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Abstract

In fiber optic communication, the transmission of multiple optical channels over the same fiber
provides a simple way for making use of the unprecedented capacity offered by optics. Optical
demultiplexing is a critical function in high density wavelength division multiplexing for channel
spacing of 1 nanometer or less. A Virtually Imaged Phased Array (VIPA) produces a large angular
dispersion that can be applied to optical demultiplexing. A mathematical model of the VIPA sys-
tem is developed. Using this model, a numerical simulation of the VIPA demultiplexer is con-
structed and then used to develop VIPA designs with improved performance. Results show that a
glass plate with linear transmissivity increases VIPA's efficiency and reduces channel crosstalk.
The simulation was also used to perform a perturbation analysis of the system. If the plate in the
VIPA is of non- uniform thickness, considerable beam distortion occurs, which increases channel
crosstalk. It is demonstrated that the distortion due to a linearly varying plate thickness can be cor-
rected using a proper lens system.
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Chapter 1 Introduction

With the advent of the 'information superhighway' and the explosive growth of the graphics

driven World Wide Web, the demand for high bit rate communication systems has been rising

exponentially. The signal bandwidth in optical communication systems can exceed 1 THz due to a

large carrier frequency associated with the optical carrier. The transmission of multiple optical

channels over the same fiber provides a simple way for making use of the unprecedented capacity

offered by optics. To optimize the use of bandwidth, it is desirable to send as many channels as

possible over the same fiber. The reduced spacing between channels requires highly sophisticated

methods to ensure the integrity of the information transmitted through the channels [5].

Optical multiplexing /demultiplexing is a critical function in high density wavelength division

multiplexing systems for channel spacing of the order of 1 nanometer or less. Multiplexers com-

bine the output of several transmitters and launch it into an optical fiber, while demultiplexers

split the received multichannel signal into individual channels destined to different receivers.

Existing demultiplexing technologies for such multi-channel systems, such as Fabry-Perot or

Mach-Zehnder interferometers, require that a number of these splitters be cascaded. While dif-

fraction gratings provide a much simpler means of decomposing light into many wavelengths at a

time, they bear certain disadvantages. Their diffraction efficiency depends on the polarization-

state and they exhibit insufficient angular dispersion. Because of this low dispersion, the multi-
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plexer/demultiplexer for dense channels is not compact and its characteristics are sensitive to mis-

alignment [1].

The virtually imaged phased array (VIPA) is a new optical technique that produces a large angular

dispersion.This novel method was developed by Dr. Masataka Shirasaki at Fujitsu Labs, Japan, in

1995 [1]. The angular dispersion of a VIPA is about 10-20 times larger than those of common dif-

fraction gratings which have blaze angles of about 30 degrees. With the current configuration of

the VIPA, wavelength demultiplexing for 10 channels with 0.8 nm spacing is achieved. Its other

advantages are that it has a very low dependence on input polarization state and its structure is

simple, compact and low cost. Table3-4 of chapter 3 compares the VIPA demultiplexer to other

demultiplexing techniques with respect to angular dispersion, polarization dependence, compact-

ness, etc.

1.1 Scope of Thesis

This thesis describes the use of a virtually imaged phased array to achieve improved demultiplex-

ing in DWDM systems. A numerical simulation has been constructed to analyze the performance

of different VIPA demultiplexer designs and to optimize the system for maximum angular disper-

sion and minimum power loss. Chapter one describes the origin of the VIPA technique and its role

in WDM communication systems. Chapter two provides an overview of WDM optical communi-

cation systems and briefly revises some theoretical concepts relevant to understanding VIPA. A

detailed description of the basic VIPA demultiplexing technique is contained in chapter three.

Chapter four describes the mathematical model of the VIPA system that is used to implement the

numerical simulation. A detailed discussion of the simulation results of the different VIPA
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designs appears in Chapter 5. This chapter illustrates how varying VIPA parameters affects the

demultiplexers performance and how these parameters are optimized to maximize angular disper-

sion and minimize power loss. Chapter six contains a perturbation analysis and shows that the dis-

tortion produced by using a glass plate with linearly varying thickness can be corrected by simple

optical techniques.

1.2 Simulation Code and Facilities

The simulation of the VIPA demultiplexer was implemented in Matlab version 5.2 on Sun Ultra5

and Ultra10 workstations in the Athena computing environment of M.I.T. A listing of the matlab

code used to simulate VIPA appears in the appendix.
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Chapter 2 Background

This chapter begins with an overview of WDM optical communication systems. It then discusses

some concepts in optics and signal processing that are relevant to understanding how the VIPA

technique works and how the simulation is implemented.

2.1 Fiber Optic Communication Systems

Transmission of data has been revolutionized by the use of the optical fiber. Optical fiber provides

low loss (.25 dB/km at a wavelength of 1550nm) and high bandwidth that exceeds 1 THz, making

it an ideal medium for transmitting large amounts of data over long distances. However, even

though the bit rate can exceed 1 Th/s in principle, in practice, it is often limited to l0Gb/s or less

because of fiber dispersion or electronic speed limitations [5].

The attenuation coefficient and the dispersion coefficient of different types of fused-silica-glass

fibers are dependent on wavelength. Minimum attenuation occurs at ~ 1.55gm, whereas the mini-

mum material dispersion occurs at -1.312 gm. The choice between these two wavelengths

depends on the relative importance of power loss versus pulse spreading and on the availability of

an appropriate light source. Most advanced systems operate at wavelengths centered at 1.3gm and

1.55gm [5].
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2.2 WDM Systems, Multiplexers and Demultiplexers

The use of multiple channels over the same fiber provides a simple way to make use of the

unprecedented capacity offered by optics. Each channel is transmitted by modulating its own car-

rier. The carrier frequencies are separated enough that the optical spectra of the modulated chan-

nels do not overlap in frequency. The multiple channels are demultiplexed at the receiver by using

frequency selective componants. Lightwave systems that make use of such a scheme are known as

multichannel communication systems. WDM has the potential for exploiting the large bandwidth

offered by the optical fiber, as hunderds and even thousands of channels can be transmitted if the

channel spacing is reduced to a few GHz by using coherent techniques[5].

Wavelength Division Multiplexing

Tx R
k2 (1 2

Tx R

Optical
Fiber

Multiplexer Demultiplexer

Figure 2-2-1

The role of WDM in such systems is simply to increase the total bit rate. Figure 2-2-1 represents

the scheme of a high capacity WDM system. The output of several transmitters, each operating at

its own carrier frequency ( or wavelength) are multiplexed together. The multiplexed signal is

launched into the optical fiber for transmission to the other end, where a demultiplexer routes each

channel to its own receiver. When N channels at bit rates B 1, B2, .... Bn are transmitted simulta-

neously over a fiber of length L, the total bit rate-distance product BL becomes :

BL = (B 1+B2+ .. +Bn)*L. For equal bit rates, system capacity is enhanced by a factor of N [5].
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2.3 Single Mode Fibers

The input to the VIPA demultiplexer is the milti-channel output from a single -mode fiber. An

optical fiber consists of a high refractive index core surrounded by a layer of lower index clad-

ding, as shown in figure 2-3-1. In the figure, nl is the refractive index of the core, n2 is the refrac-

tive index of the cladding, and no is the refractive index of air. The core and cladding diameters

are given by a and b respectively. For a single mode fiber, a is in the range of 2-4 pim. Typical val-

ues for b are 50-60 pim.
Step -ndex fiber

b Jackel

Claddang

0 2

no

Radial distance

Figure 2-3-1 Single mode fiber with core of refractive index n 1 and cladding of refractive index n2.

Single mode fibers support only the HEl 1 mode which is also known as the fundamenal mode of

the fiber. The fiber is designed in such a way that all higher order modes are below cutoff at the

operating wavelength. The V parameter determines the number of modes supported by a fiber as

well as the cutoff condition of various modes. The fundametal mode has no cutoff and is always

supported by a fiber. In practice the fundamental mode of a single-mode optical fiber is often

approximated by a gaussian distribution which is described in section 2.4 [5] .
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2.4 The Gaussian Beam

The gaussian beam is an important solution of the paraxial helmholtz equation that exhibits the

characteristics of an optical beam. Eqn 2.4.1 gives an expression for the complex amplitude, U(r),

of a gaussian beam. The parameter zo is known as the Rayleigh range such that W(zo) =

sqrt(2)*Wo and the intensity at zo is half the peak intensity. W(z) and R(z) are measures of the

beam width and wavefront radius of curvature , respectively, and are expressed in terms of z and

zo according to equations 2.4.2 - 2.4.4 [3].

W(z) has a minimum value, Wo, at the beam waist and grows gradually in both directions. The

wavefronts are approximately planar near the beam waist, but they gradually curve and become

approximately spherical far from the waist. 2.5 The Lorentzian Beam

W F- 2 1-F 2 1
U(r) = A 0W(0exp L- PW2]1exp Ljkz - jk 2  + 2.4.1

-(Z W 2()R(z).

W(z) = W(1 + (_L)2]U2) 2.4.2

R(z) = z1 + (L)l 2.4.3

w XZ1/2 2.4.4

,(z) = atan(.-0 2.4.5

2.5 The Lorentzian Beam

Let e(t) be an exponentially decaying harmonic function of time e(t)= e -t/2 ei2nvof , which has an

energy that decays as e-/ ( with time constant t). The Fourier transform of e(t), given by equa-

tion 2.5.2, is proportional to 1/[1+j4n(v-vo)r] and is a Lorentzian function. The Lorentzian pro-

file, g(v) is a function of frequency, v, and is given by equation 2.5.1. The full width at half

maximum (FWHM) of this Lorentzian function of frequency is Av= 1/27tt. The value of the-
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Lorentzian function at the central frequency v0 is given by g(vo)= 2/rAv. Figure 2-5-1 shows the

symmetric magnitude and asymmetric phase profile of the Lorentzian function [3].
g (V (Av)/(21c)

g(v) = v 2 +(Av/2)2 2.5.1

g(v) = e(t) -e~ dt 2.5.2

V--00

NJ) (b)

V0  I

110 V,

Figure 2-5-1 Symmetric magnitude and asymmetric phase profile of a Lorentzian function

2.6 Optical Fourier Transform

If f(x,y) is a function of two variables and x and y represent the coordinates of a point in a two-

dimensional space, then f(x,y) represents the optical field in a given plane. The harmonic function

F(vx, vy)exp[ -j2n(vxx + vyy) Is regarded as a building block from which other functions may be

composed by superposition. The variables vx and vy represent spatial frequencies in the x and y

direction respectively. Thus when x and y have units of length (mm), vx and vy have units of

cycles/mm. Components with spacial frequencies vx,v, correspond to plane waves travelling at

angles: Ox= sin- I(Xv) and Oy= sin- (avy). As shown in equation 2.6.1, f(x,y) in space may be

decomposed as a superposition integral of harmonic functions where the coefficients F(vx, vy) are

determined by the use of the two dimensional fourier transfom as shown in equation 2.6.2 [3].
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f(x,y) = JJF(v,,v)exp[-j2n(vx+vyy)]dvdv

F(v ,v,) = f(x, y)exp[j2n(vxx+vyy)]dxdy 2.6.2

Thus, taking the Fourier transform of f(x,y), a distribution in space, gives F(vx, vy),the distribution

in the spatial frequency domain. Similarly, f(x,y) can be obtained from F(vy,vy) by taking the

inverse Fourier transform of F(vx,vy). In optics, a Fourier transform can be performed by a lens or

by propagation into the far field.

2.7 Propagation Through Free Space : Fresnel Diffraction

Consider the harmonic input function f(x,y)= Aexp[-j21t(vxx+vyy)] which corresponds to a plane

wave U(x,y,z)=Aexp[-j(kxx+kyy+kzz)] where kx=27tvx, ky=2nvy, and kz=(k 2-kx2-ky 2)1 2 or

kz=2n(1/,2 _ V 2_ vY2)1/2. The output is g(x,y)=Aexp[ -j(kxx+kyy+kzd), where d is the distance

travelled. The transfer function H(v,vy) is given by equation 2.7.1 . Using the paraxial approxi-

mation, 2= o 2+O 2_ X2 (v 2+vy 2), where 0 is the angle with the optical axis, the phase factor is

given by equation 2.7.2, which can be used to simplify H(vx,vy), as shown in equation 2.7.3.

Using the Fresnel Approximation, the phase factor is a quadratic function of vx and vy and the

output g(x,y) can be determined from the input f(x,y) in three steps. First, F(vx,vy) is obtained by

taking the Fourier transform of f(x,y) as in equation 2.6.2. Next, we multiply F(vx,vy) and

H(vx,vy) of equation 2.7.3 and the product gives the complex envelope of the plane wave compo-

nents in the output plane. Taking the inverse Fourier transform of this product sums the contribu-

tions of all these plane waves and gives the output g(x,y) as in equation 2.7.4 [3].

17



H(v , vy) = exp -j27- - v -v2 )1/2- d] 2.7.1

PhaseFactor = 2n -. -v-vY) .d = 2% (1 -0) 2.7.2

H(vx, v,) = H,- exp[jnkXd(v +v )] where H0 = exp[-jkd] 2.7.3

g(x, y) = H, - F(vx, v )(exp[jinXd(v2 +v )] - exp [-j2n(vxx + vyy)])dv dv, 2.7.4

This formulation is used to obtain the field distributions after successive round trips within the

VIPA glass plate.

2.8 Propagation of a Beam Through a Lens

The plane wave components that constitute a wave can be separated by the use of a lens. A thin

spherical lens transforms a plane wave into a paraboidal wave focused to a point in the lens focal

plane. If the plane wave arrives at small angles, 0 and Oy, the paraboidal wave is centered about

the point (Oxf, Oyf), where f is the focal length. The lens therefore maps each direction (0, Oy),

into a single point (Oxf, Oyf) in the focal plane and thus separates the contributions of the different

plane waves [3].

As shown in figure 2-8-1 [3], let f(x,y) be the complex amplitude of the optical wave in the z=O

plane. Light is decomposed into plane waves, with the wave travelling at small angles Ox=Xvx,

OY= Xvy, having a complex amplitude proportional to the fourier transform, F(vx, vy). This wave is

focused by the lens into a point (x,y) in the focal plane where, x=Oxf = Xfvx, y=0yf=xfv. The

complex amplitude at point (x,y) in the output plane is proportional to the fourier transform of

f(x,y) evaluated at 2.6.2 so that g(x,y) a F(x/Af, y/Xf). The coefficient of proportionality contains
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a phase factor that is a quadratic function of x and y. Thus g(x,y) is given by equation 2.8.1. If d=f,

the phase factor vanishes and g(x,y) is given by equation 2.8.2.

g(x, y)) = h, - exp j - 2+ y 2 ) (d-f)] F( x,

g(x, y) = hi -F( ), where

where h = -exp[(-jk)(d +f)] 2.8.1

hi () - exp[(-jk)(2f)] 2.8.2

S.'V Focal plane

z=0 .: d a1 : f

Figure 2-8-1The complex amplitude g(x,y) in the output plane is proportional to the fourier transform of f(x,y)
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Chapter 3 VIPA Demultiplexing Method

This chapter describes the virtually imaged phase array (VIPA) technique as applied to an optical

demultiplexer. This technique was developed by Dr. Masataka Shirasaki in 1995 at Fujitsu Labs

[1]. Table 3-4 compares VIPA to other demultiplexing techniques in terms of angular dispersion,

polarization dependence, economy of production, and other features.

