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Abstract

We provide new competitive upper bounds on the performance of the memoryless,
randomized caching algorithm RANDOM. Our bounds are expressed in terms of the
inherent hit rate a of the sequence of memory references, which is the highest
possible hit rate that any algorithm can achieve on the sequence for a cache of a
given size. Our results show that RANDOM is (1 - ae- 1/4)/(1 - a)-competitive on
any reference sequence with inherent hit rate a. Since our new competitive bound
does not scale up with the size k of the cache, it beats the putative Q(lg k) lower
bound on the competitiveness of caching algorithms.
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1 Introduction

Fiat et al. [11] show that no on-line cache replacement algorithm' on size-k caches
can be better than Hk-competitive, where Hk = E(lg k) is the kth harmonic num-
ber. Moreover, subsequent research [1, 23] has demonstrated the existence of Hk-
competitive algorithms for this problem. Despite the apparent meeting of these upper
and lower bounds, we show in this thesis that much better competitive upper bounds
can be obtained.

Before discussing our new upper bounds, we first present some background defini-
tions. A cache-replacement algorithm is said to be on-line if at each point in time,
the algorithm responds to a memory request based only on past information and with
no knowledge whatsoever about any future requests. An off-line cache-replacement
algorithm, on the other hand, assumes the availability of an entire input sequence
of memory requests. In this thesis, replacement algorithms will be denoted in Sans
Serif font, for example, A, sometimes subscripted with the size of its cache, as in Ak.
We say that an algorithm Ak p-competes with another algorithm Bh if the number
of cache misses incurred by Ak on any input is at most p times the number of cache
misses incurred by Bh. We say an algorithm Ak is p-competitive if Ak p-competes
with OPTk, where OPTk is the optimal off-line algorithm.

Fiat et al.'s Hk lower bound for size-k caches uses an adversarial argument to
construct a sequence of memory requests that causes a given randomized caching al-
gorithm to be at least Hk-competitive on the sequence. Their construction produces
sequences whose inherent miss rate /, the fraction of requests on which the opti-
mal off-line algorithm OPTk misses, is at most 1/k. Consequently, for sequences of
requests with / > 1/k, their argument provides no lower bound on how efficiently
a caching algorithm can serve these sequences. Indeed, we show in this thesis that
for a constant miss rate, an 0(1)-competitive upper bound can be obtained by the
memoryless, randomized caching algorithm RANDOM introduced by Raghavan and
Snir [24].

As with Fiat et al.'s lower bound, previous upper bounds on the competitiveness
of caching algorithms apply most aptly to low miss rates. For example, Raghavan and
Snir's analysis of RANDOM, which shows that RANDOMk is k-competitive, leads to
a trivial upper bound for / > 1/k. Analysis of the least-recently used algorithm LRU
[27] likewise shows that LRUk is k-competitive, which is a trivial upper bound if / 2
1/k. The MARKINGk algorithm [11] is 2Hk-competitive, which offering trivial upper
bounds for / > 1/2Hk; and the PARTITIONk [23] and EQUITABLEk [1] algorithms
are Hk-competitive, providing trivial upper bounds for 3> 1/Hk.

In comparison, our new analysis of RANDOM provides nontrivial upper bounds
for all 0 < / < 1. In particular we show that RANDOMk is (1 - (1 - 1/1-0)10
competitive on request sequences with inherent miss rate /. This result, because
of its derivation, is more naturally expressed in terms of the inherent hit rate

'Fiat et al. actually discuss paging algorithms, instead of cache replacement algorithms, but the
basic issues are the same. We use caching terminology, because our results are more appropriate for
the domain of caches than for virtual memory.
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Figure 1: The graph of (1 - ae-1/a)/(1 - a) for a E (0, 1).

Parameter Li cache L2 cache Virtual Memory

Block size (bytes) 12-128 32-256 4096-65,536
Hit time (cycles) 1-2 6-15 40-100
Miss time (cycles) 8-100 30-200 0.7x 106-6x10 6

Miss rate (%) 0.5-10 15-30 0.00001-0.001
Size (bytes) 1-128K 0.25-16M 16M-8G

Figure 2: Typical ranges of parameters for cache and virtual-memory systems [14, p. 471].

a = 1 - 3; so RANDOMk is (1 - ae- 1/0)/(1 - a)-competitive on a request sequences
with inherent hit rate a. Figure 1 graphs (1 -ae- 1 /)/(1 -a) for a E (0, 1). Although
the competitive ratio approaches infinity as the inherent hit rate approaches 1, it is
reasonably small for moderate hit rates. For example, when the inherent hit rate a
is 90%, the competitive ratio (1 - ac-1/)/(1 - a) is 7.04. Thus, for a 90% hit rate,
our competitive bound for RANDOM is better than Raghavan and Snir's bound of k
for any cache with size larger than 7.

