
Analysis of Memory Usage in a LaserJet Printer
by

Novice M.J. Ezell

Submitted to the Department of Electrical Engineering an Computer Science in Partial

Fulfillment of the Requirements for the Degree of Bachelor of Science in Computer

Science and Master of Engineering in Computer Science at the Massachusetts Institute of

Technology

May 21, 1999

@ Copyright 1999 Novice M.J. Ezell. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and distribute publicly paper
and electronic copies of this thesis and to grant others the right to do so.

Author--
me of Electrical Engineering and Computer Science

May 21,1999

Certified by_
L/

I.

M. Frans Kaashoek
Thesis Supervisor

I

K?

Accepted by

Chairman, Department Committee
-Arthur C. Smith

on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL

L .mimlll

2

Analysis of Memory Usage in a LaserJet Printer
by

Novice M.J. Ezell

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 1999

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in
Computer Science and Master of Engineering in Computer Science

ABSTRACT

MemUse is a memory usage analysis tool. It was developed to examine how the memory
manager subsystem of a LaserJet printer uses memory to print a page. MemUse's main
actions include: accept user input to what objects(s) to analyze, create properly formatted
strings containing the commands to make the firmware simulator do what is being
requested, receive data from the firmware simulator, tally the data, create a data chart and
an analysis report.

MemUse was used to analyze the strip size used by the printer. It showed that a different
strip size managed memory better that the current strip size. It also uncovered memory
issues that were not previously visible to the developer.

Thesis Supervisor: M. Frans Kaashoek
Title: Associate Professor

3

Acknowledgement

I would like to first give all honor and glory to my Lord and Savior Jesus Christ. The
Lord had been my strength and guide throughout this thesis and my years at MIT.
Without Him none off this would've been possible. (Philippines 4:13)

I would also like to recognize and thank all those people who supported and helped me
through my thesis.

M. Frans Kaashoek, for agreeing to advise me even though I was across the country.

Alan Oyama, for helping me find a thesis topic and taking the time out of his busy
Hewlett Packard schedule to guiding me though my thesis work.

Perry Lea, Dan Wilcox, Kevin Hoffman, Honnee Mesa, Paul Rollin, Doug Mellor, Rick
Dow and Marion Porter, for taking time out of their busy schedules at Hewlett-Packard to
patiently and diligently answer all my questions.

Sharon Whaley, for being a wonderful manager and always providing the resources I
needed to get through my work.

I would also like to thank my parents and my husband for their love and support not only
throughout my thesis work, but also through my years at MIT.

4

1 INTRO D UCTIO N ..--- ---------------------................................... 5

1.1 HEWLETT PACKARD CURRENT APPROACH ...---. 5

1.2 THE MEMORY MANAGER....................................---....-....-----.. 6
1.3 THE NEED FOR A MEMORY ANALYSIS TOOL .. 7

1.4 CURRENT MEMORY ENHANCEMENT PROCEDURE .. 8

1.5 THESIS OUTLINE--------...... -. - - - - - - --.. 9

2 DEVELOPM ENT ..---- -------------------............................... 10

2.1 D ESIGN ...---... . -----------------------------... 11

2.1.1 Test P ag e G enerator... 12

2.1.2 S im ulator...................................... . -......... ------..................-------- .. 13

2.1.3 A n aly zer... ---------.........--------.. 16
2.1.4 U sing th e Tool 18

2.2 IMPLEMENTATION ...-....--.......---------.. 21

2.2.1 TestP ag eG enerator.. 23

2.2.2 S im u lator..--------.. 25

3 ANALYZING A MEMORY MANAGER PARAMETER .. 27

3.1 RUNNING MEMUSE..-----....--.. 27

3.2 RESULTS PRODUCED ..-..-..-------... 29

3.3 ANALYSIS...----------.. --... 31

4 MEMUSE'S FUTURE ..----------------------.-.-----------..... 33

5 APPENDIX A .. . ---..-----......... 34

5.1 STRIP SIZE B ..- -....... -----... --.. 37

5.2 STRIP SIZE C..----------. . -----------------.. - - --... 39

5.3 STRIP SIZE D ..- ... -------....- - ... ------............................... 41

5.4 STRIP SIZE E...------------. - - - - - - --... 43

6 APPENDIX B..--.....................................45

7 APPENDIX C ..--------------.........------------ 50

7.1 PRIM ITIV E FILE ..- -.... --..... ------------------------------.. 51

7.2 SIZE FILE ... --.---....-. - - - -.. --... 52

7.3 SHELL SCRIPTS AND CONTROL FILES.............-. 53

7.4 DEFAULT DIRECTORY STRUCTURE FOR MEMUSE-................................. 54

7.5 EXAMPLE OF MEMUSE'S TOOL OPTIONS MENU... 55

8 REFERENCES................................ 56

5

I Introduction
In the printer industry, print performance is the driving factor in development. Print

performance is measured by print quality, time to print, and physical memory

requirements. The memory manager is one of several subsystems in a Hewlett-Packard

(HP) LaserJet printer. This subsystem has a significant contribution to the print

performance of the printer; it effects time to print and the physical memory requirements.

The parameters of the memory manager dictate how memory is allocated and used, which

effects print time. The memory manager is also responsible for allocating the physical

memory to operate the printer. If there is insufficient physical memory, there may not be

enough memory to allocate for a specific print request. If the memory is poorly managed,

there may appear to be insufficient physical memory.

This thesis focuses on the development and usage of a memory analysis tool that aids in

the evaluation of the memory manager's performance. This tool is called MemUse.

MemUse produces an analysis of the memory manager's memory usage for a particular

printer under certain conditions. This analysis provides developers with the ability to

analyze current parameter setting for this subsystem. With this ability developers are able

to examine the effectiveness of current memory manager parameters in current systems

and analyze different settings in new products being developed.

The remainder of this section explains the memory manager and how HP is currently

measuring its performance. It continues with an explanation of the necessity for a

memory analysis tool along with a discussion of a current memory enhancement

procedure. It closes with an outline of the rest of the thesis.

1.1 Hewlett Packard Current Approach
The Hewlett-Packard (HP) LaserJet printer is a complex system made up of several

subsystems. The performance of the system is reliant on the internal performance of each

subsystem. There are few ways available to analyze the internal effect caused by changes

made in the individual subsystems during the development of each new product. The

6

most commonly used procedure is test suite performance. This type of testing consists of

printing groups of files. One group may be all text, another may be text and graphic, and

still another may be all graphic. These test suites all have a goal of testing the

performance of the printer using different aspects of the inner subsystems. Performance is

then measured by three factors: time to print, ability to print without running out of

memory, and print quality. If adjustments are made within subsystems, the results of suite

testing will determine if the changes have had an ill or beneficial effect on the system as a

whole.

1.2 The Memory Manager
A LaserJet printer is shipped with a standard amount of external memory. For example

the LaserJet 4000 is shipped with 8M bytes of DRAM. The memory manager is

responsible for the internal usage of this memory. This external memory needs to be

divided between the needs of imaging data for printing and the needs of the rest of the

system. Internal memory use needs to be efficient in order to use the external memory to

its fullest potential.

A standard letter size page, 8.5" X 11", being printed with 1200 dpi1 has 10,200 bits per

horizontal line. There are 13,200 horizontal lines on the page. If this page is represented

in a dot per bit image, it will require 16.83M bytes of memory. In order to keep a

LaserJet 4000 printer with a duplexer printing at the specification speed, there must be

two duplexed pages internally represented in the system at all times. This requires 64M

bytes of memory. This results in approximately a eight to one ration of memory the

memory manager has versus the memory it needs to keep the printer printing at

specification speed.

