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ABSTRACT

Feature detection in aerial images entails a number of specific problems, depending on the feature
to be detected as well as the method to be used. This thesis focuses on the problem of
automatically detecting roads in grayscale aerial images. The challenges of this particular
problem are discussed and two systems are proposed as solutions. Both systems are edge-based
methods and have two key steps: an edge detection step followed by an edge linking procedure.
One system uses a variant of the Nevatia-Babu edge detector for the first step. This edge
detection method revolves around convolutions of the aerial image with a series of masks and is
quite simple to implement. The other system applies a wavelet edge detector to the images.
Wavelets are briefly introduced and then a set of wavelet filters, developed by Mallat and Zhong,
are detailed. In both road detection systems, the edge linking technique is the same. A new edge
linking algorithm is developed using a zone-based technique, and is designed to link the long,
low-curvature edges which represent roads.

The results of applying each edge detection technique individually, followed by the edge linking
procedure, to three test images are displayed. These results are compared and contrasted to try to
determine: (i) whether a simple two-step edge-based model has potential for being the initial steps
in a full road detection system; (ii) which edge detection method performs better when combined
with the edge linking algorithm; and (iii) whether this is a reasonable application for wavelets.
All three issues are discussed, as well as possible further steps and improvements to the systems.

Thesis Supervisor: Kevin Amaratunga
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1.

INTRODUCTION

Today's world is filled with data of all sorts. One does not have to look far from their

everyday routine to see data being generated, collected, manipulated and analyzed. Much of this

data is grouped into coherent sets, either in the process of being generated, such as with a

photograph or an audio signal, or by those who manipulate and analyze it. These groupings often

make clear certain characteristics of the data which aid in the understanding of its meaning. For

instance, the elements of a digital image are arranged spatially so that human eyes can detect

physical objects in the photo. However, the organizational format may also hide other features of

the data which are necessary for answering specific questions or solving certain problems.

Feature detection is the process by which these useful but hidden characteristics of the data set are

extracted. This is an admittedly broad definition, necessarily so because feature detection

processes take so many different forms. The general idea of feature detection is narrowed

somewhat to the specific problem addressed in this work by considering two major factors: the

type of data being analyzed, and the tools being used to perform the feature detection. Then, by

deciding on the feature to be detected and the precise method for doing the detection, the exact

problem statement is reached.

1.1 Narrowing the feature detection problem

Although there are a very large number of kinds of data, they can be split into three main

categories: one-dimensional, two-dimensional, and multi-dimensional (meaning more than 2-D).
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An example of a set of 1-D data is a sonar signal. Multi-dimensional data could be points in a

three-dimensional model. Outside the physical world, data also exists in dimensions greater than

3-D which may be used in feature detection procedures. The focus, however, of much of the

research being done presently is two-dimensional data. This data usually takes the form of

images, and indeed it is two-dimensional data that is analyzed using the procedure developed in

this paper.

Within the category of two-dimensional data, there are several subcategories of image

types which can be analyzed using feature detection. Facial images are one type which has

received a lot of attention lately, with the popularity of face detection research for artificial

intelligence applications. With the recent move to digitize fingerprint images, it has become

necessary to develop methods for extracting the main features in a fingerprint for identification

purposes. Images containing characters, written or typed, are now often processed by computers

which attempt to "read" the letters by using feature detection. Medical diagnoses are being made

with the help of anomaly detection in medical images such as mammograms and x-rays.

Topographic features such as rainfall amounts or population densities can be analyzed for spatial

patterns using feature detection methods. Overhead images of the world, such as satellite and

aerial images, contain useful information about man-made and natural structures, as well as

oceanic and atmospheric features.

The test images used in this work are taken from this last category. Although both

satellite and aerial images give a view of the world from an overhead position, these two types of

images differ with respect to certain image properties. This makes the feature detection process

quite different depending on the values of these properties. The three most significantly varying

properties are resolution, color and noise content. With respect to each of these, the majority of

satellite images lie opposite the majority of aerial images. Therefore, the overhead image

category can roughly be separated into two subcategories, aerial images and satellite images,

based on these three image characteristics.

Resolution is a property that can greatly affect feature detection in aerial and satellite

images. With the exception of newer satellites which can photograph the earth at higher

resolutions, most satellite images are low resolution. This means that the details of larger features

cannot be clearly seen, and some smaller features are not visible at all. For instance, in some

satellite images roads appear as a single line, while small buildings are remain unseen. On the

other hand, aerial images are taken from airplanes which can be quite close to the ground and are

consequently often very high resolution images. It is usually possible to see both edges of a road

as separate lines in an aerial images, and buildings are visible as more than just single points. If
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the resolution is particularly high, the individual lanes and cars can be seen on the roads, and the

buildings have definite shapes and textured roofs. Therefore, not only does the resolution of the

image affect what kinds of features can be extracted from an image, but it also dictates to some

degree what techniques will work best for feature detection. Methods have been developed for

both low and high resolution overhead images, but for the purposes of this work, the test images

are chosen to be higher resolution aerial images.

Two other significant differences between aerial and satellite images which effect feature

detection are the presence of color and noise. Not all satellite images contain color information,

and not all aerial images are grayscale, but often the satellites capture the multispectral data while

the photographs taken from airplanes do not. Color may provide more information about the

data, but its inclusion also adds complexity to any feature detection method which is to be used.

In limiting the test images to grayscale aerial images, there is no need to take into account the

color characteristics of an image, and consequently the method can remain simpler. Similarly,

noise in an image makes the procedures more complicated by the necessity of eliminating or

working around this noise. In general, satellite images contain more noise than aerial images. In

particular, the aerial images used as test images here contain very little noise.

So, from all the possible types of data on which to perform feature detection, high

resolution grayscale aerial images with low noise content are chosen for testing the system

developed in this paper. This narrows the feature detection problem somewhat. However, it

remains to be stated which specific techniques will be used on this data. For any type of data,

there are many choices. Examples of methods used recently for a wide variety of feature

detection procedures include mathematical morphology, template matching, neural networks and

various other techniques based on probability and Bayes theory, the Hough transform and other

forms of parametric modeling, and data fusion. Generally, these and the many other feature

detection methods can be labeled as either a local or a global procedure. The method explored in

this work is a local edge-based extraction method. The steps of the process will be introduced

later in this chapter, and described in detail throughout the thesis.

It should be noted that the purpose of any feature detection tool is usually not to do

something that humans cannot do manually. In many cases, such as face detection in images,

humans can perform the feature detection better than a computer can. However, either the task

takes very long for a person to do manually, or the results need to be recorded more accurately, or

the human merely wants an aid in the process, which results in these processes being developed

for computers to perform. Such is the case with feature detection in aerial images. With more

and more of the world's information becoming digitized and with the popularity of geographical
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information systems, the detection and recording of digital map data from aerial images has

become increasingly important. In the past, analog information was recorded manually, requiring

large amounts of time and effort to catalog the precise details. The human eye can pick out the

physical features with ease, but recording the exact position of these features may be slow and

less accurate. As well as speeding up this process, having a computer perform the task allows for

rapid updating, displaying and transmission of the information. These are the main reasons why

systems such as the one described in this paper are useful and necessary.

1.2 Automatic road detection in grayscale aerial images

The exact problem addressed in this project is the automatic detection of roads in

grayscale aerial images. Roads are chosen as the feature to extract, as opposed to rivers,

buildings, railroads, etc., because of their importance in most maps and because there is less

variability in the characteristics of roads as compared to the characteristics of other features.

Furthermore, an attempt is made to completely automate the process. In general, roads have

several characteristics which help to automatically detect them: they tend to be long and

continuous, with small curvature, sharp, parallel boundaries, and relatively constant grayscale and

texture values between the boundaries. However, the problem is made difficult by recognizing

that these characteristics do not always hold for individual roads: boundaries can be blurred, the

background can be very close in grayscale level to the road itself, there can be trees or shadows

breaking the continuity of the boundaries, or the road can be a short dead-end road or a driveway.

Figure 1.1 illustrates some examples of the variations found within aerial images.1

Figure 1.1(a) shows a close-to-ideal image for road detection. The roads are wide, their

boundaries are clear and continuous, the background is significantly darker than the roads. The

only problem that this image demonstrates is the problem of cars on the roads, which break up the

relatively smooth texture of the highway and disturb the edge detection by creating short 'noisy'

edges. Figure 1.1(b) also has continuous roads with few occlusions, however here the grayscale

level of the surrounding areas is closer to that of the roads. The road boundaries are sometimes

broken by the presence of driveways. Figure 1.1(c) illustrates the difficulty of viewing roads

through tree tops and their shadows. The edges of these roads are highly occluded, even making

These images and all test images for this paper are taken from a digital orthophoto browser created by the
Planning Support Systems Group in the M.I.T. Department of Urban Studies and Planning in conjunction
with Massachusetts Geographic Information Systems (MassGIS) and are found at http://ortho.mit.edu.
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it hard for a human observer to make out the exact position of the edges. Figure 1.1(d) shows a

more densely populated area in which the building edges are often more sharp then those of the

roads. Shadows, this time from houses, also complicate the analysis of such an image.

Furthermore, although all four of these images are approximately the same resolution, the road

widths and lengths vary.

(a) (b)

(c) (d)

Figure 1.1. Examples of test images

The disparity in characteristics from image to image is the primary source of difficulty in

the road detection process. Many systems have been developed using a variety of methods for

automatic road detection, and each tries to handle the varying image characteristics in different

ways. As with feature detection procedures in general, these systems can be classified as being

either local or global in nature. Global procedures attempt to develop accurate models for the
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roads, incorporating the many characteristics into as few parameters as possible.[2] Within the

category of local methods, many techniques exist. Edge detectors and linkers are often used to

find road seeds, which are then grown into the full road network. [23] [25] The textural and

spectral properties of roads are employed to group together road pixels. Similarly, the difference

between the grayscale levels of roads and the background is exploited in order to determine the

boundaries of the roads. In addition, methods which attempt cooperation between local and

global methods also exist.[1] (Many of these references give further lists of road detection

methods.) What is consistent throughout most of these methods is that they become quite

complicated in their attempt to deal with all the variations in images. It is the overall goal of this

paper to develop a simple method for road detection and see how well it performs. The system

focuses on road finding, which is often followed by road tracing in most other road detection

procedures. Few assumptions are made, and they are that roads are usually long and are either

straight or changing direction very slowly. It is anticipated that these assumptions are enough to

allow the procedure to find as many of the road edges as possible, while ignoring the non-road

edges.

It is clear then that the system to be developed will be a local, edge-based method. It has

two main steps: edge detection, followed by edge linking. Within these steps are two, more basic

goals of the system. One is to experiment with wavelets for edge detection. Wavelets and the

wavelet transform are a relatively new tool for image analysis. The results from using wavelets

for the edge detection step are compared to results from using a more well-established linear edge

detection method. The second goal is to develop a new edge linking procedure that is designed to

specifically link road edges. Two previous efforts describing local methods for road detection

and one paper detailing the use of wavelets for edge detection provide models for the three

separate steps as well as the system as a whole.

[18] The linear edge extraction method developed by Nevatia and Babu uses a set of

masks to associate an angle and edge value with each image point. Then, through a series

of local tests, they determine the edges. After filling in some of the edge gaps with a

linking procedure, they approximate the edges with linear segments. They use the fact

that a road should have two parallel edges for its boundaries to detect the roads. Our

system follows these same basic steps: edge detection, and edge linking. The edge

detection procedure of Nevatia and Babu works quite well and provides useful

information for later steps. Subsequently, it is used directly as the first edge detector in
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our system, with small changes. Because of its proven success, it is used as a comparison

with the wavelet edge detector.

* [17] In this paper by Mallat and Zhong, the wavelet transform is applied to the edge

detection problem. Although much of the work focuses on determining edge

characteristics based on the output of the wavelet transform and rebuilding signals from

edge information, they also develop a fast implementation of the transform which is used

as the second edge detector in our system. The basic theory of wavelets as well as Mallat

and Zhong's implementation are described later in this thesis.

* [11] A semi-automatic road detection system developed by Heipke, Englisch, Speer, Stier

and Kutka also follows the same pattern of steps as Nevatia-Babu. However, they use a

Sobel filter for edge detection. Before linking, they include a step for thinning the edges

which is used in our system. Their linking scheme is based on searches in small areas,

predefined by the direction of an edge. It only deals with small gaps in the edges. Our

linking procedure comes from expanding the idea of searches based on edge directions to

enable it to fill both large and small gaps and to perform well on extensive edge

networks.

Although not all elements of the steps in our method are new, their combination is. The

system which results from combining ideas from the three above works leads to a new road

detection procedure for use on high resolution aerial images.

1.3 Organization of the remaining chapters

Chapters 2 and 3 are dedicated to the detailed explanation of the first main system step,

edge detection. Chapter 2 describes the edge detector developed by Nevatia and Babu, which

itself consists of three steps. Chapter 3 ventures into the world of wavelets. It begins by

introducing the basics of wavelet theory before detailing the wavelet transform implementation of

Mallat and Zhong. It finishes by explaining how to use the output from the wavelet transform to

extract the image edge points.

Chapter 4 continues on to the second step of the system, edge linking. It is here that the

new edge linking procedure for road linking is specified. The basic idea behind the method is to
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continue a broken road edge in the direction it is heading. Although this idea is simple, there are

many details involved in the actual algorithm. Because this is a new method, all these details are

explained.

Chapter 5 illustrates the results of applying the edge detection and linking steps to several

test aerial images. Results are shown after each of the two stages and results from the two edge

detectors are compared. Conclusions are drawn as to how well the goals of the project are met

and the overall success of the method.

Chapter 6 concludes the work by first discussing some possible extensions and

improvements to the system. One extension, the edge pairing step, has been implemented and an

example is shown of its results. Also addressed in this chapter are the possibility of extending the

system to detect features other than roads, as well as the improvements which are gained from

making the system semi-automatic instead of automatic. This chapter also contains the

concluding summary remarks. Specifically, it addresses what has been learned about the nature

of the road detection problem.
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Chapter 2.

NEVATIA-BABU METHOD FOR EDGE DETECTION

2.1 Introduction

Assuming that edges represent sharp changes in grayscale level, and that roads have a

significantly different grayscale level than the surrounding background, edge detection is a

natural first step in extracting roads from aerial images. The problem of detecting edges in

images is one that has been extensively studied. Several well-established methods continue to be

amongst the most used edge detection techniques. The simplest of these consist of a single filter

which takes the derivative of an image. Filters based on taking the first derivative detect edges by

looking for local extrema, while those based on the second derivative associate edges with zero

crossings. Multiscale methods, such as the Canny edge detector (based on the first derivative)

and the Marr-Hildreth edge detector (based on the second derivative) are very useful for detecting

edges at various scales. Other more complex methods which are built on these simple techniques

also exist, and much research continues to be done on edge detection techniques for images with

many new detectors being developed for specific applications.

As was mentioned in the first chapter, two methods are plugged into the edge detection

module of this system and are compared to see which performs better for road detection. The

first method, which is the topic of this chapter, is a simple but effective local edge detection

method. It was developed by Ramakant Nevatia and Ramesh Babu for use in their linear feature

extraction system. They have good success with extracting runways from an aerial image of an

airport using their technique. Roads characteristics are very similar to those of runways, and tend
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to be linear or close to linear. It therefore seems to be an appropriate technique to use as the first

step in a road detection system. Further confidence in the technique is achieved by recognizing

the several other researchers who have noted the usefulness of applying the Nevatia-Babu edge

detection method to the problem of road detection, including [23] and [25].

There are two main steps to this method. The first step involves determining an edge value

and an edge angle for each image pixel. A series of masks are convolved with the image in order

to determine how strongly a pixel is part of an edge and in what direction that edge is pointing.

The second step consists of choosing the edge points based on the pixel characteristics established

in the first step. The specifics of these two steps are detailed in the next two sections. A third

step is added for our implementation. A thinning procedure, developed by Heipke, Englisch,

Speer, Stier and Kutka in [11] is applied to the edges to whittle them down to a one-pixel width.

This procedure is described in Section 2.4.

2.2 Determination of edge angles and edge values

As was mentioned above, the first step in the Nevatia-Babu method involves labeling

each pixel of an image with an edge value (magnitude) and an edge direction (angle). The edge

value is meant to give an indication of how strongly a point is part of an edge. The direction

denotes the angle of the edge the point is most likely a part of. In order to find these two

parameters for each pixel, the neighborhood of each point in the image is compared to several

masks, which represent ideal edges at various orientations. Each mask is basically a matrix filled

with the values corresponding to the digital values of an ideal edge oriented in a certain direction.

The neighborhood is chosen to be the same size as the masks with the target image point at its

center. The goal of each comparison between a neighborhood and a mask is to determine how

strongly the image points in the neighborhood correspond to the angle represented by the mask.

The angle of the mask which corresponds the strongest to a given neighborhood becomes the

angle associated with the center pixel of the neighborhood. The value outputted from the

comparison of that mask and the neighborhood is the edge value associated with the center pixel.

This process is illustrated using the actual masks from our system at the end of this section.

First, the masks must be determined. Two factors must be considered when choosing the

ideal edge masks: how many masks to use and how large they should be. The number of masks

corresponds to the number of orientations of the ideal edge that will be compared to image points.

Because there is no front or back to the edges, only angles from 0 to 180 need be considered, with
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0 and 180 being the same orientation. If the program were to use four angle values, 0, 45, 90, and

135, four masks would be needed. In our case (as with Nevatia-Babu), six masks were found to

work well, with angle values 0, 30, 60, 90, 120 and 150. The size of the masks is a detail

considered closely by Nevatia and Babu. As they mention, small masks may have problems

discriminating between noise and true edges, while large masks may miss the finer details of the

edges. In concurrence with their findings, a set of 5x5 masks worked well for the test images

used in the present work, especially considering the high resolution and low noise content of

these images. The masks are shown in Figure 2.1.

-100 -100 0 100 100

-100 -100 0 100 100

-100 -100 0 100 100

-100 -100 0 100 100

-100 -100 0 100 100

0

100 100 100 100 100

-32 78 100 100 100

-100 -92 0 92 100

-100 -100 -100 -78 32

-100 -100 -100 -100 -100

60

100 100 100 100 100

100 100 100 78 -32

100 92 0 -92 -100

32 -78 -100 -100 -100

-100 -100 -100 -100 -100

120

-100 32 100 100 100

-100 -78 92 100 100

-100 -100 0 100 100

-100 -100 -92 78 100

-100 -100 -100 -32 100

30

100 100 100 100 100

100 100 100 100 100

0 0 0 0 0

-100 -100 -100 -100 -100

-100 -100 -100 -100 -100

90

150

Figure 2.1. Masks for finding edge values and angles
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Figure 2.2. Calculating the angle and edge value
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Using these six masks, the edge value and angle are determined for a given image point

in the following way:

(i) The neighborhood is determined with the image point at its center.

(ii) For each mask, the products of corresponding points in the neighborhood and the

mask are summed.

(iii) The largest in absolute value of the six sums becomes the edge value.

(iv) The angle of the mask which produces this largest sum becomes the edge angle.

Figure 2.2 on the previous page shows this process for an example neighborhood.

2.3 Selection of edge points

The direction and edge value information is used to determine which image pixels are

truly part of an edge. The points with the highest edge value are the strongest edge point

candidates. The angles help determine the points lying along a certain edge. Nevatia-Babu use

three criteria involving the edge value and direction parameters to test for an edge pixel: (i) a

local maximum test; (ii) an angle test; and (iii) a thresholding test. Each test is applied to each

image pixel in turn. Test (i) checks that the pixel is a local maximum. It uses the edge angle at

this point to find the two immediate neighboring pixels in the direction normal to that of the edge.

It then checks that the center point has a larger edge value than both these neighbors. The check

can be extended to include any number of neighbors along this normal direction. Including more

pixels in the check implies that the center pixel is a local maximum over a larger area. For the

purposes of this system, the center point is a local maximum if it is greater than its two neighbors

on either side in the direction normal to the edge. Test (ii) checks that the angle value of the

center point is close to that of the neighboring points along the edge angle. To pass this test, the

difference between the angle of the center pixel and its two immediate neighbors in the edge

direction must be below some threshold. Test (iii) is a simple thresholding of edge values. If the

edge value at a point is larger than some preset threshold, it passes this third test. The preset

threshold is determined by the user. The results of running these three tests individually and in

combinations are shown below.
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(a)

(b)

(d)

(c)

(e)

Figure 2.3. Results from running the edge tests: (a) original test image; (b) edges chosen by test 1;
(c) edges chosen by test 2; (d) edges chosen by test 3; (e) edges chosen by combining all three tests.
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Nevatia and Babu combine all three tests to find edge points. The result of choosing edge

points based on tests 1, 2, and 3 is shown in Figure 2.3 (e). (If a point is chosen to be an edge

point, its value is set to 1; otherwise the value is 0.) This is not a bad edge image for our

purposes. Many of the road edges are prominent and unbroken, and they are not too thick. Also,

there are several small gaps in these edges, but the larger, more troublesome gaps (in later stages)

are fairly sparse. This combination of edge tests results in a better edge image than any of the

other combinations of tests (all of which use only two out of three tests). However, the edges

resulting from using only the third test, the threshold test, are also quite good, perhaps even better

than using all three tests. As seen in Figure 2.3 (d), the road edges are quite complete and more

of the smaller gaps are filled. This image has an increase in continuous, unbroken edges and is

also a good candidate for further road detection processing. Because it requires less calculations,

the edge image resulting from using only test 3 is used in the final system.

2.4 Edge thinning

One further step is necessary for implementation of the Nevatia-Babu edge detector for use

in our road detection system. Once the edge points are selected, any single points are deleted

from the edge image in order to eliminate some of the noise. The remaining edges vary in

thickness. Before proceeding to the linking stage of the system, it is helpful to thin the edges to a

one pixel thickness using a borrowed method from [11]. The goal is to remove edge pixels one

by one until only the "skeleton" remains. A pixel in the skeleton can have only two other edge

pixels in the 3x3 neighborhood surrounding it, unless it is the end of an edge or at a crossing

point. The 3x3 neighborhood of each edge pixel is inspected in order to determine if the center

pixel is part of the skeleton or not. There are many possible patterns which indicate that the

center pixel is not part of the skeleton and can thus be removed. However, by taking into account

certain conditions on properly thinning edges, the number of patterns which need to be

considered is reduced dramatically. These conditions guarantee that (i) thick edges are not split

into parallel thin edges, but are thinned as a single edge; (ii) that no holes are created in edges,

and; (iii) edges are not shortened at all, but remain the same length. The additional consideration

of symmetry determines seventeen 3x3 masks, shown in Figure 2.4, which need to be applied to

each edge pixel in order to thin the edges. One pass of the thinning algorithm compares the

neighborhoods of each edge pixel with the original, transpose and rotations of each of the

seventeen masks. Also, they must be compared starting from the left, right, top and bottom in
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order to take full advantage of symmetry. Figure 2.5 shows an example of finding an edge pixel

which does not belong in the skeleton. In dealing with the images used in this work, one pass

through all the checks was enough to satisfactorily thin the edges. However, if edges are thick

enough, the thinning may have to be repeated several times.

Figure 2.4. Edge thinning masks

3x3 neighborhood of ... matches ... thinning ... which changes the center
the center pixel... against... mask #3... pixel from an edge pixel to a

background pixel.

