
Adding Feedback to Improve Segmentation and Recognition

of Handwritten Numerals

by

Susan A. Dey

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 21, 1999

) Copyright 1999 M.I.T. All rights reserved.

Author
Department of Erectrical Engineering and Computer Science

May 21, 1999

Certified by_

Accepted by

Dr. Amar Gupta
- ' is Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

g04

Adding Feedback to Improve Segmentation and Recognition
of Handwritten Numerals

by
Susan A. Dey

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 1999

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT:

WinBank is a system which performs automated reading of handwritten documents,
particularly of strings of handwritten numerals on bank checks. A commonly-used
strategy for reading handwritten strings is a combination of segmentation and recognition.
In the WinBank program, segmentation involves both the separation of touching
characters and the merging of character fragments to other pieces. An inherent problem
with the segmentation/recognition strategy is the fact that if segmentation is done
incorrectly, the erroneous characters cannot be recognized. This paper discusses a new
method for feeding rejected characters back into the segmentation process to perform
error recovery. Such feedback reduces the frequency with which segmentation errors
occur, and increases the probability that each character will be recognized.

Thesis Supervisor: Dr. Amar Gupta
Title: Co-Director, Productivity From Information Technology (PROFIT) Initiative

Sloan School of Management

2

TABLE OF CONTENTS

1 Introduction 1
2 Segmentation Overview 4
3 Related Research 8

3.1 Iterated Segmentation and Recognition 8
3.2 One-Step Segmentation Reconsideration 10
3.3 Use of Contextual Information 12
3.4 Segmentation by Recognition 13

4 Feedback Architecture Design 16
4.1 Overview 16
4.2 Region Classification 20
4.3 Path Evaluation 23
4.4 Representation and Replacement Strategy 29
4.5 Correction Strategy 36
4.6 Retry Depth vs. Performance 41

5 Performance Evaluation 42
6 Other Improvements Made to the WinBank System 46

6.1 Image Binarization 46
6.2 Courtesy Amount Block Location 49
6.3 Size Normalization Algorithms 52
6.4 Segmentation Algorithms 55

6.4.1 Contour Critical Point Algorithm 56
6.4.2 Hybrid Drop-Falling Algorithm 57

6.5 Merging Algorithm 58
6.6 Syntax Verification 59

7 Possible Improvements 60
8 Conclusion 64

3

1 Introduction

Banks and other financial institutions are currently facing high costs because they

still rely heavily on paper documents. In an ever-increasingly digital world, paper

documents are becoming outdated. For many institutions, the first step in processing

paper checks is performed by human operators who manually enter the information

written or typewritten on them. Errors are highly undesirable, so often multiple operators

handle the checks for redundancy. This improves reliability but requires paying for a

greater amount of labor time. Since even experienced human operators require several

seconds to process a check, throughput can only be increased by increasing the number of

human operators processing checks. If these people were replaced by specialized

computer image processing, a great deal of money would be saved.

The WinBank system [1] takes scanned-in checks and determines the dollar

amounts they are written for. By processing checks in a fraction of the time required by

human operators, with at least as much reliability, this program could reduce bank costs

as well as improve processing speed.

Checks contain redundant information by including a field for digits (the courtesy

amount block, or CAB) and a field for written-out words (the legal amount block), both

of which represent the amount of money the check is written for. Recognition of free

handwriting is a particularly complicated problem, but a simplification in the case of

recognizing check amounts is that it is possible to extract all necessary information from

only the digits written in the courtesy amount block. The legal amount block is

sometimes used to augment or verify the digit recognition [3], but since processing

natural handwriting is very difficult, the increase in complexity and reduction of

4

efficiency usually outweigh the benefits. In the case of the WinBank system, only the

digits in the courtesy amount block are used.

A great variety of strategies have been applied to recognize handwritten numeral

strings. Most of these can be described as segmentation-based, in which the string is first

broken into units suspected of representing individual digits. These are passed to a

recognition module which identifies the isolated numerals. [1, 2, 3, 4, 5, 6] Another

approach, sometimes called segmentation-free, integrates the segmentation and

recognition into a single process. [8, 9, 10] Blends of these strategies have also been

applied to the problem, using combinations of segmentation-based preprocessing steps

and segmentation-free completion. [11] The WinBank system uses a segmentation-based

approach, dividing the procedure into separate steps for segmentation and recognition.

A critical problem with such a segmentation-based strategy is that improperly

segmented numerals cannot be recognized. If digits are segmented wrongly, the

recognizer can do nothing but reject the string, or even worse, it could improperly

interpret the nonsense characters as erroneous numbers. In many check-processing

systems, cases of this nature result in the checks being passed back to human operators

for interpretation. The previous version of the WinBank system took this strategy [1].

Improper segmentation can often be caught, however. Whenever the recognizer is

unable to identify a digit, or especially two digits in a row, it is likely that the digits were

badly segmented. This paper describes an improvement which was added to the

segmentation-based system to allow unrecognized digits to be fed back to the segmentor

for re-evaluation. Such feedback allows cases of improper segmentation to be repaired.

The improvement reduced the frequency with which strings were rejected and improved

5

the percentage of strings which were correctly recognized. One goal of implementing this

improvement correctly was to avoid increasing the frequency with which strings are

improperly recognized, or even to reduce it.

6

2 Segmentation Overview

To understand the flow of segmentation-based feedback systems, an explanation

of the steps taken during processing must be given. Figure 1 illustrates the program flow

in the WinBank system. The program begins with a previously-scanned grayscale check

image. The first step which must be done is binarization, in which the image is

converted to a black-and-white representation. This process involves filtering the image

to remove unwanted noise, locating the courtesy amount block region, and choosing a

threshold color which marks the dividing point between black and white within the

grayscale colors. The process of thresholding is described in greater depth in Section 6.1,

and CAB location is explained in Section 6.2.

Binarization Module Segmentation Module Normalization Module Recognition Module Post-Processing

Classification
Nos Flein -- rowrCotu Adjustment Modular Network
CAB Location -+ Separation -+--- ------- - ---- --- Syntax Verification---- ------ i-f-Slant----- Co6rrectlion Strctra Anlyi

Dynamic Thresholding Drop-Faling Separation. Scaling
Merging

Feedback Mechanism

Figure 1: Program flow.

Once the image has been converted to a useful representation, the writing must be

separated into individual digits, or segments. This process is known as segmentation.

The process of segmentation is explained below. Conceptually it involves merging

fragments of digits to create whole units and separating touching digits into their

component pieces. Once a suitable breakdown of the image is obtained, the list of

characters is allowed to continue through the process of normalization (which prepares

them for recognition) and recognition.

After all of the digits have been recognized, a final post-processing step is used to

verify that the recognized value makes sense in terms of money. For example, this uses a

7

few syntax rules to ensure that the detected commas have a proper relationship with each

other, so that strings like "1,0,0" are not accepted. The syntax verification is described in

greater detail in Section 6.6.

To understand the feedback process, the segmentation process must be explained

in more detail. The problem of segmentation has been studied in depth with a variety of

different approaches. The problem is explained here, and an overview of the approaches

which have been used is given in Section 3. Some research has been done into advanced

mathematical separation techniques [6] or the application of neural networks [8, 9, 10],

but more often images are divided into individual digits using structure-based techniques

[1, 2, 3]. These analyze features of the image such as corners, straight lines, loop

structures, and upper and lower contours.

The structural segmentation process is complex and riddled with special cases. A

combination of carefully planned algorithms and simple heuristics must be used to

reliably divide the region of interest into individual digits. First, continuous connected

regions of pixels must be found and isolated. This provides a rough initial estimate of the

characters. The connected regions are then classified as fragments of characters, whole

characters or multiple touching characters that need to be separated. Then the regions

that are fragments are corrected by merging them with other regions, and the regions that

are multiple characters are separated into their component pieces. This process is

continued until all regions are classified as single digits. The set of digits is then passed

through the recognition module.

As stated above, one part of the segmentation process is the classification of

regions as being composed of partial, single, or multiple characters. The WinBank

8

classification module employs a few simple heuristics. The details of these heuristics are

not important for the purpose of this discussion, but it must be noted that the

classification can only be used as a rough guide. Regions are classified with reasonable

enough accuracy for these predictions to be useful, but not well enough to be relied on as

correct in all cases. Often peculiar combinations of fragments or touching characters can

be classified as single characters. Sometimes large characters may be classified as

composed of multiple digits. Therefore the results of the classification module can be

used to guide the initial segmentation of the image, but this segmentation must be double-

checked by making sure the recognized character string makes sense. The classification

process is covered in more depth in Section 4.2.

Segmentation algorithms are primarily concerned with dividing touching

characters into separate pieces. A number of structural segmentation algorithms have

been developed, such as the Upper/Lower Contour [1, 16] and Drop-Falling [17] methods

used in the WinBank system. These algorithms can be viewed as "black boxes" which

operate on an input image and output a path of points along which to divide the image

into two separate regions. (Images that are comprised of three or more connected

characters can be separated by applying a succession of segmentation operations, marking

off one digit at a time.) Different algorithms often result in different cut paths, and some

algorithms have better results in certain situations than others do. The WinBank system

uses a hybrid technique which makes use of several different segmentation algorithms.

The operation of these algorithms is omitted for purposes of this overview, but they are

described in more detail in Section 6.4. Several paths are built using different methods,

and the best one is chosen based on some simple heuristics.

9

Another operation which is used to correctly assemble the pieces of the image is

merging. Fragments which are too small to be full characters are examined and possibly

merged to nearby neighbors if they are reasonably related to each other. Again, the

method of determining such criteria is unimportant for this discussion. Merging is

covered in more detail in Section 6.5.

Finally, once the image has been divided into units that are deemed acceptable by

the classifier, those regions are passed to the recognition module for evaluation. If one or

more digits in the string cannot be identified, they are marked as "unknown." In such a

case, the check is rejected and must be passed to a human for identification.