Our new bounds do not subsume previous upper bounds, however. In particular,
the previous bounds work well for miss rates in ranges that are normally associated
with virtual-memory paging (and for which these algorithms were designed), whereas
our new bounds are more applicable to the typical miss rates of certain hardware
caches. Figure 2 shows typical parameters for level-i (LI) caches, level-2 (L2) caches,
and virtual memory. Figure 3 shows the previous upper bounds together with our
new bounds for RANDOM. As can be seen from Figure 3, the bounds for PARTITION
and EQUITABLE are the best to date for small inherent miss rates, while our new
bounds for RANDOM are best for larger inherent miss rates. In particular, our new
bound gives better numerical miss rate bounds than all previously known results for

8



Virtual Memory inherent miss rate
1 -3 1 1 1

RANDOM (new)'

- /

L2
L1 cache :cache

LI ca-1

1.'

'F /
'F /

Figure 3: Upper bounds on the miss rate for various on-line algorithms as a function of
inherent miss rate across a range from 10-7 to 1. Since cache size influences the previous
bounds, the upper bounds for cache sizes of 210 and 220 are shown. The upper bound for
our new analysis is labeled "RANDOM (new)," and as can be seen from the figure, is the
first bound that applies across the entire range of inherent miss rates. The new bounds are
stronger than any previous bounds for inherent miss rates of between 10% and 100%.

sequences with inherent miss rates larger than 10%.

The remainder of this thesis is organized as follows. Section 2 reviews related
works on competitive analysis for caching algorithms. Section 3 states the essential
definitions for describing replacement algorithms. Section 4 introduces a new frame-
work for describing the adversary's strategy. Section 5 gives a a competitive ratio for
RANDOM using a convexity argument based on the strategy framework. Section 6
concludes with a discussion of possible extensions to this work.
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2 Related Work

In this section we review some competitive analysis results on on-line deterministic
and randomized replacement algorithms. After discussing some criticisms and vari-
ations of this competitive analysis framework, we summarize with an observation
that that previous lower bounds implicitly assume requests sequences with very low
inherent miss rates.

Deterministic Algorithms

Competitive ratios of common deterministic replacement algorithms have been de-
termined. Comparing on-line algorithms running on size-k caches with the optimal
off-line algorithm running on size-h caches, where h < k, Sleator and Tarjan [27]
showed that both LRUk (Least-Recently-Used) and FIFOk (First-In-First-Out) are
k/(k - h + 1)-competitive with OPTh. They also showed that is the best possible
competitive ratio for any deterministic algorithm. Karlin et al. [16] proved that FWFk
(Flush-When-Full) is also k/(k - h + 1)-competitive with OPTh.

Randomized Algorithms

Manasse et al. [21] extended competitive analysis to study randomized replacement
algorithms, for which the expected miss rates are compared to the miss rates of OPT.
In this thesis we will only consider oblivious adversaries [24], which generates
a request sequence given only the description of the on-line algorithm, but not the
random choices made by during the execution of the algorithm. Fiat et al. [11]
showed that randomized replacement algorithms are at least Hk-competitive, where
Hk is the kth harmonic number. They also gave a simple 2Hk-competitive algorithm
MARKINGk. Algorithms PARTITIONk [23] and EQUITABLEk [1] are found to be Hk-
competitive. Considering memoryless algorithms, Borodin and El-Yaniv [4] showed
that RANDOMk k/(k - h + 1)-competes with OPTh. Moreover, Raghavan and Snir
[24] demonstrated that no memoryless randomized algorithm can be better than k-
competitive.

Since on-line algorithms are handicapped with imperfect information, it is useful
to investigate how the competitive ratio improves if they are compensated with larger
caches. Although such results are known for FIFO, LRU and RANDOM, the corre-
sponding knowledge for other randomized algorithms is limited. Young [29] showed
that any randomized algorithm Ak at most roughly ln(k/(k - h))-competes with
OPTh when k/(k - h) ;> e. He also showed that MARKINGk roughly 2 ln(k/(k - h))-
competes with OPTh under the same condition. It is not known in general how other
randomized algorithms perform with varying cache sizes.

Criticisms and Variations

We have also seen some criticisms against competitive analysis as an evaluation tool
for online algorithms. For example, Ben-David and Borodin [3] indicate that some
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competitive algorithms require unbounded memory, and that finite lookahead is use-
less for improving the competitive ratio. They suggested the max/max ratio as an
alternative measure for online algorithms. An online algorithm's max/max ratio is
defined as its worst-case amortized cost over the worst-case amortized cost of the
off-line algorithm. Dichterman [8] showed that the algorithm UNIFORM achieves the
optimal max/max ratio, but is not competitive at all. (Moreover, strongly competi-
tive randomized algorithms (PARTITION [23] and EQUITABLE [1]) appears to be too
complex to be implemented in hardware.)

Some researchers have complained that the adversary is too powerful, thus leading
to weak competitive ratios of on-line algorithms. Some have tried to curb the power of
the adversary. For example, the access graph model [5, 15, 10] restricts the possible
choices of the next request as the function of the current request, so as to model
locality of reference. Some have tried to enhance the power of the on-line algorithm,
for example, with lookaheads [28, 17].

