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Abstract

A simultaneous solution algorithm to solve fully coupled fluid flow-structural interac-
tion problems using finite element methods is proposed. The fluid is assumed to be a
viscous (almost) incompressible medium modeled using the Navier-Stokes equations,
whereas the structure is assumed to be a linear elastic isotropic solid undergoing small
displacements. In addition, the structure is assumed to be very compliant and there-
fore the effects of the coupling onto the system response are expected to be important.
The focus of this work is on the coupling procedure employed, the specific time in-
tegration schemes used in a transient analysis and on the efficiency of the solution
procedure. Efficiency is realized by condensing out the internal structural degrees of
freedom prior to the coupled solution analysis. The proposed time integration scheme
is based on Gear's method, the Euler method or the trapezoidal rule for the fluid and
the trapezoidal rule for the structure. A simplified analysis indicates unconditional
stability (for the linearized system). Two example problems are solved to illustrate
the applicability of the solution procedure.
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Chapter 1

Introduction

Finite element methods have been developed and extensively used for the analysis of

structural and fluid problems. Although there are still major improvements desired

in the formulation of finite element procedures for both fluids and structures (in par-

ticular for fluid flows at high Reynolds numbers and structures with highly nonlinear

behavior) considerable research focus is now on new areas of application.

The availability of faster computers with large memory and storage capacities

allows the solution of problems of increasing complexity, and a natural next step in

the development of finite element procedures is the analysis of fluid flows coupled

with structures.

Fluid-structure interaction analyses are increasingly required research and engi-

neering practice, where a wide variety of applications can be found. Particularly, there

is an increased interest in new and exciting areas of applications such as biomechan-

ics, to study for example the flow of blood in arteries and veins, and the development

of microelectro-mechanical devices (MEMS). Some other examples include the study

and optimization of break systems, shock-absorbers, hydraulic valves, pumps, etc.

There are two main approaches that have been used to numerically solve fully

coupled fluid-structure interaction problems: the simultaneous solution and the par-

titioned procedures. In a simultaneous solution, the coupled equations are established

and then solved all together. In a partitioned procedure solution variables from one

field are passed to the other and each field (fluid and structure) is solved separately
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iterating between the field solutions when the coupling results in significant structural

deformations. As a result, in a partitioned procedure, the fully coupled fluid-structure

problem can be solved using already developed field-codes.

An important feature of fluid-structure interaction problems is that the coupling

strongly depends on the mathematical models employed. The variables used for

structures are displacements and, sometimes, pressures. The fluid behavior, however,

can be described using pressures, velocity potentials, velocities and pressures, etc.

depending on the model chosen. As a result, the coupling procedure and the effect of

the coupling onto the system response can vary widely. Basically, two main types of

fluid-structure interaction problems can be distinguished depending on whether the

fluid is modeled using the acoustic approximation or the Navier-Stokes equations.

If the fluid can be modeled using the acoustic approximation then the load of the

fluid onto the structure is only due to pressure and inertial effects (viscous effects are

neglected). This approximation is very useful to analyse certain problems, such as

the interaction between a structure and a contained fluid. In this case a potential

formulation can be used and the degrees of freedom of the fluid (velocities and pres-

sures) are reduced to only one per node (the potential). In addition, the coupled finite

element coefficient matrix can be symmetric (#-formulation [1], [2]). Hence, simul-

taneous solution procedures are effective for this type of fluid-structure interaction

problem (see also [3]). Nevertheless, partitioned procedures have also been applied

to acoustic fluid-structure interaction problems [4].

If convective terms are important the fluid is modeled using the Navier-Stokes or

Euler equations. In this case usually large (non-symmetric) fluid coefficient matrices

result. In addition, completely different meshes need generally be used in practice to

discretize the fluid domain and the structure. Therefore, partitioned procedures are

frequently preferred and used. Bathe et. al describe a general and widely employed

partitioned procedure to solve fluid flow-structural interaction problems [5], [6], [7].

Stability and accuracy characteristics of partitioned procedures for some special cases

have been studied in [8], [9]. Other recent works on partitioned procedures include

[10], [11], [12].
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Using a partitioned procedure, a relatively large number of iterations may be

required at each time (or load) step to solve problems in which the structure is very

compliant. If the iterations are not performed in each step, the solution accuracy

frequently deteriorates rapidly. This phenomenon is like in the analysis of nonlinear

structural dynamic problems where it was long ago realized that iterations are needed

[2] [13].

Simultaneous solution procedures have also been used in fluid-structure interaction

problems, see [14], [15], [16], [17], [18]. Since the finite element coefficient matrix

of the Navier-Stokes or Euler equations is non-symmetric due to the presence of

convective terms, the cost of the computations for the simultaneous solution procedure

dramatically increases with the degrees of freedom considered, and therefore most

research was directed to the development of partitioned procedures.

An important issue in the analysis of fluid flow-structural interaction problems is

the coupling procedure employed in both the simultaneous solution and partitioned

procedures.

In this thesis, we concentrate on the analysis of structures interacting with viscous

fluid flows, modeled using the Navier-Stokes equations. The structure is assumed to

be elastic and the fluid is assumed to be an (almost) incompressible medium. We

also assume that the effect of the coupling between the fluid and the structure is

significant. Hence, when using a partitioned procedure iterations between the field

solutions are required. The focus of this thesis is on the coupling procedure employed

in a simultaneous solution, the time integration schemes used, and how to decrease

the solution time by condensation of the internal structural degrees of freedom.

The thesis is organized as follows. In the second chapter, some relevant mathe-

matical models of fluids and structures are presented. In addition, the Lagrangian,

Eulerian and arbitrary Lagrangian-Eulerian descriptions of motion are discussed. In

chapter 3, usual finite element discretizations for both fluids and structures are shown.

Available procedures to solve fluid flow-structural interaction problems are discussed

in chapter 4 and a different approach is proposed and analyzed. A stability analysis

of the proposed algorithm is presented in chapter 5. In chapter 6, the solutions of

13



example problems are shown to demonstrate the capabilities of the proposed scheme.

Finally in chapter 7 conclusions are given.
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Chapter 2

Governing equations

Governing differential equations describe the motion of continuous media. They are

derived using the laws of physics (Newton's law, mass and energy conservation prin-

ciples) and the constitutive relations.

Usually, structural equations of motion are written using the Lagrangian formula-

tion, i.e. following the body particles, and the fluid flow equations are written using

the Eulerian formulation, i.e. at a fixed spatial position. For fluid flow-structural

interaction problems a combination of both formulations, an arbitrary Lagrangian-

Eulerian formulation, is required to describe the fluid flow because the fluid domain

changes as a function of time due to structural interactions.

In this chapter the Lagrangian, Eulerian and arbitrary Lagrangian-Eulerian for-

mulations are briefly discussed. Governing and constitutive equations of Newtonian

fluid flows and elastic isotropic solids are considered. Finally, the equilibrium and

compatibility conditions that must be satisfied at the fluid flow-structural interface

are given.

2.1 Kinematics of continuous media

Consider a body (or a part of it) that is moving through space. The space occupied

by the body at time t = 0 is called the reference configuration, and the space occupied

by the body at time t is called the spatial configuration (see figure 2-1).
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Mesh configuration
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Reference configuration Spatial configuration
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z

Figure 2-1: Reference, spatial and mesh configurations.

At time t = 0 we can identify each particle of the body with a reference coordinate

x. At time t the particle will be at a different position y. In other words, y is the

position at time t of the particle that was at x at time t = 0. Similarly, at time t = 0

we can identify each mesh point with a reference coordinate x. At time t the mesh

point will be at a different position y (that is not necessarily the same as the particle

positions y). Then, yr is the position at time t of the mesh point that was at x at

time t = 0.

There are different ways of describing the motion of the body (see, for example,

[19]). Three of them will be considered here,

" Lagrangian formulation

" Eulerian formulation

" Arbitrary Lagrangian-Eulerian (ALE) formulation

Equations of motion are generally written in terms of material or physical particles.
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For example, when we say that a fluid is incompressible we mean that a particle

cannot change its density with time, but different particles can have different densities.

Newton's law of motion states that the rate of change of momentum of a body is equal

to the sum of the external forces applied to that body, i.e. the law applies over a

group of particles that are followed as a function of time.

In general, when solving a dynamic problem using finite element methods, any of

the above descriptions can be employed (see [2], [16]). The finite element mesh can

be moving with the body particles, can be fixed in space, or moving at an arbitrary

velocity, and therefore we need to express the equations of motion using different

formulations.

2.1.1 Lagrangian formulation

In the Lagrangian formulation, the body particles are identified in the reference con-

figuration, at time t = 0, and their movement is followed as a function of time. The

variables used to describe the equations of motion are then x and t. This descrip-

tion is usually employed to describe the motion of solids, for which the reference

configuration is known.

We are interested in expressing the equations of motion that are written in the

Lagrangian formulation (following the particle) in the Eulerian and ALE formulations.

In particular, the time derivatives that appear in the conservation laws need to be

transformed.

2.1.2 Eulerian formulation

In the Eulerian formulation, the variables used in the description of the motion are y

and t. The movement is described at a fixed spatial position y. The position occupied

at t = 0 by the particle that is at y at time t is not important and usually not known.

This description is generally used to describe fluid flows.

At time t the position of a particle can be expressed as a function of the particle

position in the reference configuration

17



Y - x(x, t) (2.1)

If equation (2.1) is known, then the velocity of a particle can be calculated by

taking the partial derivative of (2.1) with x held constant

v = t (2.2)

Also, the acceleration of the particle is

a Ot) (2.3)

In the Eulerian formulation, a physical quantity is known as a function of a fixed

spatial position y, that is to say

f = g(y, t) = G(X(x, t)) (2.4)

The time derivative of the physical quantity f with x held constant, is called the

material time derivative, and is equal to the rate of change of f at the particle, i.e. as

seen by an observer who is moving with the particle. The following notation is used

from now on to refer to the material time derivative

Df ( f(
-- - (2.5)

2.1.3 Arbitrary Lagrangian-Eulerian formulation

The ALE formulation is a combination of the Lagrangian and Eulerian formulations.

The movement of the body is described at an arbitrary position yr that can change as a

function of time. In a finite element analysis, the position S is associated with a mesh

point, and the space occupied by the mesh at time t is called the mesh configuration

(see figure 2-1).

In the ALE formulation, the values of a physical quantity f are known as a function

of a fixed mesh referential position yr.

18



At time t each point y can be associated to a referential position x using the

mapping

y = (x,t) (2.6)

Then, the physical quantity f can be expressed as

f = x:y, t) = O(d(x, t), t) (2.7)

2.2 Lagrangian form of the conservation equa-

tions

Considerations in this work are restricted to isothermal processes, and therefore the

energy conservation equation is not needed in the description of motion. In this sec-

tion, the mass and momentum conservation equations in the Lagrangian formulation

are given.

