
Transcoding between QCELP 13K and G.723.1 CELP

Speech Coders

by

Durodami J. Lisk

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science
and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

.May 1999

@1999 Durodami J. Lisk. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

A u th o r ..
Department of Electrical Engineering and Computer Science

May 19, 1999

C ertified by

I Gregory W. Wornell
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Transcoding between QCELP 13K and G.723.1 CELP Speech Coders

by

Durodami J. Lisk

Submitted to the
Department of Electrical Engineering and Computer Science

May 19, 1999

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

Transcoding of speech coders occurs frequently in systems today as subsystems use different
codecs for speech compression. Transcoding is traditionally done by fully decoding speech
from the first coder before sending it to the second coder. The CELP speech coders, QCELP
13K and G.723.1, are evaluated under tranditional transcoding situations. An LSP-based
transcoder is then designed to partially replace the decoder of the leading coder and the
encoder or the following coder. This transcoder is evaluated and compared with the tradi-
tional case. Listening tests for speech with flat response show that in the traditional case,
distortion is most likely due to both the digital and non-digital parts of the transcoding pro-
cess. The LSP-based transcoder does not demonstrate a clear-cut improvement in "digital
distortion" for flat speech. Listening tests with modified IRS response show that distor-
tion in transcoding performance is instead likely linked with the weighting filter within the
coders. Suggestions for improvements are given.

Thesis Supervisor: Gregory W. Wornell
Title: Associate Professor, Electrical Engineering and Computer Science

2

Acknowledgments

I wish to express my thanks to my supervisors, Sharath Manjunath and Andy DeJaco at
Qualcomm Inc., and Gregory Wornell at MIT, for their guidance and help througout this
thesis.

I would like to thank Qualcomm Incorporated and the MIT VI-A Program for sponsoring
this thesis and for providing an opportunity to do research in San Diego. I will always
cherish this experience.

I would like to thank all my friends who have been very supportive and encouraging through-

out this whole process. Special thanks to my friends in Impact Campus Fellowship for their
prayers. These were timely and effective.

I would like to thank my parents and family for all they have done for me all these years.
My journey up to MIT and through MIT has been a result of the effort they have expended
on my behalf. Thank you very much.

Lastly, and most importantly, I would like to thank my Father in heaven, and my Lord and

Savior, Jesus Christ for the abundant grace that has been available to me througout this
experience. I love You.

This thesis is dedicated to you all.

3

Contents

1 Introduction

1.1 Background Information .

2 Overview

2.1 CELP Coders .

2.1.1 Linear Prediction .

2.1.2 Code Excitation .

2.1.3 Quantization .

2.2 QCELP and G.723.1 .

2.3 E ncoder .

2.3.1 Linear Predictive Coefficients

2.3.2 LPCs to LSPs .

2.3.3 Converting the LSPs to Transmission Codes for QCELP

2.3.4 Converting the LSPs to Transmission Codes for G.723.1

2.3.5 Decoding LSPs and Converting to LPCs

2.3.6 Analysis-by-Synthesis Loop

2.4 D ecoder .

2.4.1 Formant Postfilter .

3 TRANSCODING

3.1 The Problem Statement

3.2 LPC Degradation

3.3 Formant Postfilter Degradation

3.4 Transcoding by LSP Interpolation

3.4.1 Appropriateness of LSP translation .

4

10

12

14

. 14

. 14

. 15

. 16

. 16

. 17

. 18

. 18

. 19

. 21

. 22

. 23

. 29

. 30

32

32

33

35

35

36

3.4.2 LSP and LPC mismatch for QCELP

3.4.3 LPC and LSP mismatch for G.723.1

3.5 Implementation of LSP transcoder

3.5.1 Transcoder for QCELP to G.723.1

3.5.2 Transcoder for G.723.1 to QCELP

3.6 Delay Analysis

3.6.1 QCELP to G.723.1

3.6.2 G.723.1 to QCELP

4 Empirical Testing of Transcoder

4.1 Listening for Flat Speech

4.1.1 QCELP and G.723.1 in tandem . . .

4.1.2 GS and G.723.1 in tandem

4.1.3 Analysis

4.2 Listening for Modified IRS Speech

4.2.1 An Intermediate Reference System

4.2.2 QCELP/GS and G.723.1 in tandem

4.2.3 Summary

5 Further Investigation of Tandem Degradation

5.1 Is It Really the LPC?

5.2 Is It Really The Weighting Filter?

5.2.1 Weighting Filter for G.723.1

5.3 Proposed Solutions

5.3.1 First Convert to ModIRS

5.3.2 Frequency-Dependent Filters

5.3.3 Different Weighting Filter

5.4 Further Discussion

6 Conclusion and Future Work

A

A.1 Matlab Code for QCELP to G.723.1 .

A.2 Maltab Code for G.723.1 to QCELP .

. 3 7

. 3 9

. 3 9

. 3 9

. 4 2

. 4 3

. 4 3

. 4 8

54

. 5 5

. 5 5

. 5 5

. 5 6

. 5 6

. 5 7

. 5 7

. 5 7

59

. 5 9

. 6 0

. 6 6

. 6 6

. 6 6

. 6 7

. 6 7

. 6 7

69

71

71

72

5

B

B.1 Modified IRS Filter Charateristics

C

C.1 Durbin's Recursive Algorithm[19] .

C.2 Calculation Autocorrelation Coefficients from LPCs

D

D.1 Modified IRS Filter Coefficients .

6

73

73

74

74

75

76

76

List of Figures

LP synthesis filter for 160 samples of a 8Khz sampled speech waveform . .

Simplified Encoder for QCELP .

Analysis-by-Synthesis Procedure for the Pitch Parameter Search[23] . . .

Weighting and Associated Synthesis Filters for a Frame of Voiced Speech

2-5 Simplified Codebook Search for QCELP[23] .

2-6 Encoder for G.723.1[12]

2-7 Simplified Decoder for QCELP[23]

2-8 Postfilter for a frame of Voiced Speech

3-1 Above: Transcoding without a Transcoder.

Transcoder

3-2 Synthesis filters for single and tandem stages

3-3 General Transcoder with LSP interpolation

3-4 Transcoder for QCELP to G.723.1

3-5 Interpolation of LSPs

3-6 0-60ms of the QCELP-to-G.723.1 transcoder

3-7

3-8

3-9

3-10

3-11

3-12

3-13

60-120ms of the QCELP-to-G.723.1 transcoder

120-180ms of the QCELP-to-G.723.1 transcode

Incoming and outgoing packets in QCELP-to-

0-60ms of the G.723.1-to-QCELP transcoder

60-120ms of the G.723.1-to-QCELP transcoder

120-180ms of the G.723.1-to-QCELP transcod

Incoming and outgoing packets in G.723.1-to-Q

. 27

. 28

. 29

. 31

Below: Transcoding with a

. 33

. 34

. 36

. 4 0

. 4 1

. 45

. 46

. 47

G.723.1 transcoder 48

. 50

. 5 1

e. 52

CELP transcoder 53

7

2-1

2-2

2-3

2-4

15

18

24

25

4-1 Send and Receive Characteristics for modified IRS 1[14] 58

5-1 QCELP Weighting Filter for different -y

5-2 Spectrum of Speech for 2-stage QCELP Tandem with y = 0.78

5-3 Spectrum of Speech for 2-stage QCELP Tandem with -y = 0.3

5-4 Spectrum of Speech for 2-stage QCELP Tandem with y = 0 . . .

5-5 Spectrum of Speech .

5-6 Weighting Filter for Flat and ModIRS Speech

5-7 Average LPC and Weighting Filter for QCELP for A Speech File

'Here we assume that the Nyquist Frequency is 4000 Hz

8

. . . 61

. . . 62

. . . 62

. . . 63

. . . 63

. . . 64

. . . 65

List of Tables

2.1 Comparisons between Coders . 17

B.1 Send and Receive Characteristics for modified IRS[14] 73

9

4"W*WWO*

Chapter 1

Introduction

Communications technology today is designed to carry either speech or data. Technology

differs depending on which is carried. This Masters of Engineering thesis will exclusively

address speech. Even within the speech framework, there are a vast amount of standards

and technology available to perform very similar tasks. Again, we will be dealing with only

a very small subset of these technologies. Specifically, this thesis will address two speech

coders, QCELP 13K (hereafter known as QCELP) and G.723.1. These speech coders are

part of a general class of speech coders known as CELP (Code Excited Linear Prediction)

coders. We will investigate situations where we have these coders in transcoding situations.

Tandem 2 situations using the same coder are also considered to help us better understand

the transcoding situation. Speech quality through these two-stage coding situations will be

analyzed and designs for improving speech quality proposed and evaluated.

Technology for carrying speech through wire and wireless media has been around for

quite a while. However, the increase in the demand for these media to carry speech has

necessitated the improvement in the technology available. Coders that can deliver higher

quality speech with lower bit rate (in case of digital systems) are very desirable. One such

algorithm that has been very successful at coding speech at low bitrates (while retaining

good quality) is the class of CELP coders. These were first proposed about 15 years ago in

a paper by Atal and Schroeder[1, 21]. We will concern ourselves entirely with two coders,

'One coder followed by the other coder.
2Usually this means that both coders are the same. Throughout this thesis, the word "tandem(ing)" is

used loosely. The context will determine whether we are talking about the using the same coder or different
coders.

10

QCELP and G.723.1. QCELP, Qualcomm's 13K coder[23], will be paid the most attention

in this thesis. This coder is mainly used in cellular telephony (especially in Qualcomm

phones) and is now the TIA3 standard IS-733, High Rate Speech Service Option 17 for

Wideband Spread Spectrum Communications Systems. This coder provides high quality

speech as a result of the effective algorithm and the high full-rate bit rate. G.723.1 is an

ITU4 standard used for the internet. It supports lower bit rates than QCELP and produces

lower quality speech.

As mentioned earlier, there are a lot of algorithms available and presently in use. It

is therefore not surprising that situations arise when communication between two systems,

using different algorithms, is necessary. One such case arises when a user needs to transmit

speech from a cellular phone to an end-user on the internet. The other direction, though

less likely, might also arise. In the former case, one must go from say, a QCELP coder to

a G.723.1 coder and vice versa for the latter. This transcoding situation creates a possible

need for efficient algorithms, if possible. The standard practice in dealing with transcoding

situations is to fully decode the speech from the first coder before passing it to the following

coder. However, this process causes undesired degradation in the speech quality.

This thesis addresses this transcoding problem. In particular, we seek to develop a

transcoding algorithm that would allow for better quality speech without necessarily in-

creasing complexity and delay by much (if any) and without making any significant alter-

ations to the encoder of the leading coder and the decoder of the coder in tandem. In

other words, this transcoder "black box" could take in packets from the leading coder and

generate packets for the following coder. A study of the detioration of speech through the

CELP coders in necessary to help facilitate this end. To aid this venture, the tandem case

with the same coders is also considered in certain cases.

The rest of this thesis is organized as follows: First, we give some background information

on pertinent research and results. Then we describe CELP coders, with specific attention

given to QCELP and G.723.1. We then describe the transcoding problem in more depth

and come up with a transcoder. This transcoder is evaluated subjectively and the results

analyzed. Further efforts are then made to improve on these results. Finally, we conclude

by discussing the implications of the results, conclusions and possible future work.

11

3 Telecommunications Industry Association
4 International Telecommunications Union

1.1 Background Information

We first mention some research that has been done in transcoding and then talk about some

results from tests done on CELP coders.