3.1 Optical Demultiplexing Using VIPA

Glass plate

Collimating lens

X3

Input X

fiber Output
Semi-cylindrical lens Focusing lens fibers

Figure 3-1-1 Schematic of VIPA system as a demultiplexer

Figure 3-1-1 shows a schematic of wavelength decomposition achieved with a VIPA. The system

consists of a semi-cylindrical lens and a glass plate having coatings on both sides. The output of a

single mode transmission fiber is passed through a collimating lens and this collimated light is the

input to the VIPA. The input light is line focused into the glass plate using the semi-cylindrical

lens. This light undergoes multiple reflections in the plate and emerges as collimated light from

the reverse side of the plate. The output light propagates at an angle that varies with wavelength.

In this way, the structure exhibits angular dispersion.
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1 mm
R=100%

Virtual images -

Output

Inputncien beam------ -- - - - - ---

Semi-cylindrical lens Inietba
AR(R=0) Beam waist

Figure 3-1-2 Detailed VIPA structure showing virtual images Glass plate

Figure 3-1-2 shows in detail how the structure in fig 3-1-1. produces a virtually imaged phased

array. The input side of the plate has 100% reflection coating, except in the incident light window

area, which is anti-reflection coated. The output side of the plate has a high reflection coating of

95% or greater power reflectivity. After passing through the semi-cylindrical lens, the input light

enters the window with a small incident angle and is line focused onto the surface of the output

side. A small portion of the input light (5% or less in power) passes through the high reflection

coating and diverges after the beam waist at the output surface. The rest of the light is reflected

twice in the plate and returns to the output side, where another small portion of the remaining

light passes through the high reflection coating and the rest of the light is reflected back into the

glass plate.

In this way, the input light is split into many light-paths which have a constant displacement. Each

light path has a beam that seems to be diverging from the beam waist created in the virtual image.

These virtual images of the beam waist are self -aligned along the normal of the plate. If the effect

of the refractive index of the glass (n = 1.5) on the transmission angles is neglected, then the vir-
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tual images are spaced at distances equal to twice the plate thickness (2t), where t is the thickness

of the glass plate.

The output light corresponds to that produced by a phased array of sources, whose diverging

beams interfere to produce angularly dispersed, collimated light. The output light of the glass

plate is passed through a focusing lens and the intensity peaks of the different wavelengths are

then coupled to fibers placed at appropriate positions.

3.2 Angular Dispersion

The beams transmitted through the glass plate interfere such that light propagates in a direction

that varies with the wavelength of the light. The spacing of the light paths is d=2t sin(6), where t is

the plate thickness and 0 is the incident angle. The difference in the path lengths between adjacent

beams is 2t cosO. The angular dispersion is the ratio of these two numbers which is cotO and after

the plate, it is -n times larger due to refraction. Thus the effective factor that determines the dis-

persion is approximately n cotO. For experiments using the 1.55m wavelength range, t=100gm,

O= 6.4 degrees, d=22.4gm, the factor n cotO is 13.4 [1]. A similar factor for a diffraction grating is

given by 2tan(blaze angle) and this factor for a common blaze angle of 30 degrees is -1. Thus the

angular dispersion of the VIPA is much larger than those of the gratings.

3.3 Polarization Dependence

The VIPA is essentially insensitive to the polarization state of the input light. Polarization depen-

dence appears only if the complex reflectivities of the reflection films have polarization depen-

dence in either amplitude or phase. Polarization dependence can be ignored for a small incident

angle below ten degrees.
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3.4 Comparison of VIPA with other Demultiplexers

Table 3-4. Comparison of VIPA to Other Demultiplexers

Demux app to DWDM Angular Polarization OtherDispersion Dependence

Fabry- Perot must cascade & Pol. Dep. cost increases
Mach-Zehnder allign many can be with number of
Interferometers filters eliminated channels

parallel 2*tan(blazeang) Diffraction
Diffraction demultiplexing - 2* tan(30) Efficiency
Gratings - 1 depends on I.P.S

Waveguide parallel better ang. disp Pol. Dep. Stability
Diff. Gratings demultiplexing can be Problems
(Dragone Filter) ~10 eliminated

parallel large. ang. disp. For small inc. compact, sim-
demultiplexing n*cot(inc.ang.) angles (<10), ple, low cost,

VIPA ~13.4 no/lo depen-
10-20 times dence on I.P.S
greater than
Diff. Gratings

Unlike Fabry Perot interferometers, where multiple filters must be cascaded and alligned, the

VIPA uses parallel demultiplexing. As discussed in section 3.2, the angular dispersion of the

VIPA system is about 10 to 20 times greater than that of diffraction gratings and is also

considerably greater than that of waveguide gratings. Section 3.3 explained VIPA's no/low

dependence on input polarization state, which is a big advantage over diffraction gratings whose

diffraction efficiency depends on the input polarization state. Finally, the VIPA system is free

from the stability problems encountered by Waveguide Diffraction Gratings and is compact,

simple and low cost.
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Chapter 4 The VIPA Simulation Model

This chapter presents a mathematical formulation of the VIPA demultiplexing system based on

Fourier optics. The simulation implements this model in Matlab. This chapter also describes

methods used to assess the performance of the VIPA demultiplexer and explains how various

VIPA parameters are optimized to improve its performance.

4.1 Computing VIPA Field Distributions

A two dimensional model, as in figure 4-1-1, is used to describe the orientation of the glass plate,

electric field distributions, incident angle, surface reflectivities and other relevant parameters of

the VIPA system. The output side of the glass plate is aligned with the y axis and the bottom of

the plate runs along the z axis. The field distributions along x are identical to the those along y and

so it was sufficient to use a 2-D model to analyze the VIPA system.

Figure 4-1-1 Base coordinate system Y
and glass plate of thickness t, with t
output side along y. Glass

RL=100% Plate

RR

windoW -

ZNI

RL and RR are defined as the reflectivity amplitude distributions, as a function of y, along the left

and right surfaces, respectively. From RL and RR, we can compute the following other useful

parameters as follows.
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1. Table 4-1: Expressions for Reflection and Transmission profiles for y >= yo

Parameter left boundary of Plate right boundary of Plate

Amplitude Reflectivity RL = 1 RR

Power Reflectivity rL = RL2  = 1 rR = RR 2

Power Transmissivity tL = 1 - rL =0 tR = 1 - rR

Amplitude Transmissivity TL= sqrt (tL) 0 TR = sqrt (tR)

The incident beam enters the glass slab through a small window on the lower left side. The win-

dow extends from the bottom of the glass slab, y=O to y = yo (yo = 50 pm) along the left boundary

of the slab (z = -t) and within the window region, RL is 0, and TL is 1. Beyond y=yo, RL=1, that

is, above the window, the left side is perfectly reflective. RR and TR, the reflectivity and transmis-

sivity profiles along the right side depend on the specific VIPA design.

Two different VIPA designs are simulated. The basic VIPA model uses a glass plate with uniform

reflectivity and transmissivity along the right boundary. In the improved VIPA model, the right

side of the plate has varying transmissivity and reflectivity profile. In the basic model, the right

side usually has high uniform reflectivity of rR>= 95% such that a small fraction of the incident

field (<=5% of the power) is transmitted through. The improved model is simulated for the case

where tR increases linearly from 0 to 1 over the range y=yo to the top of the plate.

Section 2.4 explains why the input to the glass plate can be approximated as a gaussian beam. Let

Ei. be the electric field distribution of the input gaussian beam, described along the y axis. Ein

enters the glass slab through the window, at an incident angle of 0 air in air. It undergoes refraction

at the air-glass boundary and is incident on the right boundary at an angle of Oglass- (= Oair/n). At

this point of incidence, (y= yo, z=0), the beam has its smallest spot size, with beamwaist, Wo. The
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field at this position is called ER1 . Since Ein enters at a nonzero angle of incidence, its phase is

linear and is given by exp (j(y- yo)kyglass), where kygiass is the y component of the propagation

constant in glass, k=27t/Xg, and Xg = V/n is the wavelength in glass. Equation 4.1.1 gives the com-

plete expression for ER1 , the gaussian beam distribution along y at the point of incidence.

ER1 = A e ) j - yo)kyglass

In most cases, AO=1 and yo=50pm. The beam waist, W0 , depends on the wavelength, incident

angle and plate thickness, t.

Now we will follow the beam as it reflects off the right boundary and travels through the length of

the slab and will examine its profile just before it hits each side of the plate. N is the pre-specified

number of reflections that the beam undergoes and is usually set to 200. The length of the glass

plate must be long enough to accommodate the field after the Nth reflection. As shown in figure 4-

1-2, ELi (i = 1,2,... N) designates the field profiles along the left side, just as they arrive at the left

boundary from the right side, before they have undergone reflection. Similarly, all fields on the

right side are labelled, ERi (i = 1,2,... N). These describe the profiles just before they are reflected

or transmitted from the right boundary of the plate. All angles of incidence and reflection, on

either side, are equal to Oglass-

Figure 4-1-2 Beam positions inside the glass plate
after successive reflections at each boundary.
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At this point, we assume that the entire field, Ein enters through the window and that no power is

lost due to the finite extent of the window. This assumption will be modified later, in section 4.2.

We will also ignore any power escaping through the window when the field hits the left side.

When ER1 hits the right boundary, most of its power is reflected and a small fraction is transmit-

ted. Thus when ER1 reflects off the right boundary, its amplitude is scaled by RR. The scaled ver-

sion of ER1, then propagates from the right to the left side through a distance equal to t*cos~glass,

to give EL1 . After ELI is perfectly reflected from the left boundary, it travels to the right at an

angle of Oglass, through an equal distance of t* cosOglass- in the opposite direction, to produce ER2 -

In this way, the beam undergoes repeated reflections and propagations as it travels through the

glass plate.

As discussed in section 2.4.4, Fourier optics is used to compute the transformations of the gauss-

ian beams as they propagate through glass. Let VLi be the Fourier transforms of ELi and VRi be

the Fourier transforms of ERS. for i= 1,2,3,.,N, respectively. When Propagating through glass of

refractive index n= 1.5 through a distance, t*cosOglass, in the positive z direction, the propagation

phase factor is given by PR as in equation 4.1.2. For propagation through the glass plate, through

an equal distance in the negative z direction, the propagation phase factor is given by PL, as in

equation 4.1.3. Using these we can obtain ERi from EL -1, and ELi from ERj., for i=1,2,...,N.

PR = eikgasst(1 -
4.1.2

ikgiass(--t) I - (ky _E)2
PL =e ( 2. kgiassj 4.1.3
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The simulation computes ELI from ER1 according to equation 4.1.4, and then uses EL1 to com-

pute ER2 as in equation 4.1.5. In this way it computes all profiles, ELI, ERj, for a specified number

of reflections, N.
ELI = F- {F(RR ER) -PL} 4.1.4

ER2 = F {F(RL ELI)-PR} 4.1.5

ELi = F {F(RR ER;)-PL} 4.1.6

ER, = F- {F(RL -EL_ 1 )-PR} 4.1.7

Having described the electric field profiles within the glass plate, I now compute the output pro-

files produced by the fields transmitted through the right side of the plate. Recall that the left

boundary is perfectly reflective (RL=1) and so no energy is transmitted through the left side. On

the right surface, the transmissivity is given by, tR = j sqrt(1-RR) = exp(it/2) * sqrt(1-RR). The

transmitted fields ETi are the transmitted portion of the fields ERj. Thus ETi is a scaled and phase

shifted form of ERj and is also gaussian.

Using the above method, the simulation obtains the transmitted fields ETj from the previously

computed profiles ERj, for i = 1,2,.... N, by equation 4.1.8. To obtain the total field transmitted

through the glass plate, ETtotal, we simply use superposition and sum over all transmitted profiles,

ETi, as shown in equation 4.1.9.

ET; = jTR-ER, 4.1.8

N

ETtotal = XTR 4.1.9
i=1

The total electric field, ETtotal, then passes through a spherical lens of focal length f and diameter

d, to give the far field pattern, VTtota. As described in section 2.4.5, passing a beam through a lens

from one focal plane to another, is equivalent to taking the Fourier transform of the beam. Thus

VTtotal is computed by taking the Fourier transform of the field ETtota-
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While the beams inside the slab are always gaussian, the output field profiles depend on the reflec-

tion/transmission profiles along the right boundary. For the basic VIPA design with uniform

transmissivity, ETtotal has exponentially declining magnitude and linear phase and consequently,

VTtotal is Lorentzian with symmetric amplitude and anti-symmetric phase. The modified VIPA

design with linear transmissivity leads to more symmetric output field patterns.

The variable, axispts, denotes the number of points used to describe the field profiles along y.

Generally axis-pts is set to 1024*8 for a plate of length 2050gm. This provides a resolution of -

0.25 pm, which is sufficient for most fields. However, to obtain a smoother distribution of VTtotal,

a zero padded Fourier transform of ETtotal was performed using 4 times as many points.

The far field pattern, VTtotai, of the VIPA output consists of multiple lobes. The receiving output

fiber is then aligned with the main lobe so that the energy of VTtotal can be coupled to the output

fiber.

4.2 Power Loss at Window of Glass Plate:

The window of the glass plate is of finite size and extends from 0 <= y <= yo. However, the tails of

the gaussian field entering through the window extend beyond the window limits. Hence some of

the incident power is lost upon entry through the window and the beam undergoes some distor-

tion. The extent of power lost depends on the width of the gaussian at the window and also on the

incident angle of the gaussian. Optimization of the plate thickness, beamwaist size and incident

angle to minimize power loss at the window is discussed in a later section. Here I describe how

the simulation accounts for this power loss.
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Though the E field incident upon the left boundary is an ideal gaussian, after passing through the

window, the field incident upon the right boundary, called ER1 , is not a true gaussian, but one that

has its tails cut off abruptly. Rather than starting with a deformed gaussian, the simulation uses an

indirect method to obtain an accurate model of the field at ER1 . This is described below using fig-

ure 4-2-1. We start with an ideal gaussian, ERideal, with linear phase, at the point of incidence

(z=O and y=y 0 ), corresponding to ER1 described earlier, given by the expression in equation 4.2.1.