Summary

Although algorithms matching the competitiveness lower bounds for both determin-
istic and randomized algorithms have been discovered, the results we have so far
are still too weak to lend insights into the observed performances of various on-line
algorithms. We, however, observe that the derivations of the lower bounds of compet-
itiveness assume request sequences with extremely low miss rates. For example, in the
Raghavan and Snir's proof [24] of the k-competitiveness lower bound for RANDOMk,
a request sequence with inherent miss rate # < 1/mk is required to make RANDOMk
miss with a factor of k(1 - (1- 1/k)"') over OPTk. Moreover, Fiat et al.'s construction
[11] of the Hk-competitiveness lower bound for any randomized algorithms produces
sequences whose inherent miss rate 3 is at most 1/k. In addition, in the proof of
the k-competitiveness lower bound for deterministic algorithms, Goemans [12] used
a request sequence with inherent miss rate below 1/k. In this thesis, we present a
new approach to get around these lower bounds by using the inherent miss rate as a
parameter.

3 Preliminaries

This section lays the framework for analyzing the RANDOM replacement algorithm.
We introduce notation to describe the behavior of cache replacement algorithms, and
we define precisely the notions of "cache hit" and "cache miss." Our framework loosely
corresponds to the model presented by Coffman and Denning [7, pages 243-246].

We model a two-level memory system composed of a (primary) memory and
a cache. The memory is a set of (memory) locations, where each location is a
natural number r E N. The cache state T E N' of a size-k cache is a k-tuple
of locations, where T[s] = r if memory location r is stored in slot s of the cache.
The special location 0 of memory is never referenced. Instead, we use 0 to denote
an empty cache slot. The cache has additional control state Q in order to make
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decisions about which locations it stores at any given time.
When a k-slot cache is required to serve a (memory) request r c N - {0}, a

replacement algorithm Ak changes its existing cache state T and control state Q
to a new cache state T' and control state Q'. Specifically, the replacement algorithm
Ak chooses a replacement slot Ak(T, Q, r) such that

,~s r if Ak(T, Q, r) = s,
T[s] otherwise.

Moreover, we require that if there exists a slot s such that T[s] = r, then Ak(T, Q, r) =

s. Thus, the replacement slot is the only slot whose contents may change. If the
contents do not change, that is, if r = T'[s] = T[s], then the request is a cache hit.
Otherwise, if r = T'[s] # T[s], the request is a cache miss.

We now define precisely the number of hits (or misses) that a replacement algo-
rithm Ak incurs on a sequence R = (ri, r2 ,. .., rn) of n requests. Let Ti = (0, 0, ... , 0)
be the k-tuple representing the empty initial cache state, and let Qi be the initial
control state. In order to service request ri for i = 1, 2,... , n, the cache algorithm
Ak inductively changes cache state T and control state Qj to cache state T+1 and
control state Qi+1- Since Ak might be a randomized replacement algorithm, define
hit(Ak, ri) to be the event that request ri is a hit, and overload the notation to define
the indicator random variable

hit(Ak, r) = (1 if ri is a hit,

0 if ri is a miss.

Let hit(Ak, R) be the total number of hits incurred by Ak over the entire sequence R,
whence

n

hit(Ak, R) = hit(Ak, ri)

Likewise, for misses define

miss(Ak, ri) = 1 - hit(Ak, r2 )

for i=1,2,... ,n, and

miss(Ak, R) = n - hit(Ak, R).

The focus of this thesis is the analysis of RANDOM, a simple, randomized re-
placement algorithm. RANDOM is "memoryless," meaning that its control state Q
never changes. Suppose RANDOMk is running on a cache of size k with a cache state
T E Nk. For a request r E N - {0} that causes a miss (r ( T), the algorithm selects
a slot to be replaced uniformly at random. That is, for s = 1, 2,... , k, we have

Pr {RANDOMk(T, Q, r) = s} = 1/k .

12



We shall compare RANDOM with OPT, the optimal, offline replacement algo-
rithm [2] that achieves the minimum-possible number of misses on any given request
sequence R = (ri, r 2 , .. . , r,,). For each request ri that causes a miss, the OPT algo-
rithm omnisciently replaces the best possible slot to minimize misses. Specifically, let
fi(r) be the forward distance of a sequence R defined by

fi(r) = d if ri+d is the first occurrence of r in (ri+1, ri+2 ,... , rn),

oc if r does not appear in (ri+1, ri+2 , ... , rn).

For a cache miss ri ( T, the replacement algorithm OPTh chooses the location in the
cache whose forward distance is largest. That is, it chooses s = OPTh (Ti, Qj, ri) if

fi(T[s]) = max fi(Ti[j]),
1<j<h

where ties are broken arbitrarily.
Belady [2] showed that for any request sequence R, the OPT algorithm minimizes

the total number of misses.

4 The Adversary's Strategy

Before presenting our analytical results in Section 5, we first develop a framework for
describing and analyzing the oblivious adversary. We define formally the notion of
the adversary's "strategy," and prove a theorem that shows that specifying a strategy
is equivalent to specifying a request sequence.

The power of the oblivious adversary lies in the selection of a request sequence
R = (ri, r2,... ,rn), which is then served by the optimal algorithm. As we shall
see, however, the actual request locations in the adversary's strategy do not matter.
What is important is the time (if ever) that a location is subsequently accessed. Thus,
we shall adopt a representation for the adversary's strategy in which the adversary
directly specifies for each time step which cache slot to use and whether the cache
hits or misses.