Transcoding and Tandeming have been investigated to quite some depth for speech

coders; especially for non-CELP coders. Not only has tandeming and transcoding been stud-

ied in-depth for Differential Encoding Systems like ADPCM 5 /PCM6 /CVSD 7 [20, 16, 9, 7]

papers have been proposed with algorithms that completely reduce further degradation due

to tandeming/transcoding. One such paper, by Nishitani[16], studies and develops models

for quantization in ADPCM/PCM coders and proposes an algorithm for distortion free

speech coding through tandem connections. This is clearly the optimal case and the "Holy

Grail" of tandem coding research. However this is not necessary always attainable. Quanti-

zation in the ADPCM/PCM case is a direct quantization of speech. Tandem connections in

Differential Encoding Systems are, therefore, really a case of Cascaded Quantizers[7]. CELP

coders, on the other hand, do not quantize speech directly, but rather quantize parameters

that are capable of producing the speech, as explained in Chapter 2. Deducing an exact

mathematical model for the effect of quantization is complex and probably intractable given

the complex operations involved in CELP coders today. Thus, in the case of improvements

on tanscoding/tandem connections between CELP coders, the "playing field" includes any-

thing from a minor improvement to almost perfect tandem connections. The literature does

not seem to have much on direct study on improving tandem/transcoding connections in

CELP coders. There are some evaluative studies on tandem properties of different CELP

coder algorithms. A celp coder in tandem with a non-CELP coder has been studied for

some arrangements: for example, CELP/CVSD, CVSD/CELP, DM/CELP[6, 15, 5, 4].

Celp coders have also been studied in tandem conditions with other celp coders (usually,

the same coder). One such study was performed by AT&T Bell Laboratories[18]. This study

concluded the following with regards to tandem processing of several coders, mostly CELP

coders - including QCELP under different modes:

(i) There is no statistically significant difference between performance in IRS8 flat re-

5Adaptive Differential Pulse Code Modulation
6 Pulse Code Modulation
7 Continous Variable Slope Delta Modulation

8This is different from modIRS as we will see later.

12

sponse filter conditions.

(ii) There is statistically significant difference between tandeming and non-tandeming

conditions for the QCELP coder.

(iii) This degradation is worse for lower rate coders.

Other tests9 have been done that corroborate these results for the QCELP coder and

show that there is much worse degradation in lower rate coders (e.g. IS-96A).

9 We do not give specific details because of proprietary restrictions.

13

Chapter 2

Overview

Since this thesis deals entirely with CELP coders, it is essential that the reader have an

understanding of these coders and in particular, QCELP and G.723.1. The first section

gives a very general overview of CELP coders and some of the key algorithms involved.

The latter sections deal with the specific coders, QCELP and G.723.1.

2.1 CELP Coders

As the name CELP suggests, this algorithm consists of synthesizing speech by exciting

a filter, derived by linear prediction, by a set of values (from a codebook). This simple

but powerful idea is what gives CELP its appeal. Speech can be represented by a model

whose parameters are sufficient for reconstruction. The bit rate of the coder depends on

the number of parameters sent from encoder to decoder. CELP allows for lower bit rates

with good speech qualities, especially in narrowband cases.

2.1.1 Linear Prediction

Linear prediction, a concept used in countless applications, is particularly useful in CELP

and especially in the case of speech, because it allows one to closely approximate the speech

spectra with a very small set of values (called Linear Prediction Coefficients - LPCs). These

LPCs are then used to create the synthesis filter, which when excited by the error signal

(or some approximation to it), reconstructs the speech. The equation below (Equation 2.1)

14

summarizes linear prediction.

N

s[n] = Zaks[n - k] + e[n]
k=1

(2.1)

where s[n] is the signal (speech in our case), the ak's are the LPCs and e,[n] is the error

signal. Knowing e,[n] and ak is sufficient to reconstruct, in principle, s[n] exactly (except

maybe at some points'). N is the order used. Larger N gives better approximation. A

Synthesis filter for N=10 is shown below (Figure 2-1). The ak's are determined so as to

40

30-

20-

10-

0

0 --

-10

-20- -

0 0.1 02 0.3 04 0.5 06 0.7 0.8 09 1
Normalized frequency (Nyquist == 1)

Figure 2-1: LP synthesis filter for 160 samples of a 8Khz sampled speech waveform

minimize e,[n] in the squared-error sense. The Levinson-Durbin Algorithm[19] is employed

to determine the LPCs. Equation 2.1 refers to an all-pole (auto-regressive) model. A general

pole-zero model can be used but isn't in general because auto-regressive models are good

enough for speech. These all-pole models match speech very well at the spectral peaks but

do not do that well at the valleys.

2.1.2 Code Excitation

The other half of Code Excited Linear Prediction (CELP), "Code Excited", completes the

overall picture. The excitation signal used is an approximation to e,[n], the error signal.

15

'Places where the spectrum of e8 [n] is zero.

This approximation is derived from a codebook of finite index length, M, with 2 M values.

The determination of which of these values to use depends on the particular CELP coder.

2.1.3 Quantization

The use of linear prediction and code excitation is central to CELP coders. However, the

implementation details differ. One such difference in implementation is quantization. There

are many algorithms in the literature for quantization of parameters. A general class of

quantization widely used is Vector Quantization. Here, instead of quantizing each parameter

separately, one can take advantage of any correlation between these parameters by jointly

quantizing a couple of them at a time. The LPCs however are not quantized directly. This

is because it is not possible to easily guarantee the stability of LPCs across quantization.

Thus, the LPCs are converted to an intermediary "stage" before quantization. Again,

there are several options for this intermediary "stage": some include, arcsine of reflection

coefficients, log area ratios and line spectral coefficients. Line spectral pairs (LSPs) are the

most common since they are more efficient bitwise [17, 19]. LSPs also have a very nice

property that stability is guaranteed if the LSPs are ordered.

Other aspects of CELP coders will be evident as we describe, in more detail, the two

CELP coders, QCELP and G.723.1.

2.2 QCELP and G.723.1

These two coders, though similar in many ways, have some differences. We briefly discuss

some of the main similarities and differences and some of the assumptions and simplifications

we make in this thesis. We then give a more detailed description of the encoder and decoder,

with particular emphasis on QCELP (discussing differences with G.723.1 where necessary).

Some of the differences and similarities are shown in Table 2.1. Others will come up in the

discussions below.

In our discussion of these coders, we make certain assumptions and simplifications. We

only consider the 6.3kbps rate in G.723.1 (though the results also apply to the slower rate).

Voice Activity Detection and Comfort Noise Generation are disabled in the G.723.1 coder.

For QCELP, we, for the most part, ignore the fact that there are different rates (most of

the rates use the same algorithms, so this is not a problem). The rate reduction option,

16

Table 2.1: Comparisons between Coders

QCELP G.723.1
8 kHz sampled, 14 bit linear PCM 8 kHz sampled 16 bit linear PCM
speech speech

10th order linear prediction 10th order linear prediction

Frame2 size of 160 samples (20 ms) Frame size of 240 samples (30 ms)

LPC window size3 = 160 samples LPC window size = 180 samples

Variable rate coder with rate Fixed rate coder with two rates
reduction 4 capabilities. Rates are: (5.3kbps and 6.3kbps5).
Rate 1(13.3kbps), Rate 1/2(6.2kbps),
Rate 1/4(2.7kbps) Rate 1/8(1kbps)
and blank (0kbps)
Cyclic codebook Algebraic codebook (5.3kbps); Maxi-

mum Likelihood Multipulse (6.3kbps).

which optimizes the initial rate decisions (these initial decisions are based on whether the

speech is voiced 6 or unvoiced 7 and other energy and band characteristics), is disabled. Also,

in certain cases, we do not give a detailed description of parts of the algorithm - which are

usually complex - as this is not necessary. We now describe the encoder and decoder for

QCELP and G.723.1.

2.3 Encoder

The encoder (block diagram shown in Figure 2-2) takes in 14 bit (16 in G.723.1), linear PCM

highpass-filtered speech, previously sampled at 8 kHz and generates packets of varying size

depending on rate. Frame size for QCELP 13K is 2 0ms or 160 samples (30ms, 240 samples

for G.723.1). Each frame is subdivided into 4 subframes. Most of processing is done at the

subframe level. The highpass8 filtered speech is first processed to produce the LPCs which

2Speech is processed once per frame.
3This is the actual number of speech samples used to calculate the LPC using the Levinson-Durbin

algorithm. It is not necessarily equal to the frame size nor centered within the frame.
4Rate reduction goes beyond the first stage Rate Determination Algorithm and tries to identify the most

efficient encoding rate based on input speech statistics.
5

1t is possible to switch between rates at frame boundaries.
6 Associated with the vocal tract. Excitation in this case is close to an impulse train.
'Associated with the glottis. Excitation is random noise. Unvoiced speech are sent at lower rates than

voiced speech.
8A highpass filter removes circuit noise and DC. G.723.1 uses a first order filter that has a steeper cut-off

than the second order filter QCELP uses.

17

s[n] Framer
and HPF

LSP LSP {af}
QuanizerDecoder &

Quantizer Interpolator

Weighting
Filter

Analysis-by-Synthesis

for Pitch and Codebook

Parameters

Figure 2-2: Simplified Encoder for QCELP

will be used to calculate other important parameters.

2.3.1 Linear Predictive Coefficients

A 160 sample Hamming window, centered around the middle of the fourth subframe is used

(180 samples in G.723.1). The first 17 values of the autocorrelation, Rk's, are calculated.

The first 11 are used to calculate LPCs and the rest are used for rate determination. The

11 autocorrelation values are fed through Durbin's recursion algorithm[19] (Appendix C) to

produce the 10 LPCs. These LPC coefficient form the basis of the "prediction error filter"

transfer function:

Az = 1 - 10 (2.2)

2.3.2 LPCs to LSPs

The LPCs are then converted to Line Spectrum Pairs (LSPs). In the case of G.723.1, a small

bandwidth expansion (7.5Hz) is performed. This is done to avoid problems caused by very

small bandwidths in formant peaks that could occur in some LPC frames[2]. Conversion to

LSP is done by defining new transfer functions P(z) and Q(z) as:

P(z) = A(z) + z- 11 A(z- 1) = 1 ± piz- ± ... + z 5 + z 6 10 + z-

(2.3)

18

Q(z) = A(z) - z-"A(z-1) = 1 + qiz-1 + ... + q5z- - qz-6 qiz-10 - Z-11

(2.4)

where

pi = -ai - anl-i, 1 < i < 5

qj = -ai+an>-, 1 < i < 5

The LSPs frequencies are the ten zeros (wi...w1o) which exist between w = 0 and w = 1.0

in the following equations:

P'(w) = cos (5 (7rw)) + p' cos((4 (irw)) + ... + p' cos (7rW) + (2.5)4 2

Q'(w) = cos (5 (7rw)) + q' cos((4 (7rw)) + ... + q' cos (irw) + (2.6)1 4 2

Since the formant synthesis (LPC) filter is stable, the roots of the two functions in (2.5)

and (2.6), when rearranged in increasing order, alternate in the range w E (0, 1)[22].

2.3.3 Converting the LSPs to Transmission Codes for QCELP

The 10 LSP frequencies are quantized into 329 bits using a vector quantizer (VQ). Five

2-dimensional vectors are used for this purpose.

Converting to Sensitivities

LSP frequencies have different sensitivities to quantization. The model described below to

calculate these sensitivities is computationally efficient and was developed by Gardner[8]).

These sensitivities are used in the quantization process to weight the quantization error in

each LSP frequency appropriately.

First, the set of vectors of length 10, Ji, where i is the index of the LSP frequency, are

obtained by long division operations on P and Q given in Equations (2.3) and (2.4). For the

9 All Rates except Rate 1/8 use this mechanism. Rate 1/8 uses a different mechanism which includes a

1-bit quantizer and a predictor.

19

LSP frequencies with odd index, wi, w 3 , etc (zeros of P'(w)), the long division is performed

as

1+piz-P2z-2 + ... +P 2z-9 +p 1 z-I 0 + z- 11

1 - 2 cos(7rw)z-1 + z-2
Ji(1) + Ji(2)z-1 + ... + Jj(1)z-9

(2.7)

while for the rest (those with even indices), it is calculated as

+ qiz- + q2z-2 + ... + q2z-9 + qlz-10 + z-11

1 - 2 cos(7rwj)z- 1 + z-2

Autocorrelations of vectors Ji are computed as:

= J%(1) + Ji(2)z-1 + ... + Ji(10)z~9

(2.8)

10-n

Rj, (n) = Ji(k)Ji(k + n), 0 < n < 10, 0 < i < 10
k=1

(2.9)

Finally, the sensitivity weights for the LSP frequencies are computed by cross correlating

the Rj, vectors with the autocorrelation vector computed from the speech, R(k) (mentioned

in Section 2.3.1). The final sensitivity weights are given by:

9

SWi = sin 2 (7rWs) R(0)R, (0) + 2.0 R(k)Rj, (k) 1 i < 10
I k=1

(2.10)

These weights, SWi are used to compute the weighted squared error metrics needed to

search the LSP VQ codebooks as briefly described in the next section.