10

3 Related Research

As noted above, a problem with the strategy of segmenting and then recognizing

digits is that improperly segmented numerals cannot be recognized. If digits are

segmented wrongly, the recognizer can do nothing but reject the string. Several strategies

have been developed to deal with this problem. This section gives an overview of several

different approaches used in the field.

3.1 Iterated Segmentation and Recognition

A simple approach which can be used to improve the process described above is

alternation between segmentation and recognition. The basic idea of such as strategy is

that an initial segmentation of the image is performed and those digits are passed to the

recognition module. If any digit is unrecognized, that digit is split using a specific

segmentation algorithm and recognition of the two resulting pieces is attempted. If

neither piece is accepted, it is assumed that the segmentation was done improperly and

another algorithm is used to separate the digit. If one or both pieces are accepted, any

remaining rejected pieces are segmented in a similar fashion. This process is illustrated

in Figure 2. This type of approach is used by Congedo et. al. [2] and Dimauro et. al. [3].

The advantage of this strategy is that it is clean and straightforward. However,

several assumptions are made which do not reflect most real-life situations. For instance,

every unrecognized block is assumed to need segmentation, which means that even

properly-segmented digits which are rejected because they are unreadable will go through

a process of segmentation. It also means that fragments of blocks are never treated

properly because there is no strategy for merging broken pieces together. It does not take

11

advantage of the fact that some segmentation algorithms may be better in some situations

than others; it has an ordered set of segmentation algorithms and always uses them in that

order. Finally, this strategy is inefficient, because it attempts recognition before doing

any segmentation, while it may be possible to detect that multiple digits are touching

without doing any recognition. Since recognition is usually a computationally-intensive

process, simple tests for touching digits done before recognition can save a lot of

unnecessary processing.

Figure 2: Program flow for the iterated segmentation and recognition strategy.

12

3.2 One-Step Segmentation Reconsideration

A somewhat similar strategy, employed by Blumenstein and Verma [4], uses

conventional methods to generate a set of candidate segmentation paths within a string. It

then makes use of a special neural network to verify those paths. The neural network

accepts or rejects the candidate paths, resulting in a corrected set of paths. Thus the

program goes through two phases during segmentation: path generation by heuristic

means, and path selection by the neural network. No new paths are generated after the

neural network phase, so no feedback from recognition is considered.

A similar strategy is used by Lee et. al. [5], who build a graph of likely cuts and

search the graph for a combination of cuts which maximizes the character confidences as

determined by the recognition module. See Figure 3 for an illustration of the graph-

searching method of segmentation.

This relatively simple strategy has the advantage that it finds the highest-

confidence segmentation from its candidate paths. One drawback is that many candidate

segmentations must be passed to the recognizer, thereby resulting in extra computation

which could possibly have been avoided. It also fails if one of the correct cuts was not

included in the original set of candidate cuts, or if one of the cuts was slightly wrong. In

that case even the best segmentation path would have a low confidence and the string

would have to be rejected. Contextual information such as spelling and grammar rules, as

described in Section 3.3, could be added to such a system to improve segmentation and

recognition even more.

13

I I I I I

(a)

(b)

(C)

Figure 3: A set of cuts can be modeled as a graph. Searching the graph to find a path
which maximizes recognition confidences and results in the best segmentation. Figure

reproduced from [5]. (A) The initial segmentation. (B) The resulting graph and

confidences. The best path is marked in gray. (C) The final segmentation.

The same concept of choosing the highest-probability segmentation can be seen in

[6], where a Modified Quadratic Discriminant Function (MQDF) is used to perform

recognition. The optimum splitting is chosen by mathematically evaluating the best

combination, rather than searching a graph. The amount of computation necessary is

minimized using dynamic programming techniques.

14

3.3 Use of Contextual Information

Depending on the task which is being accomplished when reading handwritten

and typewritten documents, more information may be available which could be used to

improve the segmentation process. For instance, when the numerals of handwritten zip

codes are being read, segmentation must always result in five digits. Segmentations

which lead to more or less numerals can be reexamined and corrected using this

information. Such a constraint on string length is not available when dealing with

reading the amounts of bank checks, however.

Other forms of contextual information may also be put to use. When full pages of

text are being read, rules of spelling and grammar can be applied to detect and correct

mistakes in segmentation and recognition. For instance, Hong et. al. [7] use a technique

of developing lattices of related characters and their recognition confidences to choose

words based on the most likely character breakdowns. Such use of spelling rules allows

the system to tolerate a relatively high degree of error because a number of alternatives

are considered concurrently.

Further information is known when recognition is restricted to typewritten text.

Character sets corresponding to different fonts can be matched to segmented characters

and used to diagnose segmentation errors. Average character size and spacing and

average word spacing can also be put to use to improve segmentation.

15

3.4 Segmentation by Recognition

A completely different approach is Centered Object Integrated Segmentation and

Recognition (COISR). In this approach, a single neural network is used to perform the

function of segmentation and recognition [8]. It is assumed that segmentation is not a

necessary precursor to recognizing a character, or to learning to recognize a character.

Instead a "sliding window" is moved along the sequence of text, and the system is trained

to recognize what is centered in its input window. The neural network recognizes

centered characters and indicates that nothing is centered if it finds no character to be

centered in the window. Segmentation is therefore unnecessary in this case, because

touching characters can be recognized as they come into the center of the window,

regardless of the connection between them.

The striking property of COISR and other similar approaches is that segmentation

is essentially performed as a result of recognition. Rather than being done as a precursor

to recognition, the correct segmentation of the image results from the sequence of

recognized pieces.

One problem with this approach is the large amount of processing it requires. It

generates too many possible segmentations to be truly efficient. The neural net is

consulted with each small increment of the window location, leading to a great deal of

time spent recognizing redundant information (finding a character several times or

repeatedly finding that no character is centered on the window). The window slide rate

can be adjusted to minimize unnecessary computation, but care must be taken to prevent

sliding the window too quickly and moving past characters without recognizing them.

16

One method of performing such optimization is proposed by Martin et. al. [9].

The observation is made that the human eye does not scan progressively across a passage

of text, but instead moves in saccades (distinct eye movements). The eye moves forward

in ballistic saccades, and makes smaller jumps backward in corrective saccades when it

moves too far. A single neural network learns to jump from character to character,

making corrective jumps when necessary, and to classify the centered character when

properly fixated. Thus the neural net learns to control the movement of its input window

as well as to recognized what is in that window. This optimization reduces the amount of

computation necessary to process a string.

A somewhat different strategy which also performs segmentation as a

consequence of recognition is the Self-Organizing Integrated Segmentation and

Recognition (SOISR) approach. The system described by Keeler and Rumelhart [10] also

recognizes connected characters without segmenting them. Rather than requiring that the

character being recognized be in a particular place, the neural network can be activated

differently in different areas. A series of neural network "sheets" is used, one for each

possible output digit. The neural network sheet for a digit is activated only in the area

where a character is. For example, if a "3" and a "5" are connected, the "3" sheet is

activated in the area of the image where the 3 is, and the "5" sheet is activated in the area

where the 5 is. This concept is illustrated in Figure 4.

17

Exponontial Pr +s
Units: Block 3

7

6
Summing Units:

Hidden

4 Bock 2

1I

Gray-scale
0 ~u mage

Figure 4: A sheet of a self-organized neural network is activated over the area of the
image where its targeted character is present. Figure reproduced from [10].

One difference between SOISR and COISR is that the self-organizing neural

networks must be trained on hand-segmented characters. A rough segmentation done by

manually specifying boxes around the target segments is sufficient, however. After the

neural network is trained, it can recognize characters without any required position

information. It recognizes connected characters in a single pass, making it more efficient

than the sliding window technique used in COISR.

18

4 Feedback Architecture Design

4.1 Overview

Since the preexisting WinBank system used a segmentation-based approach, the

feedback architecture added to it has been integrated with such operation. Its design

loosely resembles the segmentation-based systems described in Section 3. It is

particularly related to the iterated segmentation and recognition model. However, it

makes several improvements on that model by applying heuristics at appropriate places.

The iterated segmentation and recognition model initially assumes that the components of

the image are correctly separated and attempts to recognize them as they are. It only

resorts to segmentation if the components are not recognized. This means, for example,

that connected digits are first passed to the recognizer as a single unit and only separated

after they are rejected. A big drawback of such an approach is that recognition is usually

a costly process involving a great deal of computation. Often simple heuristics can be

applied to take the correct steps during early processing, reducing useless computation.

The feedback system used by WinBank avoids unnecessary recognition attempts

as much as possible. It begins in the same way as the iterated segmentation and

recognition model above by identifying the components in the image. Rather than

passing them directly to the recognition module, however, the classifier described in

Section 2 is used to classify the components as partial, single or multiple characters.

Only:single characters are sent to the recognizer. Multiple-character regions are

immediately separated, and fragments of characters are immediately merged with their

most promising neighbors. These adjusted characters are re-classified, and the process

continues until all pieces of the image satisfy the criteria used to classify single

19

characters. See the discussion in Section 4.2 for an explanation of the classification

process.

Candidate paths to divide multiple-character regions are identified by applying

several different segmentation algorithms. Rather than imposing a pre-determined order

on these algorithms, the segmentor applies all available algorithms to the image. The

resulting paths are ranked to identify the most likely candidates. The image is divided

along the highest ranked path, and the two resulting regions are classified. The

segmentation process continues as necessary, until all pieces are classified as digits.

These digits are then sent to the recognizer.

If a character has been separated into two pieces and both are rejected by the

recognizer, the next highest ranked path is applied until the list of available paths is

exhausted, in which case the string is rejected. If one of the resulting segments is

accepted and one is rejected, the rejected character may require further segmentation.

This process is recursively applied until all regions are recognized or until the string is

rejected.

Merging can be similarly reconsidered. If a fragment is merged to another piece

of the image and the resulting character is not recognized, the merging may have been in

error. It is undone and the pieces are attempted to be recognized individually. So far the

WinBank system has no method of merging a fragment with a different piece of the

image, although such an improvement should be feasible. Suggestions for its addition

can be found in Section 7.

