
An Extensible Integration Framework for the

Capture of Multimedia Assets

by

Jeffrey Hu

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1999

@Jeffrey Hu, MCMXCIX. All rights reserved.
The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis
document in whole or in part. I MASSACH iSI

Author

ENG

........... g yW % . ."0F....

Department of Electrical Engineering and Computer Science
May 21, 1999

C ertified by 2 0. *.

David Karger
Associate Professor

Thesis Supervisor

Accepted by.................
Arthur C. Smith

Chairman, Department Committee on Graduate Students

An Extensible Integration Framework for the Capture of

Multimedia Assets

by

Jeffrey Hu

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1999, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We present an extensible integration framework in the spirit of the purchase and
integrate approach to building asset management systems. Applying the concept of
layers, this framework provides a systematic way to integrate heterogeneous software
components. Our approach differs from other approaches in that we add a resource
management layer to mediate between applications and services. This mediation
allows computationally intense, distributed services to be managed by the system.
Using this framework, we integrated a set of content services that support a system
that captures video streams.

Thesis Supervisor: David Karger
Title: Associate Professor

2

Acknowledgments

I would like to thank Tryg Ager and Robin Williams for giving me a place and a

project for my thesis at the IBM Almaden Research Center. Without their support

and encouragement, this thesis would not have been possible.

While I was at IBM, Bill Graham also provided many valuable technical insights

which have inevitably made their way into this thesis.

Aaron Van Devender and Ryan Jones began the work on the video capture system.

I had the luxury of continuing where they left off at the end of the summer.

I would like to thank my brothers Roger and Stanley who read parts of this thesis.

I also could not have done this thesis without the support of my parents.

Lastly, I would like to thank David Karger for being my thesis advisor and pro-

viding valuable guidance as I was starting my work on the thesis.

3

Contents

1 Introduction

1.1 Problem

1.2 The Integration Framework

1.3 Video Capture System

1.4 Thesis Overview

2 Background

2.1 Remote Procedure Call . .

2.2 Distributed Object technology

2.2.1 CORBA

2.2.2 Java RMI

2.2.3 Critique of Distributed

3 The

3.1

3.2

3.3

3.4

3.5

Object Technologies

Integration Framework

Design Philosophy

Services

Resource Management . .

Applications

Infrastructure

4 Services

4.1 Basic Description

4.2 Components of a Service

4

10

10

12

13

14

15

15

16

16

18

19

21

21

23

23

26

28

29

29

31

.

.

4.2.1 Service Interface

4.2.2 Event Adapter

4.2.3 Wrapper Adapter

4.3 Service Operations

4.3.1 Service Invocation . . .

4.3.2 Service Registration

5 Resource Management

5.1 Basic Description

5.2 Handling Application Requests

5.2.1 Request Acceptance . .

5.2.2 Job Scheduling

5.3 Resource Manager Registration

6 Video Capture System

6.1 System Model

6.1.1 Data Model

6.1.2 Task Model

6.2 Content Services

6.2.1 MPEG Encoding

6.2.2 Key Frame Extraction

6.2.3 File Conversion Service

6.2.4 VDF-to-XML Conversion

6.2.5 XML-to-SQL Conversion

6.3 Service Integration

6.4 Applications

6.4.1 Work Order

6.4.2 Task Completion

6.5 State of the System

7 Conclusion

. . . . 32

. . . . 32

. . . . 33

. . . . 34

. . . . 34

. . . . 36

39

39

40

40

42

45

46

46

47

49

50

50

51

52

52

53

53

54

54

55

56

57

Service

Service

5

7.1 Future W ork .

A Service Specifications of the Video Capture System

B System Infrastructure

B. 1 Universal Unique Identifier

B.2 Distributed File System .

B.2.1 Construction . . .

B.2.2 Uniform Naming .

B.3 Event Channel

B.4 Socket Copy Service . . .

Generators

6

58

59

63

63

64

65

65

66

67

List of Figures

2-1 Sample IDL for a Bank object . 17

2-2 ATM invoking a withdraw method on a remote Bank object (CORBA

version) . 18

2-3 ATM invoking a withdraw method on a remote Bank object (Java RMI

version) . 19

3-1 Layers of services, resource management nodes, and applications . . . 22

3-2 Components of the Resource Management Layer 24

3-3 Larger System with Multiple Resource Domains 26

3-4 Service Invocation Process. Steps required for invocation are numbered

in order of operation. 27

4-1 Components of a Service . 32

4-2 Two examples of XML elements . 35

4-3 Elements demonstrating the uniqueness restriction of XML elements . 36

4-4 Sample Service Return Value (includes Invocation Parameters) 37

5-1 Sample Request Acceptance . 41

5-2 Waiting for a Request On A Job Handle 42

5-3 Resource Manager State for a FIFO Scheduling Policy 43

5-4 Resource Manager State for an Actual Time Scheduling Policy 44

6-1 Simplified Version of Video Capture System Data Model 47

6-2 Task Model of Video Capture System 49

6-3 System Diagram of the Video Capture System 54

7

B-1 Sample 128 Bit Universal Unique Identifier 64

8

List of Tables

A.1 MPEG Capture Service Specification 59

A.2 File Conversion Service Specification 60

A.3 Key Frame Extraction Service Specification 61

A.4 VDF-to-XML Conversion Service Specification 61

A.5 XML-to-SQL Conversion Service Specification 62

B.1 Comparison of Names per Naming System 66

B.2 Sample VDFSFileMap file . 67

9

Chapter 1

Introduction

In constructing a computer system, we should take advantage of the current wealth

of existing hardware and software components. Instead of developing systems from

scratch, a more cost effective approach would be to purchase components from outside

vendors and integrate them into a complete system. With this approach in mind,

we have created an extensible integration framework for building multimedia asset

management systems. 1

This thesis discusses the integration framework through which we can systemati-

cally build multimedia asset management systems. Within this framework, multime-

dia services can be easily integrated into a distributed system. In particular, we focus

on how these services are managed as shared resources. We used this framework to

construct a system which automatically captures and stores video streams.

1.1 Problem

In traditional software engineering, a system is developed by breaking it into func-

tional and specified modules. These modules are either implemented or broken into

subsequently smaller modules. As the modules are implemented, they are tested and

integrated into larger modules until the complete system is formed.

Object-oriented programming languages provide semantics that allow systems to

'This framework was developed at the IBM Almaden Research Center.

10

be constructed in a modular way. By associating methods with data, objects can

be constructed and manipulated behind a well defined interface. Implementation

details are hidden behind the object interface from the rest of the system. This

encapsulation simplifies interaction with other software modules, reducing complexity

and the likelihood of bugs being introduced in the integration process.

Distributed object technology applies the concepts of object-oriented program-

ming languages to a distributed environment. In object-oriented languages, opera-

tions are performed on objects by calling a method of an object. The execution of

the method occurs in the same thread and address space of the calling procedure.

However, the semantics of distributed objects are slightly different. When a proce-

dure invokes a method of a distributed object, the calling procedure is a client and

the callee object is a server. The client-server distinction between the caller and the

callee must be made because they execute in different threads and address spaces.

In a distributed system, clients make requests on servers. The server can be single

threaded, or it can be multithreaded. If the server is single threaded, only one client

request can be handled at a time. For a multithreaded server, the number of available

threads determines the number of requests that can be handled simultaneously. A

multithreaded server often has upper limits on the number of threads it can have.

This server may change the number of active threads up to this limit depending on

the number of requests it sees. Thus, a server can manage how its own resources are

being used.

Because distributed objects are also clients and servers, the issue of resource man-

agement inevitably arises. When a client invokes a method of a remote object, it

must communicate its request to a thread of the server where the object is located.

The server thread is responsible for handling the request and invoking the method

on the object. Deciding how threads are used in the server is a resource management

decision that cannot be avoided.

Given existing distributed object technology, we have developed an integration

framework. We chose to use a distributed object technology since it provides a well

developed base on which we can integrate components. The integration framework is

11

developed for constructing systems in the domain of multimedia asset management.

As the name suggests, the purpose of an asset management system is to manage

assets. Assets are persistent information objects that are composed of a set of smaller

information objects. From the point of view of a user, an asset is a unit of information.

A common example of an asset management system is a library. A library manages

many assets in the form of books. A book is an asset that is composed of smaller

information objects such as words, pictures, author names, and titles.

An asset management system also has a set of services that can be performed

on assets. In multimedia asset management systems, services are computationally

intensive because multimedia data tends to be very large. Certain multimedia tasks

such as the compressing of video files can take minutes or hours depending on the

length of the video. Thus in the domain of multimedia asset management systems,

services must be managed or else the performance of the system will degrade poorly

if more than a few requests for a single service arrive.

To deal with the resource management issues, we add a third layer between clients

and servers. This layer removes the resource management issues from the servers and

places them in the middle layer. Moving responsibility for resource management out

of servers also simplifies the implementation of servers.

In the context of the integration framework, this layer is called the resource man-

agement layer. It provides a flexible mechanism to manage the various types of

services that might be used in an asset management system.

1.2 The Integration Framework

The integration framework provides a systematic way to integrate new services into

an asset management system. The framework is divided into three layers. In as-

cending order, the three layers are the service, resource management, and application

layers. At each layer, the framework provides a set of common mechanisms that

assist in functions such as resource discovery and resource scheduling. Given these

mechanisms, applications can be easily created from a distributed set of services.

12

Looking at the requirements for a computer system, we think the system should

be easy to extend. For example, we might decide to add replicas of a service to

handle larger workloads. We might also add entirely new types of services to the

system. Another thing we could do is upgrade service components to take advantage

of features available in newer versions of the component. In any case, these changes

should be easy to make.