Memory is very limited in the system and must be managed efficiently to provide a

desired performance. The memory manager must operate using memory strategies to

allow the system as a whole to perform competitively and cost efficiently. It would not be

dpi means dots per inch

7

competitive to have the printer print one page every five minutes, and it would not be

cost efficient to sell a LaserJet 4000 standard with 64M bytes of memory.

1.3 The Need For A Memory Analysis Tool
Test suite performance testing allows developers to compare new developments with past

products and competitor products. However, this type of testing only exposes the surface

of the memory manager's complex nature. Analyzing only how fast the memory manager

can process a print request with the memory available to it is not beneficial for long term

improvements. There also needs to be an analysis of how the memory manager is

managing its memory. If the memory manager is efficiently using the memory provided

to it, then the printer will be able to benefit and perform effectively. In fear that

modifications will cause internal turmoil, many of this subsystem's parameters are not set

to provide the most beneficial memory strategies; the parameters are not necessarily

optimal for each product developed. If parameters are changed, suite testing only shows

the benefits or hinders it causes to the overall system. It does not investigate the benefits

or hinders it caused internally; therefore this inner turmoil could go unnoticed until some

time later.

Internal memory information is available through several manual tools. These tools

provide memory allocation and de-allocation information for an isolated memory state.

This information only explains recent activities; it does not provide a history for overall

memory allocations and de-allocations. These manual tools produce pages and pages of

output, which the developer must shift through to look for a specific problem. This may

require many iterations to find the particular memory state needed for examination.

Because of the lack of an easier method or automated tools, the actual internal processes

of the memory manager are not examined unless there is a serious problem. Developers

are working retroactively instead of proactively, preventing the optimization of

parameters for each product; parameters are allowed to remain at an assumed stagnate

optimal state. To enable the analysis of the parameters, there needs to be a way to directly

analyze the memory manager's memory usage in addition to the printer's print

8

performance. There needs to be a way to monitor memory usage during the print

process.

Memory usage reports produced during the printing process would provide the ability to

do an internal analysis of the memory manager's memory usage. When overall print

performance is analyzed a defined test suite is printed to see how the printer will respond.

Likewise, a specific suite of files sent to the printer would produce the memory usage

data needed to analyze the efficiency of memory usage given a certain parameter state.

When this suite is determined and the data can be retrieved, the memory manager

parameters can be tested for each development. This will allow developers to chose the

most beneficial parameter settings for each product being developed.

1.4 Current Memory Enhancement Procedure

Memory Enhancement Technology (MEt) is an internal adjustment developed to enhance

the performance of the printer. It provides information to make the print job print faster.

MEt examines the actual time needed by the image processor (IP) to process an object for

printing. The technology divides any print request into a set of known objects. The

objects are those image-processing primitives defined internally in the system that the

system uses to construct what is wanted on a page. The idea is that for each type of object

there is a finite number of that object that can be used within a given time. Each object is

characterized base on the object type, height, width, state, and any object specific

parameters. To find the time needed to process a specific object a formula was derived

that is a function of these properties. MEt is dived into two parts: IP characterization tool

and a system include file.

An IP characterization tool is used to automate the process of obtaining the time required

to process each type of object by the image processor. The tool calculates all the

necessary data for use in the MEt formulas. The formulas are then evaluated to produce

the information needed by MEt during the actual print process. IP characterization tool's

main actions are to "accept user input to what object(s) to characterize, create a properly

9

formatted string containing the commands to make the printer do what is being requested,

receive from the printer response to the commands sent, tally the data, calculate the best

fit curves, and create an include file for later compilation into the printer firmware". [1]

The include file produced by the IP characterization tool is incorporated into the printer's

firmware. This include file provides information for a memory strategy of the memory

manager. This strategy allows the memory manager to reduce the memory requirements

initially presented by a print job.

1.5 Thesis Outline

This thesis is divided into three additional sections. Section 2 discusses the development

of MemUse. Section 3 presents results from the actual use of MemUse. Section 4 gives

an overall discussion of the usefulness of MemUse and possible enhancements for the

future.

10

2 Development
MemUse's development goal was to provide an automated method for analyzing memory

usage in the memory management subsystem. It is needed to provide developers with

information that would allow them to examine the optimality of the memory manager

parameter settings.

The memory usage information provided by MemUse is for an internal analysis. By just

looking at the amount of external memory provided for printing, a developer does not

know how the internal subsystem is performing. If the developer could look at how the

memory manager uses memory to prints specific objects, he could start to understand

how the internal subsystem was performing.

Because MemUse needs to look at particular objects instead of random information, the

IP characterization tool of MEt was seen as a good starting point for developing a tool for

per object analysis. The IP characterization tool analyzes how many primitives can be

placed on a page in a certain amount of time, and MemUse needs to analyze the different

memory consumption levels produced by the number of primitives on a page. Therefore,

MemUse's main actions closely follow that of the IP characterization tool: accept user

input to what objects(s) to analyze, create properly formatted strings containing the

commands to make the firmware simulator do what is being requested, receive data from

the firmware simulator, tally the data, create a data chart and an analysis report.

In the remainder of this section I will describe the design and implementation of MemUse

and explain the workings of the finished tool.

11

files containing PCL
command strings

Test Page Generator
set of primitives

with print commands

files containing PCL
command strings

file containing
memory usage data

file containing
memory usage data

files containing the
analysis

Figure 2-1 Design Overview of MemUse

2.1 Design
MemUse is divided into three major modules (not including the interface): test page

generator, simulator, and analyzer. These modules work with the user's input from the

user interface to perform the necessary operations. The test page generator generates

printable files. Each file contains PCL2 command strings to print a page. The simulator

reads the PCL files and simulates the printing of each file. During the printing simulation,

memory usage data is produced from the MemUse code placed in the firmware. This

memory usage data is collected by the simulator. The analyzer organizes the memory

usage data and computes the analysis report. Figure 2.1 shows a design overview

diagram.

MemUse provides a text and graphic user interface.

2 Printer Control Language (PCL) is a printer language developed by HP.

12

2.1.1 Test Page Generator
To print a page, the printer must receive the request in specific printer language

commands. Current HP printers accept several languages. Two examples are PCL and

Postscript. MemUse was designed with PCL as the default. MemUse's design is flexible

to handle any language accepted by a HP printer.

The test page generator's job is to produce the language command files representing the

selected suite of print requests. The files generated differ based on primitive

characteristics: type, size, location, and multiplicity. One file may contain the commands

to have one copy of a primitive of size six placed in the lower right hand corner of the

page. Another file may contain the commands to have two copies of a primitive of size

seven with one in the right hand corner and the other in the center of the page.

With every group of files generated by the test page generator, an additional file is added.

This file contains the PCL commands to print a very small period. This file is added as a

reference point. Since the period is very small, most of the memory used to print this

page is reflective of the memory used for page setup. This file provides a way to give an

estimate of the page setup cost that will be inherent in printing all other files created in

this group.

13

CharA Plain text A
PoundRaster Raster object #
LabelABlack Image using black fill A
LabelAPat Image using pattern fill A
RuleBlack Object with black fill black filled rectangle
RulePat Object with pattern fill Pattern filled rectangle
PolygonBlack Polygon with black fill Black filled hexagon
PolygonPat Polygon with pattern fill Pattern filled hexagon

Figure 2-2 Default Primitive Set

2.1.1.1 MemUse Primitives
MemUse uses language primitives instead of the image-processor primitives used by

MEt. The image-processor primitives used by MEt do not traverse the firmware as is

needed for the memory usage analysis. Image-processor primitives also operate only in

one language. To get the breadth of information needed and to allow the tool to do

analysis for different languages, MemUse could not benefit from using the image-

processor primitives.