This strategy is similar to the approach used by Congedo et. al. [2] and by

Dimauro et. al. [3] because it applies multiple segmentation algorithms and retries

20

segmentation when it fails. However, it reduces the amount of recognition required

because it relies on structural heuristics to perform a quick guideline classification to

determine the plan of action rather than blindly applying recognition and proceeding

based on the result.

This strategy could also be compared to the approach of Lee et. al. [5], where a

graph representing combinations of candidate cuts is built and an optimum path through

that graph is found. Rather than using recognition certainties to rate certain combinations

as in [5], the new system selects from its available choices using a set of heuristics. A

major difference is that new options can be built dynamically, so the problem is not

constrained to a set of cuts determined at the beginning of processing.

There are several details which are critical to successfully applying this method.

The first is that the classification heuristics should yield the best possible classification

for a character. Since classifications may be re-considered to choose new courses of

action, it is not necessary that the correct classification is made at every iteration.

However, incorrect classifications will lead to inefficient operation. For example, a

single digit that is classified as multiple touching digits will be fruitlessly separated.

Touching digits that are classified as a single digit will not be separated when they should

be. Even though the correct classification may be made later in the feedback process,

each incorrect classification results in wasted computation.

Another important detail is the number of candidate cuts which are considered and

retained when a character is being separated. Since different segmentation algorithms

may yield different cut paths, applying more algorithms makes it more likely that the

correct path is generated. Using more methods of separation could thus make the system

21

more reliable, subject to the observation that each algorithm applied adds computation

overhead. However, it is also possible that the paths generated are very similar to each

other and add little improvement. The number of paths which are actually used should be

trimmed to a low number, such as three (the number currently used in the WinBank

system), so that too much recursion does not occur when characters are very difficult to

separate correctly or should not have been separated at all.

Since not all paths are attempted, it becomes more important that the best cut is

chosen when performing separation. This means that the paths being considered should

be properly ranked. The smaller the number of paths used, the more critical it becomes to

correctly rank those paths. Therefore the path ranking strategy becomes an important part

of the algorithm. This ranking is done based on a number of structurally-based heuristics,

such as the number of times a path cuts across writing and the detection of corners along

the path.

One final detail is based on the fact that occasionally correct segmentation may be

nearly impossible, and also that sometimes recognition may fail even on properly

segmented characters. Such cases will result in fruitless attempts to re-segment pieces of

the image. Therefore a reasonable limit should be placed on the amount of iteration

through the feedback process. Allowing only two iterations through the loop may cause

correct segmentations to be missed, but allowing many iterations could result in needless

amounts of processing to no avail.

Performing classification and accumulating several candidate segmentations at

once loses the simple sequential segment-and-recognize process in the approach used in

[2] and [3]. But this loss results in a gain by avoiding unnecessary attempts at

22

recognizing badly-segmented characters. Overall, the proposed feedback loop improves

the accuracy of the existing WinBank system. It also demonstrates a new approach to

feedback between segmentation and recognition that minimizes the overhead of

performing unnecessary recognition before satisfactory results are obtained.

One drawback to this approach is that this feedback system assumes that with high

accuracy the recognition module does "the right thing." It does not wrongly identify

digits; it either correctly recognizes them or rejects them as unrecognizable. Ideally, the

recognizer would also never reject correctly segmented digits. The rejection rate has little

impact on the correctness of the feedback algorithm, but a high rejection rate would result

in inefficient operation because separations and merges would be tried and retried

unnecessarily. It is therefore assumed the rejection rate is reasonable (for example, 10%

of properly-segmented characters being rejected, which is comparable to current state-of-

the-art systems [6]) but this statistic is not rigidly specified.

4.2 Region Classification

The purpose of region classification is to determine whether a group of pixels

represents a single character, a fragment of a character, or multiple characters which are

touching. The classifier can also categorize a region as a symbol (a period or comma) or

as a nonsense fragment which should be discarded. These classifications are used by the

segmentor as guidelines for the operations to be performed on the regions. Since these

classifications are based on simple heuristics and subsequently are inaccurate in some

cases, they are reconsidered during feedback and modifications made to regions may be

23

undone or redone. The region classifier evolved from previous work on the WinBank

system but has been expanded to make several new classifications.

The classifications are made by stepping through the following rules:

1. If the region is too small to be useful, discard it. "Size" is judged by the region's

weight, or the number of pixels it is composed of. The region is "too small" if its

weight is below a given threshold, which varies with the size of the image.

2. If the aspect ratio is low enough for the region to be a horizontal line, then discard it.

The "aspect ratio" is the ratio of the region's height to its width. The threshold aspect

ratio for horizontal lines is set to 0.25. This value was determined through

experimentation and was meant to be conservative so that important parts of the

image are not discarded.

3. If the region is small and it is near the bottom of the image, it is a comma or period

A second weight threshold is used to determine if the region is "small." This

threshold weight also varies with the size of the image. The region is near the bottom

of the image if it is completely below the vertical midline of the text in the image,

which is the height halfway between the highest peak and the lowest point. Note that

because of this rule, no distinction is made between commas and periods. All such

punctuation was arbitrarily chosen to be designated as commas.

4. If the region is small and it is not near the bottom of the image, it is a fragment of a

character. The weight threshold used here is the same as that used in step 3. The

difference is that at least part of the region is above the vertical midline. Because

fragments below the midline will be classified as commas, they must be checked later

24

to see if they should be reclassified as fragments and merged to their neighbors to

create whole digits.

5. If the region does not cross the vertical midline, it is a fragment of a character. The

weight of the region does not matter in this case because small fragments are caught

in step 4. The vertical midline is determined by the position of the whole set of

characters, so any pieces which do not cross the midline are of a much smaller height

than the rest of the characters.

6. If the aspect ratio is too low, the region is composed of multiple characters. All

regions with aspect ratios below 0.65 are classified as multiple characters. Again, this

aspect ratio was determined through experimentation and was intended to be

conservative. If multiple characters are missed due to having an aspect ratio slightly

above the threshold, they will be discovered during the feedback process.

7. Otherwise, it is a single character. If all of the above tests are passed, the region is

classified as a single character.

These rules are guidelines, but they are not always accurate. The classification is

not taken for granted to be correct. Instead, in several cases they are double-checked by

further testing when the regions are being processed. Also, classifications of characters

that are rejected by the recognizer are re-evaluated by the feedback module. This re-

evaluation is detailed in Section 4.5.

One notable mis-classification which can occur is that fragments at the bottom of

characters will be classified as commas in step 3. Regions classified as commas must be

checked later to see if they could reasonably be combined with nearby regions to make a

single character. The criteria for merging are beyond the scope of this section but are

25

described in Section 6.5. If the region should be merged with its neighbors, it will be re-

classified as a fragment to be processed accordingly. Obviously, care must be taken to

avoid merging a comma with a character, so this change is made conservatively.

Another possible error is that commas which are drawn high enough to cross the

vertical midline will be wrongly classified as fragments of characters in step 4. Again,

checks are made to see if combining the fragment with nearby regions is reasonable.

Currently no mechanism is in place to re-classify the fragment as a comma.

4.3 Path Evaluation

When a region is classified as consisting of multiple characters which are

touching, it must be divided into its constituent parts. Several segmentation algorithms

are used to find paths which divide the region into two parts. The different algorithms

build different paths, and which of these paths is best varies depending on the case at

hand. Ideally, the best path should be chosen from those available. In the iterated

segmentation and recognition systems described in Section 3.1, the algorithms were

applied one at a time in a predetermined order. Thus, those systems do nothing to

compensate for the fact that their top-choice algorithm will not always produce the best

segmentation path.

The WinBank system applies all segmentation algorithms at the beginning of

separation and then chooses the path which has the best chance of being correct. As a

result, segmentation is usually done correctly the first time, at the cost of extra processing

to apply the available segmentation algorithms at the beginning. However, this

processing is outweighed by the performance gained by preventing extra passes through

26

the feedback loop and therefore through the recognition module. The choice of paths

simply has to be better than the pre-determined choice imposed in iterated segmentation

and recognition systems for this system to outperform them.

Some method of evaluating the paths is necessary to determine the most likely

candidate. The paths which are generated by the different segmentation algorithms are

ranked based on their likelihood of being correct. These judgments are made by scoring

the paths according to several heuristic rules. Each path is initially assigned an integer

score of 0, and points are added or subtracted for good or bad features of that path and

their respective importance to the path's correctness. The number of points assigned for

different cases was chosen as a part of defining the path evaluation heuristics.

27

SLA Eno MNJ0
MEEI ON ON.(U

Ju ME on:

(A) (B) (C)

Figure 5: Detection of cuts. Each of these paths cuts through two lines. (A) A transition
from black to white or from white to black along a path marks a cut. (B) Black pixels at

the very top and bottom rows of the region are counted as color transitions as well,
because the region is assumed to be surrounded by white space. (C) A cut is also formed

when the path passes along white pixels diagonally between two black pixels.

The most important characteristic used to judge paths is the number of cuts made

through characters. Cuts can be detected by examining the color changes along the paths.

If the color of the pixels changes from white to black when traveling along the path, that

transition marks an initial point of a cut. If the path transitions from black to white, a

final point has been found. Figure 5 illustrates the three different cases used to detect cut

points.

An important fact to note is that most of the time the proper path makes exactly

one cut. If a path makes no cuts, it breaks the region into pieces which were already

separate, or it does not break the region at all. Multiple cuts are rarely needed, because it

is unlikely that two digits will touch in more than one place. Therefore the score of a path

is unchanged if one cut is made and reduced by two points for every cut above the first

one. The path score is also unchanged if no cuts are made. This decision was made

because of the properties of the interaction between the different types of scores assigned,

and is discussed below.