Figure 2.5. Example of edge thinning

2.5 Conclusion

The Nevatia-Babu edge detector is chosen as the first method for extracting road edges

from the test images. Not only does it have a good track record with other road detection

systems, but from the discussion above it can be seen to have several advantages.
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* It is a simple procedure, to understand and to implement. Determining the edge values

and angles for each pixel requires the equivalent of a convolution of the image with each

of the masks shown in Figure 2.1, then a simple search for the maximum resulting value

at each point. Choosing the edge points requires performing one basic test for each pixel.

The test does not involve a lot of computation, concentrating on a very small

neighborhood around the pixel in question, so this step is also quick and easy to

implement.

* The second advantage revolves around the fact that this method was devised to extract

linear features, and roads are often linear. The masks which represent the ideal edges at

various orientations model linear edges, not curved edges. Therefore, the largest edge

values will correspond to pixels that are a part of linear edge pieces. When thresholding

occurs, as in test 3 described above, these largest values will be the ones to pass the test

and be labeled as edge points. Therefore, this method should favor linear edges over

edges with a large curvature, which should in turn help to identify the road edges more

easily.

For these two reasons, the Nevatia-Babu edge detector is used as one option for the first

step in our road detection system.

27



28



Chapter 3.

WAVELETS FOR EDGE DETECTION

3.1 Introduction to wavelets

Wavelets are a complex mathematical tool that has found applications in a wide variety

of fields, including signal and image processing. This section is by no means a complete guide to

wavelets or their many uses. It is a very brief introduction to where they came from, what they

are, and how they are particularly useful for edge detection in the context of a road extraction

system. Section 3.1.1 describes the similarities and differences between the wavelet transform

and the Fourier transform. Section 3.1.2 defines wavelets and outlines the idea of

multiresolution, which is one of the underlying properties of the wavelet transform. Section 3.1.3

discusses how the multiresolutional approach works for decomposing images and what

advantages wavelets have for edge detection in images. The material is written for those who

have no previous experience with wavelets or the wavelet transform. More comprehensive

introductions to wavelets are asterisked in the bibliography.

3.1.1 Background

The theory of wavelets and the wavelet transform has become well-defined only within

the last fifteen years. The underlying idea was used prior to this, under a variety of different

names, in a variety of different fields from harmonic analysis, to signal processing, to computer

vision. Due to the lack of communication between the fields using the wavelets idea, there was

no realization that the methods being used were related until the mid-eighties. It was at this time

29



that several individuals working on the theory of wavelets joined forces and united these

seemingly separate ideas under the heading of "wavelets".

The idea of wavelets arose out of the need for a better tool for analyzing signals.

Transforms are often used for this task. In general, transforms take a signal and represent it in a

different form, usually because the new form makes explicit some characteristic of the signal that

is not obvious from the original representation. Probably the most well-known and most often-

used transform is the Fourier transform. The Fourier transform, abbreviated FT, takes a one-

dimensional signal that depends on time or a two-dimensional signal that depends on space and

transforms it into a signal that depends on frequency. It does this by breaking the signal into sine

and cosine components. The frequency content of the signal becomes obvious after a signal is

transformed by the FT. However, the time or space information which was readily apparent in

the original signal is now hidden deep in the numbers and is not obvious at all. The signal must

be transformed back using the Inverse FT in order to be able to see the time or space information

again. Figure 3.1 (based on [22], p. 8) (a) and (b) illustrate the trade-off between time and

frequency information for the 1-D case, where the horizontal axis is time and the vertical axis is

frequency. Any point in a signal must lie in the time-frequency plane. These diagrams show how

precise the time and frequency information is at all points in the plane. (a) represents the original

signal, where time is completely localized (imagine the vertical strips are infitesimely thin), but at

any time, it is impossible to separate out the frequency information. (b) shows the time-

frequency plane of the FT. Here, frequency is completely localized, but for a given frequency

there is no time information.

By only transforming a small piece of the signal at a time, some time or space

information can be kept. This technique is the windowed FT, and it divides the time-frequency

plane as shown in Figure 3.1 (c). By using a fixed-size window, there is some time localization

and some frequency localization for each point. Despite this advantage, there are trade-offs

between how much time/space and frequency information can be had at the same time. A small

window gives good time localization, but the lower frequency information will be lost because

the widest sine and cosine curves (which represent the low frequencies) will not fit inside the

window. Making the window larger incorporates more of the lower frequencies but also makes

the time information less precise.
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Figure 3.1. How certain transforms divide the time-frequency plane: (a) original signal; (b) FT; (c)

windowed FT; (d) wavelet transform

Thus it can be seen that the major problem with the windowed FT is that the window size

is fixed, no matter what frequency is being examined. Ideally, the window size would change so

that it would be wider at lower frequencies and thinner at higher frequencies. This would allow

all frequencies to fit inside their window, but it would still give the best possible time-localization

for each frequency. The wavelet transform splits the time-frequency plane in just this manner, as

shown in Figure 3.1 (d). The lower the frequency, the wider a time-window it provides. It was

this property of the wavelet transform that initially made it attractive to so many people who were

studying signals. However, there is much more to wavelets and the wavelet transform that time-

frequency localization, as the next section will show.
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3.1.2 Wavelet basics

To understand the wavelet transform at its simplest level requires only a small alteration

in the FT. Instead of decomposing a signal into multiples of sines and cosines, the wavelet

transform decomposes the signal into multiples of wavelets. Here the wavelets are a family of

functions consisting of all dilations and translations of a parent wavelet, Ig(t) 2:

J

?/f(t)= 22rf(2it -k) (3.1)

The parent wavelet ji(t) must be a function that integrates to zero. The 2j'2 constant is for

normalization purposes. As j increases, the wavelets get taller and thinner. When the wavelet

transform is applied to a signal, the signal is broken up into the components corresponding to

each of these varying-height and width wavelet functions, just as the signal is broken into sine

and cosine components with the FT.

If j and k are allowed to vary continuously, then there will be a very large number of

these wavelet functions, of all heights and widths. In this case, the decomposition will contain

redundant information and will take very long to complete. The transform with continuous j and

k is called the continuous wavelet transform (CWT). Although this is suitable for some

applications, most need a faster implementation and do not want the redundant information. By

limiting j and k to being integers, the discrete wavelet transform (DWT) is defined. Typically,

the DWT employs dilations of the parent wavelet function by a factor of a multiple of 2 and

translations by integer shifts. Using the DWT, a signal f(t) in L2 can be expressed as the sum of

the weighted wavelet function,

f(t)= b [k]t/i, (t) j, k are integers (3.2)

j,k

where the b coefficients are called the wavelet coefficients. These coefficients can be found

quickly and easily if the wavelets are orthogonal. That is, if all the wavelet functions Nfj,k are

orthogonal to each other (all dilations and translations of the parent wavelet with j, k integers are

2 Although wavelets are being introduced in order to use them in the analysis of a two-dimensional system,
most of the following discussion of wavelet basics focuses on the one-dimensional case. This is for
simplicity and because one-dimensional wavelets are also used in our system.

32



orthogonal to one another), then the wavelet coefficients can be calculated by a single integral

involving the signal and the wavelet functions:

bj [k]= f (t)V f, (t)dt (3.3)

The uniqueness of the wavelet transform comes from introducing another family of

functions, called the scaling functions. These functions are closely related to the wavelet

functions and are defined in much the same way, based on a parent scaling function $(t), which

must integrate to one:

#,k (t)= 22#(2it -k) (3.4)

Instead of expanding the signal with respect to all dilations and translations of the scaling

function, this second set of functions is primarily used in the decomposition to approximate the

signal at a certain scale. The variable j controls the dilation of the functions and also indicates

scale level, allowing for the following types of signal approximations:

f3 (t)= Zaj [k],k (t) (3.5)
k

The a coefficients are the scaling coefficients at scale j.
If the wavelet and scaling functions together form an orthogonal system, the DWT has

especially nice and useful properties. Three things must be true of the functions in order to

classify the system as being orthogonal: (1) All wavelets Wj,k are orthogonal to each other (all

dilations and translations of the parent wavelet withj, k integers are orthogonal to one another),

(2) the parent scaling function $ is orthogonal to all its integer translations, and (3) the parent

wavelet is orthogonal to all the integer translations of the parent scaling function. When these

three conditions are met, the system is said to be orthogonal. Note that in an orthogonal system,

the wavelet and scaling functions are intimately related. The two must be chosen together to

satisfy these conditions.
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Orthogonal systems of wavelet and scaling functions have the advantageous property of

multiresolution. Multiresolution refers to the ability to decompose the signal at multiple

resolutions or scales. When the system functions are orthogonal and also fulfill some other basic

equations, not only can they be used to approximate the signal at these various resolutions, but the

information at each scale is contained in and can be determined from the information at the scale

above. This leads to very fast and efficient decompositions of signals.

Multiresolution begins by choosing the scaling and wavelet functions carefully. They are

found by solving the following two equations:

N N

$(t) = 2 Z ho[k]$(21 - k) y,(t) = 2 hi[k]$(2t - k) (3.6)
k=O k=O

The first equation is called the dilation equation, the second is called the wavelet equation. There

are several things to note about these equations. First, both the wavelet and the scaling function

are defined based on the scaling function. Although the transform is called the wavelet transform,

the scaling function plays a major role when the multiresolution approach is being used. Next,

note that these equations involve functions at two scales (because of the 2t factor), and therefore

are not always easy to solve. Sometimes there may be no solution. If there is a solution, it is

most likely not a closed formula solution, and it almost certainly is not a smooth solution.

However, it does have compact support, that is, it is zero outside [0, N]. Finally, for the purposes

of signal and image processing it is interesting to see that the wavelet and scaling functions,

which are continuous functions, can be described by a set of discrete filters, h0[n] and hi[n].

(Section 3.3 details the steps taken to find the two filters used in our edge detection

implementation.)

Here a simple example is introduced to help understand the concepts being discussed.

The Haar wavelet system is the earliest and simplest example. The scaling function $(t) is the

box function, from 0 to 1:

1

-1 0 1 2

Figure 3.2. Haar scaling function
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The dilation equation for this example has two terms. The two versions of the Haar scaling

function on the right side of the equation shown in Figure 3.3 both contribute evenly to build <(t).

This implies that ho[O] = ho[1] = 1/2.

+

Figure 3.3. Dilation equation for Haar scaling function

Then the Haar wavelet is formed by combining the coefficients hi[0] = % hi[1] = -% with the

same two components that were used to form the scaling function, as shown in Figure 3.4,

corresponding to the wavelet equation in Equation 3.6.

+

Figure 3.4. Haar wavelet function
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The Haar functions display another interesting property that is common with many other scaling

and wavelet functions. The scaling is an averaging procedure, while the wavelet is a differencing

procedure, as can be seen by the coefficients of the ho and hi filters. In general, the scaling

function will be a smoothing function, with the corresponding filter being a lowpass filter. The

wavelet function usually has a corresponding filter that is a highpass filter.

If the parent scaling and wavelet functions are found by solving the dilation and wavelet

equations, it can be shown that the family of functions $j,k(t) form an orthonormal basis for the

space of all finite-energy continuous functions. Similarly, j 3,k(t) can also be used as an

orthonormal basis for this space of functions. Focusing on the scaling functions, this implies that

any continuous function or signal f(t) can be described exactly by using the scaling functions as

building blocks. As mentioned above, the signal can also be approximated at scale j by using

only the scaling functions from this scale:

f1 (t) = a [k]#j~k (t) (3.7)
k

Similarly, f(t) can be approximated at a finer scale by using thinner scaling functions, which is

equivalent to increasing j:

f+ 1 (t) = 1 a1+1 [k]j+lk, (t (3.8)
k

Because the approximation of Equation 3.8 uses thinner functions, it will be able to more

accurately represent the function. The key idea of multiresolution comes from examining the

difference between the approximations at the two neighboring scales, j and j+1. It turns out that

this difference is captured exactly by the wavelet approximation at the coarser scale, j:

f+ 1(t) - f (t) = Ybj [k]I j,k (t) (3.9)
k

This implies that the same approximation can be made by using either {j+1,k(t)} or {$j,k(t),

Vj,k(t) }-
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Figure 3.5. Connection between approximations of a Gaussian curve at neighboring scales, using Haar
functions: (a) scaling function approximation at scale j+1; (b) unit scaling function at scale j+1; (c) scaling
function approximation at scale j; (d) unit scaling function at scale j; (e) wavelet approximation at scale j,

also difference between (a) and (c); (f) unit wavelet function at scale j
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Figure 3.5 3 on the previous page illustrates this idea using the Haar example. The first

diagram shows an approximation of a Gaussian using scaling functions of width w. This finer

scale is the j+1" scale. Figure 3.5 (b) shows the unit scaling function being used for this

approximation. The second approximation in Figure 3.5 (c) is made at the coarser scale, j, using

a unit scaling function which has a width of 2w, shown in Figure 3.5 (d). Obviously the

approximation is not as good at this level. The third diagram shows the wavelet approximation at

scalej, which also corresponds to the exact difference between the approximations in (a) and (c).

The unit wavelet function is shown in Figure 3.5 (f). It also has a width of 2w. It can be seen

from this example that the approximation made at level j+ 1 is equivalent to the sum of the two

approximations made at levelj.

This concept becomes better defined by considering certain function spaces. Say Vj is

the space of all functions which can be described exactly by weighted combinations of $,k(t),

where the weights are the aj[k] coefficients. Wj is the corresponding space of all functions which

can be described exactly by weighted combinations of N4j,k(t), with the bj[k] coefficients now

becoming the weights. Then it follows from the discussion in the previous paragraph that

* Vj c Vj. 1 : If a function can be described exactly by the scaling functions at a coarser

levelj, the finer scaling functions at level j+1 can also describe it exactly.

* Wj c Vj,1: If a function can be described exactly by the wavelet functions at a coarser

level j, the finer scaling functions at level j+1 can also describe it exactly.

* Vjl Wj: The two spaces are orthogonal, which follows from the orthogonality of the

functions.

* Vj,1 = Vj( Wj: Every function in Vj+1 is the sum of functions in Vj and Wj.

This fourth point assumes the first three, and using it the fast and easy decomposition of a signal

can take place. The decomposition starts in the VN space, where the original signal f(t) can be

described exactly by the scaling functions $N,k(t). The first level of decomposition calculates the

aN-1[k] coefficients corresponding to the approximation fN-1(t) using the functions $N-1,k(t). The

wavelet coefficients bN-1[k] are calculated from the approximation using the functions 19N,k(t) and

represent the details lost in going from the f(t) to fN-1(t). Together, the aN-1[k] and the bN-1[k]

coefficients contain the same information as the original signal. The second level of

decomposition calculates the aN-2[k] coefficients corresponding to the approximation fN-2(t) using

the functions $N-2,k(t), as well as the bN-2[k] coefficients from the approximation using 19N-2,k(t)-

3 This diagram is meant to illustrate the idea discussed in the previous paragraph and is not numerically
exact. The heights of the box functions in this figure may not be exactly accurate.
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Together the aN-2[k] and the bN-2[k] coefficients contain the same information as the aN-1Ik]

coefficients. The decomposition continues in this manner, at each level approximating the signal

using wider functions and recording the difference between levels in the wavelet coefficients.

The decomposition is made even faster by directly connecting the a and b coefficients

from neighboring scales. By closely examining the relationships between scales, it can be shown

that

a1 [n] = ho[k - 2n]ag [k] and bj[n] = -F2/ihJ[k - 2n]ajl [k]. (3.10)
k k

That is, the scaling and wavelet coefficients at scale j can be directly calculated from the scaling

coefficients at scale j+1. The only necessary tools are the two filters ho[n] and h i[n]. Instead of

talking about approximating continuous functions using other functions, now the decomposition

involves applying a digital filter to the functions. This also means that the signals need not

actually be continuous. The signal can now be discrete, as in the case of the digital images used

in this project. In the case of discrete signals, finding the scaling and wavelet coefficients

involves performing convolutions between the discrete values and the filter coefficients.

Thus, it can be see again how important these filters are: not only do they describe the

parent scaling and wavelet functions, but they also allow for fast determination of the coefficients

at all scales of both continuous and discrete signals. In fact, there are two equations

corresponding to those in Equation 3.10 for reconstructing the signal from its coefficients, and

these equations also involve ho[n] and h1[n]. The filters are indeed central to the implementation

of the DWT, for both the 1-D and 2-D cases.

3.1.3 Discrete wavelet transform for 2-D signals

Images are 2-D discrete signals. As with the decomposition of 1-D discrete signals

described at the end of the previous section, images can also be decomposed using two one-

dimensional filters. The filter which corresponds to the scaling function is the lowpass filter,

while the highpass filter is the wavelet filter. Both filters are applied in both the horizontal and

vertical directions. This results in four sets of coefficients instead of two: aj[n, m] are the

coefficients at scale j which result from applying the lowpass filter first along the rows, then

along the columns; hj[n, m] are the coefficients at scale j which result from first applying the

lowpass filter along the rows, then applying the highpass filter along the columns; vJIn, m] are the
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coefficients at scale j which result from first applying the highpass filter along the rows, then

applying the lowpass filter along the columns; and dj[n, m] are the coefficients at scale j which

result from applying the highpass filter first along the rows, then along the columns. As with the

one-dimensional signal, the aj[n, m] coefficients approximate the image at scale j and the hj[n, in],

vj[n, m] and dj[n, m] coefficients record the differences between the approximations at scale j+1

and scale j. That is, in the case of images, the information contained in the four sets of

coefficients at scale j is equivalent to the information contained in the aj+i[n, m] coefficients.

Therefore, at each scale of the decomposition, both filters are applied to the last approximation to

get the four sets of coefficients at the next level. The iteration is on the a coefficients.

A typical image decomposition using the Haar wavelet and scaling functions is shown in

Figure 3.6. Figure 3.6 (a) shows the original image, a 500x500 image of a highway intersection.

This is the same test image as used in Chapter 2. Figure 3.6 (b) shows the four sets of

coefficients at all three levels of decomposition. The coefficients are shown as grayscale values

in order to demonstrate what each set represents. The a coefficients represent smoothed versions

of the image, where the image becomes more smoothed as the level increases. These are the

lower frequency components of the image. The h, v, and d coefficients represent the horizontal,

vertical and diagonal detail components respectively, the high frequency components of the

image. Although these images are all shown as being the same size, each level has only a quarter

of the coefficients as the level above it. Finally, Figure 3.6 (c) shows a common way of

displaying the decomposition information. Despite the fact that the details of each image are not

as clear as in (b), the hierarchical format emphasizes the multiresolution property that is discussed

throughout this section. It also more accurately represents the actual mechanics of an image

decomposition. In this representation, only the lowest level of a coefficients are displayed

because only these coefficients are kept when implementing the decomposition. However, all the

detail components are kept at each level, which is also true in the implementation. The advantage

of arranging the sets of coefficients in this manner is that it can easily be seen that after the

decomposition is completed, there are exactly the same number of coefficients as there are in the

original image. Furthermore, because of multiresolution, these sets of coefficients contain

exactly the same information as the original image. The information is simply in a new form, one

which may emphasize different characteristics of the image. This is exactly the purpose of any

transform, including the wavelet transform.
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3.6 (b)
(Figure 3.6 continued on next page...)
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Figure 3.6. Three-level wavelet decomposition using the Haar functions:
hierarchical representation of the wavelet and scaling coefficients

For the purposes of edge detection, the wavelet decomposition works very well.

Consider again that the detail coefficients represent the high frequency components of the image.

Edges are nothing but high frequency details. Therefore, the largest high frequency coefficients

from the wavelet decomposition should give a good indication of the edge locations within the

image. This may not be clear from the figure above. Figure 3.7 on the following page shows the

absolute values of the three levels of h, v, and d coefficients from Figure 3.6. This makes it

obvious that the detail components are closely related to the edges and should be able to be

manipulated to yield the image edges. This is the main reason that the wavelet transform is used

as an edge detection procedure in this system. Other possible advantages of using wavelets for

edge detection which are not experimented with in this project are mentioned in the conclusion to

this chapter.

3.2 Relation of wavelet transform to Canny edge detector

The brief introduction to wavelets in Section 3.1 mentioned the multiscale and

multiresolution properties of the wavelet transform as being particularly useful characteristics to
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Figure 3.7. Absolute values of h, v, and d coefficients shown in Figure 3.6

exploit when using this tool for edge detection. Even though the multiresolution property is

unique to wavelets, using multiple scales for the detection and analysis of edges is not a concept

which developed with wavelet theory. Other multiscale edge detection methods designed prior to

the invention of wavelets have met with notable success and are among the most relied upon

procedures for extracting edges from images. Many of these methods are based on the same

basic idea: first smooth the image at various scales using dilations of a smoothing function 4, then

examine the first or second derivative of this smoothed function for points representing sharp

variations. The local extrema of the first derivative and the zero crossings of the second
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derivative should indicate where the edges are located on the original image. Multiscale methods

which follow this procedure differ by the smoothing function they use. An obvious choice for the

smoothing function is a Gaussian. The multiscale method which smoothes the image using a

Gaussian and proceeds to examine the second derivative of the smoothed image for zero-

crossings is called the Marr-Hildreth method. Similarly, the multiscale method which examines

the first derivative of a Gaussian-smoothed image for local extrema is the Canny edge

detector.[3] These methods are well-established and well-liked due to the simplicity and

effectiveness of their basic concept. In a paper entitled "Characterization of signals from

multiscale edges", Stephane Mallat and Sifen Zhong relate the process of using wavelets for edge

detection to these popular methods, especially the Canny method.[17] By understanding the

relationship between multiscale edge detection methods and the use of the wavelet transform for

extracting edges, a clear picture of the latter emerges. This relationship, as explained by Mallat

and Zhong, is outlined in the remaining paragraphs of this section.

The relationship is best understood if it is first explained in one dimension and then

extended to 2-D for use with images. Figure 3.8 below outlines the basic process of multiscale

edge detectors at a specific scale. An edge is modeled as a step, which is a generalization but still

a good model. The edge has two distinct and significantly different grayscale values on either

side and the actual edge point is modeled by the sharp transition between these values.

Regardless of the smoothing function used, smoothing the signal has the effect of softening the

edge so that the change from one grayscale value to the other is more gradual. The inflection

point of this smoothed curve becomes the maximum of the first derivative curve and the zero-

crossing of the second derivative. If the smoothed edge were decreasing from left to right, the

inflection point would be a minimum after taking the first derivative. The arrows indicate the

actual edge point. It is clear then that by finding the extrema of the first derivative of the

smoothed image the edges should be found.

edge smoothed edge first derivative second derivative

Figure 3.8. Effect of smoothing and derivative operators on an edge

4 A smoothing function is any function whose integral is equal to 1 and which converges to 0 at infinity and
-infinity.
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Therefore, there are two operators involved in treating the image before the extrema are

found: the smoothing operator and the first derivative operator. In order to achieve equivalency

between the wavelet transform and these multiscale methods, the wavelets should be designed

using these two operators. As Mallat and Zhong suggest, it is possible to choose the wavelet to

be the first derivative of a smoothing operator, 0(x). Then applying the wavelet to the signal f is

the same as applying the derivative of 0. By changing the order of the two operators, it is finally

seen that the application of the wavelet to the signal is equivalent to first smoothing the function

with 0, then taking the derivative, which is the procedure used in multiscale edge detection

methods as described above. These equivalencies are shown in Equation 3.11.

S(X) = -------- 0. f *y(x)= f *( a )= -(f * )(x)
ax ax ax (3.11)

So, in choosing the wavelet to be the derivative of a smoothing function, the connection

is made between multiscale edge detection procedures and the use of wavelets for edge detection.