2.2.1 Mass conservation

The principle of mass conservation states that mass cannot be created or destroyed

within a (nonrelativistic) system. This means that the amount of mass enclosed in a

material volume (one that is fixed to the physical particles) will not change in time.

The simplest form of the mass conservation principle is then

Dm _DD- = - p(x) d = 0 (2.8)Dt Dt 2(t)

where Q(t) is the material volume (body volume), m is the total mass enclosed in Q

and p is the body density.

2.2.2 Momentum conservation

Newton's law of motion can be expressed as

19



DP
Dt Fext (2.9)

where P =my is the momentum, JP is the instantaneous rate of change of momen-

tum of the body at time t, and E Fext is the sum of all external forces acting on the

body at time t.

The equation of conservation of momentum can be written as

D [f p v dQ = Fext(t) (2.10)
Dt nl(t)

where Q indicates the material volume.

2.3 ALE form of the conservation equations

In this section, the ALE forms of the mass and momentum conservation equations

are derived using the control volume technique.

2.3.1 Mass conservation

We are interested in describing the mass conservation principle with respect to an

arbitrary chosen control volume which can be moving and deforming. Using the

Reynold's transport theorem [20], the mass conservation equation (2.8) can be written

as

Dt f p df + h p (v - V) - n d5-0 (2.11)Dt Ot v,(t) s(0)

where 1Z(t) is an arbitrary control volume, S(t) the control volume surface, v is the

fluid velocity with respect to a fixed spatial reference frame, 'Cr is the velocity of the

control volume, and 0/t is the time derivative with y held constant, or spatial time

derivative.

The first term expresses the instantaneous rate of change of mass within the

control volume, while the second takes into account the mass which is entering (and

20



leaving) the control volume through its surface at a relative velocity v, v - .

Using the divergence theorem, equation (2.11) becomes

at v(t) f'(t)
V - [p (v - 9 i)] dV =0 (2.12)

In evaluating the first term of equation (2.12), the change of the control volume

with time has to be considered.

Using Cartesian coordinates, the determinant of the Jacobian of the transforma-

tion from material coordinates to mesh referential coordinates is defined as [21]

J=det N
( X1.

(2.13)

where Qj and xj are the components of y and x, respectively.

Then,

dY = j dV (2.14)

where dV is a differential control volume and dV is the differential control volume in

the initial configuration, dV = dY(t = 0).

The spatial time derivative of j is

= J V- (2.15)at
and therefore

I p dY
at J~) at IV(0)

p j dV =
(api

M atJ Y
dY + f p V -9 dY (2.16)

Substituting (2.16) into (2.12) we obtain

(2.17)

where the superscript * indicates time derivative with respect to a fixed mesh point,

21
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i.e. is the rate of change as seen by an observer that is moving with the mesh point.

Expression (2.17) is the differential equation of mass conservation written in the

ALE formulation of motion.

The material rate of change of the density P can then be written as

D pt

Dp * + (v - Vp (2.18)
Dt

and expresses the density changes of the material or physical particles as a function

of time.

Note that if 9 = 0 or - = v in equation (2.17) the Eulerian and Lagrangian forms

of the mass conservation equation are recovered respectively.

2.3.2 Momentum conservation

We are interested in describing Newton's law of motion with respect to an arbitrary

chosen control volume which can be moving and deforming. Using the Reynold's

transport theorem equation (2.10) can be rewritten as

D Itp v d = p v d+ 4 p v (v -V) -fn d5 Fext(t) (2.19)Dt Q(t) atvt)s)

Therefore the rate of change of momentum of the body which at time t occupies the

volume Q =V (t) is equal to the rate of change of momentum of the material instan-

taneously inside the control volume f at time t, plus the inward flux of momentum

through the control surface [19].

The right hand side of equation (2.19) is the sum of the forces that are acting over

the particles located inside Q at time t. It is independent of the choice of description

of motion. However, the expression for the material time derivative (left hand side)

does depend on the description of motion.

Expression (2.19) constitutes a system of three equations (one for each component

of the vector v). Expressing v in a Cartesian coordinate system, where the vi are the

22



components of v, and using the divergence theorem

a J p vi dV + J(t)V - [p vi (v - 9)] dV = Fext,i(t) (2.20)at v(t) vt

Using equations (2.14) and (2.15)

pIoa dV=f (pvi)* dV±+J. pp v V - dV (2.21)
at v'(t) v vi dt)2.1

Substituting equation (2.21) into equation (2.20) and after some algebra,

vi [p* + (V - ) Vp+pV -v] + p [of+(v*-- ) Voi] fext,i (2.22)

where fext,i are the components of external forces per unit volume (in Cartesian

coordinates).

The first term in square brackets in equation (2.22) is the mass conservation equa-

tion (2.17), and therefore cancels out. Then, the momentum conservation equation

in the ALE formulation can be written as

p {v* + [(v - ) -V]v} fext (2.23)

and the material rate of change of momentum is

Dv
p = p {v* + [(v - ) - V]v} (2.24)Dt

The Eulerian and Lagrangian descriptions of motion can be recovered by assuming

v = 0 and '(r = v in equation (2.23) respectively.

2.4 Fluid flow equations

The fluid flow equations of motion are derived from the momentum and mass con-

servation equations, (2.23) and (2.17), and appropriate constitutive laws. In what

follows, some relevant fluid models are described. Since in a fluid flow-structural in-

teraction problem, in general, the fluid domain changes as a function of time (due to

23



the interaction with the structure), the equations of motion of the fluid are expressed

using the ALE formulation.

2.4.1 Compressible fluid

Using the ALE formulation, the Navier-Stokes equations are

p {v* + [(v -- i) V] v} = V rF + fB (2.25)

(2.26)

where equation (2.25) is the momentum conservation and equation (2.26) is continuity

equation.

The constitutive relations for a Newtonian fluid (in Cartesian coordinates) are

ri= (-p + A ekk) 6os + 2pieig

1
eJ= - (vij + vy, 2)

2

(2.27)

(2.28)

In these relations, rTF is the stress tensor in the fluid, fB is the vector of body forces,

p is the pressure, p is the fluid density, y is the dynamic viscosity coefficient, A is the

second coefficient of viscosity and eij is the (i,j)th component of the velocity strain

tensor.

For an isotropic Newtonian compressible fluid, the Stokes' hypothesis, A = - p,

is usually a good approximation, and the constitutive equations for a compressible

fluid become,

F = ei k - ekk i)7-~j6J\+ Z J1t 3 (2.29)

The boundary conditions required to solve (2.25) and (2.26) can be given as fol-

24
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lows:

v=vS in SF (2.30)

r F F s in (2.31)

and initial condition

v(t = 0) = vo (2.32)

where S is the part of the boundary with imposed velocities vs, Sf is the part of the

boundary with imposed surface forces t, and nF is the unit outward vector normal

to the fluid boundary.

2.4.2 Incompressible fluid

For the case of an incompressible fluid, the density of a particle does not change as a

function of time (Dp/Dt = 0) and the continuity equation for a fully incompressible

fluid reduces to

V - v = 0 (2.33)

2.4.3 Almost incompressible flow

For an almost incompressible fluid, the density can be expressed as p = po+ Ap, and

Ap/p 0 << 1, such that p ~ po can be assumed.

The bulk modulus of a fluid or solid, K, is defined as

K = PO O (2.34)

and therefore is a measure of the change of density due to a change of pressure at

constant temperature T. Then,
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1 Dp 1 1 p)
p0 Dt Po OP!T

Dp 1 Dp

Dt - Dt

Using equation (2.35) the continuity equation for an almost incompressible fluid be-

comes

1
- [p* + (v- v) -Vp ]+ V -v = 0
K

and the ekk term in the constitutive equation (2.29) is neglected.

2.5 Structural equations

In general, structural equations are written using the Lagrangian formulation. The

equations of motion are derived from the momentum equations using appropriate

constitutive relations. In what follows, the equations of an isotropic elastic material

will be described.

2.5.1 Isotropic linear elastic material

Neglecting damping effects, the momentum equations for a structure are

Dv D 2 uVSfB

Dt Dt2 (2.37)

The constitutive relations for a linear elastic isotropic material (in Cartesian co-

ordinates) are

Ev E

(2.38)

with

1
Eij = (zi,j + ny,2) (2.39)

(2.36)

Here u is the vector of structural displacements, -rs is the stress tensor, fB is the
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vector of body forces, p is the density of the structure, E is the elastic or Young's

modulus, v is Poisson's ratio, and the ig is the (ij)th component of the strain tensor.

The boundary conditions needed to solve equation (2.37) are

us in SS (2.40)

rs ns = ts in S (2.41)

and initial conditions

u(t = 0) = UO; n (t = 0) = no (2.42)

where Su is the part of the structural boundary with imposed displacements uS, Sj

is the part of the boundary with imposed surface forces t and ns is the unit outward

vector normal to the structural boundary.

Since the equations of motion of the solid are described using the Lagrangian

formulation, no convective terms are present. Furthermore, because in the Lagrangian

formulation the particles are being followed, the mass conservation is automatically

satisfied and there is no need to impose it separately as was the case for the fluid flow

equations.

For an almost incompressible material (v -+ 0.5) numerical problems can be ex-

pected when using the constitutive relations (2.38). To overcome this problem (see

[2]), the pressure is introduced in the finite element equations as a separate degree of

freedom and mixed interpolated elements are used.

The pressure is equal to

p- _ aa_ =-K Ea (2.43)
3

Introducing the pressure into the constitutive relations (2.38),

E
-p + _ (2.44)Tij ij +(1 + v)"
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where E'j are the deviatoric strain components

3' (2.45)

Another equation is needed to relate the pressure to the displacements. This

relation is provided by (2.43) and the relation between the bulk modulus of the

material and the Young's modulus and Poisson's ratio

E
K =_ (2.46)

3(1 - 2v)

2.6 Fluid flow-structural interface conditions

We are interested in coupled systems where fluid flow-structural interactions take

place. Hence, in addition to the fluid and structural equations, equilibrium and

compatibility conditions must be satisfied at the fluid-structure interface.

The equilibrium conditions at the interface can be expressed as

rF nF + 7S nS = 0 (at interface) (2.47)

where nF and nS are unit normal surface vectors pointing outward of the fluid and

structural domains respectively.

This condition ensures that the forces are in equilibrium at the fluid-structure

interface.

The compatibility condition at the interface requires that

6t = u, (at interface) (2.48)

where nj is the vector of displacements of the fluid (domain) at the interface and u,

is the vector of displacements of the structure at the interface.

This condition ensures that the material will not overlap and no gaps will be

formed at the interface.
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Chapter 3

Finite element formulation

In a finite element formulation, the weak (or variational) forms of the governing

differential equations of motion are considered, and using the Galerkin procedure the

test functions correspond to the finite element interpolations.

