
An Interactive Multimedia

Continuously Learning Helpdesk System

(When Hal Met SALLY)

by

Marion L. Groh

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 21, 1999

Q Copyright 1999 arion L. Groh. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of ElectricAl Engineering and Computer Science

May 21, 1999

Certified by_
Pat ick H. Winston
-TVes:ie SupeWj sor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

S40

An Interactive Multimedia
Continuously Learning Helpdesk System

(When Hal Met SALLY')
by

Marion L. Groh

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 1999

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

SALLY is a helpdesk system implemented in The Intelligent Room. It is an incrementally

learning system, which automatically expands its own knowledge. The natural language

model of SALLY is simple - a combination of a parsing script and a regular grammar. In

addition, SALLY provides help in multimedia form: spoken answers, displayed
information, actions.

Thesis supervisor: Patrick H. Winston
Title: Ford Professor, MIT Artificial Intelligence Laboratory

2

I In reference to the 1989 Award-Winning Comedy "When Harry met Sally" (Director: Rob

Reiner; Writing Credits: Nora Ephron; Distributed by Columbia Pictures)

TABLE OF CONTENTS

1 A NEW KIND OF HELP-.......... 6

1.1 O VERV IEW- ------ ------ ------... 6

1.2 CONTRIBUTIONS ... 7
1.3 GOALS AND PRINCIPLES... - 7

1.3.1 Scenario .. 7

1.3.2 Categories of Help..10
1.3.3 Not A Manual 11

1.3.4 Principles-.. 11

1.4 GLOSSARY OF TERMS ... 13

2 H AL ...----.. - -- - -- - - - - - --.. 14

2.1 BACKGROUND ... 14

2.1.1 An Intelligent Environment.. 14

2.1.2 Equipm ent and Facilities ... 15

2.2 HAL'S APPLICATIONS ... 16

2.2.1 F.LR.E... 16
2.2.2 Command Post of the Future .. 17

2.3 HAL AGENTS 18

2.3.1 M etaglue 18

2.3.2 The Speech System .. 20

3 THE NATURAL LANGUAGE PROCESSING UNIT ... 23

3.1 THE GRAMMAR ... 23

3.1.1 W hat Is A Regular Grammar? .. 24

3.1.2 SALLY Uses a Regular Grammar .. 25

3.1.3 SALLY's Command Grammar ... 26

3.1.4 Additional Features .. 27

3.2 THE SCRIPT 27

3.2.1 G eneral Explanation.. 28

3.2.2 From Input To O utput 30

3.2.3 W hen All Else Fails, Try Xnone .. 31

3.2.4 Additional Script Features ... 32

3.2.5 Variable-ize The Output.. 33

4 AUTOMATIC KNOWLEDGE ACQUISITION ... 35

4.1 A DYNAM IC DATA STRUCTURE .. 35

4.2 THREE STAGES: LOAD, LEARN, SAVE... 36

4.3 W HAT IT LEARNS .. 37

3

4.4 W H EN IT L EARN S ... 39

4.5 How IS THE DATA STRUCTURE MODIFIED?39

5 M ULTIM EDIA O UTPUTS... 42

5.1 WHY WE WANT MORE THAN SPOKEN UTTERANCES 42

5.2 WHY PLACE THE ACTIONS IN THE SCRIPT ... 43

5.3 ACTION TAGS ...-- -- 43

5.4 THE ADVANTAGE OF EMBEDDED ACTION TAGS.. 44

5.5 ACTION TAG-AGENT METHOD CORRESPONDENCE....................................... 45

6 BENEFITS, LIMITATIONS, AND NEXT STEPS .. 46

6.1 R ELATED R ESEARCH.. 46

6.1.1 The Intelligent Room ... 46

6.1.2 H elpdesk System s.. 47

6.1.3 N atural Language.. 48

6.1.4 H CI (Social A gents).. 50

6.2 SALLY'S ADVANTAGES..51

6.2.1 Advantages For The Programmer.. 52

6.2.2 Advantages For The User ... 53

6.2.3 Natural Language Processing Advantages ... 55

6.3 ISSUES AND LIM IrATIONS 56

6.3.1 SALLY's Own Lim itations ... 57

6.3.2 SALLY Inherits Exterior Limitations... 59

6.4 EXTENSIONS .. 61

7 CONTRIBUTIONS...63

B IBLIOGRAPHY 65

4

TABLE OF FIGURES

FIGURE 1: HAL ..------..... . - ---.. 15

FIGURE 3: SAMPLE INTERACTION WITH F.I.R.E. .. 16

FIGURE 4: SAMPLE F.I.R.E. SCREEN DISPLAY .. 17

FIGURE 5: HAL'S AGENTS ... 19

FIGURE 6: VOCABULARY OF THE SPEECH SYSTEM .. 21

FIGURE 7: SAMPLE UTTERANCE THROUGHOUT THE SPEECH SYSTEM ... 22

FIGURE 8: THE NATURAL LANGUAGE PROCESSING UNIT .. 23

FIGURE 9: SAMPLE REGULAR GRAMMAR ... 24

FIGURE 10: HYPOTHETICAL GRAMMAR FOR THE LAMP AGENT ... 25

FIGURE 11: SALLY'S COMMAND GRAMMAR .. 26

FIGURE 12: EXCERPT FROM A SAMPLE SCRIPT .. 29

FIGURE 13: SAMPLE USE OF XNONE .. 31

FIGURE 14: SAMPLE USE OF SYNONYMS.. 32

FIGURE 15: SAMPLE USE OF PRE AND POST .. 33

FIGURE 16: THE ANSWER USES PART OF THE QUESTION .. 34

FIGURE 17: LOAD, LEARN AND SAVE STAGES... 37

FIGURE 18: LEARNING SCENARIO.. 38

FIGURE 19: MODIFICATION OF DATA STRUCTURE WHEN LEARNING OCCURS ... 40

FIGURE 20: REASSEMBLY RULES WITH ACTIONTAGS ... 44

5

1 A NEW KIND OF HELP

1.1 OVERVIEW

Companies who develop complex systems require helpdesks to support these systems.

Although in the past such help has been offered in the form of manuals and technical

support on the phone, helpdesk systems have recently moved towards three other types of

media: automated telephone systems ("for e-mail help, press 1"), installation CD-ROMs

("Did the test page print successfully?"), and the Internet (e.g. Dell's "Ask Dudley"

[Del199]).

SALLY is a helpdesk system developed at the MIT Artificial Intelligence Laboratory for

use in Hal and The Intelligent Room (two intelligent environments). SALLY's

conception, design and performance constitute the subject matter of this thesis.

SALLY's goal is to help users interact with Hal, and to help them learn new functionalities

in/of Hal. SALLY is based mostly on speech interaction, and its knowledge is a

combination of a grammar and a script. SALLY can learn new answers, and therefore

develop a more accurate and extended knowledge. In addition, SALLY makes use of

multiple kinds of output to aid users; for instance it may act, or display a screen of

information, or speak in order to convey its answer.

6

1.2 CONTRIBUTIONS

The SALLY system achieves numerous contributions, which are reviewed in further detail

in Chapter 7. Here, I present a brief list to keep in mind. It should provide some

perspective on the system, its value and achievements.

The SALLY system:

* Establishes a convenient and useful system that binds together diverse fields of

research

+ Demonstrates acquisition of natural, agreeable answers from an automatic helpdesk

system

+ Demonstrates that simple language models support useful help

+ Demonstrates incremental and unobtrusive collecting of most helpdesk knowledge

+ Demonstrates ease of multimedia helpdesk responses to user inquiries.

1.3 GOALS AND PRINCIPLES

1.3.1 Scenario

To illustrate what SALLY actually does, I present the following typical interaction.

7

SALLY, what can I do? Line 1

You can talk to Hal, turn devices on andoff, run the command post of the Line 2

future.