28

Fiue6Eubro u. (AI ahta ae no cussmpybeasared-eprt

custruh moe thnon ine os lieycutn int aigt

chrcesUrlusrtdi Fiure 7.I ey rar case wilte jin eU we w

N EUUU U U
UE UNMNE MU U U E

(A) (B) (C)

Figure 6: Number of cuts. (A) A path that makes no cuts simply breaks already-separate
pieces. (B) Most common is the case when a path cuts a single line. (C) A path which

cuts through more than one line is most likely cutting into a digit.

When two digits are written so that they are touching, the junction of the two

digits is almost always characterized by two corners. The possible junctions between

characters are illustrated in Figure 7. In very rare cases will the joint between two

characters be smooth. Following this observation, the color transition points of a path are

analyzed to determine if they occur at corners of the contour. The requirement that cuts

be made at corners is restricted further to ensure that cuts cannot pass through convex

corners, or portions of the digit which jut out into whitespace.

The path score is increased by one point for every concave corner encountered and

reduced by one point for every cut across a relatively straight line. It is very unlikely that

a cut point chosen when building the path lies at a convex corner, but to cover this

possibility the path score is reduced by three points whenever a cut point at a convex

corner is found, because a path cutting at such a point is unlikely to be correct.

(A) (B) (C)

Figure 7: Path corner cases. (A) The most common case of two concave corners.

(B) Less common is a path with only one concave corner. (C) Smooth junctions are very
unlikely.

29

Because the score of a path is modified for every time it cuts across digits, the

score of a path which makes no cuts is unchanged by corner analysis. This means that the

relationship between the score of a path with no cuts and those of the other paths built for

a segment may change disproportionately. For instance, when the number of cuts is used

to modify the path score, a path which makes no cuts will be left unchanged, as will a

path which makes one cut. However, when the angles of cuts is considered, the path

which makes no cuts will be unchanged but the score of path which makes one cut may

be increased twice if it cuts at two concave corners. Its score will be decreased if it cuts

at relatively flat areas. Therefore the distinction between single- and trivial-cut paths

really made when considering other criteria.

Another criterion which is examined is the length of the cut which is made. In the

case of multiple cuts, the length considered is the distance between the start of the first

cut and the end of the last one. If the cut length is too great, the path score is decreased

by two points. This heuristic is used because touching characters contact each other in

small junctions rather than long ones.

Algorithm-specific observations can also be made about the paths. For instance,

paths generated by the top-left and top-right drop-falling algorithms are likely to make

poor cuts in the lower half of the image. Similarly, cuts made by the bottom-left and

bottom-right drop-falling algorithms in the upper half of the image are likely to be wrong.

To allow algorithm-specific adjustments of the path scores without requiring the main

segmentation module to know anything about those algorithms, the score for each path is

adjusted as necessary within the path generator before the path is released to the main

30

segmentation module. In the drop-fall path generator the segment scores are decremented

by one point for cases such as those mentioned above.

The scores can also be used to bias the program toward one segmentation

algorithm or another. If one path generator tends to be more accurate than the others, the

likelihood of choosing the paths it creates can be improved by automatically incrementing

the scores for those paths after they are generated. No such bias is currently used in the

WinBank system.

In a similar way, the order in which the segmentation algorithms are applied to the

image can weakly bias the choice of paths. If two paths have the same score, the first of

the two which was generated is chosen first.

Once path scores have been assigned, the best path is chosen and used to divide

the image into two separate segments. But the other paths are not discarded. They are

ordered from best to worst and retained for possible future use. Saving the paths which

have not been tried facilitates easy backtracking. If the chosen path fails to divide the

image into recognizable regions, its results can be discarded and the next-best path used

to make a second try. Retaining alternative paths removes the need to generate them

again if separation is redone. More details of this corrective process are given in

Section 4.5.

One possible improvement which could be made to this ranking strategy is the

elimination of similar paths. It is possible that two different segmentation algorithms

would generate paths which are nearly the same or even identical. This improvement is

discussed in Section 7.

31

4.4 Representation and Replacement Strategy

Once all connected regions have been classified, the proper course of action is

taken for each. Fragments of characters are merged with their nearest neighbor. Paths are

generated for multiple-character regions, which are then divided into two parts along the

most likely path. The results of these operations are then passed to the recognizer. If the

image was segmented properly on the first try, all of the digits should be recognized and

the process is complete. However, further processing must be done on digits which were

not recognized. A mechanism for efficiently backtracking and taking new actions must

be established. The operations of separation, merging, undoing separation, and undoing

merging can lead to a complex series of interactions between the pieces of the image.

Therefore the representation used to manage these pieces is crucial for correct and

efficient operation. This section describes the data representation used to implement the

feedback process.

Each segmented piece of the image can be considered to be a block. When

connected regions of pixels are initially identified, each is treated as a single segment and

stored in a single block. However, blocks can hold more than one region of pixels. If a

region is classified as containing multiple digits, the two pieces resulting from its

segmentation are placed into new subblocks within its block. If two regions are classified

as fragments and merged together, a new block is created to store their merged result, and

the parent regions are placed as subblocks within the new block. Figure 8 illustrates the

concept of blocks. (See the discussion below to understand the boxes depicted within

these blocks.)

32

Since the same block structure is used to represent these three different cases,

each block is given a specified type. This allows us to determine whether the subblocks

of a block are the result of a merge or a separation. The types possible are MERGE,

SEPARATE, UNKNOWN or HOLD. Blocks which represent a single piece of the image

are of type UNKNOWN until they are recognized, because they may need to be merged

or separated in the future. Blocks which represent recognized segments are changed to

type HOLD to prevent further processing on them.

(A) (B) (C)

Figure 8: The three types of blocks. (A) A simple block containing a single digit has no
subblocks. (B) A region which was classified as "multiple" and divided into two new

pieces. The original region is stored in the original block. The new regions are stored in
the two subblocks. (C) Two regions which were classified as "fragment" and merged

into one new region. The original regions are stored as subblocks in the new block.

The smaller boxes depicted within these blocks represent the image data being

stored. Each block contains one region of pixels taken from the original image

(represented in these diagrams as a large box on the left). No modifications are made to

this piece of the image. When a region is segmented into two pieces as in Figure 8(B),

the resulting pieces of that region are copied and stored in the new subblocks, one in each

block. The original piece of the image is still kept in the original block so that the

segmentation can easily be undone by deleting the two subblocks. When two regions are

merged as in Figure 8(C), they are copied into a new region inside a new block. Undoing

33

the merge is then simply a matter of removing those subblocks from the newer block and

placing them back into the list.

The small boxes drawn to the right within the blocks in the figure are a result of

the fact that the WinBank recognizer requires normalized images of a specific size.

During normalization, slant correction, line thickness correction and scaling are

performed, so normalizing a piece of the image cannot be accurately undone. Therefore,

when a segment is passed to the recognizer, a new normalized version of it is constructed

and stored within the block. That way it is easy to revert to the original version if it is not

recognized and further processing is necessary. If a region has never been passed to the

recognizer, its block contains only the original region. If a normalized region is passed to

the recognizer and rejected, there is no reason to continue storing that normalized version,

so it is destroyed.

On the outside, the separate pieces of the image appear to be stored as a linked list

of blocks. An iterator is provided which returns these pieces in order. However, behind

the scenes, the treelike block structure results in a more complex representation than a

linked list. The connected regions taken from the image are originally stored in separate

blocks which form a simple linked list. As these blocks are merged and separated, the list

becomes a list of trees. The iterator traverses this tree to return only the regions being

operated on, which are the lowest leaves of the tree. Figure 9 illustrates an example

representation which may be built and the "virtual" linked list it simulates.

34

Figure 9: The list of block trees simulates a flat linked list. The solid line indicates the
top-level list of blocks. The dotted line connects the blocks which are returned by the

iterator. In this manner the list of four block trees simulates a flat list of six blocks. (See
Figure 11 for an example where this structure would occur.)

When the image held within a block is recognized, the extra data associated with

that block is destroyed. For instance, a block containing a single digit no longer needs to

store the region of pixels taken from the original image, because its normalized version

has been recognized. That normalized version is retained and the original version is

destroyed. Similarly, if the two regions created by separating another region are

recognized, the tree created by that separation is flattened. The original block is

destroyed along with the un-normalized images stored inside the newer blocks, because

the final result is composed of the normalized images in the new blocks. Finally, if a

region which was created by merging two other regions is recognized, those two blocks

are destroyed and only the normalized version of the merged region is retained. Figure 10

illustrates the way the tree is modified once certain regions are recognized.

- Cases where one or more of these regions are rejected by the recognizer are

handled by returning the blocks to their original state and then performing new operations

on them. This correction process is described in the next section.

35

----- M o ---- 0....

Figure 10: (A) When a single block is recognized, its un-normalized image is discarded
and the normalized version is retained. The dotted line shown represents the block list.

---------------- 0 1----

(B) When the two blocks created by separating a single block are recognized, the original
block is discarded and the newer blocks replace it in the list. Their un-normalized images

are also discarded.

---- 0.... ----

(C) When a block created by merging two blocks is recognized, the two original blocks
are discarded, along with the un-normalized image.

36

00 XO

------- X 0 -------

The following example illustrates the process of constructing such a

representation with many digits. The image shown in Figure 11(A) originally contains

five separate regions of pixels. Two of these are single digits, one is made up of three

touching digits, and two of the pieces are fragments of digits.

conected a nd thaNtE 0 is frgm neo tw Eces

UO U

UU ~ : ME ME UN OU N

5:MM 210 ()

NEW EsonENEEUso on

Figure 11: Example of operation. (A) The source image. Notice that the 5, 2 and 1 are
connected and that the 0 is fragmented into two pieces.

7 - 521- -M

521

(B) The initial list of connected regions obtained from the image. The numbers shown in
the figure represent the image pieces, and the boxes are the blocks containing them.

(C) The 521 block is classified as "multiple" and separated into two new pieces. The
pieces of the 0 are classified as "fragment" and merged into a new block, which is

inserted into the list in their place.