Simple client-server architecture fails to completely meet all these extensibility

requirements. If a server is replicated, we must change the clients to be aware of the

replica in order to take advantage of the extra server. Similarly, if a server is removed

from the system, all clients using that server will have to be modified.

The mediation of requests between applications and services by the resource man-

agement layer provides a layer of indirection that allows services to be location inde-

pendent. When an application invokes a service, it does not need to know the location

of the service at the time of invocation. Services and applications can thus be modi-

fied without affecting each other's operation. This decoupling allows a systems that

is constructed under the integration framework to be extensible.

To summarize, the integration framework provides a set of common mechanisms

that support a systematic way of building a distributed multimedia asset management

system. The framework describes three layers which allow applications and services

to be modified with minimal impact on each other. A system constructed from the

framework can thus be easily extended by adding new services or applications.

1.3 Video Capture System

We built a video capture system using this integration framework. Providing a con-

crete scenario with real requirements, the video capture system automatically cap-

tures broadcasted video streams and performs operations needed for a multimedia

asset management system. These operations include the generation of metadata, the

creation of compressed formats of the video stream, and the storing of this data and

metadata.

13

1.4 Thesis Overview

In this thesis, we present the architecture and implementation of the extensible inte-

gration framework, including the resource management layer. We discuss the video

capture system as a case study for the framework.

In the next chapter, we present some of the current approaches to software inte-

gration. Chapter 3 presents a general overview of the framework. Chapters 4 and 5

discuss the service and resource management layers. Chapter 6 discusses the video

capture system. We conclude in chapter 7.

14

Chapter 2

Background

In this chapter, we explore a few existing technologies and approaches used in integrat-

ing distributed applications. These technologies will illustrate some of the common

issues that an integration framework for a distributed system must support.

2.1 Remote Procedure Call

The Remote Procedure Call (RPC for short) is a simple mechanism which allows a

program to invoke an operation on a remote server. To the programmer, an RPC has

semantics similar to that of a normal procedure call. Arguments can be passed to

the remote procedure when it is invoked. Return values are received after the remote

procedure has completed. RPC thus provides convenient and familiar semantics for

programmers who wish to write programs that perform remote operations [1].
RPC hides most of the inherent networking issues involved in performing remote

operations. Issues such as reliable network transport and messaging are handled

through stubs at the client and server. These stubs ensure that operations are per-

formed at most once and that the proper parameters are sent between the client and

server. The type of the parameters is also preserved between the client and server by

transmitting the data in a way that includes the type. This method of transmitting

typed data is called marshaling.

15

2.2 Distributed Object technology

Distributed object technology applies the concepts of object-oriented programming

to a distributed environment. The semantics for using objects in distributed ob-

ject technologies are analogous to those of RPC. In distributed object technologies,

methods can be invoked on a remote object similar to how remote procedures are

invoked. Although analogous, the semantics of distributed objects do not perfectly

match those of RPC or object-oriented languages. However by containing semantics

for both RPC and object oriented languages, distributed object technologies provide

a useful way to integrate software applications in a distributed environment.

We now briefly explore two existing distributed object technologies and focus on

how they support software integration. These two technologies are Java RMI and

CORBA.1

2.2.1 CORBA

CORBA is a distributed object technology created as a collaborative effort of many

software vendors. Collectively known as the Object Management Group (or OMG

for short), this consortion developed a specification for semantics to create and use

distributed objects. This specification can be found in [3].
The basic idea behind CORBA is to have every distributed object associated with

an intermediary called an ORB. 2 When a distributed object needs to interact with

another distributed object, it communicates through this intermediate ORB. The

ORB acts on behalf of the distributed object by communicating directly with the

target object or another ORB.

A system implementer uses CORBA by defining an interface of an object. The

interface is defined in IDL, a declarative language for specifying interfaces to an object.

The interface of an object includes the types and names of arguments and the return

values of a method. The object may also contain typed fields which can be accessed

'A more complete survey and comparison of distributed object technologies can be found in [2].
2 ORB stands for Object Request Broker. CORBA stands for Common Object Request Broker

Architecture.

16

module BankModule {
interface Bank {

void withdraw(in short account, in float amount);

void deposit(in short account, in float amount);

float balance(in short account);

}
}

Figure 2-1: Sample IDL for a Bank object

by name. Figure 2-1 shows a sample specification for a Bank object in IDL.

This interface described in IDL is compiled by an IDL compiler into stubs, skele-

tons, header files, and other runtime structures needed by CORBA. These structures

provide mechanisms that allow operations to be performed on remote objects. The

actual behavior of the remote object is left to be implemented in some programming

language by a programmer.

Like the stubs in RPC, stub and skeletons generated by the IDL compiler ensure

that methods are invoked at most once and parameters are properly marshaled be-

tween a client and a server. Unlike RPC, CORBA stubs and skeletons communicate

with each other using an ORB as an intermediary instead of contacting each other

directly.

The reason an ORB is used is to allow greater flexibility in specifying how an

object can be called. One such feature allowed by an ORB is dynamic invocation

of remote methods. Ordinarily a remote method invocation is statically created. In

this case, the method invocation is compiled as a call to a specific method. CORBA

also allows dynamic invocations. In this case, the ORB receives a request that is

interpretted to determine which method of the object should be called. Dynamic

invocations thus require an intermediary such as an ORB.

Figure 2-2 shows the sequence of events in which an ATM object invokes the

withdraw method on the Bank object. The ATM invokes the withdraw method on

the stub of the Bank object. The stub then uses the ORB to forward the call to

the skeleton of the Bank object. The withdraw method is finally invoked when the

17

ATM Client Bank Implementation

void withdraw(int, int) void withdraw(int, int)
void deposit(int, int) void deposit(hit, int)

int balance(int) int balance(int)

withdraw(1, 100) withdraw(], 100)t

Bank Stub Bank Skeleton

ORB

Figure 2-2: ATM invoking a withdraw method on a remote Bank object (CORBA
version)

withdraw method of the implementation is called by the skeleton.

2.2.2 Java RMI

Java RMI 3 provides a lightweight mechanism for using distributed objects [4]. Like

CORBA, Java RMI stubs and skeletons enforce at most once semantics and the

proper transmission of parameters between the client and server. Unlike CORBA,

Java RMI does not use an intermediary to perform remote invocations. Java RMI

stubs communicate directly with skeletons.

When using Java RMI, an implementer first decides which methods of an object

to export to remote clients. The exported methods are specified as a Java language

construct known as an interface. An RMI compiler is then used to process the Java

class, producing a stub and skeleton for the class.

The same ATM and Bank example is shown in figure 2-3 using Java RMI as the

distributed object technology. To invoke the withdraw method of the Bank, the ATM

invokes the withdraw method of the stub. The stub then connects directly to the

skeleton of the Bank object. The skeleton calls the corresponding withdraw function

in the running implementation of the Bank object.

3 RMI stands for Remote Method Invocation

18

ATM Client

void withdraw(int, int) void withdraw(int, int)
void deposit(int, int) void deposit(int, int)
int balance(int) int balance(int)

withdraw(1, 100) withdraw(, 100)

Bank Stub ' Bank Skeleton

Figure 2-3: ATM invoking a withdraw method on a remote Bank object (Java RMI

version)

2.2.3 Critique of Distributed Object Technologies

Both distributed object technologies support encapsulation by forcing implementers

to use well defined interfaces. With CORBA and Java RMI, object-oriented semantics

provide a useful abstraction mechanism through which software may be integrated.

As mentioned earlier however, the semantics of an object-oriented programming

language do not map perfectly to those of distributed objects. In an object-oriented

programming language, objects are invoked by procedures or objects through the use

of local methods. When a method of an object is called, the caller is assured that

the invocation occurs. However, since a remote method call on a distributed object

involves a client making a request to a server object, the client may have to block

until the server object can handle its request.

CORBA provides a mechanism through which a server may create a number of

servants to handle multiple requests. When a request arrives for an server object, the

ORB uses a structure that is called an object adapter to dispatch the request to one

of the servants. By controlling the number of servants in the system, resources can

be managed. However, all servants by definition are on the same server. As a result,

resources that are distributed cannot be managed with this mechanism.

Java RMI objects, on the other hand, do not even have the ability to handle more

than one remote method invocation at a time. When a Java object is created, it

can handle only one invocation at a time. Multiple Java objects could be created,

but without an intermediary between the client and the server object, the client has

19

Bank Implementation

no way of knowing whether the object is already handling a request. In this case, a

client can do no better than picking one of the objects at random to perform a remote

invocation and hope that the object is not already handling a request.

In the domain of multimedia asset management systems, the resource management

mechanisms in CORBA are inadequate and are nonexistent for Java RMI. Since

services in a multimedia asset management system are generally computationally

intensive, we need to distribute services across multiple machines and manage them

as resources. As a result, we need a resource management layer which can manage

distributed resources. The resource management layer is thus the primary extension

this thesis presents to distributed object technology.

Our integration framework is implemented on top of distributed object technol-

ogy. Specifically, we implemented the framework using Java RMI. The reason we

chose Java RMI over CORBA is due mostly to practical reasons. Being a lightweight

mechanism, Java RMI is widely available and the interfaces are standard across all

platforms. CORBA, on the other hand, has a large set of features, but each imple-

mentation varies slightly from the others. We elected to use Java RMI in creating

the integration framework to avoid the implementation complexities of CORBA.