In what follows, some spaces needed in the formulation of the finite element

method will be defined (see also [2], [22]).

Let us denote by Q a bounded domain in !R' (with n = 2 or 3) and by S its

boundary.

L2 (Q) represents the space of functions that are square integrable over Q,

L 2 (Q) {q: Jq2 dQ < +oo}

Similarly, L2(Q) is the space of vector functions that are square integrable over Q,

L 2 (Q) {q: f q dQ < +oo}

The Sobolev space is defined for any non-negative integer value k as the space of

square integrable functions over Q, whose derivatives up to order k are also square

integrable over Q

Hk(Q) q E L2 (Q) "q E L2 (Q) V Inl ; k}
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For vector valued functions, we have

Hk(Q) ={v : vi E Hk(Q)

3.1 Fluid flow discretization

The variational formulation of an almost incompressible fluid modeled using the

Navier-Stokes equations and expressed in the ALE description of motion (in Cartesian

coordinates) can be stated as:

Given fB, find v E Hl(Z) with vls, = vs and p E H 1 (Z) such that

J+ p[vi , (vj - 6j)] d + ir d =f (31)

k k

J [ [p* + p,j (vi - v)] dV + p vi, dVo = 0 (3.2)

with

RF __ BSf S Ss1Ff A7d + f Sff Af dS +fSjV fiSS dS (3.3)

where V E H 1(#) and p E H 1 (f) are the virtual velocity and pressure, Z is the

volume of the fluid domain, v and p are the velocity and pressure functions to be

calculated, vr is the mesh velocity, eij and Tj are the (i,j)th components of the virtual

velocity strain tensor and the stress tensor respectively, K is the bulk modulus, Sv

is the part of the boundary with prescribed velocity v', Sf is the part of the fluid

boundary with prescribed tractions of components fS', and S, is the part of the

boundary corresponding to the interface, where tractions with components fASS are

exerted by the structure onto the fluid.

If the fluid is incompressible, K -+ oc, and the term containing K in equation (3.2)

vanishes.

Equations (3.1) and (3.2) must be discretized in space in order to be solved nu-

merically. The following finite element spaces are introduced for the velocity and
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pressure,

Vh - {Vh C Hl(V),v|hS' = vs(t)} (3.4)

h - {Vh E H'(Z), v| =hIS 0} (3.5)

Qh - {h C H1(Z)} (3.6)

Q - cp E H 1 (Z)} (3.7)

Therefore, the finite element problem can be stated as:

Given fB, find vh E Vh(#) and ph E Qh(V) such that

Sp [(V * +v dv± -+ J d f (3.8)

(ph)* + Ph (Vh )] df + f v d9= 0 (3.9)

with

RF fB dV j@V)Sf fSf dSSI fSS dS

for all vh E VAh(V$) and ph E

In the finite element procedure, the space Vh depends on the elements chosen to

discretize the volume V. In a 2D space, we can choose, for example, quadrilateral

bilinear or parabolic elements. The pressure interpolation, however, cannot be chosen

arbitrarily (see for example [2], [22]), otherwise, the formulation may not be stable.

In order to have a stable scheme, the inf-sup condition must be satisfied. In this

thesis, 9/3 elements, which satisfy the inf-sup condition, are used to calculate the

fluid response of the coupled system. The 9/3 element is a quadrilateral 9 node

element, in which the velocities are interpolated from the 9 nodes and the pressure
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Figure 3-1: 9/3 element.

is taken to be a linear function inside the element (3 unknowns per element) and

discontinuous across elements, see figure (3-1).

The solution obtained using the discretized equations (3.8) and (3.9) is good for

low Reynolds (Re) number flows. However, if the Reynolds number is increased,

oscillations appear due to the presence of the convective terms (v - '9) - Vv (here

the Re number is based on the relative velocity v, = v - 9). To avoid oscillations,

upwinding is introduced into the equations. The idea is to introduce some artificial

diffusivity to stabilize the convective term but without degrading the accuracy of the

solution (see for example [23], [2], [24]). In this work, the following upwind terms,

proposed by D. Hendriana and K.J. Bathe [25], are used

S -- j rm |v - a | dVm" (3.11)

and

F(,Yj )2 + OYJ \2- 3/2

rh-=e -) + th e (3.12)

where Zi(") is the m'^ element volume (2D), the y2 are the coordinates of the body
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in a fixed Cartesian coordinate system, and r, s are the isoparametric coordinates of

the element (see figure 3-1).

Note that a convective term is also present in the continuity equation, however,

the velocity is divided by r, which is usually a very large constant (~ 10' Pa for water,

for example), and therefore, an upwind term will not be necessary in the continuity

equation.

The dynamic equations of the fluid flow, including the upwinding can be repre-

sented as

t+AtW - t+AtWNS + t+AtWup = t+AtfR (3.13)

where t+AtWNS and t+AtWup represent the terms coming from the standard Galerkin

procedure and the upwind terms respectively, and t+AtR is the known load vector due

to boundary conditions.

Because equations (3.13) are nonlinear, to obtain an accurate solution at time

t + At the equations are linearized and iterations are performed at each time step

using, for example, the Newton-Raphson procedure.

Using a Taylor series expansion of (3.13) in time

t+tW ~ tW + tW* At (3.14)

and equation (3.13) can be expressed as

tW* At ~ t+AtR - tW (3.15)

To calculate the time derivative 'W* = (u , we have to consider that the

volume V is moving and deforming.

In deriving the expressions for tW*, the following identities are useful (see for

example [21], [261, [27] and chapter 2)

g dV = f g J dVo = [g* + g V -v] dV (3.16)
-0t v at vo0
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(Da *

-y
Da* Oa D0k

DYi Dyk Dyi
(3.17)

Equation (3.16) is derived from equation (2.14) and (2.15). Equation (3.17) can

be derived as follows

( Oay J) at D ay( )

ayi at

0 Oa )

+ K:o VOy UYi/

±~ a (g>
Da* Da D0k

DYi DYk Dyi

Hence, the expressions for 'W* become (see also [26], [27])

Wks) At k PJ pi [AV~*

Apa
a-Iv

v 

+ (AV - Z

Vk DVkc
-- p -

yk DyJ

Dy2 Dyn Dyn

p[V*+ (V -'

Dv-
Vk) Ovj

ayk
+ (vk - ) (AVi

(y O~

DYk ± yg DYk

D8/k OVkDOAii
+ Dy y y

Dyv lBy DA
k) DJ-

ayk B

Dv, DA'ij

Oyg 0yk .

80k 8 AVk
-On DYn dV -

DLc DVk ,Afti~ df +
Dyn Dyn Dy

'nd9V

Wks) At

+ - (vk

Ovk D9Ait"

OyN Dyk
+ (Avk - Af/k)

Dp
DOJ dV +
aykI

p) DA -tn (vk - )DAPdY -
OYn Dyk Oyk

(iOVk + [p

.P + p*(Vk- k) a
v Y Ky 0 yk }Dyn
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DYk aYi

(3.18)

(3.19)

(3.20)
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Ov, 02 Af2 VI_ __12V, + _2V, A 7 V

+ -j 'A | |Avj vj 02V2k) +O~k 0 yjY OYk ayJ2ajvj( Vj )y,2
ryj |vj - -v Oj2 ak |j df +

rj I|v. - 04| _ d9' (3.21)
Byj 3 yj Bym

and

r = j + a Af (3.22)
3 ( r as) '

where 'Wks(v) and 'Wks(p) are the contributions to tW* from the momentum and

continuity equations respectively, 'WG, is the contribution from the upwind term,

and Avi, Ap are the increments of vi and p. There is no sum in j in equation (3.22).

The resulting linearized finite element equations can be expressed in matrix form

as

MvV 0 Mv KV Kv, Kv Rv Fv
+ p

0 MPP Mp KPV K PP K, 0 F,

(3.23)

where the individual matrices are obtained from the expressions of 'Wks(v), tWs(,)
and tWGp; v, p, i, v, are the increments of velocity, pressure, mesh displacement and

mesh velocity with respect to the last iteration; and Fe, F, contain the known terms

of the linearization. Because the mesh displacements and velocities are arbitrary, an

algorithm must be provided to calculate them from the displacements and velocities

at the fluid-structure interface and any other moving boundary.
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3.2 Structural equations

The weak form of the transient structural equations can be stated as ([2])

Given f', find u E H'(Q) with ulsu = u' such that

i p iii dQ + 0 TilS dQ = Rs (3.24)

with

Rs _ j fBdQ Sf fSf dSf I SF dS (3.25)
Jn JSf iS1

for all ii c H'(Q). Here Q is the material volume, U- is the vector of virtual dis-

placements, jj and rg are the (i,j)th components of the virtual strain tensor and

the stress tensor respectively, fB is the vector of body forces, Sf is the part of the

structural boundary with prescribed tractions of components fiSf and Sr is the part

of the boundary corresponding to the fluid flow-structural interface, where tractions

of components fASF are exerted by the fluid onto the structure.

Finite element spaces for the structural equations are defined as follows,

Vh -Uh C H'(Q), u|hs = us(t)} (3.26)

V - {h E Hl(Q),u|hIs = 0} (3.27)

and the spaces Qh and Qh are defined by (3.6) and (3.7), respectively.

The finite element problem can be stated as

Given fB, find uh E Vh(Q) such that

i p 6 dQ + T s dQ = Rs (3.28)

with

Rs h fBdQ + Qi4)Sf S S1dS+j (j 1 h)SI fiSF dS (3.29)
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for all jjh E fh (Q)

Equation (3.28) is the displacement based finite element formulation for structures.

The finite element matrix equations from (3.28), neglecting damping effects, can

be written as

M ii + K, u = R, (3.30)

where M, and K, are the mass and stiffness matrices, and u, ii are the vectors

of displacements and accelerations. Equation (3.30) is assumed to be linear in this

thesis.

When the solid is almost incompressible, the displacement based finite element

formulation fails to give accurate results (except in the two-dimensinal plane stress

case). To overcome this problem, mixed elements are used and the equations are

re-formulated in terms of displacements and pressures. The finite element displace-

ment/pressure formulation can then be stated as:

Given fB, find uh E Vh(Q) and ph E Qh(Q) such that

h p i4 dQ + j(e,)' (r h)' dQ - jf p h dQ - Rs (3.31)

- j ( + u ph dQ = 0 (3.32)

for all j (E f f, ph E Qh. Here e' and r' are the deviatoric parts of the strain and

stress tensors, p is the pressure and the overbar indicates virtual quantities.