SALLY, what is the command post of the future? Line 3

The command post gives geographical information. Line 4

O SALLY, please show me a map of Paris. Line 5

[SALLY displays a map of Paris on the wall] Line 6

SSALLY, what else can the command post do? Line 7

SThe command post a/so understands zoom and move commands. [SALL Y Line 8

zooms in and out to illustrate its answer.]

8

Reima

EParis

-Bernm

usanne

Ge

Lo

> Thank you. SALLY, how do I change the time on the VCR? Line 9

> Do you want to set recording times? [SALLY displays the webpage of the Line 10

VCR's on-line manual, at the Recording a show section.]

> SALLY, no, I want to change the clock on the VCR. Line 11

> So, SALLY, how do I change the time on the VCR? Line 12

> To change the clock on the VCR, press the watch button, then ... [SALLY a/so Line 13

displays the Resetting the clock webpage of the VCR manual.]

In its last answer, SALLY shows that it learned from previous interactions. It doesn't ask

again, "Do you want to set recording times?" as it did in line 10. Instead, it shows that it

9

learned from the user's previous answer (line 11), and provides an adequate multimedia

response for an inquiry regarding the VCR's clock (line 13).

The above scenario presents a simple interaction between SALLY and a user. It is

important to note that SALLY understands various questions, that SALLY's answers reveal

different layers of detail (e.g. general information, specifics about the command post),

that it seamlessly interacts with its testbed (displays the map), and uses various kinds of

output (zoom and talk).

1.3.2 Categories of Help
Helpdesks are required to handle a number of topics. In the case of SALLY, these

categories are:

" Metaglue (2.3.1) - the distributed agents system SALLY runs on

e The speech system

" The vision system

" The information retrieval systems (2.2.1)

* The embedded physical devices (2.1.2)

e The display systems

* The intelligent multi-modal drawing and sketching program [Weisman98]

" The command post of the future (2.2.2)

* SALLY itself.

10

1.3.3 Not A Manual

No one will sit down and write a manual about Hal for three reasons at least. No one

would read it. It would be obsolete even before it were printed. Finally, it would seem

like a complete anachronism given the type of research done in Hal. In addition, it has

been observed that at any given time, no single person is aware of the current state of all

components of the room. Keeping up with the research done in Hal is a full time job, and

one that I want to delegate to the room itself.

1.3.4 Principles
SALLY's development is determined by a set of key principles. These guiding principles

are:

" Usefulness,

" User friendliness,

" Robustness,

e Scalability,

" Manual override ability.

1.3.4.1 Usefulness
Indeed, SALLY is not meant as a theoretical stunt, but rather as a pragmatic, useful tool.

It is not merely a study in the field of HCI or natural language processing, agent systems

or intelligent environments. Rather, SALLY is a system built using the guiding principles

previously outlined to solve a real problem: help people effectively.

11

1.3.4.2 User Friendliness

In addition, SALLY - as a help system - is based on user interaction. I therefore judged it

to be fundamental that the user be able to enjoy the interaction as much as possible. This

principle of user friendliness carried in its wake several others, among which simplicity

(a user should not need help on how to use a help system). Coherence, as well as an

intuitive interface (i.e. speech input for SALLY), also followed.

1.3.4.3 Robustness

As in most HCI systems, it is very difficult to predict human behavior. I thus wished the

system to robustly handle unpredicted or noisy inputs (the flexibility of the script came in

handy).

1.3.4.4 Scalability

Likewise, the domain in which systems such as SALLY will be applied is still somewhat

undefined at this point - private or commercial use, small or larger scale. Our scalability

principle is meant to ensure that SALLY is not restricted to a certain type of application.

1.3.4.5 Manual Override Ability

Finally, I chose to keep humans in control. At any point in time, a person may override

SALLY's answer, modify its script, or shut it down. It is highly desirable to include this

ability to manually override a computer system. Indeed, humans generally feel that they

cannot understand machines; they feel they cannot predict or control them. As a

12

consequence, users feel more secure if they know that they can take the upper-hand at

any time.

1.4 GLOSSARY OF TERMS

o Al: Artificial Intelligence

o HCI: Human Computer Interaction

L Helpdesk: helpdesk system

o the Laboratory: the MIT Al laboratory

o Metaglue: computational glue that holds Hal's components together (2.3.1)

o the Project: Hal and its related components

o the Room: Hal/The Intelligent Room

" SALLY: the topic of this thesis; an interactive learning help system

13

2 HAL

2.1 BACKGROUND

2.1.1 An Intelligent Environment

Hal is an Intelligent Environment [Patch98]. It is a 27' by 37' room containing

microphone, computers, projectors, and cameras, and other electronic devices. The

room, however, has the appearance of a living room; it contains a door and a window, a

TV, a sofa, a coffee table and shelves. Hal provides an agreeable user interface, and

allows users to inhabit a smart environment that eases certain tasks. For instance, if a

user lies down on the couch, Hal will automatically play some light music and ask the

user when she would like to wake up. The possibilities in Hal are endless. In the next

section, I present a couple of Hal applications, and the structure of Hal in order to give a

brief understanding of the testbed that SALLY runs on.

14

Figure 1: Hal

2.1.2 Equipment and Facilities
Hal contains the following software and hardware for SALLY to interact with:

= Desktops, laptops,

- Microphones, cameras, TV, VCR, stereo, X-10 devices, projectors,

m The speech equipment (2.3.2): IBM's ViaVoice, British Telecom's Laureate,

- Speech agents that handle regular grammars and the routing of utterances,

= Java and Metaglue (2.3.1)

15

2.2 HAL'S APPLICATIONS

2.2.1 F.I.R.E.

F.I.R.E. is an application that runs in Hal; it stands for Friendly Information Retrieval

Engine. Users designate a particular topic, and F.I.R.E. returns documents that are

relevant for this topic. Figure 3 provides a sample interaction between F.I.R.E. and a

user.

USER: I need information.

F.I.R.E.: What do you want information on?

USER: Artificial Intelligence

F.I.R.E.: You want information on Artificial Intelligence, correct?

USER: Yes

F.I.R.E.: Please wait while I am looking for the information on Artificial Intelligence ...

[Then F.I.R.E. presents a screen.]

Figure 3: Sample Interaction with F.I.R.E.

Following this dialog, a screen appears that allows the user to refine the search

recursively. Once satisfied, the user asks F.I.R.E. for one or more of the documents that

it is presented with.

Figure 4 presents the display offered by F.I.R.E. after a user asked for information

regarding Travel Agents.

16

Figure 4: Sample F.I.R.E. Screen Display

2.2.2 Command Post of the Future
The Command Post of the Future provides geographic and strategic information. The

application covers most of the globe - from global maps to very detailed ones. It is also

17

17% of 781 documents have been fetched so
far

Potentially relevant
phrases: - worldtsizc 19,Scorc 21,99684u falsc w

0Travel and Vacations(size: 12> Score:

* Travel and Vacations Used: Not Yet 14.306963 uz false, w -1

*Agents and Services Used: Not Yet0e Aent an Sevics Ued:NotYetBusiness and Finance(size: 2) Score:, 1.9938973
* Activities and Interests Used: Not Yet
* Australia and Oceania Used: Not Yet
* Beaches and Islands Used: Not Yet Reference a ducatontsize: 2>Score:

* Countries A-C Used: Not Yet 9938973 u: raIse w: -1

1 The most likely
categories

. Cruise Agents (as in Cruises as in Travel
and Vacations)

. Agents and Services (as in Australia
as in Travel and Vacations)

. US National Agents (as in Agents and
Services as in Travel and Vacations)

. Agents and Utilities (as in Search Tools
as in Computers and Internet)

. Florida (as in Beaches and Islands as in
Travel and Vacations)

able to report on meteorological conditions. The Command Post enjoys an interactive

interface that handles gestures as well as speech inputs from its users. It understands a

variety of commands, such as "show me [a country/a city]", "zoom in", and "move

north".