7 - -2- 1 -4 -
(D) The 21 block is classified as "multiple" and separated into two new pieces.

(E) When the segmentation and merging are complete, the resulting images are passed to
the recognizer. Once regions are recognized, the trees are collapsed. This shows an

intermediate stage where the fragments of the 0 have been removed and the 21 block has
been flattened to a linked list.

(F) Finally, all intermediate blocks are destroyed and the tree is flattened into a straight
linked list.

37

The list-of-trees representation allows separations, merges, and flattenings due to

recognition to occur in any order. The complexity of the tree structure is hidden by the

iterator, so that at all times the set of image pieces appears to be a linked list. Storing old

information in the tree allows backtracking to be done easily.

The storage of two segments and two blocks within each block could become

memory-intensive, but it saves a great deal of time when backing up to undo an operation.

In addition, several facts limit the amount of information stored:

" The number of blocks being dealt with is usually small. If ten connected regions are

found within an image, and two are merged into one segment and another is broken

into two segments, at most 13 blocks are in use at any time. While the number of

blocks is potentially limitless, realistically the number of blocks in existence at any

time is on the order of a dozen.

" The extra information within a block only needs to be stored until the segment stored

inside the block is passed through the recognizer. At that point it is either accepted, in

which case all information except the normalized segment can be discarded, or it is

rejected, so that the state of the block should be returned to how it was before

segmentation or merging occurred.

* Extra blocks and segments are only created while performing merges or separations.

The likelihood of needing to perform one of these operations is low, because the

majority of digits found on checks require no segmentation. If the binarization of the

image was done well, fragmentation is minimal and merging is only necessary in the

case of handwritten disconnected digits, such as the character five with a disconnected

top stroke. The other digits are very unlikely to be written as disconnected pieces,

38

due to the nature of their shapes. Separation is unlikely because a fairly low

percentage of digits are written so that they are connected [18].

4.5 Correction Strategy

After the first pass through segmentation and recognition, most of the regions will

be recognized but some may not. The operations performed on those regions may need to

be redone to obtain correct results. This section describes the method used to reconsider

the operations performed.

If a region was not recognized because it was improperly segmented, this

improper processing may have resulted from one of three types of problems. First, the

proper strategy may have been chosen but the result may have not been optimal. A

fragment of a digit may have been merged to the wrong neighbor, or a region may have

been separated along an improper cut path. Second, an action may have been made when

the proper strategy would have been to do nothing: a segment may have been separated

when it should have been left intact, or two segments may have been merged when they

should have been left separate. Finally, an action may not have been taken when it should

have been: two segments may have been left separate when they should have been

merged, or a segment may have been left intact when it should have been separated.

As described in detail in previous sections, the case in which a segment was

separated along an incorrect path is handled by storing alternative paths and trying them

in the following iterations.

39

UUUUUUM ARM

U. UN
* U EU:

0 so

MEUU OEME

rejcte Uby

a L

0 UN M UNE
wago E N~ E

UEMU mm MM:M

retry searton

Figure ~ ~ ~ ~ ~ ~~U~~ 12 neapeo eaainmsaeeigrprebytinanwpth

The~~~~~~~~~~~. caei hc. rgetwsmre o h rn egbri o urnl

handled~~~~~~~~~~ bth insytmInscastuin, h rgetwihfie ob

mege poprl i ateptd o e ecgnze aon ad s inll rjete bmtemysem

In ths cae humn inervetion s reuir. ThEs ceU i nrqetbthudeetal

be~ ~~~~~~~~~~~~m. corctd seUeto. o icsin fti osbeipoeet

The~~~~~~~~~~U caei hc emn a eaaed hni hudnthv eni

handled~~~~~~~~~mmu byeetal ecigasat nwihteoiia maei sda addt

for~~~~~~~~~~~E.. rcgiinSeaainptsaetidutley r xasean hntenn

separated~ ~ ~ ~~~~E UNag ispse otercgiinmdle lo ntels trto h

oriina iageisuse fr rconiton evn henal pahshav nt yt eenexaused

Thi esuestht heorgialchrate isalay pssd o hereogitonmoul

40

eventually. Because it will take several iterations to reach the correct state in this case,

the classification of touching digits is done conservatively.

M E

rejected by
recognizer

retry se p arati on
(all retri es rej ecte d)

I

undo separation

Figure 13: An example of recovery when separation should not have been done at all.
This case is eventually handled when no successful separations are found.

The case in which a segment was merged when it should not have been is handled

by undoing merging if the resulting image is not recognized. The two original pieces are

then passed to the recognition module separately.

41

suo m r
c w nu

u t t0e

Tw p d .o

acco plihed y icresingthethreholrasect raib sdtydtriei acaatri

meit sr e-

I
ueno be rip

w c e ts e

performe by: muTplin thse aspmectin ratio usedion thdhev istemntatin by 1.2pore eac

undoin th prtoUftrtemreUmaei eetd

The~~~~~~~~ U caseE inwihnUprto a oeo asgetwe tsol aebe

separated~ ~ ~~~~~~m~ inotopeeUscvrdb rlxn"tecasfctoso iis ahtm

a dgitisre-xaine, he ikeihod f t bin searaedis nceasd.Thi i

accomplished ~ ~ ~ ~ ~~~Eu Uyicesn.h hehl setrti sdt eemn facaatri

made ~ ~ ~ ~ ~ ~~~~~E of tw ocigdgt ahtm ti e-eaiemknUeaainmriey

A~~~~~~~~~~~~ maxmu asetrtoiUsda ii opeen pitn iiswihaeasltl

not~~~~~~~~~~~ conce.TiUauUa hoe ob h eirclofteoiia setrto

which~~~~~~~~~ men htadgtms efil alwthrsett t it oaodeeta

separation.~ ~ ~ ~ ~~ Hoeesnesvrlieain hulpasbfrrecigtslmtoy

digits ~ ~ ~ ~ ~ ~ ~ ~ E whic Ueerpael eetd ilrahti ae

perfrme by ultplyig te asectrejeocted intefrteaiato y12frec

42

subsequent examination. This incrementing strategy was chosen based on

experimentation. Multiplying by this number changes the aspect ratio considered by a

small amount at first and increases the change with each iteration. It also allows four

retries before the upper limit is reached, because the initial aspect ratio of 0.65 can be

multiplied by 1.2 four times before it reaches its reciprocal, 1.54.

U.. EX
U. U EUmm

rejedted by
recognizer

separate

Figure 15: Touching digits which were not separated is handled by relaxing the segment
classification until it is separated.

The case in which no operation was done on a segment when it should have been

merged with a neighbor is currently not handled by the WinBank program. The difficulty

in this case is that it is indistinguishable from the case in which a digit is properly

segmented but is simply rejected by the recognition module. Correctly handling this case

is described as a possible improvement in Section 7.

43

4.6 Retry Depth vs. Performance

If at least one segment is unrecognized after a pass, the program can loop back

and attempt to do more processing on the unrecognized segment(s). Each such iteration

adds more computation. However, the amount of computation necessary drops with each

character recognized, because that character no longer needs to be considered. Assuming

the recognizer is accurate and there are relatively few segmentation operations which

must be done, most of the digits will be recognized on the first iteration. As a result,

significantly less computation must be done on the second iteration than the first, and so

on for each loop in which at least one segment is recognized.

However, looping still adds computation. The heuristics used are not always

accurate, but they ensure that the most likely alternatives are explored. So it is arguable

that if the actions taken in the first few iterations do not have favorable results, most

likely the unrecognized segment being processed is a degenerate case which is so difficult

to process correctly that it should be rejected. If the feedback loop is allowed to continue,

finding the correct result may require many iterations, or the program may settle on an

incorrect result.

Therefore a limit on the number of times the program passes through the feedback

loop must be chosen to maximize results while still maintaining reasonable performance.

WinBank currently loops a maximum of 5 times. This value was chosen by

experimentation. It allows several attempts at segmentation to be made without reaching

the point that these attempts would lead to incorrect results.

44

5 Performance Evaluation

The performance of the system is not easy to characterize because a number of

factors interact in complex ways. For instance, because the feedback process relies on the

recognition module to reject with high probability when a character was poorly

segmented, recognition errors can contribute to segmentation errors. As an example,

touching digits which were not separated and then were subsequently falsely recognized

as a single digit are difficult to classify as problems with the segmentation, recognition or

feedback portions of the system.

Also, several different criteria could be used to judge the performance of the

feedback system. The number of times an erroneous operation was performed or a

correct operation failed to perform are examples. Other benchmarks of the feedback

process are the number of times correct paths were chosen on the first try or the number

of times separation had to be redone. Even in this case it is difficult to pin down the

source of errors, because it is possible that the segments being separated were touching in

a way that the segmentation algorithms generated no correct paths. In such a scenario the

feedback system would continue to try separation paths even though none will be

successful.

To avoid the complex interactions between the segmentation and recognition

which occur during feedback, the sample of check digits was recognized by manually

identifying or rejecting each digit. This ensured that all correctly-segmented digits were

recognized and all badly-segmented digits were rejected. Though these conditions would

not be present in real-world operation of the system, the wide variety of recognition

methods which could be used with these segmented digits are all designed to minimize

45

false recognition, so that even in real-world systems nearly all badly-segmented digits

would be rejected. However, failed recognition is a possibility which could lead to

increased processing. A digit which is properly segmented but is not recognized would

continue to be passed through the feedback process and could possibly be further

separated in an attempt to correct the perceived error. However, as just mentioned, the

possible erroneous segmentations resulting from such further processing would introduce

few errors. These errors would cause a computational increase because the digits would

be reconsidered needlessly.

Rather than going in-depth into such complex details to extract performance

figures, more intuitive benchmarks of the process have been accumulated. These

describe the overall performance of the system but do not describe particular details such

as whether errors were due to problems with segmentation or with merging, or whether

they originated from cases of performing operations badly or not performing them at all.

