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ABSTRACT

This thesis evaluates schemes for compressing benchmark programs by finding a subset of the
program that is sufficiently similar to the whole to be considered representative for statistical
study. These schemes are computationally inexpensive means of evaluating a whole program
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"There are lies, damn lies, and there are statistics. And then there are benchmarks."

-Peter H. Lewis, 1998

1.0 Introduction

1.1 Purpose

This thesis evaluates schemes for compressing benchmark programs by finding a subset of the

program that is sufficiently similar to the whole to be considered representative for statistical

study. Ideally we use an inexpensive (computationally speaking) means of evaluating the whole

program and finding interesting sub-parts. We can then run detailed experiments on the much

smaller parts interactively and draw valid conclusions about the original program's behavior.

This research will examine several such methods for selecting sub-parts with respect to different

program types, and determine their usefulness in finding valid data for research questions like the

characterization of memory system performance or I/O system studies. It will attempt to

delineate when and how particular extraction techniques are important and useful, and suggest

future avenues for the development of such methodologies.

To this end six different analysis techniques and four different benchmarks were produced, each

representative of a different style of program. The result of each analysis technique is a subset of

the original trace, selected because it has certain statistical properties. We then use information

gained through experiments on real runs of the benchmark programs (which are instrumented in

a minimally intrusive fashion to assess the representativeness of our compressed trace for the

particular behavior we are examining.

1.2 The Nature of the Problem

Benchmark programs are big, and they are getting bigger. The SPECint95 benchmarks each run

in around 10 minutes on a modem high-performance workstation. (SPEC, 1999) Running them

in detailed simulation would typically take days to weeks each. This is not practical for the
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conducting of architectural research. And the SPEC benchmarks are widely criticized as being

too small to be properly representative of modem workloads. (Patterson, Hennessy, 1996) Often

real computer companies have proprietary benchmarks that can take hours to run on their fastest

machines, because it is these workloads that customers care about and base their purchase

decisions on.

Ideally computer architects would be able to use these real workloads to drive their research.

That is, they would like to optimize their machines to run the workloads they will see in the real

world as fast as possible. But this is not possible with contemporary technology. Simulation

systems typically run factors of hundreds, thousands, or even tens of thousands slower than

actual hardware, and that makes it impractical to run more than very small simulations in full

detail. (Bedichek, 1990; Cmelik, 1994; Fujimoto, Campbell, 1988; Magnusson, Werner, 1995;

Rosenblum, Witchel, 1996)

This means that since architectures must be based on their performance against only very small

benchmarks, since these are the only metrics we really have to compare experimentally, great

care must go into constructing good, small benchmarks. If you can come up with a 100,000

instruction code segment that accurately reflects the behavior of a large Oracle database

benchmark (that might be a trillion instructions itself) (Gray, 1991), then you can use that code

segment to drive your architectural research. For example, you could evaluate several possible

instruction cache replacement policy designs in several hours, instead of several months, or

several possible fetch unit designs in a day, instead of a season.

In fact, this is what people actually do. There is no hope of being able to evaluate an entire large

application in a detailed simulation environment, so they select some smaller program, perhaps

an excerpt of the large one, or perhaps an analogous piece of code, or perhaps even the same

piece of code with a smaller argument (for example, compressing a 128x128 pixel image, rather

than a 512x512 pixel one in an image processing software package). This small program is then

used to drive simulations, and conclusions are drawn based on the data provided by these
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simulations that then go and drive new designs.

A scientific mind ought to quickly phrase a question based on this description of the architectural

research process. How are these smaller programs selected, and is there any assurance that their

behavior is representative of the behavior of the large, real programs? In particular, how do we

know that the conclusions we are drawing from our shrunken benchmarks are in fact valid for

real programs running on real machines?

This thesis intends to examine these techniques and formally establish the validity of some of the

methods used. It will also suggest when each particular technique is useful, and flesh out their

strengths and weaknesses.

1.3 Questions About the Validity of Current Pruning Methods

Present-day pruning techniques are a mix of ad-hockery, intuition and intelligent guesswork. But

there really is not a great deal of validation of the techniques, and only a small amount of effort

has gone into theorizing about good techniques, let alone experimentally validating them.

The most common modem techniques are random and semi-random selection, although there are

some more sophisticated techniques in use in specialized environments. Random selection is

exactly what it sounds like: every 10 0 th million instructions is chosen and used for experiments,

or four one-million instruction segments are selected at random - no basis is used to select

segments other than chance or fair distribution. Often though, architects already have some idea

of what they want to include. Some segments are chosen at random and a known important

segment is forcibly included.

Specialized techniques include path counts and library-only tests. Path counts are used to select

segments for micro-architecture research because they provide very good characterization of

extremely low-level behavior. (Carroll, 1998) They are discussed in the related work section,
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but are really outside of the scope of this thesis since they perfectly apply to a simple case, but

are expensive to deal with relative to their questionable utility in general cases. Library-only

tests simply choose only to execute library code, for example queuing all the OpenGL (Segal,

Akelely, 1997) calls in an engineering application and using them to represent the whole

benchmark. This is useful when one wants to test a particular piece of hardware driven by the

library and is frequently used to exercise graphics attachments. Since this is again very specific,

and also easy to do, it is largely outside the scope of this thesis.

This thesis will concentrate on more general purpose techniques. How can we select segments

that are representative of a program's gross performance characteristics? How can we predict

cache miss rates? Translation Look-aside Buffer (TLB) misses? Concentrations of branches?

These artifacts are important to all systems designers, whether they are building supercomputers

with all SRAM memory or PCs with tiny caches.

The compression techniques will be evaluated with respect to a LISP benchmark based on Li

from SPECINT, an mpeg player benchmark, and two very different segments of tomcatv (from

SPECFP), the first half-billion instructions where behavior is irregular and hard on the memory

system, and the middle of tomcatv which is very regular and stresses the memory system in a

near-vector fashion. These four programs are very different in behavior and represent large

classes of common programs.

1.4 Trace-Based Research

Computer companies frequently have large proprietary benchmarks. These would typically

include database software for a big-iron manufacturer, real engineering applications for the

workstation maker, and perhaps spreadsheet applications for the typical PC company. Often

these programs would be developed in concert with the independent software vendor that

produces the real program.
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There are several ways to learn from these benchmark programs. They can be instrumented to

record statistics and run on current generation machines. This produces very accurate results for

the whole program, but it is of limited relevance in considering future machines that may differ

greatly in design or scale. They can also be used to create traces to drive simulators. Traces are

records of all the instructions (and their arguments) processed during the execution of a program.

They are a fairly complete picture of the execution of a piece of code, at least from a systems

perspective. (Traces can hide low-level timing details that may be important.) These records can

then be used to drive simulators, or be combed over for insight into program behavior.

The problem with traces is scale. Real benchmark programs leave huge traces. For example,

tomcatv from SPEC95fp executes around 25 billion instructions. A trace may record 4 to 40

bytes (things to store include the instruction itself, the PC of the instruction, the contents of the

registers used, any memory addresses accessed for instructions or data, the contents of any

memory locations addressed, etc.) per instruction, a total range from 100 to 1000 gigabytes. This

is almost too much to store, much less process in an interesting fashion. And, tomcatv is hardly

the largest program whose performance people care about. Tomcatv runs in about 5 minutes on

modem machines. Programs used to analyze more diverse behaviors often take longer. This

occurs in benchmarks for real applications like ProEngineer, or Oracle or Synopsis databases. In

these cases, different modes of the software must be investigated, I/O occurs to slow things

down, etc. (Ousterhout, 1990; Rosenblum et al, 1995) These benchmarks can take hours to run

and execute trillions of instructions. We are unable to do detailed analysis of programs this

large.

To see why this is so, consider a naive trace dump driving a cache simulator. Some simulation

managing program would read the address stream of the trace and use it to drive a cache

simulator, eating the instructions as they go by, thereby negating the storage problem but leaving

us with the huge amount of data to process on the fly. Typical slowdowns are a factor of 100,

1000 or even 10,000 for reasonably complicated simulators (Rosenblum et al, 1995; Rosenblum,

Witchel, 1996; May, 1987). This potentially turns our 5 minute tomcatv run into a three and a
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half day ordeal. An hour of transaction processing is a month long experiment. This is simply

impractical, and even for small programs painful. Certainly it makes interesting interactive

experiments an impossibility.

Architecture researchers are thereby prompted to devise ways to speed up the process. Typically

they resort to sampling the benchmark, choosing key segments, and using them to drive

experiments and simulators.

These segments are typically selected by hand or at random, as previously mentioned. In

specialized cases they may be selected by a more formal scheme. Generally there is no

systematic effort to confirm the validity of these techniques.

Detailed simulations can be done with fractions of programs via a variety of schemes, though, so

we can at least be confident that our results accurately represent the behavior of the programs

even during the sampled phase, though they may not tell us anything about the rest of the

program. This can be accomplished in several ways. Often architects use ad-hoc schemes to

simulate cache warming, for example. To simulate the middle of a large program they will

execute that segment in their cache simulator, and every time they see an address they have not

seen before they will toss a weighted coin (weighted by the overall program's miss-rate) and

decide wether to miss or not. (Zaky, 1998) While this probabilistic scheme is obviously not

100% accurate it is probably good enough if the segment is large.

