system

and related parts of Cilk. Several of these are described below.

Cilk can collect various statistics during execution that are useful when devel-

oping a program, but currently the library version of Cilk does not support this

feature. Thus, the statistics cannot be accessed from MATLAB. MATLAB would

be more useful as a development environment for Cilk programs if these statistics

were available. While a MATLAB-specific solution could be developed, it would be

better to make statistics available as a standard part of the Cilk library version. Do-

ing so requires defining semantics for how statistics should be tracked across multiple
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Cilk-run calls-whether they should be reset each time, kept cumulatively, or cleared

only when the user requests it, for instance.

The Cilk/MATLAB system has so far only been tested under Solaris. It should

be tried on the other platforms supported by both Cilk and MATLAB, and modified

if necessary to run on those platforms. A related issue is that the current version of

Cilk does not support a library version on some platforms. Making the library version

available is a necessary first step to supporting the Cilk/MATLAB system on those

platforms.

As mentioned in Section 2.6, one major area for future work on Cilk which affects

the Cilk/MATLAB system is the plan to unify all of Cilk's compile time options in

a single version of the runtime system. This version will support Cilk code compiled

with any set of options, eliminating the need to statically link a Cilk MEX-file with

a private copy of the runtime system in order to deviate from the set of options in

use by MATLAB's shared copy.

Another area for further research more closely related to the Cilk/MATLAB sys-

tem involves providing more sample Cilk MEX-files. Perhaps producing a suite of

parallel matrix or linear algebra algorithms for MATLAB written in Cilk would be a

valuable project.
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