The finite element matrix equations corresponding to equations (3.31) and (3.32)

can be written as

(MuU 0)(:)+(:UUK '~ (RU) (3.33)
0 0 K K, 0 p 0

The elements to be used with the displacement/pressure formulation must satisfy

the inf-sup condition in order for the system of equations to be stable. In this thesis,

9/3 mixed elements will be used when using plane-strain and axisymmetric 2D mod-
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els and 9 node elements when using plane stress 2D models (and the displacement

formulation). Displacement based formulations can be used with 2D plane stress

models even if the solid is almost incompressible (v -+ 0.5) because the strain in the

thickness direction of the body can accommodate the incompressibility constraint.
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Chapter 4

Coupling procedures for fluid

flow-structural interaction

problems

Consider a system composed of fluid and solid parts as shown in figure (4-1). We

are interested in solving for the response of such a system. The first step is to choose

an appropriate mathematical model to describe the behavior of the fluid and the

structure. The next step is to couple the fluid and structural equations to obtain the

response of the system.

Since problems in which viscous and convective effects are important are consid-

ered in this thesis, the Navier-Stokes equations are used to model the fluid. Different

ways of solving the coupled (almost) incompressible Navier-Stokes and structural

equations are described.

The chapter is organized as follows. A procedure to couple fluid flow and structural

equations is presented and then the two main approaches used to solve fluid flow-

structural interaction problems are described: the simultaneous solution and the

partitioned procedures. A new scheme is introduced which has the advantage that it

is unconditionally stable and that the unknowns are not solved all together but in

each domain (fluid and structure) at a time, allowing us to separate the solution of

the structural equations from the solution of the fluid flow system.
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F
Sf

Fluid-structure interface

Figure 4-1: General fluid-structure interaction problem.

4.1 Coupling procedure

One of the most important characteristics of fluid flow-structural interaction problems

is that the fluid domain can greatly change as a function of time. As a result, the

ALE formulation of motion has to be used for the fluid-flow. Then, in addition to

the calculation of the velocity and pressure fields, the mesh displacements have to be

calculated.

In the analysis considered here, the same layers of elements (number and type)

are used along the interface in the discretization of the fluid and structural domains.

Hence, the force equilibrium conditions at the fluid flow-structural interface are di-

rectly satisfied through the element assemblage process. However, the compatibility

conditions at the fluid flow-structural interface must be enforced since the fluid flow

and structural variables are velocities and displacements respectively.

It is convenient to solve for the natural variables, displacements for structures and

velocities for fluids. An advantage is that the same algorithm can be employed for

both transient and steady state analysis. Also, natural variables are smoother than

their time derivatives.

At the fluid flow-structural interface the particles that correspond to the fluid
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and solid parts move together, i.e. they have the same displacements, velocities and

accelerations. Therefore, in the ALE formulation the nodes at the interface should

correspond to Lagrangian nodes. Assuming that no slip at the nodes of the fluid flow-

structural interface is allowed, the displacements can be solved for at the interface,

and these displacements can be used to calculate velocities at the interface (and hence

the velocities of the fluid particles at the interface).

Since mesh displacements and velocities are calculated at the fluid-structure in-

terface but can be arbitrarily specified otherwise, we can further assume that they are

a linear function of fluid-structure interface displacements (and of the displacements

of any other moving boundary or free surface),

n = L(u') (4.1)

v = L(v) (4.2)

where f6 and -;r are the mesh displacements and velocities respectively, u1 and vi

are the values of the displacements and velocities at the interface and L is a linear

operator. These interpolations, although not general, allow the solution of the ex-

ample problems to be presented. In some cases, it can be necessary to allow some

slip along the interface in order to preserve mesh regularity. In that case, the above

equations are no longer valid and an additional equation governing the slip movement

of the mesh at the interface must be provided. In what follows, the assumption that

structure displacements coincide with nodal mesh displacements at the interface is

used.

The linearized finite element matrix equations for the fluid, without including

pressure terms explicitly (they are assumed to be contained in the variable vector v)

are
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MU MIF I II _ I K IF VI

MFI MF F KF FI + MF{ L K F . FKV V((4.3)

kIL 0 W RI F,

kit 0 F RIPF

where M, and Kv are coefficient matrices of the linearized fluid equations, M and

kv are coefficient matrices from the ALE terms, vi and vF are the vectors of velocity

increments corresponding to the fluid flow-structural interface and interior fluid nodes

respectively, ft' and fjF are mesh displacement increments at the interface and interior

nodes respectively, Rf is the load vector corresponding to the fluid and Ff contains

the constant terms of the linearization. Equations (4.1) and (4.2) were assumed to

hold in deriving equation (4.3). In what follows, for simplicity of notation, the linear

operator L is omitted (it is assumed to be contained in the matrices M and k().

The finite element matrix equations corresponding to the linearized behavior of a

general (nonlinear) structure are (neglecting damping effects)

Mss MsI 6s K"ss KsI us R FS

MIS MI,' fI + KIs KI,' uI RI F, (44

where Mu and Ku are the mass and stiffness matrices corresponding to the structure,

u1 and us are the vectors of displacement increments corresponding to the fluid-

structure interface and interior structural nodes respectively; R, is the structure load

vector and F, contains the constant terms of the linearization.

Assuming that no slip of nodes is allowed at the fluid-structure interface, vi = h'

and ii (continuity condition) and R=+RI 0 (compatibility condition). Then,

the linearized coupled fluid flow-structural equations can be expressed as

A + B + CU = G (4.5)
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where

/MSS MS1 0

A= MIS MU+M" MIF (4.6)

0 MFI MFF

0 0 0

B = 0 KII+10 I K IF (4_7)

0 K FI+ 1YIF K F

Kss Kas 0

C KsK+K 10 (4.8)

0 N F 0

/ \SRf-Fi

G = -FI - F' (4.9)

R F - F

and

U = uS u Iu F (4.10)

here uF are the displacement increments of the interior fluid particles, which are not

calculated (see matrix C), but instead, the fluid velocity increments are calculated

(see matrix B).

Solving for displacements at the interface, the coupling between fluid and structure

becomes easy to perform.

Consider first the steady state case,

aS d.I =*F (4.11)

and
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fs = nl, = 0 (4.12)

Then, the steady state coupled fluid flow-structural equation (4.5) become,

KSS KSI 0 us RS - FS

Krs KII+K KIF UI -F1 - FI (4.13)

0 N F K FF V F RF - F

where vF is the vector of internal fluid velocity increments.

To solve for the transient fully coupled fluid flow-structural interaction response,

time integration schemes need to be chosen. In this work, implicit time integration

is used, and hence the time discretization can be written as follows (using a linear

multistep method)

e Fluid (first order differential equation in time)

The time integration scheme has the form:

t+Atn = ae t+Ato + f ( tv, tn, ...) (4.14)

where a is a constant that depends on the specific time integration scheme

employed and f is a linear function of the known velocities and accelerations at

times t, t - At, t - 2At, ... With the equilibrium equations to be satisfied at

time t + At (for an implicit method), the linearized fluid flow equations can be

written as

Mv t+Ati + Kv t+Atv -+Atf (4.15)

Solving for '+Aty gives

(a M + Kv) t+At -vz - MV f ( tv,t ) (4.16)

where t+Atf contains the load vector and the constant terms of the lineariza-

tion.
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* Structure (second order differential equation in time)

The time integration scheme has the form:

t+Ata = 3 t+Atu + g (tu, it, t , ... )

t+Atg 7 t+Atu + h (tu, tin, I6,i ...)

(4.17)

(4.18)

where 3 and y are constants that depend on the actual integration time scheme

employed and g and h are linear functions of the known displacements, velocities

and accelerations at time t, t - At, t - 2At, ... Satisfying the equilibrium

equations at time t + At gives

Mu t+At% + Ku t+Atu = t+Atks (4.19)

Solving for t+Atu results in

(# Mu + Ku) t+Atu = t+Atfis - MU g (tu a, ,%, ...) (4.20)

where t+ RtS contains known terms.

o Fluid flow-structural interface.

The time integration scheme has the form:

t+AtV! - 7 t+AtuI + h (tu,t vl,t 'I, ...) (4.21)

Note that here the same scheme is used as for the time integration of the dis-

placements of the structure, see equation (4.18).

Introducing equation (4.21) into equation (4.16) and separating the unknowns

corresponding to the interface from the internal fluid flow unknowns we obtain
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Sy(aMI' + KI') aMIF + K IF

7(aMF' + KI) aMFF + K FF

where the load vector Rf contain the known terms of the linearization and

time integration. Here, the contributions of the mesh movement to the fluid

coefficient matrix are not shown explicitly.

The fluid flow and structural equations can now be coupled using equations (4.20)

and (4.22), and the linearized fully coupled incremental fluid flow-structural interac-

tion equation becomes

RKSSU

RISU

0

U

1

0

]KIF

]RFFK /I

Us

UI

VF)

where from equation (4.20)

\I
As

AI

fF
f I

RSS = /MSs + Kss

RsI = s+ KfsMs =u s

U U U

(4.23)

(4.24)

and from equation (4.22)

=(aM' + KL')

RIF cIF F
V V'V

f (FI - (ceMF' + Kr'I)RF aMF VKF

(4.25)

KFF -cmF + FF
V V 'V

The variables corresponding to the fluid and the interface were defined above; Ns
corresponds to the load vector of the internal structural degrees of freedom (including

the known terms).
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4.2 Different approaches for the solution of fluid-

structure interaction problems

There are two main approaches that are used to solve fully coupled problems

" Simultaneous or monolithic solution: the equations are coupled and solved to-

gether;

" Partitioned or block solution: the system is divided into subsystems (correspond-

ing to the fluid and structure domains), and each subsystem is solved separately.

"Boundary conditions" at the fluid-structure interface act as coupling terms be-

tween the two subsystems.

4.2.1 Simultaneous solution

Using the simultaneous solution procedure, the coupled fluid flow and structural equa-

tions, (4.13) for a steady-state analysis or (4.23) for a transient analysis, are solved

together and therefore the matrix equation to be solved contains all the unknowns

(from the fluid and structure).

Since the fluid flow coefficient matrix is non-symmetric, when solving equations

(4.13) or (4.23) using the simultaneous solution procedure, the complete fluid flow-

structural interaction coefficient matrix is usually treated as non-symmetric. In ad-

dition, due to the nonlinear nature of the coupled system, the complete system of

equations must be iterated upon until convergence is reached in each time step. This

requires a large amount of calculations at each time step, and for large systems (of

many degrees of freedom) the computer capacity and speed may rapidly become a

constraint. However, using the simultaneous solution procedure unconditionally sta-

ble algorithms (for the linearized system) can be obtained by choosing appropriate

time integration schemes for both the fluid flow and structural equations. For a stabil-

ity analysis of the fully coupled fluid flow-structural interaction problem see chapter

chapter 5.
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4.2.2 Partitioned procedure

In the partitioned procedure the response of the coupled fluid flow-structural interac-

tion system is calculated using already developed fluid flow and structural solvers. In

this way, modularity is achieved and the complete system is divided into subsystems

(corresponding to the fluid and structure, although subdivisions of them can also be

considered). This approach allows the solution of larger systems and more flexibility

in the selection of meshes for the fluid and structure.