2.3 HAL AGENTS

2.3.1 Metaglue

Distributed software agents run in Hal. The software system that keeps agents happily

interacting is called Metaglue [Phillips98]. Metaglue abstracts a layer of details for agent

programmers. It is built on top of the Java programming language. Metaglue maintains a

catalog of agents running at any given time in the room. It allows agents to rely on other

agents, and to specify specific software needs they may have in case they need to be

relocated to another platform - for instance vision agents specify that they require an SGI

station.

18

Figure 5: Hal's Agents

Metaglue significantly influenced the design of SALLY - which is why Metaglue is

presented here in some details. Indeed, from Metaglue, SALLY gained the idea of small

agents, of its interface, and the constraint of its programming language. Mostly,

Metaglue made me think of SALLY as an agent rather than a system of its own. If we

understand that the behavior of the agent depends not only on its own specifications, but

also on those of its environment, then we understand the importance of Metaglue for

SALLY - and the importance of being able to seamlessly gather information regarding

anything that is going on in The Intelligent Room.

19

2.3.2 The Speech System

Hal holds an elaborate speech system. At the beginning of the chain comes the speech

recognizer (currently IBM's ViaVoice 2), which turns sound waves into words. It is

closely followed by the speech router which memorizes which agent is interested in

which utterance, and sends only interesting utterances to its agents. Each agent also

holds its own speech handler which maps utterances to responses. Finally, if the response

is vocal, the speech synthesizer (British Telecom's Laureate3) transforms a series of

written words into a spoken answer. A microphone and a pair of speakers serve as

intermediaries to the speech recognizer and speech synthesizer respectively.

While Figure 6 clarifies the vocabulary that surrounds the speech system, Figure 7

presents the different stages of an utterance in SALLY.

2 http://www.ibm.com/speech

3 http://innovate.bt.com/showcase/laureate/index.htm

20

spoken

Figure 6: Vocabulary of the Speech System

21

can use
"You can use
the multimodal system

Figure 7: Sample Utterance throughout the Speech System

22

"What can I

3 THE NATURAL LANGUAGE PROCESSING UNIT

3.1 THE GRAMMAR

SALLY uses a regular grammar and a script-based system to process natural language.

Section 6.2.3.2 provides further discussion on the advantages of combining the two.

Figure 8 shows how the grammar and the script fit together: the command grammar sits

on top of the script; both produce outputs.

Figure 8: The Natural Language Processing Unit

23

User's Inquiry

. ommand Graniniar

Script
Parsing Question-to-Answer
Program File Output'

Answer

Distributed n

Agents
System

3.1.1 What Is A Regular Grammar?

SALLY uses a standard Regular Grammar [Gronforst92]. In the case of natural language

processing, regular grammars specify how sentences can be structured - from words to

phrases to sentences. In other words, grammars describe possible word paths to

constitute a sentence - very much like a finite state machine diagram describes possible

transitions of a system.

noun = tree |forest I sequoias

verb = grow I exist |can be found

adverb = fast I densely

adjective = big I tall dark I somber

article = the I a

nounphrase = article adjective noun article noun I adjective noun

verbphrase = verb adverb

sentence = nounphrase verbphrase

Figure 9: Sample Regular Grammar

Figure 9 presents a regular grammar. There are two distinct types of lines in the

grammar.

= "article = the I a" is of the first kind. It defines the category article to be either the

word "the" or the word "a".

" "verbphrase = verb adverb" is of the second kind. It gives a name to a sub-sentence

(in this case, verbphrase), and defines it to be exactly - nothing more and nothing

less than - a verb category followed by an adverb category. For instance, "grow

24

fast", "exist densely", and "can be found densely" are all legal verbphrases. "Grow

dark", "exist" or "sequoias grow densely" on the other hand are invalid verbphrases.

(Dark is not an adverb, exist is missing an adverb, sequoias is an unwanted noun.)

Therefore the grammar presented in Figure 9 recognizes sentences such as "Tall sequoias

grow fast".

3.1.2 SALLY Uses a Regular Grammar

SALLY uses a regular grammar to correspond with Hal's grammar router - any speech-

enabled agent in Hal uses grammars. Those grammars let agents register utterances with

the grammar router.

tumon = action article noun on

action = turn switch

article = theI a

noun = lamp l it
on = on

Figure 10: Hypothetical Grammar for the Lamp Agent

For instance, suppose the lamp agent has registered the grammar presented in Figure 10.

Suppose then that a user says, "Turn the light on."

turnon = action + article + noun + on

Turn the light on.

25

The sentence fits the pattern perfectly. The lamp agent has registered this utterance with

the grammar router. Therefore the grammar router can be trusted to relay to the lamp

agent that "Turn the light on" is just heard.

In Hal, grammars are kept very simple. Agents often rely on several grammars.

3.1.3 SALLY's Command Grammar

SALLY has a single regular grammar which takes care of sentences such as "SALLY ... ",

"Tell me about ... ", and "What do you know about X". We will refer to this grammar as

the command grammar. It also manages inquiries such as "Stop", "SALLY no", or "Tell

me more about that". Therefore it handles both explicit and implicit user requests.

SALLY's command grammar is presented in Figure 11. It is short and simple - yet it is

also very effective.

grammar hal.allinone;

public <start> = ("I have a question") {question};

public <stop>= (bye I stop I quit) {stop};

public <Sally> = sally {Sally};

public <more>= (tell me more I go on what else) {more};

public <no> = (no I nope) {nah};

public <test> = test {test};

public <help>= help {help};

public <thanks> = (thanks I thank you) {thanks};

Figure 11: SALLY's Command Grammar

26

3.1.4 Additional Features

The word "public" that precedes all utterances signifies that users may say any of the

above - none of the above are for internal purposes only. This makes sense given the

interactive nature of SALLY.

The words in curly brackets, such as [more] are tags that serve internal purposes. They

are sent to a program that handles speech input. This program calls on different methods

depending on the tag. For instance, "more" means that SALLY is prompted for another

answer of the same caliber as the previous one, whereas "no " means that SALLY is about

to be taught a new answer.

3.2 THE SCRIPT

Despite an apparent contempt in the literature for systems that utilize a simple pattern-

matching algorithm in lieu of a complex linguistic model of language - scripts are based

on pattern-matching - Weizenbaum, Loner, Hajicova and Reilly present successful

systems without linguistic complexity (Section 6.1.3.2). In addition, a help system's

knowledge of language need not be profound. A help system is therefore an excellent

candidate for a script.

27

SALLY'S script is barely more complicated than a standard one such as Eliza; it only

holds certain additional key state variables, and a method to save the script.

3.2.1 General Explanation

A script takes a sentence as input and produces a sentence as output4 . A script file is a

text file that describes how to pattern match on a sentence, and how to produce a sentence

as a response to the first one. The pattern matching is done first on keywords, then on

patterns including the keyword - i.e. strings of particular characters interspersed by

strings of any character in between. For a given pattern that is matched, the script

program produces one of several answers.

A script includes the following basic components: keyword, priority number,

decomposition rule, and reassembly rule. A script file contains several keywords -

words of the English vocabulary that are likely to appear in the input sentence. Each

keyword is given a priority number. In case several keywords appear in a sentence, the

one with the highest priority is given precedence over the others. A list of decomposition

rules is also associated with each keyword. A decomposition rule describes a pattern to

be matched - it describes how a sentence might be decomposed into fixed words and

variable segments. Finally, each decomposition rule owns a list of reassembly rules.

Each reassembly rule describes what answer to produce in case the decomposition rule it

28

Here we describe scripts that are similar to the one at the core of Weizenbaum's ELIZA
program [Weizenbaum66].

belongs to is matched. The term reassembly rule comes from the fact that each

reassembly rule describes how bits of sentences are reassembled into an answer.

Therefore the script is a series of keywords, priorities, decomposition rules and

reassembly rules. An excerpt from a sample script might look like:

Keyword Priority number

Decomposition rules

Figure 12: Excerpt from a Sample Script

Figure 12 specifies the following script structure:

+ Churches

+3

+ * Gothic churches *

keyword

priority number

decomposition rule

29

key: churches 3

decomp: * Gothic churches *

reasemb: Gothic churches are characterized by ...

reasemb: The Gothic period extended from ... to

dec p: * Roman churches *

Reassembly rules

* Gothic churches are characterized by...