Figure 4-2-1 (a) shows she magnitude and phase profile of ERideal-

ERideal = ERI = Age ' ))e "(y-y)kygiass 4.2.1

ELideal = F 1 {F{ERideall -PL 4.2.2

ELmod = ELideal e (1 -RL) 4.2.3

ERmod =F 1 {F{ELmod} -PR} 4.2.4

Magnitude of E field Phase of E field
1 100

(a)
C0.5 - -50-

0 2 4 6 3.5 4 4.5 5 5.5 6 6.5

1 100 x 1iU

.5

_. (b) 50

as 0 -0
O 2 4 6 1 2 3 4 5 6

1 X VU- 100 X I ~

E
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00
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a
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LU 0.5 (d) -50 -
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Figure 4-2-1 Illustration of power loss at window. (a) magnitude and phase of ideal beam at point of incidence.
(b) profiles of ideal beam at window, on left boundary. (c) profiles at window with truncated tails due to window
(d) truncated beam at point of incidence that represents beam after power loss at window.
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Now using, PL (propagation phase factor from right to left), we retrace the path followed by the

incident beam, to obtain, ELideal, the ideal gaussian at the left boundary, just after it has entered

the window with no power loss. Using the previous method of propagation through glass, ELideal

is computed as shown in equation 4.2.2. and appears in figure 4-2-1 (b).

Now ELideal is multiplied by the inverse reflectivity profile, RLiny, of the left boundary (RL).

Thus, RLinv = 1 over the region of the window, O<y<50gm, and RLinv = 0, y>50pm. This removes

the section of the incoming gaussian that does not pass through the window. The new modified

profile, in the same position as ELideal, is called ELmod, and ELmod is given by equation 4.2.3 and

is shown in figure 4-2-1(c). ELmod is an accurate version of the gaussian just after it enters

through the window. ELmod then propagates to the right, at an angle of Oglass, through a distance

of t*cosOglass to give, ERmod, as in equation 4.2.4. ERmod appears as a very slightly distorted ver-

sion of ERideal in figure 4-2-1(d). ER1 described previously is set equal to ERmod and the simula-

tion then computes the rest of the profiles as the beam propagates through the length of the glass

plate.

4.3 Optimizing Beam Waist Size, Window Size, and Incident Angle

The presence of a finite window leads to power loss upon entry of the beam through the window

and also when the beams impinge on the left surface. Power loss at the window depends on the

beam width of the gaussian at the window relative to the size of the window and also on the angle

of incidence of the beam.
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We would like to make the incident angle as small as possible. To maximize the energy entering

the window, it is desirable to minimize the beam width at the window. In general, the beam width

W(z) of a gaussian beam at a certain distance, z, from the beam waist, W0 , is given by equation

4.3.1. The distance of the window from the point of incidence is t*cos~glass, which, for small val-

ues of Oglass, can be approximated to t, the thickness of the glass plate. Thus the width of the gaus-

sian at the window, Wwindow, is given by eqn 4.3.2:

W(z) = W 1+ 4.3.1

Wwindow = w0  1 +2t where z0 = ~ 4.3.2

- 4.3.3

Figure 4-3-1 shows how Wwindow varies with W. for t= 100 m, =1550nm, and n=1.5. For these

parameters, the graph shows that Wwindow achieves its minimum value for W0=5.64pm. In gen-

eral, we can obtain an expression for W0 in terms of wavelength X, and thickness t, that minimizes

W(z). This is done by minimizing the expression for W(z) in eqn 4.3.1 with respect to WO. In

other words, the derivative of W(z) w.r.t. W0 is set to zero and is solved for WO. The result is the

optimal beam waist size, Wo-opt, for a certain wavelength and plate thickness, as given in equation

4.3.2. Thus, for a given wavelength in glass, Xglass, and a certain plate thickness, t, the above

expression gives the beam waist, Wo-opt, that minimizes the gaussian beam width at the window.

Figure 4-3-1 Graph of beam width at
window, Wwindow, versus beam waist,
We for t=10Om, X = 1550nm. -
Wwindow is minimum for W,=5.64gm
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4.4 Overall Efficiency of VIPA System

The collimated light from the glass plate is focused onto output fibers. The overall efficiency of

the system is measured as the fraction of the input power that is successfully transferred to the

output fibers. The three main sources of loss in the system are:

- power lost at the input window of the glass plate

- power lost to side lobes of the output field

- imperfect coupling of main lobe of output field to the output fiber.

The simulation can compute these losses and the relevant VIPA parameters can be adjusted to

minimize the total loss and hence maximize the power efficiency of the system. Total efficiency is

the product of three factors as follows: Efficiency = W * M * C where

W = 1 - power lost at window,

M = fraction of energy of output field in main lobe

C = coupling efficiency of main lobe to output fiber mode.

Optimizing parameters to maximize the power efficiency is an iterative process, as there are trade-

offs among power losses at the different stages. For example decreasing the incident angle,

decreases power lost at window but increases power lost to side lobes of the output field. Thus

rather than maximizing W, M, and C independently, parameters are chosen to maximize the prod-

uct of W, M, and C so as to achieve highest overall efficiency.

4.4.1 Power Loss at Window

To compute the power loss at the window, for a given wavelength, plate thickness, refractive

index, and incident angle, we first compute the optimal beam waist size by the method described
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above. According to section 4.3, the optimum beam waist at the point of incidence is given by eqn

4.3.2, and the corresponding optimum beam width at the window is given by eqn 4.3.3. Wwinow

is the beam width of the amplitude profile. The power distribution is the square of the amplitude

distribution and the width of the power profile, Wpower is given by Wwindow/ sqrt(2). The fraction

of this power profile cut off by the window is computed using the error function, which is per-

formed in matlab using the 'erf' command. The distance between the power profile center and the

window edge is an offset given by eqn 4.4. 1a. The matlab function, erf, then uses this offset to

compute the power loss in percent according to eqn 4.4. lb [7].

offset = 100 - 10-6 - tan(n -0) 4.4. a

W = (1001 -(- erf( "ffe' n 4.4.1b
power

Rather than setting the incident angle and computing the resultant window power loss (1-W), as

discussed above, the simulation sets the loss at the window and computes the corresponding inci-

dent angle, for a given plate thickness, center wavelength, and refractive index. The optimal beam

waist is computed as in section 4.3 and the matlab command, 'erfinv' is used, as in equation

4.4. 1c, to perform the inverse error function computation that provides the offset corresponding to

the desired window power loss. The incident angle in air is then calculated from this offset value

by eqn 4.4.1d.
offset = erfinv(I-W Wpower .2 4.4.1c

Oair = atan( offset 6 180 4.4.1d
(100 -10 ) TC

4.4.2 Power Loss to Side Lobes

The far field pattern VTtotal of the VIPA output consists of multiple lobes. As only the main lobe

is coupled to the output fiber, it is important to minimize the energy of the side lobes. The simula-
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tion computes M, which is the ratio of energy in the mainlobe to the energy of the entire far field

pattern. The main lobe is identified by seeking the position of maximum value of the power pro-

file using the matlab command 'max' and then selecting a proper range of points from the power

profile around this maximum. Discrete integration is used to compute M, according to equation

4.4. le, where Aky is the interval between points of the ky vector and axis-pts is the number

of points used to define field and ky vectors.
max+ 100

Aky - VTtotal

M = max-100 4.4.1e
axispts

Aky - VTtotal

Energy distribution among the lobes is affected primarily by the incident angle. Decreasing the

angle of incidence reduces the power lost to side lobes but increases the power lost at the window

and thus there is a trade-off between W and M.

4.4.3 Coupling Efficiency:

It is important to evaluate the coupling efficiency of the main lobe of the far field pattern to the

gaussian mode of the output fiber. The beam profile along x, which is the direction perpendicular

to the y-z plane of our 2-D model, is assumed to be gaussian. When the output light is focused

onto a gaussian mode using a lens, the coupling efficiency is calculated from the square of the

overlap integral between the focused beam and the gaussian mode of the output fiber.

To maximize the power transferred from the main lobe of the field to the output fiber, the position

of the fiber along y and its radius must be adjusted. This is equivalent to maximizing the coupling

efficiency between the main lobe of the field, VTtotal, and a gaussian mode by adjusting the peak,

amplitude position and width of the gaussian mode.
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To illustrate how this is done in the simulation, let Ev be the main lobe of the far field output,

VTtotal, and let Ef be the gaussian mode of the fiber. Equation 4.4.3a shows the general form of

Ef.
(ky - kyf)

Ef = Af e I 4.4.3a

The gaussian mode parameters, Af (peak magnitude), kyf (position of peak), and Wf (width of th e

fiber mode) must be chosen,by a process of iteration and inspection, to maximize the coupling

efficiency between Ev and Ef, . Starting with an initial approximation of Ef, I first try to match the

magnitude profiles of Ev and Ef as best as possible. Af is set equal to the peak of the magnitude

profile of Ev, and kyf is set equal to the position of this peak. The matlab command, max, gives the

peak value of the magnitude of Ev and its corresponding Ky value. However, the discrete nature of

Ev limits accuracy, as the values given by max may not be at the true peak of the continuous

curve. As E, is not a true gaussian, there is no straight forward way to calculate Wf and so it is

optimized by inspection and iteration until the best overlap is obtained between E, and Ef.

The presence of a linear or other non uniform phase in Ev leads to low coupling efficiency. A lin-

ear phase term can be removed by changing the position of the focusing lens so that a phase fac-

tor, exp(j *PPL* ky), cancels the linear phase of Ev, exp(j *PPv* ky).The slope of the linear phase

of EV, PPv, is estimated from the phase profile of Ev. PPL is then set equal to -PPv. The passage of

Ev through a lens of phase factor (PPl = -PPv) is performed numerically by equation 4.4.3 b and c.

If PPl = -PPv exactly, then Ev'= I Ev I which has a uniform phase
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Before Lens -= EI - PPv -ky) 4.4.3b

After Lens = Ei- PPv -ky) (i -PPI -ky) 4.4.3c

Now we calculate the coupling efficiency between Ev' (Ey after phase adjusting lens) and Ef, the

gaussian fiber mode constructed previously. Ev' and Ef are both normalized to give Ej' and ER

respectively, and these are computed according to equations 4.4.3d and e.

- V EVE _ = 12dk - -;-V1 4.4.3d

E [Ev vAk 4E
12|E|dky A ky |-Ef - Ef

J |E g|dky Aky* .XIEf| 2  44

The coupling efficiency, C, is then given by equation 4.4.3f. As Ef is purely real, conj(EI) = E1 and

C can be simplified as shown in 4.4.3f.

C = |f(E. (E)*)dky2 = jAky- X(E'- 2 4.4.3

4.5 Multi-wavelength input

The pievious sections describe the numerical procedures used to calculate the output field pro-

duced by one particular wavelength. This model is easily extended to the case of input containing

multiple wavelengths. For multi-wavelength input, the simulation uses the same mathematical

formulations to compute the output produced by each wavelength. Thus using an input of ten dif-

ferent wavelengths is equivalent to running the above simulation separately for each of the ten

wavelengths. Instead of doing this, the simulation stores the parameters and outputs of each wave-

length in separate arrays, so that the output of the ten wavelengths can be viewed together so as to

emulate the parallel demultiplexing feature of the VIPA system. If multiple wavelengths are used,

a single wavelength is specified, and this is used to perform efficiency calculations. Usually,

wavelengths are centered around 1550nm and the 1550nm wavelength input is used to perform

efficiency calculations.
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Chapter 5 Simulation Results

This chapter presents the simulation results of the VIPA demultiplexing system. It compares the

performance of the two main VIPA designs: the basic design using a glass plate with uniform

transmissivity and the improved design whose glass plate has a coating of linearly varying trans-

missivity. Sections 5.1 and 5.2 present results of single wavelength input for the two VIPA designs

respectively. In 5.3, I discuss features of the output produced by multi-wavelength input, and how

changes in VIPA parameters effect field distributions and system efficiency.

5.1 VIPA with Uniform Transmissivity

This section presents the simulation results of the basic VIPA demultiplexer that uses a glass plate

with uniform reflectivity and transmissivity along its right boundary. Results are presented for the

case of power reflectivity, rR, equal to 95%, and power transmissivity, tR, equal to 5%.

5.1.1 Field Profiles Inside Glass Plate

Figure 5-1 shows the electric field profiles of the beam at various positions along the right side of

the glass plate. All fields were produced by running the simulation for a single wavelength input

of 1550nm. For a plate of thickness of 100 gm and window power loss of 1%, the corresponding

optimized parameters are: beam waist of 5.7 im, and incident angle 7.7 degrees. The plots illus-

trate the beam at six positions ER 1, ER2, ER3, ER 5, ERIO, ER15 , along the right side of the glass

plate, as described in section 4.1
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Fig 5-1 Magnitude and phase profiles of E fields of beam along y, in glass plate, just before reflection at each
boundary. (a) profile of beam at point of incidence (ER1 ); (b)profile of beam at (ER2 );
(c)profile of beam at (ER 3 ); (d)profile of beam at (ER 5 );
(e)profile of beam at (ERio); (f)profile of beam at (ER1 5 )-

In figure 5-1, The plots in the left column show the field magnitudes of the beams along y, at each

position. The corresponding phase profiles appear in the right column. The first row describes

ER 1, which is the beam at its point of incidence on the right side of the plate. As expected, the

beam has a gaussian magnitude profile, with unity peak occurring at y=50sm and has a one sided

beam width of ~5.7 mi. Its phase is purely linear due a nonzero angle of incidence. ER2 describes

the beam after one round trip through the plate, just before its second reflection on the right

boundary. From the plots in the second row, we see that ER2 has a lower magnitude and greater

beam width than ER1 and also that ER2 has a parabolic phase component. At ER3, the beam is

just about to undergo its third reflection at the right boundary. The beam at ER3 is wider and has a

lower peak than that of ER2. Its parabolic phase has a greater curvature as it has travelled through

a greater distance of glass. ER5 , ERio, and ER 15 describe the beam immediately before its fifth,
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tenth and fifteenth reflection, respectively, on the right boundary. These graphs illustrate how the

beam progressively spreads and diminishes in magnitude and how its phase curvature increases as

it travels through the glass plate.

5.1.2 Output Field Profiles

For the basic model with uniform transmissivity, the output field distribution can be derived ana-

lytically as follows. The decay rate in one round trip is the square root of the reflectivity, which is

-0.975 when the constant reflectivity is 95%. Under the conditions that the reflectivity has no

phase and does not vary in the range of the incident angle, the beam profiles in all the light paths

are the same because they are virtual images. Assuming that the field magnitude in a beam is con-

stant around the output peak direction, the output field traveling in the direction of angle A $, is

proportional to 1/[ 1- exp(-a + jAokd)], where A$ is the small deviation in radians from the Bragg

angle; exp(-a) is the decay rate in the VIPA; k is the propagation constant, 2n/X; and X is wave-

length. The approximation is valid for small a and small k*d*A$. Thus the far field pattern of the

output light is Lorentzian

As described in section 4., the field just outside the glass plate, Ttotal, is sum of the fields trans-

mitted through the plate every time the beam hits the right boundary. According to the above anal-

ysis, Ttotal should decay exponentially along y. Figure 5-2, is a plot of the magnitude and phase

of the output field, Ttotal, along y, just outside the glass plate, for a single wavelength input of

1550nm and the parameters specified in section 5.1.1. This curve is very unsmooth as it contains

components of the output light travelling in all directions. A modified version of this output field

is described later in fig 5-3.
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Figure 5-2 Magnitude (left) and phase(right) profiles of total output field Ttotal, along y, just outside glass plate.
Note linear phase and exponentially decaying magnitude.