In order to formalize the notion of a strategy, we first define some terminol-
ogy. Cache behavior can be described by two sequences. A slot sequence S =
(Si, S2, . . , s) is a sequence of positive integers such that at time i = 1,... ,n, a
request is brought into slot si. We define slots(S) = {si, s 2 ,... ,s } to be the set
of slots actually referenced in the sequence. Since the adversary gains no advantage
by omitting reference to a slot, we assume that that slots(S) = {1, ... ,h}, where
h = Islots(S)|. An outcome sequence Z = (zi, z2 ,... 7z ) is a sequence of 0's and
l's such that the cache hits at time i = 1, ... , n if and only if z = 1.

We shall often wish to refer to the last time that a particular slot was used. In
particular, we let prev(S,i) be p if s, = si and si does not appear in (s,+1, . - .- 1).

In other words, sP is the last occurrence of slot si in (s1,..., si_1). If slot si does not
appear in (Si, ... , Si_1), we let prev(S, i) = 00.

We can now define the the notion of a strategy formally.

13



Definition 1. A strategy is a pair (S, Z), where S is a slot sequence and Z is a hit
sequence of the same length.

As discussed in Section 3, given any request sequence R, the algorithm OPT
determines the outcome and the slot to use at each time i = 1, ... , n. The following

theorem shows that a request sequence can also be deduced from a slot sequence and
an outcome sequence. Thus, designing an adversarial strategy is essentially equivalent
to designing an adversarial request sequence.

Theorem 2. For each strategy (S, Z), a request sequence R = (ri,... , rn) exists such

that

1. request ri is a hit if and only if outcome zi = 1, and

2. running OPT ist,(s)> on request sequence R produces the slot sequence S.

Proof. Let S = (si, ... , s), Z = (zi, ... , zI), and h = |slots(S)|. We shall show that
a request sequence R = (ri,... , rn) satisfying both conditions exists. We construct
request sequence R by the inductive definition:

fi if zi = 0,
r= .~5j ' (1)

Ti prev(S,i) 1f Z

The request sequence R is well defined, because the definition of prev(S, i) depends
on (ri, r 2 , ... , ri_1) only.

We first show that Condition 1 holds. We observe that if zi = 0, then i does not
appear in (ri,... , ri_1), and thus ri is a miss. If zi = 1, then ri = rprev(s,i) is a hit,
because slot si is not used between time prev(S, i) and time i.

We next show that Condition 2 holds. We show that si is selected by OPTh at
any time i= 1, 2,.. ., n.

* If zi = 1, then by Condition 1, ri is a hit. In this case, ri = rprev(s,i), and thus
OPTh must select sprev(s,z). But, by the definition of prev, Sprev(s,i) = si, and
therefore si is selected.

" If zi = 0, then we shall show that OPTh chooses slot si to replace. Recall that
s = OPTh(T, Qj, rj) if fi(T[s]) = max1<<;k fj(T[j]), where the T are cache
states and the Qj are control states (both defined in Section 3). If we can show
that fi(T[si]) = oc, that is, that location T[si] does not appear in (ri,.. ,rn)

then OPTh is free to choose s = si.

First, if T[si] = 0 (the slot content is invalid), then by definition of Equation (1),
ri $ 0 for all i. Therefore, T[si] does not appear in (ri+1,... , rn).

Otherwise, if T [si] # 0, we show that T [si] 5 rj for j = i +1,..., n:

- If z- = 0, then

ri = j $ Ti[si],

because T[si] = rprev(s,i) < i < j-

14
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Figure 4: A diagram of the strategy (S, Z), where S = (4,1,3,2,1,4,1,4,3, 1) and Z =

(0, 0,0, 0 11,0 1, 1, 1). Time runs from left to right, and slot number from top to bottom.
Cache hits are represented by 0; cache misses are represented by Q. The request sequence
req(S, Z) = (1, 2, 3,4, 2, 1, 7,1, 3, 7) for the strategy is illustrated for a miss by the value
in the corresponding circle and for a hit by the value in the miss circle at the start of the
chain.

- If z 1 = 1, there are two cases:

* If sj # si, then rj # Ti[si], because each location stays in one cache
slot only.

* If sj = si, then prev(S,j) > i. But T[si] = rprev(s,i) < i, and thus

ry # Ti[si].

Since rj # T [s] for j = i + 1,... , n, location T [s] does not appear in

(,ri+1,- ... , rn).

We define the request sequence of a strategy (S, Z), denoted req(S, Z), to be the
request sequence R provided by Equation (1) of Theorem 2.

As an example, we consider a cache of 4 slots. We let the slot sequence S be
(4,1, 3,2,1, 4, 1,4,3, 1) and the hit sequence Z be (0, 0, 0, 0, 1,1, 0, 1, 1, 1). Theorem 2
allows us to construct the request sequence req(S, Z) = R = (1, 2, 3, 4, 2, 1, 7, 1, 3, 7)
such that S is an optimal slot sequence. The strategy (S, Z) is depicted in Figure 4.

5 Analysis of RANDOM

In this section, we derive a new lower bound on the expected number of hits of
RANDOM on a request sequence. Specifically, we show that for any request sequence
R with inherent hit rate a by OPTh, the expected hit rate of RANDOMk is at least
ae- (h-1)/(k-1)a.