Information about the input set, such as the frequency with which touching digits

appeared, explains the circumstances in which these operations were being carried out.

The checks used had a particularly high frequency of touching digits. This is due to the

fact that the program works with totally unconstrained strings of handwritten numerals.

Also, the set of checks used was produced for testing purposes and was written with the

intention of being somewhat difficult to handle. More common samples of check digits

have approximately 86% of their digits unconnected [18]. Of the limited sample used to

test this feedback system, only 74% of the digits were unconnected. This difference

would translate to increasing the number of segmentation errors encountered.

46

The criteria used to evaluate the actions of the feedback system are simply the

number of segmentation errors which were present after the first pass of segmentation and

the number of errors present after the feedback loop has run its course. These factors give

a simple understanding of the improvement added by the feedback system while avoiding

complex issues of interactions. The average number of iterations required for the system

to run its course was also determined. This lends insight into the number of retries which

must be attempted to reach the final result. Table 1 describes the results accumulated

from a limited sample of Brazilian checks.

Number TOTAL % Digits
Total checks 40
Total digits 225 100%
Singular digits 167 74%
Connected pairs 26 23%
Three or more connected digits 2 3%

Segmentation errors before feedback 40
Errors after feedback 20
Average number of iterations 3.1

Table 1: Input characteristics and feedback improvments.

As can be seen from the table, the feedback process reduced the number of

segmentation errors by half, taking the segmentation accuracy from 82% to 91%. As

mentioned before, these errors might have been generated from a number of

circumstances, including unreadable handwriting, failures to perform separation or

merging, or mistakes made during separation or merging. The relatively high error rate

can be mainly attributed to the malicious nature of the origin of the checks. Many digits

were written in a highly overlapped fashion such that segmentation is difficult or

impossible to perform correctly.

47

The results above can be translated directly to improvements in the recognition

rate of the check reading system. Since performing this feedback process will introduce

few new errors, the ultimate result is that digits which would otherwise have been

rejected will now be recognized.

48

6 Other Improvements Made to the WinBank System

Although the feedback loop between the recognizer and the segmentor was the

major improvement made to the WinBank system, other changes were made to the system

to improve its accuracy and performance, as well as to make the code cleaner and more

modular. As mentioned previously, the system was completely re-implemented, so

several of these changes have been made simply as consequences of the re-

implementation.

The previous version of the WinBank system was written in C with a Borland

C++ user interface. It has been moved to Microsoft Visual C++. This process was not a

simple port. The system was completely rewritten to make use of improved data

structures. Another goal was to make the code more modular, so that it could eventually

be made packaged as a handwriting recognition system that could be easily modified by

other parties and adapted to particular needs. The majority of the algorithms that were

implemented are the same as in the previous system. Exceptions are noted below in the

following sections. The only part of the old WinBank system that has not been

implemented is the "segmentation critic," a parsing module which was largely responsible

for ensuring that the cents portion of the written figure is correctly segmented. The

segmentation critic will eventually be added to the system again to improve performance.

6.1 Image Binarization

Image binarization involves extracting the important information from a grayscale

image. The only information which is desired is the writing; the background should be

ignored. The use of a black-and-white representation also greatly simplifies processing in

49

the rest of the program, which does not have to deal with the further complexity of

processing grayscale images. Therefore the image is converted from grayscale to a black-

and-white representation where black pixels represent the writing to be analyzed. To

separate black from white, a threshold color is chosen such that all colors below the

threshold are become black and all colors above the threshold become white. In this

manner the image is converted to a binary 0-1 representation where 0 represents white

and 1 represents black.

The threshold value may be hard-coded, but such a technique does not allow

variation based on the properties of particular documents. Consider a case where the

same threshold value is used for a dark-colored check as a light-colored one. The dark

background of the dark-colored check might be converted to black, leading to a'very

noisy or even unreadable image. Similarly, a check in which the handwriting is light in

color may become completely white. Therefore, dynamic thresholding is used. This

means that the threshold color is chosen based on the colors prevalent in the image.

To choose a threshold value, the program scans across an area of the image and

constructs a histogram of the colors found. See Figure 16 for an example of a typical

check color histogram. The histogram is smoothed so that it represents trends rather than

noisy spikes [12]. A typical check histogram has two peaks: one peak represents the

prevalent background color, and a lower peak represents the average color of the writing.

The appropriate threshold value is between these two peaks, dividing background from

writing. The threshold is chosen to be between the minimum (darkest) color found and

the average color (approximately the top of the background-color peak).

50

(A) (B)
Figure 16: A typical check color histogram. The low region on the left represents darker

writing while the higher region on the right represents the background fill color. The
ideal threshold is between these two areas. (A) Unsmoothed. (B) After smoothing.

Simply choosing a threshold value is usually not enough, even if that threshold is

chosen dynamically. The image may be of low quality, having low contrast and a certain

amount of noise. Therefore a filtering process is carried out before thresholding to ensure

that only the desired parts of the image are retained. Mean and median filtering were

attempted, but with limited success because they tended to allow background noise to

remain while causing writing to be thickened and blurred together.

The filtering algorithm currently in use is a selective median filter. The pixels of

the image are considered individually, and each pixel's new value is chosen based on the

range of colors in its immediate neighborhood. If a wide range of colors is found (an

intersection of background and writing) the pixel is left as it is, but if a small range of

colors is found (mostly background or mostly writing) the pixel is changed to be the

median color of its neighborhood. The result of this selective filtering is that the area

away from the writing is filtered, but the immediate vicinity of any writing is left intact.

Therefore writing is not blurred but background noise is minimized. This filter has been

much more successful than the other methods that were tried.

51

6.2 Courtesy Amount Block Location

Originally, the WinBank system was designed to operate on American checks.

While the location of the courtesy amount block is not fully standardized in American

checks, the area is isolated enough (and standardized enough) that a hard-coded region

was sufficient for locating the written digits.

Brazilian checks are even less standardized when the location and size of the

courtesy amount block are considered. The height, width, and location of the CAB vary

between checks from different banks and even between checks within individual banks.

Additionally, while most American courtesy amount blocks are indicated by closed boxes

with lines on all four sides, Brazilian checks are delimited in a variety of ways, usually

much more loosely. The CAB is usually indicated by lines along one or more sides,

rather than being fully enclosed. Figure 17 shows a number of CAB styles common to

Brazilian checks.

Figure 17: Common CAB styles in Brazilian checks.

Experimentation revealed that hard-coded courtesy amount block locations were

not sufficient. Their use would lead to cutting off digits or including additional lines and

digits that were actually parts of control codes printed nearby on the checks. In response

to such variation, new functionality was added to the WinBank system to search for CAB

indicators rather than to depend on hard-coded block locations. The program begins with

a hard-coded estimate of the location in the image where the CAB may be, and searches

for lines and other cues indicating its exact position.

52

A distinction is made between finding vertical and horizontal lines. It is much

easier to correctly detect horizontal lines than to find vertical ones. It is much more likely

that tall features of written characters will appear to be vertical lines than it is that any

handwritten features will appear to be horizontal lines. Since Brazilian numbers (indeed,

all major numbering systems in the world) are arranged horizontally, the presence or lack

of whitespace in the horizontal direction can also be used as a cue to determine the

location of the CAB. Less information is at hand when finding vertical lines, so a more

careful analysis is made to detect vertical lines.

(A) (B)

Figure 18: It is easier to find horizontal lines reliably than to find vertical ones.
(A) Because digits are written horizontally, the amount of whitespace present in a row

makes it easy to distinguish between horizontal CAB lines and human-drawn lines.
(B) It is much more difficult to distinguish between vertical features of the handwriting

and vertical CAB lines.

The horizontal organization of writing can be used to find the top and bottom of

the CAB area, whether horizontal lines are present or not. If a horizontal starting line can

be chosen so that it is situated within the writing in the CAB, the guess can be expanded

above and below until whitespace is reached, thereby finding the top and bottom of the

CAB. Care must be taken to make a wise guess about a starting position; otherwise the

CAB may be missed or other pieces of the check may be mistaken for the CAB. Also the

definition of whitespace must be made such that the top and bottom limits include all of

the writing in the CAB. If too many dark pixels are allowed, the top or bottom of the

detected CAB area may cut through writing which should be included. Such a strategy of

53

looking for whitespace can also correctly detect failure when writing from other parts of

the check projects into the CAB area. If such a case exists, it is unknown what the

writing may be interpreted as and the check should be rejected to be examined by a

human operator.

Since horizontal lines may be present in the CAB area as found above, the

detected area is further restricted to exclude them. Horizontal lines are detected as rows

with unusually high concentrations of dark pixels. To accommodate lines which are not

quite horizontal, the search is also relaxed slightly to look for high concentrations in

groupings of rows. To prevent such searching from finding "false" CAB lines in the

image, such as long dashes drawn by the check writer, these lines are found

conservatively.

Vertical CAB lines are much more difficult to detect accurately. Lines of the text

may be darker and even taller than the lines of the CAB. Also, the right and left sides of

the CAB cannot be found by the simple estimation-and-adjustment scheme described

above for finding the top and bottom, because of gaps between digits. A vertical line can

be detected by a method similar to that described for horizontal lines above. Columns

which have many dark pixels in them are chosen as candidates for vertical lines, and

these are tested to ensure that they are surrounded by whitespace. If a dark column is not

surrounded by whitespace, it must be part of a digit, such as the back stroke of a 9.

Searching continues until dark lines are found or the end of the hard-coded area estimate

has been reached.

One problem which must still be worked out is that tall dark strokes surrounded

by whitespace, such as the number 1, can occasionally be mistaken for CAB lines.

54

Heuristics such as the requirement that the vertical lines be reasonably close to the edges

of the hard-coded CAB bounds could be applied to improve the algorithm, but further

research is still required.