20

Chapter 3

The Integration Framework

In this chapter, we present an overview of the integration framework. The framework

is composed of three layers: the service layer, the resource management layer, and

the application layer. First, we begin with the design philosophy of the framework

by describing how the layers relates to one another. We then describe how each of

the three layers in the framework work in general, leaving later chapters to cover it

in greater detail.

3.1 Design Philosophy

When automating the management of assets, three types of operations are performed.

The first is to determine what tasks, if any, need to be undertaken. The second is to

determine how to perform the tasks. The third is to actually perform the tasks.

In building an extensible integration framework, we have kept these three types

of operations separated amongst the three separate layers. At the top layer are

applications which are written by programmers to perform some set of tasks. We

define a task to be an operation that requires a service to be invoked in order to be

completed. When a task needs to be performed, an application submits a request for

a service to the resource management layer.

In the resource management layer, agents accepts requests and determine how

to perform the requested tasks. They make decisions determining what machines

21

Resource Management Layer

Service Service Service

Figure 3-1: Layers of services, resource management nodes, and applications

to use and when to perform a task. An application could specify requirements on

a request. These requirements are taken into consideration. Once an agent in the

resource management layer determines when and which services to use, the services

are invoked.

For example, consider a system that has a service that captures video streams.

Suppose also that two instances of the service exist. If a user wanted to capture a

television broadcast occurring from 2:00 P.M. to 2:30 P.M., he could use an application

to request that the broadcast be captured. The application would then send the

request to the resource management layer. As long as one of the services is available

for the requested time interval, the request can be satisfied. A resource management

agent is responsible for checking to see that the request can be satisfied and accepting

the request if the check succeeds. The request is rejected if the check fails.

A number of nice properties arise with this layering of functions. The first ad-

vantage is that the set of issues that must be considered is limited to a particular

layer. Implementers of services need only concern themselves with making sure that

a service performs its task properly. Application implementers need not worry about

22

how services are implemented nor how they are invoked. They need only to concern

themselves with the high level logic determining what services should be invoked and

submitting the requests to a resource management agent.

A second advantage of this layered approach is that the interaction between com-

ponents is more flexible. The resource management agents provide a layer of indi-

rection between applications and services. Applications are not hard coded to using

specific instances of a service. We can add services dynamically and make them in-

stantly available to applications. This flexibility is important in creating an extensible

system.

3.2 Services

We define services to be typed, computational resources. In order for a service to

be invoked, an application must submit a request matching the type of the service.

An instance of a service can handle just one request at a time. If more than one

request arrives, the instance cannot handle the request until it completes the its

current request. To allow for better performance and reliability, multiple instances of

a service may be added to the system.

Services are added by registering them with the resource management layer. Ser-

vice registration is accomplished by using an event mechanism that is included with

every service in the framework. Services are discussed in greater detail in chapter 5.

3.3 Resource Management

The purpose of the resource management layer is to serve as an intermediary between

applications and services. Applications submit requests for services to the resource

management layer. The resource management layer determines how to fulfill these

requests and invokes the appropriate services.

In addition to moderating requests from applications, the resource management

layer keeps track of services in the system. When services are ready to announce their

23

Application Application

Resource Boss

Resurce Manager Resource Manager Resource Manager

j Ik I ri - I

Service Sevice: Service Service

Figure 3-2: Components of the Resource Management Layer

availability to applications, they register themselves with the resource management

layer.

When requests for services exceed the number of available instances of a service,

they are put in a queue and scheduled for a later time. Many different types of services

can be used in the system, and thus we saw a need to support different scheduling

policies. The simplest scheduling policy that we support in the system is FIFO.1 As

this name suggests, requests are handled in the order that they arrive.

We also support a scheduling policy that we call actual time. This policy is useful

for scheduling requests that need to be performed at a specific time of day. For

example, a request may require that a video encoding service record the nightly news

from 11:00 PM to 11:30 PM each day. Such a time constraint is specified in what

we would call actual time. The scheduling policies are described in greater detail in

chapter 5.

Two types of agents make up the resource management layer. These agents are

resource managers and resource bosses. Figure 3-2 shows how these components are

organized topologically in the resource management layer.

'First In, First Out

24

A resource manager keeps track of services and schedules requests for its ser-

vices according to some scheduling policy. Each resource manager embodies a single

scheduling policy and can manage multiple types of services. When a resource man-

ager receives a request, it handles the request by invoking services according to its

stated scheduling policy.

A resource boss performs the function of a directory service in our framework. A

resource boss keeps track of the resource managers and directs requests from appli-

cations to a resource manager. The resource boss only directs requests to a resource

manager that has a service matching the type of the request. After the request is

routed to a valid resource manager, it is handled according to the resource manager's

scheduling policy.

Services are registered with a single resource manager. Resource managers are

registered with a single resource boss. We assume that services of the same type

register with the same resource manager although this is not a hard requirement.

Resource managers should be added depending on how many different scheduling

policies are needed. Only one resource boss is usually needed except in certain cases

where the number of services is so large that multiple administrative domains are

needed.

Resource bosses can be used to implement administrative resource domains. A

resource boss defines a resource domain since it has a list of registered resource man-

agers. Each resource manager in turn has a list of registered service instances. By

this chaining of registrations, the resource boss defines a set of resource managers and

service instances. This set determines a resource domain. When an application con-

tacts a resource boss for a service request, the request must be satisfied by a service

in the resource domain.

If two resource domains exist, they can be joined together into a larger resource

domain by registering one resource boss with the other. The registration of resource

bosses is restricted to avoid overlapping resource domains. The simple rule when

registering a resource boss to another resource boss is to make sure that their defined

resource domains do not intersect.

25

Application Application

Figure 3-3: Larger System with Multiple Resource Domains

Resource domains are useful for large computer systems where an owning organi-

zation may want to partition administrative access to services. One reason why such

a partitioning might be desired is to allow different departments in an organization to

maintain a set of services. The services would be needed by the entire organization,

but each department would be responsible for maintaining the services specific to

their domain of work.

Figure 3-3 shows an example of a larger system with services that are arranged

into multiple administrative resource domains. The resource management layer is

covered in greater detail in chapter 5.

3.4 Applications

Composing the highest layer of the integration framework, applications are written

by programmers to perform useful tasks for end users. When building an application,

a programmer decides what services need to be performed. Questions such as which

instance of a service and when is left to the resource management layer.

26

Figure 3-4: Service Invocation Process. Steps required for invocation are numbered
in order of operation.

Figure 3-4 shows the steps that an application must take to submit a request for a

service. First, an application asks the local resource boss for a resource manager that

can handle its request. If the resource boss refers the application to another resource

boss, the application poses the same query to that resource boss. The application

continues to query resource bosses until a suitable resource manager is returned.

When a resource manager is finally returned, the request is submitted to the resource

manager, and the application waits until the request is complete.

The steps that an application must take to submit a request can be summarized

into a couple of simple rules:

1. Ask resources bosses to find a resource manager that can handle the request

until either an error or a resource manager is returned.

2. When a resource manager that can handle the request is found, submit the

27

request to the resource manager and wait until it is completes.

3.5 Infrastructure

Thus far we have identified the primary differences between the components and layers

of the system. Despite their differences, many shared mechanisms are needed between

components of the same layer and components between layers. In the integration

framework, we implemented a set of common mechanisms that we call infrastructure.

Examples of infrastructure that are used in the integration framework are a uni-

versally unique identifier generator, a distributed file system, an event channel, and a

data transfer service. We discuss each of these infrastructure components in greater

detail in appendix B.

28

Chapter 4

Services

Services are shared computational units that perform a domain specific operation on

an asset. In terms of the integration framework, they compose the lowest layer.

In this chapter, we discuss services in greater detail. In particular, we discuss how

services are implemented, how they operate, and how they can be integrated into an

asset management system. This section deals almost exclusively with services and

ignores the other components of the framework. For an overview for how services

interact with the rest of the integration framework, see chapter 3.

4.1 Basic Description

Comprising the lowest layer of the integration framework, services perform domain

specific, computational tasks for asset management. As a contrast, infrastructure

includes more general, basic services that are often needed across the entire integration

framework. Services typically make use of some the infrastructure components such

as the event channel, distributed file system, and socket copy service. 1

Services are implemented as objects which perform a specific function based on

their type. Services with the same type perform the same function whereas services

of different types perform different functions. For each type of service, multiple

instances of a service may exist. Hence, the type actually names a group of instances

'A more detailed description of the infrastructure components that we use is in appendix B.

29

of a service. For example, an application that requests a service MPEGEnc is actually

asking for an instance of a service with a type MPEGEnc.

Because services perform computational tasks, they exhibit demands on a host

machine for resources such as CPU time, memory space, hard disk space, and net-

work bandwidth. Services are thus limited resources. Sometimes a service requires

specialized hardware devices, such as a video capture card. In this case, a service can

only run on machines that have the required devices. Such a service is further limited

by the number of the specialized devices available on a particular machine.

Services can be connected and removed from the system dynamically as the rest of

the system runs. An instance of a service connects to the system by registering with

the resource management layer. Once a service registers with the resource manage-

ment layer, it announces its availability to the system. To remove a service, one needs

only to stop it. In the current implementation, we rely on the resource management

layer to detect when a service stops. We determine that a service has stopped when

it fails to handle requests.

The two basic types of service operations are invocation and registration. A service

invocation is initiated by the resource management layer on behalf of an application.

Registration is used by services to announce their availability as a shared resource to

the asset management system.