The output from the glass plate, Ttotal, passes through a spherical lens to produce focused beams,

VTtotal, that can be coupled to output fibers. VTtotal is computed by taking the Fourier transform

of Ttotal, as discussed in section 4. Ttotal has an exponential profile and thus its Fourier trans-

form, VTtotal, is Lorentzian. Figure 5-3 shows the focused pattern, VTtotal, along the spatial

fequency y component, produced by the same input and glass plate parameters as described in

5.1.1. A zero padded Fourier transform of Ttotal is computed to obtain a smoother curve.

This output field contains four distinct lobes, which have been labelled as 1,2,3,4, from low to

high ky values. The lobes are produced by the different components of light in Ttotal travelling in

different directions. Each of these lobes has a Lorentzian field distribution. The main lobe is iden-

tified as the one with highest maximum amplitude and in figure 5-3, lobe 2 is the mainlobe. The

mainlobe peaks at ky -7.6 *1OA5 rad/sec. The mainlobe is produced by the component of Ttotal

2 .. . .. .

Figure 5-3 Magnitude profile of the focused pattern VTtotal , as a function of spatial frequency along y.
Lobes are Lorentzian and are numbered 1,2,3,4. Lobe 2 is the main lobe while the rest are side lobes.
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that travels straight through, at an angle closest to the incident angle. This output field has many

interesting features.

The envelope curve, formed by the peakvalues of the individual lobes, is itself a gaussian, which

is expected as the input field is a gaussian. This fact becomes more obvious in fig 5-2-1-2, where

we observe the output of numerous wavelengths together.

In figure 5-3, we see that the distance between lobes 1 and 2 is greater than that between lobes 2

and 3, which is in turn greater than that between lobes 3 and 4. Thus the spacing between lobes

decreases as ky increases and this is true for all wavelengths and incident angles. These and other

features will be described further when the multi wavelength output is presented in section 5-3.
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Figure 5-4 (a) magnitude profile of the Lorentzian shaped mainlobe, VUmain. (b) phase of Lorentzian
mainlobe,VU main. (c) magnitude of U main, the IDFT of VUmain, which represents the component of

the output field travelling in direction closest to incident angle. (d) phase of U-main.
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Figures 5-4 a and b, respectively show the magnitude and phase profiles of the mainlobe,

VUmain (where U denotes uniform transmissivity), of the far field pattern,VTtotal, produced by

VIPA with uniform transmissivity. VU-main has a Lorentzian field distribution which is evident

from its symmetric magnitude profile having broad tails and a sharp peak, and its asymmetric

phase profile.

By taking the inverse Fourier transform of VUmain, we can obtain Umain,the component of

Ttotal travelling in the direction of the incident light, that contains most of the power. Figures 5-4

c and d, respectively show the magnitude and phase plots of U-main, which is the inverse Fourier

transform of VUmain. Umain is much smoother than Ttotal and is clearly an exponential field

with linear phase. This profile corresponds to the expected output field distribution discussed in

the beginning of section 5.1.2.

5.1.3 Efficiency of VIPA with Uniform Transmissivity

Overall efficiency of the VIPA system is given by: Efficiency = W * M * C , where

W = 1 - power lost through window,

M = fraction of energy of output field in main lobe

C = coupling efficiency of main lobe to the output fiber mode.

Coupling Efficiency of VUmain to the output fiber depends on the distribution of the individual

lobes of the far field output pattern. For the multichannel system, C also depends on the extent of

overlap of adjacent lobes of different wavelengths and thus on the separation of the lobes or the

angular dispersion. For simulations using an input of ten wavelengths in the range 1453.2- 1546

43



nm, with 0.8nm spacing; plate thicknesses near 100gm; and incident angle is in the range 5 -10

degrees, channel overlap was found to be negligible. Thus we consider the phase and amplitude

shapes of the mainlobe of the far field output to be the main determinant of coupling efficiency. C

is calculated by the method described in section 4.4.3. For this case of uniform transmissivity, the

far field pattern is Lorentzian, as shown in figure 5-4 a and b. The maximum coupling efficiency

attained was about 80%. Coupling efficiency did not vary significantly as plate thickness or inci-

dent angle were changed by a small amount.

M depends on the energy distribution among lobes of the output field and is highly dependent on

the incident angle. Using a plate thickness of 100m and a central wavelength lobe of 1550nm,

an incident angle of 7.8 degrees gave M= 55%, while a smaller incident angle of 4.2 degrees

improved sidelobe suppression and gave M= 87%.

The percentage of power lost at the window (1-W) is calculated as described in section 4.2 using

the center wavelength of 1550nm. W depends on the wavelength, plate thickness and on the inci-

dent angle. The simulation actually takes the desired W and t as input parameters and computes

the corresponding incident angle which is then used to generate the output.

Values of W, M, and C were computed for different incident angles, while the input wavelength

set and plate thickness (t=100gm) were kept constant. An incident angle of 7.8 degrees led to an

overall efficiency of 41%. Maximum overall efficiency of ~5 1% was achieved when the incident

angle was 4.2 degrees.
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5.2 VIPA with Linearly Varying Transmissivity

This section describes the results of the a VIPA simulation using a glass plate with a linear trans-
1

missivity profile along the right plate boundary. As illustrated by figure 5-2-la, the transmission

amplitude, TR is 0 from y=O m to the point of incidence, y=50gm, and increases linearly to 1

from y =50gm to y=2050gm. Consequently, the reflectivity amplitude profile along this boundary

is elliptic, as shown in figure 5-2-lb, using the relation in table 1 in chapter 4.

inear ~T7ransmission Amplitude Feflection Amplitude

0.0- 0.8-

0.6- 0.6-

a b
0.4 0.4

0.2 0 -. 2

0 L0
0 0.5 1 5 2 O 5 1 1.5 2

V in M -0 v inmr _

Figure 5-2-1 (a) Linear transmission amplitude along right boundary of glass plate (also y). (b) Reflection
amplitude profile, along y, for linear transmissivity case.

Section 5.1.2 described how the output fields can be computed analytically for the case of uniform

transmissivity. However, the same analysis can not easily be applied to this case and thus the out-

put for the case of linear transmissivity had to be obtained using numerical analysis.

5.2.1 Output Field Profiles

I

lj=OO

Figure 5-2-1-1 Far field output pattern using VIPA with linear transmissivity. Lobes are more symmetric than
Lorentzian profiles and have linear phase. Lobes are in same position as in uniform transmissivity case.
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Figure 5-2-1-1 shows the far field output pattern of a VIPA design using linear transmissivity for a

single wavelength input of 1550nm. As the position of the lobes depends only on the plate thick-

ness and wavelength, lobes of figure 5-2-1-1 are at the same position of the output lobes of the

VIPA using uniform transmissivity, shown in figure 5-3. However the field distribution of the indi-

vidual lobes is very different for the two VIPA designs.
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Figure 5-2-1-2 (a) magnitude of VL_main, main lobe of farfield output using linear transmissivity (b) phase of
VLmain. This is approximatley linear (c) magnitude of IDFT of VLmain (d) phase of IDFT of VLmain

Figure 5-2-1-2 a and b show the amplitude and phase profiles, respectively, of the main lobe,

VL_main ( where L denotes linear transmissivity), of the far field output of figure 5-2-1-1. Com-

pared to the Lorentzian distribution of the uniform transmissivity VIPA output (section 5.1.2), the

field distribution for the case of linear transmissivity has a wider lobe and lower tails, and more

closely resembles a gaussian profile. As seen in figure 5-2-1-2b, the phase of VLmain is approx-

imately linear, unlike the asymmetric phase profile of VUmain.
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The inverse Fourier transform of VL_main gives us the relevant component of the output pattern

before the lens. In the previous case, using uniform transmissivity, the output field was exponen-

tial. In this case, the output field amplitude is symmetric and bell shaped, as in figure 5-2-1-2c and

the phase is as shown in figure 5-2-1-2d.

5.2.2 Efficiency of VIPA with Linear Transmissivity

The symmetric output of the VIPA with linear transmissivity leads to much higher coupling effi-

ciencies than that of the Lorentzian output produced by a VIPA with uniform transmissivity. In

this case also, C, did not vary when t and incident angle were varied by a small amount. It was

possible to adjust the position and radius of the output fiber so that its gaussian mode very closely

matched the symmetric amplitude profile of the output lobe. The linear phase of the output was

easily corrected by placing a wedge before the collecting fiber and this increased the coupling

efficiency considerably. VIPA with linear transmissivity had coupling efficiencies as high as 99%,

which is a substantial improvement from the 80% coupling efficiency achieved by the uniform

transmissivity system.

Values of M achieved by this system were approximately equal to those obtained by the VIPA

system with uniform transmissivity. Here also, M= 55% for an incident angle of 7.8 degrees and

increased to M=88% for a lower incident angle of 4.2 degrees. Power loss at the window exhibits

the same variation with t, wavelength and incident angle as in the case of VIPA with uniform

transmissivity. Compared to the VIPA with uniform transmissivity which had overall efficiencies

of around 53%, this model achieves considerably higher coupling efficiency and thus has a higher

overall efficiency of around 81%.
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5.3 Far Field Output Pattern for Multi-Wavelength Input

Figure 5-3-1 shows the far field output patterns obtained for the case of two different incident

angles. with an input of 10 wavelengths in the range 1553.2 nm to 1546nm, at 0.8nm spacing. In

figure 5-3-la, the incident angle is 11.5 degrees, corresponding to a window power loss of 1%,

while in figure 5-3-1b, a incident angle, 8.2 degrees, leads to higher power loss of 5%, at the win-

dow. All other parameters are the same as those specified in section 5.1.1 for both figures.

These far field output patterns have many interesting features. In both cases, the envelope curve,

formed by the peak values of the individual lobes, is itself a gaussian, which is expected as the

input field is a gaussian. Also, the spacing between consecutive lobes decreases as ky increases

and this is true for all wavelengths and incident angles
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Figure 5-3-1 Far field output of ten channels for two different incident angles (a)incident angle is 11.5 degrees and
M= 55% (b) incident angle is 8.2 degrees and M= 88%. Smaller incident angle leads to better sidelobe suppression

The positions of the focused lobes in the far field pattern are determined by the wavelength and

the thickness of the plate. For the two cases in figure 5-3-1, the plate thickness was kept constant

at 100pm and the same set of wavelengths was used. Comparison of figures 5-3-1 a and b shows
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that changing the angle of incidence does not affect the positions of the lobes; it only changes the

distribution of energy among the lobes. As the incident angle decreases, the intensity of lobes at

lower ky increases. This change in the energy distribution also means that reducing the incident

angle causes the gaussian envelope to shift to lower ky. The fact that the lobes are spaced further

apart at low ky than at high ky values allows the loss of energy to side lobes to be reduced by

decreasing the angle of incidence.

In Figure 5-3-la, the position of the main lobe of the central 1550 nm wavelength coincides with

the envelope curve's peak. However, when the incident angle is reduced to 8.2 degrees (5% loss at

window, figure 5-3-lb) the 1550nm main lobe is no longer at the center of the mainlobe; rather the

lobe of the 1546.8nm output is at the center of the envelope. Section 5.4 discusses how the plate

thickness can be adjusted to place the mainlobe of 1550nm output at the envelope's peak, for a

particular incident angle.

5.4 Effects of Varying the Plate Thickness

The plate thickness t determines the positions of the virtual images and thus varying t can affect

the focused output pattern considerably, even while other parameters such as incident angle and

wavelength values remain constant. The plate thickness t, determines the spectral range of the out-

put. The virtual images in the phased array are spaced at 2t along the normal to the right boundary

of the plate. Reducing the plate thickness reduces the spacing of the virtual array elements. This

increases the diffraction angle and thus increases the spectral efficiency of the system. A higher

spectral efficiency means that the focused output can accommodate a greater range of wave-
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lengths. This might allow more wavelength channels to be demultiplexed, thus increasing the

capacity of the fiber optic system.
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Figure 5-4-iFar field output of ten channels for different plate thicknesses, t. (a) t=100 gm, spectral range-8nm
(b) t= 75jim, spectral range-l12nm (c) t= 50 gim, spectral range- l6nm. Reducing platethickness increases free

spectral range of VIPA system. The dotted line in each plot corresponds to the 1553.2 nm lobes.

Figure 5-4-1 illustrates how reducing plate thickness increases spectral efficiency. Figure 5-4-ea is

the magnitude of the far field output pattern when the plate thickness is 100gm; 5-4-lb corre-

sponds to a reduced plate thickness of 75gm; and 5-4-c corresponds to an even maller plate

thickness of 50 gin. In each case, the input consisted of 10 wavelengths within 1553.2 - 1546 nm

at.8nm spacing and the incident angle was 8.2 degrees. In each figure, the lobe traced by a dotted

line and labelled with a '1' corresponds to a focused lobe of 1553.2 nm wavelength. Spacing

between two consecutive lobes of a particular wavelength gives the spectral range. Comparing the

lobe positions in the three figure shows that t=50gm produces the highest spectral range. The

spectral range of t=75gm is smaller and that of t=100 gm is the smallest.
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Though a plate thickness of 50gm yields the highest spectral range, it also produced the greatest

crosstalk between adjacent channels. Thus in most cases, the plate thickness value of about

100gm is preferred, which allows at most 10 wavelength channels at 0.8nm spacing.

Figure 5-3-1 in section 5.3 discussed how varying the incident angle shifts the envelope curve and

changes the power distribution among output lobes for a fixed plate thickness of 100 m. In partic

ular, reducing the incident angle reduces the power lost to side lobes and increases power lost at

the window. As the incident angle is changed, the main lobe of the 1550nm output may not always

coincide with the center of the envelope, leading to suboptimal side lobe suppression. This section

shows how changing the plate thickness by a very small extent can be used to place the 1550nm

main lobe at the peak position of the envelope. Figure 5-4-2 examines the far field patterns for the

case of three different incident angles and in each case the plate thickness, t, is adjusted so that the

1550nm main lobe is positioned at the peak of the envelope curve. Here also, the input consists of

10 wavelengths in the range 1553.2nm-1546nm, at.8nm spacing. The solid line traces the output

lobes of the central 1550nm wavelength while the dashed line depicts output lobes of all the other

wavelengths.