Language primitives are primitives of the printing language being used (e.g. PCL). These

primitives are represented by distinct command(s) in the language. MemUse has the

default primitive set shown in figure 2.2. The primitives chosen as part of the default set

encompass several types of print paths in the firmware. Having a diverse set of primitives

will help show the different memory requirements each path demands.

The primitive set used by MemUse is easily modified. A developer can add or delete

from the default primitive set when development requirements change. To handle another

language, the developer will have to supply his own set of primitives.

2.1.2 Simulator
The main function of this module is to simulate the files created and produce memory

usage data during the simulation. This module is a wrapper; it is used to operate an

external firmware simulator that actually does the simulation and outputs the memory

14

usage data. The module has the ability to start, send files to, and exit the firmware

simulator. The tool was tested and initially used with the LaserJet 5si simulator; however,

the tool is not limited to this type of simulator. The module's ability to control the

simulator by system scripts and the simulator's ability to output memory usage data

determines the type of simulator that can be used.

This module uses the list of file names created by the test page generator. It uses these

names to send each created file to the firmware simulator. To ensure that every file is

being printed with the same initial amount of memory, this module causes the firmware

simulator to simulate a powercycle before sending each file.

2.1.2.1 Obtaining Memory Usage Data
For the simulator to produce useful memory usage data, it was important to identify

important characterizing factors of memory consumption. This investigation included

identifying the important areas in the firmware where memory usage information could

be retrieved.

Initially ten functions were identified to produce memory information. Sample outputs

from these functions were produced. Two of the ten functions produced the same

information as two other functions in the set. These two functions were removed and the

set was reduced to just eight:

1. Sum Free Blocks: This is the sum of free memory that the memory manager

calculates being in the system before any memory enhancement are

performed.

2. After Sum Free: This is the sum of free memory that the memory manager

calculates being in the system after memory enhancements are performed.

3. Number Free Blocks: This is the actual number of free memory blocks that

the memory manager calculates being in the system before memory

enhancements are performed.

15

4. After Number Free: This is the actual number of free memory blocks that

the memory manager calculates being in the system after memory

enhancements are performed.

5. Max Free Space: This is the amount of memory in the largest free memory

block that the memory manager calculates being in the system before memory

enhancements are performed.

6. After Max Free: This is the amount of memory in the largest free memory

block that the memory manager calculates being in the system after memory

enhancements are performed.

7. Total Page Memory: This is the amount of memory needed to compose the

page as calculated by the memory manager before memory enhancements are

performed.

8. After Page Mem: This is the amount of memory needed to compose the page

as calculated by the memory manager after memory enhancements are

performed.

MemUse is not concerned with the memory requirements initially presented to the

memory manager, because it is analyzing how the memory manager is using its memory

strategies to efficiently use memory. Since the memory enhancements are a part of

memory strategies used by the memory manager, it is important for MemUse to use data

gather after the enhancement are performed. It is also important for MemUse to look at

overall memory affects and not particular memory sums. Particular memory sums, like

'After Page Mem', can be misleading when analyzing memory consumption. 'After Page

Mem' leaves out memory consumed by processes that may not be directly attached to the

information being printed on the page.

As a result of these requirement for MemUse, 'After Sum Free' is the only information

used for the analysis report. 'After Sum Free' captures memory usage after all memory

enhancements and it captures the overall memory level effected by printing a particular

job.

16

288:PS:**Memory Output**

Sum Free Blocks: 10642034
After Sum Free: 10643723

Number Free Blocks: 11

After Number Free: 16

Max Free Space: 7585744

After Max Free: 7585767

Total Page Memory: 36700

After Page Mem: 32600

288:PS:**Memory Output**

Sum Free Blocks: 10642096

After Sum Free: 10643744

Number Free Blocks: 17

After Number Free: 16

Max Free Space: 7585776

After Max Free: 7585776

Total Page Memory: 36720

After Page Mem: 32624

Figure 2-3 Example of data output for two files

All eight types of information will be present in the data chart created by MemUse. Even

though MemUse is not using the additional information for its analysis, the additional

information is important for memory investigations in general. Since MemUse is a

memory analysis tool, it should provide any information that could help the developer

analyze memory even if it will not directly analyze the data.

Figure 2.3 shows an example of the data output produced by the simulator.

2.1.3 Analyzer
After simulation the analyzer retrieves all the data outputted by the simulator, organizes it

into a data chart, and creates an analysis report. The production of the chart is simple: the

data is converted into a format for a spreadsheet program, which can then graph the

results. The data chart contains all the memory usage data produced, unlike the analysis

report, which only focuses on one aspect of this data (as disclosed next).

2.1.3.1 Analysis Report
It was decided to only use 'After Sum Free' for the analysis report. This information

captures the point of memory usage at its final stage in the print process. All memory

enhancements have been performed and this memory state reflects how much memory is

being used to print the job. Using this data for each primitive, MemUse produces the

analysis report.

17

The analyzer examines how memory consumption compares to the number of primitives

being printed on the page. If any print job is broken into primitives, it is important to

understand what type of memory demands each primitive type will have based on the

number of each primitive type present. After analyzing the primitives separately, the

analyzer looks at all the primitives together. This computation of all the primitives gives

an average usage for the primitive set. This can be helpful for comparative analysis done

across different copy number ranges.

Given that:
M = initial amount of memory in the system
Fp= number of files simulated for primitive p
Ap= average memory used per copy of primitive p
A = the average memory used per copy over all primitives
Tp= percent of total memory Ap represents
T = percent of the total memory A represents
mi= memory used by file i
ci = the number of primitives file i will print on a page

The analyzer uses the following memory usage analysis for each primitive p. The

memory used by each copy of primitive p on a page can be calculated by dividing the

memory used to print a file containing p by the number of p's in the file. The average

memory used overall to print one primitive p on a page can be calculated by summing up

the memory used per copy for each file containing p and diving by the number of file:

A= i ci
"F,

18

The average memory used for primitive p, Ap, represents some fraction of the total

memory initially available in the system. The fraction can be calculated by dividing A,

by the initial total memory available. This fraction can then be represented as the percent

of the total memory a copy of the primitive consumes:

A
T = --- 400

"M

The analyzer uses the following memory usage analysis for a combination of all

primitives. The average memory used to print any primitive in the primitive set can be

calculated by summing all Ap's for all the primitives in the primitive set and dividing this

sum by the number of files generated for the entire primitive set:

A=OUA
P Fp

The average memory used to print any primitive in the primitive set, A, represents some

fraction of the total memory initially available in the system. The fraction can be

calculated by dividing A by the initial total memory available. This fraction can then be

represented as the percent of the total memory a copy of any primitives consume:

T = A<-4 00
M

Figure 2.4 shows an example of an analysis report. In addition to the information

described above, the analysis report also shows the maximum and minimum memory

consumed for each primitive. This is provided to show when the maximum and minimum

memory usage levels are reached. As shown in figure 2.4 the maximum and minimum

memory usage levels do not always happen with the maximum and minimum number of

copies. The range of copies used to produce the report is displayed at the top of the

report.