Recently advanced simulation environments like SimOS have added greatly to the ability to do

this kind of work. With multiple levels of simulation varying greatly in detail and performance,

and the ability to switch dynamically among them, we can do much better. (Rosenblum, Witchel

1996)A benchmark can be run extremely quickly, with perhaps a lOx slowdown, for example in

Embra mode in SimOS which uses binary translation (Bartlett, 1989; Cmelik, Keppel, 1994;

Rosenblum, Witchel, 1996), and switched to a higher detail (with perhaps a 1 0,000x slowdown)

mode as it enters an important segment. The various phases can communicate information so the
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detailed mode has it caches warmed in at least a somewhat more accurate fashion. Other

simulation packages like Shade and ATOM (Srivastava, 1994) provide similar functionality.

Support for the methodology is widespread.

We are stuck with fractional analysis. Benchmarks are too long to analyze in their entirety What

is needed is a validation of techniques for making selections from longer programs; a

confirmation that the selected segments really represent what is going on in the whole program.

With that information the risk of relying on these abbreviated experiments goes down

tremendously.

1.5 Chapter Summary

Chapter 2 will discuss related work, particularly the PathOMatic system developed at SGI for

micro-architecture study. Chapter 3 discusses various other possible analysis techniques,

particularly those used in this project. Chapter 4 discusses the software developed and the

experimental methodology of this thesis. Chapter 5 gives detailed experimental results and

chapter 6 gives conclusions and future directions.
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2.0 Related Work

2.1 PathOMatic

To illustrate the current state-of-the-art, consider a technique developed by Steve Carrol (Carroll,

1997) at Silicon Graphics: PathOMatic. PathOMatic was developed within MIPS, then SGI's

microprocessor group, to compress benchmarks for micro-architectural research. That is, it was

designed to select a collection of segments of a larger program that had representative behavior at

the level of small groups of instructions. Ideally, these selected sections would produce a

representative sample of the various forms of pipeline behavior found throughout the larger

application.

Paths are non-cyclic sequences of basic blocks (Aho, Sethi, Ullman, 1986, Holub, 1990). To

illustrate, consider the following program which scales an array by a constant then transfers

control to another piece of code:

pre-amble: LD n, R1

LD x, R2

LD base, R3

loop: ADD R3, R1, R4 ;; add n + base to get index

LD R4, R5 ;; load from that address to R5

MUL R2, R5, R6 ;; scale [index]

ST R6, R4 ;; store the scaled value

SUBC R1, 1

BNE R1, loop

post-amble: JMP othercode

This code segment has three basic blocks and three paths. Pre-amble, loop and post-amble are

the basic blocks. Figuring out what the paths are is a little more complicated. When this code is

executed for the first time, the PC will start at the first instruction of pre-amble. Control flow

will continue to the BNE at the end of loop, and will then return to the start of loop until n has

been decremented to zero, when it will then fall through to post-amble. If n were 4 the sequence
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would be pre-amble, loop, loop, loop, loop, post-amble. This reveals the three acyclic sequences

of basic blocks: pre-amble loop, loop, and loop post-amble.

Path behavior in real programs can be much more complicated. A great deal of research has

gone into mechanisms for recording path traces efficiently. (Bala, 1996; Ball, Larus, 1996,1994).

Doing so with minimum intrusion is a difficult, although now mostly solved (Goldberg, 1991;

Malony, Reed, 1992, Ponder, Fateman, 1988) problem.

The relevant piece of information for this thesis from path research is that path usage is very

concentrated. (Carroll, 1997; Ball, Larus 1996) A small fraction of all paths in a program

constitute the majority of runtime for most programs.

Paths ought to correspond very well with micro-architecture behavior. This is because paths

contain a large block of instructions presented in the same order, with the only possible

difference being in instruction arguments. (Zaky, 1998) Although this may incline testing

towards sections of code where branches are predicted very successfully or cache misses are low,

it will likely result in examination of the most important parts of the processor's scheduling, that

which is frequently exercised.

2.2 Mechanism of PathOMatic

The mechanism of PathOMatic will be discussed in detail, since it is very illustrative of the

technique used in this thesis. Consider the example in the figure below, where A, B, C, D, E, and

F are basic blocks.

-13-



Execution history:

ABCEBCEBCEBDEBDEBDEF

Parses into four paths:

ABCD, BCE, BDE, BDEF

Yielding the vector:

1 2 2 1

Figure 2.1 Path Example

To run PathOMatic, the benchmark is instrumented to record path counts, and then run.

(Ammons, et al, 1997; Ball, Larus, 1994, 1996) In the example, an execution history is

examined post-hoc to produce path counts, which is slightly deceptive. Typically advanced

techniques allow recording of path counts on the fly, as the benchmark is run. This analysis

yields a path count vector, a vector containing a count number corresponding to the number of

times each respective path is executed in the benchmark.

These path count vectors are dumped periodically, one for each segment of the program, perhaps

every 10 million instructions. Once done, we are left with a set of vectors representing the whole

program's execution history; a total vector is also computed.

A linear algebra routine greedily selects segments of the whole program and weights them to

minimize the least-squares distance of their weighted sum from the total vector. This weighted
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set of segments is the resultant representative sample produced by the routine. A similar linear

algebra routine is described in great detail in Appendix A.

But, as was mentioned in the introduction, paths are not everything. In particular, path selection

schemes are inclined to choose the ordinary. That is, they will select common sequences of code

at the expensive of less common ones. For certain performance parameters, like the average time

a divide instruction takes to execute, this is fine, but for some other measures, like instruction

cache performance, it is precisely the uncommon segments that determine performance. Paths

ignore memory systems, other than through implicit inclusion. There is no notion of "similar"

paths. Paths are either exactly the same or completely different. Broadly speaking, path statistics

simply do not encompass a sufficient range of information about the behavior of a program.

2.3 Extending the Idea to the System.

Path counts are an insufficient means for selecting important segments. They leave too many

aspects of the system unconsidered. This is recognized by most architectural researchers who

have established alternative techniques as the norm. (Zaky, 1998)

These techniques typically include exploiting randomness or intelligent guessing. Semi-Random

selection is analyzed in this work. Semi-Random selection is the author's attempt at achieving

an unbiased, broad selection of segments of the program. It is not truly random, as there would

be significant statistical work involved in making it so. The justification for randomness is that it

seems more robust than other methods, and perhaps will be better in providing broad event

coverage.

Intelligent guessing is exactly what it sounds like. Architects look closely at the performance

patterns in an application and find what they think are the bottlenecks or important passages.

These are selected to drive experiments. Often intelligent guessing is incorporated in other

schemes; for example, an architect may specify that a particular segment be included in a set of
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segments selected by another scheme like PathOMatic or random selection. It has been

suggested (Zaky, 1998) that these "guessed" segments be included in a weighting scheme along

with segments selected by a more computational scheme, although the author does not know of

any actual implementations of such ideas.

2.4 The Limitations of Prior Art

There is a limitation in these techniques, and perhaps in any one technique: they fail to exploit

much of the information that can be obtained in a fast instrumented run of a benchmark. A full

trace dump provides a wealth of information that can be consumed on the fly with relatively low

storage and computational costs. (Agarwal et al, 1988; Borg at all, 1990, Eggers et al, 1990;

Goldschmidt, Hennessey, 1992; Stunkel, Fuchs, 1994) This thesis explores some of the possible

ideas for using more of the data one can capture.

For example, it will consider simple analysis of the address stream to try to predict cache

performance, or track basic blocks instead of paths, or broad classes of basic blocks to allow a

less precise definition of "similar". Although these schemes represent only a tiny fraction of the

possible ideas, it is hoped that they will serve to represent several broad classes of approach and

will spur future research.
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3.0 Mechanisms

3.1 Analysis Techniques

The fundamental assumption of these analysis techniques is that a segment of a program that is

interesting in one respect, for example by having a representative sample of basic blocks, is

interesting in other respects. This is exactly what the thesis experiments aim to test. It is hoped

that this will prove true. If it is true, then these correlating behaviors, which are themselves

much easier to find than the behaviors they correlate with, can lead us to the important segments.

We need to test if cache performance is reflected in simple analysis of the address stream, and so

on.

3.2 Basic Block

Basic block counts are the most natural means of selecting program segments. Segments are

selected if they, or a weighted sum of them have a similar distribution of basic blocks as the

program as a whole.

This makes intuitive sense; if a program is executing the same set of instructions in the same

proportion in one section as in another, one would think it must be at least doing something

similar in character.

For example executing a loop that strides through an array will produce a similar basic block

count each time it is executed. Note, however, that it may not have very similar performance

characteristics. Consider the following two passages of code:

j=2;

for(i=O;i+=j;i<j*1OOO) {

Ai] = A[i-1] + 1;

}

-17-



and the very similar code

j=17;

for(i=O;i+=j;i<j*10 0 0 ) {

Ai] = A[i-1] + 1;

}

Both pieces of code will compile identically, except for a constant, and hence produce virtually

identical basic block counts when run. (Ullman et al, 1986) But the second passage of code will

be considerably slower on most modem machines as its awkward array stride will cause repeated

cache misses. (Patterson, Hennessey, 1996)

This example illustrates the first problem with using basic block counts to characterize

performance: individual basic blocks can take a variable amount of time or resources to execute,

depending on data that may vary each time a basic block is executed

The second problem we encounter with basic block counts is that they do not tell us anything

directly about control flow. The sequences of basic blocks A, B, C, and D:

ABCDDCBAACDBBADC and AAAABBBBCCCCDDDD have the same basic block counts,

but they have very different runtime behaviors. On a modem microprocessor the first sequence

will produce a dramatically different sequence of micro-architectural events from the second

sequence. In the second, structured case, most branches will be predicted and the pipeline kept

bubble-free. But in the first case, all bets are off. If you were trying to validate control logic, the

first sequence may be a better choice since it exercises a greater variety of paths, but basic block

count gives you no indication of this.