This idea also extends to the two-dimensional case. Two 2-D wavelets 1fi and V 2 are chosen to

be the partial derivatives of a single two dimensional smoothing function 0(x,y). When applying

these two wavelets individually to the image f, the order of the derivative and smoothing

operators can again be switched. The two components resulting from the application of the two

wavelets to the image are put into a single matrix. They are labeled V(x,y) and H(x,y) here

because they tend to accent the vertical and horizontal edges, as will be seen later. Because of the

order rearrangement this matrix is equivalent to the gradient of the smoothed image, as shown in

Equation 3.12 5. This is identical to how 2-D multiscale edge detection methods such as Canny

work.

1i(x, y) = a6(x,y) (f * 6)(x, y)
ax V(x, y) f* 1(xy) ax

-y H(x,y) f* Vf 2(X,Y) a X(f * )X, Y) (3.12)

= a6(x, y) ay
=V(f *6)(x,y)

s The matrix is actually equivalent to a constant multiple of the gradient, but the constant, which may be 1,
is not shown in this equation for simplicity's sake.
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As well as explaining this connection between the Canny edge detector and the wavelet

transform, Mallat and Zhong develop a specific set of wavelet filters which satisfy the above

properties and which lead to a fast implementation of the edge detection. The steps to building

these filters are described in the next section. Once the edge detection is performed, the local

extrema must be found in order to identify the edge points. The two components of the wavelet

transform shown as V(x,y) and H(x,y) in Equation 3.12 are combined to form a modulus image.

Then the local maxima of this image are chosen as the edge points. Finally, to improve the

quality of the edge image, local grayscale variance is combined with the local modulus maxima to

clear up the edges. These last three steps which actually select the edge points are detailed in

Section 3.4.

3.3 Mallat-Zhong filters for edge detection

Mallat and Zhong develop a set of filters that result in the fast implementation of the 2-D

wavelet transform described in the last section. Two wavelets are built which, when applied to

the image, determine the two components labeled V(x,y) and H(x,y). The two-dimensional

wavelet functions are built to be separable. This separability property is what allows for the fast

implementation. The wavelets are built very carefully however, and still maintain the important

property of being first partial derivatives of a single smoothing function. The combination of the

two properties leads to a set of filters which are used here to extract the image edges.

In order to ensure that the two wavelets are separable, they are built as the combinations of

two 1-D functions. These 1-D functions are also chosen to have very specific properties. They

are a scaling function and a wavelet function, with the wavelet function itself being the first

derivative of a smoothing function. The assumption is made that the scaling function < has a

frequency response Go, while the wavelet function Mj has a frequency response G1. In order to

specify these frequency responses, consideration is made as to what properties the wavelet

function should have. Sticking with the main idea behind this method, the wavelet should be the

first derivative of a smoothing function 0. Mallat and Zhong also decide that the wavelet should

be antisymmetrical with respect to 0 and have small compact support. Both these properties

facilitate and speed up the wavelet transform implementation because the associated impulse

response is finite and also antisymmetrical around 0. It is also deemed important that the scaling

function be symmetrical with respect to 0, which results in a corresponding short, symmetrical
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impulse response. By requiring the two functions to have these properties, the possible choices

for Go and Gi narrow considerably. Mallat and Zhong choose

Go (a)) = e 2 (cos( )) 2n+1

2

which in turn implies the function equations:

ie,)

G, (w) = 4ie 2

A sin(-) A

0(0)) = 2 )2n+1 V/(O
0)

2

Here the wavelet is the first derivative of the function

sin(- )
2

sin( )
) = ia)( )2n+2

0

4

(0
sin(-)

OA) = 4( )n+2

4

A A A

. (o), V (w) and 6 (w) are plotted in Figure 3.9. These graphs show the antisymmetrical and

symmetrical properties of the wavelet and scaling functions, as well as the fact that both have

small support areas.

smoothing function

(00
scaling function

wavelet function

Figure 3.9. Mallat-Zhong choice of J-D wavelet and scaling functions

47

(3.13)

(3.14)

(3.15)

take first
derivative



Recall that the purpose of forming these two 1-D functions is to use them to build two

separable 2-D wavelets. These two wavelets, i and V2, are formed according to the following

equations:

V,1(x, y) = V (x)2#(2y) V 2 (X, Y)= 2# (2x)Vp (y) (3.16)

These combinations of ji and $ are chosen with fast implementation in mind. First, remember

that to fulfill the underlying idea behind this method, W1 and I2 should be the partial derivatives

of a single smoothing function. This is shown to be true in the numerical sense by first looking at

the two smoothing functions 01(x,y) and 0 2 (x,y):

61(x, y)= 6(x)2# (2y) 62 (x, y) = 2#(2x)6(y) (3.17)

o in this case is the 1-D smoothing function shown above in Figure 3.9. By taking the partial

derivatives of 01 and 02 with respect to x and y respectively, and by recalling that the 1-D wavelet

function is the first derivative of 0, it can be seen that these partial derivatives of the 2-D

smoothing functions are equivalent to the 2-D wavelets from Equation 3.16:

a61(x, y) ~3 d6(x)= (6(x)2#(2y)) = 2 0(2 y) = yf(x)2#(2y)= V1 (x, y) (3.18)
ax ax dx

a62 (x y) a d6(y)' = -- (2#(2x)6(y)) = 20(2x) d (y= 2#(2x)qf(y)= V 2 (x, y) (3.19)
ay ay dy

Next it is noted that 01 and 02 are numerically close enough that they can be considered to be the

same function 0(x,y), which implies that both wavelets are the derivatives of a single smoothing

function.

The purpose of describing the formation process of the 2-D wavelets is to verify this very

property, as well as to emphasize the separability of the wavelets. However, the purpose of

building the wavelets in this manner to begin with is to capitalize on the simplicity of the impulse

responses Go and G1 by basing the wavelet transform implementation on their use. That is, due to

the wavelets i and W2 being separable into the component functions $ and W, a very simple

implementation arises involving the impulse responses go[n] and gj[n] associated with the
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component functions. As was mentioned earlier, Go and G1 are chosen so that $ and xV have short

support and are symmetrical and antisymmetrical respectively. This results in short impulse

response filters go and g] 6 with the same symmetric properties, shown in Table 3.1.

Table 3.1. Impulse response filters used for wavelet transform implementation (as shown in [17], Table I)

At each level of decomposition k, these filters are applied to generate three component

images, two which highlight the horizontal and vertical details, Hk and Vk, and one which is the

smoothed image, Sk. Here, k is not the same as the dilation variable j from previous sections in

the chapter. k is a counter for the levels of decomposition, and can be thought as being equal to

N-j. Note that whereas j decreases with each level of decomposition, k increases. Although

introducing a new notation may be slightly more confusing, it follows the conventions of Mallat

and Zhong's paper and is therefore kept. Returning to the decomposition, the iteration is on the

smoothed image, that is, Hk, Vk, and Sk are generated by decomposing the smoothed image at

level k-1, Sk.1. The gj filter does the differencing, so it is used to compute the detail components:

Hk is found by convolving the columns of Sk. with gj, while Vk(x,y) is found by convolving the

rows of Sk-1 with gj. The go filter does the smoothing, so Sk is found by convolving both the rows

and columns of Sk.1 with go. This algorithm is summarized as follows, for N levels of

decomposition:

k= 1;

So = original image;

while k <= N

Hk(x,y) = Sk-l*(D, gi);

Vk(x,y) = Sk-l*( gi, D);

6 These filters correspond to the ho and hi filters from Section 3.1. They are labeled using g's instead of h's
to prevent confusion with the horizontal coefficients, Hk, introduced below.
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-1 0.125

0 0.375 -2.0

1 0.375 2.0

2 0.125



Sk(X,Y) = Sk-l*( g0, go);

k=k+ 1;

end

where D is the dirac function (1 at 0 and 0 everywhere else), and A*(B, C) represents a 2-D

separable convolution where the 1-D filters B and C are convolved in one dimension with the

rows and columns of A, respectively. Figure 3.10 on the next page shows the output from the

first three levels of decomposition of the test image shown in Figure 3.6.

3.4 Selection of edge points

The wavelet transform is applied to a test image in the hopes that the edges will be more

obvious in the output images than in the original. Specifically, the antisymmetrical shape of the

wavelet filter should highlight the edges in the Vk and Hk output components. The smoothed

component Sk is useful during the implementation of the transform for iteration purposes, but the

next step focuses solely on isolating the edge information from the Vk and Hk components.

Recall that the method to extract edges revolves around first applying a wavelet that is the first

derivative of a smoothing function, which is done in the previous section, and then finding the

local extrema of the output signal. There are two output signals from this implementation. To

perform the local extrema search, Vk and Hk are first combined to form a modulus image. Then a

search is made for local maxima within this image. (Minima are ignored because the modulus

image is made up of absolute values). After the local maxima are found, an additional step is

added to those outlined by Mallat and Zhong in order to clean up the edge image. The local

maxima information is combined with local gray scale variance information in an attempt to

discard many of the useless, "noisy" edges that are not wanted for the remaining steps of the road

detection process.

3.4.1 Calculating the modulus image

The modulus image is created using the vertical and horizontal edge components

outputted from the wavelet transform. Because there is a Vk and Hk component at all
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Figure 3.10. Decomposition of test image using Mallat-Zhong filters: (a) SI(x, y); (b) Vi (x, y);
(c) Hi (x, y); (d) S2(x, y); (e) V2 (x, y); (f) H 2 (x, y); (g) S3(x, y); (h) V3 (x, y); (i) H3 (x, y)

decomposition levels, there is also a modulus image for each level.

modulus values is simple:

Mk (x, y) = V(x, y)2 + |H (x, y) 2

The calculation of the

(3.20)
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By combining Vk(x,y) and Hk(x,y) in this manner, all orientations of edges are accounted

for, not just those in the vertical or horizontal directions. It is clear that points lying along vertical

or horizontal edges have large modulus values because either V(x,y) or Hk(x,y) has a large

absolute value. Certainly points such as corners and intersections which lie along both a

horizontal and vertical edge have very large modulus values. But in addition to these cases, any

point which lies on a sharp edge of any orientation should also have a relatively large modulus

value. Along such edges, both Vk(x,y) or Hk(x,y) have average or larger than average absolute

values, which when squared and combined, lead to a large modulus value. Therefore, it is

expected that most edge points should be emphasized in the modulus image. Figure 3.11 shows

the modulus images for the three levels of decomposition shown in Figure 3.10. At all levels, the

strongest edges are the road edges and other major edges, such as those of the buildings and the

banks of the lake. These edges become clearer by the third level. However, other edges such as

those representing the foliage are also present as weaker but still obvious edges. It is hoped that

the remaining steps in the edge detection process can eliminate some of the noisy, unwanted

edges while keeping the strong, desired edges.

(a) (b) (c)

Figure 3.11. Three levels of modulus images: (a) MI(xy); (b) M2(x,y); (c) M(x,y)

3.4.2 Finding the local maxima

The largest modulus values clearly represent the strongest edges in the original images.

However, to simplify further processing of the edges, it is necessary to create a binary image

based on the modulus image in which the edge points have a value of 1 and all other points are 0.

One possibility which may seem attractive is to simply threshold the modulus values. The

problem with this solution is that choosing the threshold is not trivial. Instead, the final step
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illustrated in Figure 3.8 is taken. That is, a point from the modulus image is chosen to be an edge

point in the binary image if it is a local maximum.

With a 2-D signal such as the test images, it is important to decide in which direction the

point must be a local maximum for it to become an edge point. It makes sense that it need not be

a local maximum along the direction of the edge it is a part of, but rather in the direction normal

to the edge direction. Thus, it is necessary to know the direction or angle of the edge of which a

point is a part. Luckily, this information can be easily calculated from the value of Vk and Hk.

The edge angle at a point (x,y) is given by the following equation:

(3.21)
Ak(x, y) = argument(Vk(x, y) + iHk(x, y))

0
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Figure 3.12. Assignment of the edge direction based on the point angle

In order to determine if a point is a local maximum, Ak(x, y) is found and then the edge at

that point is classified as one of four directions, horizontal, vertical, diagonal 1 or diagonal 2,

based on the angle value. Figure 3.12 illustrates how these directions are assigned. The direction

normal to the edge direction is determined. Then the modulus value of the central point is
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compared to the modulus values of the two neighbors on either side in this normal direction. If it

is greater than these two points, it is deemed a local maximum and therefore becomes an edge

point. The local maximums found in this manner for the modulus images of Figure 3.11 are

shown below in Figure 3.13. Although these are not the clearest images, it should be apparent

that as the level number increases, that is, as the scale becomes coarser, the desired road edges

and other major edges become more complete and there is slightly less clutter from noisy edges.

(a) (b) (c)

Figure 3.13. Three levels of local maxima images: (a) level 1; (b) level 2; (c) level 3

Finally then, the process outlined in Section 3.2 has been completed. Although the

process is not as simple as that depicted in Figure 3.8, in essence the steps are those of smoothing

and taking the derivative, by means of the wavelet transform, and finding the local extrema.

3.4.3 Introducing local grayscale variance

This final step is a means of cleaning up the edge image. Choosing local maxima from

the modulus image is a very local calculation. This is obvious in the images from Figure 3.13

which are filled with edges, both wanted and unwanted. Certainly some of these edges are

stronger than others in the original image. Stronger edges have a larger difference in the

grayscale values on either side of the edge points. So it should be possible to eliminate some of

the weaker edge points which are present in the local maxima image by also considering the local

gray scale variance around the points.

The local grayscale variance is used in the following way: For each image pixel, a small

neighborhood of points around the pixel is taken into account. The mean grayscale value of the

points in the neighborhood is calculated. Then the variance is calculated as the squared sum of

the differences from this mean to the values of all neighborhood points. This variance is assigned
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to the original center pixel. If a point is part of or is located close to an edge, then it is expected

that that edge will run through the considered neighborhood. If this is so, there should be a larger

grayscale variance within the neighborhood. Therefore, once all image pixels have a sum of

variances associated with them, the points with the larger variances are labeled as edge points,

and those with smaller variances are labeled as background. The cutoff point between the two is

the mean of all the sums of variances. Figure 3.14 shows an example of the image which results

when this process is run on the test image from Figure 3.6, considering 7x7 neighborhoods. The

black points are those which have a local variance higher than average, and are thus designated

edge points.

X 
N

Figure 3.14. Example of using grayscale variance for edge detection

Although this grayscale variance calculation is also very localized, the combination of the

information it produces with the local maxima information leads to the removal of several

unwanted edges from the edge image. It can be seen from the figure above that if a large enough

neighborhood is used, many of the smaller, noisy edges do not appear in the output. Therefore,

eliminating edges from the local maxima image which do not have corresponding areas of black

points in the grayscale variance image produces a cleaner edge image with fewer undesirable

edges. For example, Figure 3.15 shows the combination of the local maxima image from Figure

3.13 (c) and the local grayscale variance image from Figure 3.14. It is an image such as this that

is passed on to the next stage of the road detection system.
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Figure 3.15. Combination of Figure 3.13(c) and Figure 3.14

3.5 Conclusion

This chapter serves as an introduction to one of the newer tools being used for edge and

feature extraction, that is, the wavelet transform. Specifically, the focus is on the work done by

Mallat and Zhong, the filters they built to perform a fast implementation of the wavelet transform

and the multiscale/multiresolution edge detection concepts behind the filters. This is not the only

way to perform edge detection using wavelets, but it is a method that works well and gives insight

into the characteristics of wavelets through the explanation of the details.

Obviously the technique described in this chapter is quite different and certainly more

theoretically complex than the Nevatia-Babu method described in Chapter 2. Although in this

case there is no explicit tailoring of the technique to extract linear or road features, the wavelet

method still has some unique advantages.

* As was mentioned at the end of Section 3.1.3, three of the four sets of coefficients

generated at each level of the wavelet decomposition contain high frequency details

of the image. These details correspond very closely to the strongest edges of the

image and can be exploited for edge detection procedure.

* The size of this chapter as compared to Chapter 2 is an indication that the theory

behind the wavelet method is more complicated than for some other edge detection

techniques. In fact, to truly understand wavelets and their properties requires much
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more than simply reading this chapter. However, although there is more knowledge

required to understand where the algorithms and filters come from, the

implementation of the DWT for edge detection is very fast and easy. This is evident

from the simplicity of the algorithm stated in Section 3.3. The edge detection

procedure involving wavelets is as fast or faster than the Nevatia-Babu method, and

usually gives better results.

The separation of details by scale means that not all the detail information need be

considered. It is easy to see from the output of the DWT which scales provide the

best edge information. This is largely based on the size/width of the edges being

detected. It is possible to focus on the best scale and ignore a lot of other information

that may decreased the overall quality of the results. For the broader problem of

feature detection where the features may be buildings or cars, etc., it may also be

possible to predetermine which scale will produce the best results based on the size

of the specific feature. This could potentially reduce the amount of computation

which needs to be done. This was not attempted in this project.

* Also not undertaken in the building of this system was the tailoring of the parent

wavelet and scaling functions to a specific task. There are a huge number of

functions which satisfy the conditions for being a wavelet or scaling function. In

fact, there are a great deal more conditions to consider when building one's own

wavelet than are mentioned in this chapter. It is possible to tailor them quite

specifically, and it is conceivable that the parent functions could be built to increase

the success in detecting a specific feature. This of course would require a deeper

knowledge of both the properties of wavelets and of the feature to be detected.

For these reasons, it seems worthwhile to experiment with wavelets as an edge detection tool in

this road detection system.
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Chapter 4.

EDGE LINKING

4.1 Introduction

No edge detection method is perfect in that it finds all the edge points and only edge

points. Usually, unwanted noise is present in the form of short, erratic edges, and many edge

pieces remain disconnected from other pieces on the same edge by gaps. Both these problems are

addressed in the edge linking process. In general, the goal of edge linking is to fill the gaps in

edges by somehow deciding which pieces should be connected and by joining them. Numerous

methods have been devised to perform this task. As with the problem of edge detection,

specifically road detection, linking methods are either local or global-based systems.

Local methods deal with a neighborhood around the pixel to be linked, analyzing the

characteristics of these neighboring pixels to determine where the links should be made. The

simplest of local schemes focus on a small neighborhood and use information from earlier edge

detection in order to find pixels with similar characteristics. For example, if edge angle and

magnitude values are found for each pixel, as in the Nevatia-Babu method described in Chapter 2,

linking between two points may take place if the difference in angles and/or the difference in

magnitudes is below some fixed threshold.[8] As the size of the neighborhoods gets larger, the

searches for points to link become more complicated and a variety of path metrics are introduced

to help the process. A sequential search of points to link may use a maximum likelihood metric

which calculates the most likely path between certain points.[5] Fuzzy reasoning has also been

used to deduce which pixels in the search area should be linked together. In this case, a variety of
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local properties between points, such as alignment, proximity and interim edgeness, are analyzed

together to find the best link.[15]

Global methods look at the overall pattern of edges and try to describe the features using

a few variables. In one such method, the entire edge image is modeled as a potential function,

where each edge point exerts a force on all other edge points, and links are made between points

with the strongest attractions. [24] Another common global method is to use the Hough transform

to describe an edge as a curve of specified shape and estimate the missing edge points from the

known formula of the curve.[8] Other tools used for global edge linking are Markov Random

Fields [7], and Least-Square-Error curve fitting [19].

4.2 Overview of edge linking technique

The linking procedure described in this work is a local method and specifically focuses

on linking edges which represent roads. The method revolves around the idea of using the edge

direction to outline a search area in which points to be linked will be found. The same idea

underlies a simple edge following process developed by Heipke, Englisch, Speer, Stier and

Kutka.[11] After thinning the edges, they use the angle associated with a specific edge point to

determine a small search area. The points within this small area are numbered and checked in

ascending order for possible edge points to link. A sample of one of their search matrices is

shown below in Figure 4.1. This matrix corresponds to an angle of 45 degrees at the point p.

From the choice of placement of the numbers within the matrix, it is apparent that both the

proximity of a point to p and how close the point is to the edge direction of p are important

considerations in choosing a point to link with p. These considerations carry over to the edge

linking method described in this chapter. Once our search area is determined, it is searched in a

manner such that points closer to the root point are search first, as are points which lie along the

principal search direction. However, the Heipke method will obviously only fill small gaps, of

five pixels or less. Also, their search area is based on a single edge angle calculated at one point.

Our edge linking process can not only fill gaps of arbitrary largeness, but a good part of the edge

linking focuses on accurately finding the direction of an edge so as to have a better search area.

So, although the general idea of search areas for edge linking has been used before, the

details of the searches performed by this method are new. As mentioned above, steps are taken to

determine which edge points are actually a part of the true edge leading away from an end point.

Once this is accomplished, an estimation is made as to the direction in which the edge is heading.
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Figure 4.1. Example from [11]

The primary and secondary directions, found by looking at the last few step directions within an

edge, are assigned to each end point as candidates for the true edge direction. We assume roads

are relatively straight, so we expect the road edges to continue in the direction they are heading.

Therefore, searching is done away from the end point in the primary and secondary directions. In

this manner, links are made which fill the gaps in road edges.

4.3 Details of edge linking technique

4.3.1 Determining end points

In our system, as in many instances of edge linking, the links are made between the end

points of edge segments. This ignores some possible cases of edge joins. For instance, a road

may contain a fork, which appears in the shape of a Y. If the base of the Y and one upper branch

are clearly visible as a complete edge after edge detection, but a gap disconnects the second

branch from the base, there could be a problem. In this case, the end of the disconnected edge

should be linked to a point somewhere in the middle of the larger piece. By limiting the linking

to occur between end points, gaps such as this one may be missed. However, not many gaps are

missed by considering only end point to end point links, and it simplifies the process somewhat.

Therefore, the first step in the linking process is to establish which edge points are end

points. End points are defined by Zhu in [24] as edge points which satisfy one of two conditions.

An edge point is also an end point if and only if (i) it has only one other edge pixel in its 3x3
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neighborhood, or (ii) it has two edge pixels in its neighborhood that are directly adjacent.'.

However, if both these conditions are used to determine the end points, there are many points

designated as end points which are really just left over glitches from the thinning process. The

second part of Zhu's definition leads to these unwanted end points, which tend to be single points

sticking out of the sides of longer edges. Thus, part (ii) of the definition is ignored and end points

are determined from only part (i). This means that there are eight possible arrangements of pixels

in the surrounding 3x3 neighborhood that result in the center pixel being labeled as an end point,

shown in Figure 4.2. The neighborhood of each known edge point is compared to all eight masks

in order to determine the end points.

Figure 4.2. Masks for finding endpoints

4.3.2 Tracing the tree

The next step involves forming a tree to represent each edge. Unfortunately, the edge

detection very rarely returns a clean set of edges, each with an obvious beginning and end and a

single edge path in between. There may be some such edges in the image passed to the linking

process, but there are also many messy edges which do not have a clear beginning or ending.

Most have multiple branches, with some branches not being a part of the desired edges.

Therefore, each connected group of edge branches is represented in the program as a tree, with

endpoints forming the root and the tips of branches. The tracing of all branches begins at the

root, with all edge pixels being recorded in one and only one tree.

If the edge is a simple, clean edge such as described above, the tree will only have one

branch and the tracing is simple. Beginning at the root point, a search is made in the 3x3

7 Two pixels are directly adjacent if they have a difference of one in only one of their coordinates, while the
other coordinate is the same. For example, in a 3x3 block of pixels, the upper left corner and the upper
center pixels are directly adjacent, while the upper left corner and the upper right corner pixels are not.
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neighborhood of the point for other edge points. If an edge point which is not already in the

branch is found in this neighborhood, it is recorded as the next pixel in the tree and the search is

repeated for this new tree point. This continues along the length of the branch. Once a point is

reached which has no other new (i.e. not already in the tree) edge points in its immediate

neighborhood, the branch ends, as does the tree.