Vector Quantization of LSP Frequencies

As mentioned earlier, the LSP vector is divided into 5 2-dimensional subvectors, each quan-

tized by a VQ, whose codebook has varying sizes (6,7,7,6,6 bits respectively totalling 32

bits).

Differential vectors are used in the codebooks; i.e. the VQ codebooks contain possible

values for quantized differences in the LSP frequencies, given by Awj = wj - w,- 1 . The ith

20

VQ codebook contains possible quantized values for AW2i- 1 and SW2i. The five subvectors

are quantized sequentially in the following manner.

The best vector for the ith codebook is determined by minimizing the sensitivity weighted

error between the quantized (Cj) and unquantized (w,) LSP frequencies. This weighted error

is computed as

error = SW2i- 1 (W2i- 1 - 62i-1)2 + SW2 (w2i - w2i)2

= SW2-I 1 (w2i- 1 - (C2 i-2 + A 2i-1))2 + SW22 (W2i - (CD22-2 + Aw2i- 1 +AC2i))2

= SW 2 i- 1 (W22-1 - (CD2i-2 + Lk (i, 1)))2 + SW2i (w2i - (CD22-2 + Lk (i, 1) + Lk (i, 2)))2

(2.11)

where ACD1 = cD1 and Lk (i, j) is the jth element in the kth subvector of the ith codebook.

The index of the codevector, k*, which results in the minimum error for each subvector is

selected and sent as the transmission code for that subvector.

2.3.4 Converting the LSPs to Transmission Codes for G.723.1

The G.723.1 coder does not use sensitivity calculations to quantize LSPs. Instead it uses

the algorithm based on linear prediction that is briefly described below.

First, the long term DC component, WDC, is removed from the LSP vector w to get the

new vector w'. A first order predictor, b = 12/32, is then applied to the previously decoded

LSP vector _n-1 to obtain the DC removed predicted LSP vector, Un, and the residual

LSP vector, en at nth frame.

= [jn 2, -. oo (2.12)

S = 1, c , .. /], (2.13)

C'w = b [Qn_ - WDC] (2.14)

en = W' - (2.15)

The unquantized LSP vector, Wn, the quantized LSP vector, An, the residual LSP

21

vector, en are divided into 3 subvectors with dimension 3, 3 and 4 respectively. Each mth

subvector is vector quantized using an 8-bit codebook (256 entries). The index 1 of the

appropriate subvector codebook entry that minimizes the error criterion Eim is chosen for

that subvector.

3, m=0
= [W1+3m W2+3m ... WKm+ 3 m ,Km = 3, m= 1 (2.16)

4, m 2

WI,m = [i,l,m W2,I,m --- WK,,,m] , 0 m < 2,1 1 < 256 (2.17)

O =W W + WDC (2.18)

ol,m = o' + WDCm + elm, - (2.19)

Ei,m = (Wim -(m o,m)T Pm (om - J,m) (2.20)

where el,m is the lth entry of the mth split residual LSP codebook and P is the diagonal

weighting matrix, determined from the unquantized LSP coefficients:

P,g = , 2 < j < 9
min {w3 - O2 _1,1 j+1 -+9)

P1,1 = 1 (2.21)

1
P10,10 = 1

010 - W9

This chosen index is sent as the transmission code for the subvector.

2.3.5 Decoding LSPs and Converting to LPCs

The LSP frequencies calculated are used to determine the parameters needed to excite the

LPC filter to reproduce the speech (described later in Section 2.3.6). However, for the

encoder to resemble the decoder closely, it must use the quantized LSPs (since this is what

the decoder sees) for it's synthesis filter. As a result, the encoder must have some of the

22

functionalities of the decoder in it (henceforth referred to as the encoder's decoder). One

of these is the algorithm to decode LSPs back to LPCs. This algorithm is described below.

The LSP transmission codes (indexes of codebooks) are converted back to quantized

LSP frequencies. For QCELP, the quantized LSPs are:

W2i-1 = w2i- 2 + AC2i- 2 = 2i-2 + Lk* (i, 1)

W2i = C2i-1 + AC2i = J 2i- 2 + +Lk- (i, 2) (2.22)

In case of G.723.1, the three subvectors are decoded to form s. This is then added to the

predicted vector, C,, and the DC vector, WDC, to form the decoded LSP vector, o. A

stability check is also performed to ensure that LSPs are ordered (c1 < C2 < ... < C1o) and

separated by a minimum of 31.25 Hz. A simple averaging algorithm is used to modify LSP

frequencies that violate this check.

These LSP frequencies are then linearly interpolated1 0 to generate four LSP frequencies;

one for each subframe". These four LSP frequencies are then converted to LPCs, d, by

doing the "inverse" of equations (2.3) to (2.6). A small bandwidth expansion of 15 Hz

is performed at this stage12 for the QCELP coder. These decoded LPCs (referred to as

qLPCs) form the basis of the synthesis filter given by:

1..1 - -1o(2.23)
A(z) 1 - 51z-1 - .- oz-10

2.3.6 Analysis-by-Synthesis Loop

The excitation parameters necessary to reproduce the speech at the decoder are determined

by synthesizing speech for different possible excitations and choosing the best by comparing

this synthesized speech with the input speech, using some weighted minimum squared error

criterion (sometimes called the MPSE for Minimum Perceptual Squared Error). Again,

G.723.1 and QCELP differ in the implementation of this loop. As usual, we describe the

algorithm for QCELP and mention the pertinent deviations in G.723.1 wherever necessary.

We also give a brief overall picture of the G.723.1 encoder at the end. First, the pitch

' 0This interpolation across time frames generally results in improved quality of synthetic speech without

any additional information for transmission[2]

"These LSP frequencies produce stable filters[2].
1

2 This is done after LSP quantization instead of before as in G.723.1.

23

parameters are determined (as shown in Figure 2-3). Using the periodicity of speech to

For all L E {17, 17.5, 18, 18.5,..., 139.5,140,141,142,143}

and bE {0, 0.25,..., 2.0}

Figure 2-3: Analysis-by-Synthesis Procedure for the Pitch Parameter Search[23]

help reduce the dynamic range of the residual enhances the quality of the speech. Before

we briefly describe the algorithm to generate pitch parameters, we examine the weighting

filter (shown as W(z) in Figure 2-3).

Weighting Filter

Weighting filters are used to help greatly reduce the perceptible quantization noise. Without

these filters, this noise is evident. Reducing noise (every subframe) is done by shaping the

noise spectrum. Quantization noise can be "hidden" under the formant peaks without

much discernible effect. The weighting filter thus achieves its goal by "shifting" noise from

the troughs to the peaks of the speech spectrum: attenuate frequencies where error is

perceptually more important and amplify others[1].

24

A speech-dependent weighting filter is used. The general form is:

A (z/71)
W(z) = -

A (z/7Y2)
(2.24)

For G.723.1, 71 = 0.9, 72 = 0.5 and the actual LPCs values are used. QCELP, on the

other hand, uses y = 1, -y2 = 0.78 and A (.) = A (.): the qLPCs are used here. QCELP

makes a trade-off by choosing y = 113 . In doing so, it greatly reduces complexity by

collapsing the product of the synthesis filter, 1/A(z) and the weighting filter, A(z)/A (z/Y 2),

into one all-pole filter, 1/A (z/Y 2). G.723.1 cannot do this without taking a big hit in

quality.14 The figure below (Figure 2-4) shows weighting filters for both coders for a frame

of voiced speech.

15

10-

5-

0-
0.

-1 --

CD

QCELP
- ----- G.723.1

-15-

-20 i I ' ' I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (Nyquist == 1)

Figure 2-4: Weighting and Associated Synthesis Filters for a Frame of Voiced Speech

Periodicity and Pitch Search

A frame size of 160 samples is long enough to contain more than one period of speech (pitch

for speech is typically around 130 Hz which is about 60 samples). Pitch prediction is only

13Thus, only using one degree of freedom.
4 Simulations showed that using the QCELP filter for G.723.1 causes a very perceptible reduction in

quality.

25

done for Rate 1 and Rate 1/2 packets. A simple prediction filter is derived in this manner:

future speech L samples from now is predicted to be some gain, b, multiplied by the present

sample. Therefore, we only need to send the error, e[n] = p[n] - bp[n - L]. This allows

for better quantization. The pitch synthesis filter (used by the decoder and the encoders

decoder) is therefore

1 1(2.25)
P(z) 1 - bzL

and is excited by the prediction error, E(z). Eight bits are used to represent the lag,

L (ranges from 17 and 143, including some half delays) and three bits to represent the

prediction gain, b (ranges from 0 to 2.0). Pitch prediction (new values for b and L) is done

every subframe (40 samples). However, values for the whole frame are stored and available

since L is usually greater than 40.

Figure 2-3 shows exactly how this is determined. Though some of the complexities

(approximations used to enhance speed/reduce complexity) are omitted, it shows how the

ZIR and ZSR responses of the synthesis filter, 1/A(z) (Equation 2.23), also update once

every subframe with the new qLPCs.

Codebook Search

Once the pitch parameters are determined, the excitation parameters are then determined.

Circular codebooks with 128 values are used to encode Rate 1 and Rate 1/2 frames (separate

codebook for each rate). These are calculated 16 times every frame for Rate 1 and 4 times

every frame for Rate 1/2. Rate 1/4 and Rate 1/8 use other mechanisms, based on energy of

prediction residual and a pseudorandom generator. Only the codebook search mechanism

for Rates 1 and 1/2 is briefly described here.

The codebook parameters specify the excitation to the speech filter (an approximation

to E(z) above). This excitation is generated by scaling a codebook vector by the codebook

gain, G. The goal of the search (shown in Figure 2-5) is to find the codebook vector and

gain which minimize the weighted error between input and synthesized speech. The gain is

quantized by taking the log and using a combination of linear prediction, a scalar quantizer

and a lookup table. The index for the value in the vector and the sign of the gain are sent

after doing some straightforward manipulations.

26

s[n]

-.t+

L* eZIR of/AWz W(z)
for current IPZOwCurrent
pitch subframe Current Current StateState State

f FiA for currentr

I&G

Figure 2-5: Simplified Codebook Search for QCELP[23]

Analysis-by-Synthesis for G.723.1

The actual (without any simplifications) block diagram for G.723.1 is shown in Figure 2-6).

Initial examination of Figure 2-6 suggests that the algorithm is quite different from that of

QCELP. This is not so: the high-level design is very similar. Below is a list of some of the

minor differences:

" G.723.1 uses a fifth order predictor 15

" A Harmonic noise Shaping filter is used to remove noise in between harmonics. This

is absent in QCELP 16 . Tests 17 were run on female speech to confirm this.

" Weighting filter, as discussed earlier.

1
5 Sample p[n + L] is predicted using a weighed sum of 5 samples in the neighborhood of p[n).

16Since QCELP provides very high quality speech, it does not need this filter. G.723.1, a lower rate coder,
exhibits higher quality with this filter present.

1
7 By author.

27

Encoder's Decoder

s[n]

LSP LSP LSP

Quantizer Decoder Interpolator

Framer

W(z)
:t Impulse Memory en

Response Update
High Pass P(z) Calculator

Filter

LPC fai} Pitch Excitation
Analysis

AnlyisZero Input Decoder Decoder

Response

Formant Harmonic Pitch
Perceptual - Predictor Li MP-MLQ

Weighting np[n
w[n]

Pitch
Estimator

Figure 2-6: Encoder for G.723.1[12]

28

o Rate 6.3kbps uses MP-MLQ (Multi-pulse Maximum Likelihood Quantization). MP-

MLQ uses 5 or 6 (exceptions in the cases when the pitch, L, is small) pulses of equal

absolute value spaced either at even or odd time samples to represent the excitation

to the pitch filter.