Once the lines in the image have been located, limits must be found for edges of

the CAB that are not marked by lines. Top and bottom edges can be found fairly easily,

as described above. The extremes of the left and right side can be detected when

horizontal lines are present. This is done using the extremes of the known lines. For

instance, if no vertical CAB lines are present but a horizontal line marks the bottom of the

region, the right and left edges of the line can be used as bounds for the CAB. If no

horizontal lines are present, only an estimate can be made using the initial bounds used to

begin the search process.

The location of the courtesy amount block is an area of ongoing research. Even

though the above CAB-finding technique is fairly successful, correct CAB location is

critical enough to the proper interpretation of a check that its accuracy should still be

boosted. Further improvements which could be made are described in Section 7.

6.3 Size Normalization Algorithms

Several normalization steps are performed after characters are segmented. The

purpose of this normalization is to make characters as standardized as possible, so they

look as much as possible like the other characters of the same type. For instance, ideally

all instances of the number four would look alike. The first step in normalization is slant

correction [13], followed by scaling. As a final step the line thicknesses are made

uniform through a process of thinning and rethickening [14, 15]. The slant correction and

55

line thickness normalization algorithms have been implemented in the new version of

WinBank in the same manner as they previously were written. However, the scaling (or

size normalization) algorithms were rewritten due to a lack of documentation of the old

methods used.

Character size normalization is necessary because the recognition module requires

1 6x16 arrays as input, while there are no constraints on the size of the scanned image.

Therefore the segmented characters must be made smaller or larger to fit the constrained

size. The size reduction and enlargement methods used by WinBank were re-written

from scratch to match the new data types and to improve code clarity.

The new enlargement algorithm is a straightforward reproduction of the space

done by sampling the input image and multiplying pixels when necessary. The size

reduction algorithm requires more description. The input image is converted to a smaller

output image by mapping dark pixels in the input image to one or more pixels in the

output image. This process can be visualized as overlaying the pixel grids of the two

images and darkening the pixels in the new image that correspond to dark pixels in the

old image. When a pixel from the input image overlaps one in the output image, the

overlapped area of the output pixel is added to a total for that pixel. For example, 0.25 is

added to the total for a new pixel if a quarter of its area corresponds to one dark pixel in

the old image. All of the dark pixels in the input image are divided among the pixels of

the output image. Each pixel in the output image accumulates a total between 0 and 1

representing the portion of its area which is overlapped by input pixels. If the total is

sufficiently large, meaning enough of the area represented by that pixel is darkened in the

input image, that pixel is darkened in the output image.

56

(A) (B) (C) (D)

Figure 19: (A) The image to be reduced. (B) The 16x16 grid to be used in the final
image. (C) The process of shrinking the image can be visualized as overlaying the

smaller pixels of the original image onto the larger pixels of the new one. (D) Pixels are
darkened in the new image if they are sufficiently filled.

The decision as to whether an accumulated total is large enough to darken a pixel

must be made with care. Intuitively, if more than half of a pixel in the output image is

darkened (i.e. if its total is greater than 0.5), it should be darkened. However, the

darkening threshold must be scaled based on the scale factor by which the image is being

reduced. If a 1 Ox100 image is reduced to 16x 16, its lines will be much thinner than a

20x20 image which is reduced to the same size. This is because pen widths are generally

constant even though the characters are being written larger, so line widths are not

proportional to the character size. Therefore the darkening threshold is reduced for larger

input images in inverse-proportional manner.

This algorithm is straightforward and accurate, but its performance may not be as

good as that which could be attained using linear algebra techniques. A suggested

improvement for the future would be to investigate more efficient ways to accomplish

this task. This algorithm was chosen for its straightforward implementation within time

constraints. Since the performance depends on the size of the input image, and since the

checks used so far have been consistently of reasonably limited size, the performance of

this operation has not been a serious issue as of yet. However, to make the system more

57

general in terms of input image size, performance improvements in this area would

probably be worth consideration.

Another change which has been to the character normalization algorithms used by

WinBank is that scaling can be done disproportionately. Rather than scaling both

directions proportionally, the scale factor is evaluated differently in the vertical and

horizontal directions, so that the resulting character exactly fills the area it is being scaled

into. In this manner, greater amounts of information are retained for recognition. Since

all western numerals are written so that they are taller than they are wide, they would

otherwise not fill a square area completely. Most handwritten digits are larger than their

normalized sizes (1 6x 16 in the WinBank system), so scaling disproportionately retains

extra information about them. Saving more information about the digits makes them

easier to recognize.

6.4 Segmentation Algorithms

A number of segmentation algorithms are applied to separate connected digits into

their distinct components. The previous version of WinBank applied an "min/max

contour" splitting algorithm and a "hit-and-deflect" strategy to separate touching digits

[1, 16]. The new system uses four types of "drop-falling" algorithms and retains a

modified version of the "min/max contour" strategy. The "hit-and-deflect" algorithm

may be added in the future as another alternative path generator. As mentioned above, all

of these algorithms are used to generate a list candidate paths for separation, and the best

path is then selected from the list. Adding new segmentation algorithms should improve

the accuracy of segmentation. However, it will also add computation overhead, so

58

additional path generators should only be added if they will make an appreciable

difference in segmentation accuracy.

6.4.1 Contour Critical Point Algorithm

The contour critical point algorithm is an adaptation of the upper/lower contour

algorithm [1, 16] employed previously by the WinBank system. This algorithm is based

on the observation that in almost all cases where characters are touching, the junction

between those characters forms two or more concave corners along the contour.

Therefore, if-the concave corner points of the image are identified, those can be searched

to find the correct points to cut between.

Figure 20: The set of concave corner points along the outside contours of the image
almost always includes the points between which the cut should be made.

This algorithm begins at the (horizontal) center of the connected character and

searches along its top and bottom contours for critical points. It moves outward from the

center, searching all pairs of points until a suitable pair is found. The decision of whether

a pair of points is suitable is made based on criteria such as their distance from each

other, their distance from the center and the angle of the cut which would be made

between them. Cuts which cross whitespace are also prohibited.

59

6.4.2 Hybrid Drop-Falling Algorithm

The hybrid drop-falling algorithm [2, 17] is based on the concept of a drop of

water being placed at the top of a figure and rolling down along its contour. Wherever

the drop of water is trapped in a corner, a cut is made downward through that part of the

figure. The critical decisions which must be made during processing are the selection of

the point at which the drop-fall begins and the rules governing the movement of the drop.

Since the drop can fall in four different directions (for example, from the top-left toward

the bottom-right, a top-left drop-fall), the algorithm comes in four different varieties.

Cuts made in different directions may be better or worse than each other in different

situations. The premise of the hybrid drop-falling algorithm is that all four strategies are

applied, so this algorithm potentially outputs four candidate paths for separation.

thnohr. (A)E In tho-eU dro-fl th "dop begin in tho eU anrl aln

This~ aloih amm ene xactias in M (1]aith one ex eptio.Rte

UU *SEEN o n M

thntaspsn uh binary image***~ array wheEU n erforming top-ight boto-eft ad

U.. 11 UNE MEN Ua U
SEEN. a *UDE:M :0 a.. :0 MuEa

(A) (B) (C (D)

Figure 21: The hybrid drop-fall algorithm generates four paths, some of which are better
than others. (A) In the top-left drop-fall the "drop" begins in the top left and rolls along
the top contour toward the bottom right. (B) In the top-right drop-fall the drop travels to

the left. (C) The drop falls upward in the bottom-left drop-fall algorithm. (D) The
bottom-right drop-fall.

This algorithm was implemented exactly as in [17] with one exception. Rather

than transposing the binary image array when performing top-right, bottom-left, and

bottom-right drop falls, the direction of travel is changed in an equivalent way. Since

copying pixels into a new order is a costly process, the directions of "up," "down," "left"

and "right" are re-defined so that the direction of travel can be conceptualized as going

from the top left down to the bottom right, as in the top-left drop-fall, while movement is

60

actually in the appropriate direction. This makes it possible to avoid copying the array

and allows code reuse so that the same code can be used for all four directions of travel.

6.5 Merging Algorithm

Merging a fragment to its most reasonable neighbor is done by evaluating which

of its nearest neighbors is most suitable. The four nearest neighbors (two to the left and

two to the right) of the fragment are chosen as candidates for merging with it. They are

then evaluated based on proximity and factors such as overlap. If the fragment is above

or below another piece of the image, it is more likely to be merged with it. This handles

cases such as the disconnected top stroke of a 5, which may even be written closer to

another digit. If the stroke overlaps the remaining base of the 5, it would be merged to

that rather than to another nearby digit.

Since the components of the image are copied into new pieces and stored

separately, their positions and relationships to each other in the original image are

destroyed. But to properly maintain these relationships during merging requires that

some knowledge of position be retained. Therefore, the coordinates of the original

position of each segment are stored inside it. When pieces of the image are separated or

merged together, the coordinates of the resulting segments are updated accordingly.

The merging algorithm has worked fairly well. However, since no alternative

merges are considered after feedback, a fragment which has been merged to the wrong

neighbor can only be rejected for human examination. Improvement of this behavior is

discussed below in Section 7.

61

6.6 Syntax Verification

A new step which has been added to the WinBank system is the verification that

the final output makes sense in terms of dollar amounts. For instance, if the value

reported to be found on a check is "1,2,3", this is not a valid string in terms of money.

Therefore simple syntax rules have been applied to ensure that the resulting value is

reasonable.

The first step in the verification process is to check that the overall grouping of

the characters in the string is correct. For instance, characters such as "$" may only

appear at the beginning of the string. All characters except digits and punctuation

(commas and periods) are then stripped away. Since commas and periods are so small,

no distinction is made between them by the WinBank system, so they are all represented

as commas in the program and in the following discussion.

The placement of commas and periods within the string is important for

determining the amount of money in question. For instance, "1,000" and "10,00" have

very different values. The next step ensures that the commas are consistent with each

other and with the form of the string. Strings such as "1,00,00" and "1,0" are rejected in

this step. Special cases such as leading commas and zeros are also rejected, because

those do not occur when writing money.