19

ANALYSIS REPORT

Copy range(0-3000 by 100)

Average memory used to print a copy of any primitive: 319,840.31
Average % of total memory used to print a copy of any primitive: 1.99%

Information per primitive
init:
Size---> 100
Maximum memory used---------------------------->
Minimum memory used---------------------------->
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy) --- >

charA:
Size---> 8
Maximum memory used---------------------------->
Minimum memory used---------------------------->
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

ruleBlack:
Size---> 52,252
Maximum memory used---------------------------->
Minimum memory used---------------------------->
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

2,250,144
2,250,144
2,250,144
14.06%

2,358,432
2,282,848
78,390.63
0.48%

2,274,656
2,214,464
76,044.13
0.47%

(for 1 copies)
(for 1 copies)

(for 3000 copies)
(for 100 copies)

(for 2700 copies)
(for 100 copies)

Figure 2-4 Sample Analysis Report

2.1.4 Using the Tool
Before using the tool the developer has to set the tool options located in the options menu

of the tool. After the options are set the tool can be used in one of four modes:

1. Auto: The tool performs an analysis of the entire primitive set using the tool

options.

2. Primitive Default: The developer is prompted to choose one primitive to use

from the primitive set. The analysis is done on the chosen primitive using the tool

options.

3. Primitive With User Information: The developer is prompted to choose one

primitive to use from the primitive set. The user is also asked to provide specific

copy numbers and specific locations for all the copies. The analysis is done on the

chosen primitive with the copy numbers and locations given.

20

4. File Input: The developer is prompted to enter the names of the file(s) that are to

be analyzed. In this case the tool will generate no files. The analysis produced will

be on each file as a whole. Primitive analysis will not be performed.

For 'auto' and 'primitive default' modes, locations of the primitives are chosen randomly

and the copy number range is determined by the tool options. 'File Input' mode allows a

high level view of memory consumption for a particular job. Total page memory

consumption information is produce; a primitive analysis is not performed in this mode.

When a mode is selected and necessary user input is entered, the developer can operate

the tool in 7 different way. While the tool is running, information will be displayed in the

shell that executed MemUse. This information allows the user to monitor the progress of

MemUse while it is working.

The seven modes of operation:

1. Run complete: this mode will run the complete analysis. The data chart and the

analysis report will be produced. (This mode will display information signaling the start and

finish of generation, simulation, and analysis. It will also display information during simulation.

During simulation information will be displayed when the tool is turned on or off when a powercycles

occur and when files are being sent.)

2. Generate Filenames: this mode will create the names of the files that would be

created under the current conditions. The files will not be created. This is used if the

specified group of files already exist. Filename generation is needed when simulation

or analysis is done without test page generation. (This mode will display information

signaling the start and finish offilename generation.)

3. Generate test pages: this mode will create the files. (This mode will display information

signaling the start and finish of test page generation.)

4. Simulate test pages: this mode will simulate the files. It will receive the names of the

files to simulate either from test page generation or filename generation; therefore, to

use this the user must first either generate the files or the filenames. (This will display

information signaling the start and finish of simulation. It will also display information during

21

simulation. During simulation information will be displayed when the tool is turned on or off when a

powercycles occur and when files are being sent.)

5. Create analysis report: this mode will analyze the data in the memory data file,

producing a data chart and an analysis report. It will receive the names of the files to

use in the analysis either from test page generation or filename generation; therefore

to use this mode the user must first either generate the files or the filenames.

Simulation before analysis is not required. If simulation is not done before analysis, it

is assumed that the simulation output memory data file exists and has the data for the

filenames it is using. (This will display information signaling the start and finish of analysis.)

6. Show memory data chart: this mode will display the data chart.

7. Show analysis report: this mode will display the analysis report.

Figure 2.5 gives an example of output produced from running MemUse with 'Run
Complete'.

2.2 Implementation
MemUse was developed using Java. The implementation of MemUse's design resulted in

each module becoming its own class: TestPageGenerator, Simulator, and Analyzer. The

user interface was developed in graphical and text form. The text interface is also its own

class: MemUse. The graphical interface is a combination of several classes with the main

class being XMemUse.

To help the information follow between the interfaces and the modules, several smaller

classes where developed. Options is one of these helper classes. Options is used to hold

the options the user sets in the tool's option menu3. This helper class is used a lot by all

three modules. Other helper classes help keep the primitive information organized,

provide language specific information, and provides useful functionality for internal

operations. Overall there are 7130 lines of Java code for the MemUse tool.

3 An example of MemUse's options tool menu is in appendix D.

22

START GENERATION

GENERATION COMPLETE

START SIMULATION
<Last Ready Number>0

<Last Line>59:DISPLAY: READY

New READY line number:59

MEMUSEON

<Last Line>63:DISPLAY: READY

New READY line number:63

FIRST PART POWERCYCLE

<Last Line>64:DISPLAY: PROCESSING JOB

<Last Ready Number>63
<Last Line>65:DISPLAY: READY

New READY line number:65

SECOND PART POWERCYCLE

<Last Line>69:DISPLAY: PROCESSING JOB

<Last Ready Number>65

<Last Line>70:DISPLAY: READY

New READY line number:70

SENDING FILE: sh ../SIM/mobux.input ../TMP/init_100_1_l.pcl

<Last Line>78:DISPLAY: PROCESSING JOB

<Last Ready Number>70
<Last Line>79:DISPLAY: READY

New READY line number:79

FINISHED FILE:sh ../SIM/mobux.input ../TMP/init_100_1_l.pcl

FIRST PART POWERCYCLE

<Last Line>80:DISPLAY: PROCESSING JOB

<Last Ready Number>79

<Last Line>8l:DISPLAY: READY

New READY line number:81

SECOND PART POWERCYCLE

FINISHED SIMULATION
START ANALYSIS
FINISHED ANALYSIS

Figure 2-5 Sample shell output produced by MemUse as it is running

When implementing MemUse's design it was important to make it language, primitive

set, and firmware simulator independent. This resulted in a class called UserDefined, two

data files, three shell scripts and three control files. The UserDefined class has all static

public methods that are maintained by the user. These methods provide a way for the tool

to get accurate language dependent information. For example, this file contains a method

that returns the language specific command to position the printing cursor in the desired

location on a page.

The two data files are used by the TestPageGenerator class. These two files contain the

primitive set and the sizes to use with each primitive. These files are briefly discussed in

section 2.2.1 and the specific format is briefly discussed in appendix C.

23

The three shell scripts and three control files are used to control the firmware simulator.

The information in these scripts should be able to turn the simulator on and off, to turn

MemUse abilities on and off in the simulator, to send a file to the simulator, and be able

to cause a powercycle in the simulator. These scripts are briefly discussed in appendix C.

2.2.1 TestPageGenerator
The TestPageGenerator class is the heart of the system. It must produce files in the

correct format for the firmware simulator to work properly. It also must produce the

correct sequence of files requested for analysis.

To allow MemUse to be independent of the primitive set and printer language,

TestPageGenerator is dependent on several files and a helper class. The file names are set

in the tool options menu and the helper class must be updated when different languages

are used.

1. Primitivefile is needed to retrieve primitive information. The primitive file has the

primitive type and the language specific commands need to print the primitive. This

file contains all the primitives that the tool will be able to use; therefore the tool is

dependent on the user putting the proper information in this file

2. Sizefile provides the different sizes to use when printing the primitives. All primitives

in the primitive file must be represented in the size file.

3. The class UserDefined provides language dependent information. The user must

update this file when he uses other languages besides PCL.

TestPageGenerator class has four constructors which dictate how the public methods

work. These four possible constructions result in the tools four operating modes.4

1. Given only an Options object: files for each primitive in the primitive file will be

produced using the sizes in the size file.

2. Given an Options object and one primitive type: files for the one primitive will be

produced using each size that corresponds to it in the size file.

4 The four modes where discussed in section 2.1.4: 'Auto', 'Primitive Default', 'Primitive With User
Information', and 'File Input'.