As in RPC, services are invoked synchronously. An invoked service does not return

until it finishes performing a task. The thread in the application that submitted the

request can wait until the invocation is complete. However, we do support non-

blocking semantics which allow an application thread to continue processing while a

request is being processed.

Registration of services is accomplish by sending messages through an event chan-

nel. The event channel, which is an infrastructure component described in appendix

B, acts as a shared bus and is basically a server which accepts messages from a set

of clients called event producers. These messages are routed to another set of clients

called event consumers. Barring any server crashes, every message sent by an event

producer is guaranteed to arrive at most once to an event consumer. The event chan-

30

nel is capable of supporting an arbitrary number of event producers and consumers

at one time.

4.2 Components of a Service

Services can be divided into two major parts: a software component to be integrated

and a wrapper. We refer to the component as a black box for metaphorical reasons.

The wrapper is used to integrate the black box into the complete system.

Recall the "purchase and integrate" approach for constructing software systems

that was introduced in chapter 1. We metaphorically name a purchased component as

a black box because we interact with the component only through external interface.

The implementation details are generally hidden from our view by the vendor. Each

of the black boxes that we purchase likely has differing interfaces. Example interfaces

for a black box include a programming library, an executable, or even a graphical

user interface. The number of integration possibilities increases when we consider

that each black box might be developed for different platforms.

We contain this heterogeneity at the service level by forcing all services to be

implemented as distributed objects with a single invoke method. When the invoke

method of an object is called, the service is invoked. Some software is needed to

augment a black box to actually convert it into a service. This software is called the

wrapper.

A wrapper is composed of three smaller objects. These objects are called the

ServiceInterface, the EventAdapter, and the WrapperAdapter. The Service-

Interface and EventAdapter objects provide a general interface and set of mech-

anisms needed for each service. Hence, the same ServiceInterface and Event-

Adapter is used for every service. The WrapperAdapter contains code that trans-

lates the invocation on the distributed object into operations on the native interface

of the black box. The WrapperAdapter is thus different for each type of service.

Figure 4-1 shows the components that make up a service.

31

Invocation

Event External
Interface Adapter Event

Channel

Wrapper Adapter Wrapper

----"Black Box"

Figure 4-1: Components of a Service

4.2.1 Service Interface

The ServiceInterf ace is an object that exports the invoke method. Resource

managers use the invoke method to invoke a service. When the ServiceInterf ace

is invoked, it forwards the invocation to the WrapperAdapter.

In each ServiceInterface, a status variable is maintained to keep track of a

service's current state. A service is in either a busy, available, or error state.

4.2.2 Event Adapter

The EventAdapter provides a way to register a service with the resource management

layer. The EventAdapter uses the event channel described in appendix B to send

and receive messages to a particular resource manager in the resource management

layer.

The messages sent to a resource manager generally register the service. Registra-

tion often includes some interaction with the WrapperAdapter, which often contains

relevant information such as the type of the service. Sometimes, a service receives

a message instructing it to send a message to its resource manager. To allow such

events to be handled even as a service is processing a request, the EventAdapter runs

32

a separate thread.

The EventAdapter passes messages to the WrapperAdapter if the message is not

related to registration. Thus, new types of messages can be defined and handled

by services. Such messages might be used for communicating between services or

canceling requests that are being processed by a service.

4.2.3 Wrapper Adapter

The WrapperAdapter is software that is specific to each type of service. When an

invocation occurs, the WrapperAdapter translates the request from the Service-

Interface and uses the arguments in the request to perform the appropriate oper-

ations on the black box. The WrapperAdapter is also responsible for propagating

return values or error messages from the black box back to the ServiceInterface.

Since the black boxes vary widely in their interface, so too must the software that

interacts with it. Thus, the WrapperAdapter must be customized for each black box.

As mentioned in the previous section, the WrapperAdapter is also used by the

EventAdapter. During registration, the WrapperAdapter is called upon by the

EventAdapter to supply registration information that is specific to the service.

Thus, the WrapperAdapter is an intermediate between the black box and the

ServiceInterface and EventAdapter components. All the code that is used to

integrate the black box into the system is contained in the WrapperAdapter.

A number of black box interfaces are possible. One such interface might be a

library of functions for the C language. For this interface, a WrapperAdapter would

contain code that translates Java calls into C calls. The ServiceInterf ace would call

the WrapperAdapter in Java and the WrapperAdapter would call the black box using

its native C interface. The arguments would be converted by the WrapperAdapter

from Java types into C types. The return values would be converted from C types

into Java types and returned to the ServiceInterf ace. Such a mechanism already

exists as the Java Native Interface.

Another example of a black box interface could be an executable binary that is

compiled to run on a particular platform. In this case, the WrapperAdapter would

33

invoke the binary through the system shell. On most platforms, a system call can be

used to run a program within a shell.

A final example of a black box interface could be a graphical user interface. In this

case, we would have to write a program that would interact with the graphical user

interface. We could simulate events such as a mouse click or a key press using the

programming interface of the graphical user interface. Such an approach is feasible

although inelegant.

In all these examples, only the WrapperAdapter needed to be changed to integrate

a component into the system. Neither the ServiceInterf ace nor the EventAdapter

need to be modified.

4.3 Service Operations

In this section, we discuss in greater detail the operations of service invocation and

service registration.

4.3.1 Service Invocation

Figure 4-1 shows the sequence of method calls involved in a service invocation. A

service is invoked when a resource manager calls the invoke method of a Service-

Interface. The invoke method of the ServiceInterface calls an invoke method

on the WrapperAdapter. The invoke method of the WrapperAdapter then performs

the appropriate operations on the black box. When the operations are complete, the

invoke method of the WrapperAdapter returns back to the ServiceInterf ace.

For an invocation, a service accepts a set of parameters and returns a set of values.

Each type of service accepts a different set of parameters and returns a different set

of return values. As a result, the parameter passing mechanism needs to be flexible

enough to accommodate all types of services.

Another requirement for our parameter passing mechanism is the ability to cre-

ate data structures. Being composed from existing software components, services

are relatively high level software components. High level invocations require poten-

34

<Filename>file :///news .wav</Filename>

<AudioQuality>
<SamplingRate>44kHz</SamplingRate>

<Mode>Stereo</Mode>

</AudioQuality>

Figure 4-2: Two examples of XML elements

tially larger numbers of parameters. Such parameters are usually organized in some

structured format.

To build such a flexible, structured set of data, we use XML, also known as the

extensible markup language [5]. XML is a hypertext language which allows data to

be structured hierarchically in a human readable form. The basic data object in XML

is an element. An element contains a tag and a value. A value can be either a string,

a set of elements, or a combination of both. A tag is a name that refers to the values.

For our purposes, we restrict a value to be either a string or a set of elements. Figure

4-2 shows two XML elements which correspond to each of these types of values.

We add a further restriction to the XML document model. For every value that is

a set of elements, none of the tags for these elements may be same. Hence, the tag for

each element is unique with respect to the other elements. This uniqueness restriction

does not apply to the children of these elements. Figure 4-3 shows an XML element

that violates this uniqueness restriction and an element that meets the restriction.

With these two restrictions, we use a subset of the data structures supported in XML

to package arguments and return values for services.

For passing parameters to and from services, we have defined a convention which

makes use of the hierarchy allowed by XML. When passing arguments to a service of

a particular type, the name of the root element of the XML document is that type.

Thus for a service of type ServiceA, the name of the root will also be ServiceA. The

next level consists of three elements named IN, OUT, and Exception. The IN element

contains a set of the elements that are the arguments to be passed to the service. The

OUT element contains a set of elements that are the return values from the service.

35

<InvalidElement>

<Filename>file :///newsl.wav</Filename>

<Filename>file :///news2. wav</Filename>

</InvalidElement>

<ValidElement>

<Filename>file :///news1.wav</Filename>

<NestedFile>
<Filename>file :///news2. wav</Filename>

</NestedFile>

</ValidElement>

Figure 4-3: Elements demonstrating the uniqueness restriction of XML elements

The Exception element contains a message describing an error that occurred in the

service.

Figure 4-4 shows an example of a request made to an audio playback service. The

service requires arguments describing the name of the file to be played and the quality

of the audio file. When complete, the service returns the duration of the audio and a

return code.

Retrieving the values of parameters in the XML document is a simple parsing

task given the proper series of tag names. We have simplified the parsing task by

creating a set of functions which automatically extract the value when given a name

that is constructed from the hierarchy. For example given the document in figure

4-4 and the name AudioPlaybackService. IN. AudioQuality. Mode, the value that is

resolved will be Stereo. These hierarchical names are also used to set values much

in the same way that they are used to retrieve values.

4.3.2 Service Registration

A service registers itself by sending a message to a resource manager. Each service

registers itself with exactly one resource manager. The resource manager to which a

service registers itself is determined ahead of time by an administrator. A service uses

its EventAdapter to send an event of type RegisterResource. The event contains

36

<AudioPlaybackService>

<IN>
<Filename>file:///news .wav</Filename>

<AudioQuality>
<SamplingRate>44kHz</SamplingRate>
<Mode>Stereo</Mode>

</AudioQuality>

</IN>

<OUT>

<TimePlayed>01:30: 04</TimePlayed>

<ReturnCode>0</ReturnCode>

</OUT>
</AudioPlaybackService>

Figure 4-4: Sample Service Return Value (includes Invocation Parameters)

the following information:

1. the type of the service.

2. the status of the service.

3. the name of the service's resource manager.

4. a Java RMI remote reference to the service.

When the named resource manager receives the registration event, it adds a new

resource to its list of available resources. The information from the registration event

is included in the in this list of resources.