2.4 Decoder

The packets sent by the encoder through the channel is then decoded by the decoder to

generate speech that is perceptually close to the original. The Figure below (2-7) shows the

decoding algorithm for QCELP.

Incoming Decode Pitch Pitch

Parameters Parameters Filter

Figur 2-7 Sim le Deoe for QCLP23

_j I1/P(z) _

i5[n]

We have seen most the decoder since the encoder uses these functionalities for its anal-

ysis. The excitation is derived from the parameters and fed to the pitch filter, which then

creates the residual that excites the synthesis filter, 1/A(z). The pitch prefilter between

the pitch and synthesis filters improves the quality of the signal18 . Synthesized speech un-

dergoes some processing before being sent to the A/D (usually includes first converting to

-law quantization). We are mainly interested in the postfilter block.

W8 QCELP uses a simple pole filter very similar to the pitch filter: same lag but different gain. G.723.1
uses forward and backward correlation analysis to increase SNR at multiples of the pitch period.

29

2.4.1 Formant Postfilter

Postfiltering is done on the speech (every subframe) to improve the quality. Amongst other

things, postfiltering reduces the troughs (also reduces perceptible noise) and increases the

peaks (most of the perceptual information are stored in formant peaks) in the frequency

response of the speech. It does this by using a conventional ARMA filter, dependent on

speech, 9[n], given by

A(z/A1)
F(z) = B(z) (2.26)

A (z/A 2)

Both QCELP and G.723.1 use similar equations. For QCELP, A1 = 0.625, A2 = 0.775

whereas for G.723.1, A1 = 0.65 and A2 = 0.75. B(z) is an anti-tilt filter that tries to offset

the spectral tilt in A (z/A1) /A (z/A 2). The weighting filters, BQ(z), BG(Z) for QCELP and

G.723.1 respectively, are:

1
BQ(z) = (2.27)

1 +0.3z-1

BG(z) = 1 - 0.25kz-1

3 1
ki = ki ol + -k (2.28)

4 4

Simulations showed 19 that the the G.723.1 filter, because of it's speech-dependent tilt

filter, does a much better job in terms of speech distortion2 0 . Some of this "superiority"

is also partly due to the fact that the QCELP postfilter (see Figure 2-8) brings down the

troughs and raises the peaks much more than G.723.1 (thus, more signal distortion) 2 1.

19 Run by author.
2 0 This was done by observing the quality and spectrum of speech through a multistage tandem using both

filters in the QCELP coder.2 1 QCELP does better at noise reduction because of this attenuation of noise in the troughs.

30

1.8

16-

14

01.2-

0)0

0.8-

0.6-

04-

0.2
0 01 0.2 03 0.4 05 06 07 08 0.9

Normalized frequency (Nyquist == 1)

Figure 2-8: Postfilter for a frame of Voiced Speech

31

Chapter 3

TRANSCODING

The coders just described in the last chapter will now be investigated under tandem and

transcoding situations.

3.1 The Problem Statement

As seen earlier, previous work on tandeming suggests that there is much degradation when

most CELP coders are put in tandem. We will concern ourselves entirely with the two coders

described earlier (QCELP and G.723.1). The diagram below illustrates the envisioned

transcoder (Figure 3-1)

Coder 1 and 2 in Figure 3-1 are either QCELP and G.723.1 (the two cases are G.723.1

to QCELP and vice versa). Using such a transcoder could enhance speech quality and

improve delay characteristics. In designing this transcoder, initially, we require that the

encoder for coder 1 and the decoder for coder 2 be unchanged' . This condition is later

relaxed a little to see if further improvements could be made. Also, for most of our initial

analyses we use flat speech (since the previous work done seemed to mainly use this kind

of speech and in cases where other characteristics were used, no significant differences were

found). However, we will go beyond flat speech to consider, in particular, modified IRS

(Intermediate Reference System) 2 [14]. We now proceed to a closer investigation into issues

involved in tandeming. In particular, we look at LPC and postfilter degradation.

'With the exception of the postfilter. We will consider cases with and without postfilter.
2ITU-T Recommendation P.830: discussed later in Section 4.2.1.

32

Coder I Coder 2

s >n Encoder -/- Decoder >'n Encoder -/- Decoder s"[n

Coder 1 Coder 2

s[n] s" [n]
Encoder 3- Transcoder Decoder

Figure 3-1: Above: Transcoding without a Transcoder. Below: Transcoding with a

Transcoder

3.2 LPC Degradation

As we have seen, the LPC synthesis filter forms the "backbone" of the speech reconstruction

process. When the speech goes through a tandem connection, one expects the LPC estimates

to deviate from what they used to be at the first decoder. If they deviate far enough, the

random codebook will not be able to recreate a speech perceptually close to the original

speech. If the speech out of decoder 1 is close to the actual speech, we expect the LPC

estimates in encoder 2 to produce a synthesis filter that is close to that of the first coder.

The figure below (Figure 3-2) shows the behavior of a LPC synthesis 3 filter in tandeming.

The effects shown in this figure is typical of most of the frames of voiced speech. Some

deviations are more extreme that others. However, there are enough extreme deviations4

to suggest that there could be a problem. Two reasons why the LPC synthesis filter after

the first stage could be different from that of the second stage are:

o The speech from decoder 1 is perceptually very different from the actual speech

3 Using qLPCs.
4Further tandem stages show a worsening in these deviations. This suggests that quantization errors are

probably not the sole cause of this phenomenon.

33

10-

0-

CL

.

Ca,

10
..

>...........

....

-30
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (Nyquist 1)

Figure 3-2: Synthesis filters for single and tandem stages

Although the speech from decoder 1 is perceptually close to the actual speech, the

spectra is different enough so that LPC estimation produces a "bad" filter.

Initial listening of speech from decoder 1 did not reveal perceptual differences. The second

alternative, therefore, seems more likely. In the autocorrelation form of the LPC analysis,

the LPC representation matches the magnitude of the speech spectrum but not the phase[3].

The effect of phase in human speech perception seems to be minimal; however, it is well

known that phase modifications can produce dramatic changes in wave shape[3]. It is thus

reasonable that the distortion could be due to phase.

If indeed the LPC analysis is producing the distortion, a transcoder could utilize the

LPCs (in the form of LSPs) from the first coder and convert them to LPCs for the second

coder. In doing so, we could potentially avoid calculating the LPCs from the synthesized

speech from the first decoder. This idea is discussed in more detail and implemented in

Section 3.4.

34

3.3 Formant Postfilter Degradation

In addition to LPC degradation, the formant postfilter could be introducing some undesired

effects that show up in tandem situations. As was discussed earlier, the formant postfilter

(also known as short-term postfilter) reduces the spectral valleys (troughs) and increases the

peaks. This postfiltering further adds to the noise reduction introduced by the weighting

filter and in some cases ensures that we do indeed have good control of the noise spectrum.

This is because the weighting filter acts based on the expectation that weighted quantization

error will be white noise but it cannot guarantee that all the time[24]. The postfilter,

however, does not discriminate between noise and signal. As a result, significant signal

distortion could occur. The postfilter for QCELP, being more severe than that of G.723.1,

performs poorly in the multiple tandem case. Why not remove the postfilter altogether?

As mentioned earlier, the postfilter gives us better control of output noise[24]. Removing

the postfilter could cause some unwanted perceptual noise in tandeming. These issues and

others are investigated in the upcoming sections.

3.4 Transcoding by LSP Interpolation

Given the possible degradations just discussed, we design the following transcoder. Line

spectral pairs from the first coder are used to produce LSPs for the packets sent out to the

decoder of the second coder. Given the complexity of CELP coders and the need for speech

to produce other information (rate decision, codebook parameter etc), we only consider the

case where we do most of the decoding process of coder 1 and then most of the encoding

process of coder 25. In particular we do the following (see Figure 3-3):

" Pass the decoded LSPs from decoder 1 to encoder 2.

* Have the option of turning off the postfilter in decoder 16.

There are certain issues that need to be addressed in the implementation of this algo-

rithm.

5Most of the decoding process of coder 1 needs to be done to produce synthetic speech which is necessary
for the encoding process.

6We will also do tests with the postfilter on, and make comparisons.

35

Figure 3-3: General Transcoder with LSP interpolation

3.4.1 Appropriateness of LSP translation

Coder 1 and Coder 2 (for e.g., G.723.1, and QCELP) have different frame sizes: G723.1

has a 30 ms frame and QCELP has a 20ms frame. As a result, direct reuse of LSPs is not

feasible since packets are not aligned. LSPs need to be interpolated before passed on to next

coder. In the case of G.723.1 to QCELP, the transcoder needs to produce three packets for

every two incoming packets. Therefore, we must also buffer up packets when going from

QCELP to G.723.1 (or in general, coders of smaller frame size to coders of larger frame

size). Issues of delay are addressed later in Section 3.6.

Linear interpolation of LSPs introduce errors in the sense that the new LSPs derived

(for the new frame size) are not exactly matched of the speech segment they describe -

there is a mismatch. We will use the word "mismatch" to generally refer to cases where

we do not use the parameters directly produced from the decoded speech by the normal

means - calculating the autocorrelations, LPCs, LSPs, etc. We should also note that the

windowsizes that are used by G.723.1 and QCELP differ - by 20 samples. This will introduce

more inaccuracy, albeit very small, to our translation process.

36

The specific details of implementation is dealt with in Section 3.5. Once the LSPs have

been interpolated to suit encoder 2, there are other issues that need to be considered. They

are discussed below.

3.4.2 LSP and LPC mismatch for QCELP

We have decided that, for now, we need decoded speech to be passed to second encoder, since

this speech is used by the encoder to make rate decisions, produce LPCs, and possibly to

perform other complex functions that vary among CELP coder. Its most important use (and

that's the most important reason why we have it) is in the analysis-by-synthesis loop. Since

this speech is available, we could conceivably use some combination of parameters produced

from this speech in conjunction with our imported LSPs for better quality. The fact that we

are going to be using translated LSPs with the decoded speech implies that there is going

to be some kind of mismatch between these LPCs - and parameters derived from these

LPCs - and the decoded speech (which usually produces but, in this case, did not produce

all of these parameters). The parameters of most concern here are the autocorrelation

coefficients from the speech and the LPCs that are produced from these coefficients. These

parameters could be derived from either the decoded speech or from the imported LSPs

(other parameters 7 can only be derived from the one source; decoded speech). Ignoring the

complications of rate and voice/unvoiced decisions, LPCs, autocorrelation coefficients and

LSPs are mainly used in the encoder for these purposes:

(i) LSPs are quantized and sent as packets.

(ii) These quantized LSPs are used to produce LPCs (qLPCs) used for most of the filters

in analysis-by-synthesis loops

(iii) Where applicable (depending on coders), LSPs, LPCs and autocorrelation coefficients

are used to calculate the sensitivities that are used for quantization of these LSPs (see

Section 2.3.3).

It is pretty clear in the first and second cases that the use of the "imported" LSPs are

desirable (that is the motivation for importing LSPs). This is our first mismatch. Using

7 Energy in certain bands, SNR, amongst others.
8Remember, in G.723.1 this is not true of the weighting filter: unquantized LPCs are used.

37

imported LSPs for the first case implies using it for the second case; otherwise, the encoder's

decoder will be not be mirroring the decoder.

In the third case, however, (only applicable to QCELP and thus pertinent to the G.723.1-

to-QCELP tandem), there are various options available which could yield potentially dif-

ferent results. We briefly discuss the the viable options and resort to experimentation (by

listening) to decide which is best.

Deriving Parameters Purely from Decoded Speech

In this case, all the parameters passed to the sensitivity calculator are derived from the

decoded speech. The translated LSPs are not used at all in this stage. The implications

are twofold: we do not save anything by way of complexity and we need more memory to

carry around two separate copies of LSPs. The only mismatch in this case is that we will

be quantizing translated LSPs (tLSPs) using sensitivities generated by parameters from the

decoded speech.