3.3 Instruction Class

Instruction class, a generalization of the basic block method was investigated in some depth.

Basic Block relies on blocks being the same if and only if they are exactly the same piece of code
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(Actually a coding amalgam that approximates this very closely was used to avoid needing a

huge vector to accommodate all basic blocks, when most were never used.). The Instruction

Class scheme weakens this definition somewhat in an attempt to lessen the capture of a great

number of very similar basic blocks, but instead to capture a great number of different types of

basic blocks.

Instead of creating a vector with one entry per basic block in the benchmark, a vector is created

with one entry for each class of basic block that exists in the benchmark. For example, if we

wished to classify basic blocks according to how many DIVC instructions (Kane, Heinrich, 1992)

they contained, and the greatest number of DIVC instructions in any basic block was nine, we

could use a vector with ten entries, one to count each of the possible number of DIVCs, from 0 to

9 for each basic block executed.

Three such schemes were evaluated in this thesis.

Scheme 1 sorted basic blocks based on the numbers of instructions they had in two categories,

memory operations of all sorts, and arithmetic operations of all sorts (that is, instructions that are

neither memory operations nor control flow operations). This was intended to capture work

versus memory balance of the code.

Scheme 2 sorted basic blocks based on the number of LW instructions, SW instructions, MUL

instructions and DIV instructions. This was intended to capture the expensive operations of the

code.

Scheme 3 sorted basic blocks based on the number of LW instructions and the number of SW

instructions. This scheme was intended to measure memory performance.

It is easy to envision a large variety of similar schemes. These were chosen for their

representativeness of broad classes of ideas.
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3.4 Pseudo-Cache

Pseudo cache schemes, a third major category, aim to select segments if they have representative

memory access patterns. This is done by analyzing the address trace yielded by Mixie (Mixie is a

MIPS-based trace generator) (Killian, 1997; Agarwal et al, 1988; Lebeck, Wood, 1994; Stunkel,

Fuchs, 1989) in a simple fashion emulating a trivial cache. This technique is expected to be a

significant win when trying to examine cache or memory system performance, because it can

distinguish between simple and complex memory requests.

Clearly it is too difficult to run a full cache simulator dynamically as we generate a trace.

Consider a trace of 100 billion instructions. If each instruction takes 1000 instructions to process

in a cache simulator (this is not an atypical number for a complex simulator; typical slowdowns

range from a factor of 100 to 10,000, generally depending on the complexity, and hence

accuracy, of the processor model) then we must execute 100 trillion instructions to get good data.

That is about a million seconds, 277 hours, or 12 days of execution. For every single cache

model you want to test, every time you want to run that test. That is prohibitively costly.

There may be a cheaper alternative to keeping track of full cache behavior all the time. Perhaps

one could keep track of only a small portion of that information, and still assess what sections of

the program are interesting in terms of it?

This leads to the pseudo-cache methods of selecting salient segments of benchmarks. On the fly

the information contained in the address stream is decimated and processed. The processing is

simple and similar in fashion to a trivial cache. An attempt is made to conserve some important

information in a way that is amenable to our segment selection mathematical scheme.

Pseudo-Cache algorithms as implemented in this thesis maintain a vector with n entries, where n

is 4096, 512 or 64. Each address that is loaded from or stored to increments the xth entry of the

vector where x is the address modulo 4096, or 512 or 64, depending on the model.
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It seems clear that their is a great deal of room for improvement in pseudo-cache decimation

procedures. This thesis can only begin to explore the design space, and the author hopes future

work will be done here.

The preceding were techniques expected to provide superior performance. What follows is a

description of what is usually done.

3.5 Other Methods

Random selection was already introduced in chapter 2. Segments of the program are selected at

random and used to drive a simulator. This is used far more frequently then one would expect,

because it ought not to have any obvious bias. Its accuracy may be improved by incorporating it

into other more complicated selection schemes.

Often a person examines the program and makes a best-guess about what the important regions

are for analysis. Thus technique is sometimes coupled with others: a known important segment

is forcibly included in a set of segments determined by some more sophisticated analysis

technique.

3.6 Technique Characterization

All these techniques seek programs with representative statistics. But what is representative?

In the Basic Block technique we sought a selection of program segments such that some

weighted sum of those segments had a similar distribution of basic blocks as the program as a

whole. For that technique "representative" was taken to mean "proportional basic block count".

That makes intuitive sense, and for certain applications is the right thing to do.

Instruction class schemes seek to do the same thing with the twist of a relaxed definition of
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"representative". Segments are considered representative if they have proportional counts of

types of basic blocks.

Pseudo-cache techniques seek to select segments with representative address streams, that will

hopefully reflect representative cache performance.

Varying the definition of "representative" lets us examine programs for other important

properties, which in turn helps us obtain sets of segments suitable for other types of experiments.

This definition of "representative" is the most important independent variable in these

experiments.
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4.0 Tools and Experiments

4.1 Experimental Procedure

The software package developed for this thesis can be divided into three sections. First, we have

a data production phase. Mixie, a Silicon Graphics trace-generation tool produces traces as a

stream to stdio. (Killian, 1997) Mixie could be replaced by another primary data production tool.

For example, a trace generator for another type of machine could be substituted. In the case of

PathOMatic, Tinst (Carroll, 1997 a path count tool generates the initial stream of data. There are

several similar pieces of software (Ball, Larus, 1996).

Second, these traces, which are too large to store practically, are consumed on the fly by the next

software phase. These intermediate programs function to decimate the data stream, retaining the

information deemed important. Simple, fast processing on the trace stream records salient

information efficiently. In ordinary trace driven simulation, a simulator, for example a cache

simulator, would go here. Instead, this project extracts the information to be used to compress

the benchmark and form it into data files to serve as a basis for the next stage.

In the third phase, the data files generated by the organizers are used as input to a linear algebra

routine written in the Matlab language (MIT I/S, 1994). The Matlab program processes the files

and selects the important segments of the benchmarks, and then calculates their weightings. See

Appendix A for a full explanation of this program.
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Mixie generates large amounts of raw data

Intermediate programs process raw data into
Organizer useable form

Matlab program reads in processed data and
Processor performs linear algebra to obtain weightings

Figure 4.1 Software Architecture

4.2 Mixie

In the first stage we have a data-producing program like Mixie, a trace generation tool, or Tinst, a

program analysis tool, that generates a large amount of raw data dynamically during the run of a

benchmarks program. Mixie, for example can dump detailed information about the instructions

being executed as they go by: the program counter they correspond to, their arguments, and

memory address they access, etc. This information could be used to drive simulators, were it not

for the tremendous volume of data generated.

The traces outputted by Mixie come as a stream that can be redirected to stdio. The data includes

for each instruction, the opcode, the register arguments, the PC and any address read from or

written to.
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Mixie is a trace generation tool specifically for Silicon Graphics computers. Mixie is derived

from Pixie, and before that Moxie (Killian, 1997). While Mixie is a reasonably fully functioned

trace generation tool capable of dealing with MIPS IV and dynamically shared libraries, it stems

from simpler tools that were used, among other things to translate instructions sets to allow

compiler development before the availability of real hardware. Mixie is similar to other tools

written for Cray (Williams et al, 1990; Gao, Larson, 1995; Cray Research Inc., 1994), Sun

(Singhal, Goldberg, 1994), HP (Hunt, 1995), DEC (Digital Equipment Corporation, 1995) and

IBM (Maki, 1995; Welbon et al, 1995) hardware.

4.3 Decimation

To cut down on this volume of data we feed it into the next stage of our system, which serves as

an organizer of data. On the fly, it processes data and does a great deal of decimation. The

organizer implicitly determines what criteria we will use to select salient segments, because it

throws away data that we consider less important. Hence we choose the characteristic we wish to

use for compression and the organizer saves that data to characterize the program as it goes.

Typically it receives data through a pipe from the producer and dumps files periodically during

the run of the program. These files will be post-processed to decide on the important parts of the

benchmark.

Eight programs were written to perform this decimation, and they fall into four basic categories,

Basic Block, Pseudo-Cache, Instruction Class, and Semi-Random.

The first, Basic Block, counts the number of times each basic block is executed in the run of a

benchmark. It does this by keeping track of the PCs that start each block. Basic Block can only

record 4096 different basic blocks for a program run, but that is more than enough to cover all

but a minuscule fraction of the basic blocks executed.

The second, Pseudo-Cache, captures the address stream. Each address N is entered into the N
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modulo Xth entry of the recording vector, where X is either 4096, 512 or 64. Hence, a

representative vector would be one that accesses similar addresses in similar proportions to the

whole program.

The third, Instruction Class, classifies the basic blocks as they are executed, recording the

numbers with each mix of instructions. Scheme 1 records blocks according to the number of

memory operations and the number of arithmetic operations. Two different blocks, each with the

same number of instructions of each type, say 2 and 7, would map to the same element of the

recording vector. The vector is large enough to accommodate all basic block instruction mixes in

the benchmarks. Scheme 2 records blocks based on the number of LW, SW, MUL and DIV

instructions. Scheme 3 records blocks based on the number of LW and SW instructions.