24

3. Given an Options object, a primitive type, a location list and a copy list: files for the

one primitive will be produced using the location and copy lists given. The files will

be produced for each size that corresponds to the primitive in the size file.

4. Given a list offilenames: the list of filenames given will be returned.

This class has two public methods: generatePageso and generateFilenameso.

GenerateFilenameso uses the same type of algorithm as generatePageso excepted actual

files are not created; it just returns the names of the files that would've been created. The

TestPageGenerator creates the file in three parts. To do this it uses three private methods:

printFileBegino, printFileEndo, and printFileBodyo. PrintFileBegin() and printFileEndo

are hard coded to the appropriate HP specified codes needed to start and end a page.

PrintFileBodyo uses the primitive information, user input, and tool options to print the

body of the file.

Algorithm 2.1 is a general version of the algorithm used in generatePageso assuming

construtor 1 above was used. When constructor 1 is used an array of Primitive objects is

created from the primitive file. Each Primitive objects knows its type and what

commands to use to print itself on a page. A copy number list is also created from

information given in the Options object. GeneratePageso uses this primitive list to iterate

over all the primitives in the primitive set.

First generatePageso constructs a sizelist for each primitive. It combines these lists into a

list. Then generatePageso creates the files requested. For every primitive, files are

produced with the primitive being each size in the size list for that primitive. The files

produced depend on the numbers in the copy number list. The number of files produced

for each copy number is controlled by the repeat number. If the repeat number is two,

then two files would be produced for each copy number in the copy list. GeneratePageso

creates the filename for the file, creates the file in the file system, and then outputs the

necessary information into the file. After the information is placed in the file, the file is

closed and the name is added to a filename list, which is later used by the Simulator and

25

Analyzer class. The filenames used for the file have the format: 'primitive type'_'size

used'_'copy number used'_'the current repeat number'

2.2.2 Simulator
This class is used to operate an external firmware simulator. With the use of shell scripts

it has the ability to start, send files to, and exit the external simulator. These scripts are

discussed in appendix D. For the external simulator to produce the memory output

needed, code must be added to the external simulator code. The following pieces of code

were added to the default external simulator, LaserJet 5si:

1. Control code: Code was added to dynamically enable or disable MemUse's code in

the simulator.

2. Output restriction code: It is recommended that MemUse output be the only output

being produced by the simulator while MemUse is in use. Therefore, all other output

code in the simulator is disabled when MemUse control code is active.

3. Information output code: The functions needed for outputting the memory data used

be by MemUse was added. This code is only active when the MemUse control code is

active.

26

class TestPageGenerator
TestPageGenerator(o: options)

generatePages()
for p=O; p<primSet.length; p++

list = new list[]
primSizeList = 0
foreach s:size in size file that is classified as a size for primitive primSet[p]

list.addElement(s)
sizeList[p][primSizeList++]=list

for p=O; p<primSet.length; p++
foreach s:size in list sizeList[p] do

foreach c:copy number in copyList do
foreach r=O; r<repeat; r++

filename= primSet[p].type(+""+s.toString)+"_"+c.toStringo+"_"+r.toStringo+".pcl"
output = createFile(filename)
printFileBegin(output)
printFileBody(output,primSet[p],s,c)
printFileEnd(output)
output.close()
filesCreated.addElement(filename)

return filesCreated

* options is an object that contains all the options set by the user of the tool. This includes the size file,

primitive file, and the information to construct the copy list.

- primSet is the set of primitives being used. Each primitive contains the PCL command to print the

primitive on the page. The primitive set was constructed using a primitive file specified by the user.

- sizeList is a list of lists. This list contains the list of sizes for each primitive in the primitive set. The

number of lists in sizeList should be equal to the number of primitives in primSet.

- primSizeList is a counter used as an index to specify which size list is being added.

e copyList is a list of numbers representing how many copies of a primitive are to appear on a page.

e repeat is the number of files the user wants with the same size and copy characteristics. Locations are

different.
e printFileBegin puts the PJL5 set up commands at the beginning of the file being created.

- printFileBody puts the PCL commands in the file being created. The PCL commands will cause the

specified primitive primSet[p] to be printed with the specified size s. The commands will also cause c

copies of this primitive to appear on the page. This function randomly generates all locations used to

place the primitive on the page.
e printFileEnd puts the PCL commands needed to end a print job at the end of the file being created.

- filesCreated keeps track of all the names of the files created by generatePageso

Algorithm 2-1 Pseudo code for generatePagesO

5 Printer Job language(PJL) is for job level printer control.

27

3 Analyzing A Memory Manager Parameter
I chose to examine one memory manager parameter: strip size. The strip size is one of the

less complicated parameters (but important) in the subsystem. Examining this parameter

did not require me to learn about multiple dependencies in the system and I did not need

extensive training to understand how to modify the parameter in the system. I did have to

learn certain restrictions and constraints about this parameter, but the information was

easy to understand and independent of most other parameters in the system.

The strip size determines how the printer will divide a page up to be printed. How the

strips are sized effects how memory strategies will perform in the subsystem. The current

strip size has been the same for many years. Developers do not know why the size was

chosen and they are not clear whether another size would be better. Using test suite

performance tests, a developer can see how the size can effect the speed and ability of the

printer to print particular jobs. The current strip size has been doing well in these suite

tests.

What if the strip size currently being used is not the best? What if the memory manager

could work more efficiently with another size and other optimization would work better?

My goal was to use MemUse to look at the strip size possibilities. MemUse would

provide the information that may suggest another size that may be more effective for the

memory manager. With this analysis, developers could then take advantage of the

parameter's possibilities.

3.1 Running MemUse

MemUse was run using the LaserJet 5si simulator, and the default PCL primitive set. All

runs were done using auto mode; therefore the entire primitive set was examined. After

running MemUse for the first time, the files generated where saved and used for all

28

Average Percent Of Tota Memory .

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C

JvE

charA ruleBlack rulePat labelAlack labelAPat polygon~lack polygonPat pouncRaster

prinidw

Figure 3-1 Results from running MemUse with different strip sizes: A, B, C, and D

subsequent runs6 . This allowed all runs to be performed with the primitives in the same

locations.

Each run used a copy number range of 0-3000 copies using an increment of 100. Four

runs where done with four different strip sizes: A, B, C, and D. Strip size C is the current

default strip size. The other strip sizes are increments or decrements of the default with E

being the largest size and A being the smallest.

6 The first run was done using 'Run Complete'. Subsequent runs were done by using the sequence:
'Generate Filenames', Simulate test pages', and 'Create analysis report'.

29

3.2 Results Produced
Appendix A contains the analysis reports produced by the four runs. Figure 3.1 shows a

graph of one aspect of the analysis report. This graph plots the percentage of the total

memory a primitive consumes. (Tp was discussed in section 2.1.3.1). Each grouping on

the graph represents a primitive, and the four bars represent the percentages calculated

when using each of the strip size.

Looking at the graph in figure 3.1, you can see that strip size C and B are very close in

memory usage. Strip size B uses less memory or the same memory as strip size C in all

cases. In the cases where strip size B uses less memory, the difference in the memory

usage is small.

To get a better understanding of this difference the 'After Sum Free' information in the

data charts were graphed for each primitive. These graphs show how much memory is

left as the current file containing x copies of a primitive is about to be printed. Each graph

looks at one primitive containing a line for each different strip size run. The graphs for all

the primitives are in appendix B. Graphs for charA, polygonBlack and poundRaster are

also in figures 3.2-3.4.