Partitioned procedures for solving general coupled field problems have been stud-

ied together with accuracy and stability considerations, see [8] [9] [28]. A general par-

titioned procedure for fluid flow-structural interaction problems has been described

in [5], [7].

The partitioned procedure consists of dividing the coefficient matrix of equations

(4.13) or (4.23) into an implicit and an explicit part. The explicit part is put on

the right hand side of the equilibrium equation and a predictor is applied to it. The

equations are then solved factorizing the implicit part of the coefficient matrix.

In essence, the partitioned procedure can be thought of as a Gauss-Seidel iterative

algorithm except that the predictor used can contain linear combinations of past

solutions and their derivatives. Also, using partitioned procedures to solve a coupled

equation, the coefficient matrix is partitioned in such a way that the equations from

one field can be separated from the equations of the other field.

When dealing with fluid-structure interaction problems, the two fields, fluid and

structure, have a common boundary, see figure (4-2). Denoting the two fields by x, y

and the boundary by b, the coupled coefficient matrix can be written as

KXX Kxb 0

K = K bx Kx + KY Kb (4.26)

0 Kyb K YY

The coefficient matrix, K, is partitioned as K = K1 + K 2 where K1 is the implicit

part of the matrix and K 2 the explicit one (i.e. the predictor is applied to K 2).

A useful partitioned procedure for fluid flow-structural interaction problems re-
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y field

x field

Figure 4-2: Finite element discretization of a fluid-structure interaction problem.

sults in the following partition of the coefficient matrix

K2, K2b 0 0 0 0

K = Kbx Kb Kb, + 0 Kyb 0 (4.27)

0 0 K 0 Kyb 0

where the first matrix is K 1 , the implicit part, and the second is K 2 , the explicit one.

Since Kxx and KYY are solved implicitly (i.e. they are part of K 1), the algorithm

corresponds to an implicit-implicit partitioned procedure.

Usually, structural solvers calculate displacements and viscous fluid solvers ve-

locities, and then equations (4.3) and (4.4) can be used for the fluid and structure

respectively in a partitioned procedure. Using equation (4.14) for the time integra-

tion, equation (4.3) becomes

aMI' + K"' + 1 OMIF +K IF ( I

aMMFI + ±7I 4 )\FF _ FF vF
V V V1W V ) ((4.28)

kI 0 'RI - PNI

RF 0 fF RF-5 ]
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and using equation (4.17), equation (4.4) becomes

#Mss + Kss #Ms + Kas us R - FS
S+ U M' I I ( )() (4.29)

)Mus1+ Kus1 OM'' + KI, u! RI - $P{

where F contains known terms from the linearization and time integration (the linear

operator L is assumed to be contained in the matrices M and K as before).

To solve the fully coupled fluid flow-structural interaction equations the following

steps must be performed,

1. Calculate predicted displacement and velocity (incremental) values at the inter-

face, i and VI, from the previous iteration (the predicted value can be just

the value obtained in the last iteration or may be a linear combination of past

solutions).

2. Solve the fluid equations (4.28) using the predicted velocities and displacements

at the interface, that is to say solve

(aMFF + FF) VF = (RF - iF) - (aM' + K7 F+ MF) VI _ kF II (4.30)

3. Using the calculated fluid velocity increments, vF, calculate the interface load

vector that acts on the structure due to the fluid

RI = -R = -[ (aMIF +KIF) F+(aMI+KI l0) +$k I+N ] (4.31)

4. Calculate the structural response using the calculated load vector at the inter-

face

#Mss + Kss OMs + Ks ( us R -sF
U U U S S(4.32)

OM'ss + KKsI KRu - - (32
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5. Iterate until convergence is achieved.

Putting all steps together in matrix notation and integrating VI using equation

(4.21) we obtain

QMss + Kss

/MIS + Ks

0
\ 0

Fs 0

#PF 0

/Mas + KsI

/Mg' + KI'

0

0

aMIF ± KIF

aMFF + FF

0

7(aM + K' +NMl)+k

I + K I + MF) +

where the subscripts i, i

contains known terms.

Comparing equation

the coefficient matrix of

+ 1 indicates fluid structure iteration step, and the vector F

(4.33) with equation (4.27), the partitioning performed on

the fully coupled system is evident.

If the coupled system is linear and the field equations symmetric, then, it was

reported that on choosing an appropriate predictor, unconditionally stable implicit-

implicit partitioned algorithms can be obtained with good accuracy characteristics

without performing iterations at each time step [8] [9]. If the predictor is not good

enough, iterations can be performed to achieve a better accuracy. These situations

are refererred to as loose (no iterations) and strong coupling. For a more general case,

in which the system response is nonlinear, iterations are needed to converge with the

nonlinear coupling terms. For a fluid flow-structural interaction problem in which

the fluid is modeled using the Navier-Stokes equations unconditional stability is very

difficult to assess and proposed partitioned algorithms are in fact conditionally stable.
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4.3 Proposed scheme

Simultaneous solution and partitioned procedures have been used to solve fluid flow-

structural interaction problems. However, as was mentioned before, improvements

in these schemes are needed in order to obtain more robust, reliable and effective

procedures. It is desirable to obtain an algorithm with the following characteristics:

1. unconditionally stable;

2. computationally efficient (in terms of amount of calculations performed in each

time step);

3. useful for both dynamic and steady state analyses.

The proposed scheme satisfies all three requirements.

In the simultaneous solution procedure using equation (4.23) unconditional sta-

bility can be obtained by choosing appropriate time integration schemes. To increase

the efficiency of the solution, we propose to solve equation (4.23) (or equation (4.13)

in a steady-state analysis) by condensing out the internal structural degrees of freedom

prior to solving the system equations at each time step (or load step).

Condensing out the internal structural degrees of freedom the following equations

are obtained

RII - kIs (RSS) -' 'SI + -II RIF UI ( I _ -iS sSY -S

KFI KFF . F fF

(4.34)

Equation (4.34) is completely equivalent to equation (4.23), but the unknowns

to solve for in equation (4.34) correspond only to the fluid flow degrees of freedom.

Since the fluid flow-structural interaction problem is nonlinear, equation (4.34) must

be iterated upon in each time step until convergence of the solution is obtained. A

Newton-Raphson iteration scheme is used for this purpose in this work [2].

Once the fluid flow response has been calculated using equation (4.34), the internal

nodal point displacements of the structure are obtained using
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us _ ss - s u') (4.35)

Equations (4.34) and (4.35) show that the proposed scheme conserves the uncon-

ditional stability and accuracy characteristics of the simultaneous solution procedure.

At the same time the unknowns corresponding to the fluid flow and structural equa-

tions are solved separately. Of course, the calculated response contains all the effects

of the fully coupled fluid flow-structural interaction problem.

The steps needed at each time step to calculate the response of the fluid flow-

structural system are

1. Assemble the structural coefficient matrix and condense out the internal de-

grees of freedom (structural displacements other than the fluid flow-structural

interface degrees of freedom).

2. Assemble the fluid flow coefficient matrix considering that the nodal motions at

the fluid-structure interface are calculated as displacements (and therefore the

time integration scheme for the displacements must be introduced in the fluid

flow coefficient matrix), equation (4.22).

3. Add the condensed structural coefficient matrix (obtained in step 1) into the

fluid flow coefficient matrix.

4. Solve the nonlinear equations obtained from step 3, equations (4.34).

5. Using the calculated displacements at the fluid-structure interface, calculate the

internal displacements of the structure, equation (4.35).

If the structural equations are linear and a constant time step is used in transient

analysis, then the constant matrices in equations (4.34) and (4.35), should be calcu-

lated only once, stored, and repeatedly used in steps 3 and 5. Also, since the structural

coefficient matrix is symmetric a non-symmetric coefficient matrix is considered only

in step 4 (i.e. when solving for the fluid response). If the structural equations were

nonlinear the static condensation could be performed at each iteration or only in
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certain intervals (with the requirement, of course, that the out-of-balance load vector

is correctly calculated in each iteration) [2].

The number of iterations performed in each time step is given by the solution

of equation (4.34) only (and (4.35) if the structural equations are nonlinear). If the

structure is very compliant, convergence is reached more rapidly than in a partitioned

procedure.

The disadvantage of the proposed scheme is that the bandwidth of the fluid flow

matrix is increased due to the condensation of the internal structural degrees of

freedom. Also, if the structure is very stiff, an ill-conditioned coefficient matrix for

the coupled system can result, but in that case a partitioned procedure is probably

more efficient and better used. Of course, the condensation of the structural degrees

of freedom is not effective in case the contribution of the structure to the total number

of degrees of freedom of the system is negligible.
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Chapter 5

Stability analysis

A discussion of different time integration schemes can be found in [2] as well as a

stability and accuracy analysis of them. Briefly, there are basically two types of

schemes: explicit and implicit ones. The explicit schemes are usually faster per

time step but a large number of time steps needs to be performed because they are

conditionally stable (the time step required for stability must be smaller than a certain

critical time step). On the other hand, in the implicit schemes the computational cost

per time step is higher, but unconditionally stable schemes can be found, and the time

step required need not be so small.

For a linear system, the solution vector at time t + At can be expressed as

t+AtX - A tX + t+AtF (5.1)

where A is called the amplification matrix and t+AtF is a vector containing the effects

of the boundary conditions (forces and applied displacements/velocities).

To analyze the stability of the time integration, we analyze equation (5.1) for the

case in which the vector t+AtF is zero at all times (physically, the system is subject just

to initial conditions). For this situation, the solution vector t+LAtX must be bounded.

Assuming that At does not change, after n timesteps we have

fztX = A" OX (5.2)
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For nAtX to be bounded, the modulus of the maximum eigenvalue of the amplification

matrix A must be less than or equal to one (see for example [2]). In a conditionally

stable scheme, this is true just for values of the time step At smaller than a critical

time step Atc,, and in an unconditionally stable scheme, this is true for any time step

size. For an incompressible or almost incompressible fluid, the time step limitations

of explicit methods is very severe (Atcr - 1/c, where c is the sound velocity in the

medium, which is 00 for an incompressible fluid). Hence, implicit methods are used

to solve the problem. Among those, unconditionally stable methods are of course

preferred because they have no limitation on the time step size, the only limitation

is given by accuracy considerations (and, in a nonlinear problem, convergence of the

iterative algorithm employed).

5.1 Linearized fluid flow equations

A stability analysis, can only be performed on a linear system. So let us take the

simplest case of a viscous linear fluid to analyze the stability of a time integration

scheme for the fluid flow: the Stokes problem. In the Stokes problem, the fluid is

assumed to be fully incompressible and in addition, the convective terms are neglected,

leading to a system of equations of the form

MVV 0 t+sti KVV KvP t+Atv t+AtRf

0 0 t+tg K T 0 t+t p 0(53

where the superscript T indicates transpose and v and p are the actual velocities

and pressures. The matrices Mvv and Kev are constant and symmetric, and Kv, is

constant.