Figure 5-4-2a shows the far field pattern for an incident angle of 11.5 degrees corresponding to

1% loss at the window. In this case, with a plate thickness t=100gm, the 1550 nm main lobe is at

the peak position of the envelope curve and the fraction of energy in the main lobe for the 1550nm

output is M-56%. In Figure 5-6b, the output is for a smaller incident angle of 9.4 degrees and 3%

window loss. The plate thickness had to be reduced to t=99.75 gm to bring the 1550nm main lobe

back to the peak position of the envelope. In this case M - 75%. An even smaller incident angle of
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8.2 degrees leads to the profile of Figure 5-6c. This high initial power loss of 5% does not distort

the output fields and t is reduced to 99.7 m to place the 1550 nm main lobe at the envelope's

peak. In this case, M increases even further to M-86%.

Magnitude of FarField Output, for different incident angles and t
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Figure 5-4-2 Adjusting t to keep 1550nm mainlobe at envelope's peak position. (a) t= 100gm and incident
angle= 11.50 (b) t= 99.75 gm and incident angle = 9.50 (c) t= 99.7gm and incident angle= 8.40

Table 5-4 tabulates the parameters that correspond to the three output profiles of figure 5-4-2..

1. Table 5-4: Parameters of different incident angles and plate thicknesses

Incident Adjusted W M Angular
Figure with Angle Plate Power fraction of W*M Dispersion

output profile Thickness through power in
(degrees) (i)Wnomanbe(degree!/nm)

([tm) Window mainlobe

5_4_2 (a) 11.5 100 99% 56% 55.4% 0.008

5_4_2 (b) 9.4 99.75 97% 75% 72.8% 0.009

5_4_2 (c) 8.2 99.70 95% 86% 81.7% 0.0096

Comparison of the 1550nm lobe sizes for the three plate thickness values of figure 5-4-2 shows

that reducing the incident angle shifts the energy to lobes at lower spatial frequencies, leading to
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considerably better sidelobe suppression. Varying the plate thickness by a very small extent

caused the lobe positions to change. Namely, reducing t caused the output lobes to shift to lower

spatial frequencies. As lobe spacing is higher at lower values of ky, reducing the plate thickness in

this way has the added benefit of increasing angular dispersion. The angular dispersion for each

case, measured using the 1550nm and 1548.2 nm main lobes, is listed in table 5-4. Thus we see

that reducing the incident angle and the plate thickness increases the angular dispersion.

The three cases differ considerably in power efficiency. Section 5.1.3 measured efficiency as the

product of W, M, and coupling efficiency C. As all three cases use the VIPA design having linear

transmissivity, the coupling efficiency, C, of the lobes is approximately the same and so efficiency

is directly related to W*M. Table 5-4 shows values of W, M and the product of W and M for the

three cases. While reducing the incident angle increases window loss, it improves sidelobe sup-

pression more that proportionately. Thus the lowest incident angle 8.2 degrees and plate thickness

99.7gm, has the highest W*M product and thus the best power efficiency. This case also has the

highest angular dispersion. Multiplying this optimized W*M product with the coupling efficiency

of 99% of the linear transmissivity system gives the maximum overall VIPA efficiency of 81%.

5.5 Angular Dispersion

Angular dispersion is a measure of the angular separation of adjacent, demultiplexed channels

with respect to the difference in wavelength of the channels. Figure 5-5-1, shows the relation

between output angle, 0 out, and wavelength, k, for the VIPA demultiplexer. The output angle-

wavelength relations for the two VIPA models: uniform transmissivity and linear transmissivity,

were computed independently and were found to be approximately equal. The input consists of
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ten wavelengths in the range 1553.2 - 1546 nm at 0.8 nm channel spacing, and 8.2 degree incident

angle.

Figure 5-5-1 Relation between output angle and wavelength

Plot of output angle as a function
of wavelength for VIPA with
uniform and linear transmissivity. right side l es

main lobes

left side lobes
1.546 1.547 1.548 1.549W vent 1.551 1.552 1 .553

Wavelen1gth.0-

The output angle, Oout, of each lobe was computed from the far-field output distribution, along ky

(spatial frequency), shown in figure 5-4-2a, and using the relation, 0out= sin-1(ky-peak / k), where

k= 27/, and ky-peak corresponds to the peak of the lobe of X. As seen in figure 5-4-2a, there are

three sets of output lobes. The center line of figure 5-5-1 traces the Oout-X relation for the main

lobes; the lower line is for the left (lower ky) side lobes; and the upper line is for the right ( higher

ky) side lobes. Angular dispersion is given by Id0outl / I dXI. Figure 5-5-1 shows that as X changes,

0out changes sensitively. The curve is not linear and the angular dispersion is larger at smaller 0out-

The angular dispersion varies from 0.36 - 1.6 degrees/nm as a function of Oout , not X.

5.6 Cross-talk from Neighboring Channels

The coupling efficiency of the 1550nm output mainlobe to a receiving fiber, fiber_1550, with opti-

mal position and radius, is 99.35% for VIPA with linear transmissivity and is 80% for VIPA with

uniform transmissivity. The crosstalk of this fiber with neighboring lobes is obtained by comput-

ing the coupling efficiency of fiber_1550 to the lobes of wavelengths near 1550nm.
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Figure 5-6-1 Crosstalk characteristic for uniform transmissivity (left) and linear transmissiity (right). Plot of
coupling efficiency (dB) of receiving fiber optimized to 1550nm mainlobe to other wavelength lobes.

Figure 5-6-1 a and b show the crosstalk behavior for the uniform and linear transmissivity(tR)

systems respectively. Each case plots the coupling efficiency of the gaussian mode of fiber_1550

to the mainlobes of wavelengths in the range 1549 nm- 1550.8 nm at different wavelength inter-

vals. Within the range 1550.175nm - 1549.775nm, coupling efficiency values were obtained for

smaller wavelength intervals of 0.025 nm. For the uniform transmissivity system, figure 5-6-la

shows that the crosstalk decreases rapidly for lobes within 0.2 nm of 1550nm but then decreases

slowly beyond that. For the linear transmissivity system, the coupling efficiency falls slowly for

lobes within 0.2 nm of 1550nm and then decreases rapidly beyond that. For channels within 0.3

nm of the 1550nm lobe, crosstalk is higher for the linear transmissivity system. For channels fur-

ther than 0.3nm, cross talk is much lower for the linear tR case. Crosstalk with the neighboring

channel which is 0.8nm apart is much lower for the case of linear transmissivity

(- 65 dB) that it is for the case of uniform transmissivity (~ - 30 dB). This relative crosstalk

behavior of the two systems is expected because the Lorentzian ( FF-lobe using uniform tR). has a

narrow peak and wide tails whereas the FF-lobe of the linear tR system has a broader peak and

narrower tails.
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5.7 Summary,

The simulated profiles of the field distributions inside the glass plate demonstrate that the gauss-

ian beam progressively broadens and diminishes in magnitude and that its parabolic phase curva-

ture increases as the beam travels through the glass plate. When the VIPA glass plate has uniform

transmissivity (-5%), the output field is exponential and the far field lobes are Lorentzian. A glass

plate with a linear transmissivity profile produces a more symmetric output pattern and a far field

distribution that is symmetric with linear phase. The output of a linear transmissivity system has a

much higher coupling efficiency (-99%) than that of the uniform transmissivity system (-80%).

The linear transmissivity system also has much lower channel crosstalk than the uniform trans-

missivity system and thus achieves better channel isolation

The far field pattern of each channel consists of a main lobe and multiple sidelobes. Reducing the

incident angle improves sidelobe suppression but worsens power loss at the window. Maximum

overall efficiency of 81% is achieved by a linear transmissivity system, using the optimized beam

waist and an incident angle of 8.2 degrees.

Simulation results using different glass plate thicknesses showed that reducing the plate's thick-

ness increases the free spectral range of the system and allows more channels to be demultipelxed.

In order to keep the 1550 nm main lobe at the central position of the far field envelope curve, the

plate thickness must be adjusted by a very small extent ( < 1jm), whenever the incident angle is

changed. The angular dispersion of the uniform and linear transmissivity systems was identical

and varied from 0.36 to 1.6 degrees/nm as a function of the output angle of the light , not its wave-

length.
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Chapter 6 Non - parallel Glass Plate

The VIPA results described so far rely on the use of a perfectly parallel glass plate of uniform

thickness, t- 100 pm. In reality, perfectly parallel plates are difficult to construct and thus it is

important to analyse the effects of plate irregularities on VIPA's performance. A common case is

where the glass plate boundaries are straight but not parallel. This chapter describes the effects of

using a plate with linearly varying thickness. It was found that such a plate produced considerable

beam distortion which is mainly due to a quadratic phase component. Simulations showed that the

distortion can be corrected by using a proper lens system.

6.1 VIPA model using a plate with linearly varying thickness

In the ideal case, the plate has uniform thickness, to, and its transmissivity profile, tR, is linearwith

no phase (PR=O). In this case, the output light is collimated and the beams focus at points along

the focal plane at fo. A plate with linearly varying thickness can be depicted as having a thickness

at the top, ttop, which is unequal to its thickness at the bottom, to. Such a plate is equivalent to a

parallel plate in series with a wedge of the same material, which in turn can be represented as a

parallel plate whose transmissivity profile has a linear phase componant. This scheme is shown in

Fig 6-1-1. The difference in thickness between the top and bottom is given by tdev =ttop -to, and

corresponds to a phase difference of (21c/X * 2 tdev). When tdev= 14 (- 0.4 im for 1550nm chan-

nel), the transmissivity phase PR, increases linearly from 0 to n and when

tdev= -14, the phase, PR, decreases linearly from 0 to -it.
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Figure 6-1-1 The VIPA glass plate with linearly varying thickness can be modelled as a glass plate with
uniform thickness having transmissivity with a linear phase component.

Simulation of the plate with linear thickness is very similar to that of the parallel plate except that

the transmission profile on the inner right boundary now has a linear phase componant. Thus, for

the plate with linear thickness, amplitude transmissivity is given by, TR= ITRI exp(i*PR) and

when tdev= ?J4, PR increases linearly from 0 to 7c, along y.

Figure 6-1-2 shows the linear amplitude transmissivity,TR; the quadratically decaying reflectivity

amplitude, RR; and the linear transmission phase, PR, of the plate with linear thickness.

I a =~ C

Figure 6-1-2 (a) linear amplitude transmissivity (b) amplitude reflectivity (c) linear transmission phase;
used to model a glass plate with linearly varying thickness with tdev=X14

6.2 Beam Distortion produced by plate with linearly varying thickness

The magnitude of the far-field output of the VIPA demultiplexer using a plate with linearly vary-

ing thickness and tdev=V1 4 is shown in figure 6-2- lb. Figure 6-2-1a shows the ideal output using a
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parallel plate. In both figures, only the mainlobes of the ten demultiplexed channels are shown.
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Figure 6-2-1 (a) demultiplexed output of VIPA using parallel glass plate and ten channels at 0.8 nm spacing.
(b) output using plate with linearly varying thickness has much higher channel crosstalk than in (a)

After comparing the two outcomes, we see that, when the plate has non-uniform thickness, the

output deteriorates considerably; the lobes become wider and overlap between lobes increases

channel crosstalk drastically. Also, the lobes of 6-2-lb are shifted along ky, compared to the lobes

of 6-2-la..

To understand what causes this output distortion, we need to examine the relevant portion of the

near field output for both cases. The main lobe of the far field pattern of the 1550nm wavelength's

output is isolated and passed back through the lens by performing an IDFT. Let

Unearnonprallel denote the output of the non-parallel plate and Unear.parallel be the output of

the parallel plate case, both for 1550nm channel. Figure 6-2-2a shows the magnitude profiles of

Unearnonparallel ( solid line) and Unearparallel ( dotted line), along y, just outside the glass

plate. Figure 6-2-2b shows the phase profiles of these two fields in the relevant portion of y.
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Figure 6-2-2 (a)Magnitude profile along y of Unear nonparallel (solid) and Unear_parallel (dashed)
(b) phase profile, along y, of Unear nonparallel (solid) and Unearparallel (dashed) (c) phase profiles of (b)
with linear component subtracted shows that Unear-nonparallel has quadratic phase component.

The magnitude profiles of Unearnonparallel and Unear_parallel are approximately equal. The

phase plots show that Unearnonparallel has a different linear phase from Unear-parallel. Now

the linear phase componant is removed from each of the phase profiles and the residual phase is

shown in figure 6-2-2c. We see that Unear-nonparallel (solid line) has a large quadratic phase

componant while Unear.parallel does not. This indicates that Unearnonparallel emerges as con-

verging or diverging light, whereas Unear-parallel is collimated light.

A similar analysis is applied to the output beams of other wavelengths. The linear componants of

their phase profiles are subtracted and the residual quadratic phase is shown in figure 6-2-3 . The

solid curve corresponds to the quadratic phase componant of the 1550nm field. The dashed line

with the greatest deviation ( -20 radians) belongs to the 1553.2 nm field; and the dash-dot line is

Figure 6-2-3 Quadratic
phases of Unear nonparallel
for different wavelengths. 1
solid line is for 1550nm; --
dashed line is for 1553.2 nm; -
dash-dot line is for 1546nm; --
dotted curves in between -
belong to the rest of the 1553.2nm
wavelengths

that of the 1546nm field. The dotted curves in between belong to the rest of the wavelength fields.
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We see that using a non parallel plate introduces a linear plus a quadratic phase term, in the out-

put field distribution, which varies with wavelength. Close inspection shows that higher order

phase terms are negligible. The quadratic phase causes the output light to converge or diverge,

such that the the beams are focused on a plane closer to or further than fo, respectively. The addi-

tive linear phase alters the direction of the output light and shifts the focused beams vertically.

However, the shift due to the linear phase component can be corrected easily by placing a very

thin wedge before the focusing lens or by shifting the position of the receiving fibers vertically.

The second order phase term produces beam profiles that come to focus slightly before or after fo.

Thus, at fo, the beam profiles are much broader than beams of the parallel-plate case. The greater

overlap leads to higher channel crosstalk and lower coupling efficiencies as shown in figure 6-2-1.

6.3 A Method for Correctiing Beam Distortion of a Glass Plate with Linear Thickness

As the quadratic phase componant introduced by the slanted plate boundary is very close to a

parabola and higher order phase terms are negligible, the distorted phase can be corrected by plac-

ing a thin cylindrical lens with the appropriate focal length between the plate and focusing lens.

Using a single cylindrical lens whose parabolic phase is matched to the phase component of the

center wavelength, 1550nm, results in the far field output shown in figure 6-3-1b .

As shown in figure 6-2-3, the quadratic phase term is different for each wavelength. Thus using a

single lens whose parabolic phase is matched to the phase distortion of the 1550nm beam restores

this central beam to its ideal form while the other wavelength beams are still slightly broader than

their ideal form. This is because some quadratic phase is still present in the output beams of the

other wavelengths, causing them to focus just before or after the focal plane, fo. The error phase

61



term, which is the quadratic phase of figure 6-2-3 minus the lens' parabolic phase is shown in fig-

ure 6-3-1c for each wavelength lobe.