Overall graphs in figures 3.2-3.4 show that strip size B is generally better than strip size

C. In figure 3.2 and 3.3, strip size B always uses less memory than strip size C.

However, in figure 3.4 there is one point in which strip size C does better than strip size

B. This point occurs at 600 primitives. This type of change can also be seen in the

labelAPat graph in appendix B. In this case, strip size C is better at 900 primitives.

30

Prifting ClaractUs

13800000

13750000

13700000

13650000

13600000

13550000

13500000

13450000 1 1 1 111 fI I

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

copy nunbr

Figure 3-2 Results for print a character with different strip sizes

Prining Rasr

14000000

13800000

13600000

13400000

I
C 13200000

IL

112000000

12800000

12600000

12400000

12200000-

12000000
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

ooW umlmbr

Figure 3-2 Results for printing raster with different strip sizes

31

Prining Polygons

13800000

13750000

13700000

13650000

j 13600000

13550000

13500000

13450000

13400000

13350000

13300000

13250000
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

copynunber

Figure 3-4 Results for black filed polygon with different strip sizes

3.3 Analysis
Overall, strip size B is better than strip size C. There are two occasion where strip size C

does beat strip size B as discusses in section 3.2 above. Since the overall gain in memory

is small, these two occurrences may be a valid reason to keep the original strip size. The

deciding factor would be test suite performance testing. If changing the strip size has an

adverse effect on the system's print performance, it may be a positive trade off to give up

the small memory gain. If this trade off is made, developers can revisit this tradeoff in

future development to see if a larger memory gain has been accomplished by a result of

other optimizations.

Besides revealing that the current strip size is not best, this analysis uncovered other

interesting details in the memory system that developers will need to investigate. Figure

3.3 shows the results as it pertains to the raster primitive. In this graph the lines for strip

sizes C and B both take an unexpected dip at 1500 and 2300 primitives. One dip brings

32

the memory usage level higher than that of all other strip sizes. This difference in

memory usage is larger than the differences found between strip size C and B since C and

B where overall noticeably better than the other strip sizes. Why is this dip occurring? All

other dips in the graph happen with all strip sizes. Why are these two points any

different? These questions will lead to an investigation of what the raster path may be

doing to cause memory usage to increase at these points.

Figure 3.3 also shows that the raster path reaches its maximum at 600 primitives. This

parameter could be examined to see if increasing or decreasing the number of primitives

at which this maximum occurs would be beneficial to the system as a whole.

Overall MemUse has demonstrated its ability to help in the analysis of memory

management. This particular analysis of strip size illustrated how MemUse uncovers

internal memory issues that were not previously visible to the developer. A good example

of this uncovering was the dips found in the raster graph.

33

4 MemUse's Future
In general, several enhances can be made to MemUse's current abilities. MemUse should

have a standard set of primitives for each language compatible with the HP LaserJet

printers. It would also be beneficial if MemUse could produce its own graphs given any

category selected from the data chart.

Ideally it would also be good for MemUse to actually be able to break up a given page of

information in to primitives and produce a primitive analysis. This would be a very useful

in conjunction with test suite performance testing. When a job runs out of memory,

MemUse could be used to locate the problem areas.

Overall MemUse should be a complete memory testing tool. Currently MemUse can be

used to examine parameter changes or primitive performance. In the future it should be

able to analyze other aspects of the memory manager as well. There are a variety of

analyses that developers can use to examine the internal memory management

performance. For example, an analysis report for memory fragmentation and memory

enhancement performance would be very useful.

34

5 Appendix A
This appendix contains the analysis reports produced from four runs. Each run was

performed on the entire primitive set. Each run differs based on the strip size being used
by the printer. The reports appear in increasing order of strip size: A, B, C, and then D.

Strip Size A

Copy range(0-3000 by 100)
ANALYSIS REPORT

Average memory used to print a copy of any primtive: 324,480.87
Average % of total memory used to print a copy of any primitive: 2.02%

Information per primitive
init:
Size---> 100
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

charA:
Size---> 8
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

ruleBlack:

Size---> 52,252
Maximum memory used---------------------------->
copies)

Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

rulePat:

Size---> 52,252
Maximum memory used---------------------------->
copies)

Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

labelABlack:
Size---> 3
Maximum memory used---------------------------->

copies)

Minimum memory used---------------------------->
copies)

2,282,912 (for 1

2,282,912 (for 1

2,282,912
14.26%

2,381,120

2,315,616

79,515.36
0.49%

(for 3000

(for 100

2,307,424 (for 3000

2,247,232 (for 100

77,169.26
0.48%

2,330,272 (for 3000

2,248,432 (for 100

77,216.6
0.48%

2,636,304

2,274, 672

(for 2700

(for 100

35

Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

labelAPat:

Size---> 3
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

78,277.83
0.48%

2,520,944

2,277,264

78,321.89
0.48%

polygonBlack:
Size---> 230,0,115,115,-115,115,-230,0,-115,-115,115,-115
Maximum memory used----------------------------> 2,530,016

copies)
Minimum memory used----------------------------> 2,309,792
copies)
Average (memory used/copy)----------------------> 79,451.06

Average % of total memory (memory used/copy)---> 0.49%

polygonPat:
Size---> 230,0,115,115,-115,115,-

23 0,0,-115,-115,

Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

poundRaster:

Size---> 0

Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

115,-115
3,308,320

2,315,744

79,921.2
0.49%

3,707,760

2,514,896

87,542.6
0.54%

36

(for 2900

(for 100

(for 700

(for 100

(for 3000

(for 100

(for 600

(for 1400

5.1 Strip Size B

Copy range(0-3000 by 100)
ANALYSIS REPORT

Average memory used to print a copy of any primtive: 318,680.33
Average % of total memory used to print a copy of any primitive: 1.99%

Information per primitive
init:
Size---> 100
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

charA:
Size---> 8
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

ruleBlack:
Size---> 52,252
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

rulePat:
Size---> 52,252
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

labelABlack:
Size---> 3
Maximum memory used---------------------------->
copies)

2,241,952 (for 1

2,241,952 (for 1

2,241,952
14.01%

2,349,328 (for 3000

2,274,656 (for 100

78,109.5
0.48%

2,266,464 (for 3000

2,206,272 (for 100

75,763
0.47%

2,288,848

2,207,472

75,810.39
0.47%

(for 3000

(for 100

2,595,344 (for 2700

37

Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

labelAPat:
Size---> 3
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

polygonBlack:
Size---> 230,0,115,115,-115,115,-230,0,-115,-115
Maximum memory used---------------------------->

copies)

Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

2,233,712 (for 100

76,872
0.48%

2,479,984 (for 2900

2,236,304 (for 100

76,915.93
0.48%

115,-115
2,490,864 (for 600

2,268,832 (for 100

78,046.23
0.48%

polygonPat:
Size---> 230,0,115,115,-115,115,-230,0,-115,-115,115,-115
Maximum memory used----------------------------> 3,267,360 (for 3000
copies)
Minimum memory used----------------------------> 2,274,784 (for 100
copies)
Average (memory used/copy)----------------------> 78,515.3
Average % of total memory (memory used/copy)---> 0.49%

poundRaster:

Size---> 0
Maximum memory used---------------------------->
copies)

Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

3,666,800 (for 600

2,473,936 (for 1400

86,138.66
0.53%

38

5.2 Strip Size C

Copy range(0-3000 by 100)

ANALYSIS REPORT

Average memory used to print a copy of any primtive: 319,840.31

Average % of total memory used to print a copy of any primitive: 1.99%

Information per primitive

init:
Size---> 100
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

charA:
Size---> 8
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

ruleBlack:
Size---> 52,252
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

rulePat:

Size---> 52,252
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

labelABlack:
Size---> 3
Maximum memory used---------------------------->

copies)

2,250,144

2,250,144

2,250,144
14.06%

(for 1

(for 1

2,358,432 (for 3000

2,282,848 (for 100

78,390.63
0.48%

2,274,656 (for 3000

2,214,464 (for 100

76,044.13
0.47%

2,297,072 (for 3000

2,215,664 (for 100

76,091.6
0.47%

2,603,536 (for 2700

39

Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

labelAPat:
Size---> 3
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

polygonBlack:
Size---> 230,0,115,115,-115,115,-230,0,-115,-115,
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

2,241,904 (for 100

77,152.86
0.48%

2,488,176 (for 2900

2,244,496 (for 100

77,196.76
0.48%

115,-115
2,497,248 (for 700

2,277,024 (for 100

78,326.36
0.48%

polygonPat:
Size---> 230,0,115,115,-115,115,-230,0,-115,-115,115,-115
Maximum memory used----------------------------> 3,275,552 (for 3000

copies)
Minimum memory used----------------------------> 2,282,976 (for 100

copies)
Average (memory used/copy)----------------------> 78,796.53

Average % of total memory (memory used/copy)---> 0.49%

poundRaster:
Size---> 0

Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)

Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

3,674,992 (for 600

2,482,128 (for 1400

86,419.96
0.54%

40

5.3 Strip Size D

Copy range(0-3000 by 100)

ANALYSIS REPORT

Average memory used to print a copy of any primtive: 330,281.62

Average % of total memory used to print a copy of any primitive: 2.06%

Information per primitive
init:
Size---> 100
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

charA:
Size---> 8
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

ruleBlack:
Size---> 52,252
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

rulePat:
Size---> 52,252
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

labelABlack:
Size---> 3
Maximum memory used---------------------------->
copies)

2,323,872

2,323,872

2,323,872
14.52%

(for 1

(for 1

2,411,920 (for 3000

2,356,576 (for 100

80,921.56
0.5%

2,348,384 (for 3000

2,288,192 (for 100

78,575.46
0.49%

2,370,768 (for 3000

2,289,392 (for 100

78,622.8
0.49%

2,677,264 (for 2700

41

Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

labelAPat:

Size---> 3
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

polygonBlack:

Size---> 230,0,115,115,-115,115,-230,0,-115,-115,
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

2,315,632 (for 100

79,684.2
0.49%

2,561,904 (for 2900

2,318,224 (for 100

79,728
0.49%

115,-115
2,572,784 (for 600

2,350,752 (for 100

80,858.5
0.5%

polygonPat:
Size---> 230,0,115,115,-115,115,-230,0,-115,-115,115,-115
Maximum memory used----------------------------> 3,349,280 (for 3000

copies)
Minimum memory used----------------------------> 2,356,704 (for 100

copies)
Average (memory used/copy)----------------------> 81,328.23

Average % of total memory (memory used/copy)---> 0.5%

poundRaster:
Size---> 0
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

3,748,720 (for 600

2,555,856 (for 1400

88, 943.83
0.55%

42

5.4 Strip Size E

Copy range(0-3000 by 100)
ANALYSIS REPORT

Average memory used to print a copy of any primtive: 346,523.42

Average % of total memory used to print a copy of any primitive: 2.16%

Information per primitive

init:
Size---> 100
Maximum memory used---------------------------->

copies)

Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

charA:
Size---> 8
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

ruleBlack:
Size---> 52,252
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

rulePat:
Size---> 52,252
Maximum memory used---------------------------->
copies)
Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

labelABlack:
Size---> 3
Maximum memory used---------------------------->

copies)

2,438,560

2,438,560

2,438,560
15.24%

(for 1

(for 1

2,533,392 (for 2900

2,471,264 (for 100

84,859.16
0.53%

2,463,072 (for 3000

2,402,880 (for 100

82,512.86
0.51%

2,485,952 (for 3000

2,404,080 (for 100

82,560.26
0.51%

2,791,952 (for 2700

43

Minimum memory used---------------------------->
copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

labelAPat:
Size---> 3

Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

polygonBlack:
Size---> 230,0,115,115,-115,115,-230,0,-115,-115,
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

polygonPat:

Size---> 230,0,115,115,-115,115,-230,0,-115,-115,
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)
Average (memory used/copy)---------------------->
Average % of total memory (memory used/copy)--->

poundRaster:
Size---> 0
Maximum memory used---------------------------->

copies)
Minimum memory used---------------------------->

copies)

Average (memory used/copy)---------------------->

Average % of total memory (memory used/copy)--->

2,430,320 (for 100

83,621.46
0.52%

2,676,592

2,432,912

83,665.5
0.52%

115,-115
2,685,664

2,465,440

84,795.2
0.52%

115,-115
3,463,968

2,471,392

85,264.7
0.53%

3,863,408

2,647,840

92,871.66
0.58%

(for 2900

(for 100

(for 700

(for 100

(for 3000

(for 100

(for 600

(for 1200

44

45

6 Appendix B
This appendix contains graphs of 'After Sum Free' from the data chart. Each graph looks
at one primitive's results based on the strip size being used by the printer.

46

Printirg Claraders

13800000-

13750000

13700000

1350000

C
CL

13650000

1380000

13550000

13500000

13450000

13850000

13800000

13750000

c

13700000

S13650000

13600000

13550000

13500000

Prbiting Rides

-+ charA 12)

- - charA 96
charA 72

x charA 144

- charA 1 ffl

-r- emack 120
rueBack 96

A rdeBlack72

-*- rueiack 144

SreBlack 168

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

copy nimber

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

copynunber

47

Prirting Rubs

1
rulePat 12D

x ruleFat 96
-)- rulePat 72
-x- rulePat 144

rulePat 1B

13800000

' 13750000
b.

13700000

0

E 13650000

13600000

13550000

13500000

138D0000

13700000

C1

13600000

0.

13500000

0
E 13400000
0
2

13300000

13200000

13100000
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

copy rujmt

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

copy numnt

Prining Labds

- -labABla& 120
labeABlak 96

A- labelABla& 72
A labelABlak 144

- - -*- labeAIlack 168

.-----I

13850000 T - --- I I --- T

-

-

-

-

-

-

-

48

Prdnng Labds

13800000

13750000

13700000

E 13650000

13600000

13550000

0

E
1350000

1340000

13450000

13350000

13300000

13800000

13750000

13700000

C1

13600000

13550000

13500000D

0

E.

E 13450000

13400000

13350000

13300000

13250000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

copy numt

Printing Polygons

-*- pogonBmck 120

polygonBkc 96
A polygonBac 72

-+- polygonBdk 144

-- polygonBack 168

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

copy numt

.....-.--

-I

-*- labelAlt 12)

-*K IabsIAFkkt 72

--- labelAPat 144

labelAPat 168

memory left after printing

i i iiiiii iI I
00

8

8

8

0 -

"C

8

'Ii
memory left after printing

i i i i

H A

I i

I
&

'8
U

0 0 0
-4

8 t KI P3

50

7 Appendix C

This appendix contains information for the actually use of MemUse.

51

7.1 Primitive File
The primitive file contains all the primitives that the user wants to use with the tool. The
file has one primitive per line. For comments the user must start the line with '//'. For
each line the following format is used:

Primitive type I print command
E.g.:

charAl [(s#HA

labelABlack^]%OBINSP1PA~,~SD3,#DT*CFOLBA*;

The type will be used to identify the primitive. This exact name must appear in the size
file and will be used in any data output produced by the tool. Both the primitive type and
print command must be present on the line; one can not be present without the other.