With multiple-branched trees, the tracing is slightly more complex. The initial branch

leading away from the root is traced in exactly the same way as the single-branched tree.

However, at some point, there will be more than one new point in the 3x3 surrounding

neighborhood. This point is labeled as a branch point and signifies the end of one branch and the

beginning of another. Actually, each edge point in the branch point's neighborhood is recorded

as being the beginning of new branch, and each of these branches is traced out in the manner

detailed above, perhaps ending in an end point, perhaps itself branching into more edge segments.

A stack is used to keep track of which branches have already been traced, ensuring no branches

are missed. Also, each branch has a number, and branches which are connected are kept track of

by listing the pairs of numbers. This allows for the entire network of branches to be recorded as a

single tree, containing all the edge pixels in that edge group. In addition, all end points contained

in the tree are noted so that a single tree with multiple end points is only traced once.

In this way, each edge is catalogued as a series of branches. The representation of the

edges as trees has the advantage of providing the needed edge information in a simple format. If

a certain branch or even a certain edge point needs to be accessed, it can be quickly located

within the list of branches. This not only helps with the remaining steps of the linking scheme,

but with later steps of the road detection process as well. In addition, the branch lengths are used

to remove some of the edge noise by deleting trees (edges) with a small total length.

4.3.3 Finding primary and secondary directions

As was mentioned above, linking occurs between end points. Each end point now

represents the base of a tree of connected edge segments. In order to effectively link this base

end point with another end point, an area must be determined in which to search for possible

points to link with. It is expected that links with the base end point will be made away from the

edge, in approximately the direction that that edge is heading when it reaches the end point.

Therefore, the search area must be based on this edge direction. This makes it critical to

accurately establish in what direction the edge is heading when it reaches the end point. To do

this, both a primary and secondary direction are associated with each end point. These two
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directions have eight possible values, representing the eight unit step directions, as shown in

Figure 4.3. The specifics of how to get these directions are detailed below, but basically the edge

direction is broken into unit steps and the primary and secondary directions are the first and

second most prevalent step directions. Finding these directions requires two steps: (i) deciding

which branches in the edge should be included in the direction calculation, and (ii) actually

calculating the edge direction and determining the primary and secondary directions.

1 2 3

4 5

6 7 8

Figure 4.3. Unit step directions

For the simple single-branched tree, the first step is very easy: the one branch is used to

make the direction calculation. With a multiple-branched tree, the choice is not immediately

clear. All combinations of branches which start at the root point are considered. Assuming that

road edges do not change direction very much or very quickly, the best combination of branches

for making the direction calculation will be the combination that produces the straightest and

most continuous edge. To measure the straightness of each branch combination, an overall

direction is determined for each of the combinations by calculating the angle between the first

point in the combination (the root point) and the last point. The individual directions of each

branch in the combination are also found as the angle between the beginning and end points of

the branch. These directions can range anywhere between -90 and 90 degrees. To determine

how straight the combination is, the absolute differences between each branch direction and the

overall combination direction are added. The combination with the smallest sum of absolute

differences is determined to be the best combination. Previously, the best combination was taken

to be the longest. The choice of the straightest leads to slightly better results with no real increase

in complexity. There is no guarantee that either choice is the true edge, but in most cases it is the

sufficient for the final steps of edge linking.

The best combination is the edge used to calculate the directions associated with the

endpoint and its search area. Given the combination of branches, this calculation is quite easy. In

order to calculate the primary and secondary directions, only the last twenty steps of the edge

leading up to the end point are used. These last twenty unit steps are polled, with the first and

second most prevalent directions becoming the primary and secondary directions associated with
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the end point. As Figure 4.3 shows, the step directions, and hence the primary and secondary

directions, are limited to eight possible values. The number of times the primary and secondary

directions occur in the last twenty steps are called the primary and secondary confidences,

indicating roughly how strongly the edge is moving in each direction.

4.3.4 Searching for links & edge linking

Finally, once all end points have their primary and secondary directions, the search

begins for possible links. Assuming road edges do not change direction suddenly, we expect to

be able to continue a broken edge in the direction it is heading in order to find appropriate edge

pieces to link it with. Therefore, as mentioned above, search areas for a particular end point are

based on that point's primary and secondary directions.

For a given end point, the search area is determined as follows: Say x is the primary

confidence and y is the secondary confidence. A basic step pattern is determined consisting of x

+ y steps, with x of those steps being in the primary direction and y in the secondary direction,

and with the y steps in the secondary direction being evenly spaced throughout the x + y steps.

For example, if the primary step direction was down and to the right, labeled as 8, and had a

confidence of 13, and the secondary direction was to the right, labeled as 5, with a confidence of

6, the basic step pattern would consist of 13 + 6 = 19 steps and would look like "8 8 5 8 8 5 8 8 5

8 8 5 8 8 5 8 8 5 8", shown in Figure 4.4(a). Starting at the given end point, the step pattern is

(a) (b)

Figure 4.4. Example offinding search area from primary and secondary
directions: (a) first nineteen steps of center path; (b) paths followed

after taking one step to the "left" and one to the "right"
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repeated until a certain pre-stated number of steps have been taken away from the end point.

Then the search returns to the starting end point, takes one step to the left and one to the right, and

uses these two points as new starting points for the step pattern. The left and right step directions

are determined by the primary and secondary directions in order to ensure that no pixels within

the bounds of the search area will be left unchecked and no pixel is checked twice. For instance,

continuing the example from above, the "left" step would be taken upwards and the "right" step

downwards, as in Figure 4.4(b). Ten steps are taken away from the end point both to the left and

the right, with the step pattern search beginning at each new point and continuing outward. The

search area then is an irregular box/parallelogram with the end point in the middle of one of the

shorter ends.

Because the links are made between end points, all end points in the search area are

recorded. We call the end point which is the base of the search the root point, and any end point

found within the search area is labeled as a candidate end point. Once all candidate end points

are located, the series of questions outlined in the chart shown in Figure 4.5 on the next page are

used to determine which points should be linked to the root.

The questions revolve around two measures: (i) the distance between the root and the

candidate end point, and (ii) the number of steps off the center path that the candidate point lies,

which is equivalent to how far off the determined edge direction the candidate point lies. The

values of these two measures determine four zones within the search area where linking is

possible. The first zone is the center path leading away from the root point (steps off center = 0).

If a candidate point is in this zone, linking takes place. If no points lie in zone one, the candidate

end point with the shortest distance to the root is found and becomes the target point for linking.

Zone two consists of all points 1, 2 or 3 steps off center. If the target point lies in this zone, the

link is made. Zone three contains all points between 4 and 6 steps off center, inclusive. Zone

four consists of all remaining points in the search area (7+ steps off center). If the target point is

in either of zones three or four, a check is made on the alignment of the root and the target. The

alignment test succeeds if the difference in their primary directions is less than or equal to 90

degrees. If the point is in zone three and the alignment test succeeds, linking occurs. If the point

is in zone four and the alignment test succeeds, linking is done if the candidate point has at least a

distance of 20 from the root. This final distance check prevents linking with points that are in the

bottom corners of the search area, which tend to be bad links. To summarize, candidate points in

zone one are always linked; a point in zone two is linked if it has the shortest distance to the root;

a point in zone three is linked if it has the shortest distance to the root and is aligned with the root;
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a point in zone four is linked if it has the shortest distance to the root, is aligned with the root and

is more than 20 pixel units from the root. These linking rules are illustrated in Figure 4.6.

steps off center path

7-10 4-6 1-3 0 1-3 4-6 7-10

Root

Zone 1: no conditions for linking

Zone 2: must satisfy condition 1 for linking

Zone 3: must satisfy conditions 1 and 2

for linking

Zone 4: must satisfy condition 1, 2 and 3
for linking

Portion of zone 4 excluded by condition 3:
no linking allowed

Condition 1: shortest distance to root point

Condition 2: aligned with root point
Condition 3: further than 20 units to root

Figure 4.6. Zones for edge linking

It is possible that the root point should be linked to more than one candidate point. This

may occur at a triple point or intersection. Often when this is the case, there is only one longer

link that makes sense, but also one or more shorter links. In order for the program to make all the

necessary links, the process described in Figure 4.5 must be repeated for the same root point. The

program tends to find the shortest links first, because it chooses the closest point outside zone 1 as

the target point. If a link is made that is less than or equal to a length of 10 units, the process

repeats to find other short links and perhaps a longer link. However, once a link longer than 10

units is made, the process stops and the program moves to the next end point. Continuing the

linking after a longer link is made tends to lead to useless, sometimes even misleading, links.

4.4 Conclusion

This new linking method is tailored for filling gaps in road edges. It takes advantage of

the assumption that an edge is a part of a road and is not changing direction very quickly. It is a

68



fairly simple method that does a good job of estimating the edge directions. This in turn leads to

the determination of a suitable search area. The maximum length and width of the area are fixed

by the user for a specific image, so the system can potentially handle any edge gap size. In

addition, multiple links with a single end point are possible, which certainly improves the

performance of the method.

Due to the simplicity of the linking procedure, it cannot take into account every case of a

link between two edge points. As was mentioned at the beginning of Section 3.2.1, requiring that

a link to be between two end points ignores the fact that other edge points may provide a better

starting point for linking. The example stated in that section explains how a branch in the road

may be missed or linked incorrectly. However, it was also stated that these cases are rare, and in

many cases the links that are made represent the branch structure well enough for the later steps

of the system. In addition, although it is possible to figure out which edge points, other than the

end points, should be beginnings of links, it requires a large increase in complexity and steps

which do not work coherently with the rest of this linking procedure.

Another simplification which may limit the accuracy of the linking is that links are made

with straight lines. This is done because it usually produces satisfactory results. If the link is

short, there is little difference between a curved linking line and a straight one. Even if the link is

long, in most cases the link should be either straight or only slightly curved, so the straight line

suffices. It is only in the case of a longer link where the road is curving significantly that the

straight line is not acceptable. As opposed to the issue raised in the previous paragraph, this can

be addressed more easily. Although it has not been implemented yet, it should be possible to use

the directions of the edges at both ends of the link to decide on a better path for the linking.

Overall, some edge gaps may be missed and some false links may be made. However,

edge linking is not the final step in this system and a complete edge image is not the final goal. In

this case, linking is another step in the process which helps improve the quality of the edge image

for further processing. Provided that enough edges are kept in the edge detection stage, this

linking process will fill most of the gaps which should be filled.
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Chapter 5.

RESULTS AND DISCUSSION

5.1 Introduction

In the preceding chapters, two edge detection methods and one edge linking procedure are

described in detail. Each of the edge detectors is followed by edge linking to produce a version

of the edge-based road detection system. This chapter tests these two versions of the system and

discusses and compares the results. Section 5.2 examines the results from the system that uses

the Nevatia-Babu edge detector (NBED). Section 5.3 looks at the corresponding results from

using the version that uses the wavelet edge detector (WED). These two sections are meant to

illustrate the types of outputs that each version of the system produces. Section 5.4 focuses on

comparing and contrasting the results of the two systems. Section 5.5 ends the chapter by

discussing the overall conclusions on the performance of the systems based on the preliminary

goals of the paper stated in the introductory chapter.

Three images are used for testing the system. They are shown in Figure 5.1. These

images, all 500x500 pixels, are three of the four shown in Figure 1.1. As explained in the

introductory chapter, each image presents some typical image characteristics which may prove to

be difficult to handle in the road detection process. Figure 5.1 is a segment of the 'interchange'

image, shown in Figure 2.3 (a) and used throughout this work as a test image. Figure 5.1 (a) is

referred to as test image #1. Possible difficulties with this image include the lane markings and

cars on the roads, as well as the texture of the surrounding foliage. Despite these possible trouble

characteristics, this image should produce good results because of its sharp, relatively straight
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road edges and the close-to-uniform gray scale of the roads. Because of these positive properties,

this image is used extensively for testing. Sections 5.2 and 5.3 use this image exclusively to

detail the results of the two systems.

(a) (b)

(c)

Figure 5.1. Original test images: (a) test image #1; (b) test image #2; (c) test image #3

Test images #2 and #3 are shown in Figures 5.1 (b) and (c) respectively. Test image #2

contains a grid-like residential area. Although the road edges are very straight and quite

complete, the building edges are also strong and may cause some problems with road linking.

The third test image shows a more rural crossroad. Here, the dirt along the road sides and in the

parking lots is very close in gray scale to the roads and could potentially cause problems. Both

images are used in Section 5.4, along with test image #1, to compare the results of the two

systems.
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5.2 Results from using Nevatia-Babu edge detector followed by linking

The results from running our implementation of the NBED on test image #1 are shown in

Figure 5.2. Recall from Chapter 2 that this edge detection method is based on thresholding the

edge values of the image pixels, where the edge value of a pixel represents how strongly it

belongs to an edge. The images shown in Figure 5.2 are binary images which result from setting

the pixels with the highest edge values to one (white), and all other to zero (black). Figure 5.2 (a)

shows the complete resulting image, which is 500x500 pixels. Figure 5.2 (b) displays a 100x1O

block of the full result so as to more clearly illustrate the nature of the edges which are found.

(a) (b)

Figure 5.2. Test image #1 after Nevatia-Babu edge detection (NBED):
(a) complete image; (b) zoom of l00x 100 block of image

Although not all the precise details of the edges are apparent in the full image (a), the

overall trend is quite obvious. A human eye can clearly see the outline of the roads in this edge

image. This is a direct result of the sharp road edges. However, this image also contains quite a

bit of noise, that is undesirable, non-road edges. These are a direct result of the lane lines, the

cars and the trees, as mentioned above. The zoomed image (b) shows parts of both the vertical

and horizontal roads. Many of the lanes edges have been found in the vertical road. This image

makes clear that this implementation of the NBED extracts a large number of edges, some which

are unwanted.

The algorithm could be adjusted to find less edges by thresholding the edge values at a

higher level. Tests were run which varied the value of the threshold. It was found that a higher

threshold indeed decreased the number of edges, but many of the edges which were eliminated
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were important road pieces. The threshold used in these tests, which was based on energy

considerations, proved to provide the best balance of road and non-road edges.

Figure 5.3 illustrates the results after linking the edges from Figure 5.2. Again, both the

full result and a 1OOxOO block of the result are shown. The most obvious change evident from

the complete image in Figure 5.3 (a) is the deletion of many of the non-road, noisy edges which

are present after only edge detection. Recall that the edge linking procedure includes a step

which eliminates short edges. Thus, the post-linking image is much cleaner than pre-linking.

The zoomed image in Figure 5.3 (b) also indicates that several gaps are filled by the linking

process. Although some gaps remain, many of the breaks in road edges evident after edge

detection have been connected, which also contributes to the cleaner look of the result. In

addition, it should be noted that few unreasonable links are made overall.

L

(a) (b)

Figure 5.3. Test image #1 after NBED and linking:
(a) complete image; (b) zoom of 100x]00 block of image

5.3 Results using wavelet edge detector followed by linking

When the NBED is applied to a test image, a single edge image results. In contrast, when

the WED is used, there is an edge image for each level of decomposition. Figure 5.4 shows the

results of running the WED on test image #1 for five levels of decomposition. All five images
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(b)

(c) (d)

(e)

Figure 5.4. Test image #1 after wavelet edge detection (WED), five levels of decomposition:
(a) level 1; (b) level 2; (c) level 3; (d) level 4; (e) level 5
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(b)

(c) (d)

(e)

Figure 5.5. Test image #1 after WED and linking, five levels of decomposition:
(a) level 1; (b) level 2; (c) level 3; (d) level 4; (e) level 5
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are 500 x 500. They are also binary images, formed by thresholding the wavelet coefficients at

each scale. These edge images are not drastically different than that produced by the NBED.

This figure is meant to show the trend across levels rather than the edge details.

Recall that the wavelets used to do the decomposition double in width at every level.

Therefore, certain levels should have better results than others. At these levels, the width of the

wavelet will correspond closely to the width of the features. From Figure 5.4, it can be seen that

the finest level, level 1, does not work well for detecting the roads in this image. Figure 5.4 (a) is

visibly inferior to the other results. The other four levels, although slightly different, are

approximately the same quality. That is, they have about the same amounts of noise contents,

and they have nearly the same numbers of completed road edges. The number of edges, both

road and non-road edges, decreases slightly as the level increases, but there is very little variation

among Figures 5.4 (b), (c), (d) and (e).

A similar pattern can be seen after the edge linking procedure is performed. Figure 5.5

indicates that while the outputs at levels 2-5 have improved slightly as a result of linking, the

output at level 1 has deteriorated. It is very hard to discern any roads at all in Figure 5.5 (a). The

other four images, Figures 5.5 (b), (c), (d) and (e) remain very similar. The five images are

shown more to relay the fact that each wavelet decomposition level produces an output image

rather than to illustrate drastic differences between the levels.

Overall, it appears as if the linking method in this case does a worse job of eliminating

the noisy edges. Actually, much of this noise is isolated single points, which should be

eliminated in the edge detection stage, not the linking stage. The WED does not include a step to

(a) (b)

Figure 5.6. Before and after linking: (a) zoom of Figure 5.4 (c), before linking;
(b) zoom of Figure 5.5 (c), after linking
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delete single points, whereas the NBED does. In reality, the linking algorithm applied to this

image does about as well after the WED as after the NBED. This is more clearly seen by

returning to the zoomed, 100x100 blocks of the above images. Figure 5.6 (a) and (b) show close-

ups of Figure 5.4 (c) and Figure 5.5 (c) respectively. That is, these images show the before and

after linking results at level 3. As with the linking after the NBED, linking here manages to fill

several gaps in road edges, without making any false links. The next section compares results for

both systems, and it then becomes more evident as to which method performs better.

A note here about the multiple level output of the WED: With some images, the

variability in the quality of the edge images outputted at each level is larger than it is above. That

is, sometimes a few levels clearly give superior results, and each of these levels gives different

information about the edges. In this case, it may be that a combination of edge images from

several levels would yield the best result. Combining information across decomposition levels is

not trivial. There are various ways to do it, and many have been tried as part of this work. None

were found to be satisfactory, but this does not mean it cannot be done successfully. Although

the levels are seen as being separate results in this project, it should be kept in mind when using

wavelets for edge detection that it may be beneficial to combine the edges across levels.

5.4 Comparison of results

Now that the types of results which are produced by each method have been displayed,

the focus changes to comparing and contrasting these results for the three test images from Figure

5.1. The resulting edge images are given after edge detection, and again after edge linking. For

all tests using the WED, the level three results are shown. Although the edge linking procedure is

the same following both the NBED and the WED, the combination of edge detection and linking

can yield different results for each method.

Figure 5.7 shows the results after edge detection for test image #1. These images are all

displayed previously in this chapter, but are exhibited here together to emphasize the differences

between the outputs of either method. Both methods do a fair job of detecting the road edges.

However, the NBED seems to detect more road edges, such as the lane lines in the vertical road,

and less noisy edges, while the WED detects more noisy edges and less road edges. This is also

evident from the zoomed images (c) and (d).

After edge linking, these differences become more obvious. Figure 5.8 shows a

noticeable contrast in both the number of noisy, unwanted edges and the completed road edges.

78



(a)

(c) (d)

Figure 5.7. Comparison of edge detection results for test image #1: (a) using NBED, complete image; (b)
using WED, complete image; (c) using NBED, zoom of 100x100 block of image; (d) using WED, zoom of

100x100 block of image
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More short, non-road edges are eliminated and more links are made in Figures 5.8

(a) and (c) than in (b) and (d). This seems to favor the NBED method. However,

concentrating on the vertical road, the WED gives a less complicated set of edges. Figure

5.8 (c) has many vertical edges very close together. This may be harder to sort out if

further processing were to occur. Another difference which favors the WED is the

"straightness" or "smoothness" of the edges themselves. The thinning algorithm that is a

part of the NBED sometimes leads to thicker edges being thinned to straight edges which

wobble back and forth every few pixels. The WED does not include this thinning step, so

the edges tend to be smoother. This difference is more evident in the results from test

images #2 and #3.

(a) (b)

61 6

(c) (d)

Figure 5.8. Comparison of edge linking results for test image #J: (a) using linking after NBED, complete
image; (b) using linking after WED, complete image; (c) using linking after NBED, zoom of J00x 100 block

of image; (d) using linking after W ED, zoom of 100xl00 block of image
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Test image #2 is the grid-like, urban street pattern. This image is full of houses and

roads, with no foliage, so the potential for noise is much lower. Nonetheless, the buildings can

still cause problems. The results after edge detection are shown in Figure 5.9. The two full

500x500 images look remarkably similar. Again, both methods do a fair job of finding road

edges, however it is clear that the building edges are more prominent. The zoomed images in

Figure 5.9 (c) and (d) better illustrate the differences in the two methods with respect to test

image #2. The NBED again finds more road edges, and eliminates more single points and short

edges. The WED again displays smoother edges in contrast to the more jagged edges in Figure

5.9 (c).

(a) (b)

(C) (d)

Figure 5.9. Comparison of edge detection results for test image #2: (a) using NBED, complete image; (b)
using WED, complete image, (c) using NBED, zoom of 100x]100 block of image; (d) using WED, zoom of

J00x]00 block of image
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Figure 5.10 shows the results after edge linking. Most of the linking occurs in the

building edges. This is because of the lack of large road edge pieces provided by the edge

detection methods. The roads appear to have strong edges in the original test image, but it seems

these edges are not sharp enough to be detected very well by either the NBED or the WED. The

edges on the upper parts of the two middle vertical roads show are the most completed edges in

the output images. This area is highlighted in the zoomed images (c) and (d). Here the main

difference between methods is that the NBED and linking managed to complete the inner road

edges on both sides of the road, while the WED did not have enough edge pieces to link these

segments and deleted them instead. Both methods perform about equally well, with neither of

them doing a good job at road detection in this case.

(a) (b)

(c) (d)

Figure 5. 10. Comparison of edge linking results for test image #2: (a) using linking after NBED, complete
image; (b) using linking after WED, complete image; (c) using linking after NBED, zoom of 100x]100 block

of image; (d) using linking after WED, zoom of J00x]00 block of image
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The final tests are run on test image #3. The results after edge detection and linking are

shown in Figures 5.11 and 5.12 respectively. The differences in the two methods visible from

these images are identical to those discussed above. To summarize these differences:

* The NBED detects more road edges (as well as building edges and other major

feature edges) than the WED.

* The WED detects more noisy, non-road edges than the NBED.

* The edges found by the WED are smoother than the correspond edges found by the

NBED, which tend to be more jagged.

* The linking method tends to do perform a bit better with the NBED rather than the

WED.