One final word on decomposition rules: a star (*) means, "match anything". "* Gothic

churches *" is the actual pattern of words to be matched - it is not the name of a rule, but

the rule itself. And the rule specifies that all of the following

What do you know about Gothic churches ?

Tell me more about Gothic churches

When were Gothic churches built?

match the pattern specified in

* Gothic churches *

3.2.2 From Input To Output

The script is associated with a program that builds a key stack of all keywords listed in

the script - ordered from highest to lowest priority. Starting with the first one on the

stack: if keyword k appears in the input sentence S., then the script program attempts to

match S with the first decomposition rule d associated with k. If this decomposition rule

fails, the program tries to match S with d+1 - k's next decomposition rule. If all of k's

decomposition rules fail, the program tries to match S with the decomposition rules of

k+1 - the next keyword on the stack that appears in S.

30

reassembly rule

When decomposition rule d is matched for the first time, the script's answer is the first

reassembly rule r associated with d. If d is matched again, the answer is r+1 - d's next

reassembly rule. In other words, the script program rotates through the reassembly rules

of a decomposition pattern.

3.2.3 When All Else Fails, Try Xnone

The script program calls on the "xnone" keyword when none of the keywords appear in

the input sentence, or when all decomposition rules fail to match. Xnone is a script's

default match. For instance, a script might handle it as follows:

Figure 13: Sample Use of Xnone

31

key: xnone 0

decomp: *

reasemb: I didn't understand, could you repeat please?

reasemb: Can you phrase that differently perhaps?

reasemb: Would you like to learn more about the command post of the future?

reasemb: Do you want to learn about Luke's drawing system?

reasemb: I'm having trouble understanding you.

reasemb: Please speak more clearly.

reasemb: Say that again?

reasemb: Can you repeat please?

The priority of 0 parallels the fact that xnone is a default - therefore it should not take

precedence over any other possible match.

3.2.4 Additional Script Features

3.2.4.1 Synonyms

On top of the basics come some convenient apparatus to handle sentences in an

intelligent and sophisticated manner. One of them is the concept of synonyms. The

scriptwriter may declare synonyms at the beginning of the script. This allows that the

scriptwriter does not have to duplicate decomposition and reassembly rules for every

synonym. The use of synonyms in a script looks like:

synonym: C sharp I D flat

synonym: C do

synonym: E | mi

synonym: A | la

Figure 14: Sample Use of Synonyms

3.2.4.2 Pre and Post

Pre and Post are two other of these useful script features. Pre handles the conversion of

sentence bits before the sentence goes through pattern matching. Post handles the

conversion after the pattern matching. For instance, "my" in a question gets translated to

"your" in the answer.

32

Figure 15: Sample Use of Pre and Post

3.2.5 Variable-ize The Output

Yet another useful characteristic of scripts is the possibility to reuse parts of the question

in the answer. This allows us to set the output as a variable that depends on the input.

For instance in Figure 16, (2) corresponds to the second star in the pattern. Therefore if

a user asks "Do you remember Bastille Day 1989?", the script program will answer "Did

you think I would forget Bastille Day 1989?". If, however, a user asks "Do you

remember my birthday?", the script program will answer "Did you think I would forget

your birthday?".

33

pre: certainly yes

pre: nope no

post: my your

post: mine yours

post: am are

keyword: remember 5

decomp: * do you remember *

reasemb: Did you think I would forget (2)?

Figure 16: The Answer Uses Part of the Question

A script is the association of a text and a parsing program. Together they take a sentence

and produce a (corresponding) response.

34

4 AUTOMATIC KNOWLEDGE ACQUISITION

Here is a simple example of how automatic script modification occurs. Say an

inexperienced user walks into Hal with one of the people working on the project, and

asks SALLY to tell him how to magnify the current display. SALLY currently does not

have in its script or grammars any knowledge of how to handle this question. It might

answer that it does not know. At this point, the person who works on the project can

simply say, "SALLY, no, to magnify say Zoom in". SALLY will parse the sentence,

recognize that this is an attempt to correct its script, and add a new decomposition pattern

and reassembly rule to its internal data structures. If the inexperienced user tries again

"SALLY, how do I magnify the display?", SALLY will this time answer "To magnify say

Zoom in".

4.1 A DYNAMIC DATA STRUCTURE

Scripts are typically understood to be clumsy, outdated, and static systems. The SALLY

system, however, is able to modify its knowledge over time. This dynamic characteristic

is at the core of the system; it allows the system to learn additional knowledge. It is also

one of the most powerful features of SALLY.

35

One of the early concerns was that I might not be able to dynamically change the internal

data structure that holds the knowledge of the system. If this were the case, I would have

had to reload a script every time any change had to be made to the knowledge data

structure. This concern turned out to be unfounded.

4.2 THREE STAGES: LOAD, LEARN, SAVE

There are three stages that allow SALLY to have a dynamic data structure - load, learn

and save. From a static script file, SALLY builds a data structure that contains the

equivalent information (load stage). During interactions with users, SALLY accesses this

data structure and modifies it (learn stage). At the end of an interaction, it saves the new

data structure back in script file format (save stage). Therefore, when SALLY runs next,

the newly learned knowledge is loaded. Learning is not lost.

The following diagram summarizes adequately the state of the system during load, learn,

and save modes.

36

Figure 17: Load, Learn and Save Stages

4.3 WHAT IT LEARNS

What SALLY learns from its users are pairs of a question and an answer. Indeed, it learns

to optimize its answers and make them as helpful as possible.

Let us use the (q, a) shorthand to signify a question and its answer. If at one point

SALLY's knowledge contains the (q, a) pair, and that the answer a is judged to be

37

Key- churbes 3
decomp *Gothic churches*

easseab: Gothic eurches are characterized by
reasemb: The Gothic perodilutedfrom to.

decomp: * Rosuan dhurches *
resmb: Roman curchsehes

reasemb: Roman chorches were built around

Ke-rat-mS (
comp: * atrium*

eeaomb: The atdm isped of aRe anhoe .

reasemb: The atrium isusuallylocated atthe center ofthe houe.

reaseb: The aim often cordains a pool

Learn (update)

Save

(end)

Key: churches 3
&comp: * Gothic churches *

resomb: Octhic churches ae characteriedby

resoemb: TheGothic penodlastedfrom . to..

decomp: * Roman durches *
resetmb: Roman ceurcheshave
ressemb: Roman elurches were built around ...

Key ateou 5
decomp: *what* atrium

reasomb: The dim is pat of a Rem an house.

ressemb: The ehium is usually located at the center of the house.

ressemb: The abim oen coentains a pool

decomp: Iwhece * tlunoI

Load

(start)

inadequate, then SALLY will learn a better (q, a') that will have precedence over the old

(q, a) pair.

Person I (inexperienced)

"Sally, how do I magnify the display?" Sally
"I do not un<

Person E (experienced)

"Sally, no, to magnify say 'zoom in'." Sally

"OK"

(At a later time)

Person I'

"Sally, how do I magnify the display?" Sally

"To magr

Figure 18: Learning Scenario

38

4.4 WHEN IT LEARNS

SALLY acquires knowledge when it is told that its answer is unsatisfactory. Starting a

sentence with "SALLY, no" signals that the previous answer was inadequate, and that

someone is about to provide a better answer that SALLY should remember.

In other words, SALLY learns when three conditions are met:

+ Someone asks for help,

* SALLY's answer is insufficient,

+ Someone provides a better answer.

4.5 How IS THE DATA STRUCTURE MODIFIED?

SALLY does not exactly hold a table of questions and answers. The (question, answer)

pair metaphor corresponds to the input provided to the script program and the output

produced by the script program. To learn a new answer means to modify the structure of

the script. What does SALLY really do to its internal data structure when it is told that its

answer is disappointing?

Question q triggers answer a. Question q is matched in the script with keyword k,

priority p, decomposition rule d, and reassembly rule a (the answer). Then SALLY is

taught a better a' - for the exact same q.