The print command is the exact command need to print the primitive. Above you will
notice '#' and '-' in the print commands. These characters will be replaced. After

replacing these characters this command should be able to be placed in a file with the
appropriate heading, the required cursor placement, and proper exit commands. The
result should be a file that will print the primitive on a page.

The '#' in the print command are placeholders for the size. These characters will be
replaced with the sizes provided in the size file. Each file produced will contain only one
size primitive, but there will be a file for each size provided in the size file for the
primitive.

The '-' in the print command are placeholders for locations. Before the print command is
placed in the file, the cursor is positioned. For some print command like the one above,
this cursor positioning is ignored; therefore actual positioning is required in the print
command. These characters are replaced with one coordinate of a location. Therefore the
'' should appear two at a time to receive a x and y location.

52

7.2 Size File
The size file holds the sizes the user wants to use with the primitives in the primitive file.
Each primitive in the primitive file must be represented in this file with a size. If the
primitive does not require size replacement, the primitive must still be represented with a
size, but during file construction the size will be ignored. The size number is apart of the
filename whether the size is used in the print command or not. Therefore it is
recommended that if the number in the size file is not being used in the print command,
the number should model the actual size of the primitive being printed.

Comments in this file start with '//'. Each primitive has a 'size section'. The section
begins with '!!primitive name' with each line after containing a size. Each primitive can
have one or more sizes in its section. Whatever size put on a line will be entered in the
print command: a number, a group of numbers, a letter, or a word. Therefore it is
important to have the correct format. Wrong size formats will result in an error in
simulation; the file will produce a print output that is not what was expected.

If multiple '#' are in one print command each size line for that primitive should contain
the same number of sizes separated by commas.

Example:

If primitive file is:
charAl [(s#HA

labelABlackl^)%0BINSPPA~,~SD3,#DT*CFOLBA*;

The size file could be:
!charA
2
3
!labelABlack
10

If the primitive file is
rollAA[$(#f##HA
boxl^[*y

The size file could be:
!!rollA
2,3,4
5,6,7
!!box
2,3

*The size for box, '2,3', will not be entered into the print command for box. But the size placed in the size file is close to the size the

print command uses. When this number shows up in the filename, it will be a reminder of what size the primitive is, instead of just

being a random number.

53

7.3 Shell Scripts and Control Files

Sim.start: script to start the simulator. Currently the tool is using the LaserJet 5si
firmware simulator. This file should do all the necessary operations to start the simulator
allowing its progress to be monitored and allowing it to be exited if needed. This file
currently contains the following:

MEMUSE/SIM/sim -X -d MEMUSE/SIM -D MEMUSE/TMP > MEMUSE/TMP/sim.out&
echo $! > MEMUSE/SIM/process.id

This starts the firmware simulator assigning 'TMP' as directory for output files. The
simulator is run in text mode '-X'. By running the simulator in text mode the simulator's
working status can be redirected to the file sim.out. Therefore, sim.out is the file
monitored for readiness. Since this simulator outputs READY when it is waiting for
further input, 'READY' is the word being looked for in sim.out.7 The last line outputs the

process id number associated with starting the simulator to a file called process.id. This
file is then used by Sim.end.

Sim.iniut: script to send files to the simulator. If the format of this file is changed, it
must be set up to take one variable. The code in the Simulator class passes this script the
filename of the file being sent. Currently the file contains the following:

cat $* > MEMUSE/TMP/parallel

Sim.end: script to exit the simulator. This file causes the simulator process to die.
Currently this file contains the following:

kill -s SIGINT 'cat MEMUSE/SIM/process.id'

MemUse.on: this is a printable page file that has the PCL commands to turn on the tools
output in the firmware simulator. Its contents should not be changed unless the
mechanism for turning the tool's code on is changed.

MemUse.off: this is a printable page file that has the PCL command to turn off the tools
output in the firmware simulator. Its contents should not be changed unless the
mechanism for turning the tool's code off is changed.

Iobuffer.pil & iobuffer.auto.yil: these are printable page files that have PCL commands
to produce a powercycle event in the simulator. The contents of these files should not be
changed unless the mechanism for producing a powercycle changes.

7 The tool options menu asks for the filename of the file monitored for readiness and the word that signals

readiness. For this example, the file is 'sim.out' and the word is 'READY'.

54

7.4 Default Directory Structure For MemUse

The tool should reside in a directory called MEMUSE. The default format of this
directory:
- ANAL : contains all files produces from the analysis. Default name of data chart is

'data', and the default name for the analysis report is 'report'.
- JAVADOC : contain html files to display class documentation via the web. To begin

open the file Package-SRC.html. To regenerate the documentation, from the
MEMUSE directory type:
javadoc -d JA VADOC -classpath .:/opt/java:/opt/java/lib/classes.zip:MEMUSE SRC.

- OPT : contains size and primitive file. See section 7.1 and 7.2 for an explanation of
these to files.

* SIM : contains the files needed to run the simulator. See section 7.3 for an
explanation of the shell scripts and control files. The user should know what system
files are needed to run a local version of the simulator. These system file must be in
this directory.

* SRC : contains all the source code. To recompile source code, from the MEMUSE
directory type: javac -o -d EXE SRC/*.java. The -O in the compile command is
optional; it optimizes the class files.8

- EXE : contains all the class code.
* TMP : simulator output files will be placed in this directory.
* FILES : files generted by the TestPageGenerartor class will be placed in this

directory.
e HELP : contains the help files.
* DOC: contain the tool's manual.

The default options of the tool assumes you are running the tool from the EXE directory
with the above directory format.

8 Optimization of class files allows static, final, and private methods to run faster but it results in larger

class files. It also prevents Java from adding line number debugging information to class file.

55

7.5 Example Of MemUse's Tool Options Menu
****************SET OPTIONS MENU***** ***********9

--- OPTION----------------------------------CURRENT VALUE---

1.Primitive List File: .. /OPT/Primitives

2.Size List File: .. /OPT/Sizes

3.Simulator executable directory:

4.Simulator input directory:

5.Simulator output directory:

6.Simulator memory data output file:

7.System execution command:

8.File to start simulator:

9.File to send a file to simulator:

10.File to exit simulator.:

ll.Analyzer data chart file:

12.Analysis Report file:

13.Word signaling simulator is ready:

14.File to monitor simulator readiness:

15.File delimiter for memory data file:

16.Field delimiter for memory data file:

17.Language:
18.Extention for language:

19.Printer DPI:

20.Logical Page Width:
21.Logical Page Length:
22.Resolution:
23.Orientaion:

24.Smallest copy number:

25.Largest copy number:
26.Increment for copy numbers:

27.Number of copy repeats:
28.The memory in the printer:

29. TESTMODE(0:false, all other:true)

.. /SIM

.. /TMP

. . /TMP

../TMP/simwp

sh
../SIM/mobux.start

../SIM/mobux.input

../SIM/mobux.end

../ANAL/data

../ANAL/report

READY

../TMP/sim.out

Memory Output

PCL

.pcl

300
2400
3300
600
PORTRAIT

0

16000000

0

R Reset to default values

H Help
B Back to Main Menu

Enter '*' to cancel selection

Please Make a Selection

9 This output was produced by the text user interface.

56

8 References
[1] Hewlett-Packard Company, "Met Characterization Theory, Implementation and

Characterization Tool Usage", 1997

[2] Hewlett-Packard Company, "IP Characterization FW Architecture and
Implementation", 1998

[3] Hewlett-Packard Company, PCL 5 Printer Language Technical Reference Manual,
Hewlett-Packard Company, USA, 1992