(a) (b)

.v-.J-- .x(Q, blc of image

- -. " 1 .. -r

(c) (d)

Figure 5.11. Comparison of edge detection results for test image #3: (a) using NBED, complete image; (b)
using WED, complete image, (c) using NBED, zoom of 100x]00 block of image; (d) using WED, zoom of

100x]00 block of image
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(b)

(c) (d)

Figure 5.12. Comparison of edge linking results for test image #3: (a) using linking after NBED, complete
image; (b) using linking after WED, complete image; (c) using linking after NBED, zoom of 100xJ00 block

of image; (d) using linking after WED, zoom of 100x]00 block of image

5.5 Conclusions

Overall, both systems do a satisfactory job of detecting road edges. The first goal of this

work is to develop a simple system for road detection in aerial images, which is done, and to test

how well it works. The NBDE followed by edge linking performed slightly better than the WED

with edge linking. This is logical because the edge linking algorithm was originally developed

using the NBDE as the preceding edge detection step. However, despite the fact that when

applied to test images #1, #2 and #3 the NBDE method with linking led to fairly clean results, the

output would not suffice for most applications. Yet recall that this system is meant to perform
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edge finding, which is normally followed by edge tracing. In this context, the results produced

by the NBDE with edge linking may suffice. That is, in many test runs enough road edges are

found and linked, and enough non-road edges are eliminated, for the next road tracing stage to

have a good set of road seeds to work with. Of course the sufficiency of the results depends on

the road tracing algorithm and the final goal of the complete system. These topics are beyond the

scope of this project. It is stated only that in many cases the output images obtained from our

system are satisfactory road finding results.

One further consideration in how well the system performs is the quality of the aerial

images and the characteristics of their content. All test images used in this project are of high

quality and they have properties which lend themselves to good road detection results. The

images are all taken from the same source, are high resolution and have little noise content. In

addition, they generally have sharp boundaries between road and background, and few occlusions

blocking road edges from view. In most real road detection applications, the quality of images

will be much lower. If the task is to automatically map a certain area, the program cannot skip

parts of the area with trees blocking the road edges or with blurred or undefined boundaries.

From a few tests with lower quality images, it is found that the results of the system are much

worse when the quality of the aerial image is lower. Our road detection program performs well

for images with sharp, continuous edges, but once discontinuities in the edges are introduced the

quality of the results declines. This suggest that in some cases, further processing would need to

be performed in order to extract meaningful information to pass to a road tracing algorithm.

Some possible extensions and improvements to the system are discussed in Chapter 6.

The second goal of this work is to experiment with wavelets for edge detection. The

results of applying the WED to the test images are not exactly as anticipated. Although many

road edges are found by this detection method, it was expected that the edge images at the

different levels would vary more than they do, and specifically that one or two levels would have

very good results. In our case, most of the levels give similar, but good, results. The wavelets

produce images comparable to the NBED. Of course, improvements can be made. Further work

with this experiment could include testing various other wavelets. In addition, more work could

be done to try to combine edge information across levels, as mentioned above.

Designing and implementing a new linking method is the third goal of this paper.

Judging from the results in this chapter, the zone-based algorithm which is developed in Chapter

4 leads to fairly successful results, for a relatively non-complex procedure. In tests using the

images from this chapter and other test images not displayed in this paper, the linking method is

found to often fill many of the small to medium gaps in the road edges, and to rarely make false
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links. Further work in this area may include the designation of a good measure by which to

precisely determine how well this linking method performs as compared to others.
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Chapter 6.

FUTURE WORK AND CONCLUSION

6.1 Possible extensions to the system

From the results shown in the last chapter, it is clear that edge detection and linking can

only go so far in extracting the road edges from the test images. These two steps certainly help to

locate the road edges, but the results are by no means ideal. There remain gaps in the road edges,

and non-road edges are also present in the results. Thus, there is room for improvement. This

chapter discusses two extensions to the current system which may improve the success of the

procedure in locating the roads. One is an edge pairing step which follows the edge detection and

linking steps. This algorithm has been partially implemented for a few test cases and results are

shown and discussed below. The second extension is a hypothetical one, involving the change of

the automatic system to a semi-automatic one. In addition, this chapter discusses the possibility

of using these steps to extract features other than roads, such as buildings.

6.1.1 Edge pairing

As mentioned above, there are two major problems with the results which make them not

completely satisfactory: large gaps and remaining unwanted edges. The edge pairing step

addresses the second problem. The edge detection and linking methods work to find road edges

and join them together. However they do little to eliminate edges which are found by the edge

detection method and but do not correspond to roads. The goal of the edge pairing step is to
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focus on which of the remaining edges do correspond to roads and more precisely locate where

those roads are within the image.

One characteristic that applies to all roads is that they are bounded by two parallel or very

close to parallel sides. Even when occlusions, shadows or other details break the continuity of the

road boundaries, enough pieces usually remain after edge detection and linking to be able to pair

together edges which represent the two sides of a road. Many of the local methods for road

detection include a step in which pairing of parallel lines occurs. After the edges are extracted in

one way or another, they are usually approximated by linear segments. The straight lines which

represent the edges also have orientations, determined somewhere during the preceding steps of

the system. Sophisticated algorithms have been developed to find the best sets of pairings

between anti-parallel lines. For example, Scher, Shneier and Rosenfeld use an iterative method

which assigns scores to pairings based on lengths and overlaps of edges.[20] Zhu and Yeh

expand on this method, including tests for the intensity and width between two edges. [23]

In the present work, a simplified version of these methods is implemented. It closely

resembles a step of the RoadF algorithm developed by Zlotnick and Carnine in [25]. They pair

roughly parallel edges together and then plot the midpoint between these two edges, later using

sets of these midpoints as seeds for growing the entire road network. Our simple pairing method

borrows from this idea by plotting the points halfway between paired edges. The user inputs the

minimum and maximum widths of the roads to be found. At each edge point, the local direction

of the edge is found. Then a search is done along the line of pixels normal to this local direction

for other edge points that are between the minimum and maximum distances away. If another

edge point is found, the local direction of that edge is also found and compared to the local

direction of the original edge point. If they differ by less than a small threshold, then the two

edges are locally parallel or close to parallel, and they are paired. In this case, a point is drawn

half way between the two edges and a record is made of the pairing. The output from performing

this procedure on all edge points is an image showing the linked edges with points located half

way between paired edges.

This pairing algorithm is not run on all the test images, but is applied to a few images to

get some idea of the results it provides. Figure 6.1 shows a sampling of those results, using the

NBED before the pairing algorithm. The road centers are seen as the bright white points.

Clearly, the success of the pairing step depends highly on the success of the previous detection

and linking steps. In areas of the images where the road edges are more complete, the pairing

algorithm does quite well. These areas include most of the horizontal and vertical roads in (a)
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(b)

(c) (d)

(e) (f)

Figure 6.1 Results of the edge pairing algorithm on some test images
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and (b), as well as the third vertical road in (c) and (d), and the top part of the vertical road in (e)

and (f). Obviously, there will be no pairing where there are road gaps. The shortfall of this

method is that it does not give any new information about the road networks.

However, this method does do a good job of eliminating non-road edges, which was the

goal of using this procedure. Most of the center points which are found belong to roads.

Therefore, considering that the next step in a road detection system would be doing road tracing,

it may be possible to get better road detection results from doing further processing on only the

center points and disregarding the edge points. That is, it may be possible to perform some type

of linking or tracing on the plotted midpoints in a way similar to the seed growing in [25]. It is

this elimination of non-road edges that may make the edge pairing a useful part of a complete

road detection system.

6.1.2 Automatic vs. semi-automatic systems

Many papers written about road extraction methods discuss the pros and cons of both the

automatic and semi-automatic approaches. Automatic methods have no human component. As is

envisioned for the system described in previous chapters, the computer determines all input

values and parameters from analyzing the original image. In contrast, semi-automatic procedures

involve human interaction with the computer. For example, a common way to incorporate the

human into the process is to have them enter a starting point and direction for a given road edge.

The computer uses the human's input to initialize its own tracing of the edges. Human's can also

be used to stop the process if it is headed off-track, or to help it if it gets stuck somewhere during

the tracing.

There are advantages and disadvantages to both approaches, depending on the goal of the

system. If the goal is to eliminate the human operator altogether, in order to be able to run the

process quickly and without supervision, then only an automatic method will do. However, if the

goal is to get very precise, accurate results and to speed up the process somewhat, a semi-

automatic system may be better. Humans have the ability to very easily find the roads in a wide

variety of aerial images, despite occlusions, shadows or other inconsistencies. If a computer is to

find the roads as accurately as a human observer, extremely complex algorithms are required to

model all these varying characteristics. Therefore, by combining the precision of the human eye

with the calculation speed of a computer, it may be possible to get more accurate results and still

improve the procedure time over a completely manual system.
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The edge detection and linking steps described in the previous chapters, and even the

edge pairing step from the last section, can all be performed automatically with no human

interaction. Nevertheless, it may improve the results if the method were to become semi-

automatic by including some human input. For instance, perhaps the operator could use the

mouse to click on a point somewhere inside a road. From this, the computer could determine the

texture and/or gray scale of that particular road. Then other road points could be found by

comparing texture and/or gray scale information. As another possible way to include a human,

the computer could show doubtful edges or links to the human to check if they should be

included.

By extending the current system in ways such as these and making the method semi-

automatic, results could almost certainly be improved. Having a human operator to help guide

the system is an effective way of handling the difficulties of the road detection problem which

arise from the variations in image characteristics. Furthermore, these changes can be

implemented on top of the current system, so the steps taken by the computer remain simple and

fast.

6.1.3 Detection of features other than roads

As has been demonstrated throughout this paper, the individual steps of this system have

been designed, where possible, to specifically extract road edges. The Nevatia-Babu edge

detector and the edge linking procedure especially focus on finding road features. This tailoring

to a specific feature type is done by introducing certain feature characteristics. In the case of road

features, it is assumed that roads are long, with low curvature, and with parallel or close to

parallel boundaries. More subtly, it is also assumed that edges represent a sharp boundary

between two largely different gray scales. This last assumption, unlike the first three, is not

dependent on the feature being extracted. Of the three which are dependent on the feature, the

first two are built into the edge linking method and the third is used in the pairing algorithm

described earlier in this chapter. Although the combination of all three does a good job of

describing the main characteristics of roads, they are not unique to the road feature. For instance,

railroads are also long, straight and bounded by two parallel edges. Rivers tend to be long and

bounded by two edges. Buildings have straight edges and in general are bounded by two pairs of

parallel sides. Therefore, it is reasonable to consider applying the system for the extraction of

features other than roads.
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It is expected that only small changes would need to be made to accommodate the

detection of other features. Returning to the example of building extraction, most buildings have

a basic rectangular shape. From this assumption, it is known that a building will have corners at

the meeting points of these sides, and that the sides should be in pairs of parallel edges. Also, in

general these edges will be much shorter than those considered in the road case. So the linking

algorithm could be changed to favor shorter edges, with a component added to take into account

the importance of the corners. This could be followed by a pairing algorithm that looks for two

or more pairs of parallel lines with shared corners. Although these changes require more than one

or two lines of code, they could easily fit within this system.

Similar types of changes could conceivably be made to take into account multiple other

features, such as the aforementioned rivers and railroads. Although roads and buildings tend to

be the features which are most often extracted from aerial images, other features are important for

certain applications. For instance, an automatic map generation application would need to find

roads, rivers, lakes, railroads, etc. It seems plausible that an extraction system for any of these

feature types could be based on the edge-based steps described in this paper. Thus, the system is

not only quite simple, but appears to be extendible to other types of feature detection as well.

6.2 Conclusion

Throughout this work, a simple edge-based road extraction method is developed. The

system has edge detection as its first step, using either the Nevatia-Babu edge detector or the

wavelet edge detection. The second step of the method involves a new edge linking procedure

centered around linking edge pieces by continuing them in the direction they are headed. The

details of each of these steps are outlined in the preceding chapters. The final section in Chapter

5 addresses the specifics of how well the system generally works and how well the goals of this

paper are met.

This work is concluded by returning to the largest difficulty in the road detection process:

the variation in image characteristics from image to image. Although in general roads do have

certain characteristics in common, such as length, curvature and parallel boundaries, individual

road properties vary quite widely across all aerial images. This project attempts to focus on the

common road characteristics and to see if the variations can be generalized or even ignored. The

results of running the system on many aerial images, including several not shown in this work,

lead to the conclusion that the variations must be accounted for somewhere in the process in order
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to achieve excellent results. Of course this adds a significant amount of complexity to the

procedures. It is unclear whether this complexity should be built directly into the road finding

algorithm developed here, or into a road tracing procedure which would be expected to follow

road finding. However, it is clear that the variation in aerial image characteristics is the largest

obstacle to developing simple road detection techniques. It seems that simple steps can form the

basis for a road detection system, but that more complex steps must be incorporated in order to

deal with the variety of aerial images that need to be processed by most applications.

93



94



BIBLIOGRAPHY

[1] S. Airault, R. Ruskone, 0. Jamet, "Road detection from aerial images: a cooperation between
local and global methods", Proc. SPIE Image and Signal Processing for Remote Sensing, SPIE
Vol. 2315, pp. 508-518, 1995.

[2] M. Barzohar, D. B. Cooper, "Automatic finding of main roads in aerial images by using
geometric-stochastic models and estimation ", IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 18, No. 7, pp. 707-721, July 1996.

[3] J. Canny, "A computational approach to edge detection", IEEE Trans. on Pattern Analysis
and Machine Intelligence, Vol. 8, No. 6, pp. 679-698, Nov. 1986.

[4] *1. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1992.

[5] A. Farag, E. J. Delp, "Edge linking by sequential search", Pattern Recognition, Vol. 28, No.
5, pp. 611-633, May 1995.

[6] M. Fischler, J. Tenenbaum, H. Wolf, "Detection of roads and linear structures in low-
resolution aerial imagery using a multisource knowledge integration technique", Computer
Graphics and Image Processing, Vol. 15, No. 3, pp. 201-223, March 1981.

[7] D. Geman, S. Geman, C. Graffigne, P. Dong, "Boundary detection by constrained
optimization", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, pp.
609-628, July 1990.

[8] R. C. Gonzalez, Digital Image Processing, 2 "d Edition. Reading, MA: Addison-Wesley
Publishing Co., 1987.

[9] Automatic Extraction of Man-Made Objects from Aerial and Space Images. Edited by A.
Gruen, 0. Kuebler, P. Agouris. Basel, Boston: Birkhauser Verlag, 1995.

[10] H. Hajj, T. Nguyen, R. Chun, "A 2-D multirate Bayesian framework for multiscale feature
detection", SPIE Conference on Wavelet Applications in Signal and Image Processing IV, SPIE
Vol. 2825, pp. 330-341, 1996.

[11] C. Heipke, A. Englisch, T. Speer, S. Stier, R. Kutka, "Semi-automatic extraction of roads
from aerial images", Proc. SPIE ISPRS Commission III Symposium, SPIE Vol. 2357, pp. 353-
360, 1994.

[ 12] *B. Hubbard, The World According to Wavelets: the Story of a Mathematical Technique in
the Making, 2 nd Edition. Wellesley, MA: A. K. Peters, 1998.

[13] Johnson II, C.-C. Li, "Fuzzy thresholding and linking for wavelet-based edge detection in
images", Proc. SPIE Conference on Applications of Soft Computing, SPIE Vol 3165, pp 3 19-329,
1997.

[14] *G. Kaiser, A Friendly Guide to Wavelets. Boston: Birkhauser, 1994.

95



[15] T. Law, H. Itoh, H. Seki, "Image filtering, edge detection, and edge tracing using fuzzy
reasoning", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No. 5, pp. 481-
491, May 1996.

[16] S. Mallat, "A theory for multiresolution signal decomposition: a wavelet representation",
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674-692, July
1989.

[17] S. Mallat, S. Zhong, "Characterization of signals from multiscale edges", IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. 14, No. 7, pp. 710-732, July 1992.

[18] R. Nevatia, K. R. Babu, "Linear feature extraction and description", Computer Graphics and
Image Processing, Vol. 13, No. 3, pp. 257-269, July 1980.

[19] J. Porrill, "Fitting ellipses and predicting confidence envelopes using a bias corrected
Kalman filter", Image and Vision Computing, Vol. 8, No. 1, pp. 37-41, Feb. 1990.

[20] A. Scher, M. Shneier, A. Rosenfeld, "A method for finding pairs of antiparallel straight
lines", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.4, No. 3, pp. 316-323,
May 1982.

[21] *G. Strang, T. Nguyen, Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge
Press, 1996.

[22] *M. Vetterli, J. Kovacevic, Wavelets and Subband Coding. Englewood, NJ: Prentice Hall,
1995.

[23] M.-L. Zhu, P.-S. Yeh, "Automatic road network detection on aerial photographs ", Proc.
CVPR'86 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.
34-40, 1986.

[24] Q. Zhu, M. Payne, V. Riordan, "Edge linking by a directional potential function (DPF)",
Image and Vision Computing, Vol. 14, No. 1, pp. 59-70, Feb. 1996.

[25] A. Zlotnick, P. D. Carnine Jr., "Finding road seeds in aerial images ", CVGIP: Image
Understanding, Vol. 57, No. 2, pp. 243-260, March 1993.

96



APPENDIX A: MATLAB CODE

A.1. List of Programs

To run the road detection program using the Nevatia-Babu edge detector and edge linking, run
'mainnowave.m', which calls the following Matlab programs:

mainnowave.m: 99
e getimage.m 99
* getdirections.m 100

* findmax.m 101
* pickedgepts.m 102

" threshold.m 104
* smalllocalmax2.m 105
* rightdir.m 105
* singlepts.m 106
* checkforpts.m 106

" dothethin.m 107
* thin.m 108

e insidethin.m 109
* link.m 111

* endpts.m 116
0 badendpts.m 117

e getbranch.m 118
* dirstep.m 119
* oppositedir.m 119
" searchforpts.m 120

* lastdirs.m 125
* dirstep.m 119
* oppositedir.m 119

* poIL.m 126
* findmax.m 101

" getcombos.m 127
* findmin.m 130
* checklink.m 130

" takestep.m 134
" drawlink.m 135

gostraight.m 143
" findmin.m 130
e dirdiff.m 144

* linepairs.m 147
* pairup.m 148

* takestep.m 132
* linepath.m 149

0 gostraight.m 143
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To run the road detection program using the wavelet edge detector and edge linking, run 'mainwave.m',
which calls the following Matlab programs:

mainwave.m
* getimage.m
* getdirections.m

* findmax.m
* waveedgepts.m

* doconvs.m
* modphase.m
" localmax4.m
* grayvar.m

* link.m
" endpts.m

* badendpts.m
" getbranch.m

e dirstep.m
* oppositedir.m
* searchforpts.m

* lastdirs.m
" dirstep.m
* oppositedir.m

* poIL.m
* findmax.m

* getcombos.m
e findmin.m
" checklink.m

* takestep.m
* drawlink.m

0 gostraight.m
* findmin.m
* dirdiff.m

* linepairs.m
* pairup.m

" takestep.m
* linepath.m

* gostraight.m

157
99
100
101
158
159
159
160
161
111
116
117
118
119
119
120
125
119
119
126
101
127
130
130
134
135
143
130
144
147
148
132
149
143
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A.2. Matlab Code

% mainnowave.m

% Serves as the main program when wavelets are not used.

% Get the aerial image:
getimage

% Get values from user that will be inputted into functions later:
TI = input('Should the local maximum test be used? 1 for yes, 0 for no. ');
T2 = input('Should the angle test be used? 1 for yes, 0 for no. ');
if T2 == 1

anglimit = input('For angle test: what limit on the difference in angles? ');
else

anglimit = 0;
end
T3 = input('Should the threshold test be used? 1 for yes, 0 for no. ');
if T3 == 1

p = input('For the threshold test: what percentage of edge energy to keep? ');
else

p = 40;
end

%'Input for linking edges -'
numdirs = input('How many directions should be polled to determine primary and secondary directions? ');
tooshort = input('How short should the shortest edge kept be? Any edge shorter than this will be deleted
');
maxgap = input('How long should the search area be? ');
maxsoc = input('How wide should the search area be? ');

%'Input for pairing edges - '
dirsize = floor((input('How long an edge piece should be used to determine the local direction? '))/2);
minwidth = input('What is the minimum width of the roads? ');
maxwidth = input('What is the maximum width of the roads? ');
angtol = input('What is the maximum difference in direction for two edges to be paired? ');

% Get angles and edge values for each pixel:
[ang, edgevals] = getdirections(data);

% Pick the edge points:
edge = pickedgepts(ang, edgevals, p, anglimit, T1, T2, T3);

% Thin the edges:
thinedge = dothethin(edge);

% Link the edges:
[linkedge, branches, branchlength] = link(thinedge, ang, edgevals, numdirs, tooshort, maxgap, maxsoc);
% Pair up roughly parallel lines:
[pairs, newedge] = linepairs(edge, branches, branchlength, dirsize, minwidth, maxwidth, angtol);

% getimage.m

% Gets the image whose name is inputed at the prompt and puts the grayscale values into the % matrix
'data'. Must put single quotes around the image name. Called from 'mainnowave.m'.
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image = input('Draw which image? ');
fd = fopen(image, 'r');
data = fread(fd, [500, 500], 'uchar');
data = data';

% getdirections.m

% Uses different size masks which represent ideal edges at various angles in order to decide % which
direction to associate with each pixel. Looks at each pixel in 'data', calculates the % values of its
neighborhood convolved with masks of a certain size (varies depending on the % value of 'level'), and
finds the maximum of these values. The maximum becomes the edge % value at that point ('edgevals')
and the angle corresponding to the mask which produced the % maximum becomes the angle value at that
point ('ang'). Called from 'mainnowave.m'.

function [ang, edgevals] = getdirections(data)

% 5x5 masks
mO = [ -100 -100 0 100 100;

-100-100 0 100 100;
-100-100 0 100 100;
-100-100 0 100 100;
-100 -100 0 100 100];

m30 = [-100 32 100 100 100;
-100 -78 92 100 100;
-100-100 0 100 100;
-100-100 -92 78 100;
-100 -100 -100 -32 100];

m60 = [100 100 100 100 100;
-32 78 100 100 100;
-100 -92 0 92 100;
-100-100-100 -78 32;
-100 -100 -100 -100 -100];

m90 = [100 100 100 100 100;
100 100 100 100 100;
0 0 0 0 0;
-100 -100 -100 -100 -100;
-100 -100 -100 -100 -100];

m120 = [100 100 100 100 100;
100 100 100 78 -32;
100 92 0 -92 -100;
32 -78 -100 -100 -100;
-100 -100 -100 -100 -100];

m150 = [100 100 100 32 -100;
100 100 92 -78 -100;
100 100 0 -100 -100;
100 78 -92 -100 -100;
100 -32 -100 -100 -100];

% convolutions with the masks:
data0 = conv2(data, mO, 'same');
data30 = conv2(data, m30, 'same');
data60 = conv2(data, m60, 'same');
data90 = conv2(data, m90, 'same');
data120 = conv2(data, m120, 'same');
data150 = conv2(data, m150, 'same');

% find the maximums and the angles which produced the maximums:
[x, y] = size(data);
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edgevals = zeros(x, y);
for i = 1:x
forj = 1:y

vals(1) = data0(i, j);
vals(2) = data30(i, j);
vals(3) = data60(i, j);
vals(4) = data90(i, j);
vals(5) = data120(i, j);
vals(6) = data150(i, j);

[ind, edgevals(i, j)] = findmax(vals);

if ind == 1
ang(i, j) = 0;

elseif ind == 2
ang(i, j) = 30;

elseif ind == 3
ang(i, j) = 60;

elseif ind == 4
ang(i, j) = 90;

elseif ind == 5
ang(i, j) = 120;

elseif ind == 6
ang(i, j) = 150;

end
end
end

% findmax.m

% Takes in a vector of values and returns the maximum value as well as the index associated % with the
maximum value. Called from 'getdirections.m'.

function [maxind, maxval] = findmax(v)

v = abs(v);