39

Thus the sub-tree hanging from the current keyword k is modified: a decomposition rule

d' is added that matches q exactly. To this decomposition rule I provide a reassembly

rule: the desired answer a'. (This holds true even if keyword k is the default xnone

keyword.) Figure 19 presents a sample modification of the data structure.

i.)
Key diplayS

decornpq dispiy

reasent: I do not understand.

~..)

+ Unsatisfying answer

magnif say 'zoom in' ."

Key: diplay 6

dasmp:*hmwde ngyheds*
rE. Temagify sy'm .b

New answer . d,.., ,,,
rfesentr. i do nut understand.

Figure 19: Modification of Data Structure when Learning Occurs

The logic is that if sentence q triggers keyword k, then sentence q again will still trigger

k in following interactions. It is guaranteed that next time q is spoken, keyword k will be

40

accessed and decomposition rule d' will be matched. In other words, from then on, a' is

assured to be the answer any time q is the question.

As yet, I do not modify either the priority or the keyword. If I did, I would lose the

guarantee that the script program behaves as expected. For instance, certain questions,

which are currently correctly answered, might then match another decomposition and

produce an incorrect answer. Or the current question q might match another

decomposition rule in another keyword - the learning would be wasted.

It is conceivable, however, to teach SALLY new keywords and rules. This interaction

would require a slightly more complicated dialog design. It would be useful, nonetheless,

if a new category were to be added to the system supported - such as adding a new

application in Hal.

41

5 MULTIMEDIA OUTPUTS

Along with automatic script acquisition, one of SALLY's most salient features is its ability

to juggle outputs of different kinds. Not only does it use vocal feedback, but it also

displays information in order to keep a low-intensity vocal channel, and presents some

sample actions and interactions at the same time as they are explained. Therefore the

help system is not limited to one media.

5.1 WHY WE WANT MORE THAN SPOKEN UTTERANCES

The script as described above is a standard script and one that is used as a start in SALLY.

Very soon, however, it became clear that I wanted more than just spoken utterances as

responses to our questions. This came about for four reasons. Not only would it make the

system much more fun and interesting. It would also make SALLY a better pedagogical

tool - varying the kinds of output and calling on several senses of the user increases the

user's chances of learning and remembering. In addition, this would allow us to shorten

the vocal responses if it combined them with other feedback. Finally, The Intelligent

Room and Hal are highly dynamic and multi-dimensional environments that are best

described with a combination offeedback methods.

42

5.2 WHY PLACE THE ACTIONS IN THE SCRIPT

I have included actions in SALLY by embedding them in the script - together with the

regular string of text. Our reasoning is the following. The script's output is examined in

any case - and spoken out loud in the old case. Therefore it does not add much work to

look for action tags at this point. The other reason is that adding the actions anywhere

else would require a table specifying which actions correspond to which sentences,

whereas no such table is needed if actions are directly included in the script. By

embedding actions in the script, parsing and matching efforts are not duplicated.

5.3 ACTION TAGS

Action tags look like "!zoomin". They are one-word tags preceded by an exclamation

point. Sentences in the script no longer look like every day sentences, instead every token

in the sentence starts with a tilde, "-". Let's assume that I want to say, "Let's start the

music", and accompany this utterance with music starting to play. Then a reassembly rule

would look like:

43

reasemb: -Let's start the music -!startmusic

or

reasemb: -Let's -!startmusic -start the music.

Figure 20: Reassembly Rules With Action Tags

The second sentence in Figure 20 reveals that it is possible to embed actions in the

middle of vocal responses.

5.4 THE ADVANTAGE OF EMBEDDED ACTION TAGS

It is highly beneficial that the location of action tags is not restricted to the end of a

sentence: it adds much flexibility to the SALLY system. There is no need to wait until the

end of a sentence to trigger an action. In addition, in case a sentence is to trigger several

actions, those actions do not have to be round up at the end of a sentence. Instead, they

may be scattered throughout the sentence as is appropriate. Besides, in some cases,

embedded actions are the only action tags that make sense - particularly if I were to

describe two opposite actions in the same sentence. In this last case, I can describe the

first action, trigger it, then describe the second one and trigger it. For instance, the

sentence "You can say 'Zoom in' or 'Zoom out'." naturally becomes

"-You can say 'Zoom in' -!zoomin -or 'Zoom out' -!zoomout."

44

5.5 ACTION TAG-AGENT METHOD CORRESPONDENCE

With the action tags described above, the system still needs a way to decrypt what to do

with those tags. As explained above, and for reasons of efficiency, this parsing is done

right after the script program returns its answer to the SALLY Agent. As the system

stands now, the agent looks for action tags it knows. For each known tag, it calls on a

method of the agent.

For instance, say we go back to the !zoomin example, then the SALLY Agent calls the

Zoom method of the Display agent with adequate parameters.

45

6 BENEFITS, LIMITATIONS, AND NEXT STEPS

6.1 RELATED RESEARCH

This project touches upon many areas of research, and each of these areas encompasses a

vast literature of its own. I restrict this section to the references that directly inspired me.

I will first cover The Intelligent Room and related projects. A brief overview of research

on helpdesk systems follows. Finally, I will look into natural language issues, and the

field of social agents.

6.1.1 The Intelligent Room

6.1.1.1 Research Done in The Intelligent Room

The Intelligent Room is the testbed on top of which SALLY was developed. In order to

get a better understanding of the various components of the room, one might want to look

at Coen's AAAI paper on Principles for Building the Room [Coen97], and the MIT

Artificial Intelligence abstract on the project [Coen98]. [Coen99] describes the

importance of Context-Enhanced Speech Recognition.

6.1.1.2 Organization of Agents

All components in the room are represented as simple software agents organized in

societies - a concept inspired from Minsky's The Society of Mind [Minsky88]. Agents

run on Metaglue, an extension to the Java programming language that provides high-level

46

support for writing large groups of distributed software agents that interact with each

other [Phillips98].

In addition, the agents are organized in layers - where each layer specifies a new, more

complex level of behavior. This model is inspired from Brooks' model of Subsumption

Architecture [Brooks85].

6.1.1.3 Other Intelligent Environments

The Intelligent Room is not the only room of its kind. The following projects also

investigate intelligent environments:

* Reactive Room, Toronto [Cooperstock97]

* KidsRoom, MIT Media Lab [Bobick98]

" Visualization Space, IBM [Lucente98]

" Neural Network House [Mozer98]

" Classroom 2000 [Abowd96]

To get a more thorough account of the current research in Intelligent Environments, one

should look into the AAAI Intelligent Environments Symposium, 1998 [IE98].

6.1.2 Helpdesk Systems

Many companies have invested large funds and efforts into implementing helpdesk

systems for their clients. Currently, most helpdesks are staffed by humans who answer

47

telephone calls. As part of a growing trend, certain companies now possess automated

telephone answering systems ("For this, press that"), or intelligent telephone systems

("What stocks, and how many, would you like to buy?"). Examples include SUNDIAL -

an intelligent transportation system, Verbmobil, Bell's Automated Alternate Billing

Services, and SPEECHtel [Bernsen98]. Yet other helpdesk systems keep the intelligent

part and get rid of the speech interaction part: they place helpdesk software agents on the

Internet [Del199].

Nuance Communications is one of few companies developing intelligent telephony

systems [Nuance99].

6.1.3 Natural Language

Most of the sophisticated helpdesk systems mentioned above employ highly complex

speech models. Our approach is radically different.

6.1.3.1 Eliza

Weizenbaum created a program called Eliza [Weizenbaum66] - a script-based system

that responds to typed user input with a typed response of its own. Eliza simulates the

characteristics of Rogerian psychologists. Later, various tutorials were developed from

the Eliza system, including tutorials for n-Th dimensional physics [Hayward68].

[Eliza68] explains the nuts and bolts of writing scripts for the original Eliza system.

48

Charles Hayden coded Eliza in Java [Hayden98]; his code was used as a starting point for

integrating Eliza in Hal.