Let us assume that the columns of the matrix Q contain the basis vectors of the

null space of KT. Then,

KT Q=0 (5.4)
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and because KTv =0, we can express v as

v = QV (5.5)

Using this change of variables into equation (5.3), and multiplying by QT, (taking

into account that Q does not change in time because K T is constant) the following

equation is obtained

QTMvvQV + QTK vQV = 0 (5.6)

This equations can be re-written as

BV + DV = 0 (5.7)

where B and D are positive definite matrices. If we look for solutions of the type

U = e-A t, the following generalized eigenproblem is obtained

D# = AB4 (5.8)

By choosing D-orthonormal eigenvectors, the problem is decoupled and a system

of single degree of freedom equations is obtained

ji + Ajvj = 0 ; Z = 1, ... , n (5.9)

Therefore, the n coupled equations of (5.7) are equivalent to n single degree of

freedom equations of the form (5.9). The stability analysis can then be performed on

a single degree of freedom equation.

In this thesis the trapezoidal rule, Euler backward and Gear's time integration

schemes, which are unconditionally stable when applied to equation (5.9), are con-

sidered for the fluid flow equations.
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5.2 Linear structural equations

The displacement based finite element equations of motion of a linear (or linearized)

structure can be written as

Mu t+AtGj + Ku t+Atu = t+AtRu (5.10)

If we look for solutions of the type u e-i t , the following generalized eigen-

problem is obtained

w2M 4# Ku# (5.11)

By choosing M-orthonormal eigenvectors, the problem is decoupled and the system

of single degree of freedom equations obtained is

z + 2i = 0 i = 1,...,n (5.12)

Then, the stability of the system can be assessed from a single degree of freedom

equation. For the displacement/pressure formulation, a similar procedure as that

employed for the fluid equations can be performed, and the equations can be decou-

pled into single degree of freedom equations of the form (5.12).

In this thesis the trapezoidal rule, which is unconditionally stable and second

order accurate in time when applied to equation (5.12), is employed to solve for the

time response of the structural equations.

5.3 Fluid-flow structural interaction equations

When solving a fluid flow-structral interaction problem, unconditionally stable algo-

rithms are desirable because it is important to be able to distinguish between physical

instabilities and numerical ones.
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5.3.1 Partitioned procedures

When using implicit-implicit partitioned procedures, one looks for an unconditionally

stable scheme. However, the stability of the partitioned procedure is usually difficult

to assess. In [8] and [9], a general theory of partitioned procedures, including the

stability and accuracy of each of them was developed for linear structure-structure

interaction problems. There, it was shown that the predictors play an important role,

not only regarding the stability of the procedures but also for the accuracy.

One of the principal drawbacks of the partitioned method is that although the

equations in each field are integrated using unconditionally stable time integration

schemes, the iterative procedure is usually conditionally stable. Some stabilization

techniques were considered in [4] for a particular type of fluid structure interaction

problem (in which both the fluid and structural coefficient matrices are symmetric and

the equations are linear). However, an unconditionally stable partitioned procedure

for the solution of the coupled (almost) incompressible Navier-Stokes equations and

structural equations is not yet available.

5.3.2 Proposed scheme

In this section, the stability of the coupled system (4.23) is considered, and in partic-

ular a stability analysis is performed for the case in which the trapezoidal rule is used

for the structure, and the trapezoidal rule and Gear's time integration schemes (both

second order accurate in time) and the Euler backward method are used for the fluid.

The analysis performed here is by no means complete but is presented to give some

insight into the scheme used.

Stability considerations regarding the combination of time integration schemes for

the fluid and structure are also applicable to partitioned procedures because they use

in general different time integration schemes for the fluid and structural fields and

in addition partitioned procedures must converge to the solution of the simultaneous

solution procedure.

Consider equations (5.3) and (5.10) at the interface, where then Rf and Ru are
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the load vectors corresponding to the forces exerted by the structure over the fluid

and viceversa. The equilibrium condition at the interface is

Rf + RU = 0 (5.13)

Let us assume, as before, that the columns of the matrix Q contain the basis

vectors of the null space of K' . Then,

V= Q V (5.14)

Also, since fi = v at the interface

u= Q U (5.15)

Using this change of variables in equations (5.3) and (5.10), pre-multiplying by

QT and using equation (5.13), we obtain

M*fU + K*U + M* + K*V =0 (5.16)

where
M* QTMuQ

K* QTKuQ= Q(5.17)

M* QTMVVQ

K* QTKvvQ

Based on equation (5.16), a single degree of freedom equation at the interface can

now be considered

t+Atz + m t+At, + A t+Ato + W2 t+AtX = o (5.18)

where x and v are structural and fluid variables respectively (displacements and ve-

locities). We test the integration schemes for stability using this equation.

60



Use of trapezoidal rule for the fluid

If the trapezoidal rule is used for both the structure and fluid flow equations

t+Ati= tAto (5.19)

t+At= t+ At (5.20)

and equation (5.18) becomes

(1 +m) t+Atz + A t+Atj + W2 t+AtX = 0 (5.21)

Dividing by (1 + m) , and using A = A, w = +m

t+Atz + A t+zAtz + D2 t+Atz = 0 (5.22)

Equation (5.18) is identical to an uncoupled one degree of freedom structural

equation (taking A = 2(D, where is the damping ratio). Since the trapezoidal rule

is unconditionally stable for this equation, it is also unconditionally stable for the

coupled single degree of freedom equation (5.18).

This seems to be an ideal time integration choice: the accelerations are calculated

in the same way in both the fluid and structure (this is not true for other combinations

of time integration procedures). Moreover, the trapezoidal rule applied to a first order

differential equation can be classified as a linear multistep method of first order. A

theorem due to Dahlquist states that an LMS method is at most second order accurate

(in time) and the second order accurate method with the smallest constant is the

trapezoidal rule [29]. As a consequence, the trapezoidal rule seems to be the better

choice for the fluid. However, using the trapezoidal scheme, spurious oscillations may

occur in the solution [2]. This response can be seen from the time discretization of

the velocity

t+At = +AtV - v) - tj (5.23)
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applied to the one degree of freedom first order equation

t+Atn + A t+Atv = 0 (5.24)

Substitution of (5.23) onto (5.24) leads to

= 1 - 0.5 A At
1 + 0.5 A At

Therefore if A At > 2 oscillations occur. To avoid these oscillations, another time

integration scheme must be used. The scheme incorporates some artificial damping

in the high frequency modes (responsible for the oscillations in the trapezoidal rule)

while conserving good accuracy properties at the low frequencies.

Use of Gear's method for the fluid

A second-order accurate unconditionally stable method that produces less oscillations

in the solution is due to Gear [30]. Gear's time integration scheme is a second order

linear multistep method

t+At ( = 1 3 t+At - 2 tv + t-Atv (5.26)
At (2 2

Consider the stability of equation (5.18) when the trapezoidal rule is used for the

structural equations and Gear's time integration scheme for the fluid.

Using the trapezoidal rule for the structure, we have

2 t+A t+At - 2
2 xa _ tg _ 2t x + (5.27)

At At

4_ t+,At t+,At; 4 4
4 t -a _ t =t _ tx + t + ts (5.28)At 2  At 2  At

Substituting equations (5.28) and (5.26) into (5.18) and taking into account that

the fluid velocities t+t =+At i are calculated using equation (5.27) (because in

the proposed fluid-structure interaction scheme displacements are calculated at the
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interface), the following equation is obtained

-I- +W2) t+Atx( 3m± A) t-IA t.±

4 t 4+ (~2 m) t:jj 2zt-A
(5.29)

Then, using equations (5.27), (5.28) and (5.29), equation (5.18) can be expressed as

t+AtX = A tX

where

t+Atx

t+At X

t+t t+At V
and tX

(5.30)

t X

t.

and the amplification matrix A is given by

4 + 2 At A + 3 m

-2Atw 2

0

-4w 2

At(4 + At A + 3.5m)

4+4m - At2W2

F

2m/At - 4(A + Atw2 )

-At m At 2

2At-m

0 0

-2m/At -(2At A + 3m + At 2W2)

(5.31)

with F=4+3 m+At 2W 2 +2At A

For stability, we need

p(A) = max|AiI < 1 (5.32)

where A, are the eigenvalues of A, Ai = At(wAt, AAt, m), and p(A) is the spectral

radius of A.

The eigenvalues of A are the roots of the fourth-order characteristic polynomial

p(s) = 0. However, we just need to know if the roots of the characteristic polynomial
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are, in modulus, less than or equal to one, and therefore if they lie inside of a unit

circle with center in 0. The transformation

s Z (5.33)
1 - z

maps the interior of the unit circle into the region Re(z) < 0 and the contour of the

unit circle into the imaginary axis. This can be seen as follows. From equation (5.33)

we have

Z (5.34)
8+1

Setting s = re = r cos(6) + i r sin(6), and substituting into equation (5.34) we get

= r cos(6) +i r sin(o) - 1 r2 - 1+ i r sin(O)
r cos(O) + i r sin(6) + 1 [r cos(O) + 1]2 + r 2 sin2 (9)

Since the denominator of equation (5.35) is always positive, the real part of z is

negative if |AI = r < 1.

Applying the mapping (5.33) to p(s), another polynomial is obtained, P(z), given

by

p(z)= ao + a1 z + a2 z2 + a3 Z3 + a4 z4 (5.36)

where

ao = At 2 W2

ai = 2 At 2 W2 + 2 At A

a2 = At 2 2 + 4 At A + 4 m + 4 (5.37)

a 3 = 2 At A+8 m+8

a 4 = 4

Using the Routh-Hurwitz criterion (see for example [31]) for P(z), the stability of

the coupled system can be assessed. For this fourth-order system, the Routh-Hurwitz

criterion establishes that for the roots of P(z) to lie in the region Re(z) < 0, the
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coefficients of p(z) must be all positive, and in addition

a2 a3 - a1 a4 > 0 (5.38)

- ao a - af 2a 4 + a1 a 2 a3 > 0 (5.39)

These conditions are satisfied for P(z), and therefore using Gear's method for the

fluid and the trapezoidal rule for the structure in equation (5.18) an unconditionally

stable scheme is obtained.