[x, y] = size(v);

maxval = v(1);
maxind = 1;
i = 2;

while i <= y
if v(i) > maxval

maxval = v(i);
maxind = i;

end

= i + 1;
end

if maxval == 0
maxind = 0;

end
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% pickedgepts.m

% Decides which points of an image are edge points based on three tests: (1) Is the point (in % 'data') a
local max with respect to its two neighbors in the direction normal to the point's % angle ('dataang')?
(2) Are the angles of the two neighbors in the direction of the angle of the % point withing 'anglimit' of
the angle of the point? (3) Is the point value larger than some % threshold? Program can use any or
all of these three tests: 'T1', 'T2' and 'T3' are either O's or % 1's, indicating which tests to use. The value
'p' is the percentage of energy you want to keep % after thresholding the data values. 'data' is the matrix
of edge values found in % 'getdirections.m'. Called from 'mainnowave.m'.

function edge = pickedgepts(dataang, data, p, anglimit, T1, T2, T3);

test1 = T1;
test2 = T2;
test3 = T3;

if test3

end

% 1 if using a certain test, 0 otherwise

== 1 % for test 3, there needs to be a threshold:
mmd = mean(mean(data));
ddata = data./mmd;
t = threshold(ddata, p);
thresh = mmd*t;

[s, t] = size(data);
numtests = 0;
if testi == 1

edgel = zeros(s, t);
numtests = numtests + 1;

end
if test2

end
if test3

end

== 1
edge2 = zeros(s, t);
numtests = numtests + 1;

== 1
edge3 = zeros(s, t);
numtests = numtests + 1;

for i = 3:s-2
for j = 3:t-2

wmbig = data(i-2:i+2, j-2:j+2);
wm = data(i-1:i+1, j-1:j+1);
wang = dataang(i-1:i+1, j-1:j+1);

if test1 == 1
edge(i, j) = smalllocalmax2(wmbig, wang(2, 2));

end

if test2 == 1
edge2(i, j) = rightdir(wang, anglimit);

end

end
end

if test3 == 1
if data(i, j) > thresh

edge3(i, j) = 1;
end

end
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% get rid of single points in individual images before combining:
if test1 == 1

edgel = singlepts(edgel);
end
if test2 == 1

edge2 = singlepts(edge2);
end
if test3 == 1

edge3 = singlepts(edge3);
end

% combine the edge images into one - if only one test is used, then the edge image from that % test is
the final edge image - if two tests are used, then it looks at the two edge matrices - the % edge points may
not be in exactly the same pixel spot in both matrices, so it finds an edge % point in the edge matrix
from the first test, then searches the 3x3 neighborhood of that same % pixel spot in the second test matrix
(allows for a 1 pixel offset) - if there are at least 2 edge % pixels in that neighborhood (2 seemed to work
better than only 1), then the pixel % corresponding to that center point is designated an edge
pixel.
if numtests == 1

if (test1 == 1) & (test2 == 0) & (test3 == 0)
edge = edgel;

elseif (test1 == 0) & (test2 == 1) & (test3 == 0)
edge = edge2;

elseif (test1 == 0) & (test2 == 0) & (test3 == 1)
edge = edge3;

end
elseif numtests == 2

if test1 == 1
[x, y] = size(edgel);

else
[x, y] = size(edge2);

end

edge = zeros(x, y);

if (test1 == 1) & (test2 == 1) & (test3 == 0)
a = edge2;
b = edgel;

elseif (test1 == 1) & (test2 == 0) & (test3 == 1)
a = edge3;
b = edgel;

elseif (test1 == 0) & (test2 == 1) & (test3 == 1)
a = edge2;
b = edge3;

end

for i = 2:x-1
for j = 2:y-1

if a(i, j) == 1
g = b(i-1:i+1, j-1:j+1);
count = checkforpts(g);
if count >= 2

edge(i, j) = 1;
end

end
end
end

edge = singlepts(edge);
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elseif numtests == 3
[x, y] = size(edgel);
edge = zeros(x, y);

for i = 2:x-1
for j = 2:y-1

if edge2(i, j) == 1
g1 = edgel(i-1:i+1,j-1:j+1);
g2 = edge3(i-1:i+1,j-1:j+1);
count1 = checkforpts(gl);
count2 = checkforpts(g2);
if (count1 >= 2) & (count2 >= 2)

edge(i, j) = 1;
end

end
end
end

end
edge = singlepts(edge);

% threshold.m

% Used to determine the
from 'pickedgepts.m'.

threshold for a matrix which keeps the given percentage of energy 'p'. Called

function t = threshold(m, p)

[x, y] = size(m);

mmax = max(max(m));

t = (p/100)*mmax;
b = sum(sum(m));
e =100; %

% Starting guess is p percent of the max
% Total energy of unthresholded matrix

Percentage of energy left after thresholding

% While the percentage is not within 2:
while ((e < p-2) I (e > p+2))

% threshold the matrix:
for i = 1:x
for j = 1:y

if m(i, j) < t

end
end

else

end

tm(i, j) = 0;

tm(i, j) = m(i, j);

% find the energy left:
a = sum(sum(tm));

% find the percentage of energy left:
e = (a/b)*100;

% if there's not enough energy left, decrease the threshold:
if e < p-2

tmpt = 0.7*t;
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t = tmpt;
% if there's too much energy left, increase the threshold:
elseif e > p+2

tmpt = 1.3*t;
t = tmpt;

else
t =t;

end
end

% smaillocalmax2.m

% Takes in a 3x3 matrix of values and a 3x3 matrix of angles (directions) and determines % whether
or not the center pixel is a local max in the direction normal to its angle. It first % checks whether the
angles of these two neighboring pixels have the same angle as the target % pixel, and if they do it then
checks if they both have smaller values than the target pixel. % Returns 1 if it is a local max, 0
otherwise. Called from 'pickedgepts.m'.

function yon = smalllocalmax(m, dir)

target = m(3, 3);
ang = dir;

if ang == 0
a = m(3, 1);
b = m(3, 2);
c = m(3, 4);
d = m(3, 5);

elseif (ang == 30) | (ang == 60)
a = m(5, 1);
b = m(4, 2);
c = m(2, 4);
d = m(1, 5);

elseif ang == 90
a = m(1, 3);
b = m(2, 3);
c = m(4, 3);
d = m(5, 3);

elseif (ang == 120) | (ang == 150)
a = m(1, 1);
b = m(2, 2);
c = m(4, 4);
d = m(5, 5);

end

if (target > a) & (target > b) & (target > c) & (target > d)
yon = 1;

else
yon = 0;

end

% rightdir.m

% Takes a 3x3 matrix of angles and determines whether the pixels neighboring the center in the %
direction of the center angle are within 'limit' degrees of the center angle. Returns 1 if they % are, 0
otherwise. Called from 'pickedgepts.m'.
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function yon = rightdir(ang, limit)

target = ang(2, 2);

if target == 0
a = ang(1, 2);
b = ang(3, 2);

elseif (target == 30) 1 (target == 60)
a = ang(1, 1);
b = ang(3, 3);

elseif target == 90
a = ang(2, 1);
b = ang(2, 3);

else
a = ang(3, 1);
b = ang(1, 3);

end

if (abs(target - a) < limit+1) & (abs(target - b) < limit+1)
yon = 1;

else
yon = 0;

end

% singlepts.m

% Goes through the edge maps and takes out single edge points. Called from 'pickedgepts.m'.

function new = singlepts(old)

m = [0 0 0; 0 1 0; 0 0 0];

[x, y] = size(old);

new = old;

for i = 2:x-1
for j = 2:y-1

n = old(i-1:i+1, j-1:j+1);
if m == n

new(i, j) = 0;
end

end
end

% checkforpts.m

% Counts how many points in a 3x3 matrix are edge points. Called from 'pickedgepts.m'.

function count = checkforpoints(g)

count = 0;

for i = 1:3
for j = 1:3

if g(i, j) == 1
count = count + 1;
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end
end
end

% dothethin.m

% Thins the edges of the image. Calls 'thin.m' to do the thinning on the original image, its %
transpose, and the horizontal, vertical and diagonal flips of both the original and the % transpose.
Called from 'mainnowave.m'
% Note: This program may need to be run more then once on an image to thin all edges. For % the road
images I've been using so far, once is enough. But if the edges are quite thick, this % needs to be run and
rerun to shave the edges down, iterate until no more edge points can be % thrown away.

function new = dothethin(old)

[x, y] = size(old);

% thin the original image
new = thin(old);

% thin the horizontal flip of the original
new = flipud(new);
new = thin(new);
new = flipud(new);

% thin the vertical flip of the original
new = flipir(new);
new = thin(new);
new = flipir(new);

% thin the diagonal flip of the original
new = (rot90(rot90(new)))';
new = thin(new);
new = (rot90(rot9O(new)))';

% thin the transpose of the original
new = new';
new = thin(new);

% thin the horizontal flip of the transpose
new = flipud(new);
new = thin(new);
new = flipud(new);

% thin the vertical flip of the transpose
new = flipir(new);
new = thin(new);
new = fliplr(new);

% thin the diagonal flip of the transpose
new = (rot90(rot9O(new)))';
new = thin(new);
new = (rot90(rot9O(new)))';

% transpose back to get completely thinned image
new = new';
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% thin.m

% Thins the edges to a width of one pixel. Compares a series of masks to the 3x3 neighborhood % of each
pixel to determine whether that edge point can be removed or not. Because of % symmetry, the
matrix has to be passed over several ways to remove all the extra edge points. % Called from
'dothethin.m'.

function new = thin(old)

[x, y] = size(old);

new = old;
clear old

ml = [11 0; 0
m2 = [0 1 0; 1
m3 = [1 1 0; 1
m4 = [1 1 1; 0
m5 = [0 1 1; 1
m6 = [0 1 0; 1
m7 = [1 1 1; 1
m8 = [1 1 0; 1
m9 = [1 1 0; 0
m10 = [0 1 0;
m11 = [1 1 1;:
m12 = [1 1 1;
m13 = [1 1 1;
m14 = [1 1 0;
m15 = [0 1 0;
m16 = [1 1 1;
m17 = [1 1 1;

thinned = 0;

1
1
1
1
1
1
1
1
1

1:

0
0
0
0
0
1
0
1
1
1
1
1
1I
1
1
1I
1

0 0 0];
0 0 0];
0 0 0];
0 0 0];
0 0 0];
0 0 0];
0 0 0];
0 0 0];
0 0 1];

1; 0 0 1];
1; 0 0 0];
1; 0 0 1];
0; 0 1 0];
1; 0 0 1];
1; 1 0 1];
0; 0 1 1];
1; 1 0 1];

% from left to
for i = 2:x-1
for j = 2:y-1

end
end

right, top to bottom:

if new(i, j) == 1
insidethin;

end

% from right to I
for i = 2:x-1
for j = y-1:-1:2

if new(i,

end
end

end

eft, top to bottom:

j) == 1
insidethin;

% from top to bottom, left to right:
for j = 2:y-1
for i = 2:x-1

if new(i, j) == 1
insidethin;

end
end
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end

% from bottom to top, left to right:
for j = 2:y-1
for i = x-1:-1:2

if new(i, j) == 1
insidethin;

end
end
end

% from left to right, bottom to top:
for i = x-1:-1:2
forj = 2:y-1

if new(i, j) == 1
insidethin;

end
end
end

% from right to IE
for i = x-1:-1:2
for j = y-1:-1:2

if new(i,

end
end

end

eft, bottom to top:

j) == 1
insidethin;

% from top to bottom, right to left:
forj = y-1:-1:2
for i = 2:x-1

end
end

if new(i,

end

j) == 1
insidethin;

% from bottom to top, right to left:
forj = y-1:-1:2
for i = x-1:-1:2

if new(i, j) == 1
insidethin;

end
end
end

% insidethin.m

% Code that is repeated many times inside 'thin.m'.

a = new(i-1:i+1, j-1:j+1);
if a == ml

new(i, j) = 0;
thinned = thinned + 1;

end
if a == m2

new(i, j) = 0;
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end
if a ==

end
if a ==

end
if a ==

end
if a ==

thinned = thinned + 1;

m3
new(i, j) = 0;
thinned = thinned + 1;

m4
new(i, j) = 0;
thinned = thinned + 1;

m5
new(i, j) = 0;
thinned = thinned + 1;

m6
new(i, j) = 0;
thinned = thinned + 1;

end
if a == m7

new(i, j) = 0;
thinned = thinned + 1;

end
if a == m8

new(i, j) = 0;
thinned = thinned + 1;

end
if a == m9

new(i, j) = 0;
thinned = thinned + 1;

end
if a == m10

new(i, j) = 0;
thinned = thinned + 1;

end
if a == m1

new(i, j) = 0;
thinned = thinned + 1;

end
if a == m12

new(i, j) = 0;
thinned = thinned + 1;

end
if a == m13

new(i, j) = 0;
thinned = thinned

end
if a == m14

end
if a ==

end
if a ==

+ 1;

new(i, j) = 0;
thinned = thinned + 1;

m15
new(i, j) = 0;
thinned = thinned + 1;

m16
new(i, j) = 0;
thinned = thinned + 1;

end
if a == m17
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new(i, j) = 0;
thinned = thinned + 1;

end

% link.m

% Links by considering the last twenty steps of an edge to the endpoint. Starting at an % endpoint,
a tree is made consisting of several branches, each branch having either an % endpoint or a branch
point for each end. Combinations of branches are found which lead % from each endpoint in the tree to
all the others. For each endpoint, the straightest % combination is chosen, then a poll is taken of
the last twenty step directions in this edge. The % most prevalent direction is considered the primary
direction, the second most prevalent % direction is the secondary direction. The confidences of these
directions are also recorded, % being the number of steps from the poll that were in that direction. Then
using these % directions and confidences, a search is made for the endpoint(s) to link with using
% 'checklink.m'. A search area is designed using the primary and secondary directions and %
endpoints within that area are linked if they pass certain conditions. Input arguments are: % 'numdirs',
number of steps used to find the principal and secondary directions; 'tooshort', % edges shorter than this
are deleted; 'maxgap', longest gap that can possibly be linked (length % of the search area); 'maxsoc',
width of the search area. Called from 'mainnowave.m' and % 'mainwave.m'.

function [edge, branches, branchlength] = link(old, ang, edgevals, numdirs, tooshort, maxgap, maxsoc)

% find end points:
[endedge, numendpts] = endpts(old);

% get info on each endpoint and its longest edge:

[x, y] = size(endedge);
laststeps = zeros(1, 6);
branchnum = 0;
branches = 0;
branchlength = 0;
branchdir = 0;

% first, make the 'tree' of the edge:
for i = 2:x-1
for j = 2:y-1

if endedge(i, j) == 2
tmpbranchnum = 0;
tmpbranches = 0;
tmpbranchlength = 0;
tmpbranchdir = 0;

% if this point was a part of a previous tree, don't need to do this all over again:
[sols, whatever] = size(laststeps);
out = 0;
for k = 1:sols

if (i == laststeps(k, 1)) & ( == laststeps(k, 2))
out = 1;

elseif (i == laststeps(k, 2)) & (j == laststeps(k, 1))
out = 1;

end
end

if out == 0 % point hasn't been done before
% start the search for branches:
used = zeros(x, y);
used(i, j) = 1;
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% search around the entire 1 pixel wide neighborhood of the
% root endpoint for first step:
for s = -1:1:1
fort = -1:1:1

if (s = 0) 1 (t -= 0)
if endedge(i+s, j+t) -= 0

firststep = [i+s, j+t];
end
end

end
end

stack = [i j firststep 0];
stackheight = 1;
pairs = [0 0];

% get the information for all the branches:
while stackheight ~ 0

start = stack(stackheight, 1:2);
firststep = stack(stackheight, 3:4);

[b, I, toe, used] = getbranch(start, firststep, endedge, used);

if toe == 1
stack(stackheight, :) = zeros(1, 5);
stackheight = stackheight - 1;

else
tmpbranchnum = tmpbranchnum + 1;
tmpbranches(tmpbranchnum, 1:2*(1+1)) = b;
tmpbranchlength(tmpbranchnum) = 1;
tmpbranchdir(tmpbranchnum) =

(atan((b(1)b(2*l+ 1))/(b(2)-b(2*1+2))))*(180/pi);
pairs = [pairs; stack(stackheight, 5) tmpbranchnum];
stack(stackheight, :) = zeros(1, 5);
stackheight = stackheight - 1;

I = b(2*l - 1:2*1);
J = b(2*l + 1:2*1 + 2);

if toe == 3 % new branch
% search around the entire 1 pixel wide % neighborhood for next points:

count1 = 0;
nextstep = 0;
for s = -1:1:1
fort = -1:1:1

if (s = 0) 1 (t ~= 0)
if endedge(J(1)+s, J(2)+t) 0
if (J(1)+s ~ I(1)) I (J(2)+t ~= 1(2))
if used(J(1)+s, J(2)+t) ~ 1

used(J(1)+s, J(2)+t) = 1;
count1 = count1 + 1;
nextstep = [nextstep J(1)+s

end
end
end
end

end
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end

brpt = J;
nextstep = nextstep(2:(2*countl + 1));
for z = 1:countl

stackheight = stackheight + 1;
stack(stackheight, :) = [brpt

nextstep((2*z - 1):(2*z)) tmpbranchnum];
end

end
end

end

% find the total length, total number of pixels in the whole edge:
total = 1;
for u = 1:tmpbranchnum

total = total + tmpbranchlength(u);
end

% get rid of edges 10 pixels or shorter:
if total < tooshort

for u = 1:tmpbranchnum
for v = 1:tmpbranchlength+1

if (tmpbranches(u, 2*v-1) ~= 0) & (tmpbranches(u,
2*v) 0)

endedge(tmpbranches(u, 2*v-1),
tmpbranches(u, 2*v)) = 0;

end
end

end
else

% add the branch to the master list for later use:
for u = 1:tmpbranchnum

branchnum = branchnum + 1;
branchlength(branchnum) = tmpbranchlength(u);
branches(branchnum, 1:2*(branchlength(branchnum)+1)) =

tmpbranches(u, 1:2*(branchlength(branchnum)+1));
branchdir(branchnum) = tmpbranchdir(u);

end

% if there is only one branch, things are simple:
[p1, p2] = size(pairs);
if p1 < 3

rightcombo = 1;

s1 = i;
t1 = j;
ud = zeros(1, tmpbranchlength(1));
maxlength = tmpbranchlength(1);
[a, s, t] = lastdirs(numdirs, rightcombo, ud, tmpbranches,

tmpbranchlength, maxlength);
[dirt, conf1, dir2, conf2] = poll(a);
laststeps = [laststeps; s1 t1 dir1 dir2 conf1 conf2];

s2 = tmpbranches(1, 2*tmpbranchlength(1)+1);
t2 = tmpbranches(1, 2*tmpbranchlength(1)+2);
ud = ones(1, tmpbranchlength(1));
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[a, s, t] = lastdirs(numdirs, rightcombo, ud, tmpbranches,
tmpbranchlength, maxlength);

[dir1, conf1, dir2, conf2] = poll(a);
laststeps = [laststeps; s2 t2 dir1 dir2 conf1 conf2];

else
% otherwise (if there is some branching)......
% find the combinations of branches that lead to full %edges:
[combos, ud] = getcombos(pairs);
[c, whatever] = size(combos);

% find the length of each combo:
for u = 1:c

V = 1;
edgelength(u) = 0;
br = combos(u, v);
while br ~= 0

edgelength(u) = edgelength(u) +
tmpbranchlength(br);

v = V + 1;
br = combos(u, v);

end
end

% find the angle off of straight for each combo:
for u = 1:c

count1 = 1;
tc = combos(u, 1);
while tc ~= 0

sc(countl) = tc;
count1 = count1 + 1;
tc = combos(u, count1);

end

Ic = count1 - 1;

bigstart = tmpbranches(sc(1), 1:2);
bigfinish = tmpbranches(sc(Ic),

2*tmpbranchlength(sc(Ic))+ 1:2*tmpbranchlength(sc(Ic))+2);
bigdir = (atan((bigstart(1)-bigfinish(1))/(bigstart(2)-

bigfinish(2))))*(180/pi);
edgedir(u) = 0;
for v = 1:lc

edgedir(u) = edgedir(u) + abs(bigdir -
tmpbranchdir(sc(v)));

end
end

% make a list of the ends of the branches:
ends = combos(1, 1);
for u = 2:c

t = combos(u, 1);
add = 1;
for v = 1:length(ends)

if t == ends(v)
add = 0;

end
end
if add == 1

ends = [ends t];
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end
end

% for each end, find the best edge starting at that end % and
use this edge to get the primary and secondary % directions
and their confidences:
e = length(ends);
for u = 1:e

startbranch = ends(u);

I = 0;
for v = 1:c

if combos(v, 1) == startbranch
I = [I edgedir(v)];

else
I = [I 1000];

end
end
I = 1(2:length(I));

% find the minimum direction difference:
[minind, mindir] = findmin(l);
maxlength = edgelength(minind);

% use the edge with maximum length to get %
edge directions and take a poll:
w = 1;
n = combos(minind, w);
rightcombo = 0;
while n ~ 0

rightcombo = [rightcombo n];
w = w + 1;
n = combos(minind, w);

end
rightcombo = rightcombo(2: length(rightcombo));
rightud = ud(minind, :);

[a, s, t] = lastdirs(numdirs, rightcombo, rightud,
tmpbranches, tmpbranchlength, maxlength);

[dirn, conf1, dir2, conf2] = poll(a);
laststeps = [laststeps; s t dir1 dir2 conf1 conf2];

end
end

end
end

end
end
end

% link:
links = endedge;

[n, whatever] = size(laststeps);

for f = 2:n
i = laststeps(f, 1);
j = laststeps(f, 2);
primdir = laststeps(f, 3);
secdir = laststeps(f, 4);
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primconf = laststeps(f, 5);
secconf = laststeps(f, 6);

% use the primary and secondary directions to check for possible endpoints to link with:
[tmp, branches, branchlength, branchnum] = checklink(links, ang, edgevals, laststeps, f, maxgap,

maxsoc, branches, branchlength, branchnum);
links = tmp;

end

[x, y] = size(links);
edge = zeros(x, y);

for i = 1:x
for j = 1:y

if links(i, j) ~= 0
edge(i, j) = 1;

end
end
end

% endpts.m

% Goes through and puts a 2 in the place of every end point. Called from 'link.m'.

function [new, numendpts] = endpts(old)

[x, y] = size(old);

% first make two outer squares of pixels zero:
for i = 1:x

old(i, 1) = 0;
old(i, 2) = 0;
old(i, y-1) = 0;
old(i, y) = 0;

end
for j = 1:y

old(l, j) = 0;
old(2, j) = 0;
old(x-1, j) = 0;
old(x, j) = 0;

end

new = old;
numendpts = 0;

% masks used to
ml = [1 0 0; 0 1
m2 = [0 1 0; 0 1
m3 = [0 0 1; 0 1
m4 = [0 0 0; 0 1
m5 = [0 0 0; 0 1
m6 = [0 0 0; 0 1
m7 = [0 0 0; 0 1
m8 = [0 0 0; 1 1

determine if a point is an endpoint:
0; 0 0 0];
0; 0 0 0];
0; 0 0 0];
1; 0 0 0];
0; 0 0 1];
0; 0 1 0];
0; 1 0 0];
0; 0 0 0];

for i = 2:x-1
for j = 2:y-1
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if old(i, j) == 1
a = old(i-1:i+1, j-1:j+1);

if a == ml
new(i, j) = 2;
numendpts =

end
if a == m2

new(i, j) = 2;
numendpts =

end
if a == m3

new(i, j) = 2;
numendpts =

end
if a == m4

new(i, j) = 2;
numendpts =

end
if a == m5

new(i, j) = 2;
numendpts =

end
if a == m6

end
if a ==

end
if a ==

end

new(i, j) = 2;
numendpts =

m7
new(i, j) = 2;
numendpts =

m8
new(i, j) = 2;
numendpts =

numendpts + 1;

numendpts + 1;

numendpts + 1;

numendpts + 1;

numendpts + 1;

numendpts + 1;

numendpts + 1;

numendpts + 1;