6.1.3.2 Scripts As A Representation Of Language

One might wonder why scripts were used in SALLY. In her Linguistic Aspects of Natural

Language Processing, Hajicova writes, "It has been noticed that even systems modeling

certain kinds of dialogues may be formulated without a detailed complex linguistic

analysis (cf. Weizenbaum's ELIZA). " [Hajicova92, p. 1 1]

Lenny Foner has studied Julia, a chatroom bot. He notices, "one of the interesting

things about Julia's construction is that her parser is shockingly simple, as such things go.

It is barely more complicated than Eliza's parser in some ways, in that it does not

decompose its inputs into parse trees or anything else that a linguist might suggest.

Instead, it does a very simple pattern-match on its input, looking for particular strings of

characters separated by strings of any characters in between." [Foner97]

Reilly at CMU developed a simulation of baseball card trading. His characters also

handle natural speech as a "search for patterns of keywords for language understanding".

[Reilly96, p. 115] Whalen describes another such system, CHAT [Whalen96].

Finally, many others have investigated what is the right model for natural language.

Winograd designed a procedural model for natural language understanding [Schank73].

49

Katz considered the lexical properties of language, and how to exploit them [Katz88].

Zue developed a natural language speech recognition system [Zue92]. And Horacek

introduced a new model for integrating user inferences when modeling user behavior

[Horacek97].

6.1.4 HCI (Social Agents)

The "Eliza effect" refers to humans' willingness to believe computers - our tendency to

anthropomorphize computers and interfaces [Don92]. Reeve and Nass further

investigated this tendency of humans to treat computers and media as real people and

places [Reeves96]. Also in Nass, Steuer, Tauber [Nass94].

Tannen produced famous sociology research on people interaction, and the importance of

word choice [Tannen97]. Word choice also has ramifications for the purposes of word

choice in human-computer interactions. In addition, the gender of a computer's voice is

important: research reveals that people are less likely to respect a female voice and

believe its technical knowledge [Reeves96].

From research such as the Oz project at CMU [Bates92], researchers have discovered

some key concepts for designing conversational interactive agents. Particularly, feedback

and succinct answers are fundamental characteristics of a successful social agent. More

on agent personality in [Ibister98, Foner97, Picard97, Rousseau97, Walker97, Reilly96,

Bates94, Laurel90].

50

MIT Professor Murray uses Eliza script to let her students create fictional characters in a

class on Interactive Fiction [Murray97, Murray98, Murray99]. She explains that

restricting or stereotyping an agent's personality effectively constrains the field of

interaction between the human and the synthetic agent. As a consequence, conversations

between humans and such agents are more likely to be successful - because humans

know what realm to interact in. In a similar manner, Reilley constrained his world to

baseball card trading in order to demonstrate effective communication between his

fictional characters [Reilly96].

6.2 SALLY'S ADVANTAGES

The SALLY System offers many advantages over other designs, and other Help systems.

Indeed, SALLY's approach shows to be highly beneficial not only from a programmer or

user's point of view, but also from a natural language processing perspective.

51

6.2.1 Advantages For The Programmer

6.2.1.1 Minimal Initial Information

For instance, there is minimal initial information to be entered by a programmer. A

minimal command grammar and a small script suffice. In SALLY, the grammar is on the

order of two dozen lines, and the initial script is around 50 lines long. This represents an

incredible benefit compared with other systems that require all information to be

manually entered. Instead, from its compact initial information, SALLY is able to learn all

further necessary knowledge. There is no limit on the length of the final script nor on the

amount that SALLY can learn.

It is also important to note that the quality of SALLY's learning does not depend on the

initial information; therefore even a flawed initial script can evolve into a quality

component of the help system.

6.2.1.2 Small Agents
Finally, I have chosen to remain faithful to concepts from The Society of Mind

[Minsky88] and the Subsumption architecture [Brooks85]. The project is thus composed

of small units (agents). This type of organization of software agents makes it much

easier for a programmer to customize the project.

52

By "programmer" we mean the person in charge of setting up the knowledge of the help

system.

6.2.1.3 Simple Natural Language Processing

SALLY is extremely simple; it contains no model of natural language, except for a simple

command grammar that specifies a couple of sentence structures6 . Some might view it as

a weakness. In our case, it is in fact a strength that makes SALLY a more flexible system.

It is almost trivially easy for SALLY to learn new utterances. In addition, this learning is

not complicated by trying to fit new utterances into a given language model.

6.2.1.4 Control Over New Knowledge

Humans teach SALLY new knowledge. Therefore the content of SALLY's knowledge is

known at all times. This is invaluable compared to other systems that attempt to correlate

events, or try to pick up new answers self-handedly. Those sometimes result in very

unexpected answers, such as a system correlating two seemingly independent parameters.

The control over new knowledge is also extremely important for a Help system. How

might a user react if SALLY answered some nonsensical or random sentence?

6.2.2 Advantages For The User

6.2.2.1 Easily Multilingual

The simplicity of the natural language model brings another surprising yet interesting

consequence: SALLY is easily multilingual.

53

6 Most speech recognizers, however, do embed some internal model of language. IBM's

Via Voice is one of them.

In order to have SALLY in, say, French, all it needs is a French speech recognizer and a

French speech synthesizer, a French command grammar and a French script. The first

two can be found off the shelves. The French command grammar would still be around

two dozen lines long. And the French script could be the exact translation of the English

one.

6.2.2.2 Multiple Users

SALLY also reveals flexibility in another dimension: it handles multiple users as well as a

single user - as long as all are wearing microphones.

6.2.2.3 Natural Utterances

Finally, SALLY's natural utterances are very pleasing. They are not forced into a proper

model of speech, and they are less likely to be as awkward as they might be if they had

been learned some other way. Indeed, sentences that SALLY learns are sentences that are

spoken by humans. Hopefully they will not sound as affected as some current help

systems do.

6.2.2.4 Natural Interface

SALLY 's interface is one of spoken natural language - which is most intuitive. SALLY's

feedback is also very unobtrusive (i.e. mostly chirps; SALLY also automatically detects

the end of the sentence.) In addition, users can say "Please tell me more about this", or

"Go on"; and SALLY will provide additional information about the previously accessed

topic - there is no need to remind SALLY of the topic.

54

6.2.3 Natural Language Processing Advantages

6.2.3.1 Automatic Knowledge Update and Multimedia Output

The automatic knowledge acquisition (Section 4) and the multimedia outputs (Section 5)

are two essential features of SALLY. They are a step ahead of most existing Help

systems. They allow to be entirely dynamic. They provide endless opportunities for

upgrades, refines and add-ons. They allow users to make diverse as they come to mind,

and on the fly. Finally, they allow SALLY to vary in its output and present its answer in a

most convincing and interesting manner.

6.2.3.2 Script-Grammar Combination

SALLY handles natural language processing by means of a grammar and a script-based

system. The alliance of a script and a grammar opens up the natural language

possibilities enormously, and produces the core of SALLY's power.

In SALLY, the script allows us to hold knowledge easily, and learn easily. The script is

flexible and modifiable - therefore SALLY's knowledge is dynamic - as opposed to static.

In a script, it is easy to ask "match anything here, then tell me what you matched". In

addition, the script holds context information by remembering which was the last

question asked and what was the last answer given. Finally, the script serves as the

memory of the system. When a user says, "Tell me more about that", the natural language

processing unit is able to make sense of the word "that"; it answers accordingly.

55

The command grammar, on the other hand, is used as a smart door or filter to the script.

Thanks to it, only sensible utterances are passed onto the script. This is very important

for our purposes. If it were not the case, the script could be asked to handle an abnormal

utterance - and the user certainly wouldn't understand the script's answer. Besides,

without the grammar, the script would not be able to tell the difference between regular

interaction with Hal and a question for SALLY. A command grammar can also call on

other pieces of code - including the script itself - when it returns information. Therefore

from within the natural language processing unit, I am able to call on other parts of the

unit, even exit temporarily and come back to it without losing context. Finally, the

command grammar roots SALLY in Metaglue and the world of speech agents.