We first outline our plan of proving the lower bound. Any request sequence R has
a corresponding optimal strategy (S, Z) by the off-line algorithm OPTh. According

15



to the outcome sequence Z, every request in R is either an inherent hit or an inherent
miss. We can assume that the on-line algorithm RANDOMk cannot hit on any inherent
misses, because an adversary can, and should, request never-seen-before locations at
the inherent misses. On the other hand, RANDOMk, as a randomized algorithm,
should have some chance of hitting on the inherent hits. Our goal is to establish a
lower bound for the sum of these probabilities.

Our first step is to derive a bound on the expected number of hits by RANDOM
on the inherent hits of a single slot. That is, each inherent hit at time i = 1,... ,n,
is served by a slot si E slots(S). We focus on one of these slots. We shall later derive
bounds for the whole strategy based on these single-slot results.

Lemma 3. Let (S, Z) be an optimal strategy on a request sequence R with U inherent
hits and V inherent misses. Consider any slot s G slots(S) having u inherent hits
and v inherent misses. Let t1,... , t, be the times at which the u inherent hits of slot
s occur. Then, there exist nonnegative integers M 1 , M 2 , ... ,mn satisfying E_, mi <
U +V - u - v, such that

U U

Pr {hit(RANDOMk, ri)} > E(1 - 1/k)"n. (2)
i=1 i=1

Proof. We first prove a lower bound on the probability of an individual inherent hit.
Consider the ith inherent hit on slot s which occurs at time ti. Since t2 is an inherent
hit, we have 1 < prev(S, ti) < ti -1. If request rt, is location 1, then request rprev(S,ti) is
the most recent request of 1 before time ti. Let mi = t, - prev(S, ti) - 1 be the number
of requests between time t2 and time prev(S, ti), any of which might miss and cause
location I to be evicted from slot s. In the worst case, RANDOMk misses at all these
mi requests. Each miss evicts location 1 from the cache with a probability of 1/k. In
other words, the probability that I is not replaced by each request is at least 1 - 1/k.
Since the slot to replace at each miss is selected independently, the probability that
location I remains in the cache to be hit at time t, is at least (1 - 1/k)"i. In other
words, (1 - 1/k)"i is a lower bound of the probability that RANDOMk hits on request
rti, the ith inherent hit of slot s:

Pr {hit(RANDOMk, rj)} > (1 - 1/k)"i. (3)

Summing Inequality (3) for i = 1, ... , u, we obtain

U

Pr {hit(RANDOMk, rtj)} > E(1 - 1/k)"i,
i=1 i=1

which is Inequality (2).
We still need to establish the constraints on the mi's. Because u + v requests

are served by slot s, the total number of requests available (that is, not served by
slot s) to interfere the inherent hits of slot s is at most U + V - u - v, that is,
Z mi < U + V - u - v. Since t2 > prev(S, ti), each mi = t - prev(S, ti) - 1 is
nonnegative.
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We next present a technical lemma providing a lower bound for the right-hand
side of Inequality (2). We show that an expression of the form >" " with a
constraint on the T mi, is minimized when the m.'s are evenly distributed.

Lemma 4. Let in1 , m 2, . . ., m,, be nonnegative real numbers satisfying Z" mi < M
for some nonnegative real number M. Then, for any real number y E (0, 1), we have

U

Z >iUM/u (4)

Proof. Let m = (Mi, M 2 , ... , mu). (We use boldface to denote points in a R".) Let
f (m) -Eu_17"n be a scalar function on the domain

D-{ m i=11
SmU

<- M

Our goal is to find the global minimum of f(v) on domain D. We first show that any
point m in which ma #: mb for some 1 < a, b < u cannot be a minimum point. Given
any such point m, we consider the point m' = (n' 1 , m', ... , m') defined by

{(Ma + mb)/2

mni

if s C {a,b},
otherwise.

If m E D, then m' E D as well, because

(ma + mb)/2 > min(ma, mb)
>0,

and

U U
m mi

KM.

We show that f(m') < f(m) as follows:

f (M) - f (m')
U U

S m - 7"'i

7+ 7yM b a b

= 7Ma + yM b - 27(ma+mb)/2

= (Yma/2 _ 1 mb/2)2

> 0,

because ma 3 Mb. Thus, m is not a minimum point.

17

E R" mni > 0 for i =- 1, . . ., u and



The maximum-minimum existence theorem [25, page 260] states that a continuous
scalar function f must have at least one global maximum point and at least one global
minimum point on a compact domain.

We can now find the minimum point. Since domain D is compact, f has a global
minimum point on D. We have shown that, however, f(m) is not minimized at any
point m = (mi,... , mu) in which ma # mb for some 1 < a, b < u. Therefore, at the
minimum point, we must have mi m 2 = = mu. And since Eu1 mi < M, it
follows that

mi = mj /U
\j=1

< M/u.

Because -y < 1, we have

7mi M/U

and thus

U
mi M/u

i=1

Equipped with Lemmas 3 and 4 on the expected hit rate of RANDOMk for a
single slot, we can now consider all the slots of a strategy together. We can do so
by summing up h instances of Inequality (2), with the constraints that the sum of
inherent hits for all the slots equals to the total inherent hits for the entire strategy,
and likewise for inherent misses. The following lemma formalizes this argument.