Deriving Parameters Purely from Imported LSPs

In this case, all the parameters passed to the sensitivity calculator are derived from imported

LSPs (tLSPs). Therefore, LPC-to-LSP calculations do not need to be carried out on the

decoded speech. However, we need to somehow calculate all the parameters necessary

for sensitivity calculation (P(z), Q(z) and Rs, the autocorrelations). P(z) and Q(z) can

be calculated from the LPCs calculated from tLSPs (call these LPCs, the qtLPCs). The

Rk's are more complicated to calculate. Eleven autocorrelation coefficients are used to

calculate PARCORs and LPCs. There is no way to reproduce all of these 11 autocorrelation

coefficients given the 10 LPCs. However, given R[0] the first autocorrelation coefficient, we

can calculate the other 10 (see the algorithm developed to do this in Appendix C), which

are multiples of R[0]. Fortunately, only the relative magnitudes of these autocorrelations

are important in using the sensitivities for quantization.

Deriving Parameters by Doing a Combination of the Two

Here, tLSPs are used, in place of the LSPs generated by speech, for analysis-by-synthesis,

for transmission, and for sensitivity calculations. All other parameters used for sensitivity

38

calculations are derived from the decoded speech. As a result, LPC-to-LSP calculations do

not need to be carried out.

Empirical Analysis

These three alternatives are tested by listening to speech. The algorithm below (Section 3.5)

is used to carry out this test. The necessary adjustments are made so all three alternatives

can be tested. After several listening tests, it is very obvious that the first option is the

outright winner. The other options produce speech that have some perceptible quantization

noise. This suggests that using decoded speech to generate parameters for sensitivity cal-

culations is the best approach. Therefore parameters from that speech must be the optimal

set of values for the calculations. One setback with the use of this alternative, as mentioned

earlier, is the need to carry around two sets of LSPs (tLSPs and the LSPs derived from

speech). Since there are only 10 LSPs, this should not be a problem.

3.4.3 LPC and LSP mismatch for G.723.1

Though the issues in G.723.1 are somewhat different from those of QCELP, the results are

similar. In the case of G.723.1, LSPs are quantized via a simple method that does not

depend on sensitivities. However, there is one area in which we can choose between using

LPCs calculated from the tLSPs (qtLPCs) and those calculated directly from the decoded

speech. Empirical analysis shows that using the LPC from the speech results in better

quality speech.

3.5 Implementation of LSP transcoder

Taking the results of the analyses of these mismatches into consideration, we implement

the transcoders for both the G.723.1-to-QCELP and QCELP-to-G.723.1. We will give a

detailed description of the latter. To avoid too much repetition, we'll only discuss the ways

in which former differs from the latter.

3.5.1 Transcoder for QCELP to G.723.1

The transcoder needs to take in 20ms QCELP packets and send out 30ms G.723.1 packets.

It does this by decoding the incoming packets to produce speech (just like in the QCELP

39

decoder), while producing appropriate LSPs for an encoder very similar to that of G.723.1

(see Figure 3-4). We use already available C simulations for the separate coders to simulate

DECODER

_ Convert L s

LSPs

Incording Pitch Pitch _ _ _ _ _ _ _ _ _ _ _ _ _
Paraoters Decode Synes Pe-filter ENCODER

Synthesis- -------PrParameters Filter 1/P'(z)

Encoder's Decoder

LSP----- >LSP LSP

Quantizer Decoder Interpolator

SytessFormant
-a- ynthsisPostfilter

1/X~z)F(z)

(if used) iW(z)
Impulse i Memory
Response Update I

Hgh Pass P(z) Calculator

lC Pitch Excitation

Zero Input coder Decoder

Formant armonic Pitch
-ctPerceptual -- sm sa Predictor Ld} MP-MrL i

Weightthe flo ng pn]

Estimator

Figure 3-4: Transcoder for QCELP to G.723.1

this transcoder. The version implemented is off-line (not real time). We describe this

implementation and mention what needs to be done to write a real-time simulation for this

transcoder.

Doing the transcoder off-line (which is sufficient for listening test for quality changes)

is not difficult (nor too tedious) given the C simulations for different coders. In particular,

the following needs to be done:

(i) Use the QCELP C simulation for the decoder to produce the speech (either postfiltered

or non-postfiltered version).

(ii) At the same time, produce decoded LSPs from the decoder. These are LSPs that

40

have been unquantized from the incoming packets.

(iii) Take these 20 ms LSPs for all frames and do an off-line interpolation to produce 30ms

LSPs for G.723.1.

(iv) Pass these new LSPs into the encoder of G.723.1 using the decoded speech from

QCELP making sure we use the right parameters at the right place (see Section

3.4.2).

In (i) and (ii), all we needed to do was turn off the postfilter when necessary and add a

few lines of code to print out the decoded LSPs to a file.

Part (iii) is the most involved. LSPs are represented in fixed point in G.723.1 and

floating point in QCELP. Therefore, the appropriate conversion needs to be made. Linear

interpolation is done as follows:

tLSPG = 3qLSP_ + (1 - 3)qLSP (3.1)

where tLSP is the calculated LSP for the jth 30ms frame for G.723.1, qLSPQ_ and qLSPQ

are the 20ms frame quantized LSPs from QCELP closest to the speech signal around which

tLSP9 is calculated (See Figure 3-5). 3 is the appropriate weighting fraction. The matlab
3

Center of qLSP Q x2ms

2 Oms

(i-1) 0 (i) 0 (i+1) 0

(j) 0 (j+1) 0

30ms

Center of tLSPG

Figure 3-5: Interpolation of LSPs

code in Appendix A.1 gives a detailed implementation. In some cases, there might not be

enough information to calculate tLSPs for the last frame. In this case, we just drop the

last frame. End effects are negligible so too much care does not need to be taken when

determining LSPs for the last frame.

41

In part (iv), we need to pass in the LSPs to the G.723.1 encoder. Since we need the

LPCs calculated from the decoded speech for the weighting filter (as discussed in Section

3.4.3 above), Levinson-Durbin must be run. The tLSPs are now passed in as the LSPs for

the encoder instead of doing the LPC to LSP calculations. However, the tLSPs are not

passed "as is" to the encoder but are derived from the qtLPCs (calculated from the tLSPs)

by doing an LPC to LSP calculation. This is necessary because the G.723.1 algorithm does

bandwidth expansion on LPCs before LSPs are calculated. Failure to do this tLSP-+qtLPC

-+new tLSP caused a clicking noise in one of the frames of a test file containing female

speech.

Doing the above in real-time is not conceptually more difficult but a little trickier.

Since we are going from a smaller frame size to a larger frame size, we need to buffer up one

frame of LSP values every other frame (going from 20ms to 30ms), on average, so we can

do interpolation. We also need to buffer speech for LPC calculation (for weighting filter)

since the autocorrelation window is centered about the fourth subframe (see Section 2.3.1).

Calculating 3 is straightforward. We could do it exactly as is in the matlab code (Appendix

A.1); but that requires keeping track of the number of frames that have gone by since the

beginning. This could become impractically large. It is easily seen that # is periodic with

period 2 where the 2 unique values are 0.4375,0.9375. We can simply store these values

and use a counter that goes from 1 to 2 to achieve our goal. We will give a more in-depth

analysis of some issues involved in real-time implementation when we discuss delay.

3.5.2 Transcoder for G.723.1 to QCELP

Again, this transcoder was not implemented in real-time. The steps are very similar to that

of the previous transcoder. Decoded LSPs are printed from G.723.1, converted to tLSPs

for QCELP and then imported to the encoder. The interpolation of LSPs is a follows:

tLSP9 = yqLSPG 1 + (1 - y)qLSPiG (3.2)

where -y, like #, lies between 0 and 1. Matlab code for exact implementation is in Appendix

A.2. tLSPs are imported "as is" to form the qtLPCs used for the analysis-by-synthesis.

LSPs and LPCs used for calculating the sensitivities are derived from the decoded speech.

The encoder C simulation is slightly altered to take these into account.

42

Just as before, we can talk about the real-time implementation of this transcoder. In

this case we are going from a larger frame size to a smaller one. However we will still need

to buffer up one frame of LSP values in some cases. Again, we wait till the next section

to give a more in-depth analysis of all issues involved. Calculation of y is straightforward

since it periodic with period 3, where the 3 unique values are 0.5625, 0.0625, 1.0625.

3.6 Delay Analysis

In this section, we discuss delay issues of speech in real-time implementation of the transcoders.

3.6.1 QCELP to G.723.1

Under the normal case of no transcoder, the delay of a speech sample from input at the

first encoder to output at the second decoder is as follows9 :

(i) First, the input speech has to be buffered in order to calculate the LPCs. QCELP uses

160 sample LSPs centered around the middle of the 4th subframe (139-140 sample).

This requires an extra 7.5 ms of speech to be buffered (in addition to 20 ms frame of

speech). Thus, there is a total delay of 27.5 ms.

(ii) There is an algorithmic delay in the encoder. This delay must be less than 20 ms since

frames are sent out at this rate. This delay is usually close to this maximum value.

(iii) Transmission delay.

(iv) Decoding delay at the QCELP decoder. This delay must again be strictly less than

20 ms. It is usually much less than this.

(v) Delay in going from linear to p-law quantization and from going from p-law through

D/A.

(vi) Delay in going through A/D to p-law and then to linear quantization.

9 For simplicity we assume this speech sample is the first in the frame. If this is not the case, although

the total delay is still the same, there is less delay on the encoder side and equivalently more delay on the

decoder sides for that specific speech sample.

43

(vii) In G.723.1 encoder, just as in QCELP, an extra 7.5 ms (corresponding to a 180 sample

LPC window centered about the 210th sample) buffer delay is needed. Thus, there is

a total delay of 37.5 ms.

(viii) Encoding delay which must be less than 30 ms.

(ix) Transmission delay.

(x) Decoding delay, again less than 30 ms.

In case of the transcoder, most of the delays are similar. However, the delay in the

transcoder itself is different from that in the QCELP decoder and the G.723.1 encoder

which it replaces. We make the assumption that it takes about 2 ms to decode about 20 ms

of speech1 0 (3 ms for 30 ms and so on). We want to know what is the maximum allowable

time for encoding. Here, encoding involves calculating the tLSPs and doing all the other

encoder algorithms as discussed before. Since the transcoder has to generate packets once

every 30 ms, and it takes 3 ms to decode a 30 ms, one would expect the maximum encoding

time to be 27 ms. The following figures, Figures 3-6, 3-7, 3-8 show the first 180 ms of a

real-time implementation of the transcoder using this maximum encoding time. Packets

1, 2, 3, etc. represent incoming QCELP packets whereas Packets A, B, C, etc. represent

outgoing G.723.1 packets. Encoding can only begin if there is enough speech to calculate

the LPC window (requires 37.5 ms of speech each 30 ms frame) and the tLSPs (the next

speech frame is sometimes required to do this interpolation). Figure 3-9 shows this visually.

We notice a couple things from the figures showing the real-time implementation time

diagram (Figures 3-6, 3-7, 3-8). First, steady state is achieved at the start of the 4th

incoming packet (Figure 3-7). Secondly, the outgoing packets are not sent as soon as they

are ready. This is in order to be compatible with the decoder requirement of a packet

coming approximately every 30 ms. We could send these packets asynchronously as long

as we make sure that, given that the first packet gets there at time ti ms (and the decoder

starts decoding it), the jth packet is there before time ti + 30(j - 1) ms.

We now compare the delay between the normal case and the the case of the transcoder.

In this comparison, we initially ignore the delay in converting to p-law and back, the delay

10 This is approximately correct for present DSPs. It takes much longer to encode because of the different
searches performed.