Use of the Euler backward method for the fluid

The procedure described above can be applied to the case in which the Euler backward

method is used for the time integration of the fluid flow and the trapezoidal rule for

the structure. The Euler backward method is unconditionally stable and first-order

accurate in time. It is given by the following expression,

t+Ag 1 (t+Atv - v) (5.40)

Substituting equations (5.28) and (5.40) into (5.18) and taking into account that

the fluid velocities t+Atv =t+At i are calculated using (5.27), the following equation

is obtained
(AL2 + W2) t+Atx + m+ A) t±At± 5.1

2 (5.41)

Then, using equations (5.27), (5.28) and (5.41), equation (5.18) can be expressed

as

t+AtX = A tX (5.42)
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where here

t±Atx-
t+At X

t+At _t+AtV and t j
and the amplification matrix A is given by

4+2 At A +2 m

-2Atw 2

-4w 2

At(4 + At A +2m)

4+2m - At2W2

-4(A + Atw2)

At 2

2At

-(2At A + 2m + At 2W 2 )

(5.44)

with F=4+2 m+At2W2 +2At A

Applying the transformation given by equation (5.33) to the characteristic poly-

nomial of this amplification matrix, the following third-order polynomial is obtained

P(z) = bo + biz + b2z 2 + b3 z 3
(5.45)

bo= At 2 W 2

b1 = At 2 W2 + 2 At A

b2= 2 At A + 4 m+ 4
(5.46)

b3 = 4

For this third-order system, the Routh-Hurwitz criterion establishes that for the

roots of P(z) to lie in the region Re(z) < 0, the coefficients of p(z) must be all positive,

and in addition

b1 b2 - b3 bo > 0 (5.47)

These conditions are satisfied and therefore using the Euler backward method for the

fluid and the trapezoidal rule for the structure in equation (5.18) an unconditionally

stable scheme is obtained.
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Chapter 6

Example solutions

The proposed algorithm, described in chapter 4, was implemented in a computer pro-

gram. In this chapter, the solution of two fluid flow-structural interaction problems

solved using the proposed scheme are given. The examples were chosen to demon-

strate the capabilities of the proposed scheme. In both of them the structure is very

compliant and therefore a large number of iterations is required to solve the fully

coupled problem using partitioned procedures. The structure is assumed to have a

linear response. The examples were taking from biomechanical applications, where

similar problems are solved to understand the behavior of blood flow in veins and

arteries.

6.1 Analysis of pressure wave propagation in a

tube

The type of problem solved here is encountered, for example, in the analysis of pres-

sure pulse propagations in blood vessels [32].

The system considered is shown in figure 6-1. It consists of an axisymmetric tube

filled with a viscous fluid initially at rest.

The fluid properties employed for this problem are as follows:

viscosity, p = 0.005 kg/m s;
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no vertical velocity

h=0.3mm

- T~

) R=02.mm

0.1 M
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1000

- time [s]

Figure 6-1: Pressure wave propagation problem. Geometry and boundary conditions
considered.
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density, PF = 1000 kg/r 3;

bulk modulus, K= 2.25 - 107 N/m 2.

The tube properties are:

Young's modulus, E 2. 0 N/m 2

density, ps = 1000 kg/m 3

Poisson's ratio, v = 0.4.

The fluid domain was discretized using a 100 by 5 uniform mesh of 9/3 elements

[2]. For the structural domain a 100 by 1 uniform mesh consisting of 9/3 elements

was employed. Small displacements for the structure were assumed. The trapezoidal

rule was employed for the time integration of the structural equations whereas the

Euler backward method was used in the time integration of the fluid-flow equations

[2]. If the trapezoidal rule is used for the fluid, some artificial oscillations between

two consecutive time steps are observed.

Figure 6-2 shows the calculated pressure of the fluid along the tube centerline at

different times. It is seen that a pressure wave propagates along the tube and that

its amplitude decreases with distance from the tube inlet, due to viscous effects. In

figure 6-3 the deformation of the tube due to the pressure wave and the fluid velocities

inside the tube are shown, all for time 0.01 sec.

A simple analytical model of the pressure wave propagation problem can be ob-

tained by assuming that the fluid is inviscid and incompressible, the fluid pressure

is only a function of the transverse tube area, and the fluid velocity is much smaller

than the speed of propagation of the pressure wave [33], see the Appendix. With

these assumptions, the pressure wave speed is found to be

E h
C = W(6.1)

2 R PF

where h is the tube thickness and R is the undeformed tube radius (see figure 6-1).

Equation (6.1) is the Moens-Korteweg wave speed, c = 3.87 m/s for the problem

considered here. For the finite element solution (figure 6-2), the wave speed is c = 3.48

m/s, and hence about 10% lower. This difference is largely due to the simplified

69



- I'

- ....

- I ........,

\ \.~,*

- I,
- I

0
S....

0.025 0.05 0.075

Distance along centerline [m]

t = 0.0001 S
- - - t = 0.0050 s

- --- --- t = 0.0100 s
.. t = 0.0150 s

t = 0.0200 s
- - =-- t0=.0250 s

0.1

Figure 6-2: Calculated pressure along the tube centerline for different instants of
time, for the pressure wave propagation problem.
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Figure 6-3: Deformation of tube and fluid velocities inside the tube due to pressure
wave at t = 0.01 sec. Radius enlarged 10 times.
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assumptions in the analytical model.

It is interesting to note that if the same problem is solved using the partitioned

procedure described in section 4.2.2, then not only many iterations are needed to

converge (i.e. iterations between the field codes) but also the time step required for

convergence is inversely proportional to the bulk modulus of the fluid. Thus, conver-

gence is not achieved if the fluid is modeled as incompressible. This problem, however,

is not observed when using the proposed scheme (equivalent to a simultaneous solu-

tion procedure). However, the mentioned convergence difficulties are not related to

the stability of the partitioned procedure but to the solution of the nonlinear problem.

In a general nonlinear problem the iterative procedure converges only if the start-up

solution "guess" is close enough to the actual solution. Similarly, when solving a

nonlinear coupled problem using partitioned procedures, the fluid solution obtained

at the beginning (assuming that the iterative procedure does start with the fluid flow

equations) may be far from the actual coupled solution, and as a consequence the

iterative procedure may diverge. For the particular case considered here, the initial

fluid solution of an incompressible fluid inside a rigid tube with a pressure difference

between the tube ends corresponds to the Poiseuille flow, which is clearly far from

the actual solution of the coupled problem.

6.2 Analysis of collapsible channel

The second example considered consists of a two-dimensional channel in which a part

of the top wall is replaced by a collapsible segment plus a segment that can displace

in the horizontal direction only as shown in figure 6-4. This type of problem is of

interest in the study of the collapse behavior of blood vessels [33], [34], [35].

The channel is filled with a viscous fluid at rest. At time t = 0, the normal traction

at the outlet of the tube is decreased as shown in figure 6-4. The pressure difference

between the channel inlet and outlet starts to move the fluid inside the channel, and

since the pressure below the collapsible segment is less than the pressure above it,

the segment starts to move downward.
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Figure 6-4: Collapsible channel problem. Geometry and boundary conditions consid-
ered.
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The fluid properties employed for this problem are:

p = 0.002 kg/m s;

PF = 1000 kg/i 3;

r = 2.1 - 109 N/m 2.

The collapsible segment properties are:

E = 2 -10' N/m 2;

Ps = 1000 kg/m 3

v = 0.2.

The properties of the segment that can only displace horizontally are:

E = 2- 10' N/m 2;

Ps = 1 kg/m 3;

v = 0.3.

The fluid domain was discretized using a 70 by 5 uniform mesh of 9/3 elements.

For the structure, a 60 by 2 uniform mesh consisting of 9-node elements was em-

ployed. Small displacements for the structure were assumed. The trapezoidal rule

was employed in the time integration of the structural as well as the fluid flow equa-

tions.

In figure 6-5, the displacement history of the mid-point of the collapsible segment

is shown. The segment moves downward and then begins to oscillate with increasing

amplitude. Finally, a state is reached in which the amplitude of the oscillation remains

constant, and the maximum downward displacement of the channel is closed to about

15 percent of its original height. A similar behavior was observed in experiments with

excised blood vessels and rubber tubes (see for example [33]), and was also reported in

numerical simulations [34], [35]. In figure 6-5, a comparison of the solution obtained

using the proposed scheme and ADINA is also shown. The ADINA solution was

obtained using a uniform mesh of 2800 (140 by 10) 3-node triangular elements with

bubbles for the fluid and a 50 by 2 uniform mesh of 9-node elements for the structure.

It is seen that the calculated responses are in good agreement.

The details of the pressure and velocity distributions at the time 36 sec., at which

the collapsible segment becomes unstable, is shown in figure 6-6. Note that the
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0.01

Figure 6-5: Displacement history of mid-point of collapsible segment. Comparison
between results obtained using the proposed scheme and ADINA.
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a) Pressure distribution

b) Velocity distribution
0.1 m/s

Figure 6-6: Pressure (in Pa) and velocity distribution of the fluid inside the collapsible
channel at t=36.2 sec.

minimum pressure of the system is located below the collapsible segment.

Details of the pressure and velocity distributions at the maximum bulge out and

maximum inward deflection of the collapsible segment are shown in figures 6-7 and

6-8, respectively.

If the collapsible channel problem is solved using partitioned procedures, a large

number of iterations is required at each time step for convergence, and therefore

partitioned procedures are inefficient for this particular case. Using the proposed

scheme the iterations required to solve the problem are at least an order of magnitude

less than with the partitioned procedure described in section 4.2.2.
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a) Pressure distribution

Figure 6-7: Pressure (in Pa) and velocity distributions at maximum bulge out of
collapsible segment (when the movement reaches the limit cycle) at t = 62.7 sec.
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a) Pressure distribution

b) Velocity distribution
0.1 m/s

Figure 6-8: Pressure (in Pa) and velocity distributions at maximum inward deflection
of the collapsible segment (when the movement reaches the limit cycle) at t = 61.7
sec.
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Chapter 7

Conclusions

To numerically solve fluid flow-structural interaction problems, two main approaches

are available. The simultaneous solution procedure can be unconditionally stable (if

appropriate time integration schemes are used) but since the fluid flow equations are

nonlinear and the resulting finite element coefficient matrix is non-symmetric, the cost

of the computations dramatically increases with the degrees of freedom considered.

Partitioned procedures have the advantage that the fluid flow and structural equations

are solved separately and are coupled through "boundary conditions" at the fluid

structure interface. This allows to solve larger problems than using the simultaneous

solution, but a large number of iterations may be required to converge when the

structure is very compliant.

In this thesis a procedure to solve fully coupled fluid flow-structural interaction

problems is proposed. The scheme is in essence a simultaneous solution procedure and

therefore has the same accuracy and stability characteristics. However, the scheme is

computationally efficient (in terms of number of operations performed per time step)

when the structure is compliant and in particular when the structural behavior can

be assumed to be linear.

In the proposed scheme, the coupled system equations are not solved all together,

but first the unknowns corresponding to the fluid flow equations containing the effects

of the structure are solved, and then the unknowns corresponding to the structural

equations are calculated. This approach is modular with respect to the fluid and
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structural solvers used and allows the solution of large problems. The algorithm is

computationally efficient since advantage can be taken of the symmetry of the struc-

tural coefficient matrix and, if applicable, the linearity of the structural equations.