Ideal Output using Parallel Glass Plate

250

200

100

50

300

25C

20O

LL 150

1 0

Sc

1550

-........... ... ----.. . -......... ... ...

.. .. .. .. .. .. .. .. .. .. ..

4 4.5 5 5 6 6.5 7 7.5 8 8.5 9
ky ( spatial freq.) s

Adjusted Output phase distortiond550lnfpsated by cylindrical lens

44 5 5.5 6 65 7 75 8 85 9
ky a

_ 6-3-2

Figure 6-3-1 (a)demultiplexed output using a perfectly parallel plate (b) output with plate of linear thickness, after
compensation using a thin cylindrical lens
Figure 6-3-2 Quadratic phase minus parabolic phase of cylindrical lens for different wavelengths

The focal points of the partially compensated beams are arranged on a plane that is slightly tilted

with respect to the focal plane using the ideal plate. Thus to obtain all output beams at their

focused points, the output fibers should be placed along this tilted plane. The outcome of such a

scenario can be simulated by individually compensating the output phase distortion of each wave-

length. That is, a separate parabolic phase factor is used to offset the quadratic phase of each

wavelength's output.This leads to the far field output pattern shown in figure 6-3-3 b, where each

wavelength lobe closely matches the parallel plate output of 6-3-3a. Such a compensation scheme

leads to nearly perfect correction of the quadratic phase distortion of each wavelength. The results

62



presented so far in this chapter are for the case of a plate with linearly varying thickness and tdev =
ide~aal Output usingO Paerallel4 Gl3ass Plaete~

00 figure 6-3-3a
250

200- - - - -

150

4 45 5-5 6ky ( spa al~ freq.) , 1
250. . . . ..... . . ... . .. ... ... .... ...

10

1001 1 1 1figure 6-3-3b-

(a 5.5 6 6.5 7 7.5 8 5 5

ky (-apatiedfrepi.)x 1 O0

Fg6 ademultiplexed output using parallel plate (b) output of plate with linear thickness using
cylindrical lens and output fibers arranged on appropriately tilted plane.

?d4. Simulations were also conducted for a glass plate with tee,= ?d2, where the reflectivity phase

varies linearly from 0 to 2rr. This led to output fields with greater quadratic phase deviation. How-

ever, the higher order phase terms are still negligible and so the phase distortions are adequately

compensated by the method discussed above.

6.4 Summary

This chapter presents a perturbation analysis for the specific case of a glass plate with linearly

varying thickness. As depicted in figure 6-4-la, the output beams after a perfectly parallel glass

plate are collimated and the demultplexed channels are well focused along the plane f e When the

glass plate has linearly varying thickness, the output beam is not collimated and channel crosstalk

increases consid erbl Nuerical analysis showed that the distortion is mainly caused by a qua-

dratic phase componant and that higher order distortions are negligible.
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Figure 6-4-la

Figure 6-4-1b
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Placing an appropriate, thin cylindrical lens after the glass plate, as shown in figure 6-4-1b, can

help correct this distortion. Better compensation is achieved, by using the cylindrical lens and also

arranging the output fibers along the actual tilted focal plane, as shown in figure 6-4-1c. Thus even

though VIPA's performance is considerably affected by perturbations in the glass plate geometry,

the resulting phase distortions can be corrected by simple optical techniques.
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Chapter 7 Conclusion

This thesis presents a numerical simulation of an optical demultiplexer that uses a Virtually

Imaged Phased Array. A mathematical model of the VIPA demultiplexer was developed using ray

optics and fourier optics and then implemented in Matlab. Chapter 4 describes the simulation

model and how it accounts for all the sources of power loss in the VIPA system.

Two main VIPA designs have been analyzed; one using a glass plate with uniform transmissivity

and another using linear transmissivity. Simulation results of each design are presented and com-

pared in chapter 5. The simulation is used to maximize efficiency by optimizing various parame-

ters of the system such as: transmissivity coating of the glass plate, input beam waist, plate

thickness, and angle of incidence.

The simulation was then used to conduct a perturbation analysis of the VIPA demultiplexing sys-

tem. Chapter 6 describes the case in which a glass plate with linearly varying thickness results in

high channel crosstalk. The simulation demonstrates that the distortion produced in this specific

case can be corrected by a simple optical technique.

The VIPA technique can also be used as a chromatic dispersion compensator. The simulation

tools developed in this project will be used and further developed by Cristopher Lin (MIT '99) to

conduct a numerical analysis of the VIPA dispersion compensating system.
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Appendix: Simulation Code

% Simulation of VIPA using glass plate with Uniform Transmissivity %
% Afsana Akhter, Chris LIn, Masataka Shirasaki %
% Research Lab of Electronics . MIT%

% last updated May 18 '99 %

%%%%%%%%%%%% GLOBAL PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n= 1.5; % refractive index of glass w.r.t air %

numwvl = 10; % number of input wavelengths %%%%%%%%%

lamdaair(l) = 1553.2e-9;%value of input wavelengths in air%
lamdaair(2) = 1552.4e-9;
lamdaair(3) = 1551.6e-9;
lamdaair(4) = 1550.8e-9;
lamdaair(5) = 1550.0e-9;%input wavelengths centered at 1550nm %
lamdaair(6) = 1549.2e-9;
lamda_air(7) = 1548.4e-9;

lamdaair(8) = 1547.6e-9;

lamdaair(9) = 1546.8e-9;
lamdaair(10)= 1546.0e-9;

%%%%%%%%%%% set plate thickness, window loss %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% t -100um, adjusted slightly to place 1550nm mainlobe

% at peak position of envelope curve in far field

%t= 100e-6; % puts 1550 inmiddle for 1% loss at window, .5657 Emain/Etot%

%t = 99.75e-6;% puts 1550 inmiddle for 3% loss at window, .71 Emain/Etot%

t = 99.7e-6 % puts 1550 inmiddle for 5% loss at window, .8615 Emain/Etot%

windowloss = 5; % corresponding to t %

w_waist = sqrt(((1550e-9)/1.5) * t/pi); % optimal beam waist %

rottheta-deg= 10; % inclination of glass slab %

for j=1:num_wvl, % compute parameters in klass%

lamda_glass(j) = lamda-air(j)/n;% wavelengths in glass %
k_glass(j) = 2*pi/lamda-glass(j);% k in glass %
zo(j) = (pi* (w-waist)^2)/ lamda-glass(j);% z= zo when W(z) = sqrt2*Wo %
end

% using powerAngle func to compute optimum i%%

theta_iglass = powerAngle(windowloss, w-waist,t)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% base coordinate system %

axis-pts = 1024 * 8; % num points on axes %
kyglass = zeros([20]); % ky in glass ( constant)%

ky-glassvec = zeros([20,axispts]); % ky vector in glass %
y_base = linspace(0,2050e-6,axispts); % y axis % % length = 2050 microns %
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rotthetarad= rotthetadeg* pi/180 ; % inclination of glass slab in
radians%

y = ybase .* cos(rot_theta-rad);% y, after rotation of glass plate %

deltay = y(2) - y(l); % interval of points in y %

%%%%%%%%%%% determine reflectivity profiles for given window size %%%%%%%%%

beam-posn = 50e-6; % point of inc in y, beam peak position %
RL = ones([l,axispts]);% reflectivity profile on left%
RR = ones([1,axispts]); % reflectivity profile on right%

for ir=l:axispts,

if(y(ir)< beamposn)
RL(ir)=0;

else RL(ir)=1;
end

end

%%%%%%%%%% set uniform reflectivity on right side %%%%%%%%%%%%%%%%%%%

RR = sqrt(.95) * RR;
T = sqrt(l- .95);

%%%%%%%%%%%%%%% GENERATE GAUSSIAN BEAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

numrefl = 100; % number of reflections
computed%

UL = zeros([num-refl, axis-pts]); % gaussn magnitude profiles on left %
UR = zeros([num-refl, axispts]); % gaussn magnitude profiles on right %
%Uphase = zeros([num-refl,axis-pts]);% gaussn phase profiles %
%VL = zeros([num-refl,axispts]);% fft coeffson left%

%VR = zeros([num-refl,axis-pts]);% fft coeffson right%
V_indx = 1:axispts; % fft index - for plotting %
Utotal = zeros([num-wvl,axis-pts]);% total field in glass plate on right%
Ttotal = zeros([num-wvl,axis-pts]); % total transmitted field,

% just outside
plate %

VTtotal = zeros([20,axis-pts]);% far field output pattern %

Z= axis-pts * 8; % for padded fft of Ttotal %%
VTtotalextra = zeros([numwvl, Z]); % far field output with zero padding
kygvec extra = (linspace(0, 2*pi ,Z))/ deltay;

% ky vector for
zero padded case

URideal = zeros([numrefl,axis-pts]);%ideal gaussian beams at input
VR_ideal = zeros([numrefl,axispts]);

A = 1; % amplitude of
gaussian %

for j=l:num-wvl, %%%%%%% constructing Ky vector %%%%%%
ky-glass(j) = k-glass(j) * sin(thetaiglass * pi/180)
kyglass-vec(j,:) = (linspace(0,2*pi,axis-pts))/ deltay;
Uphase = exp(i* (y -beam-posn) * ky-glass(j)); % linear pahse due to inc ang%
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--------------------PHASE FACTOR FOR PROPAGATION TO RIGHT--------

p-fac= exp((i*(k-glass(j)*t)).*(l -(0.5*((ky_glass-vec(j,:)/

k_glass(j)).^2))));

p-facjleft = p-fac(l, (1: axispts/2));
p_facright = ([zeros(1,axispts/2)]);

for jj= 1: (axispts/2 ),
p-fac-right(jj) = p-facleft( (axis-pts/2) - (jj-1));

end;

phase fac = [p-fac_left p-facright];

% ------------------- PHASE FACTOR FOR PROPAGATION TO LEFT---------

p-facjinit= exp((i*(k_glass(j)*(-t))).*(1 - (0.5*((ky-glass-vec(j,:)/
k-glass(j)).^2))));

pjleftinit = pfac_init(l: axispts/2);

p_right_init = ([zeros(l,axispts/2)]);

for jk= 1: (axis-pts/2 ),
p_right_init(jk) = pjleft_init( (axispts/2) - (jk-

1));
end;

phasefacinit = [pleftinit p-right-init];

% ------------------- ideal gaussians at z=O %---------------------

URideal = A* exp(-1 *((y - beamposn).^2)/(wwaist^2)) .* Uphase

U_init = ifft(fft(UR-ideal) .* phasejfac_init);% initial profiles at z= -t %

U_initleft = (1- RL) .* U_init;

UR(1,:) = ifft(fft(Ujinitleft) .* phasefac); %adjusted profiles at z = 0 %

UL(1,:)= ifft((fft(RR .* UR(1,:))) .* phase-fac); %adjusted profile on left %
for kk= 2:numrefl,

UR(kk,:) =ifft( fft(RL .* UL(kk-l,:)).* phase-fac);

UL(kk,:) = ifft((fft(RR .* UR(kk,:))) .* phase-fac);

end

% ------------------- total profile for each wavlength -------------- %

for ii= 1:numrefl,

Utotal(j,:) = Utotal(j,:)+ UR(ii,:); %innner right of

plate%

end

Ttotal(j,:) = (-l)*T.*Utotal(j,:); % just ouside of plate%

VTtotal(j,:) = fft( Ttotal(j,:)) ; % far field w/o padding%

VTtotal_extra(j,:) = fft( Ttotal(j,:), Z); % far field

withpadding%

end % done for each wavelength%

break;

%%%%%%%%%%%%%%%%%%%%%%%%%% isolate mainlobe of farfield VTTOTAL %%%%%%%%%%

kyex = ky-gvec extra;
yex = linspace(O,max(y base),Z);
main = zeros([num-wvl,Z]); % matrix of mainlobes for each VTtotalextra %

[M5,15] = max((abs(VTtotalextra(5,:)))); % pick peak of center wavelength %%
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% main lobes to the left of central main lobe%

max((abs(VTtotal-extra(l,1:I5)))); % to locate max of mainlobe %

max((abs(VTtotal extra(2,1:I5))));
max((abs(VTtotal-extra(3,1:I5))));

max((abs(VTtotaliextra(4,1:I5))));

% main lobes to the right of central main lobe %

max((abs(VTtotal-extra(6,I5:Z))));I6 = 15+16;

max((abs(VTtotal-extra(7,I5:Z))));I7 = 15+17;

max((abs(VTtotal-extra(8,15:Z))));I8 = 15+18;

max((abs(VTtotaliextra(9,I5:Z))));I9 = 15+19;
= max((abs(VTtotalextra(10,15:Z)))); I10 = 15+110;

% number of points picked from each side of peak point

% construct field with just mainlobe, zero outside

main lobes%

main(1, (I1-lim):(I1+lim)) = VTtotalextra(1,
main(2, (I2-lim):(I2+lim)) = VTtotalextra(2,
main(3, (I3-lim):(I3+lim)) = VTtotalextra(3,
main(4, (I4-lim):(I4+lim)) = VTtotalextra(4,
main(5, (I5-lim):(I5+lim)) = VTtotalextra(5,
main(6, (I6-lim):(I6+lim)) = VTtotalextra(6,
main(7, (I7-lim):(I7+lim)) = VTtotalextra(7,
main(8, (18-lim):(I8+lim)) = VTtotalextra(8,
main(9, (I9-lim):(I9+lim)) = VTtotalextra(9,
main(10, (I10-lim):(I10+lim)) = VTtotalextra

(I1-lim):(I1+lim));

(12-lim):(I2+lim));

(13-lim):(I3+lim));
(I4-lim):(I4+lim));

(15-lim):(I5+lim));
(I6-lim):(I6+1im));

(17-lim):(I7+lim));

(18-lim):(I8+lim));

(19-lim):(I9+lim));

(10, (I10-lim):(I10+lim));

%%%%%%%%%%%%%%%% calculate M, fraction of energy in Mainlobe %%%%%%%%%%%%

sub = zeros([3,Z]); % select just side lobes %%

ir =5; % just for 1550 lobe %

ratio(ir) = sum( abs(main(ir,:)).^2 )/ sum( abs(VTtotalextra(ir,:)).^2);

ratio(5) % energy in main lobe for 1550 nm channel %%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

delky = ky-gvecextra(2) - ky-gvecextra(1);

normE = zeros([num-wvl,Z]);% for normalized main lobes%

normEf = zeros([num-wvl,Z]);% for normalized fiber modes%

for in = 1: num_wvl, %% NORMALIZE E field of mainlobes %%

norm_E-fac(in) = sum((abs(main(in,:))).^2) * del-ky;

normE(in,:) = main(in,:) ./ (sqrt(norm_E_fac(in)));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%% construct fiber modes %%%%%%%%%%%%%%%

ofiber = zeros([num-wvl,Z]); % for fiber mode optimized to central main lobe %

[mMl,mIl] = max((abs(main(5,:)))); % peak val and position of central mainlobe
kyex = kygvecextra; % length = 2050 microns % new ky axis pts%

yex = linspace(0,max(y-base),Z); % length = 2050 microns % new Y axis pts%

delyex = yex(2) - yex(l);

ofwl = (kyex(1550) - kyex(mIl))/2; % beam width of mode found by inspection%

ofiber(l,:) = mMl* exp(-l *((kyex - kyex(15)).^2)/(ofwl^2)) ; %% fiber mode %

%%%%%%%%%%%%%%%%%%% Adjust phase of fiber mode to max, coupling efficiency
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adjphase = zeros([num-wvl, Z]); % phase correction factor, matched to phase