During the course of operation, a resource manager might be started after a service

sends its registration event. In this case, the service needs to send the registration

event after the resource manager is started. To make sure that the service is registered,

a resource manager sends out a CallForResource event soon after starting. The event

contains the name of the resource manager. Any service which matches the name of

its resource manager with the name in the event, responds by sending a registration

event.

Hence, we have two simple rules of registration for a service:

37

1. After a service starts, it sends a RegisterResource event.

2. When a service receives a CallForResource event that originated from its re-

source manager, send a RegisterResource event.

Given the registration rules, a resource manager may receive a duplicate reg-

istration event if the RegisterResource and CallForResource events are sent at

approximately the same time. To suppress duplicate registration events, the resource

manager compares the remote reference included in an event to the those in its list

of available resources. When a match is found, the registration event is a duplicate

and can be ignored.

38

Chapter 5

Resource Management

The resource management layer mediates between applications and services. Services

register themselves with the resource management layer whereas applications sub-

mit requests. This layer provides indirection which is important to the flexibility of

systems created with the integration framework.

This chapter describes in detail the different components and processes of the the

resource management layer of the integration framework.

5.1 Basic Description

Shared resources are limited and must be managed. In the case of the integration

framework, each instance of a service is a resource. Because services are the compu-

tational units of the asset management system, they are the most resource intensive

operations in the system and thus should be managed.

Since the system has shared resources, multiple applications can invoke services

simultaneously. When a request is accepted by the resource management layer, a

resource manager must arbitrate between the different application requests in deciding

how and when services are invoked.

The resource management layer is composed of primarily two types of components:

resource managers and resource bosses. Each resource manager is responsible for a set

of services. Each resource boss is responsible for a set of resource bosses and resource

39

managers. Together, the resource managers and bosses handle application requests

and manage the use of services.

5.2 Handling Application Requests

A request for a service may contain more than one job. We define a job to be a

request for a single service. Hence a request may actually invoke multiple services.

Using multiple jobs in a request allows the set of jobs to be scheduled at the same time.

In such cases, tasks might have to occur simultaneously as in the case of real-time

applications. Generally however, requests contain just one job.

When an application wishes to invoke a service, it submits a request to the re-

source management layer. This submission process is called request acceptance. After

the request is accepted, the application has the option of waiting until the service

completes. Should the application choose not to wait, it could continue processing

and check for the result of the service invocation at a later time.

After a request is accepted, it is placed in a queue. The set of jobs associated

with the request determine which services are needed to fulfill the request. When

the requested services are available, the jobs are scheduled to run according to some

scheduling policy.

5.2.1 Request Acceptance

When an application wishes to submit a request, it first locates a resource manager

that can handle its request by contacting a resource boss. On behalf of the application,

the resource boss looks for a resource manager that has a service that can handle the

request. The resource boss is aware of resource managers in its resource domain since

resource managers register themselves with resource bosses.

The contacted resource boss finds a suitable resource manager by querying each

registered resource manager to see if it can handle the request. Since requests are

typed objects, a resource boss sends queries to resource managers asking if they can

process a request of that particular type. The entire request need not be sent. After

40

Figure 5-1: Sample Request Acceptance

a resource manager replies in the affirmative, the resource boss returns a reference

to the resource manager to the application. The application can then connect to the

resource manager using this reference and submit its request.

Figure 5-1 shows this process of request acceptance for a system with one resource

boss and three resource managers. The second resource manager can process the

application's request. Hence, the resource boss ceases querying resource managers

after the second resource manager replies affirmatively. A reference to the resource

manager is returned to the application in the sixth transition. The request is then

accepted by the resource manager.

Once a request is submitted, the application can wait until the completion of the

request. The resource manager communicates to the application the completion of the

request through a JobHandle object. The JobHandle object is created and returned

to the application after the application submits the request. The application can

then wait on the JobHandle object or continue processing. If the application waits,

the resource manager will notify the waiting application when the request completes.

41

Figure 5-2: Waiting for a Request On A Job Handle

If the application does not wait, it could check the JobHandle later to see if the

request completes. When the request completes, the result can be acquired from the

JobHandle object.

Figure 5-2 shows two diagrams describing the sequence of events after a request

is accepted. In both diagrams, the application submits a request and the resource

manager creates a JobHandle for the request. In the diagram to the left, the applica-

tion then waits on the JobHandle object until the request is completed. The results

of the request are returned to the application after it finishes waiting.

In the diagram to the right, the application periodically polls the the JobHandle

object until the request is complete. The results of the request are returned to the

application after the request is completed.

5.2.2 Job Scheduling

Requests that are submitted by an application to a resource manager are placed in

a queue to be scheduled with other requests. To schedule these requests, a resource

manager must also have a list of resources and some associated data such as the type

42

FileConvert_1 Running

Vdf2Xml_1 Running

Vdf2Xml_2 Waiting

FileConvert_2 Waiting

FileConvert_3 Waiting

Resource Status Request
..../

Resource List Request Queue

Figure 5-3: Resource Manager State for a FIFO Scheduling Policy

of the resource, the current state of the resource, and a reference to the resource.

Recall that a resource is really an instance of a service in the framework.

In a system accommodating many different types of services, no single scheduling

algorithm is optimal or even applicable to the different types of services. To ac-

commodate this heterogeneity, different scheduling policies can implemented for each

resource manager. Services which fit a particular scheduling policy should be regis-

tered with a resource manager embodying that policy. In our integration framework,

two different scheduling policies are currently implemented.

The simplest scheduling policy is first in, first out, or FIFO for short. In this

policy, a request is processed once the services needed for the request are available.

When more than one request needs the same type of service, the first request to be

submitted to the resource manager is the first to be processed by the service.

Figure 5-3 shows the system state for a resource manager that is using the FIFO

scheduling policy. The resource manager is managing three services and has five

requests in the queue. Two of the services have requests for them in the queue and

are busy processing some of those requests. The requests are being processed one at

a time in the order that they were submitted. The third service is idle because no

requests for it are in the queue.

The second scheduling policy that is currently supported by the framework is a

43

FileConvert Running

Vdf2Xml Running .

Xml2Sql Ready

Request Status

Times generally include dates, but have been simplified for this diargram.

Request Status Start Time Stop Time
Current Time: 1: 15 AM i- 1

Resource Status Req.

MPEGEnc Running -

Resource List Request Queue

Figure 5-4: Resource Manager State for an Actual Time Scheduling Policy

policy called actual time.1 In this policy, each request carries with it timing constraints

that specify when the request must be processed. The requests have actual start and

stop times which describe when services for a request should be invoked and when

the request expects that it will be done. In the event that a scheduled request uses

a service past its reserved time, a request scheduled after it still must wait for the

request to finish. If the waiting request fails to run during its requested time, an error

is returned to the application waiting on the request.

Figure 5-4 shows the system state for a resource manager that is using the actual

time scheduling policy. The request queue must have two additional parameters

specifying start and stop times for a service invocation. A request can be added only

if the time interval in which it is supposed to run does not intersect with the time

intervals of requests already in the queue. Thus a new request starting at 1:30 AM

and ending at 2:30 AM would be rejected by the resource manager. 2

Additional scheduling policies could be implemented in the framework to optimize

some criterion or to accommodate new types of services. However for our purposes,

these two scheduling policies were adequate.

iWe call this scheduling policy actual time as opposed to real time to avoid confusion. Real time
schedulers typically have mechanisms that allow processes to specify very strict timing requirements.
While our actual time scheduling also supports timing requirements, our mechanisms do not enforce
these timing requirements strictly enough to be called real-time.

21n the current implementation of the actual time scheduling policy, we cannot accommodate for
multiple instances of services.

44

MPEGEnc_1 Running 1:00 AM 2:00 AM

MPEGEnc_2 Waiting 2:30 AM 3:00 AM

5.3 Resource Manager Registration

Resource managers are registered to resource bosses in a way similar to how services

are registered with resource managers. The registration of services with a resource

manager was discussed in chapter 4.

Like services, a resource manager has an EventAdapter with which it sends and

receives events. Upon being started, a resource manager sends a RegisterManager

event to a resource boss. A RegisterManager event simply contains a reference to

the resource manager being registered and the name of the resource boss to whom

the event is directed. Like services, resource managers register themselves to exactly

one resource boss.

As in service to resource manager registration, resource bosses send a CallFor-

Manager event to all resource managers when they start. When a resource manager

receives a CallForManager event from its particular resource boss, it responds by

sending a RegisterManager event.

A resource boss is registered to another resource boss in a similar fashion. The only

difference between resource boss and resource manager registration is that Register-

Boss and a CallForBoss events are used in place of RegisterManager and CallFor-

Manager events.

45

Chapter 6

Video Capture System

Using the integration framework, we developed a video capture system. We inte-

grated a heterogeneous set of software and hardware into a system that was able to

automatically capture video streams. Some of the services in the system included

metadata extraction, metadata storing, and format conversion services.

We present this video capture system as a case study for how the integration

framework is used to create an asset management system. We first describe how the

system works before discussing each service in brief detail. We conclude this chapter

by describing how applications were constructed for end users to use the services that

were integrated.

6.1 System Model

Before any asset management system can be constructed, some notion of how the

system is supposed to work must be specified. The main purpose of an asset man-

agement system is to manage data. Hence, we begin by discussing the data model

for our video capture system. We also describe a task model which specifies how a

set of services can be integrated to support the capture of video streams.