44

I TIMEI EVENT ACTION COMMENT

Decode 1 (2 ms)

WAIT

EDecode 2 (2ms)
Encode A (27ms)

Done A at 49 ms

Decode 3 (2ms)

WAIT

*

Needs 17.5 ms
more speech to do

LPC analysis

Insufficient speech

samples to com-
mence encoding

packet B

3 _______________________________ 1 _______________________

Figure 3-6: 0-60ms of the QCELP-to-G.723.1 transcoder

45

EVENT ACTION COMMENT

F

ITIME I

. I x : 1K

I TIME EVENT ACTION COMMENT

~.
2

I

Decode 4 (2ms)
Encode B (27ms)

Done B at 89 ms

Decode 5 (2ms)
Encode C (27ms)

Done C at 118 ms

Decode 6 (2ms)

packet B needs
packets 3 & 4

which are already
available

Packet C needs
packets 4 & 5

which are already
available

Figure 3-7: 60-120ms of the QCELP-to-G.723.1 transcoder

46

i

mommmmm__m_ -1

EVENT ACTION COMMENTITIME I

I TI ME EVENT ACTION COMMENT

Decode 7 (2ms)
Encode D (27ms)

Done D at 149 ms

Decode 8 (2ms)

Encode E (27ms)

Done E at 178 ms

Decode 9 (2ms)." .-1141, "v

packet D needs
packets 6 & 7

which are already
available

packet E needs
packets 7 & 8

which are already
available

.,.. "'."'. '"..'.,".."..'.'... .'.""""."".'.''"""'~ __ I _____________________________I

Figure 3-8: 120-180ms of the QCELP-to-G.723.1 transcoder

47

EVENT ACTION COMMENT

F

ITIME I

o Center of LPC frame

Figure 3-9: Incoming and outgoing packets in QCELP-to-G.723.1 transcoder

in A/D and D/A and the transmission delays (items (v),(vi),(iii) and (ix)). We also take

the encoder time for G.723.1 to be 27 ms (the maximum allowable time for the encoder

portion of transcoder"). The encoder time for QCELP is taken to be 18 ms (which happens

to be the maximum allowable delay while transcoding from G.723.1 to QCELP as we will

see in the next section). With these numbers, the "total" delay in the normal case is

27.5 + 18 + 2 + 37.5 + 27 + 3 = 115 ms. The delay in the transcoder case (in steady

state) is slightly trickier. Consider the first sample of speech in Packet 7 (shown as (in

Figure 3-9). This corresponds to outgoing Packet E. From Figure 3-8, we see that Packet

E is sent out 179 - 120 = 59 ms after Packet 7 arrives. Thus the total delay time is

27.5 + 18 + 59 + 3 = 107.5 ms. Note that even if we had considered different samples,

we would still get the same total delay. For example, consider the 80th sample of Packet

8 (corresponding to the 240th sample of Packet E) shown as p in Figure 3-9. Figure 3-8

shows the transcoder delay to be 179 - 140 = 39 ms. However, since the 240th sample is

160 more samples behind the first sample in its packet than the 80th sample is behind the

first in its packet, we have an extra 20 ms on the decoder side (corresponding to speech

reconstructed at 8000 Hz). Therefore, the total delay is still 107.5 ms. Thus, the transcoder

saves 7% in delay. The percentage increases when we consider p-law, A/D, D/A delays (not

present in transcoder) and faster encoding times. The percentage decreases when we factor

in transmission delays.

3.6.2 G.723.1 to QCELP

This case is very similar to the previously discussed transcoder. In particular, all the delays

itemized above are the same; but the order is reversed so that G.723.1 goes first.

The transcoder implementation with a maximum encoding time of 18ms (20 ms minus

"We expect the encoding times between transcoder and the normal G.723.1 encoder to be similar since

we are doing very similar computations.

48

2ms for decoding 20ms frames) is shown in Figures 3-10, 3-11 and 3-12. Again, Packets

1, 2, 3, etc. represent incoming packets (this time, G.723.1) and Packets A, B, C, etc.,

outgoing packets. Figure 3-13 gives a visual representation of packet dependence. Similar

observations are made from the real-time diagrams in Figures 3-10, 3-11 and 3-12. Steady

state is achieved at the beginning of incoming Packet 3.

The total delay for the normal case with the same assumptions is the same as before;

115 ms. We now calculate the delay in the transcoder. Consider the first sample in Packet

3, shown by (in Figure 3-13. This corresponds to first sample in outgoing Packet D. Figure

3-12 clearly shows the transcoder delay is 101 - 60 = 41 ms. The total delay is therefore

37.5 + 27 + 41 + 2 = 107.5 ms as before.

Thus, in both cases, we have similar delay savings. This 7.5 ms comes from the fact

that, in steady state, we no longer have to wait, on average, for the extra 7.5 ms of speech

to do LPC analysis.

49

EVENT

Decode 1 (3ms)
Encode A (18ms)

Done A at 21 ms

WAIT

Decode 2 (3ms)
Encode B (18ms)

T
Done B at 51 ms

WAIT

Packet A needs
packet 1 which is

available

Insufficient samples
for packet B

Packet B needs
packets 1 & 2

which is
available

Insufficient samples
for packet C

Figure 3-10: 0-60ms of the G.723.1-to-QCELP transcoder

50

EVENT

Decode 3 (3ms)
Encode C (18ms)

Done C at 71 ms

Encode D (18ms)

Done D at 99 ms

Decode 4 (3ms)
Encode E (18ms)

Done E at 120 ms

Packet C needs
packets 2 & 3

which are already
available

Packet D needs
packet 3 which is

available

Packet E needs
packets 3 & 4

which are already
available

Figure 3-11: 60-120ms of the G.723.1-to-QCELP transcoder

51

F

Decode 5 (3ms)
Encode F (18ms)

Done F at 141 ms

Encode G (18ms)

T
Done G at 159 ms

Decode 6 (3ms)
Encode H (18ms)

Done H at 180 ms

Packet F needs
packets 4 & 5

which are already
available

Packet G needs
packet 5 which is

available

Packet H needs
packets 5 & 6

which are already
available

52

EVENT

Figure 3-12: 120-180ms of the G.723.1-to-QCELP transcoder

0 Center of LPC frame

Figure 3-13: Incoming and outgoing packets in G.723.1-to-QCELP transcoder

53

Chapter 4

Empirical Testing of Transcoder

The transcoder is tested to see if there are any quality improvements over the normal case.

Quality testing in speech is quite arbitrary in some ways as there is no very objective way

of measuring the perceptual quality of speech. Empirical testing is done by listening to a

variety of speech files. Mean Opinion Score (MOS) is generally accepted as a means of rating

the quality of speech coders. Here, several listeners are asked to rate the speech on some

comparative scale (e.g. EXCELLENT, GOOD, SATISFACTORY, NOT SATISFACTORY,

POOR) which is then assigned a numerical scale (say 1-5, 5 being excellent). Averaging

these scores over different speech waveforms gives us the MOS.

Several speech files are used to test the quality of the transcoders. Listening is done

primarily by the author and secondarily by his supervisors. If initial listening produced

promising results, a MOS test will be set up and Mean Opinion Scores calculated for the

cases with and without transcoders.

Because QCELP is such a good coder, it is sometimes hard to hear much degradation in

the tamdem case with G.723.1. As a result, measuring improvements is difficult. As a result,

for listening purposes only, we will also use a lower rate (and lower quality) speech coder

so we will have enough degradation from which to measure any improvements. The coder

used here is the Variable Rate Speech Service Option for the Globalstar Communication

System (Globalstar T M , a proprietary of Qualcomm@). We will not discuss the details of

this coder1 . However, it is a very good substitute for QCELP, with a lower bit rate.

'For proprietary reasons.

54

4.1 Listening for Flat Speech

Here, we use speech files (male and female) with "flat" 2 response.

As mentioned earlier, transcoding is done between G.723.1 and QCELP or Globalstar,

a lower rate and quality coder.

First we discuss the distortions observed in the G.723.1 to QCELP tandem.

4.1.1 QCELP and G.723.1 in tandem

When these two coders are in tandem (in whatever order), we notice the following kinds of

distortions3 :

" muffling (bad high frequency reproduction).

" some low frequency distortion.

There are also some other observations that are specific to the use of postfilters and to

the order in which these coders are placed in tandem. If QCELP is the leading coder and we

use a postfilter, there is some slight added frequency distortion over the case where we turn

off the postfilter. On the flip side, turning off the postfilter causes there to be slightly more

quantization noise in some speech samples. When G.723.1 is the leading coder, turning off

postfilter has no significant perceptible effect.

All these distortions, however, do not amount to a lot and without a trained ear, it is not

very easy to detect. This seems to contradict the fact that there is considerable distortion

in tandem situation. We deal with this issue a little later. For now, we turn to the case

where we use GlobalstarTM (from now on, referred to as GS) in place of QCELP.

4.1.2 GS and G.723.1 in tandem

Similar results are observed in this case but the distortions are worse and very perceptible.

This gives us room for improvement. We now listen to these speech samples using the

transcoder.

2This is the speech spectrum produced from a hi-fi microphone.
3The comparison is always made with the lower quality coder; in this case, G.723.1.

55

GS and G.723.1 using transcoder

When G.723.1 is the leading coder, we still observe frequency distortion. In most cases it is

similar to the tandem case (without transcoder). However, in a few phrases, there is some

small improvement. One such phrase was "a man in a blue sweater", spoken by a male

speaker.

When GS is the leading coder, similar overall lack of improvement is observed. Again,

there is some improvement in a phrase, "in the rear of the ground floor was a large passage",

by a male speaker. Here, omitting the postfilter increases the quality slightly even though

GS postfilter supresses noise more.

4.1.3 Analysis

The results just mentioned do not seem very promising. Apart from the scattered obser-

vations of slight improvement, there is no strong evidence that the transcoder is beneficial.

However, as mentioned earlier (Section 4.1.1) the original distortions observed (esp. in the

QCELP case) is much lower than expected. This is probably due to the fact that our simu-

lations are not a very accurate representation of reality. In reality, there are linear to p-law

(or A-law) quantizers, A/D and D/As as mentioned before (Section 3.6). These stages

introduce distortion that is not modelled by our simulations. In that light, our transcoder

will probably improve speech quality; though, because it is done digitally and not because

of LSP translation.

4.2 Listening for Modified IRS Speech

Flat speech, as mentioned earlier, is unfiltered speech. This is generally what has been used

to evaluate coders in the past. However, flat speech is not necessarily a true representation

of what happens in real digital systems. The ITU has put forward recommendations for

subjective performance assessments[13, 14]. These involve using what is called an Interme-

diate Reference System (or more recently, the Modified Interference Reference System or

modIRS). We briefly describe what these are and then discuss the results of these tandemed

coders in response to modIRS speech.

56

4.2.1 An Intermediate Reference System

From the late 1970s to the late 1980s, a specification for an Intermediate Reference System

(IRS) was developed which is now ITU Recommendation P.48[13]. This intermediate refer-

ence system is used to define loudness ratings and to help standardize performance among

different equipments. Of all the requirements and specifications of this IRS, we will only

be concerned with the send and receive frequency characteristics. These IRS characteris-

tics come from extensive series of measurements made on analog telephones in the early

1970s [14]. However, for the loudness balance purposes for which the IRS was designed,

it was necessary to include a 300-3400Hz bandpass filter, know as the SRAEN filter [14].

These specifications, however, do not represent modern digital filters and have therefore

been modified to form what is now known as the modified IRS (modIRS). The character-

istics are given in Table B.1 in the Appendix and plotted in Figure 4-1 below. Tolerance

on the nomimal points given in the table for send and receive are +2.5 dB between 200

Hz and 3400 Hz with a roll-off of at least 15 dB/octave below 200 Hz and an appropriate

anti-aliasing filter above 3400 Hz.

4.2.2 QCELP/GS and G.723.1 in tandem

Now we use speech that has been filtered though a modified IRS filter similar to one de-

scribed in the previous section (Section 4.2.1). When QCELP or GS are put in tandem with

G.723.1, using the transcoder or otherwise, we make the striking observation that distortion

is much less than in the case with flat speech. Distortion is much less in this case than in

the case with flat speech!

4.2.3 Summary

Our goal was to determine which one of items (i) and (ii) below is true:

(i) LPC degradation 5 is not the main case of distortion.

(ii) LPC degradation is the main cause of degradation.

5 By this we mean the degradation in LPCs caused by doing Levinson-Durbin on decoded speech in coder
2.

57

10. I I I I I I I I I

0-

-10-
C

-20-

-30-

-1tu
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized frequency (Nyquist==1)

a:

0
E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist==1)

Figure 4-1: Send and Receive Characteristics for modified IRS 4[14]

If (i) is true, then we need to determine what is the main possible cause of degradation

and what makes modIRS speech do much better in tandeming. If (ii) is true, for our results

to be consistent, it would mean that:

" The transcoder does not improve LPC degradation.