Lemma 5. Let R be a request sequence. Let (S, Z) be the optimal off-line algorithm
OPTh 's strategy on R. Let u, = |{t E {1, ... , n} I st = s, zt = 1} be the number of
inherent hits and v, = |{ta C {1, ... , n} | st = s, zt = 0}| be the number of inherent

misses for each slot s E slots(S). Let U = E 1u, be the total number of inherent
hits and V = v _,s be the total number of inherent misses. Then, we have

h

E [hit(RANDOMk, R)] E [ u.(1 - 1/k)(U+Vu-v.)/U.. (5)
s=1

Proof. Let n = U + V be the length of the sequence R. For each slot s E slots(S),
let t,1 , ts,2 , ... , t8,,u, be times that the inherent hits of slot s occur. We then apply
Inequality (2) of Lemma 3 to obtain

us US

Pr {hit(RANDOMk,rt,.)} > (1 - 1/k)msi, (6)
i=1 i=1
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where Es m,i ; U + V - u, - v, and m,,i > 0 for i = 1,...,u,. For each slot
s E slots(S), we can apply Lemma 4, with y = (1 - 1/k), on the right-hand side of
Inequality (6) to obtain

(1 - 1/k)s 2 > u'(1 - 1/k)(U+v-u-v)/uS. (7)
i=1

Combining Inequalities (6) and (7), we have

us

Pr {hit(RANDOMkrts.;)} > u,(1 - 1/k)(U+v-u.-ov)/us. (8)
i=1

Finally, we sum Inequality (8) over all slots in slots(S) to obtain Inequality (5):

h us

E [hit(RANDOMk, R)] = E E Pr {hit(RANDOMk, r, 1 ) }
S=1 i=1

h

> Iu,(1 - k)(U+v-u.-V.)/u.
s=1

We now derive a lower bound for the right-hand side of Inequality (5) under the
constraints El i us = U and Eh_1 v, = V.

Lemma 6. Let h > 1 be an integer and y E (0,1) be a real number, For any real num-
bers u 1 , U2 , ... , Uh satisfying i Us = U, and real numbers v1 , v 2 ,..., Vh satisfying

=1V,= V, we have

h

u 8 7 (U+v-u.-v.)/us > U7(h-1)(U+v)/U. (9)
s=1

Proof. We first consider the case where h = 1. The left-hand side of Inequality (9)
is Uj(U+v-U-v)/U = U; and the right-hand side is U-y(h-1)(U+v)/U = Uy 0 = U.
Inequality (9) is satisfied. Therefore, we can assume h > 1 for the rest of the proof.

We assume that u1 ,..., Uh are chosen with the condition that E>_' u, = U. For
any choices of U1 ,... , , we show that Inequality (9) is true for any real numbers

v 1 ,.. , vh satisfying S v, = V.
Let v = (v 1 ,v 2 ,... , Vh) be a vector in Rh. Let

h

f (V) = Z Sj(U+V-us -o)/Us

i=1
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be a scalar function on Rh, and let

h

g(v) = Ev,
s=1

be an auxiliary function on Rh, which is used to constrain the domain of f. Our
goal is to find the global minimum value of f(v) on on the constrained domain
D = {v I g(v) = V}.

To find the minimum points, we use the Lagrange Method [25, page 276]. By the
constrained critical point theorem [25, page 277], if v is an extreme point in D, then
v must be a constrained critical point. A point v is a constrained critical point if
there is a scalar value A such that

Vf V= AVglV, (10)

or in scalar form as

= A (11)
Ovs Ovs

for s = 1, ... , h. To solve Equation (11), we differentiate f and g with respect to each
v. to obtain

f = (In y)1 (U+V-U-V.)/U" (12)

and

ag_

= 1. (13)

Substituting Equations (12) and (13) into Equation (11) yields

(ln-y)-(U+V-U.-v.)/Us A (14)

for s = 1, ... ,h.

We first consider the degenerative case where A = 0. In this case, 71/"" = 0 for s =

1, ... , h, which means that us = 0 for s = 1, ... , h, and thus Eh_1 usY(U+Vusva)/us _

0. Moreover, since U = i us = 0, we have U-y(h-1)(U+v)/U = 0 as well. Therefore,
Inequality (9) is satisfied. In the rest of the proof, we assume that A :4 0 and that
us A 0 for s = 1,...,h.

Let v' = (v',... , v') be the unique solution when we solve for the v, in Equa-
tion (14). We must demonstrate that critical point v' is a global minimum point. The
following argument is inspired by an example due to Rogers [25, page 285]. When
vi approaches -oc, there exists some v, s # 1, that becomes large. Therefore, f
becomes large, because 0 < y < 1 implies lime 0 7(U+V-u.-v.)/U = oo. Similarly, f
becomes large when vi approaches oc. Applying the minimum-maximum existence
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theorem [25, page 260] to an appropriate finite closed interval for vi, we conclude
that f must have a minimum point on domain D. As v' is the only critical point, v'
must be the unique global minimum point.