The fourth scheme, Semi-Random takes the 5th, 1 5 th, 2 5th 3 5 th, and 4 5th segments of a benchmark

(each benchmark was constrained to be 50 segments long, each of 10 million instructions) and

weights them equally by a factor of ten.

Finally, the results of this decimation, a set of files each containing a vector, and a file containing

a total vector, are analyzed to produce weighted sets of segments with sums approximating the

total of each measured attribute. This algorithm is discussed in great deal in Appendix A.

4.4 Analysis

This analysis is done by a processor program and may be done after the completion of the run of

the benchmark program. The segment characterization files are cued and batch processed by a

Matlab program that reads in the preprocessed trace data and performs a linear algebraic analysis

on it. This analysis leads to a weighted set of benchmark segments which can be used to provide

(hopefully) statistically representative experiments for your benchmark. This analysis is fully

explained in Appendix A.
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Matlab was chosen for the linear algebra analysis because it is easy to program complicated

mathematics in. This section of code is not performance limited. Analysis of even large

amounts of data can be performed in a few minutes, so no great attempt was made to optimize

performance at the expense of coding time or maintainability. Most of the computationally

intensive part of the routine are Matlab library (MIT I/S, 1994) code that is implemented in a

fairly optimal fashion. Optimization was not seen as crucial to the results of this thesis.

4.5 Verification

These weighted sets of benchmark segments were compared with the whole program in terms of

their total graduated loads, graduated stores, TLB misses, mispredicted branches, primary data

cache misses, secondary data cache misses, decoded branches, primary instruction cache misses

and secondary instruction cache misses. These experiments were run on the Silicon Graphics

Octane system with the R10000 microprocessor.

Extensive use was made of Silicon Graphics' performance analysis software and the hardware

facilities (SGI, 1998) offered by the R10000 microprocessor (Zagha, 1996). The R10000's

hardware performance counters were used to obtain performance statistics from actual runs of

benchmark software on real workstation systems. (Ammons et al, 1997; Goldberg, 1991;

Maloney et al, 1992) This method was needed to provide a great deal of real data for a variety of

performance measures on a variety of programs, across the whole length of the program runs.

This was provided by running the benchmarks on workstations using the performance monitoring

utilities provided by the RI 0000's hardware counters and the interface software packages EVF,

evrate and perfex (SGI, 1998).

These tools allow relatively non intrusive reading of the microprocessors hardware counters,

(Goldberg, 1991; Maloney et al, 1992) dumping counts every 10 million instructions (a tunable

number) via a relatively small software routine. There is an incentive to lower the frequency of

these recordings, because the monitoring program itself interferes with the accuracy of the
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reported statistics. Every 10 million instructions is sufficiently infrequent so as not to effect the

numbers noticeably.

Finally, the weightings can be used to compute the predicted number of events of a particular

type, for example L2 cache misses caused by instruction access, and this can be compared with

the real number. This, when done across a variety of measures, gives some indication as to the

accuracy of the weighted selections representation of the behavior of the whole program.
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5.0 Results

5.1 Result Format

This chapter gives the segments selected and the weights computed for each benchmark. Note

that negative weights are possible; it is possible for the best weighting to include the negative of

a particular segment's count. While this may seem counterintuitive, possibly justifying an effort

to make a computer perform slower on a segment to increase measures, this is not so. Negative

weights sometimes appear to eliminate overcounting of one particular aspect of a segment, for

example. The negative weight cancels the overemphasis brought by another segment.

The weighted sets of benchmark segments were compared with the whole program in terms of

their total graduated loads, graduated stores, TLB misses, mispredicted branches, primary data

cache misses, secondary data cache misses, decoded branches, primary instruction cache misses

and secondary instruction cache misses. These table appear in full in Appendix B, and are

summarized later in this chapter, and in chapter 6.

Graphs illustrating captured behavior for each program and each statistic recorded are included in

full in Appendix C. These graphs reveal the nature of patterns in each benchmark. They are

somewhat useful in understanding why a particular mix of sections was picked. Typically this

because a program has two distinct phases; in a first approximation, one is chosen and weighted

highly. With lower error bounds, both are chosen and the weights are more moderate.

Semi-Random is not given its own table because it always chooses the same thing, an even

distribution of five segments through the program, equally weighted.

5.2 A Word on Error Bounds

For each benchmark/selection scheme, three weighted sets are given. These are the results of

computing sets that have vector sums less than 0.1 total vector lengths error in prediction, 0.01
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and 0.001 respectively for the selection scheme. That is, for example, the weighted sum of the

basic block vectors selected with an 0.01 error bound is less than 0.01 times the length of the

total basic block vector different from the total basic block vector. It is 99% representative in

that metric.

5.3 The Benchmarks

Extensive data on the behavior of our three benchmarks is included in Appendix C, however, the

author feels it is important to include some observations here.

Four benchmarks were used in this thesis. They include a LISP benchmark based on Li from

SPECINT (SPEC, 1999), an mpeg player, instructions 0 to 500 million of tomcatv from

SPECFP, and instructions 2 billion to 2.5 billion. (SPEC, 1999) These benchmarks were chosen

because they presented a broad set of program types, and they fit within the size constraints of the

software package. While there are no fundamental limits, performance or otherwise, on the size

of programs to be analyzed, particularly because the analysis need only be done once for as many

experiments as one wants on the shrunken benchmark, there were constraints in the software

developed that prohibited tests of more than around a billion instructions. These benchmarks are

all under 600 million instructions. Tomcatv is 24.5 billion instructions long, so subsections were

analyzed.

The LISP benchmark consist of an abbreviated version of Li, consisting of the code from

SPECint95, but with only a small subset of the inputs. Tomcatv is the full benchmark from

SPECfp95 on its full input. The Mpeg player is 12 seconds of an mpeg of a moving bicycle, with

the -nodisplay option selected.
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5.4 Weightings

Table of segments selected and weightings for a given compression scheme and error budget for

Lisp benchmark:

0.1 0.01 0.001

Basic Block 12(5.5788), 4(8.5983), 1(0.9964),
48(34.3728) 12(5.5788), 2(1.0083),

48(34.3728) 4(2.4146),
6(3.6805),
8(1.9045),
12(5.5747),
18(13.3192),
48(21.0693)

Address Modulo 17(49.4798) 14(14.6960), 1(1.0389),
4096 17(35.4397) 4(3.4727),

12(4.7684),
14(5.9751),
17(1.4451),
35(33.2630)

Address Modulo 17(49.4356) 7(11.3523), 1(0.9477),
512 17(38.7080) 5(3.0267),

7(5.6716),
15(6.1012),
17(2.2302),
23(16.2251),
46(15.7867)

Address Modulo 17(49.3189) 7(11.7796), 7(10.5435),
64 17(38.3425) 12(4.2397),

17(7.5260),
23(27.7148)

Instruction Class 17(49.5815) 15(12.5406), 15(15.0930),
Scheme 1 17(37.8017) 17(8.6279),

34(26.2947)

Instruction Class 17(49.9211) 8(14.6792), 8(14.6792),
Scheme 2 17(35.5491) 17(35.5491)

Instruction Class 17(49.9178) 8(14.6667), 8(14.6667),
Scheme 3 1 17(35.5593) 17(35.5593)
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Table of segments selected and weightings for a given compression scheme and error budget for

tomcatv (first 500 million instructions) benchmark:

0.1 0.01 0.001

Basic Block 14(7.1012), 1(1.6672), 1(1.6672),
35(33.1822) 7(8.3217), 7(8.3217),

14(6.8338), 14(6.8338),
25(33.1709) 25(33.1709)

Address Modulo 26(50.0076) 26(50.0076) 26(50.0076)
4096

Address Modulo 26(50.0077) 26(50.0077) 26(50.0077)
512

Address Modulo 26(50.0025) 26(50.0025) 26(50.0025)
64

Instruction Class 22(50.0196) 22(50.0196) 22(50.0196)
Scheme 1

Instruction Class 22(50.0087) 22(50.0087) 22(50.0087)
Scheme 2

Instruction Class 22(50.0077) 22(50.0077) 22(50.0077)
Scheme 3 1 1_1_ 1

-32-



Table of Segments selected and weightings for a given compression scheme and error budget for

tomcatv (instructions 2 billion to 2.5 billion) benchmark:

0.1 0.01 0.001

Basic Block 3(30.4814) 3(30.4814) 3(30.4814)

Address Modulo 37(34.8035), 37(22.2379), 36(15.4424),
4096 48(14.0535) 38(11.7727), 37(16.2024),

48(15.9320) 38(17.7953),
48(0.5524)

Address Modulo 28(33.4004), 11(2.7398), 6(4.7925),
512 48(15.7537) 28(31.2388), 11(11.5508),

48(15.8679) 28(22.1498),
48(11.4289)

Address Modulo 25(34.0127), 25(34.0127), 8(5.1521),
64 45(15.7850) 45(15.7850) 24(4.2497),

25(28.8802),
45(11.6175)

Instruction Class 22(33.9384), 5(11.6970), 5(15.3472),
Scheme 1 39(16.0984) 6(6.0650), 6(15.3114),

19(5.0670), 7(14.3326),
22(17.5144), 19(0.3599),
39(9.6468) 22(1.2207),

39(0.6865),
50(2.7472)

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 28(45.6033) 28(45.6033) 28(45.6033)
Scheme 3 1 1_ _
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Table of segments selected and weightings for a given compression scheme and error budget for

mpegplay benchmark:

0.1 0.01 0.001

Basic Block 3(10.1058), 3(5.7300), 1(1.0120),
22(38.6334) 4(3.6266), 2(0.9840),

19(6.7646), 3(1.0427),
22(13.5163), 4(1.3640),
25(7.6615), 5(1.6789),
28(6.0498) 7(1.0148),

8(1.4022),
9(1.5068),
11(1.2600),
12(3.9195),
15(1.1851),
16(1.5726),
19(0.7521),
22(6.9909),
25(9.7726),
28(5.5172),
33(4.4573),
45(-1.1899)

Address Modulo 28(44.4628) 28(44.4628) 5(4.7261),
4096 16(15.7733),

28(5.4026),
33(9.6037),
41(8.9378)

Address Modulo 28(44.4657) 28(44.4657) 2(5.9297),
512 12(3.6829),

16(7.5369),
21(4.7675),
28(5.8292),
33(10.5598),
43(6.4010)
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Address Modulo 28(44.3648) 28(44.3648) 2(5.7028),
64 12(3.0732),

16(4.3611),
17(5.7035),
21(5.4657),
28(3.3246),
33(6.6467),
34(5.1466),
43(5.3588)

Instruction Class 30(45.0531) 23(13.9065), 2(3.8375),
Scheme 1 30(12.0187), 3(7.3417),

37(19.2627) 23(10.8037),
28(5.8148),
30(8.0239),
31(2.5373),
37(6.4508)

Instruction Class 20(43.9925) 20(43.9925) 20(30.3809),
Scheme 2 35(14.3007)

Instruction Class 25(42.5328) 25(42.5328) 14(13.3603),
Scheme 3 1 1 25(30.3239)



All measures are relative to graduated instructions. The RI 0000 performance counters can index

against other values, but this was chosen for the sake of consistency and for certain technical

reasons.

5.5 Summarized Results

Once the compressed benchmarks were compared against the whole-program figures, the results

were averaged and tabulated as follows. This data can be used to evaluate the various

compression schemes, and in particular their ability to predict various measures of performance.

Data for Semi-Random selection is included in the 0.001 error level compression chart, since that

is what it is most comparable to.

Key:

LDs: Graduated Loads

STs : Graduated Stores

TLB : TLB Misses

BR-X : Miss-predicted Branches

L1D$ : Level 1 Data Cache Misses

L2D$ : Level 2 Data Cache Misses

BR: Decoded Branches

L1I$ : Level 1 Instruction Cache Misses

L21$ : Level 2 Instruction Cache Misses

-36-



Scheme versus predicted quantity - average error magnitude, 0.1 error budget

LDs STs TLB BR-X LlD$ L2D$ BR LlI$ L21$

BB 0.1874 0.1334 0.1523 0.1319 0.1374 0.1699 0.2062 0.1362 0.1795

am4096 0.0258 0.0069 0.4706 0.0956 0.0772 0.1144 0.0144 0.0907 0.5930

am512 0.0334 0.0266 0.4894 0.0759 0.1012 0.1373 0.0082 0.0877 0.5932

am64 0.0314 0.0275 0.5016 0.0774 0.1037 0.1409 0.0065 0.0901 0.5987

IC-1 0.0189 0.0343 0.5087 0.0315 0.0919 0.1208 0.0104 0.0747 0.6092

IC-2 0.0309 0.0151 0.6737 0.0242 0.0792 0.1587 0.0110 0.0602 0.7906

IC-3 0.0548 0.0870 0.6851 0.2552 0.1403 0.2131 0.0667 0.0925 0.6563

Scheme versus predicted quantity - average error magnitude, 0.01 error budget

LDs STs TLB BR-X LID$ L2D$ BR L1I$ L21$

BB 0.1025 0.0268 0.0512 0.0602 0.0216 0.0614 0.1017 0.0688 0.1571

am4096 0.0185 0.0104 0.3761 0.0675 0.0662 0.1399 0.0033 0.0527 0.4862

am512 0.0294 0.0215 0.3948 0.0704 0.0792 0.1480 0.0044 0.0652 0.4993

am64 0.0294 0.0262 0.4101 0.0707 0.0833 0.1576 0.0033 0.0665 0.5032

IC-1 0.0306 0.0165 0.4055 0.0315 0.0423 0.1885 0.0112 0.0521 0.5330

IC-2 0.0324 0.0094 0.5837 0.0215 0.0580 0.2339 0.0115 0.0182 0.6757

IC-3 0.0559 0.0827 0.6177 0.2531 0.1244 0.2694 0.0670 0.0610 0.5478

Scheme versus predicted quantity - average error magnitude, 0.001 error budget

LDs STs TLB BR-X LlD$ L2D$ BR LlI$ L21$

BB 0.0904 0.0196 0.0612 0.0287 0.0123 0.0443 0.0891 0.0612 0.1487

am4096 0.0039 0.0083 0.1753 0.0054 0.0135 0.0403 0.0074 0.0115 0.1095

am512 0.0260 0.0228 0.1047 0.0310 0.0397 0.0609 0.0165 0.0298 0.0970

am64 0.0116 0.0159 0.1949 0.0268 0.0259 0.0571 0.0066 0.0199 0.1520

IC-1 0.0156 0.0022 0.1491 0.0008 0.0353 0.1492 0.0020 0.0191 0.2138

IC-2 0.0120 0.0127 0.5887 0.0189 0.0556 0.1895 0.0115 0.0146 0.6764

IC-3 0.0384 0.0811 0.5951 0.2520 0.1167 0.2731 0.0635 0.0456 0.6042

Random 0.0394 0.0462 0.2099 0.1078 0.0641 0.0854 0.0489 0.0620 0.0971
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Average error per measured event for the Lisp benchmark

0.1 error 0.01 error 0.001 error

Graduated Loads 0.0339 0.0083 0.0023

Graduated Stores 0.0382 0.0058 0.0028

TLB misses 1.2158 0.9093 0.4355

Misspredicted 0.0528 0.0247 0.0043

branches

Primary data cache 0.1094 0.0180 0.0119

misses

Secondary data cache 0.0439 0.1690 0.1129

misses

Decoded branches 0.0385 0.0090 0.0021

Primary instruction 0.1534 0.0453 0.0189

cache misses

Secondary instruction 1.7546 1.3876 0.5369

cache misses
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Average error per measured event for the first half billion instructions of tomcatv

Level 1 Level 2 Level 3

Graduated Loads 0.0283 0.0006 0.0006

Graduated Stores 0.0283 0.0040 0.0040

TLB misses 0.3740 0.3183 0.3183

Misspredicted 0.0295 0.0020 0.0020

branches

Primary data cache 0.0879 0.0570 0.0570

misses

Secondary data cache 0.1933 0.1567 0.1567

misses

Decoded branches 0.0287 0.0012 0.0012

Primary instruction 0.0294 0.0016 0.0016

cache misses

Secondary instruction 0.2122 0.2238 0.2238

cache misses
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Average error per measured event for instruction 2 to 2.5 billion of tomcatv

Level 1 Level 2 Level 3

Graduated Loads 0.0817 0.0805 0.0734

Graduated Stores 0.1111 0.1049 0.0808

TLB misses 0.1519 0.1390 0.1038

Misspredicted 0.1896 0.1920 0.1902

branches

Primary data cache 0.1120 0.1068 0.0797

misses

Secondary data cache 0.1511 0.1381 0.1038

misses

Decoded branches 0.1055 0.1018 0.1022

Primary instruction 0.0939 0.0856 0.0645

cache misses

Secondary instruction 0.0966 0.0904 0.1078

cache misses
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Average error per measured event for mpegplay benchmark

Level 1 Level 2 Level 3

Graduated Loads 0.0820 0.0924 0.0455

Graduated Stores 0.0250 0.0103 0.0184

TLB misses 0.1731 0.1922 0.1111

Misspredicted 0.1376 0.1469 0.0399

branches

Primary data cache 0.1131 0.0966 0.0257

misses

Secondary data cache 0.2135 0.2075 0.0796

misses

Decoded branches 0.0256 0.0166 0.0198

Primary instruction 0.0892 0.0678 0.0373

cache misses

Secondary instruction 0.1476 0.1586 0.1870

cache misses
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6.0 Conclusion

6.1 Summary

Non-random compression techniques work, although they are not as robust as would be

desirable. For example, with a 0.001 error budget (weighted sum vector differs from total vector

by 0.001), Basic Block averages less than 6.2% error across all measures. The three Pseudo-

Cache schemes average under 4.9% error across all measures. Least successful of all, the

Instruction Class schemes average under 15.7% error across all measures. Semi-Random

averages under 8.5% error across all measures.

With tight error constraints, Basic Block is the most consistent of the schemes. Instruction Class

is highly variable, and is a very poor predictor of TLB misses and secondary cache misses of both

types. Pseudo-Caches scheme are fairly consistent, with most of the error contributed by failure

to predict TLB misses as well as Basic Block.

It seems that Instruction Class algorithms relaxed the definition of similar basic blocks too much.

A look at the decimated data is revealing; the vast majority of basic blocks tend to fall into a

small number of categories, having a couple of loads and a couple of stores. There aren't enough

categories to differentiate blocks. Basic Block on the other hand spreads its data over a much

larger number of vector entries. Pseudo-Cache data is spread wider still, with most vector

elements having at least one basic block count towards them. Curiously in the Pseudo-Cache

decimated data sets there is clear evidence of array strides and patterns within patterns. Weights

of the various strides vary throughout the progression of a program, thereby allowing selection.