" There is not much LPC degradation in modIRS speech.

In light of the results from this chapter, we now investigate the apparent discrepancy

between flat and modIRS speech. We aim to find out which of (i) and (ii) is true and why.

58

I I I I I I I

11--- -- 111 -11- 1 1 --i

1

Chapter 5

Further Investigation of Tandem

Degradation

In this chapter we seek to determine the most probable cause of degradation and to propose

possible solutions.

5.1 Is It Really the LPC?

We mentioned in the last chapter that if the LPC degradation was indeed the cause of

distortion, then our transcoder must not be rectifying this LPC degradation we observe in

transcoding. Indeed, we notice that if we plot the LPCs in the encoder of coder 2 for both

cases, with and without transcoding, there is no systematic "improvement" in the synthesis

filter1 .

However, the following experiment shows that LPC degradation is not the most likely

culprit. We consider two QCELP coders in tandem. Careful listening tests of flat speech

reveal some frequency distortion (loss of high frequency component) in the speech through

this tandem. We then perform a similar experiment but use all the parameters from the

first coder and pass them to the second coder. The second coder therefore uses the LPCs,

LSPs and autocorrelation coefficients from the first coder (rather than calculating these

afresh from speech) 2. This second coder uses the speech from the first coder only for the

'In the sense that the synthesis filter in coder 2 approaches that of coder 1.
2This is done off-line. In fact, this experiment cannot be done in real-life tandem situations as one does

not have access to any information from the first stage, except for the decoded speech.

59

purposes of comparing it to synthesized speech to find the optimal excitation parameters.

Listening tests reveal that there is still some distortion in the resulting speech. If LPCs

were the main cause of degradation, we would have noticed a greater reduction in distortion

that is observed.

All these observations - difference between flat and modIRS results, the same coder

tandem case with imported parameters - seem to suggest that there is still some other

cause of distortion that is not necessarily tied to the tandem connection, but that is inherent

in the coders themselves. We must remember that these coders are not "perfect coders"

and therefore there will always be some sort of perceptual distortion, albeit very little and

hardly detectable in some coders like QCELP. Is there some distortion beyond what should

be expected given the bit rate limitation?

One major difference between flat and modIRS speech is that dynamic range in the

frequency domain is much less for modIRS. This leads us to postulate that the weighting

filter used in the analysis-by-synthesis stage is not sufficiently favoring high frequencies in

the case of flat speech.

5.2 Is It Really The Weighting Filter?

The weighting filter for QCELP is given by:

A (z)
W(z) = ~ (5.1)

A (z/-y)

Below is a picture (Figure 5-1) of the weighting filter with different values of -y for a frame

of speech (the actual value used in the coder is 0.78).

As -y increases from zero to one, an all-pass filter, we notice that the tilt in the filter

decreases. Smaller values of y weigh the higher frequencies increasingly more than the lower

frequencies.

Using some of these different values of -y, we plot the narrow band spectrum of a portion

of speech (male voice saying, "call her on the phone") for the two stage QCELP tandem

with no postfilters in both stages 3

Figures 5-2 and 5-5 above show that there is quite a loss of information in the high

3So we have a fairer playing field for the different weighting filters

60

20-

10 -

0.78
-20 - 0.5.

0.3
0.0

-30 --

-40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -

Normalized frequency (Nyquist==1)

Figure 5-1: QCELP Weighting Filter for different -y

frequencies for the 2-stage tandem. One such frequency band is between 2500 Hz and

4000 Hz and between 10.05 and 10.15 secs. However, as we decrease the value of 7 and

thus, increase the dynamic range of the weighting filter, this loss of information is reduced

greatly. Listening tests however reveal that there is more quantization noise with lower

- (expected since 7 is optimized mainly to remove quantization noise). The recovery of

spectral information, therefore, does not necessarily mean that our signal-to-noise ratio

increased at these high frequencies. However, the noise observed seems to be more low

frequency, which might suggest a improvement.

To continue with our experiments, we now do some comparisons between the weighting

filters for flat speech and those for modIRS speech. In particular, we plot the QCELP

61

I I I I I I
II4000

3000

2000

1000

0

4000

3000

2000

1000

0
0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9

Figure 5-3: Spectrum of Speech for 2-stage QCELP Tandem with -y = 0.3

62

II

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9

Figure 5-2: Spectrum of Speech for 2-stage QCELP Tandem with 'y = 0.78

IIIIIII IIIIIIIII IIIIIIIII III

rI I

-~~ms -

- -- - ~~ - - - --.LOW-

M it~ltenM~n irro -anrouosman anmon

111111111 11111111

I

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9

Figure 5-4: Spectrum of Speech for 2-stage QCELP Tandem with -y = 0

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9

Figure 5-5: Spectrum of Speech

63

4000

3000

2000

1000

0

3000

2000

1000

0

-- n

7f~ -plm

-T 1-06. "Ms ""

- O Wt, -. t - - -
-dP -=a..;-_- -

.. n -4onfnonf-smn msssani

4000

10

mIRS
5- Flat

0

-5 --

M/

-107

-15 --

-20
0 0.2 0.4 0.6 0.8

Normalized frequency (Nyquist==1)

Figure 5-6: Weighting Filter for Flat and ModIRS Speech

weighting filter (with 7 = 0.78) for several frames of speech. A typical plot4 for a frame of

voiced speech is shown below in Figure 5-6.

We notice from Figure 5-6 that the magnitude of the weighting filter for modIRS filtered

input speech is higher than that of flat speech at very low and very high frequencies. We

concentrate on the low frequency. We believe that the weighting filter for flat speech gives

too much weighting to low frequencies and therefore does not leave enough bits for the

higher frequencies. Below is yet another diagram (Figure 5-7) to help us see the differences

between flat and modIRS weighting filters. To get these plots, we take the average of

LPC filters for all frames (1,163) of a speech. Analyzing Figure 5-7 reveals that, at low

4 All the plots do not ressemble this but the majority of the plots are similar to this one, as far as the
issues being discussed are concerned.

64

U

Flat
10- MIRS

-20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (Nyquist==1)

10

Flat
5~ - MIRS

0I,

-5- -

-10
0 0.1 0.2 0.3 0.4 0.5 0.6

Normalized frequency (Nyquist==1)
0.7 0.8 0.9

Figure 5-7: Average LPC and Weighting Filter for QCELP for A Speech File

frequencies, there is a about a 13 dB difference in the LPC filters of flat and modIRS but

only about a 6 dB difference in weighting filters.

All these experiments and figures just described undergird the hypothesis that the

weighting filter for QCELP is giving too much weight to the lower frequencies and not

enough to higher frequencies. We do not claim that all the degradation is due to the

weighting filter and thus degradation can be removed by merely "fixing" the weighting fil-

ter. We expect the bitrate limitation to have some contribution to degradation. However,

an appropriate "fix" to the weighting filter should improve performance for QCELP and

thus improve performance for the transcoding situation, even if it is just by a little.

65

1

5.2.1 Weighting Filter for G.723.1

For G.723.1, a pole-zero filter is used. Similar tests were performed as in the case of QCELP

and the results, though somewhat positive, were not as illuminating as those of QCELP.

This is because G.723.1 is a lower quality coder and is therefore very sensitive to the kind

of changes we made above to the weighting filter. Quantization noise increases and makes

it hard to make decisions on quality.

5.3 Proposed Solutions

Here, we discuss possible solutions to the weighting filter "problem" and evaluate some of

these solutions to see if they improve performance. However, since our goal was not to do

much alterations in the algorithms of the coders, we do not go into much detail.

5.3.1 First Convert to ModIRS

A simple attempt to solve the distortion problem with flat speech is to first convert the

speech to modIRS, process this and then convert back to flat. We implemented this by

using 20th order rational modIRS filter 5 (see Appendix D).

Listening tests for QCELP coders in tandem and for the GS and G.723.1 show that there

is improvement when we first convert to modIRS and then convert back to flat speech. In

speech segments where there is noticeable distortion (for e.g., the male voice saying "call

her on the phone, tell her the news"), we get back the high frequencies. In some cases we

get back a tad bit more high frequencies that we want6 .

However, there are drawbacks to using this method:

(i) One must detect when we have flat speech and when we have modIRS (we will discuss

briefly later whether flat speech actually occurs in real life modern digital systems).

There is actually no easy way of telling with accuracy whether a speech is flat or

modIRS since we have speech waveforms that already have lots of high frequency

components (and thus can masquerade as modIRS speech).

5 These filters could be fine tuned more so as to give speech that is approximately centered around zero.
6Also, using the inverse of our modIRS filter creates a speech waveform that, even though it sounds

good, does not have the natural shape of speech waveforms. Reducing the magnitude of the filter at very

low frequencies helps to alleviate this effect.

66

(ii) Adding these conversion filters will cause delay. If the order is kept low enough, this

delay should not be large.

5.3.2 Frequency-Dependent Filters

A fix for the problem with using the modIRS filter (item (i) above) to filter speech is to

design a filter that is somewhat frequency dependent. In other words, if the speech has a

frequency response that has too much low frequency component, then we want to reduce

that and increase the high frequency component - reduce the dynamic range. We do not

go into the details of how one one designs such a filter. Good filters, which have realizable

approximate inverses, that are not hard to implement might be difficult to design.

5.3.3 Different Weighting Filter

Instead of the above two propositions, one could design a totally new weighting filter. The

ARMA weighting filter is quite popular and does a great job at reducing quantization noise.

However, it seems to be less than optimal when given speech with large low frequency energy

components. Again we do not go into any involved discussions about better weighting filters.

There have been some research done on using LSPs instead of LPCs for postfilters[1O]. Some

of this could be applied to weighting filters.

5.4 Further Discussion

Our previous discussions support the hypothesis that the weighting filters in the coders cause

enough distortion in tandem coding: sufficient that the quick fix mentioned in Section 5.3.1

shows some improvement. As we mentioned earlier, our original goal was not to make

changes in the algorithms of the coders7 . Making alterations in the weighting filter could

be done only in the transcoder, but that still leaves the weighting filter in encoder 1. Any

improvements will therefore be reduced. Also, there are some, though not very well-defined,

relationships between the weighting filters and the postfilters. Changing the weighting filter

significantly in the transcoder will necessitate reoptimization of the postfilter in decoder 2

- again, meddling with the coder algorithms.

70r more specifically, we do not want to change encoder 1 or decoder 2.

67

When we considered our original transcoder, we synthesized the decoded speech (some-

times without postfilter). Another possibility would be to only decode as far as the residual

(error signal used to excite LPC synthesis filter) and use that for speech synthesis in the

encoding part of the transcoder. This immediately raises issues of how to calculate auto-

correlations, band energies etc.; important parameters necessary for rate decisions in our

coders. However, for academic purposes, we could still investigate if using the residual

improves the quality of speech coded at full rate (no rate decisions made). One big moti-

vation for using the residual is the improvement we get in delay. This improvement could

be especially big when transcoding from QCELP to G.723.1 (in 6.3 kbps mode) because of

the efficient algorithms that can be used to generate transmission parameters. The results,

however, were not encouraging. There was actually a detioration in quality in some cases.

This serves only to reinforce our view that decoding speech all the way, with the possible

exception of the postfilter, is necessary for the transcoding process.

Before we conclude, we revisit the modified IRS response. If this response describes most

digital systems today, then transcoding distortions should be minimal in real life systems.

Consequently, the results with flat speech would be irrelevant. Besides the fact that speech

with flat response has generally been used - and is still used today - to characterize the

quality of coders, there are two reasons why using flat response is still important:

e Not all systems follow modified IRS response exactly. G.723.1 is used on the internet

and it is not evident how applicable modified IRS is in this case.

e Some networks apply a filter to increase the low frequency components so the response

is closer to the flat response.

68

Chapter 6

Conclusion and Future Work

To recapitulate, this thesis sought to improve transcoding performance between QCELP

and G.723.1 coders. This is done by introducing a transcoder that takes packets from the

leading encoder and generates packets sent to the following decoder. In other words, the

transcoder replaces the decoder of the leading coder and the encoder of the following coder.