Together, the script and the command grammar form a coherent unit that exhibits

robustness and flexibility.

6.3 ISSUES AND LIMITATIONS

The SALLY system includes a number of limitations. In this section I present them and

explain why they might be acceptable.

56

6.3.1 SALLY's Own Limitations

6.3.1.1 The Learning Depends on Most Words

SALLY's learning scheme depends on almost every word. When it learns the answer to a

question, the system does not necessarily learn the answer to a close variant of the

question. This limitation, however, is eased by the fact that scripts handle synonyms. It

is therefore possible to define synonyms that handle many cases where users might

formulate the same question differently. For instance, "What is X?" can be specified as a

synonym of "What do you know about X?"

6.3.1.2 SALLY Holds No Pragmatic Knowledge

SALLY does not currently hold any pragmatic knowledge, and in particular it has no

knowledge about pronoun disambiguation; for example it cannot always deduce that the

word "it" means "the door" in the current context. There are two reasons behind this.

First, the system does not hold an explicit knowledge of the state of the room around it.

Secondly, pronoun disambiguation is a problem that has yet to be solved. The second

reason sheds a new light on the first one, and explains - or perhaps forgives - our choice

to allow the room to have only an implicit understanding of its state.

6.3.1.3 SALLY Does Not Learn By Itself

SALLY gets taught; SALLY does not grasp new knowledge by itself. This certainly

necessitates that users are proactive and willing to make SALLY improve. At the same

time, teaching SALLY allows users to be in control of SALLY's knowledge. SALLY does

57

not learn coincidences or noise - like other learning schemes might. Instead, it learns

human utterances in a well-defined context.

6.3.1.4 SALLY Does Not Learn New Actions

SALLY's script holds speech and action components. However, SALLY only learns

speech - no actions. This comes from the fact that behind every action is a piece of code

that would have to be written ahead of time (and therefore the action tag could be entered

manually). Users would have to say something along the lines of "SALLY, no, speech to

magnify the display say zoom in, action z-o-o-m-i-n". Users would then specify the lines

of code that correspond to the zoomin action. I decided against such awkwardness,

although one could extend SALLY with an additional interface in order to deal with

learning action code.

6.3.1.5 Compound Phrases and "Aren't you"'s

Scripts typically handle compound phrases and "aren't you"' s poorly [Shieber93].

SALLY does have a rule to respond to "aren't you" 's adequately (i.e. to ignore them

instead of turning them into "am I not "'s). Compound phrases remain an issue, however.

It is unlikely, though, that they will be used frequently enough to disrupt a conversation

between SALLY and a user.

58

6.3.2 SALLY Inherits Exterior Limitations

To introduce spoken interactions in the system is a double-edged sword. On the one

hand, it greatly facilitates the interaction between the help system and the user. The user

does not have to stop everything and go over to a terminal to get help. On the other hand,

it introduces an inherent dependency on the quality of speech recognition and speech

output software. Both speech recognition and speech synthesis have significantly

improved in the last couple of years. However, such dependency remains a concern.

6.3.2.1 Speech Recognition Limitations

In terms of speech recognition, the pattern matching algorithm, the grammars, and the

script all depend on the sentence that is the output of the speech recognition system.

Therefore they all depend on the accuracy of the speech recognizer. If "turn on the lamp

by the door" is understood to be "turnip the lamp by outdoor", there is very little chance

that the system will answer adequately to the user's real question. We are currently

working on ways to correlate several agents' knowledge, but SALLY is limited to the

sentence that the speech recognition software passes along, however wrong it may be7 .

Furthermore, the script modifications are also dependent on the quality of the speech

recognition software. As the system stands now, someone says, "SALLY, no", then

provides a better answer. If this answer is misunderstood, it is consequently incorrectly

? One of the current workarounds of the IBM system is to bias the speech recognizer for

certain utterances. This is, however, clearly insufficient and not an acceptable alternative

to an improved speech recognizer.

59

entered in the script. The next time that any user prompts SALLY for that particular

answer, the user is likely to be perplexed.

6.3.2.2 Speech Synthesis Limitations

The issues related to speech synthesis are slightly different. They are more subtle and

psychological. We have come a long way from early synthesis systems that sounded

closer to bangs on a tin can than to any human voice. At the same time though, work

remains to be done - especially in the areas of intonation, of sentence melody and

dynamics. It is especially annoying to hear the same sentence uttered in the exact same

way 15 times a day. Therefore I have explored other, less obtrusive means of providing

feedback to the user (such as chirps and non-vocal feedbacks), and I have attempted to

keep the utterances spoken by SALLY short and relevant.

Most of SALLY's limitations are not inherent; they are merely the result of its interaction

with other components of Hal.

60

What To Do Next

Maintain a compact script

Correct misheard utterances

Delete obsolete utterances

Combine similar utterances

Adjust the responses to the level of the

user

Depend less on the speech recognizer

syntax of the

decomposition rules

0

0

7:

How To Get It

Include one question a day from SALLY to

users about possible script changes

Include one question per greeting

Clean up the script manually

Combine sentences that are >90% similar

Include a user model

Parameterize responses: use frames

[Winston78]; modify the reassembly rules

in technicality depending on the frame slots

Combine several speech recognizers

Use other room knowledge

Regular expressions to relax the

decomposition pattern

S

ON

z

Depend less on the

H

ci,

ci,

ci,

C

(V

ci,

ci,

(V

C

(V

rJQ

(V

(What I Want Next)

Not have to wear a microphone

Not have to call on SALLY

Provide better (entertaining?) default responses

Be able to playback interactions

Include more context information

Learn actions

Embed microphones in the room in places where users

are likely to speak

Utilize eye gaze information to detect when a user is

speaking to SALLY

Implement an ACM trivia agent

Expand SALLY's memory: keep track of the last X

utterances, or last X minutes of interaction

Include self-watch and reflect capabilities in Hal

Expand the natural language processing capabilities of

SALLY

Include additional code for interaction with user to learn

i

(How To Get It)

7 CONTRIBUTIONS

In this section, I review the contributions made by this thesis - as they have been pointed

out in Section 1.2.

First, the SALLY system successfully brings together research from intelligent

environments, helpdesk systems, natural language, and social agents in human-computer

interaction (Section 6.1), and generates a novel, convenient and useful helpdesk system.

Second, the SALLY system offers natural answers as a gratuity. Indeed, most answers are

utterances that SALLY learned from users (Section 4.3). From such naturally acquired

sentences, SALLY makes the point that it is possible to obtain natural, agreeable answers

from an automatic helpdesk system without a full-fledged dialog and interaction a priori-

design.

SALLY's natural language processing unit is uncomplicated. It is the combination of a

parsing script and a regular grammar (Section 3). Yet it is effective and provides

appreciated help to users. Therefore SALLY shows that simple language models can

support useful help.

In addition, the help system described in this thesis starts off with minimal initial

information. SALLY successfully compiles new knowledge - while it is running (Section

63

4). In other words, most help knowledge can be collected incrementally and

unobtrusively.

Finally, SALLY provides various kinds of answers: spoken utterances, displayed

information, actions (Section 5). This diversity of outputs is beneficial for the user's

learning. It is also less obtrusive than mono-media help. SALLY successfully produces

multimedia responses to questions and demonstrates the ease of multimedia helpdesk

responses to user inquiries.