% get rid of useless end points:
new = badendpts(new);

% badendpts.m

% For the purpose of linking, get rid of bad end points, ones that branch after only one step. % Called
from 'endpts.m'.

function m = badendpts(m)

[x, y] = size(m);

for i = 1:x
for j = 1:y

if m(i, j) == 2
firststep = 0;
count = 0;
points = 0;
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for s1 = -1:1:1
for t1 = -1:1:1

if (sl -= 0) 1 (ti ~= 0)
if m(i+sl, j+tl) ~ 0

firststep = [i+sl, j+tl];
end
end

end
end

for s2 = -1:1:1
for t2 = -1:1:1

if (s2 ~= 0) | (t2 ~ 0)
if m(firststep(1)+s2, firststep(2)+t2);

count = count + 1;
points = [points firststep(1)+s2 firststep(2)+t2];

end
end

end
end

if count > 2
m(i, j) = 0;

end

% getbranch.m

% This function records the starting point and ending point of a branch and the coordinates of % the
points in between. Returns a value 'typeofend' which indicates whether the branch ended % in another
branch point, an endpoint or a plain edge point. Also returns the length of this % branch, including the
end point but not the start point. Called from 'link.m'.

function [branch, length, typeofend, used] = getbranch(start, firststep, new, used)

branch = [start];
length = 0;
newbranch = 0;
endbranch = 0;

% indicates whether we've come to a new branch point
% indicates whether we've come to a dead end

lastpoint = start;
nextpoint = firststep;

while (newbranch == 0) & (endbranch == 0)
dir1 = dirstep(lastpoint, nextpoint);
branch = [branch nextpoint];
length = length + 1;
lastpoint = nextpoint;

dir2 = oppositedir(dirl);
[c, numc, used] = searchforpts(dir2, lastpoint, new, used);

if numc > 1
newbranch = 1;
typeofend = 3; % branch point

end
end
end
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for i = 1:numc
a = c(2*i - 1);
b = c(2*i);
used(a, b) = 0;

end
elseif numc == 0

endbranch = 1;
if new(lastpoint(1), lastpoint(2)) == 2

typeofend = 2; % endpoint
else

typeofend = 1; % regular edge point
end

else
nextpoint = c;

end
end

% dirstep.m

% Given two points, determine what direction was taken to get from one to two: 1 = NW, 2 = N, % 3 =
NE, 4 = W, 5 = E, 6 = SW, 7 = S, 8 = SE. Called from 'getbranch.m'.

function dir = dirstep(two, one)

x1 = one(1);
yl = one(2);
x2 = two(1);
y2 = two(2);

if x2 < x1
if y2 < yl

dir = 1;
elseif y2 == yl

dir = 2;
else

dir = 3;
end

elseif x2 == x1
if y2 < yl

dir = 4;
else

dir = 5;
end

elseif x2 > x1
if y2 < yl

dir = 6;
elseif y2 == yl

dir = 7;
else

dir = 8;
end

end

% oppositedir.m

% Returns the opposite direction from that which is inputted. Called from 'getbranch.m'.
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function newdir = oppositedir(olddir)

if olddir == 1
newdir = 8;

elseif olddir == 2
newdir = 7;

elseif olddir == 3
newdir = 6;

elseif olddir == 4
newdir = 5;

elseif olddir == 5
newdir = 4;

elseif olddir == 6
newdir = 3;

elseif olddir == 7
newdir = 2;

elseif olddir == 8
newdir = 1;

end

% searchforpts.m

% Used to search the proper area for edge points and return a vector that includes the necessary %
information. Called from 'getbranch.m'

function [c, numc, used] = searchforpts(dir, target, new, used)

x = target(1);
y = target(2);
[s, t] = size(new);
numc = 0;
c = 0;

if (x == 1) 1 (y == 1) 1 (x == s) I (y == t)
return;

else
if dir == 1 % NW search

if new(x+1, y-1) ~= 0
if used(x+1, y-1) == 0

c = [c x+1 y-1];
numc = numc + 1;
used(x+1, y-1) = 1;

end
end
if new(x, y-1) ~= 0
if used(x, y-1) == 0

c = [c x y-1];
numc = numc + 1;
used(x, y-1) = 1;

end
end
if new(x-1, y-1) ~= 0
if used(x-1, y-1) == 0

c = [c x-1 y-1];
numc = numc + 1;
used(x-1, y-1) = 1;

end
end
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if new(x-1, y) 0
if used(x-1, y) == 0

c = [c x-1 y];
numc = numc + 1;
used(x-1, y) = 1;

end
end
if new(x-1, y+1) ~= 0
if used(x-1, y+1) == 0

c = [c x-1 y+1];
numc = numc + 1;
used(x-1, y+1) = 1;

end
end

elseif dir == 2 % N search
if new(x-1, y-1) 0
if used(x-1, y-1) == 0

c = [c x-1 y-1];
numc = numc + 1;
used(x-1, y-1) = 1;

end
end
if new(x-1, y) ~= 0
if used(x-1, y) == 0

c = [c x-1 y];
numc = numc + 1;
used(x-1, y) = 1;

end
end
if new(x-1, y+1) ~= 0
if used(x-1, y+1) == 0

c = [c x-1 y+1];
numc = numc + 1;
used(x-1, y+1) = 1;

end
end
if new(x, y-1) 0
if used(x, y-1) == 0

c = [c x y-1];
numc = numc + 1;
used(x, y-1) = 1;

end
end
if new(x, y+1) ~= 0
if used(x, y+1) == 0

c = [c x y+1];
numc = numc + 1;
used(x, y+1) = 1;

end
end

elseif dir == 3 % NE search
if new(x-1, y-1) 0
if used(x-1, y-1) == 0

c = [c x-1 y-1];
numc = numc + 1;
used(x-1, y-1) = 1;

end
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end
if new(x-1, y) 0
if used(x-1, y) == 0

c = [c x-1 y];
numc = numc + 1;
used(x-1, y) = 1;

end
end
if new(x-1, y+1) ~= 0
if used(x-1, y+1) == 0

c = [c x-1 y+1];
numc = numc + 1;
used(x-1, y+1) = 1;

end
end
if new(x, y+1) ~= 0
if used(x, y+1) == 0

c = [c x y+1];
numc = numc + 1;
used(x, y+1) = 1;

end
end
if new(x+1, y+1) ~= 0
if used(x+1, y+1) == 0

c = [c x+1 y+1];
numc = numc + 1;
used(x+1, y+1) = 1;

end
end

elseif dir == 4 % W search
if new(x-1, y-1) 0
if used(x-1, y-1) == 0

c = [c x-1 y-1];
numc = numc + 1;
used(x-1, y-1) = 1;

end
end
if new(x-1, y) ~= 0
if used(x-1, y) == 0

C = [c x-1 y];
numc = numc + 1;
used(x-1, y) = 1;

end
end
if new(x, y-1) ~= 0
if used(x, y-1) == 0

c = [c x y-1];
numc = numc + 1;
used(x, y-1) = 1;

end
end
if new(x+1, y-1) 0
if used(x+1, y-1) == 0

c = [c x+1 y-1];
numc = numc + 1;
used(x+1, y-1) = 1;

end
end
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if new(x+1, y) 0
if used(x+1, y) == 0

c = [c x+l y];
numc = numc + 1;
used(x+1, y) = 1;

end
end

elseif dir == 5 % E search
if new(x-1, y) 0
if used(x-1, y) == 0

c = [c x-1 y];
numc = numc + 1;
used(x-1, y) = 1;

end
end
if new(x-1, y+1) 0
if used(x-1, y+1) == 0

c = [c x-1 y+1];
numc = numc + 1;
used(x-1, y+1) = 1;

end
end
if new(x, y+1) 0
if used(x, y+1) == 0

c = [c x y+1];
numc = numc + 1;
used(x, y+1) = 1;

end
end
if new(x+1, y) ~= 0
if used(x+1, y) == 0

c = [c x+l y];
numc = numc + 1;
used(x+1, y) = 1;

end
end
if new(x+1, y+1) 0
if used(x+1, y+1) == 0

c = [c x+1 y+1];
numc = numc + 1;
used(x+1, y+1) = 1;

end
end

elseif dir == 6 % SW search
if new(x-1, y-1) 0
if used(x-1, y-1) == 0

c = [c x-1 y-1];
numc = numc + 1;
used(x-1, y-1) = 1;

end
end
if new(x, y-1) ~= 0
if used(x, y-1) == 0

c = [c x y-1];
numc = numc + 1;
used(x, y-1) = 1;

end
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end
if new(x+1, y-1) 0
if used(x+1, y-1) == 0

c = [c x+1 y-1];
numc = numc + 1;
used(x+1, y-1) = 1;

end
end
if new(x+1, y) ~= 0
if used(x+1, y) == 0

c = [c x+1 y];
numc = numc + 1;
used(x+1, y) = 1;

end
end
if new(x+1, y+1) 0
if used(x+1, y+1) == 0

c = [c x+1 y+1];
numc = numc + 1;
used(x+1, y+1) = 1;

end
end

elseif dir == 7 % S search
if new(x, y-1) 0
if used(x, y-1) == 0

c = [c x y-1];
numc = numc + 1;
used(x, y-1) = 1;

end
end
if new(x+1, y-1) ~= 0
if used(x+1, y-1) == 0

c = [c x+1 y-1];
numc = numc + 1;
used(x+1, y-1) = 1;

end
end
if new(x+1, y) ~= 0
if used(x+1, y) == 0

C = [c x+1 y];
numc = numc + 1;
used(x+1, y) = 1;

end
end
if new(x+1, y+1) 0
if used(x+1, y+1)== 0

c = [c x+l y+1];
numc = numc + 1;
used(x+1, y+1) = 1;

end
end
if new(x, y+1) ~= 0
if used(x, y+1) == 0

c = [c x y+1];
numc = numc + 1;
used(x, y+1) = 1;

end
end
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else % SE search
if new(x+1, y-1) 0
if used(x+1, y-1) == 0

c = [c x+1 y-1];
numc = numc + 1;
used(x+1, y-1) = 1;

end
end
if new(x+1, y) ~= 0
if used(x+1, y) == 0

c = [c x+1 y];
numc = numc + 1;
used(x+1, y) = 1;

end
end
if new(x+1, y+1) ~= 0
if used(x+1, y+1) == 0

c = [c x+1 y+1];
numc = numc + 1;
used(x+1, y+1) = 1;

end
end
if new(x, y+1) 0
if used(x, y+1) == 0

c = [c x y+1];
numc = numc + 1;
used(x, y+1) = 1;

end
end
if new(x-1, y+1) ~= 0
if used(x-1, y+1) == 0

c = [c x-1 y+1];
numc = numc + 1;
used(x-1, y+1) = 1;

end
end

end

c = c(2:length(c));
end

% lastdirs.m

% Given a vector of numbers 'combo' which represent the branches of an edge beginning with % an
endpoint, this function records the last 'n' step directions up to the endpoint. Called from % 'link.m'.

function [a, s, t] = lastdirs(n, rightcombo, rightud, branches, branchlength, maxlength)

count1 = 1; % keeps track of how many directions we've recorded
count2 = 1; % keeps track of where in the combo we are
count3 = 1; % keeps track of how many directions we've used from a

% single branch

if maxlength < n
numdirs = maxlength;

else
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numdirs = n;
end

branchnum = rightcombo(count2);
ud = rightud(count2);

if ud == 1
s = branches(branchnum, 2*branchlength(branchnum) + 1);
t = branches(branchnum, 2*branchlength(branchnum) + 2);

else
s = branches(branchnum, 1);
t = branches(branchnum, 2);

end

while count1 <= numdirs
branch = branches(branchnum, 1:2*(branchlength(branchnum) + 1));
if ud == 1

for i = 1:branchlength(branchnum)+1
tmpbranch(2*i-1:2*i) = branch(2*(branchIength(branchnum)-i+2)-

1:2*(branchlength(branchnum)-i+2));
end
branch = tmpbranch;

end

if count3 < branchlength(branchnum)+1
dir = dirstep([branch(2*count3+1) branch(2*count3+2)], [branch(2*count3-1)

branch(2*count3)]);
if ud == 1

a(count1) = oppositedir(dir);
else

a(count1) = dir;
end
count1 = count1 + 1;
count3 = count3 + 1;

else
count2 = count2 + 1;
count3 = 1;
branchnum = rightcombo(count2);
ud = rightud(count2);

end
end

% poIlm

% Takes a poll of the directions in the vector 'a', returning the first and second most used % directions
and their confidences (how often they popped up). Called from 'link.m'.

function [dir1, conf1, dir2, conf2] = poll(a)

count = zeros(1, 8);

for i = 1:length(a)
if a(i) ~= 0

d = a(i);
count(d) = count(d) + 1;

end
end

126



[dir1, conf1] = findmax(count);

count(dirl) = 0;

[dir2, conf2] = findmax(count);

% getcombos.m

% Used to figure out the combinations of branches that lead from one endpoint to another.
from 'link.m'.

function [combos, ud] = getcombos(pairs);

% first get the combos leading from the root endpoint:
[numpairs, whatever] = size(pairs);
firstnumber = 0;
for u = 1:numpairs

n = pairs(u, 1);
[whatever, c] = size(firstnumber);
add = 1;
for v = 1:c

if n == firstnumber(v)
add = 0;

end
end
if add == 1

firstnumber = [firstnumber n];
end

end

for u = 1:numpairs
endbranch = 1;
n = pairs(u, 2);
[whatever, c] =
for v = 1:c

end

size(firstnumber);

if n == firstnumber(v)
endbranch = 0;

end

if endbranch == 1
combos(u, 1) = pairs(u,
combos(u, 2) = pairs(u,
next = pairs(u, 1);
count1 = 3;

while next ~= 1
for w = 1:numpairs

if next == pairs(w, 2)
newnext = pairs(w, 1);

end
end
combos(u, count1) = newnext;
next = newnext;
count1 = count1 + 1;

end

% Called

2);
1);

end
end
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oldcombos = combos;
[s, t] = size(oldcombos);
combos = zeros(1, t);
count2 = 1;
for i = 1:s

if oldcombos(i, 1) -= 0
combos(count2, :) = oldcombos(i, :);
count2 = count2 + 1;

end
end

% get all other combos from these ones:
[c, whatever] = size(combos);
ud = ones(size(combos));
combos = [combos zeros(c, 1)];
d = c + 1;

for i = 1:c
for j = i+1:c

lengthl = 1;
w1 = combos(i, 1);
a = w1;
while w1 ~= 0

length1 = lengthl + 1;
w1 = combos(i, length1);
a = [a w1];

end
length1 = lengthl - 1;
a = a(1:length1);

length2 = 1;
w2 = combos(j, 1);
b = w2;
while w2 ~= 0

length2 = length2 + 1;
w2 = combosj, length2);
b = [b w2];

end
length2 = length2 - 1;
b = b(i:length2);

if length1 <= length2
while length1 > 0

if a(length1) == b(length2)
a(lengthl) = 0;
b(length2) = 0;

end
lengthl = length1 - 1;
length2 = length2 - 1;

end
else

while length2 > 0
if a(length1) == b(length2)

a(length1) = 0;
b(length2) = 0;

end
length1 = lengthl - 1;
length2 = length2 - 1;

128



end
end

v = 0;
w = 0;
for k = 1:length(a)

if a(k) ~= 0
v= [v a(k)];
w = [w 1];

end
end
for k = length(b):-1:1

if b(k) ~ 0
v = [v b(k)];
w = [w 0];

end
end

for I = 2:length(v)
combos(d, 1-1) = v(l);
ud(d, 1-1) =w();

end
d = d + 1;

end
end

% also add the flip of each combo
[c, whatever] = size(combos);
combos = [combos zeros(c, 1)];
d = c + 1;
for i = 1:c

v = combos(i, 1);
t = 2;
vadd = combos(i, t);
while vadd ~= 0

v = [v vadd];
t = t + 1;
vadd = combos(i, t);

end

v = fliplr(v);

w = ud(i, 1:length(v));
w = fliplr(w);

for j = 1:length(v)
combos(d, j) = vj);
if wj) == 1

ud(d, j) = 0;
elseif w(j) == 0

ud(d, j) = 1;
end

end
d = d + 1;

end
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% findmin.m

% Takes in a vector of values and returns the minimum value as well as the index associated % with the
minimum value. Called from 'link.m' and 'checklink.m'.

function [minind, minval] = findmin(v)

v = abs(v);

[x, y] = size(v);

minval = v(1);
minind = 1;
i = 2;

while i <= y
if v(i) < minval

minval = v(i);
minind = i;

end

= i + 1;
end

% checklink.m

% Called to find links. Searches an area determined by the primary direction, the secondary % direction,
'maxgap' (which indicates how many steps to take outward), and 'maxsoc' (which % indicates how many
steps to take sideways) and lists all the the endpoints in this area. Then, % based on how many steps off
center an endpoint lies, how far it is from the root endpoint, % how aligned the two points are, the
program decides whether to link or not. Called from % 'link.m'.

function [m, branches, branchlength, branchnum] = checklink(m, ang, edgevals, laststeps, f, maxgap,
maxsoc, branches, branchlength, branchnum)

i = laststeps(f, 1);
j = laststeps(f, 2);
leftstart = [i j];
rightstart = [i j];
linkstart = [i j];
linkfinish = [i j];
endpoints = [i j 0 0 ang(i, j)];
num = 0;
primdir = laststeps(f, 3);
secdir = laststeps(f, 4);
primconf = laststeps(f, 5);
secconf = laststeps(f, 6);

% left and right step directions determined by primary and secondary directions:
if (((primdir == 1) & ((secdir == 1) | (secdir == 2) | (secdir == 3))) |

((primdir == 2) & ((secdir == 1) | (secdir == 2) | (secdir == 3))) |
((primdir == 3) & ((secdir == 1) | (secdir == 2) | (secdir == 3))) |
((primdir == 6) & ((secdir == 6) | (secdir == 7) | (secdir == 8))) |
((primdir == 7) & ((secdir == 6) I (secdir == 7) | (secdir == 8))) |
((primdir == 8) & ((secdir == 6) | (secdir == 7) | (secdir == 8))))

leftdir = 4;
rightdir = 5;

elseif (((primdir == 1) & ((secdir == 4) | (secdir == 6))) |
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((primdir == 3) & ((secdir == 5)
((primdir == 4) & ((secdir == 1)
((primdir == 5) & ((secdir == 3)
((primdir == 6) & ((secdir == 1)
((primdir == 8) & ((secdir == 3)

leftdir = 2;
rightdir = 7;

elseif (((primdir == 2) & (secdir == 5)) 1 ((primdir
((primdir == 5) & (secdir == 2))

leftdir = 1;
rightdir = 8;

elseif (((primdir == 2) & (secdir == 4)) | ((primdir
((primdir == 5) & (secdir == 7))

leftdir = 3;
rightdir = 6;

else

end

(secdir
(secdir
(secdir
(secdir
(secdir

8))) |
4) | (secdir == 6))) |
5) | (secdir == 8))) I
4))) |
5))))

== 4) & (secdir == 7)) |
| ((primdir == 7) & (secdir == 4)))

== 4) & (secdir == 2)) |
| ((primdir == 7) & (secdir == 5)))

return;

% main path which determines the shape of the search area is designed using the primary and %
secondary directions for an edge - this path is repeated during the search:
total = primconf + secconf;
ratio = floor(total/secconf);
stepdir = zeros(1, total);
usedsec = 0;
for t = 1:total

if (mod(t, ratio) == 0) & (usedsec < secconf)
stepdir(t) = secdir;
usedsec = usedsec + 1;

end

else

end
stepdir(t) = primdir;

% first the center path is searched for endpoints, then with each iteration a step is taken
left or right before again searching the same main path steps from the new starting %
endpoint is found, it is added to the matrix 'endpts' which keeps track of its % position,
steps off center, its distance to the root endpoint, and its angle:
v = 0;
count = 0;

while count < (maxsoc+1)
if mod(count, 2) == 0

start = leftstart;
else

start = rightstart;
end

either % to the
point - when an
the number of

% indicates how many steps to either side the search includes

gap = 0;
while v ~= 3

for t = 1:total
dir = stepdir(t);
[v, finish] = takestep(start, dir, m);
start = finish;
gap = gap + 1;

if v == 2
if mod(count, 2) == 0

soc = count/2;
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else
soc = (count + 1)/2;

end

dist = sqrt(((i - finish(1))^2) + (( - finish(2))A2));

endpoints = [endpoints; finish soc dist ang(finish(1), finish(2))];
num = num + 1;

end

if gap > maxgap
v = 3;

end

if v == 3
break;

end
end

end

count = count + 1;
if mod(count, 2) == 0

[v, finish] = takestep(leftstart, leftdir, m);
leftstart = finish;

else
[v, finish] = takestep(rightstart, rightdir, m);
rightstart = finish;

end
if v == 2

if mod(count, 2) == 0
soc = count/2;

else
soc = (count + 1)/2;

end

dist = sqrt(((i - finish(1))A2) + (( - finish(2))A2));

endpoints = [endpoints; finish soc dist ang(finish(1), finish(2))];
num = num + 1;

end
end

% list of endpoints is searched to find which one(s) to link to:

% first check if any lie directly on the center path - if so, and if the link has not been made % before,
link them:
for s = 2:num+1

soc = endpoints(s, 3);
if soc == 0

linkfinish = endpoints(s, 1:2);

for k = 1:branchnum
a = branches(branchnum, 1:2);
b = branches(branchnum,

2*branchlength(branchnum)+1:2*branchlength(branchnum)+2);
if ((a == linkstart) & (b == linkfinish)) | ((a == linkfinish) & (b == linkstart))

% link has been made before
return;

end
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end

[m, branches, branchlength, branchnum] = drawlink(linkstart, linkfinish, m, edgevals,
branches, branchlength, branchnum);

return;
end

end

% if no link was made above, find the endpoint with the shortest distance:
for s = 1:num+1

dist(s) = endpoints(s, 4);
end

dist(1) = maxgap;

while 1 == 1
[minind, mindist] = findmin(dist);

if mindist == maxgap
return;

else
linkfinish = endpoints(minind, 1:2);
stepsoffcenter = endpoints(minind, 3);

al = 0;
for k = 1:branchnum

a = branches(branchnum, 1:2);
b = branches(branchnum,

2*branchlength(branchnum)+1:2*branchlength(branchnum)+2);
if ((a == linkstart) & (b == linkfinish)) | ((a == linkfinish) & (b == linkstart))

% link has been made before
al = al + 1;

end
end

if al > 2 % if link has been made before
if mindist > 10 % if the length of the gap is large, end here

return;
else % if the length of the gap is small, repeat the step

dist(minind) = maxgap;
end

else % if the link has not been made before
if stepsoffcenter > 3
% check orientations of two endpoints using primary direction:

primdirstart = primdir;
primdirfinish = primdir;

[1, whatever] = size(laststeps);
for z = 1:1

if (laststeps(z, 1) == linkfinish(1)) & (laststeps(z, 2) ==
linkfinish(2))

if laststeps(z, 4) ~= 0
primdirfinish = laststeps(z, 4);

end
end

end

primdiff = dirdiff(primdirstart, primdirfinish);
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if (primdiff < 3)
if stepsoffcenter < 6