The goal was to choose a transcoder such that the quality of speech improves over the case

where we just decode the speech from the first coder and pass this speech to the second

coder. The resulting designs and observations are summarized in the following paragraphs.

First, previous work in quality assessment in tandem situations (which is correlated to

transcoding situations) showed that there was significant distortion; even for good coders

like QCELP. We were not able to reproduce this level of distortion1 . However, this can

be attributed to the fact that we do not simulate conversion to [p-law and we do not

account for distortion in going to analog and back to digital (A/D and D/A). However,

using Globalstar T M , a lower rate coder, much like QCELP in algorithm, we could generate

enough distortion, from which we could measure improvement.

Now, we could design a transcoder and measure it's performance. Because of the com-

plexity of CELP coders today, we need to generate speech as an intermediary process in

this transcoder. This decoded speech is needed for the determination of parameters that

are needed for rate determination. It's other equally important use is in the analysis-

by-synthesis loop needed for the generation of the excitation parameters. Our transcoder

involved using the LSPs from parameters from encoder 1. We explored decoding the speech

'Though we did not do a MOS test to compare our results, initial listening, though quite subjective,
strongly suggests that there is less distortion

69

in transcoder with and without the postfilter. The results for flat response, as determined

by listening tests, are briefly summarized below:

" In general, quality improvement was isolated to specific phrases of speech. Overall,

there was not any significant improvement.

" In cases where G.723.1 was the following coder, the choice of keeping the postfilter

in the transcoder decreases the quality of speech. However, in some cases, there is a

very slight increase in quantization noise.

Previous work on transcoding suggest that there is no statistical difference between flat

response and IRS response in tandem situations. Recently, modified IRS (different from the

IRS used in previous work) has become popular. Speech with this response showed very

little degradation in transcoding. This led us to believe that the algorithms in the coders

deal better with speech with modified IRS response. Experiments with the weighting fil-

ter streghtened this belief and one test that converted back flat speech first to modified

IRS showed promise in terms of speech quality. However, changing the weighting filter

poses problems because it requires altering the algorithms of the coders involved, as signif-

icant changes to the weighting filter will require changes to postfilter and possibly, to the

codebooks used.

To conclude, this thesis has shown that in cases where there is appreciable transcoding

distortion, an LSP based transcoder does not improve overall quality significantly, though

it does show an improvement in end to end delay. However, appropriate changes to the

algorithms of these coders can improve quality in transcoding situations.

Finally, we make suggestions for future work. The list below describes these suggestions:

" MOS tests should be done to reinforce some of the results put forth in this thesis.

" A more thorough investigation into the effects of the weighting filter and a design of

better filters that improve tandem performance of flat speech.

" Other CELP coders, especially those with better tandem performances, should be

studied to help shed more light on the behaviour of CELP coders in tandem.

70

Appendix A

A.1 Matlab Code for QCELP to G.723.1

function g723_tlsp = q2g-lsp(qcelp-lsp);
X This converts LSPs from QCELP to G.723.1 just as the file q2g-lpc.m
% This is the program that was used. This is definitely not the

X most efficient way (see thesis for a more efficent way)
X We are very sloppy around the edges (beginning and ending frames).

j = 2;

i = 1;
last-value-j = 140;

while(i < length(input)*4)
valuei = i*240-30;
value-j = j*160-20;
if (valuei < value-j)

output(i,:) = (value-i-last-value-j)*qcelp.1sp(j,:)/160+
(value-j-value.i)*qcelp-lsp(j-1,:)/160;

i = i+1;
else

if (j == length(input))

break;
end

j = j+1;
lastvalue-j = value-j;

end

end

g723_tlsp = round(output*32768); % These lsps are not directly used but
% converted to LPCs and back to LSPs

X as mentioned in thesis.

71

A.2 Maltab Code for G.723.1 to QCELP

function qcelptlsp = g2q-lsp(g723_lsp);
X This converts LSPs from G.723.1 to QCELP.

X This is the program that was used. This is definitely not the

X most efficient way (see thesis for a more efficent way)
X We are very sloppy around the edges (beginning and ending frames).

j = 1;

i = 1;
last-value-j = 0;

while(i < 2*length(g723_lsp))
valuei = i*160-20;
value-j = j*240-30;
if (valuei < value-j)

if (j == 1)

output(i,:) = input(j,:); X Set the 1st frame of QCELP

% to that of G.723.1
else

output(i,:) = (value-i-last-value-j)*g723_lsp(j,:)/240+
(value.j-value-i)*g723_lsp(j-1,:)/240;

end

i = i+1;

else

if ((j == length(g723_lsp)) & (valuei~ value-j))
break;

end

j = j+1;
lastvalue-j = value-j;

end

end
qcelp-tlsp = output/32768;

72

Appendix B

B.1 Modified IRS Filter Charateristics

Table B.1: Send and Receive Characteristics for modified IRS [14]

Frequency Modified IRS Send Modified IRS Receive
(Hz) (dBV/Pa) (dBV/Pa)
100 -31.7 -13.4
125 -24.7 -7.4
160 -17.2 -2.4
200 -13.3 3.2
250 -10.3 6.7
300 -8.5 9.2
315 -8.3 9.7
400 -7.0 11.3
500 -6.3 11.9
600 -6.0 12.1
630 -5.9 12.1
800 -4.9 12.3
1000 -3.7 12.6
1250 -2.3 12.5
1600 -0.5 13.1
2000 0.1 12.9
2500 1.3 12.6

3000 2.0 13.0

3150 2.1 12.9

3500 -0.3 10.9
4000 -3.5 2.1
5000 -9.0 -11.7

73

Appendix C

C.1 Durbin's Recursive Algorithm[19]

(0) = R(0)

k = R(i) - Za ')R(i
3=1

a(i)

(a)

- j) /E(1)

< _ i

E(')= (1 - k2)E(--)

where i goes from 1 to 10 and the final solution is

aj = a (10)a a3 1 < j K 10

74

1 < i < 10

=kt

=aj '-') - k ad(-1)

C.2 Calculation Autocorrelation Coefficients from LPCs

The set of PARCOR (partial correlation) coefficients can be obtained from the set of LPC

coefficients, ay, using the following backward recursion[19]:

ki = a~

a3 -i ai-3

1 1-k 2
1<j~-

where i goes from 10 down to 1 and we initially set

a(10) = aj 1 < j < 10 (C.1)

The a'A's and ki's calculated above and then used to calculate the R(i)'s by doing part
2

of the reverse of the Durbin algorithm. We can only calculate the R(i)'s relative to R(0),

which we set equal to 1.

E(0) = R(0)

R(i)

E(')

where i goes from 1 to 10.

75

(i-1)aj

i-1

= E(')ki+la')R(i-j)
3=1

= (1 -k)E

Appendix D

D.1 Modified IRS Filter Coefficients

W(z) = n=0 bnz-"

n=o 0 -

where a = {1.0000,0.1534,-0.3498,0.0333,-0.0045,-0.2782,0.0473,0.0425,
-0.0972,0.1592,-0.0440,0.2004,0.0596,-0.15 2 1 ,-0.0605,-0.00

3 6 ,

-0.0901,0.0417,0.0891,0.0123,0.0013}

b = {0.7438, -0.3261, -0.5755,0.2100,-0.0343,-0.2296,0.1613,0.0322,
-0.1199,0.1776,-0.0835,0.1336,-0.0131,-0.2013,0.0397,0.0432,

0.0577,0.0823,0.0654,-0.0390,-0.0088}.

76

References

[1] Atal, B. S. and Schroeder, M. R. Code-Excited Linear Prediction (CELP) : High-Quality

Speech at Very Low Frequencies. In Proceedings of the IEEE International Conference

on Communications, v 1, pp 937-940, March 1985.

[2] Atal, B. S., Cox, R. V. and Kroon, P. Spectral Quantization and Interpolation for CELP

Coders. In IEEE International Conference on Acoustics, Speech and Signal Processing,
v 1, pp 69-72, May, 1989.

[3] Barnwell III, T. P. and Schafer, R. W. Improving the Performance of LPC-CVSD Tan-

dem Connections by Phase Modification. In IEEE International Conference on Acoutics,

Speech and Signal Processing, pp 433-436, May, 1977.

[4] Barnwell, T. P., Schafer, R. W. and Bush, A. M. Evaluation of LPC/CVSD Tandem

Connections. In 3rd IEEE International Conference on Acoutic, Speech and Signal Pro-

cessing, pp 326-329, April 1978.

[5] Bergeron, L. E. Spectral Enhancement Procedure for the Wideband/Narrowband Tan-

dem. In 3rd IEEE International Conference on Acoustics, Speech and Signal Processing,
pp 330-333, April 1978.

[6] Cheung, R. S. Application of CVSD with Delayed Decision to Narrowband/Wideband

Tandem. In IEEE International Conference on Acoustics, Speech and Signal Processing,
pp 437-439, May 1977.

[7] Fischer, T. R. On the Tandem Connection of Differential Encoding Systems: The Case of

Cascaded Quantizers. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pp 1300-1303, 1983.

[8] Gardner, William R. Sensitivity Weighted Vector Quantization of Line Spectral Pair

Frequencies. Qualcomm, Inc., U.S. Patent 5,704,001, Dec 30 1997.

[9] Hangartner, R. D. and Jain, V. K. 32Kbs ADPCM/PCM Transcoder using TI-320
DSP Microprocessor. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pp 1421-1424, 1985.

[10] McLoughlin, I. V. and Chance, R. J. LSP-Based Speech Modification for Intelligibility
Enhancement. In Proceedings of International Conference on Digital Signal Processing,
v2, Jul 2-4, 1997.

77

[11] ITU-T Recommendation G.723.1: C Reference Code, Test Signals and Test Sequences
for the Fixed Point 5.3 and 6.3 kbits/s Dual Rate Speech Coder. ITU, March 1996.

[12] ITU-T Recommendation G.723.1: Dual Rate Speech Coder for Multimedia Communi-
cations at 5.3 and 6.3 kbit/s. ITU, March 1996.

[13] ITU-T Recommendation P.48: Specification for an Intermediate Reference System.
ITU, 1988.

[14] ITU-T Recommendation P.830: Subjective Performance Assessment of Telephone-
Band and Wideband Digital Codecs. ITU, Feb, 1996.

[15] McVay, J. W. and Gibson, J. D. Analyses and Experiments on the DM into LPC
Tandem. In IEEE Transactions on Acoustic, Speech and Signal Processing v ASSP n3,
pp 436-439, June 1982.

[16] Nishitani, T. Tandem Transcoding without Distortion Accumulation. In IEEE Trans-

actions on Communications v COM-34 n 3, pp 278-284, March 1986.

[17] O'Shaughnessy, D. Speech Communication: Human and Machine. Addison-Wesley,
1987.

[18] Perkins, Mark E. Test Results: CDMA Coder Assessment. AT&T Bell Laboratories,
August 16, 1995.

[19] Rabiner, Lawrence R. and Schafer, Ronald W. Digital Processing of Speech Signals.
Prentice-Hall, NJ, 1978.

[20] Ramamoorthy, V. On Tandem Coding of Speech. In Proceedings of the IEEE Interna-
tional Conference on Communications, pp 1229-1233, 1995

[21] Schroeder, M. R. and Atal, B. S. In Proceedings of IEEE International Conference on

Communications, pp 48.1, May, 1984.

[22] Soong, Frank K., Juang, Bing-Hwang. In International Conference on Acoustics, Speech

and Signal Processing, pp 1.10.1-1.10.4, 1984.

[23] TR-45 Committee. TIA/EIA/IS-733: High Rate Speech Service Option 17 for Wide-
band Spread Spectrum Communication Systems. TIA, March, 1998.

[24] Wang, B. and He, Y. Adaptive Postfilter in 16kbps LD-CELP Speech Coder. In Inter-
national Conference on Signal Proceedings, v 1, pp 678-681, Oct 14-18, 1996.

[25] Yang, J., Tang, K., Feng, C., Zhang X. and Ling, N. Code conversion algorithm between
16kbps CVSD and 64kpbs PCM. In Tien Tzu Hsueh Pao/Acta Electronica Sinica v 22
n 4, pp 72-75, April 1994.

78