Since f(v') is the global minimum value, we can put a lower
hand side of Inequality (9) as follows:

bound on the left-

h

us7 (U+V-us -s)/us _ _
i=1

> f(v')
h

S (U+V-us --o')/u (15)

We would like to find a lower bound for the right-hand side of Inequality (15).
Since Equation (14) can be written as

(U + V - us - v)/us = (ln(A/lny)) /lny, (16)

by letting (ln(A/ ln -y)) / In 7, we obtain

(U + V - us -- v')/u5 = C. (17)

Substituting C into Inequality (15), we obtain

h h

us7(U+V-us-s)/us (U+V-u -S')/u

h

(18)
i=1

To solve for C, we multiply both sides of Equation (17) by us to get

U + V - U5 -S =uSC. (19)

Summing both sides of Equation (19) for s = 1, ... , h yields

h h

((U +V -u -v') = uC.
s=1 S=1

Since E_ us = U and E_ v => V, we have

h(U+ V) - U- V = UC.
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We can now express C in terms of U, V, and h:

C = (h(U+V) -U -V)/U

= (h - 1)(U + V)/U. (20)

Substituting C in Inequality (18) establishes Inequality (9) for any given U1 , ... 7uh:

h h

s'us7(U+V-uvs -os)/us > 5 C

i=1 i=1

h

E us7(h-1)(U+V)/U
s=1

-U(h-1)(U+V)/U

Before we proceed to state and prove our theorem on the hit-rate lower bound of
RANDOMk, we require one more technical lemma, a simple inequality which shall be
useful in the proof of the theorem. This lemma is inspired by an exercise problem in
Leung [20, page 45].

Lemma 7. For any k > 1, we have

1 - 1/k > e-1/(k- 1). (21)

Proof. We first show that if x E (0,1), then

lnx > (X - 1)/X. (22)

The Mean Value Theorem [26, page 108] states that if f is a real continuous
function on [a, b] which is differentiable in (a, b) then there is a point y C (a, b) at
which

f (b) - f (a) = (b - a)f'(X).

The natural logarithm function "ln" is continuous on [X, 1] and is differentiable in

(X, 1) for any x C (0, 1):

d Int =l t 1/t.
dt

By the Mean Value Theorem, there is a point y E (x, 1) at which

ln 1 - In x = (1 - x)(1/y).

Since ln 1 = 0,

ln x = (x - 1)/y.
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Because y > x and x - 1 < 0, we have

(x - 1)/y > (x - 1)/X,

and thus

lnx = (x - 1)/y

> (x - 1)/x.

Let x = 1 - 1/k. If k > 1, it follows that 0 < x < 1. Substituting 1 - 1/k in
Inequality (22), we obtain

ln(1 - 1/k) > (1 - (1 - 1/k)) /(I - 1/k)

=(1/k)/(1 - 1/k)
=-1/(k - 1). (23)

By exponentiating both sides of Inequality (23), we obtain

1 - 1/k = eln(-1/k)

> e-1/1(k-1).
>D

Finally, armed with Lemmas 5, 6, and 7, we are ready to prove our main theorem,
which gives a lower bound for the expected hit rate of RANDOMk on the entire request
sequence.

Theorem 8. Let h > 1 and k > 2 be integers. Let a C [0,1] be a real number. For
any request sequence R of length n such that hit(OPTh, R)/n > a, we have

E [hit(RANDOMk, R)] /n > ae~(h-1)/(k-1). (24)

Proof. Let (S, Z) be the optimal off-line algorithm OPTh's strategy on request se-
quence R. Let u, = {t E {,... , n} I st = s, Zt = 1}| be the number of inherent hits
and v, = |{ta E {1,...,rn} Ist = s,zt = 0}| be the number of inherent misses for
each slot s E slots(S). Let U = Eh 1 u, be the total number of inherent hits and

V = _v, be the total number of inherent misses. Then by Lemma 5, we have the
following lower bound:

h

E [hit(RANDOM, R)] > u,(1 - 1/k)(U+Vuva)/u". (25)
S=1

By Lemma 6 with y = 1 - 1/k, we have

h

E u8 (1 - 1k)(u+v-usav1)/u > U (1 - Ilk) (h 1 )(U+V)/U. (26)
8=1
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Combining Inequalities (25) and (26), we obtain

E [hit(RANDOMk, R)] U(1 - 1/k)(h-)(U+v)/U

The sum of inherent misses and hits is the length of R, and thus U+V = n. Moreover,
the inherent hit rate is U/n = hit(OPTh, R)/n > a. Consequently, we have

E [hit(RANDOMk, R)] /n > U(1 - 1/k)(h-1)(U+v)/U/n

= (U/n) - (1 - 1/k)(h-l)n/U

Sa(1 - (h-)/a

Since k > 1, we can apply Lemma 7 to obtain

E [hit(RANDOMk, R)] /n > a(1 - 1/k)

> a (1/(k1))(h1)/

which is Inequality (24). L

Theorem 8 works for all cache sizes except when the on-line cache has one slot
only, because Lemma 7, which is used in Theorem 8, does not apply when k = 1. To
extend our result to this case, one possible approach is to treat k as a real number and
take the right-hand limit of k approaching 1 on the right-hand side of Inequality (24):

lim ae-(h-1)/(k-1)a { i > (27)
k-+1+ 1 if h=

We can also, however, study this special case independently and obtain a result
which is consistent with Equation (27) and is valid for any replacement algorithm. In
Theorem 9, we show that any replacement algorithm A1 is competitive with OPT 1,
but not with any OPTh for h > 2.