% of main lobe %

adj phase(l,:) = -1 * ( -4.7e-04); % computed by inspection to max coup. ef

ofiber(l,:)= ofiber(l,:) .* exp(i* adjphase(l,:) .* kyex); %fibermode +
phase%

for inf = 1

delky).^2;

mainlobe%
end
coupleeff'
break;

: 10, %% NORMALIZE fiber mode%%%

normfiberjfac(l) = sum((abs(ofiber(1,:))).^2) * delky; %%??%%

normEf(l,:) = ofiber(1,:) ./ (sqrt(normfiberfac(l)));

couple-eff(inf) = abs( (sum((normE(inf,:)).*(normEf(1,:))))*

% compute c. eff of all mainlobes to fiber mode opt for center

%%%%%%%%%%%%%%%%%%% OVERALL EFFICIENCY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sub = zeros([3,Z]);

for ir = 1: numwvl,
sub(ir,:) = (abs(VTtotal_extra(ir,:)) .^2) - main(ir,:);

ratio(ir) = sum( abs(main(ir,:)).^2 )/ sum(abs(VTtotalextra(ir,:)).^2);

end

maintot = [ ratio(l); ratio(2); ratio(3);]

product = (window in/100) * maintot' .* couple-eff % total efficiency %

%%%%%%%%%%%%%%%%% end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Simulation of VIPA using LINEAR TRANSMISSIVITY %

% Afsana Akhter, Chris LIn, Masataka Shirasaki %
% Research Lab of Electronics . MIT%
% last updated May 18 '99 %

%%% GLOBAL PARAMETERS %

n= 1.5;

numwvl = 10;

lamda-air(1) =
lamda-air(2) =
lamda-air(3) =
lamda-air(4) =
lamda-air(5) =
lamda-air(6) =
lamda-air(7) =
lamda-air(8) =
lamda-air(9) =
lamda air(10)=

% refractive index of glass w.r.t air %

1553.2e-9;%now 1550 is center wavelength %
1552.4e-9;

1551.6e-9;

1550.8e-9;

1550.0e-9;

1549.2e-9;

1548.4e-9;

1547.6e-9;

1546.8e-9;

1546.0e-9;

%t= 100e-6; % puts 1550 inmiddle for 1% loss at window, .5657 Emain/Etot%
%t= 99.75e-6;% puts 1550 inmiddle for 3% loss at window, .71 Emain/Etot%
t = 99.7e-6 % puts 1550 inmiddle for 5% loss at window, .8615 Emain/Etot%
windowloss = 5;
w_waist = sqrt(((1550e-9)/1.5) * t/pi);

rotthetadeg= 10; % inclination of glass slab %

for j=l:num-wvl,

lamdaglass(j) = lamda-air(j)/n;% wavelength in glass %
k-glass(j) = 2*pi/lamda-glass(j);
zo(j) = (pi* (wwaist)^2)/ lamda-glass(j);% z= zo when W(z) =

sqrt2*Wo %

end

theta_iglass = powerAngle(window-loss, w-waist,t) % using powerAngle func %%
axis-pts = 1024 * 8; % num points on axes %

kyglass = zeros([20]);

ky-glass-vec = zeros([20,axispts]);
y-base = linspace(0,2050e-6,axis-pts); % y axis % % length = 2050 microns %
rotthetarad= rotthetadeg* pi/180 ;
y = ybase .* cos(rot_thetarad);
deltay = y(2) - y(1);

%%%%%%%%%%% determine RL and RR vector for given window size%%%%%%%%%
beam-posn = 50e-6;
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RL = ones([1,axis-pts]); % reflection coeff on left%

RR = ones([l,axispts]); % reflection coeff on right%

for ir=l:axispts,

if(y(ir)< beamposn)

RL(ir)=0;

else RL(ir)=1;

end

end

%%%%%%%%%%%%%%%%% LINEAR TRANSMISSIVITY %%%% depends on axis-pts %%%%%%

TRamp = zeros([l,axispts]);

TRlow = 0; TRhi = 1;

delTR = (TRhi- TRlow)/(axispts - 209);

for it = 1:axis-pts,

if (y(it) <= 50.016e-6)

TRamp(it) = 0;

else
TRamp(it) = delTR * (it - 209);

end

end

RR = sqrt( 1 - (TRamp).^2)

T = TRamp;

%%%%%%%%%%% GENERATE GAUSSIAN BEAM %%%%%%%%%%%%%%%%%

numrefl = 100;

UL = zeros([num-refl, axispts]); % gaussn magnitude profiles on left %

UR = zeros([num-refl, axispts]); % gaussn magnitude profiles on right %

%Uphase = zeros([numrefl,axis-pts]);% gaussn phase profiles %

%VL = zeros([numrefl,axispts]);% fft coeffson left%

%VR = zeros([numrefl,axispts]);% fft coeffson right%

V_indx = 1:axis-pts; % fft index - for plotting %

%phasefac = zeros([numrefl, axispts]);

Utotal = zeros([num-wvl,axispts]);

Ttotal = zeros([num-wvl,axis-pts]);

VTtotal = zeros([20,axispts]);

VTtotalextra = zeros([num-wvl, (axispts * 4)]); % with zero padding

ky-gvecextra = (linspace(0, 2*pi ,(axis-pts * 4)))/ deltay;

URideal = zeros([numrefl,axis-pts]);
VRideal = zeros([numnrefl,axis-pts]);
A = 1; % amplitude of

gaussian %

for j=1:numwvl, %%%%%%% constructing Ky vector %%%%%%

kyglass(j) = kglass(j) * sin(theta_iglass * pi/180) ;

kyglass-vec(j,:) = (linspace(0,2*pi,axis-pts))/ deltay;

Uphase = exp(i* (y -beamposn) * kyglass(j)); % linear pahse due to incl%

% ------------------- PHASE FACTOR FOR PROG TO RIGHT---------------------

p_fac= exp((i*(k-glass(j)*t)).*(l -(0.5*((ky_glass-vec(j,:)/

k_glass(j)).^2))));
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p-facleft = pfac(l, (1: axis-pts/2));
p-fac-right = ([zeros(l,axis-pts/2)]);

for jj= 1: (axis-pts/2 ),
p_facright(jj) = p-facjleft( (axis-pts/2) - (jj-l));

end;
phasefac = [p-facjleft p-fac-right];

% ------------------- PHASE FACTOR FOR PROG TO LEFT----------------------

p-facinit= exp((i*(kglass(j)*(-t))).*(l - (0.5*((ky-glass-vec(j,:)/

k_glass(j)).^2))));

pjleftinit = pfacjinit(l: axis-pts/2);

p-right-init = ([zeros(l,axispts/2)]);

for jk= 1: (axispts/2 ),

p-right-init(jk) = pjleftinit( (axis-pts/2) - (jk-1));
end;

phasefacinit = [p_leftjinit pright_init];

% ------------------- ideal gaussians at z=O ------------------------- %

URideal = A* exp(-1 *((y - beam_posn).^2)/(w waist^2)) .* Uphase ;

U_init = ifft(fft(URideal) .* phasefacinit); %%% initial profiles at z= -t

U_initleft = (1- RL) .* Ujinit;

UR(1,:) = ifft(fft(Uinitjleft) .* phasejfac); %%%% adjusted profiles at z = 0

UL(1,:)= ifft((fft(RR .* UR(1,:))) .*phase_fac);

for kk= 2:numrefl,

UR(kk,:) =ifft( fft(RL .* UL(kk-1,:)).* phase-fac);

UL(kk,:) = ifft((fft(RR .* UR(kk,:))) .* phase-fac);

end

% ------------------- total profile for each wavlength w/o zero padding%%

for ii= 1:num-refl,

Utotal(j,:) = Utotal(j,:)+ UR(ii,:);

end

Ttotal(j,:) = (-l)*T.*Utotal(j,:);

VTtotal(j,:) = fft( Ttotal(j,:)) ;

VTtotalextra(j,:) = fft( Ttotal(j,:), 1024*32); %zero padding%
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%isolate single peak of VTTOTAL %%

Z = length(VTtotal-extra(l,:));

kyex = ky-gvec-extra;
yex = linspace(0,max(ybase),Z);
break;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Measure Coupling efficiency %%%

main = zeros([num-wvl,Z]); % matrix of mainlobes for each VTtotalextra %

[M5,I5] = max((abs(VTtotal-extra(5,:))));

[M1,I1] = max((abs(VTtotal-extra(1,1:15)))); % to locate main lobe %

[M2,I2] = max((abs(VTtotal-extra(2,1:I5))));

[M3,I3] = max((abs(VTtotal-extra(3,1:I5))));
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[M4,14] = max((abs(VTtotalextra(4,1:15)))); t

[M6,I6] = max((abs(VTtotal_extra(6,I5:Z))));16 = 15+16;

[M7,17) = max((abs(VTtotalextra(7,15:Z))));17 15+17;% to locate main lobe %

[M8,I81 = max((abs(VTtotal-extra(8,I5:Z))));I8 = 15+18;
[M9,I9] = max((abs(VTtotalextra(9,I5:Z))));19 = 15+19;

[M10,I10] = max((abs(VTtotalextra(10,15:Z)))); I10 = 15+110;

%----------------------- isolate mainlobe, zero out side lobes ----------- %
main(l, (I1-100):(I1+100)) = VTtotalextra(1, (Il-100):(Il+100));

main(2, (12-100): (12+100)) = VTtotalextra(2, (12-100):(12+100));
main(3, (13-100): (13+100)) = VTtotalextra(3, (13-100): (13+100));
main(4, (14-100):(14+100)) = VTtotalextra(4, (14-100):(14+100));

main(5, (15-100):(15+100)) = VTtotalextra(5, (15-100):(15+100));

main(6, (16-100):(16+100)) = VTtotalextra(6, (16-100):(16+100));

main(7, (17-100): (17+100)) = VTtotalextra(7, (17-100): (17+100));

main(8, (18-100): (18+100)) = VTtotalextra(8, (18-100): (18+100));

main(9, (19-100): (19+100)) = VTtotalextra(9, (19-100):(19+100));

main(10, (110-100) :(I10+100)) = VTtotalextra(10, (110-100) :(I10+100))

sub = zeros([3,Z]);

ir= 5; %%%%%%% just for 1550 lobe %%%%%%%%
ratio(ir) = sum( abs(main(ir,:)).^2 )/ sum( abs(VTtotalextra(ir,:)).^2);

ratio(5) % energy in main lobe for 1550 nm channel %%%%%%%%%%%%

delky = kygvec_extra(2) - ky-gvec-extra(1);

for in = 1: num-wvl, %% NORMALIZE E field %%

norm_E_fac(in) = sum((abs(main(in,:))).^2) * del-ky;
normE(in,:) = main(in,:) ./ (sqrt(normE-fac(in)));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%% construct fiber modes %%%%%%%%%%%%%%%

ofiber = zeros([num-wvl,Z]);

[mMl,mIl] = max((abs(main(5,:))));

kyex = ky-gvec-extra;

yex = linspace(0,max(y-base),Z); % length = 2050 microns% new Y axis pts%
delyex = yex(2) - yex(1);

ofwl = (kyex(798) - kyex(mIl))/2; % beam waists, by trial/error/inspection %

aveI5 = (kyex(15) + kyex(I5 -1))/2;
ofiber(1,:) = mMl* exp(-1 *((kyex - aveI5).^2)/(ofwl^2)) ; %% fix these %

%%%%%%%%%%%%%%%%%%% Adjust phases to max, coupling efficiency %%%%%%

adj_phase = zeros([numwvl, Z]);
adj_phase(l,:) = -1 * ( -5.9e-04);

ofiber(1,:)= ofiber(1,:) .* exp(i* adj_phase(1,:) .* kyex);

for inf = 1: 10, %% NORMALIZE %%%

normfiber-fac(l) = sum((abs(ofiber(1,:))).^2) * delky; %%??%%

normEf(l,:) = ofiber(1,:) ./ (sqrt(normfiber_fac(1)));

coupleeff(inf) = abs( (sum((normE(inf,:)).*(normEf(1,:))))* del ky).^2

end

%%%%%%%%%%%%%%%%%%% Loss to other modes (power in main lobe / other lobes %%

sub = zeros([3,Z]);

Page 75

% to locate main lobe %



for ir = 1: numwvl,

sub(ir,:) = (abs(VTtotalextra(ir,:)) .^2) - main(ir,:);

ratio(ir) = sum( abs(main(ir, :)).^2 )/ sum(abs(VTtotalextra(ir,:))-^2);
end

main-tot = [ ratio(1); ratio(2); ratio(3);]
product = (windowjin/100) * maintot' .* couple-eff % OVERALL EFFICIENCY %%

% ----------------------- END --------------------------------- %
% Simulation of VIPA using plate of LINEARLY VARYING THICKNESS %
% and LINEAR TRANSMISSIVITY %%
% Afsana Akhter, Chris LIn, Masataka Shirasaki %
% Research Lab of Electronics . MIT%
% last updated May 18 199 %

%%% GLOBAL PARAMETERS %

numwvl =10;

lamda-air(1) =
lamda-air(2) =
lamda-air(3) =
lamda-air(4) =
lamda-air(5) =
lamda-air(6) =
lamda-air(7) =
lamda-air(8) =
lamda-air(9) =
lamda air(10)=

nwvl_1550 = 5;

n= 1.5;

% wavelength in air %

1553.2e-9;%now 1550 is center wavelength %

1552.4e-9;

1551.6e-9;

1550.8e-9;

1550.0e-9;

1549.2e-9;

1548.4e-9;

1547.6e-9;

1546.8e-9;

1546.0e-9;

% index of center wavelength

% refractive index of glass w.r.t air %

%t = 100e-6;% puts 1550 inmiddle for 1% loss at window, .5657 Emain/Etot%

%t = 99.75e-6;% puts 1550 inmiddle for 3% loss at window, .71 Emain/Etot%
t= 99.7e-6; % puts 1550 inmiddle for 5% loss at window, .8615 Emain/Etot%
windowloss = 5;

w_waist = sqrt(((1550e-9)/1.5) * t/pi); % depends on t %%%
rottheta_deg= 10; % inclination of glass slab %
for j=1:numwvl,

lamda_glass(j) = lamda-air(j)/n;% wavelength in glass %
k-glass(j) = 2*pi/lamdaglass(j);
zo(j) = (pi* (wwaist)^2)/ lamda-glass(j); % z= zo when W(z) =

sqrt2*Wo %

end

theta_iglass = powerAngle(windowjloss, w-waist,t) % using powerAngle func %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% base coordinate system %

axis-pts = 1024 * 8; % num points on axes %

kyglass = zeros([20]);
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ky-glassvec = zeros([20,axispts]);

y_base = linspace(0,2050e-6,axispts); % y axis % % length = 2050 microns %
rotthetarad= rottheta-deg* pi/180

y = ybase .* cos(rottheta_rad);

deltay = y(2) - y(l); %%%%%%% constructing Ky vector %%%%%%

%%%%%%%%%%% determine RL vector for given window size, and RR %%%%%%%%%

beam-posn = 50e-6;