46

Asset ID

1035635

MBR

Video Audio

Asset ID Start Time Stop Time Video File

1035635 1:00 PM 1:58 PM /filel.mpg

Broadcast

Asset ID Quality Quality Asset ID RM File Codec

1035635 Standard CD 1035635 /file2.rm 28.8K

1035635 /file3.rm 1.5 M

MPEGEnc FileConvert

Figure 6-1: Simplified Version of Video Capture System Data Model

6.1.1 Data Model

The purpose of an asset management system is to manage assets. Assets are persistent

information objects that are composed of a set of smaller information objects. From

the point of view of a user, an asset is a unit of information.

In our video capture system, video streams are captured from an analog signal

and stored as an asset in a repository. Our video assets are composed of many parts

such as a video file, still images, an audio file, author names, and titles. Since video

files tend to be very large, we also have some performance limitations which force

us to store versions of the video which are smaller and of lower quality but can be

quickly transferred through a network.

The information composing an asset can be more finely identified as either data or

metadata. In the case of our system, the data is the set of images and audio samples

that together form the video stream. Metadata includes information such as the title

of the video and the author of the video. Our system also maintains low quality

versions of the video as different formats of the data. To maintain the association

between these different formats and the data from which they were derived, we use

an asset identifier.

47

The asset identifier is a UUID1 and is used throughout our system to associate

data and metadata with an asset. This asset identifier marks every piece of metadata

and data that is stored in the system. The asset identifier also marks every service

invocation so that the system can maintain a history of each asset.

Much of the metadata and data is stored in a relational database although larger

units of data are stored in a distributed file system. Collectively, we call these per-

sistent storage facilities the repository.

Figure 6-1 shows a simplified version of the tables that we used in our video capture

system. The tables labeled as MPEGEnc and FileConvert correspond to services which

performed video encoding and format conversion. The Broadcast table contains basic

information about a completed video capture. The MBR, short for Master Business

Record, simply contains a list of all the asset identifiers that we have stored in our

system.

The figure shows the state of our video capture system with just one asset. The

asset is named by the asset identifier 1035635. This asset identifier is sprinkled

through each table identifying the records which belong to the asset for which it is

named.

It is worth mentioning that file names need not be related to the asset identifier

in any way. The metadata needed to associate a file with an asset is contained within

the tables. Thus, the file can be given any name so long as the name appears in the

correct location in the table. The only constraint that we place on new file names is

that they be unique.

Although it is not shown in figure 6-1, we also store bibliographical information in

a database. We are using a schema based on the Dublin Core standard [7]. As with

the other metadata records in our tables, we again use an asset identifier to associate

these bibliographical records with an asset.

1UUID is short for Universally Unique Identifier. See appendix B for more information about
UUID's.

48

IN:
AssetID IN:
Duration AssetID
VideoQuality OUT: MPEGFile OUT:
AudioQuality MPEGFile Codec RMFile

MPEGEnc - File Con vert -+-P

Encode video Convert to other formats

Extract key frames Format conversion Storing of metadata

KeyframeExt -- + Vdf2Xml Xml2Sql -

IN: OUT: IN: OUT: IN: OUT:
AssetID VDFFile AssetID XMLFile AssetID None
Duration VDFFile XMLFile
Sensitivity Destination

Figure 6-2: Task Model of Video Capture System

6.1.2 Task Model

We next specify a task model which divides our services into a set of basic functions.

We define a task to be the operations performed by a single service. This task model

describes the order in which services can occur by considering precedence constraints

between services. Given a set of content services, we can be very specific about how

each service relates to the others.

Figure 6-2 shows the task model for our video capture system. The figure shows

the dependencies between services and a simplified interface to each service. Because

of the dependencies, certain sequences of tasks must run serially although some se-

quences may run in parallel. In particular, the FileConvert service can process an as-

set only after the MPEGEnc service has finished with the asset. 2 However, FileConvert

can process the asset at the same time as the Vdf2Xml service if the MPEGEnc and

KeyframeExt have already finished with the asset.

Indicated by the dark line between the MPEGEnc and KeyframeExt services, the

two services run in parallel but are not dependent on other services. However, these

2We are excluding the possibility that the FileConvert service can operated on the MPEG file
as it is being encoded.

49

services must also obey one additional constraint. Both services operate on the same

analog video signal and hence must operate at the same time in order to generate

consistent data and metadata.3 This constraint is taken into account before a re-

quest is scheduled for either service. If an application request demands both services,

the resource manager ensures that an instance of both services is available before it

accepts the request.

6.2 Content Services

We now launch into a discussion about each of the content services in the video

capture system. Specification for each service can be found in appendix A.

We have five automated services in our system. Of the automated services, two

operate on a video stream while it is being encoded while the other three operate

as post-processing tasks. We shall first discuss the two actual-time services in this

section followed by the three post-processing services.

6.2.1 MPEG Encoding

The MPEG encoding service (named as MPEGEnc) uses software and hardware to

encode an analog video signal to a file into MPEG format. When the service is

invoked, it encodes a video stream for some duration. In addition to the duration, a

variety of parameters are used to set the quality of the video and audio encoding. In

the case of video, the quality is determined by the frame rate and image resolution.

For audio, quality is determined by the bit rate. With the MPEG format, a user may

also specify different degrees of lossiness for the compression of a file.

Rather than allowing all the parameter options, we reduced both the video and

audio quality parameters to three preset options. For video the options are qualita-

tively described as High Quality, Standard Quality, and Low Quality. For the audio,

3Hence, we need a distributed synchronization mechanism. Unfortunately, we do not provide
any general mechanism for the framework. Currently, we synchronize the services by transmitting
messages between the services using the event channel.

50

the available options are CD Quality (44 kHz), Radio Quality (22 kHz), and Telephone

Quality (11 kHz).

During the encoding process, the MPEGEnc service uses the local file system as a

disk cache. If the service attempted to use a network file system, much data would be

lost because the amount of data bandwidth would be insufficient. After the encoding

completes, the captured video file is moved to the repository. The socket copy service

described in appendix B is used to quickly move a file from the machine where the

MPEGEnc is located to the repository machine.

6.2.2 Key Frame Extraction

Like the MPEGEnc service, the key frame extraction service (named as KeyframeExt)

operates on an analog video signal.4 The purpose of the KeyfranieExt service is to

extract a set of images that summarize a video stream. The service uses a sensitivity

threshold between 1 and 100 to help it decide which frames to extract. These frames

are called key frames.

We do not know the actual algorithm used to find key frames because the extrac-

tion engine was purchased from an outside vendor. To us, the extraction engine is

merely a "black box." We only know that the engine picks fewer key frames at lower

sensitivities than at higher sensitivities. However, we do not need to know exactly

how the extraction engine works since we are only interested in the key frames.

For each key frame, the service also notes its exact time of position in the video

stream. This time is relative to the start of the video stream and identifies the exact

frame from which the image was extracted. These times can be used to create a

summary or an index and are hence a useful piece of metadata that we store with the

key frames.

4The Keyf rameExt service operates on an analog video signal because the component from which
it is integrated operates on an analog video signal.

51

6.2.3 File Conversion Service

The file conversion service (named as FileConvert) is a post-processing service that

converts an MPEG file into RealMedia format. Video and audio streams stored

in RealMedia format are much smaller than those stored in MPEG format. This

reduction allows acceptable performance when transferring the video or audio stream

across a network. The RealMedia format has the further benefit of being a streaming

format. Thus, video and audio files can be viewed at a receiving machine as it is

arrives across the network. This improved delivery is achieved at a cost of image and

audio quality, but is absolutely necessary for clients with slower network connections.

The RealMedia format is capable of accommodating a variety of performance

and quality tradeoffs. By using different encodings and compression settings, the

RealMedia format can encoding a video or audio stream in a setting that is optimized

for specific performance specifications. RealMedia accommodates both these different

settings by using a codec, which is short for coder-decoder. A codec describes various

encoding parameters and compression settings for a video file.

The FileConvert service allows a variety of codecs to be used for encoding a

video or audio stream. A user can decide which codec to use by passing a proper

codec name to the service. Example codec names are Video 28.8, High Action

and Audio 56K ISDN, Music - Stereo.

6.2.4 VDF-to-XML Conversion Service

The VDF-to-XML conversion service (named as Vdf2Xml) is a post-processing service

that runs after the KeyframeExt service. The Vdf2Xml service is needed because

the output of the KeyframeExt service is in VDF format, a non-standard format for

describing video streams. The VDF file contains the key frames and their times of

occurrence in the video stream. The purpose of the Vdf2Xml service is hence to

convert a VDF file into a set of key frames and their associated times.5 The key frames

'While it might be argued that the Vdf 2Xml should be integrated with the KeyframeExt service,
we found that this service demonstrated a useful precedence constraint.

52

are converted into a set of JPEG files while their associated times are put into an

XML document.'

6.2.5 XML-to-SQL Conversion Service

The XML-to-SQL conversion service (named as Xml2Sql) is a post-processing opera-

tion that runs after the Vdf2Xml service. The Xml2Sql service reads the metadata in

the XML file returned by the Vdf2Xml service and executes SQL7 statements which

inserts the metadata into a relational database.

As a performance optimization, this service creates a sequence number for each

key frame. The sequence number indicates the relative order of each key frame. Thus,

when a query returns a set of key frames for a video file, the order can be quickly

reconstructed by ordering the key frames by their sequence numbers.8

6.3 Service Integration

Once the content services and the overall system models are specified, the services

can be integrated with a set of resource management components to make the services

available to applications. Figure 6-3 is a picture of our video capture system at the

three levels of the integration framework.