Theorem 9. Let A be a replacement algorithm, and let a E [0,1]. For any request
sequence R of length n such that hit(OPTi, R)/n > a, we have

E [hit(Ai, R)] /n > a. (28)

But, there exists length n' where hit(OPTh, R')/n' > a for some integer h > 2, such
that

E [hit(A1, R')] = 0. (29)

Proof. We shall first prove Inequality (28). In this case, the off-line cache contains
only one slot. Consider any request sequence R = (ri,..., rn). Consider any inherent
hit r2, 2 < i < n, in R by OPT1 . Request ri_1 must be same as ri because the off-line
cache has only one slot. But A1 will certainly hit on ri too, as there is no request to
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evict rei. Therefore, A1 hits on every inherent hit of R, thus

E [hit(A1, R)] /n = hit(OPT1, R)/n

which is Inequality (28)
We give a sequence R' satisfying Equation (29) if h > 2. Let a and b be two distinct

locations. Consider the sequence R' = (abab ... abab) with length n' > 2/(1 - a). For
any h> 2, we have

hit(OPTh, R')/n' = (n' - 2)/n'

= 1 - 2/n'

because a and b can
because no single-slo

be put into two different slots. Nevertheless, E [hit(A1, R')] = 0
t cache can hit on any request in R'. l

The following corollary, on which the "RANDOM (new)" plot in Figure 3 is based,
rephrases Theorem 8 in terms of miss rates.

Corollary 10. Let h > 1 and k > 2 be integers. Let # E [0,1] be a real number. For
any request sequence R of length n such that miss(OPTh, R)/n < #, we have

E [miss(RANDOMk, R)] /n < 1 - (1 -- /)e-Ch--1/(--1)(1--).

Proof. Letting a = 1 - /, we have

hit(OPTh, R)/n = 1 - miss(OPTh, R)/n

From Theorem 8, we have

E [hit(RANDOMk, R)] /n > ae-(h-1)/(k-1)a

Thus, it follows that the expected miss rate of RANDOMk can be bounded above:

E [miss(RANDOMk, R)] /n = (n - E [hit(RANDOMk, R)])/n

= 1 - E [hit(RANDOMk, R)] /n

K 1 - (h--1(k-1)a (30)

Substituting 1 - # in Inequality (30) yields

E [miss(RANDOMk, R)] /n < 1 - (1 - #)e(-1)/(--)(1--)

El
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We note that Corollary 10, in contrast to previously known competitive analysis
results, always provides meaningful miss-rate upper bounds.

To facilitate comparisons with previous results in competitive analysis, we can
express Theorem 8 in terms of competitive ratio with respect to misses for the special
case where the on-line and off-line caches have the same size.

Corollary 11. Let k > 1, h > 1 be integers, and a E [0,1) be a real number. On
any request sequence R of length n such that hit(OPTk, R)/n = a, RANDOMk is
(1 - ace/a)/(1 - a)-competitive.

Proof. To show that RANDOMk is (1 - ae-1/)/(1 - a)-competitive means showing
that

E [miss(RANDOMk, R)] 1 - ae-1/(
<_ (31)

miss(OPTk, R) 1 - a

We first consider the case of k = 1. Since e-1/a < 1, we have 1 - ae-1/a > 1 -
and thus

1 - ae-1/a
>1. (32)

1-a

Theorem 9 shows that

E [miss(RANDOM 1 , R)] (33)
miss(OPT 1 , R)

By combining Inequality (32) and Equation (33), Inequality (31) is satisfied for k = 1.
In the case that k > 1, we can apply Inequality (30) of Corollary 10 with h = k

to obtain Inequality (31) as follows:

E [miss(RANDOMk, R)] _ E [miss(RANDOMk, R)] /n

miss(OPTk, R) miss(OPTk, R)/n

1 ae--1(k-1)/(k-1)a

1 1 - a

-1-a

6 Conclusions

The contributions of this thesis are, first, a new framework for describing the oblivi-
ous adversary strategy (Section 4) and, secondly, a competitive analysis conditioned
on the inherent hit rate of a request sequence (Section 5). The analysis we have
developed gives better numerical miss-rate bounds than all previously known results
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for sequences with inherent miss rates larger than 10%. Our ratio is the first compet-
itive bound of an on-line algorithm that does not deteriorate with increasing cache
size. This result answers the question posed by Young [29] asking whether "we can
effectively show constant competitiveness (independent of cache size) for any on-line
paging strategy." In particular, we note that this is the first result to remain valid
when the on-line cache is smaller than the oblivious adversary's off-line cache.

We predict that the competitive ratio derived in Section 5 can be further improved.
In the proof of Theorem 8, we assumed cautiously that RANDOM always misses on
the inherent hits. When the inherent miss rate is low, however, RANDOM has a
reasonably low probability of missing the inherent hits. A proper utilization of this
information might lead to a stronger bound of the expected total number of hits. We
are currently pursuing this line of research.

Finally, we are hopeful that the techniques presented in this thesis can be applied
to analyses of other on-line algorithms and be generalized to other on-line computa-
tional models, such as k-servers [21, 18, 19, 22, 13, 9] and metrical task systems [6].
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