RL = ones([l,axispts]); % reflection coeff on left%

RR = ones([l,axispts]); % reflection coeff on right%

for ir=l:axis-pts,

if(y(ir)< beamposn)

RL(ir)=0;

else RL(ir)=1;
end

end

%%%%%%% LINEAR TRANSMISSIVITY %%%%%%%%%%% depends on axis-pts %%%%%%

TRamp = zeros([l,axispts]);
TRlow = 0; TRhi = 1;

delTR = (TRhi- TRlow)/(axispts - 209);

for itt = 1:axispts,
if (y(itt) <= 50.016e-6)

TRamp(itt) = 0;

else
TRamp(itt) = delTR * (itt - 209);

end

end
RR = sqrt( 1 - (TRamp).^2)

%%%%%%%%% REFLECTIVITY PHASE ON RIGHT %%%%%%%%%%%%%

RRP = ones([l,axispts]); % phase term %

RRPlo = 0; RRPhi = pi;

delRRP = (RRPhi - RRPlo)/ (axispts - 209);

for ipb = 1:axispts,
if (y(ipb) <= 50.016e-6)

RRP(ipb) = 0;

else
RRP(ipb) = delRRP * (ipb - 209);

end

end

RR = RR .* exp( i* RRP);

T = sqrt(1- ((abs(RR)).^2)); % T should have zero phase %

%%%%%%%%%%% GENERATE GAUSSIAN BEAM %%%%%%%%%%%%%%%%%

numrefl = 100;

UL = zeros([num-refl, axispts]); % gaussn magnitude profiles on left %

UR = zeros([num-refl, axispts]); % gaussn magnitude profiles on right %

%Uphase = zeros([num-refl,axispts]);% gaussn phase profiles %

%VL = zeros([numrefl,axis pts]);% fft coeffson left%

%VR = zeros([numrefl,axispts]);% fft coeffson right%

V_indx = 1:axis-pts; % fft index - for plotting %
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%phase_fac = zeros([num-refl, axispts]);
Utotal = zeros([numwvl,axis-pts]);

Ttotal = zeros([numwvl,axis-pts]);

VTtotal = zeros([num-wvl,axispts]);

VTtotalextra = zeros([numwvl, (axis-pts * 4)]); % with zero padding

ky-gvec-extra = (linspace(O, 2*pi ,(axispts * 4)))/ deltay;

URideal = zeros([numrefl,axis-pts]);
VR_ideal = zeros([numrefl,axis-pts]);
A = 1; % amplitude of

gaussian %

for j=l:numnwvl, %%%%%%% constructing Ky vector %%%%%%

kyglass(j) = kglass(j) * sin(theta-iglass * pi/180) ;
kyglass-vec(j,:) = (linspace(0,2*pi,axispts))/ deltay;

Uphase = exp(i* (y -beam-posn) * ky-glass(j)); % linear pahse due to incl%

% ------------------- PHASE FACTOR FOR PROG TO RIGHT---------------------
pjfac= exp((i*(kglass(j)*t)).*(l -(0.5*((ky-glass vec(j,:)/
k_glass(j)).^2))));

p-facleft = pfac(l, (1: axis-pts/2));

p-fac-right = ([zeros(l,axispts/2)]);
for jj= 1: (axis-pts/2 ),

p-facright(jj) = p-facjleft( (axispts/2) - (jj-1));
end;

phasefac = [pfacjleft pfacright];

% ------------------- PHASE FACTOR FOR PROG TO LEFT----------------------

p-facinit= exp((i*(kglass(j)*(-t))).*(1 - (0.5*((ky-glass-vec(j,:)/
k_glass(j)).^2))));
pjleftinit = pfacjinit(l: axis-pts/2);
p-right-init = ([zeros(l,axispts/2)]);

for jk= 1: (axispts/2 ),

p-right_init(jk) = pleft_init( (axis-pts/2) - (jk-1));
end;

phasefacinit = [pleftjinit p-right_init];

% ------------------- ideal gaussians at z=O ---------------------------- %
URideal = A* exp(-1 *((y - beamposn).^2)/(w waist^2)) .* Uphase ;
U_init = ifft(fft(URideal) .* phasefacinit); % initial profiles at z= -t %
U_initleft = (1- RL) .* Ujinit;

UR(1,:) = ifft(fft(U_initjleft) .* phase-fac); % adjusted profiles at z = 0 %
UL(1,:)= ifft((fft(RR .* UR(1,:))) .*phase-fac);

for kk= 2:numrefl,

UR(kk,:) =ifft( fft(RL .* UL(kk-l,:)).* phasejfac);
UL(kk,:) = ifft((fft(RR .* UR(kk,:))) .* phase-fac);

end

% ------------------- total profile for each wavlength w/o zero padding%%
for ii= 1:numrefl,

Utotal(j,:) = Utotal(j,:)+ UR(ii,:);
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end
Ttotal(j,:) =

%VTtotal(j,:)

VTtotalextra

(-1) *T. *Utotal (j, :) ;
= fft( Ttotal(j,:))

(j,:) = fft( Ttotal(j,:), 1024*32); %zero padding%

% ----------------- isolate single peak of VTTOTAL----------------------- %%
Z = length(VTtotal_extra(l,:));

M= zeros([1,num-wvl]); % pick main and project back through lens %

I= zeros([1,numwvl]);

VTtotalsolo = zeros([numwvl,Z]);

Utotalmod = zeros([num-wvl,Z]);

VTtotalmod = zeros([numnwvl,Z]);

Utmod-phase= zeros([numnwvl,Z]);

% ------------ pick lobes from VTTotalextra ------------------

[M(nwvl_1550) I(nwvl_1550)] = max( abs(VTtotalextra(nwvl_1550,:)));

%%%%%%%%%% for lobes right of 1550 lobe %

for imm= (nwvl_1550 + 1):numnwvl, % set range to pick mainlobes from %%%%%

[M(imm) I(imm)]

=max(abs(VTtotalextra(imm,I(nwvl_1550):(I(nwvl_1550)+1600))));

I(imm) = I(nwvl_1550)+ I(imm);

end;

%%%%%%%%%% for lobes left of 1550 lobe %

for iml= 1:(nwvl_1550 - 1), % set range to pick mainlobes from %%%%%

minindx= 600;

[M(iml) I(iml)] =max(abs(VTtotalextra(iml, (I(nwvl_1550) -

minindx):I(nwvl_1550))));

I(iml) = (I(nwvl_1550) - min-indx)+ I(iml);

end;

% -----------------------------------------------------------

for im=l:numwvl,

VTtotal-solo(im, :) = [zeros([1, (I(im)-201)]) VTtotal-extra(im, (I(im)-200)

(I(im)+200)) zeros([1, Z-(I(im)+200)]) ];

Utotal-mod(im,:) = ifft(VTtotal-solo(im,:) );

%VTtotalmod(im,:) = fft(Utotal-mod(im,:));

Utmod-phase(im,:)= phase(Utotalmod(im,:));

end;

%%%%%%%%%%%%%%%%%%%%%%%Measure Coupling efficiency

delky = kygvecextra(2) - kygvec-extra(1);
% deleted portions here %

%%%%%%%%%%%%%%%%%%%%%%%%%%% construct fiber modes

%%%% use Ky space %%%%%

% deleted a bunch

kyex = ky-gvec-extra;
yex = linspace(0,max(ybase),Z); % length = 205

del-yex = yex(2) - yex(l);

|| NOT DONE || %%%

0 microns% new Y axis pts%

remove phase distortion************************%
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plo= 240; %
plen = 5710; %

kk= plo:plen;

select index of relevant region %

same plo plen for 1550, 1549, 1548 %

% for part of phase curve of interest %

% linear segment for region plo:plen only %

test = zeros([num-wvl, (plen - plo+1)]);

parabph = zeros([num-wvl, (plen - plo+l)]);

pphasewh = zeros([num-wvl, Z]);

pmin = zeros([l,num-wvl]);

pj = zeros([1,num-wvl]);

%parphsh = zeros ( [numnwvl, (((plen - plo) /2) +1)]);

for it=l:num-wvl,

test(it, :)=linspace(Utjmod_phase(it,plo),Utmodphase(it,plen), (plen -
plo+l));

parabph(it,:) = Ut-mod-phase(it,plo:plen) - test(it,:);
pphase-wh(it,:) = [zeros([1,(plo-1)]) parabph(it,:) zeros([1, (Z - plen)])];

[pmin(it) pj(it)] = min(parabph(it,:));
par-ph-sh = parab_ph(1, (pj(1):length(parab-ph(1,:)))) - pmin(1);

end;

%---------------construct comp parab, separately for each wvl% ---------- %

%actph-right = zeros ( [numwvl, length(tparab)]);
%estphright = zeros([num-wvl,length(tparab)]);
PL = length(parph-sh);
actphright = zeros([numwvl,length(par-phsh)]);
estph-right = zeros([num-wvl,length(parphsh)]);
%estph_lef t = zeros ([num-wvl, ( (plen - plo) /2) ]) ;
%estph_whole = zeros([num-wvl,length(tparabwhole)]);
estphlef t = zeros ( [num-wvl, (length (estphright) -1) ]);

%estph-whole = zeros([num-wvl,]);

estph-whole = zeros ( [num-wvl, length (estphright)+ length (estph-lef t) ]);
phfor-comp = zeros([num-wvl,Z]);
yp = yex(l:length(parphsh));

for iy=l:num-wvl, %% equiv tp parph-sh %%%%%%%%%%

actph-right (iy,:) = parabph (iy, (pj (1) : length (parabph(,:)))) - pmin (iy);

end

estph-right(l,:)

estph-right(2,:)

estph-right(3,:)

estphright(4,:)

estph-right(5,:)

estphright(6,:)

estphright(7,:)

estph-right(8,:)

estph-right(9,:)

estph-right(10,:

(26400*yp)

(25800*yp)
(24900*yp)

(24400*yp)

(23700*yp)

(23700*yp)

(23200*yp)

(22700*yp)

(22200*yp)

(21700*yp)

.^2)
.2)

.^2)
A2)

.^2)
A2)

.^2)
^2)
.^2)

.^2)A2)

A 2)

%%% use to be 21500 %%%%%%

for iyl= 1:numwvl,

for iyi= 1:(PL-1),
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estph_left(iyl,iyi) = estph-right(iyl, (PL- (iyi -1)));

end

estph-whole(iyl,:) [estph_left(iyl, :) estphright(iyl,:)] + pmin(iyl);
phforcomp(iyl,:) = [zeros([1, (plo -1)]) estph-whole(iyl,:) zeros([1, (Z -

(2*PL -1 + plo -1))])];

end
% --------- compensate actual phases with estimated phases, indiv wvl %%%

actminusest = zeros([numywvl,Z]);

restorelin = zeros([num-wvl,Z]);

Ut-adj_each=zeros ( [num-wvl, Z]);

Vt-adj_each=zeros([num-wvl,Z]);

for iqi=l:numwvl,

% indiv adj %%%

actminusest(iqi,:) = pphase-wh(iqi,:) - phforcomp(iqi,:); % indiv adj %%%

%% common adj %%

%actminusest(iqi,:) = pphase-wh(iqi,:) - phforcomp(5,:); %% common adj %%

restore_lin(iqi,:) = [Ut-modphase(iqi,l:(plo-1)) test(iqi,:)

Utmodphase(iqi, (plen+l):Z)];

Ut-adjeach(iqi,:) =abs(Utotalimod(iqi,:)) .* exp(i*actminus-est(iqi,:))
.*exp(i*restore-lin(iqi,:));

Vt-adjeach(iqi,:) = fft(Ut-adj-each(iqi,:));

end;

%break;

% ---------------------------------------------------------------------- %%%

figure(10); dl = 6; d2= 7; d3 = 8; d4 = 9; d5= 10;

subplot(5,2,1),plot(parab-ph(dl,:), 'c');
hold on;plot(estphwhole(dl,:), 'y'); hold off;

subplot(5,2,2),plot(actminus-est(d,plo:plen), 'c');

diffdl = max(actminus-est(dl,:)) - min(act-minusest(dl,:))

subplot(5,2,3),plot(parabph(d2,:), 'im');

hold on;plot(estphwhole(d2,:), 'y'); hold off;

subplot(5,2,4),plot(actminus-est(d2,plo:plen), 'm');

diffd2 = max(actminus-est(d2,:)) - min(act-minus_est(d2,:))

subplot(5,2,5),plot(parabph(d3,:), 'r');

hold on;plot(estphwhole(d3,:), 'y'); hold off;

subplot(5,2,6),plot(actminus-est(d3,plo:plen), 'r');

diffd3 = max(actminus-est(d3,:)) - min(act-minusest(d3,:))

subplot(5,2,7),plot(parab_ph(d4,:), 'g');
hold on;plot(estphwhole(d4,:), 'y'); hold off;

subplot(5,2,8),plot(actminus-est(d4,plo:plen), 'g');

diffd4 = max(act_minus est(d4,:)) - min(act minusest(d4,:))

subplot(5,2,9),plot(parabph(d5,:), 'w');
hold on;plot(estph whole(d5,:), 'y'); hold off;

subplot(5,2,10),plot(actminus-est(d5,plo:plen), 'w');
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diffd5 = max(act minusest(d5,:)) - min(actminusest(d5,:))

break;

%% -------------------- end ------------------------------------------ %

%%%%%%% function uedsed in other programs to compute optimum incident angle%
%%%%696% in glass, given plate thickness and desired powerloss at window.%

% Afsana Akhter, Chris Lin, M. Shirasaki
% Rsearch Lab of Electronics, MIT
6 last Updated on May 18 '99

function theta = powerAngle(powerLoss, w-waist,t)

powerLoss = powerLoss/100;%powerLoss in percent

%beam waist at input of plate
waist = wwaist;%beam waist at point of inc %%%
zo = (pi* (waist)^2)/ (1550e-9 / 1.5);
w_window = waist * sqrt( 1 + (2*t/zo)^2 );%beam waist at window %

%waist of power profile

powerWaist = w_window/sqrt(2);

%distance between power profile center and reflectivity change

offset = erfinv(l-powerLoss*2)*powerWaist*sqrt(2);

thetainair= atan(offset/t)*180/pi;

theta= thetainair / 1.55;
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