The final step is that commas are added or when deemed necessary, because

commas and periods are small enough that they may not have been found during image

processing. In this case the string "1000" would become "10,00" and the string

"1000,00" would become "1,000,00." This change is purely aesthetic, but it makes the

final value much easier for a human operator to interpret.

62

7 Possible Improvements

Due to the time required to fully re-implement the WinBank system, there are

several improvements which could be made to the WinBank system as described in this

document, but those improvements were considered and not implemented. Some pertain

to the system as a whole, and some are specifically related to the feedback architecture

which has been implemented. Those improvements are briefly discussed in this section.

It has been mentioned in previous sections that the CAB location, while fairly

accurate, could still be improved. Vertical line detection is a particularly difficult task

which could be improved. The CAB location method described above still has the

weakness that vertical lines in the text which are surrounded by whitespace, such as the

number 1, can be mistaken for CAB lines. The hard-coded limits of the area in which the

CAB is searched for could be used with heuristics to require the lines to be fairly near the

left and right edges of the region, but this too could be problematic. For instance, other

vertical lines are also often present near the left edge of the courtesy amount block in

Brazilian checks, so if the left line is not found, it is possible that the nearby (incorrect)

line may be taken as the left edge of the CAB, leading to the inclusion of check character

codes or other erroneous pieces of the image.

An important fact to note is that for all of the Brazilian CAB styles, there is

always a line on the left or on the bottom. If no line is found on the left or the bottom, the

hard-coded estimate used as a starting block was too strict. In this case the boundaries

can be expanded to the left and bottom and the search for lines performed again. Such

63

CAB "seeking" could be added to the WinBank system if the hard-coded limits are found

to be too inaccurate, but so far such an improvement has been unnecessary.

One area of research which could result in significant improvement of the

classification process is the use of contextual information such as punctuation. For

instance, if only two digits are found between commas, such as "D,DD,DD" (where D

indicates a generic digit), it is likely that one of the two digits between the commas is

actually made up of two touching digits. Discarded image pieces such as horizontal lines

might also be useful for providing contextual information to use during segmentation.

The WinBank system currently makes no use of the relationships between different

characters to improve segmentation. This improvement has not been added to the system

yet because it would be fairly complex to implement.

A small change which can be made to the re-classification done during the

feedback process is the reconsideration of the classifications of commas and fragments. It

is possible that commas would be classified as fragments of characters, or that fragments

would be classified as commas. The mis-classification of commas and fragments has not

been addressed in the existing feedback system because it is uncommon. Such

reconsideration could especially benefit from the use of contextual information such as

the position of other commas.

As mentioned previously, one possible improvement which could be made to the

path ranking strategy used during segmentation is the elimination of similar paths. It is

possible that two different segmentation algorithms would generate paths which are

nearly the same or even identical. In the current system the paths would be ranked the

same and applied sequentially. Repetitive computation could be reduced by removing

64

similar paths so that only paths which have different results are considered. This

improvement has not been implemented because of the complexity involved in judging

whether two paths are nearly the same. They may differ in only a few places (they may

even differ trivially as they travel through whitespace), but judging how different two

paths are and how close two paths should be to each other to be considered similar is not

a simple task.

Another improvement to the path ranking strategy would be the immediate

exclusion of paths whose scores are too low. Currently the paths are ranked and used in

order, but no minimum requirement is made on the score of the path used. It is possible

that the segmentation algorithms do not generate many good paths, or even that they do

not generate any good paths at all. A minimum score has not been imposed because the

path ranking heuristics only result in fairly rough guesses, and because a fairly small

range of scores is possible.

An improvement which could be made to the feedback process, as mentioned

previously, is that it could also be used to correct erroneous merging. Currently, if a

fragment is merged to the wrong neighbor, it cannot be recognized and is simply rejected.

In the future, it should be possible to add feedback to redo merging. Care would have to

be taken so that the fragment is not repeatedly merged to the same neighbor. Such an

improvement could be modeled on the segmentation feedback process. The use of

feedback to correct merging errors has not yet been implemented because the low

probability that fragments are present has so far led to a low rate of merging errors.

One interesting observation of the feedback process is that when three or more

digits are touching, the "higher" segmentations have less chances to be re-tried than the

65

"lower" ones do. For instance, in Figure X three digits were touching. A 5, 2 and 1 were

separated from each other. If the separation of the 5 from the touching 21 block was done

incorrectly, it would not be retried until all separations of the 2 and 1 were tried. This

means that the first separation becomes more critical to do correctly because it is less

likely to be retried.

7w- 521 - 4- 1

5 21 ()
/ \
2 E

Figure 22: Repeated from Figure 11(D). A 5, 2 and 1 were touching in the original
image. The segmentation which splits the 5 from the touching 21 becomes more critical

to the process than the separation of the 2 and 1.

Indeed, if a piece of the 5 was attached to the 2 and 1, it is possible that the 2 and

1 could still be correctly segmented and recognized, leaving the piece of the 5 to be

eventually merged back to the 5 it came from. In other words, several iterations would

pass before the 5 was correctly segmented. This process could possibly be improved by

limiting the number of times lower segmentations are redone before "higher"

segmentations are reconsidered. In fact, in the case above, the separation of the 5 from

the touching 21 block could be worth reconsideration immediately if the 5 is not

recognized.

Another improvement that could be made to the WinBank system is modifying

the character size reduction algorithm, as noted in Section 6.3 above. The current

algorithm is conceptually easy to grasp but may be more computationally-intensive than

techniques using linear algebra or other mathematical means.

66

8 Conclusion

The feedback system described here is a new technique for repairing segmentation

errors. It was designed to be integrated with a segmentation-based approach to reading

handwritten digits. It allows errors in segmentation to be reconsidered and repaired. The

feedback system works with separation as well as merging operations, building a list of

segmentation trees as the digits are being processed. This allows backtracking to be done

quickly and easily. The feedback system improved the rate of recognition without

increasing the rate of errors in the program. It also minimizes needless processing which

is sometimes done in other segmentation-based systems. This new technique involves

less processing than other previous segmentation-based techniques.

Since the WinBank check reading program was re-implemented based on a

preexisting version of the system, some opportunities for improvements in other parts of

the system were available. Most algorithms were re-implemented as they were, and any

changes which were made have been explained.

67

Bibliography

[1] Sparks, P., Nagendraprasad, M.V., Gupta, A. (1992) An Algorithm for Segmenting
Handwritten Numeral Strings. Second International Conference on Automation,
Robotics, and Computer Vision. Singapore, Sept. 16-18, 1.1.1 - 1.1.4.

[2] Congedo, G., Dimauro, G., Impedovo, S., Pirlo, G. (1995) Segmentation of
Numeric Strings. Proceedings of the Third International Conference on Document
Analysis and Recognition, Vol. II 1038-1041.

[3] Dimauro, G., Impedovo, S., Pirlo, G., Salzo, A. (1997) Automatic Bankcheck
Processing: A New Engineered System. International Journal ofPattern
Recognition and Artificial Intelligence 11 (4) 467-504.

[4] Blumenstein, M. and Verma, S. (1998) A Neural Based Segmentation and
Recognition Technique for Handwritten Words. IEEE International Conference on
Neural Networks Vol. 3, 1738-1742.

[5] Lee, S.-W., Lee, D.-J., Park, H.-S. (1996) A New Methodology for Gray-Scale
Character Segmentation and Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 16 (10) 1045-1050.

[6] Kimura, F. and Shridhar, M. (1992) Segmentation-Recognition Algorithm for Zip
Code Field Recognition. Machine Vision and Applications 5 (3) 199-210.

[7] Hong, T., Hull, J., Srihari, S. (1996) A Unified Approach Towards Text
Recognition. Proceedings of SPIE: The International Society for Optical
Engineering Vol. 2660 27-36.

[8] Martin, G. (1993) Centered-Object Integrated Segmentation and Recognition of

Overlapping Handprinted Characters. Neural Computation 5, 419-429.

[9] Martin, G., Mosfeq, R., Pittman, J. (1993) Integrated Segmentation and
Recognition Through Exhaustive Scans or Learned Saccadic Jumps. International
Journal of Pattern Recognition and Artificial Intelligence 7 (4) 831-847.

[10] Keeler, J., Rumelhart, D. (1992) A Self Organizing Integrated Segmentation and

Recognition Neural Network. Proceedings of SPIE: The International Society for
Optical Engineering Vol. 1710 744-755.

[11] Ha, T., Niggeler, D., Bunke, H. (1995) A System for Segmenting and Recognising
Totally Unconstrained Handwritten Numeral Strings. Proceedings of the Third
International Conference on Document Analysis and Recognition, Vol. II 1003-
1009.

68

[12] Zhao, M. and Congxiao, B. (1994) Image Thresholding by Histogram
Transformation. Proceedings of SPIE: The International Society for Optical
Engineering Vol. 2238, 279-286.

[13] Feliberti, V. and Gupta, A. (1991) A New Algorithm For Slant Correction of
Handwritten Characters, Masters Thesis, Massachusetts Institute of Technology.

[14] Nagendraprasad, M.V., Wang, P.S.P., Gupta, A. (1993) Algorithms for Thinning
and Rethickening Binary Digital Patterns. Digital Signal Processing 3, 97-102.

[15] Wang, P.S.P.and Zhang, Y. Y. (1989) A Fast and Flexible Thinning Algorithm.
IEEE Transactions on Computers 38 (5) 741-745.

[16] Sparks, P. (1992) A Hybrid Method for Segmenting Numeric Character Strings.

[17] Khan, S. (1998) Character Segmentation Heuristics for Check Amount Verification.
Masters Thesis, Massachusetts Institute of Technology.

[18] Nagendraprasad, M., Sparks, P., Gupta, A. (1993) A Heuristic Multi-Stage
Algorithm for Segmenting Simply Connected Handwritten Numerals. The Journal
of Knowledge Engineering & Technology 6 (4) 16-26.

69