At the lowest level are the five services that we described in the previous sec-

tion. The actual-time processing services, MPEGEnc and KeyframeExt, are both under

the management of a single resource manager embodying the actual-time scheduling

policy. The three post-processing services on the other hand are managed by a re-

source manager under the FIFO scheduling policy. Both the actual-time and FIFO

scheduling policies were discussed in chapter 5.

At the resource management layer, the two resource managers were named the

6Bill Graham, a researcher at the IBM Almaden Research Center, implemented the Vdf2Xml
service.

'SQL stands for Standard Query Language.
8Bill Graham, a researcher at the IBM Almaden Research Center, implemented the Xml2Sql

service.

53

MPEGEnc KeyframeExt FileConvert Vdf2Xml Xml2Sql

Figure 6-3: System Diagram of the Video Capture System

IngestionManager and the ConversionManager. The ConversionManager follows

the simple FIFO scheduling policy while the Ingest ionManager follows the actual-

time scheduling policy. One resource boss, named the VideoBoss serves the entire

system. Both resource managers are registered to this resource boss. This resource

boss is consulted by applications wishing to use any one of the services in the video

capture system.

6.4 Applications

We have two applications in our video capture system. The applications can perform

concurrently and can generate a number of simultaneous requests. The two applica-

tions that we have in the system are called the WorkOrder and the TaskCompletion

applications.

6.4.1 Work Order

The WorkOrder application is used by a user to initiate a set of tasks for capturing

video streams. The application presents a form which allows the user to choose which

54

services to invoke for the capture. The user can also specify some of the capture

parameters such as the quality of the video and audio encoding. If the user decides to

extract key frames, he would also supply a sensitivity parameter between 1 and 100

which would be used to perform key frame extraction. Similarly, he would specify a

RealMedia codec if he wished to perform a file conversion.

When the user has finished setting up his capture, he submits the form, and

the WorkOrder application creates a new asset identifier. The new asset identifier

is entered into the master business record, thus committing the creation of a new

asset. The WorkOrder application then sends requests for services to the appropriate

resource managers in an order that satisfies the precedence constraints specified in

the task model. Requests are sent until all are complete or a failure occurs.

Multiple instances of the WorkOrder application can be run at the same time.

Because the resource management layer handles the resource allocation issues, we

do not have to worry about inconsistencies that arise from concurrent requests for

services.

6.4.2 Task Completion

The TaskCompletion application allows a user to perform tasks on existing assets.

The application is particularly useful for performing tasks which were not performed

during the initial capture. For example, if a user of our video capture system wished to

create a smaller version of a video file, he could use the TaskCompletion application

to invoke the FileConvert service so long as the MPEGEnc service had successfully

completed for the asset.

The TaskCompletion application is thus an application which complements the

WorkOrder application. Whereas the WorkOrder is used to create new video assets,

the TaskCompletion allows a user to invoke services on an existing asset.

55

6.5 State of the System

The system is currently running on a small group of computers at the IBM Almaden

Research Center. The group consists of six IBM PC based computers and four AIX

workstations all connected to the regular IBM internal network.

With the system, we were able to successfully capture video broadcasts using our

applications. All the content services performed as reliably as the components upon

which they were constructed. Thanks to the distributed nature of the system, we were

able to run the system remotely, thereby allowing its services to be shared amongst

a greater number of users.

After deploying the system, we replicated some of the post-processing services

simply by installing the software for the services on other machines. Because the post-

processing services were implemented entirely in software, duplicating these services

was quite trivial. When we started those services, they registered themselves with the

appropriate resource manager and became instantly available to applications. The

ease with which we were able to add replicas of existing services led us to characterize

the process as "plug-and-play."

We also attempted to integrate a new type of service after deploying the system.

Our integration efforts involved creating a service from a new "black box" component

and adding the service to the system. We were successful in adding the new type

of service with relative ease although it was not as easy as adding a replica service.

Some implementation details still need to be simplified before new services can be

added with as little effort as replicas.

56

Chapter 7

Conclusion

In this thesis, we have described an extensible integration framework for the creation

of asset management systems. Divided into three layers, the integration framework

provides a systematic way to integrate heterogeneous services into a complete asset

management system.

Each layer of the framework handles separate issues that are needed to perform

any set of tasks. The layers we define in ascending order are the service layer, the

resource management layer, and the application layer. Each of the three layers handles

subsequently higher level issues. The application layer decides what tasks need to be

performed. The resource management layer decides how the tasks are to be performed.

The service layer actually performs the tasks. This separation allows the systematic

implementation of tasks supporting an asset management system.

The division of functions amongst the three separate layers has the added ben-

efit that applications and services are decoupled from each one another. Services

can thus be added and removed dynamically without affect applications. Similarly,

applications can be started and stopped without affecting services.

In other integration technologies that we have explored, none explicitly offers the

same set of resource management mechanisms that we provide. Owing to the fact

to no resource management scheme could possibly be optimal for all cases, we can

extend the resource management mechanisms to handle other cases.

With this integration framework, we have successfully constructed a video capture

57

system. When we added replicas of existing services to the running system, we found

the process to be quite trivial. Similarly, new types of services were also added

although the process involved a bit more effort.

7.1 Future Work

We have described the virtues and the successes of the integration framework. How-

ever, more work could be done to expand the framework to deal with more of the

issues of asset management systems.

The integration framework was developed from a very narrow point of view for

a very specific type of system. Hence, many assumptions were made about how

services and applications interact. A more general and complex model of services

and applications should be considered and possibly supported by the integration

framework. As the service and application models are modified, so too must the

manner in which resources are managed. The end result is that the entire framework

might have to be redesigned.

From the asset management point of view, we have only dealt with the issue of

integrating services for an asset management system. The services that we have used

to demonstrate our framework are but a minute subset of the functions needed to

build a real asset management system. More work needs be done to develop some of

the domain specific services and infrastructure needed to build an asset management

system for digital objects. As these services are developed, they will likely reveal

more complicated interactions which have not been considered in the integration

framework.

58

Appendix A

Service Specifications of the Video

Capture System

Hardware
Software
Vendor

Platform
Interface

Arguments

Broadway MPEG Encoding Card
Broadway
Data Translation, Inc.
Windows 95/NT
GUI

AssetID: asset identifier
VideoQuality: High Quality or Standard Quality or Low

Quality
AudioQuality: CD Quality (44 kHz) or Radio Quality (22 kHz)

or Telephone Quality (11 kHz)
Duration: Amount of time to capture in seconds

Return Value [MPEGFile: Name of resulting MPEG file

Table A.1: MPEG Capture Service Specification

59

Type | MPEGEnc

Type-
Hardware
Software
Vendor

Platform
Interace

Arguments

Return Value

FileConvert
None
MediaPalette version 1.2
Cinax, Inc.
Windows 95/NT
GUI and command line

AssetID: asset identifier
MPEGFile: Name of MPEG file to be converted
Codec: Must be one of following codecs:

Audio 14.4, Voice
Audio 28.8, Music - Mono
Audio 28.8, Voice
Audio 28.8, Music - Stereo
Video 28.8, High Action
Audio 56K Dial-Up Modem, Music - Mono
Audio 56K Dial-Up Modem, Music - Stereo
Video 56K Dial-Up Modem, Music
Video 56K Dial-Up Modem, Voice
Audio 56K ISDN, Music - Mono
Audio 56K ISDN, Music - Stereo
Video 56K ISDN, Music
Video 56K ISDN, Voice
Audio 112K, Dual ISDN, Music - Mono
Audio 112K, Dual ISDN, Music - Stereo
Video 112K Dual ISDN, Music
Video High-Bite Rate 200K, Music
Video High-Bite Rate 200K, Voice
Video High-Bite Rate 300K, Music
Video High-Bite Rate 300K, Voice

RMFile: Name of converted file in RealMedia format

Table A.2: File Conversion Service Specification

60

Type KeyframeExt
Hardware
Software
Vendor

Platform
Interace

Arguments

Return Value

Flashpoint Video Card
Virage VideoLogger
Virage, Inc.
Windows 95/NT
GUI

AssetID: asset identifier
Sensitivity: key frame extraction sensitivity. Range in [1, 100]
Duration: Amount of time to capture in seconds

VDFFile: Name of VDF file containing key frames

Table A.3: Key Frame Extraction Service Specification

Hardware
Software
Vendor

Platform
Interace

Arguments

Return Value

None
Virage C++ VDF API
Virage, Inc.
Windows 95/NT
command line binary created from C++ VDF API

AssetID: asset identifier
VDFFile: Name of VDF file containing key frames
Destination: Location where key frame files should be written

XMLFile: XML file containing listing of times of occurrence for
each key frame

Table A.4: VDF-to-XML Conversion Service Specification

61

Type | Vdf2Xml

Type KeyframeExt

Type Xml2Sql
Hardware
Software
Vendor

Platform
Interace

Arguments

Return Value

None
IBM Alphaworks XML For Java, IBM DB2, JDBC
IBM, Sun Microsystems
any
Java classes

AssetID: asset identifier
XMLFile: XML file containing listing of times of occurrence for

each key frame

None

Table A.5: XML-to-SQL Conversion Service Specification

62

Appendix B

System Infrastructure

Infrastructure consists of the common mechanisms that are needed across the three

layers of the integration framework. The infrastructure components that were needed

in the framework and are discussed in this chapter include a universally unique identi-

fier generator, a distributed file system, an event channel, and a data transfer service.