64

BIBLIOGRAPHY

[Abowd96] Abowd C., Feinstein A., Hmelo C., Kooper R., Long S., Sawhney N.

and Tani M., Teach and Learning a Multimedia Authoring: The

Classroom 2000 project, Proceedings of the ACM Multimedia '96

Conference, 1996

[Bates94] Bates J., The Role of Emotion in Believable Agents, Communications of

the ACM, 37: (7) 122-125 Jul., 1994

[Bates92] Bates J., The Nature of Characters in Interactive Worlds and the Oz

Project, Technical Report CMU-CS-92-200, School of Computer

Science, CMU, Pittsburgh, Oct. 1992

[Bernsen98] Bernsen N.O., Designing Interactive Speech Systems: From First Ideas

to User Testing, London, New York: Springer, 1998

[Bobick98] Bobick A., Intille S., David J., Baird F., Pinhanez C., Campbell L.,

Ivanov Y., Schuette A. and Wilson A., Design Decisions for Interactive

Environments: Evaluating the KidsRoom, Proceedings of the 1998

AAAI Spring Symposium on Intelligent Environments, AAAI TR SS-

98-02, 1998

65

[Brooks85] Brooks R., A Robust Layered Control System for a Mobile Robot, Al

Lab Memo 863, Massachusetts Institute of Technology, Cambridge, MA

[Coen99] Coen M., Weisman L., Thomas K., and Groh M., Context Enhanced

Speech Recognition, MIT Artificial Intelligence Laboratory, Cambridge,

MA, 1999

[Coen98] Coen M., Groh M., Peters S., Phillips B., Weisman L., Warshawsky

N., Gajos K., Wilson K., Brooks R. and Lozano-Perez T., The

Intelligent Room, Al Lab Abstract, 1998

[Coen97] Coen M., Building Brains for Rooms: Designing Distributed Software

Agents, American Association for Artificial Intelligence, 1997

[Cooperstock97] Cooperstock J., Fels S., Buxton W. and Smith K., Environments:

Throwing Away Your Keyboard and Mouse, Communications of the

ACM, 1997

[Dell99] Dell, http://support.dell.con/askdudley, 1999

[Don92] Don A., 1992. "Anthropomorphism: From Eliza to Terminator 2", panel

description in the Proceedings of the CHI '92 Conference, ACM Press

66

[Eliza68]

[Foner97]

[Gronforst92]

[Hajicova92]

[Hayden98]

Eliza; A Skimmable Report On the Eliza Conversational Tutoring

System, Cambridge, MA, Education Research Center, Massachusetts

Institute of Technology, 1968

Foner L., What's an Agent, Anyway? A Sociological Case Study, The

Proceedings of the First International Conference on Autonomous

Agents, 1997

Gronforst S. T. and Juhola M., Experiments and Comparisons of

Inference Methods of Regular Grammars, IEEE Transactions on Systems

Man And Cybernetics, 22: 94) 821-826 Jul-Aug, 1992

Hajicova E., Linguistic Aspects of Natural Language Processing,

Lecture Notes on Artificial Intelligence, 617: 477-484, 1992

Hayden C., http://chayden.net/chayden/eliza/script , 1998

[Hayward68] Hayward P. R., Eliza Scriptwriter's Manual, A Manual for the Use of

the Eliza Conversational Computer System, Cambridge, MA, Education

Research Center, M.I.T., 1968

67

[Horacek97] Horacek H., A Model For Adapting Explanations To The User's Likely

Inferences, User Modeling and User-Adapted Interaction, 7: (1) 1-55,

1997

[Ibister98] Ibister K. and Hayes-Roth B., Social Interaction with Characters.

Submitted to Journal on Animated Interface Agents, 1998

[IE98] Proceedings of the 1998 AAAI Spring Symposium on Intelligent

Environments, AAAI TR SS-98-02, 1998

[Katz88] Katz B., Exploiting Lexical Regularities in Designing Natural Language

Systems, Cambridge, MA: Lexicon Project, Center for Cognitive

Science, MIT, 1988

[Laurel90] Laurel B., Interface Agents: Metaphors with Character, in the Art of

Human-Computer Interaction Design, Ed. Addison-Wesley, Reading,

MA 1990

[Lucente98] Lucente M., Zwart G. and George A., Visualization Space: A Testbed

for Deviceless Multimodal User Interface, Proceedings of the AAAI

1998 Spring Symposium on Intelligent Environments, AAAI TR SS-98-

02, 1998

68

[Minsky88] Minsky M., The Society of Mind, 1st Touchstone Ed., New York:

Simon and Schuster, 1988

[Mozer98] Mozer M., The Neural Network House: An Environment that Adapts to

its Inhabitants, Proceedings of the AAAI 1998 Spring Symposium on

Intelligent Environments, AAAI TR SS-98-02, 1998

[Murray99] Murray J. M., http://web.mit.edu/jhmurray/www/, 1999

[Murray98]

[Murray97]

[Nass94]

[Nuance99]

Murray J.M., Conversational Structure, Improvisation and Lifelike

Character, Laboratory for Advanced Technology in the Humanities

Murray J.H., Hamlet on the Holodeck: The Future of Narrative in

Cyberspace, New York: Free Press, 1997

Nass C., Steuer J. and Tauber E., Computers are Social Actors, in

Proceedings of the CHI '94 Conference, Boston, MA, 1994

Nuance Communications, http://www.nuance.com, 1999

Patch K. and Smalley E., Globe Correspondents, The Walls Have Eyes

- And Ears And ..., The Boston Globe, 07/20/98

69

[Patch98]

[Phillips98]

[Picard97]

Phillips B. and Coen M.., The Metaglue Agent System, Al Lab Abstract

09/98

Picard R.W., Affective Computing, Cambridge, MA: MIT Press, 1997

[Reeves96] Reeves B. and Nass C., The Media Equation: How People Treat

Computers, Televisions and New Media Like Real People and Places,

Cambridge University Press, NY, 1996

[Reilly96]

[Rousseau97]

Reilly W. S. N., Believable Social and Emotional Agents, Ph.D. Thesis,

School of Computer Science, CMU, 1996

Rousseau D. and Hayes-Roth B., Personality in Synthetic Agents,

Technical Report KSL-98-21, Knowledge Systems Lab, Stanford

University, Stanford, CA, July 1997

[Schank73] Schank R.C. and Colby K.M., Computer Models of Thought and

Language, San Francisco, W.H. Freeman, 1973

= Artificial Intelligence and the Concept of Mind, Allen Newell

= Semantic Networks: Their Computation and Uses for Understanding English

Sentence, R.F. Simmons

- An Artificial Intelligence Approach to Machine Translation, Y. Wilks

70

" A Procedural Model of Language Understanding, T. Winograd

= Identification of Conceptualization Underlying Natural Language, R.C. Schank

" Simulation of Belief Systems, K.M. Colby

- The Structure of Belief Systems, R.P. Abelson

- The Memory We Must Have, E. Hunt

- In Defense of Ad-Hoc Systems, R.K. Lindsay

- A Model for the Encoding of Exp. Information , J.D. Becker

[Shieber93]

[Tannen97]

Shieber S. M., Lessons from a Restricted Turing Test, Communications

of the Association for Computing Machinery, volume 37, number 6,

pages 70-78, 1994

Tannen D., Talking From 9 to 5: Men and Women in the Workplace,

Avon Books, NY, 1997

[Walker97] Walker M.A., Cahn J.E. and Whittaker S.J., Linguistic Style: Social

and Affective Bags of Agent Personality, Proceedings of the First

International Conference on Autonomous Agents, pp.96-105, Marina del

Rey, CA, Feb. 1997

[Weisman98] Weisman L. and Muzundar M.D., Intelligent Multimodal Drawing

Environments, Al Lab Abstract 98

71

[Weizenbaum66] Weizenbaum J., ELIZA - A Computer Program For the Study of

Natural Language Communication between Man and Machine,

Communications of the ACM, vol.9 (1), pp.36-45, 1966

[Whalen96]

[Winston78]

[Zue92]

Whalen T., Computational Behaviorism Applied to Natural Language,

Communications Research Centre, April 30, 1996

Winston P.H., Learning by Creating Transfer Frames, Artificial

Intelligence, vol.10, no.2, pp.147-72, Netherlands. April 1978

Zue V.W., Automatic Speech Recognition and Understanding,

Cambridge, MA: Massachusetts Institute of Technology, Center for

Advanced Engineering Study, 1992ference on Autonomous Agents, pp.

96-105, Marina del Rey, CA, Feb. 1997

72