Since the proposed scheme is equivalent to the simultaneous solution procedure, iter-

ations are required only for the nonlinearities in the problem, and no extra iterations

are needed as in the case of partitioned procedures (where we need iterations between

the structural and fluid solutions to converge the coupled problem). Hence when the

structure is very compliant the computational costs can be greatly reduced.

The proposed scheme was implemented in a computer program and some problems

were solved. The examples considered in this thesis (shown in chapter 6) correspond

to problems in which the structure is very compliant. If the problems are solved using

the partitioned procedure, significantly more iterations are required at each time step

to converge to the solution as compared with the proposed scheme.

However, in the evaluation of the proposed scheme it has to be taken into account

that the bandwidth of the coefficient matrix corresponding to the fluid flow equations

with condensed internal structural degrees of freedom is increased as compared with

the fluid flow equations alone (as solved by a partitioned procedure). Also, in prac-

tice, usually more degrees of freedom are required to accurately solve for the fluid

flow response as compared with the structural response (in the coupled problem).

Then, if the number of structural degrees of freedom is negligible in comparison with

the number of fluid degrees of freedom, it becomes more convenient to solve the cou-

pled equations using directly the simultaneous solution procedure (or a partitioned

procedure if the effect of the coupling on the system response is not significant). In

cases in which the structure is not very compliant, the partitioned procedure is more

efficient, because then only a few iterations between the fields are required.

In summary, the proposed scheme is more efficient than both the simultaneous

solution and partitioned procedures if the following conditions are satisfied,

* the structure is very compliant;

" the number of structural degrees of freedom in the coupled problem is significant;
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* the structural behavior can be assumed to be linear.

The last condition, however, can be relaxed, and the proposed scheme might also

be efficient when the structure exhibits a nonlinear response. In this case, we can

still take advantage of the symmetry of the structural equations and the modularity

of the proposed algorithm.
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Appendix A

Wave propagation in a compliant

tube filled with fluid

The problem considered here corresponds to the pressure propagation problem shown

in figure (6-1). A simple analytical model, which yields results in good agreement

with the numerical results obtained is given below.

Assume that an incompressible inviscid fluid fills the flexible axisymmetric tube

of figure (6-1). Then the governing equations for the fluid are

" Mass conservation:

At + u A, + A u,= 0 (A.1)

" Momentum conservation:

ut + U uX + PX = 0 (A.2)
P

where A is the tube transverse area, u is the fluid flow velocity in the axial direction

(averaged over the transverse area), p is the fluid density, p is the pressure, t is time

and the x coordinate is along the tube axis.

Assuming a constitutive relation of the form
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p = P(A) (A.3)

the pressure is considered to be a function of the transverse tube area alone (and

therefore axial effects are neglected).

Considering small changes in the transverse area, A/AO << 1, and assuming that

the fluid velocity is much smaller than the wave speed c in the fluid, u << c, equations

(A.1) and (A.2) can be linearized

At + AO ux = 0 (A.4)

ut + -=0 (A.5)
P

Solving for u in equation (A.5), substituting into (A.4) and differentiating with

respect to time we get

Att= -ApXX (A.6)
P

Also, from equation (A.3) we have

dP
Pt d At (A.7)

and

dP
Ptt = d Att (A.8)

d A

where the relation (A.8) was obtained after linearization.

Introducing equation (A.8) into (A.6), a linearized wave propagation equation is

obtained

Ao dP
pitt= d Pxx ( A.9 )

p d A

From equation (A.9) we have that the linearized wave speed co is given by
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c 2 = od (A.10)C0  p dA

In order to evaluate the wave speed co we need an expression for dP/dA. The

expression can be obtained by taking into account the behavior of the tube.

Assuming that the tube is made of a linear elastic isotropic material undergoing

small displacements and neglecting axial and inertial effects, we obtain

o0o = E E00 (A.11)

and

A R
E00 = R(A.12)

00o R= p (A.13)
h

where ao and eso are the tube stress and strain components in the circumferential

direction, E is the material Young's modulus, R is the undeformed tube radius and

AR the change in the tube radius, Ap is the increase in pressure inside the tube

(imposed by the fluid) and h is the tube thickness.

Combining equations (A.11), (A.12) and (A.13)

Ap dp E h (A.14)
AR dR R2

Then, introducing equation (A.14) into (A.10) the Moens-Korteweg wave speed

is obtained

2 Eh (A.15)2 p RO

84



Bibliography

[1] L. G. Olson and K. J. Bathe. Analysis of fluid-structure interactions. A direct

symmetric coupled formulation based on a fluid velocity potential. Computers

& Structures, 21:21-32, 1985.

[2] K. J. Bathe. Finite Element Procedures. Prentice Hall, 1996.

[3] H. J. P. Morand and R. Ohayon. Fluid structure interaction: applied numerical

methods. John Wiley & Sons, 1995.

[4] K. C. Park, C. A. Felippa, and J. A. DeRuntz. Stabilization of staggered solution

procedures for fluid-structure interaction analysis. In Computational methods

for fluid-structure interaction problems, number 26 in ASME Applied mechanics

symposia series, AMD, pages 95-124, 1977.

[5] K. J. Bathe, H. Zhang, and M. H. Wang. Finite element analysis of incompress-

ible and compressible fluid flows with free surfaces and structural interactions.

Computers & Structures, 56:193-213, 1995.

[6] K. J. Bathe, H. Zhang, and X. Zhang. Some advances in the analysis of fluid

flows. Computers & Structures, 64:909-930, 1997.

[7] K. J. Bathe, H. Zhang, and S. Ji. Finite element analysis of fluid flows fully

coupled with structural interactions. Computers & Structures, 1999. In press.

[8] K. C. Park. Partitioned transient analysis procedures for coupled-field problems:

stability analysis. Journal of Applied Mechanics, 47:370-376, 1980.

85



[9] K. C. Park and C. A. Felippa. Partitioned transient analysis procedures for

coupled-field problems: accuracy analysis. Journal of Applied Mechanics, 47:919-

926, 1980.

[10] S. Piperno, C. Farhat, and B. Larrouturou. Partitioned procedures for the tran-

sient solution of coupled aeroelastic problems. Part I: Model problem, theory

and two-dimensional application. Computer Methods in Applied Mechanics and

Engineering, 124:79-112, 1995.

[11] C. Farhat, M. Lesoinne, and N. Maman. Mixed explicit/implicit time integration

of coupled aeroelastic problems: three-field formulation, geometric conservation

and distributed solution. International Journal for Numerical Methods in Fluids,

21:807-835, 1995.

[12] W. A. Wall and E. Ramm. Fluid-structure interaction based upon a stabilized

(ALE) finite element method. In Computational Mechanics, Proceedings WCCM

IV Conference, Buenos Aires, 1998.

[13] K. J. Bathe and E. L. Wilson. NONSAP - a general finite element program for

nonlinear dynamic analysis of complex structures. In Paper No. M3-1, Proceed-

ings, Second Conference on Structural Mechanics in Reactor Technology, Berlin,

1973.

[14] T. Nomura and T. J. R Hughes. An arbitrary Lagrangian-Eulerian finite element

method for interaction of fluid and a rigid body. Computer Methods in Applied

Mechanics and Engineering, 95:115-138, 1992.

[15] T. Nomura. ALE finite element computations of fluid-structure interaction prob-

lems. Computer Methods in Applied Mechanics and Engineering, 112:291-308,

1994.

[16] C. Nitikitpaiboon and K. J. Bathe. An arbitrary Lagrangian-Eulerian velocity

potential formulation for fluid-structure interaction. Computers & Structures,

47:871-891, 1993.

86



[17] 0. Ghattas and X. Li. A variational finite element method for stationary non-

linear fluid-solid interaction. Journal of Computational Physics, 121:347-356,

1995.

[18] S. J. Liang, G. P. Neitzel, and C. K. Aidun. Finite element computations for

unsteady fluid and elastic membrane interaction problems. International Journal

for Numerical Methods in Fluids, 24:1091-1110, 1997.

[19] L. E. Malvern. Introduction to the mechanics of a continuous medium. Prentice-

Hall, 1969.

[20] F. M. White. Fluid mechanics. McGraw-Hill, 1979.

[21] J. Donea. Arbitrary Lagrangian-Eulerian finite element methods. In T. Be-

lytschko and T. J. R. Hughes, editors, Computational methods for transient

analysis, chapter 10. North-Holland, 1983.

[22] M. D. Gunzburger. Finite element methods for viscous incompressible flows. A

guide to theory, practice and algorithms. Academic Press, Inc., 1989.

[23] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formu-

lations for convection dominated flows with particular emphasis on the incom-

pressible Navier-Stokes equations. Computer Methods in Applied Mechanics and

Engineering, 32:199-259, 1982.

[24] D. Hendriana. A parabolic quadrilateral finite element for compressible and in-

compressible flows. PhD thesis, MIT, 1998.

[25] D. Hendriana and K. J. Bathe. On a parabolic quadrilateral finite element for

compressible flows. Computer Methods in Applied Mechanics and Engineering,

1999. In press.

[26] X. Wang. On mixed finite element formulations for fluid-structure interactions.

PhD thesis, MIT, 1995.

87



[27] C. Nitikitpaiboon. Finite element formulations for fluid-structure interaction.

PhD thesis, MIT, 1993.

[28] C. A. Felippa and K. C. Park. Staggered transient analysis procedures for coupled

mechanical systems: formulation. Computer Methods in Applied Mechanics and

Engineering, 24:61-111, 1980.

[29] T. J. R. Hughes. Analysis of transient algorithms with particular reference to

stability behavior. In T. Belytschko and T. J. R. Hughes, editors, Computational

methods for transient analysis, chapter 2. North-Holland, 1983.

[30] C. W. Gear. Numerical initial value problems in ordinary differential equations.

Prentice-Hall, 1971.

[31] K. Ogata. Modern control engineering. Prentice Hall, 1997.

[32] M. Bathe and R. D. Kamm. A fluid-structure interaction finite element analysis

of pulsatile blood flow through a compliant stenotic artery. ASME, Journal of

Biomechanical Engineering, 1999. In press.

[33] T. J. Pedley. The fluid mechanics of large blood vessels. Cambridge University

Press, 1980.

[34] X. Y. Luo and T. J. Pedley. A numerical simulation of unsteady flow in a two-

dimensional collapsible channel. Journal of Fluid Mechanics, 314:191-225, 1996.

[35] C. Walsh, J. S. Hansen, and P. A. Sullivan. Effects of axial tension and down-

stream suction on flutter in membrane-walled collapsible tubes. In Advances in

Bioengineering, number 20 in ASME - BED, 1991.

88