B.1 Universal Unique Identifier Generators

The universal unique identifier (known also as a UUID) is an important infrastructure

component. In a distributed system, we often need to create a unique object. The

best way to ensure that all references to the object are also unique is to give it a unique

name. For example, if we have multiple services running in parallel and sharing a file

system, we will need to make sure the services use unique file names when writing

new files. If two services use the same file name to write data, some data will be lost.

The purpose of a UUID generator is to generate unique names for objects. The

scheme that we use to generate UUIDs is specified in [8]. This scheme uses a 64 bit

timestamp, a 16 bit sequence number, and a 48 bit identifier base. The timestamp

is the current time in milliseconds. The sequence number is used in case more than

one UUID is created in the same millisecond.

The identifier base is a number that is supposed to be unique to the generator.

When the 48 bit MAC address of an Ethernet card is available to be used as the

63

16 bits 48 bits

001001...1011 000000....1 10101011011...10101

Timestamp Sequence Ethernet Address or
Number Pseudorandom Number

Figure B-1: Sample 128 Bit Universal Unique Identifier

identifier base, the UUID is guaranteed to be unique. However, in cases when the

MAC address is unavailable, a random number is used instead. In this case, the

UUID is not guaranteed to produce unique identifiers, although the probability of a

name collision occurring is extremely low. The identifier base, sequence number, and

timestamp are concatenated to form a 128 bit unique identifier. Figure B-1 shows a

sample UUID.1

An additional attribute of our UUID generator is that multiple generators can

be used in any number of locations. Generating unique identifiers in a decentralized

manner ensures that UUID generation will not be a performance bottleneck while

avoiding a single point of failure in our system.

B.2 Distributed File System

A distributed file system is used to share files and directories across multiple machines.

To provide for a uniform naming system for files across multiple platforms, we created

an platform independent abstraction for file names. The syntax of the abstraction is

similar to that of a URL.2

'Bill Graham, a researcher at the IBM Almaden Research Center, implemented the UUID gen-
erator used in the integration framework.

2URL stands for Uniform Resource Locator.

64

64 bits

B.2.1 Construction

The distributed file system was cobbled together using the NFS and SAMBA[9]

protocols.3 With these protocols, UNIX and Window 95/NT machine export di-

rectories which are then mounted on other machines. 4 Hence, the distributed file

system is implemented as a set of network file systems.

Given the amount of overhead for the NFS and SAMBA protocols, the file system

performs poorly for large data transfers. Currently, the file system serves as an interim

solution until a more robust and optimized distributed file system becomes available

for multiple platforms.

B.2.2 Uniform Naming

Different platforms have different ways of naming files. In the standard UNIX file

system, a single root directory exists from which all other files and directories may

be reached. In the DOS based FAT file system, the file system can have as many

as 26 root directories, each named by a letter in the alphabet. Within each of these

directories, the file system supports subdirectories. Both file systems thus support

hierarchical directory trees.

One minor difference between the FAT and UNIX file systems occurs in how they

separate names in a path name. In UNIX, the separator character is a slash, whereas

in DOS, the character is a backslash.

To hide this platform dependent detail, we use an abstraction called the VDFSFile.

The syntax used for the VDFSFile abstraction is similar to that of a URL. We use

the word "vdfsfile" as the protocol followed by three slashes. The rest of the URL is

the path name of a file.

As a convention, we resolve the VDFSFile root to the /vdfs directory in UNIX

3The NFS protocol is used to mount UNIX directories on UNIX workstations. SAMBA is used
to mount Windows 95/NT directories on a UNIX workstation and UNIX directories onto Windows
95/NT machines.

4 Aaron Van Devender constructed the distributed file system at the IBM Almaden Research
Center. In addition, he implemented the first version of the VDFS file abstraction to provide for
platform independent naming of file.

65

Naming System File Name
UNIX /vdfs/realvideo/videofile.rm
DOS V:\realvideo\videofile.rm

VDFS vdfsfile:///realvideo/videofile.rm

Table B.1: Comparison of Names per Naming System

file systems. On FAT file systems, the V: \ directory is the root. Table B.1 compares

these different naming systems for files.

With this VDFSFile abstraction, we can pass references to files across multiple

platforms. When a VDFSFile reference is passed to a service, the service determines

if it is operating on system with a UNIX or an FAT file system. The service can then

translate the VDFSFile to its native file name format depending on the platform.

B.3 Event Channel

System components send and receive events by creating clients that connect to the

event channel. If these clients produce events, they are event producers. If these

clients receive events, they are called event consumers. Clients that send and receive

events are called event adapters.

The event channel serves as an intermediary through which messages may be sent

from event producers to event consumers. When the event channel receives a message

from an event producer, it sends the message to all connected event consumers. We

call this message an event since it usually demands some sort of action of an event

consumer. Events are guaranteed to be received exactly once unless a failure occurs.

Using the event channel as an intermediate simplifies the task of producing and

consuming events. With an event channel, a program can broadcast an event to all the

event consumers without needing to know the number or location of the consumers.

The event channel thus provides a layer of indirection for communicating between

clients.

The event channel was implemented using Java RMI according to the CORBASer-

66

Table B.2: Sample VDFSFileMap file

vices specification for an event channel [10].'

B.4 Socket Copy Service

The socket copy service is an mechanism better suited for transferring large amounts

of data across a network [11]. The socket copy service was created because the

distributed file system was poorly suited for large data transfers.

The socket copy service works by opening a direct TCP connection between two

machines which are transferring a file. One of the machines is a server while the other

is a client. A server is typically placed on repository machines where large amounts

of data are transferred. Clients initiate connections with a server from some machine

in the system.

A client initiates a connection for a socket copy service by sending two VDFSFile

names to a server. One of the names corresponds to a source URL while the other is

a destination URL. With the source and destination URLs, the server and client can

determine if the file is to be transferred to the server or from the server. If the source

is located at the client and the destination at the server, the file is copied from the

client to the server. If the source is located at the server and the destination at the

client, the file is copied to the client from the server.

In order for the socket copy service to determine where a source or destination

'Bill Graham, researcher at the IBM Almaden Research Center, implemented a Java version of
the event channel for the integration framework.

67

Host Name VDFS File URL Native File
vilnius vdfsfile:///vilnius/temp/ F:\temp\

ngcs vdfsfile:///ngcs/temp/ /usr/local/src/
tv1000 vdfsfile:///tvlOOO/ E:\
xfiles vdfsfile:///xfiles/ E:\
viagra vdfsfile:///viagra/ E:\

ice vdfsfile:///ice/ /imagel/
realvideo vdfsfile:///realvideo/ /video/

file is actually located, it needs to be able to resolve a VDFSFile name to a native

file name. This information is maintained in a VDFSFileMap file. The VDFSFileMap

is a table that maps a VDFSFile name to a directory name and a host name. The

directory name is the native directory name referenced by the VDFSFile URL. The

host name is the name of the machine that exports the directory.

Table B.2 shows an example VDFSFileMap file. From the table, we can see that

the VDFSFile directory vdfsf ile:///tvlOOO/ is located on the host tv1OOO and is

the E: \ directory on that host.

Using this VDFSFileMap, the socket copy service can determine whether the file

to be copied and its destination is on the client or the server. If the socket copy

service cannot determine one of the valid cases, it automatically resorts to using the

distributed file system instead of the socket copy service.

Rough measurements showed that the socket copy service transferred files more

than an order of magnitude faster than our distributed file system.

68

Bibliography

[1] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.

ACM Transactions on Computer Systems, 2(1):39-59+, February 1984.

[2] Jay Ongg. An architectural comparison of distributed object technologies. Mas-

ter's thesis, Massachusetts Institute of Technology, 1997.

[3] Object Management Group, Framingham, Massachusetts. Common Object Re-

quest Broker: Architecture and Specification, 1997.

[4] Java remote method invocation specifications. Web page available at

http://www.javasoft. com/products/jdk/1. 1/docs/guide/rmi/.

[5] World Wide Web Consortion, Cambridge, Massachusetts. Extensible Markup

Language (XML) 1.0, February 1998.

[6] Robert Kahn and Robert Wilensky. A framework for distributed digital object

services. ARPA research project, Corporation for National Research Initiatives,

Reston, Virginia, May 1995. Soft copy located at

http://www.cnri.reston.va.us/home/cstr/arch/k-w.html.

[7] Diane Hillman. A user guide for simple dublin core. Web page located at

http: //purl.org/dc, July 1988.

[8] Paul J. Leach and Rich Salz. UUIDs and GUIDs. Internet Draft on Standards

Track, February 8, 1998.

[9] John D. Blair. SAMBA: Integrating UNIX and Windows. Specialized Systems

Inc., Seattle, Washington, 1998.

69

[10] Object Management Group, Framingham, Massachusetts. CORBAServices:

Common Object Services Specification, 1997.

[11] Rajat Mukherjee, October 1998. Personal communication.

[12] Butler W. Lampson, M. Paul, and H.J. Siegert (Editors). Distributed Systems -

Architecture and Implementation: An Advanced Course. Lecture Notes in Com-

puter Science. Sprinter-Verlag, Berlin, Germany; New York, New York, 1981.

[13] Sape Mullender (Editor). Distributed Systems. ACM Press, New York, New

York, 1993.

[14] Chris J. Date. An Introduction to Database Systems. The Systems Programming

Series. Addison-Wesley, Reading, Massachusetts, sixth edition, 1995.

[15] Wilson WindowWare, Inc., Seattle, Washington. Windows Interface Language

Reference Manual, 1997.

[16] David Curtis. Java, RMI and CORBA.

http://www.omg.org/library/wpjava.html, 1997.

Soft copy available at

70