A more intelligent analysis of this data may lead to a better compression scheme.

It is clear looking at the prediction errors that some things are just hard to predict. TLB misses,

for example are predicted poorly by all schemes, averaging 26.7% error at a 0.001 allowed

weighted-sum error for non-random schemes. Even Semi-Random averaged almost 21% error.
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Similarly Level 2 cache misses caused by instruction misses are hard to predict. To a lesser

extent, Level 2 misses caused by data misses are difficult to predict. The rarer the event, the

harder it is to select segments containing it in representative proportion.

There is an optimal number of segments to select. In these experiments, analysis selected more

than five segments very rarely. Semi-Random chose five segments by definition. Choosing

many more than five segments did not result in greatly increased accuracy. However, choosing

only one or two segment was not a robust mechanism. Since these benchmarks were all around

the same size, 500 million instructions or so, we are unable to devise the precise relationship

between benchmark size and number of segments to select, but we can suggest that it be more

than one or two and fewer than, say 10% of the program.

A more robust and accurate scheme would incorporate these ideas, using an intelligent selection

scheme, perhaps an advanced Pseudo-Cache routine, coupled with a random selector to add

breadth to the sample, and feed the result to a weighting algorithm. Such a scheme would have a

particular number of segments to select a priori, rather than an error budget, and would select the

best segments to fill such a set rather than use a greedy algorithm. The greedy algorithm is

unnecessary, as performance is already quite good. Finding an optimal set of five or so segments

is not at all impractical computationally. This scheme would both find the tricky code segments,

and reliably represent the whole. The weighting scheme would sort out proportions.

6.2 Suggestions for Additional Work

Hybrid schemes incorporating randomness and intelligent selection schemes need to be

investigated in detail. Such a scheme ought to be the ultimate refinement of the methods

suggested

Similarly, there are differences in the susceptibility of each measure to prediction. General

instruction distributions, like number of loads or mispredicted branches, are easy to predict. The
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rarer the event, though, the harder it is to predict. Instruction cache misses are harder to predict

than data. Secondary cache misses are a great deal harder to predict than primary cache misses,

which are fairly easy. TLB misses are very hard to predict.

here.

However, a great deal of work can be done to improve the intelligent selection mechanisms.

This includes improving the mechanism of the decimators, considering alternate data sources and

fundamentally questioning the goals of such selection.

First, while Basic Block is stable in its present form, much can be done with Pseudo-Cache.

Alternative computationally cheap cache models could easily be attempted. With respect to

caches there may be an elementary problem with our selection schemes. They all seek normal

behavior, when the interesting cache problems are all the result of abnormal behavior, the load of

an address never seen, or the access of an array with an odd stride. Selecting "representative"

segments may be selecting primarily for cache hits. Some sort of anti-representative metric could

be investigated as a possible compression scheme.

Sources of data besides traces need to be considered for compression. For example, it may be

interesting to use data generated by the R10000's performance counters as the basis for

compression. This could certainly help in the prediction of cache or TLB misses, and it could

allow an efficient Pseudo-Cache using the R10000's cache as the model.

Lastly, we need to question the assumptions of this analysis. What are we trying to obtain in our

compressed segments? Representative numbers of events? Representative numbers of events

weighted by the time it takes to deal with each event (For example, should cache misses count

for more than cache hits)? Comprehensive coverage of the space of events? Our methods

selected for the first goal. They were applied to the second with some success. The third goal

was not addressed, although obviously it could be important for verification purposes, or certain

types of performance analysis, such as guaranteeing worst-case performance, as must often be
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done in real-time systems.

Experimentally, a larger variety of larger benchmarks could be investigated. This would allow

the checking of the scaling of the number of segments that need to be selected with the size of the

program. Evaluation of the quality of predictions could be performed on a variety of different

machines. And a greater variety of events could be checked for their predictability, particularly if

more capable hardware was available, as it undoubtably will be in the future

There is a great deal left to be done. While this thesis opened the field to analysis, it uncovered

more questions then it answered. The scope of the paper does not allow a thorough explanation

of all the ideas. Still, there is a mechanism here that is very useful. Further exploration will turn

it into an even more reliable tool for architecture research.
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Appendix A: Analysis Code and Description

algebra.m

Algerbra.m is the core of the segment selection operation. It is a Matlab routine that takes as

input a set of files, each of which contains a vector describing a segment of code. Each element

of that vector is a count of the number of occurrences of a particular event, for example the

execution of a particular basic block, in that segment. Algebra.m reads in all these files and sums

their data. It now has one giant vector counting all the occurrences of every recorded event in the

execution of the benchmark. The program then attempts to build up a weighted sum of a small

subset of the segment vectors that approximate the total vector to within error bounds.

This is done in a greedy fashion. Algebra.m selects the segment vector that best approximates

the total vector, computing the weighting via a least squares routine. If the weighted selected

vector approximates with small enough error, the program terminates returning the vector and

weight. If it doesn't, it then tries to minimize error by selecting a second vector and running the

least squares routine again, and so on, until the accumulated set of segment vectors, when

weighted, approximate the total vector to within the error bound.

Note that we do not try to find, say, the best six vectors, as this would be computationally

difficult. Our greedy scheme is less computationally intensive and, empirically speaking, has

produced very good results. However, it is not completely clear that this optimization is

necessary.

algebra.m:
n= input ('Enter the number of rows in each matrix: ');
f= input ('Enter the highest file number: ');
allowable = input ('Enter the allowable error: ');

M = zeros (n, f+l);

-50-



for x=0 : f,
% set up filename
nameO = sprintf('%s.%4.4d.%s','testl',x,'dat');

fid = fopen(nameO);

F = fscanf (fid, '%d');

for y = 1 : n,
M(y, x+1) = F(2*y, 1);

end
fclose (fid);

end

B = zeros (n, 1);
% set up filename

name0 = sprintf('%s.%s.totals','testl', 'dat');
fid = fopen(nameO);

G = fscanf (fid, '%d');
for y = 1 : n,

B(y, 1)= G(2*y, 1);
end

fclose (fid);

SELECT = zeros (1, f+l);
error = 1;
c = 0;
r = n;
X = zeros (1, f+1);

while (error > allowable)
for x = 1 : f+1,

c = c + SELECT(1, x);
end

A = zeros (r, c+1);

acn = 1;
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for x = 1 : f+1,
if (SELECT(1, x) == 1)

A(:, acn) = M(:, x);
acn = acn + 1;

end
end

BEST = ones (1, f+1);

for x = 1 : f+1,
if (SELECT(1, x) == 0)

A(:, acn) = M(:, x);
X=A\B

A

%error calculation
Temp = A * X;

Temp

Temp = Temp - B;

squaresum = 0;
for y = 1 : n,

Square (y, 1) = (Temp (y, 1))*(Temp (y, 1));
squaresum = squaresum + Square (y, 1);

end
calcerror = sqrt(squaresum);

BEST (1, x) = calcerror/(norm(B));

end
end

lowest = 1;
iol= 0;

for x = 1 : f+1,
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if (BEST(l, x) <lowest)
lowest = BEST(l, x);
iol = X;

end
end

error = lowest;
SELECT(1, iol) = 1;

end

%Produce answer.

for x = 1 : f+1,
if (SELECT(1,x) == 1)

A(:, acn) = M(:, x);
end

end

%Print the selection

SELECT

%Print the weighting

X=A\B
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Appendix B: Predictive Accuracy Data

Error in prediction of graduated loads for Lisp benchmark for a given compression scheme and
error budget:

0.1 0.01 0.001

Basic Block 0.2006 0.0275 0.0002

Address Modulo 0.0085 -0.0074 0.0005
4096

Address Modulo 0.0093 -0.0026 0.0017
512

Address Modulo 0.0117 -0.0038 0.0012
64

Instruction Class 0.0064 -0.0068 0.0025
Scheme 1

Instruction Class -0.0004 -0.0049 -0.0049
Scheme 2

Instruction Class -0.0003 -0.0049 -0.0049
Scheme 3 1_1
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Error in prediction of graduated loads for tomcatv (first 500 million instructions) benchmark for

a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.1941 -0.0005 -0.0005

Address Modulo 0.0009 0.0009 0.0009
4096

Address Modulo 0.0009 0.0009 0.0009
512

Address Modulo 0.0010 0.0010 0.0010
64

Instruction Class 0.0001 0.0001 0.0001
Scheme 1

Instruction Class 0.0004 0.0004 0.0004
Scheme 2

Instruction Class 0.0004 0.0004 0.0004
Scheme 3 1_1
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Error in prediction of graduated loads for tomcatv (instructions 2 billion to 2.5 billion)
benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.3263 0.3263 0.3263

Address Modulo 0.0083 0.0100 0.0004
4096

Address Modulo 0.0376 0.0284 0.0224
512

Address Modulo 0.0298 0.0298 0.0282
64

Instruction Class 0.0262 0.0260 0.0011
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.0622 0.0622 0.0622
Scheme 3
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Error in prediction of graduated loads for mpegplay benchmark for a given compression scheme

and error budget:
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0.1 0.01 0.001

Basic Block -0.0287 0.0555 0.0346

Address Modulo -0.0855 -0.0855 -0.0136
4096

Address Modulo -0.0856 -0.0856 -0.0788
512

Address Modulo -0.0831 -0.0831 -0.0159
64

Instruction Class -0.0429 -0.0895 -0.0586
Scheme 1

Instruction Class 0.0918 0.0918 0.0307
Scheme 2

Instruction Class 0.1561 0.1561 0.0861
Scheme 3



Error in prediction of graduated stores for Lisp benchmark for a given compression scheme and

error budget:

0.1 0.01 0.001

Basic Block 0.1753 0.0187 -0.0035

Address Modulo -0.0127 0.0017 -0.0006
4096

Address Modulo -0.0118 0.0044 0.0018
512

Address Modulo -0.0094 0.0043 0.0040
64

Instruction Class -0.0148 -0.0026 0.0006
Scheme 1

Instruction Class -0.0217 0.0045 0.0045
Scheme 2

Instruction Class -0.0217 0.0045 0.0045
Scheme 3 111
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Error in prediction of graduated stores for tomcatv (first 500 million instructions) benchmark for
a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.1943 -0.0005 -0.0005

Address Modulo 0.0009 0.0009 0.0009
4096

Address Modulo 0.0009 0.0009 0.0009
512

Address Modulo 0.0010 0.0010 0.0010
64

Instruction Class 0.0001 0.0001 0.0001
Scheme 1

Instruction Class -0.0002 -0.0002 -0.0002
Scheme 2

Instruction Class 0.0004 0.0004 0.0004
Scheme 3
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Error in prediction of graduated stores for tomcatv (instructions 2 billion to 2.5 billion)
benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.0664 0.0664 0.0664

Address Modulo 0.0080 0.0331 0.0013
4096

Address Modulo 0.0877 0.0748 0.0414
512

Address Modulo 0.0958 0.0958 0.0528
64

Instruction Class 0.0897 0.0399 0.0038
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.3191 0.3191 0.3191
Scheme 3 1_1_ 1
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Error in prediction of graduated stores
scheme and error budget:

for mpegplay benchmark for a given compression

0.1 0.01 0.001

Basic Block -0.0974 0.0216 0.0081

Address Modulo -0.0058 -0.0058 0.0303
4096

Address Modulo -0.0059 -0.0059 -0.0471
512

Address Modulo -0.0036 -0.0036 -0.0056
64

Instruction Class 0.0325 -0.0052 -0.0041
Scheme 1

Instruction Class 0.0235 0.0235 0.0334
Scheme 2

Instruction Class 0.0066 0.0066 0.0004
Scheme 3 1
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Error in prediction of TLB misses for Lisp benchmark for a given compression scheme and error

budget:

0.1 0.01 0.001

Basic Block 0.0733 -0.0177 0.0246

Address Modulo -1.3999 -1.0040 0.2008
4096

Address Modulo -1.3978 -1.0376 -0.0813
512

Address Modulo -1.3921 -1.0259 -0.3782
64

Instruction Class -1.4048 -0.9773 0.0607
Scheme 1

Instruction Class -1.4213 -1.1514 -1.1514
Scheme 2

Instruction Class -1.4211 -1.1515 -1.1515
Scheme 3
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Error in prediction of TLB misses for tomcatv (first 500 million instructions) benchmark for a
given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.4753 0.0848 0.0848

Address Modulo -0.2502 -0.2502 -0.2502
4096

Address Modulo -0.2502 -0.2502 -0.2502
512

Address Modulo -0.2501 -0.2501 -0.2501
64

Instruction Class 0.4641 0.4641 0.4641
Scheme 1

Instruction Class 0.4642 0.4642 0.4642
Scheme 2

Instruction Class 0.4642 0.4642 0.4642
Scheme 3 1_1_ 1_1
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Error in prediction of TLB misses for tomcatv (instructions 2 billion to 2.5 billion) benchmark
for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.0587 0.0587 0.0587

Address Modulo 0.0289 0.0469 -0.0126
4096

Address Modulo 0.1062 0.0882 0.0389
512

Address Modulo 0.1637 0.1637 0.0851
64

Instruction Class 0.1320 0.0546 0.0054
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.4218 0.4218 0.4218
Scheme 3 1_1_ 1
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Error in prediction of TLB misses for mpegplay benchmark for a given compression scheme

and error budget:

0.1 0.01 0.001

Basic Block -0.0017 0.0434 0.0767

Address Modulo -0.2032 -0.2032 -0.0877
4096

Address Modulo -0.2033 -0.2033 -0.0485
512

Address Modulo -0.2006 -0.2006 -0.0057
64

Instruction Class 0.0340 0.1260 -0.0660
Scheme 1

Instruction Class -0.1355 -0.1355 -0.1504
Scheme 2

Instruction Class 0.4334 0.4334 0.3429
Scheme 3
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Error in prediction of misspredicted branches for Lisp benchmark for a given compression
scheme and error budget:

0.1 0.01 0.001

Basic Block 0.2241 0.0383 0.0057

Address Modulo 0.0268 -0.0098 0.0005
4096

Address Modulo 0.0277 -0.0029 -0.0016
512

Address Modulo 0.0300 -0.0048 -0.0013
64

Instruction Class 0.0248 -0.0083 -0.0008
Scheme 1

Instruction Class 0.0181 -0.0100 -0.0100
Scheme 2

Instruction Class 0.0182 -0.0099 -0.0099
Scheme 3

-66-



Error in prediction of misspredicted branches for tomcatv (first 500 million instructions)
benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.1959 0.0030 0.0030

Address Modulo 0.0014 0.0014 0.0014
4096

Address Modulo 0.0014 0.0014 0.0014
512

Address Modulo 0.0015 0.0015 0.0015
64

Instruction Class 0.0020 0.0020 0.0020
Scheme 1

Instruction Class 0.0023 0.0023 0.0023
Scheme 2

Instruction Class 0.0023 0.0023 0.0023
Scheme 3 1_1
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Error in prediction of misspredicted
benchmark for a given compression

branches for tomcatv (instructions 2 billion to 2.5 billion)
scheme and error budget:

-68-

0.1 0.01 0.001

Basic Block 0.0713 0.0713 0.0713

Address Modulo 0.1033 0.0079 0.0002
4096

Address Modulo 0.0236 -0.0266 -0.0730
512

Address Modulo 0.0240 0.0240 -0.0882
64

Instruction Class 0.0070 -0.1140 -0.0001
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.9082 0.9082 0.9082
Scheme 3



Error in prediction of misspredicted branches for mpegplay benchmark for a given compression

scheme and error budget:
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0.1 0.01 0.001

Basic Block -0.0363 0.1283 0.0347

Address Modulo 0.2508 0.2508 0.0194
4096

Address Modulo 0.2507 0.2507 -0.0481
512

Address Modulo 0.2524 0.2524 0.0163
64

Instruction Class -0.0286 -0.0016 0.0291
Scheme 1

Instruction Class -0.0523 -0.0523 -0.0443
Scheme 2

Instruction Class 0.0921 0.0921 0.0874
Scheme 3



Error in prediction of primary data cache misses for Lisp benchmark for a given compression
scheme and error budget:

0.1 0.01 0.001

Basic Block 0.2384 0.0384 0.0053

Address Modulo 0.0903 0.0125 0.0125
4096

Address Modulo 0.0911 0.0148 -0.0144
512

Address Modulo 0.0932 0.0113 -0.0016
64

Instruction Class 0.0884 -0.0121 -0.0131
Scheme 1

Instruction Class 0.0821 -0.0184 -0.0184
Scheme 2

Instruction Class 0.0822 -0.0183 -0.0183
Scheme 3 1 1_1
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Error in prediction of primary data cache misses
benchmark for a given compression scheme and

for tomcatv (first 500 million instructions)
error budget:

0.1 0.01 0.001

Basic Block 0.2211 -0.0049 -0.0049

Address Modulo -0.0266 -0.0266 -0.0266
4096

Address Modulo -0.0266 -0.0266 -0.0266
512

Address Modulo -0.0265 -0.0265 -0.0265
64

Instruction Class 0.1046 0.1046 0.1046
Scheme 1

Instruction Class 0.1048 0.1048 0.1048
Scheme 2

Instruction Class 0.1048 0.1048 0.1048
Scheme 3 1 1_1_ 1
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Error in prediction of primary data cache misses
benchmark for a given compression scheme and

for tomcatv (instructions 2 billion to 2.5 billion)
error budget:
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0.1 0.01 0.001

Basic Block 0.0332 0.0332 0.0332

Address Modulo 0.0026 0.0364 -0.0007
4096

Address Modulo 0.0977 0.0861 0.0498
512

Address Modulo 0.1086 0.1086 0.0633
64

Instruction Class 0.1048 0.0513 0.063
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.3251 0.3251 0.3251
Scheme 3 1 1_1



Error in prediction of primary data cache misses for mpegplay benchmark for a given
compression scheme and error budget:

0.1 0.01 0.001

Basic Block -0.0569 -0.0099 0.0058

Address Modulo -0.1892 -0.1892 -0.0143
4096

Address Modulo -0.1893 -0.1893 -0.0679
512

Address Modulo -0.1866 -0.1866 -0.0122
64

Instruction Class 0.0696 -0.0013 -0.0172
Scheme 1

Instruction Class 0.0507 0.0507 0.0435
Scheme 2

Instruction Class 0.0492 0.0492 0.0187
Scheme 3 1 1_ __ 1
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Error in prediction of secondary data cache misses for Lisp benchmark for a given compression
scheme and error budget:

0.1 0.01 0.001

Basic Block 0.2221 0.1045 0.0266

Address Modulo -0.0116 -0.0998 -0.0072
4096

Address Modulo -0.0107 -0.0719 -0.0072
512

Address Modulo -0.0083 -0.0750 -0.0099
64

Instruction Class -0.0136 -0.3401 -0.2477
Scheme 1

Instruction Class -0.0206 -0.2459 -0.2459
Scheme 2

Instruction Class -0.0205 -0.2457 -0.2457
Scheme 3 1 1_1
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Error in prediction of secondary data cache misses for tomcatv (first 500 billion instructions)
benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.2914 0.0350 0.0350

Address Modulo 0.1266 0.1266 0.1266
4096

Address Modulo 0.1266 0.1266 0.1266
512

Address Modulo 0.1267 0.1267 0.1267
64

Instruction Class 0.2272 0.2272 0.2272
Scheme 1

Instruction Class 0.2272 0.2274 0.2274
Scheme 2

Instruction Class 0.2274 0.2274 0.2274
Scheme 3 1 1_ __ 1
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Error in prediction of secondary data cache misses for tomcatv (instructions 2 billion to 2.5
billion) benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.0416 0.0416 0.0416

Address Modulo 0.0353 0.0490 0.0028
4096

Address Modulo 0.1278 0.1095 0.0610
512

Address Modulo 0.1404 0.1404 0.0759
64

Instruction Class 0.1259 0.0522 0.0060
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.4357 0.4357 0.4357
Scheme 3 1 1_1_ 1
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Error in prediction of secondary data cache misses for mpegplay benchmark for a given
compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.1246 0.0646 0.0738

Address Modulo -0.2840 -0.2840 -0.0245
4096

Address Modulo -0.2841 -0.2841 -0.0487
512

Address Modulo -0.2881 -0.2881 -0.0154
64

Instruction Class -0.1163 -0.1346 -0.1159
Scheme 1

Instruction Class 0.2284 0.2284 0.0951
Scheme 2

Instruction Class 0.1689 0.1689 0.1836
Scheme 3 1 1 1 _1
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Error in prediction of decoded branches for Lisp benchmark for a given compression scheme and
error budget:

0.1 0.01 0.001

Basic Block 0.2058 0.0306 0.0016

Address Modulo 0.0132 -0.0065 0.0003
4096

Address Modulo 0.0141 -0.0025 0.0001
512

Address Modulo 0.0164 -0.0039 -0.0007
64

Instruction Class 0.0112 -0.0077 -0.0001
Scheme 1

Instruction Class 0.0044 -0.0060 -0.0060
Scheme 2

Instruction Class 0.0045 -0.0059 -0.0059
Scheme 3 1 1 _1
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Error in prediction of decoded branches for tomcatv (first 500 million instructions) benchmark
for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.1934 -0.0011 -0.0011

Address Modulo -0.0010 -0.0010 -0.0010
4096

Address Modulo -0.0010 -0.0010 -0.0010
512

Address Modulo -0.0009 -0.0009 -0.0009
64

Instruction Class -0.0017 -0.0017 -0.0017
Scheme 1

Instruction Class -0.0014 -0.0014 -0.0014
Scheme 2

Instruction Class -0.0014 -0.0014 -0.0014
Scheme 3 1 1_1_ 1
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Error in prediction of decoded branches for tomcatv (instructions 2 billion to 2.5 billion)
benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.3428 0.3428 0.3428

Address Modulo 0.0379 -0.0002 0.0001
4096

Address Modulo 0.0122 -0.0086 -0.0165
512

Address Modulo 0.0007 0.0007 -0.0198
64

Instruction Class -0.0056 -0.0247 -0.0004
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.2336 0.2336 0.2336
Scheme 3 1 1 _ _1
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Error in prediction of decoded branches for mpegplay benchmark for a given compression
scheme and error budget:

0.1 0.01 0.001

Basic Block -0.0829 0.0321 0.0110

Address Modulo 0.0056 0.0056 0.0282
4096

Address Modulo 0.0055 0.0055 -0.0484
512

Address Modulo 0.0078 0.0078 -0.0050
64

Instruction Class 0.0231 -0.0106 -0.0059
Scheme 1

Instruction Class 0.0272 0.0272 0.0270
Scheme 2

Instruction Class 0.0271 0.0271 0.0129
Scheme 3 _
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Error in prediction of primary instruction cache misses for Lisp benchmark for a given
compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.1201 0.0003 -0.0101

Address Modulo -0.1559 -0.0503 -0.0139
4096

Address Modulo -0.1549 -0.0606 -0.0004
512

Address Modulo -0.1522 -0.0579 0.0040
64

Instruction Class -0.1583 -0.0677 -0.0239
Scheme 1

Instruction Class -0.1662 -0.0401 -0.0401
Scheme 2

Instruction Class -0.1662 -0.0401 -0.0401
Scheme 3 _ 1_1
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Error in prediction of primary instruction cache misses for tomcatv (first 500 million
instructions) benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.1949 -0.0005 -0.0005

Address Modulo 0.0006 0.0006 0.0006
4096

Address Modulo 0.0006 0.0006 0.0006
512

Address Modulo 0.0007 0.0007 0.0007
64

Instruction Class 0.0028 0.0028 0.0028
Scheme 1

Instruction Class 0.0030 0.0030 0.0030
Scheme 2

Instruction Class 0.0031 0.0031 0.0031
Scheme 3 1 1_1
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Error in prediction of primary instruction cache misses for tomcatv (instructions 2 billion to 2.5

billion) benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block -0.2069 -0.2069 -0.2069

Address Modulo -0.0724 0.0261 -0.0065
4096

Address Modulo 0.0613 0.0658 0.0517
512

Address Modulo 0.0763 0.0763 0.0632
64

Instruction Class 0.1122 0.1041 0.0241
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.0343 0.0343 0.0343
Scheme 3

-84-



Error in prediction of primary instruction cache misses for mpegplay benchmark for a given
compression scheme and error budget:

0.1 0.01 0.001

Basic Block -0.0228 0.0675 0.0271

Address Modulo -0.1337 -0.1337 -0.0248
4096

Address Modulo -0.1338 -0.1338 -0.0663
512

Address Modulo -0.1312 -0.1312 0.0116
64

Instruction Class -0.0253 -0.0338 -0.0256
Scheme 1

Instruction Class -0.0114 -0.0114 -0.0008
Scheme 2

Instruction Class 0.1665 0.1665 0.1047
Scheme 3 1 1_1__

-85-



Error in prediction of secondary instruction cache misses for Lisp benchmark for a given
compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.3450 0.2186 0.0794

Address Modulo -1.9818 -1.5095 0.0182
4096

Address Modulo -1.9791 -1.6022 -0.0747
512

Address Modulo -1.9721 -1.5903 -0.1525
64

Instruction Class -1.9879 -1.6453 -0.2860
Scheme 1

Instruction Class -2.0084 -1.5738 -1.5738
Scheme 2

Instruction Class -2.0082 -1.5740 -1.5740
Scheme 3 1 1_1_ 1
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Error in prediction of secondary instruction cache misses for tomcatv (first 500 million
instructions) benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block 0.1113 -0.1925 -0.1925

Address Modulo -0.1721 -0.1721 -0.1721
4096

Address Modulo -0.1721 -0.1721 -0.1721
512

Address Modulo -0.1720 -0.1720 -0.1720
64

Instruction Class 0.2859 0.2859 0.2859
Scheme 1

Instruction Class 0.2860 0.2860 0.2860
Scheme 2

Instruction Class 0.2861 0.2861 0.2861
Scheme 3 1_1_ 1
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Error in prediction of secondary instruction cache misses for tomcatv (instructions 2 billion to

2.5 billion) benchmark for a given compression scheme and error budget:

0.1 0.01 0.001

Basic Block -0.2150 -0.2150 -0.2150

Address Modulo 0.0594 0.1048 0.0850
4096

Address Modulo 0.0632 0.0645 0.0094
512

Address Modulo 0.0903 0.0903 0.0777
64

Instruction Class 0.0856 0.0016 -0.1933
Scheme 1

Instruction Class N/A N/A N/A
Scheme 2

Instruction Class 0.0663 0.0663 0.0663
Scheme 3
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Error in prediction of secondary instruction cache misses for mpegplay benchmark for a given
compression scheme and error budget:

0.1 0.01 0.001

Basic Block -0.0465 -0.0022 -0.1079

Address Modulo 0.1585 0.1585 0.1625
4096

Address Modulo 0.1584 0.1584 0.1318
512

Address Modulo 0.1603 0.1603 0.1571
64

Instruction Class 0.0773 0.1991 0.0901
Scheme 1

Instruction Class 0.1674 0.1674 0.1695
Scheme 2

Instruction Class -0.2646 -0.2646 -0.4904
Scheme 3 1 1
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Semi-Random selection
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Lisp tomcatv 0-0.5b tomcatv 2-2.5b mpegplay

Loads 0.0019 -0.0002 0.0283 -0.1273

Stores 0.0072 0.0000 -0.0419 -0.1355

TLB misses 0.1093 0.5893 -0.0627 -0.0783

Misspredicted -0.0122 0.0017 -0.3479 -0.0694
branches

Level 1 data -0.0393 0.0303 -0.0357 -0.1509
cache misses

Level 2 data -0.0446 0.0047 -0.0643 -0.2280
cache misses

Branches -0.0020 -0.0001 -0.0662 -0.1274

Level 1 0.0353 0.0004 0.0602 -0.1522
instruction cache
misses

Level2 0.1226 -0.1741 0.0429 -0.0488
instruction cache
misses