[m, branches, branchlength, branchnum] =

drawlink(linkstart, linkfinish, m, edgevals, branches, branchlength, branchnum);
else

if mindist > 20
[m, branches, branchlength, branchnum] =

drawlink(linkstart, linkfinish, m, edgevals, branches, branchlength, branchnum);
end

end
end

else
[m, branches, branchlength,

m, edgevals, branches, branchlength, branchnum);
end

end
end

branchnum] = drawlink(linkstart, linkfinish,

if mindist > 10
return;

else
dist(minind) = maxgap;

end

% takestep.m

% Takes one step in the given direction and returns the value and the coordinates of that
Called from 'checklink.m' and 'pairup.m'.

function [a, finish] = takestep(start, dir, m)

x = start(1);
y = start(2);

[s, t] = size(m);

% location.

if (x == 1) 1 (x == s) |
a = 3;
finish = start;

else
if dir == 1

(y == 1) 1 (y == t)

a = m(x-1, y-1);
finish = [x-1 y-1];

elseif dir == 2
a = m(x-1, y);
finish = [x-1, y];

elseif dir == 3
a = m(x-1, y+1);
finish = [x-1, y+1];

elseif dir == 4
a = m(x, y-1);
finish = [x, y-1];

elseif dir == 5
a = m(x, y+1);
finish = [x, y+1];

elseif dir == 6
a = m(x+1, y-1);
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finish = [x+1, y-1];
elseif dir == 7

end

else

end

a = m(x+1, y);
finish = [x+1, y];

a = m(x+1, y+1);
finish = [x+1, y+1];

% drawlink.m

% Given the start and the end points, this draws a link between them, not necessarily the best % link, but
approximately a straight line. Before it actually draws the link, it checks whether the % proposed link
crosses any other lines. If so, the link is not made. Called from 'checklink.m'.

function [m, branches, branchlength, branchnum] = drawlink(start, finish, m, edgevals, branches,
branchlength, branchnum)

path = start;

if (start(1) == finish(1)) & (start(2) == finish(2))
return;

elseif start(1) == finish(1) % horizontal path
next(1) = start(1);

if start(2) > finish(2) % move to the left
next(2) = start(2) - 1;
while next(2) ~ finish(2)

path = [path; next(1) next(2)];
next(2) = next(2) - 1;

end
path = [path; next(1) next(2)];

else % move to the right
next(2) = start(2) + 1;
while next(2) ~ finish(2)

path = [path; next(1) next(2)];
next(2) = next(2) + 1;

end
path = [path; next(1) next(2)];

end

elseif start(2) == finish(2)
next(2) = start(2);

% vertical path

if start(1) > finish(1) % move up
next(1) = start(1) - 1;
while next(1) ~= finish(1)

path = [path; next(1) next(2)];
next(1) = next(1) - 1;

end
path = [path; next(1) next(2)];

next(1) = start(1) + 1;
while next(1) ~= finish(1)

% move downelse
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path = [path; next(1) next(2)];
next(1) = next(1) + 1;

end
path = [path; next(1) next(2)];

end

elseif start(1) > finish(1)
if start(2) > finish(2) % up & left path

xdiff = start(1) - finish(1);
ydiff = start(2) - finish(2);

if xdiff == ydiff % move ul-diagonal
next(1) = start(1) - 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
next(1) = next(1) - 1;
next(2) = next(2) - 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif xdiff < ydiff % move ul-diagonal and left
numdiag = xdiff;
numstr = ydiff - xdiff;
total = ydiff;

if numdiag <= numstr % more left steps than ul-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1);
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(1) = next(1) - 1;
used = used + 1;

end
next(2) = next(2) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more ul-diagonal steps than left
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(1) = next(1) - 1;
end
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next(2) = next(2) - 1;
s = S + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end

elseif xdiff > ydiff % move ul-diagonal and up
numdiag = ydiff;
numstr = xdiff - ydiff;
total = xdiff;

if numdiag <= numstr % more up steps than ul-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2);
while (next(1) ~ finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(2) = next(2) - 1;
used = used + 1;

end
next(1) = next(1) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more ul-diagonal steps than up
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(2) = next(2) - 1;
end
next(1) = next(1) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end
end

elseif start(2) < finish(2) % up & right path
xdiff = start(1) - finish(1);
ydiff = finish(2) - start(2);

if xdiff == ydiff % move ur-diagonal
next(1) = start(1) - 1;
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) ~ finish(2))
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path = [path; next(1) next(2)];
next(1) = next(1) - 1;
next(2) = next(2) + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif xdiff < ydiff % move ur-diagonal and right
numdiag = xdiff;
numstr = ydiff - xdiff;
total = ydiff;

if numdiag <= numstr % more right steps than ur-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1);
next(2) = start(2) + 1;
while (next(1) ~ finish(1)) & (next(2) -= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(1) = next(1) - 1;
used = used + 1;

end
next(2) = next(2) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more ur-diagonal steps than right
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2) + 1;
while (next(1) ~ finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(1) = next(1) - 1;
end
next(2) = next(2) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end

elseif xdiff > ydiff % move ur-diagonal and up
numdiag = ydiff;
numstr = xdiff - ydiff;
total = xdiff;

if numdiag <= numstr % more up steps than ur-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
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next(1) = start(1) - 1;
next(2) = start(2);
while (next(1) ~ finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(2) = next(2) + 1;
used = used + 1;

end
next(1) = next(1) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more ur-diagonal steps than up
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(2) = next(2) + 1;
end
next(1) = next(1) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end
end

end

elseif start(1) < finish(1)
if start(2) > finish(2) % down & left path

xdiff = finish(1) - start(1);
ydiff = start(2) - finish(2);

if xdiff == ydiff % move dl-diagonal
next(1) = start(1) + 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
next(1) = next(1) + 1;
next(2) = next(2) - 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif xdiff < ydiff % move di-diagonal and left
numdiag = xdiff;
numstr = ydiff - xdiff;
total = ydiff;

if numdiag <= numstr % more left steps than dl-diagonal
ratio = floor(total/numdiag);
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used = 0;
s = 1;
next(1) = start(1);
next(2) = start(2) - 1;
while (next(1) ~ finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(1) = next(1) + 1;
used = used + 1;

end
next(2) = next(2) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more di-diagonal steps than left
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(1) = next(1) + 1;
end
next(2) = next(2) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end

elseif xdiff > ydiff % move di-diagonal and down
numdiag = ydiff;
numstr = xdiff - ydiff;
total = xdiff;

if numdiag <= numstr % more down steps than di-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2);
while (next(1) ~= finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(2) = next(2) - 1;
used = used + 1;

end
next(1) = next(1) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);
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elseif numdiag > numstr % more dl-diagonal steps than down
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(2) = next(2) - 1;
end
next(1) = next(1) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end
end

elseif start(2) < finish(2) % down & right path
xdiff = finish(1) - start(1);
ydiff = finish(2) - start(2);

if xdiff == ydiff % move dr-diagonal
next(1) = start(1) + 1;
next(2) = start(2) + 1;
while (next(1) ~ finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
next(1) = next(1) + 1;
next(2) = next(2) + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif xdiff < ydiff % move dr-diagonal and right
numdiag = xdiff;
numstr = ydiff - xdiff;
total = ydiff;

if numdiag <= numstr % more right steps than dr-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1);
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(1) = next(1) + 1;
used = used + 1;

end
next(2) = next(2) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);
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elseif numdiag > numstr % more dr-diagonal steps than right
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(1) = next(1) + 1;
end
next(2) = next(2) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end

elseif xdiff > ydiff % move dr-diagonal and down
numdiag = ydiff;
numstr = xdiff - ydiff;
total = xdiff;

if numdiag <= numstr % more down steps than dr-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2);
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(2) = next(2) + 1;
used = used + 1;

end
next(1) = next(1) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more dr-diagonal steps than down
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) -= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(2) = next(2) + 1;
end
next(1) = next(1) + 1;
s = s + 1;

end
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path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

% if the path crosses another edge, ignore it:
[p, whatever] = size(path);
for q = 5:p-5

value = m(path(q, 1), path(q, 2));
leftvalue = m(path(q, 1), path(q, 2)-1);
rightvalue = m(path(q, 1), path(q, 2)+1);
upvalue = m(path(q, 1)-i, path(q, 2));
downvalue = m(path(q, 1)+1, path(q, 2));
if (value == 1) | (leftvalue == 1) | (rightvalue == 1)

(value == 4) 1 (leftvalue == 4) | (rightvalue == 4) | (upvalue
return;

end
end

| (upvalue == 1) | (downvalue == 1)
== 4) | (downvalue == 4)

% check that the edge values of the points in the path do not vary too much:
thresh = 0.5;
for q = 1:p

vals(q) = edgevals(path(q, 1), path(q, 2));
end
valstd = std(vals);
nvalstd = valstd/mean(vals);

% if the average is above the threshold, link the path:
if nvalstd < thresh

newbranch = path(1, :);
newlength = 0;

for q = 1:p
if m(path(q, 1), path(q, 2)) ~ 2

m(path(q, 1), path(q, 2)) = 4;
end

if q > 1

end

newbranch = [newbranch path(q, :)];
newlength = newlength + 1;

end

newbranch = [newbranch path(p, :)];
newlength = newlength + 1;

end

branchnum = branchnum + 1;
branchlength(branchnum) = newlength;
branches(branchnum, 1:2*(branchlength(branchnum)+1)) = newbranch;

% gostraight.m

% Used to finish up a path by going straight, either horizontally or vertically, to the endpoint. % Called
from 'drawlink.m' and 'linepath.m'.
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function path = gostraight(next, finish, m, path)

if next(1) < finish(1)
while next(1) ~ finish(1)

next(1) = next(1) + 1;
if m(next(1), next(2)) -= 2

path = [path; next(1) next(2)];
end

end
elseif next(1) > finish(1)

while next(1) ~= finish(1)
next(1) = next(1) - 1;
if m(next(1), next(2)) ~= 2

path = [path; next(1) next(2)];
end

end
elseif next(2) < finish(2)

while next(2) ~ finish(2)
next(2) = next(2) + 1;
if m(next(1), next(2)) ~= 2

path = [path; next(1) next(2)];
end

end
elseif next(2) > finish(2)

while next(2) ~ finish(2)
next(2) = next(2) - 1;
if m(next(1), next(2)) ~ 2

path = [path; next(1) next(2)];
end

end
end

% dirdiff.m

% Finds the difference between two step directions, given in how many shifts there are between % them -
the best is if they are pointing in the exact opposite direction. Called from % 'checklink.m'.

function diff = dirdiff(dirl, dir2);

if dir1 == 1
if dir2 == 1

diff = 4;
elseif dir2 == 2

diff = 3;
elseif dir2 == 3

diff = 2;
elseif dir2 == 4

diff = 3;
elseif dir2 == 5

diff = 1;
elseif dir2 == 6

diff = 2;
elseif dir2 == 7

diff = 1;
elseif dir2 == 8

diff = 0;
end

elseif dirl == 2
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if dir2 == 1
diff = 3;

elseif dir2 == 2
diff = 4;

elseif dir2 == 3
diff = 3;

elseif dir2 == 4
diff = 2;

elseif dir2 == 5
diff = 2;

elseif dir2 == 6
diff = 1;

elseif dir2 == 7
diff = 0;

elseif dir2 == 8
diff = 1;

end
elseif dir1 == 3

if dir2 == 1
diff = 2;

elseif dir2 == 2
diff = 3;

elseif dir2 == 3
diff = 4;

elseif dir2 == 4
diff = 1;

elseif dir2 == 5
diff = 3;

elseif dir2 == 6
diff = 0;

elseif dir2 == 7
diff = 1;

elseif dir2 == 8
diff = 2;

end
elseif dir1 == 4

if dir2 == 1
diff = 3;

elseif dir2 == 2
diff = 2;

elseif dir2 == 3
diff = 1;

elseif dir2 == 4
diff = 4;

elseif dir2 == 5
diff = 0;

elseif dir2 == 6
diff = 3;

elseif dir2 == 7
diff = 2;

elseif dir2 == 8
diff = 1;

end
elseif dir1 == 5

if dir2 == 1
diff = 1;

elseif dir2 == 2
diff = 2;

elseif dir2 == 3
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diff = 3;
elseif dir2 == 4

diff = 0;
elseif dir2 == 5

diff = 4;
elseif dir2 == 6

diff = 1;
elseif dir2 == 7

diff = 2;
elseif dir2 == 8

diff = 3;
end

elseif dir1 == 6
if dir2 == 1

diff = 2;
elseif dir2 == 2

diff = 1;
elseif dir2 == 3

diff = 0;
elseif dir2 == 4

diff = 3;
elseif dir2 == 5

diff = 1;
elseif dir2 == 6

diff = 4;
elseif dir2 == 7

diff = 3;
elseif dir2 == 8

diff = 2;
end

elseif dirl == 7
if dir2 == 1

diff = 1;
elseif dir2 == 2

diff = 0;
elseif dir2 == 3

diff = 1;
elseif dir2 == 4

diff = 2;
elseif dir2 == 5

diff = 2;
elseif dir2 == 6

diff = 3;
elseif dir2 == 7

diff = 4;
elseif dir2 == 8

diff = 3;
end

elseif dir1 == 8
if dir2 == 1

diff = 0;
elseif dir2 == 2

diff = 1;
elseif dir2 == 3

diff = 2;
elseif dir2 == 4

diff = 1;
elseif dir2 == 5

diff = 3;
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elseif dir2 == 6
diff = 2;

elseif dir2 == 7
diff = 3;

elseif dir2 == 8
diff = 4;

end
end

% linepairs.m

% Searches to the left and right of all branches for other roughly parallel branches. Draws points % in
between paired branches. Called from 'mainnowave.m'.

function [pairs, newedge] = linepairs(edge, branches, branchlength, dirsize, minwidth, maxwidth, angtol)

[branchnum, whatever] = size(branches);
pairs = [0 0 0];
newedge = edge;
dirsize = 4;

for i = 1:branchnum
length = branchlength(i) + 1;

forj = 1:branchlength(i) + 1
start = branches(i, 2*j-1:2*j);

if j < (dirsize + 1)
sdirendl = branches(i, 1:2);
sdirend2 = branches(i, 2*(j+dirsize)-1:2*(j+dirsize));

elseif j > branchlength(i)-(dirsize-1)
sdirendl = branches(i, 2*(j-dirsize)-1:2*(j-dirsize));
sdirend2 = branches(i, 2*(branchlength(i)+1)-1:2*(branchlength(i)+1));

else
sdirendl = branches(i, 2*(j-dirsize)-1:2*(-dirsize));
sdirend2 = branches(i, 2*U+dirsize)-1:2*(j+dirsize));

end

sdir = (atan((sdirend1(1)-sdirend2(1))/(sdirend1(2) sdirend2(2))))*(180/pi) + 90;

if (sdir <= 68) & (sdir > 22)
leftdir = 3;
rightdir = 6;

elseif (sdir <= 22) & (sdir > -23)
leftdir = 2;
rightdir = 7;

elseif (sdir <= -23) & (sdir > -68)
leftdir = 1;
rightdir = 8;

else
leftdir = 4;
rightdir = 5;

end

[pairs, newedge] = pairup(start, leftdir, sdir, i, j, dirsize, minwidth, maxwidth, angtol,
branches, branchlength, edge, pairs, newedge);

[pairs, newedge] = pairup(start, rightdir, sdir, i, j, dirsize, minwidth, maxwidth, angtol,
branches, branchlength, edge, pairs, newedge);
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end

% pairup.m

% Called from 'linepairs.m'.

function [pairs, newedge] = pairup(start, stepdir, sdir, i, J, dirsize, minwidth, maxwidth, angtol, branches,
branchlength, edge, pairs, newedge)

[branchnum, whatever] = size(branches);

a = 0;
begin = start;
while a == 0

[a, finish] = takestep(begin, stepdir, edge);

[la, Ifinish] = takestep(finish, 4, edge);
if la == 1

a = 1;
finish = Ifinish;

end

[ra, rfinish] = takestep(finish, 5, edge);
if ra == 1

a = 1;
finish = rfinish;

end

end

if a == I

begin = finish;

diff = sqrt((start(1) - finish(1))A2 + (start(2) - finish(2))^2);

if (diff >= minwidth) & (diff <= maxwidth)
targetx = finish(1);
targety = finish(2);
bn = i;
pn = J;
out1 = 0;
for s = 1:branchnum

for t = 1:branchlength(s)+1
if (branches(s, 2*t-1) == targetx) & (branches(s, 2*t) == targety)

bn = s;
pn = t;
out1 = 1;
break

end
end
if out1 == 1

break
end

end

if pn < dirsize + 1
fdirendl = branches(bn, 1:2);
fdirend2 = branches(bn, 2*(pn+dirsize)-1:2*(pn+dirsize));

end
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elseif pn > branchlength(bn)-(dirsize-1)
fdirendl = branches(bn, 2*(pn-dirsize)-1:2*(pn-dirsize));
fdirend2 = branches(bn, 2*(branchlength(bn)+1)-1:2*(branchlength(bn)+1));

else
fdirend1 = branches(bn, 2*(pn-dirsize)-1:2*(pn-dirsize));
fdirend2 = branches(bn, 2*(pn+dirsize)-1 :2*(pn+dirsize));

end
fdir = (atan((fdirend1(1)-fdirend2(1))/(fdirend1(2)-fdirend2(2))))*(180/pi) + 90;

v = abs(sdir - fdir);
if v > 90

v = abs((sdir + 180) - fdir);
end
if v > 90

v = abs(sdir - (fdir + 180));
end

if v < angtol
[pr, whatever] = size(pairs);
out2 = 0;
for s = 1:pr

x = pairs(s, 1);
y = pairs(s, 2);
if [x y] == [i bn]

pairs(s, 3)
out2 = 1;

end

end
end

= pairs(s, 3) + 1;

end
if out2 == 0

pairs = [pairs; i bn 1];
end

path = linepath(start, finish, newedge);
[pth, whatever] = size(path);
midpath = ceil(pth/2);
newedge(path(midpath, 1), path(midpath, 2)) = 2;

% linepath.m

% Similar to 'drawlink.m' but only returns the path of the line. Called from 'pairup.m'.

function path = linepath(start, finish, m)

path = start;

if (start(1) == finish(1)) & (start(2) == finish(2))
return;

elseif start(1) == finish(1) % horizontal path
next(1) = start(1);

if start(2) > finish(2) % move to the left
next(2) = start(2) - 1;
while next(2) ~ finish(2)

path = [path; next(1) next(2)];
next(2) = next(2) - 1;
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end
path = [path; next(1) next(2)];

else % move to the right
next(2) = start(2) + 1;
while next(2) ~= finish(2)

path = [path; next(1) next(2)];
next(2) = next(2) + 1;

end
path = [path; next(1) next(2)];

end

elseif start(2) == finish(2) % vertical path
next(2) = start(2);

if start(1) > finish(1) % move up
next(1) = start(1) - 1;
while next(1) ~= finish(1)

path = [path; next(1) next(2)];
next(1) = next(1) - 1;

end
path = [path; next(1) next(2)];

else % move down
next(1) = start(1) + 1;
while next(1) ~= finish(1)

path = [path; next(1) next(2)];
next(1) = next(1) + 1;

end
path = [path; next(1) next(2)];

end

elseif start(1) > finish(1)
if start(2) > finish(2) % up & left path

xdiff = start(1) - finish(1);
ydiff = start(2) - finish(2);

if xdiff == ydiff % move ul-diagonal
next(1) = start(1) - 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) -= finish(2))

path = [path; next(1) next(2)];
next(1) = next(1) - 1;
next(2) = next(2) - 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif xdiff < ydiff % move ul-diagonal and left
numdiag = xdiff;
numstr = ydiff - xdiff;
total = ydiff;

if numdiag <= numstr % more left steps than ul-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
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next(1) = start(1);
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(1) = next(1) - 1;
used = used + 1;

end
next(2) = next(2) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more ul-diagonal steps than left
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(1) = next(1) - 1;
end
next(2) = next(2) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end

elseif xdiff > ydiff % move ul-diagonal and up
numdiag = ydiff;
numstr = xdiff - ydiff;
total = xdiff;

if numdiag <= numstr % more up steps than ul-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2);
while (next(1) ~= finish(1)) & (next(2) -= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(2) = next(2) - 1;
used = used + 1;

end
next(1) = next(1) - 1;
s = S + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more ul-diagonal steps than up
ratio = floor(total/numstr);
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used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(2) = next(2) - 1;
end
next(1) = next(1) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end
end

elseif start(2) < finish(2) % up & right path
xdiff = start(1) - finish(1);
ydiff = finish(2) - start(2);

if xdiff == ydiff % move ur-diagonal
next(1) = start(1) - 1;
next(2) = start(2) + 1;
while (next(1) ~ finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
next(1) = next(1) - 1;
next(2) = next(2) + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif xdiff < ydiff % move ur-diagonal and right
numdiag = xdiff;
numstr = ydiff - xdiff;
total = ydiff;

if numdiag <= numstr % more right steps than ur-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1);
next(2) = start(2) + 1;
while (next(1) = finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(1) = next(1) - 1;
used = used + 1;

end
next(2) = next(2) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more ur-diagonal steps than right
ratio = floor(total/numstr);
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used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(1) = next(1) - 1;
end
next(2) = next(2) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end

elseif xdiff > ydiff % move ur-diagonal and up
numdiag = ydiff;
numstr = xdiff - ydiff;
total = xdiff;

if numdiag <= numstr % more up steps than ur-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2);
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(2) = next(2) + 1;
used = used + 1;

end
next(1) = next(1) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more ur-diagonal steps than up
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) - 1;
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(2) = next(2) + 1;
end
next(1) = next(1) - 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);
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end
end

end

elseif start(1) < finish(1)
if start(2) > finish(2) % down & left path

xdiff = finish(1) - start(1);
ydiff = start(2) - finish(2);

if xdiff == ydiff % move dl-diagonal
next(1) = start(1) + 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
next(1) = next(1) + 1;
next(2) = next(2) - 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif xdiff < ydiff % move dl-diagonal and left
numdiag = xdiff;
numstr = ydiff - xdiff;
total = ydiff;

if numdiag <= numstr % more left steps than dl-diagonal
ratio = floor(total/numdiag);
used = 0;
S = 1;
next(1) = start(1);
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(1) = next(1) + 1;
used = used + 1;

end
next(2) = next(2) - 1;
s = S + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more di-diagonal steps than left
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2) - 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(1) = next(1) + 1;
end
next(2) = next(2) - 1;
s = s + 1;

end
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path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end

elseif xdiff > ydiff % move di-diagonal and down
numdiag = ydiff;

numstr = xdiff - ydiff;
total = xdiff;

if numdiag <= numstr % more down steps than di-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2);
while (next(1) ~ finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(2) = next(2) - 1;
used = used + 1;

end
next(1) = next(1) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more dl-diagonal steps than down
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2) - 1;
while (next(1) ~ finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(2) = next(2) - 1;
end
next(1) = next(1) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end
end

elseif start(2) < finish(2) % down & right path
xdiff = finish(1) - start(1);
ydiff = finish(2) - start(2);

if xdiff == ydiff % move dr-diagonal
next(1) = start(1) + 1;
next(2) = start(2) + 1;
while (next(1) ~ finish(1)) & (next(2) ~ finish(2))

path = [path; next(1) next(2)];
next(1) = next(1) + 1;
next(2) = next(2) + 1;
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end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif xdiff < ydiff % move dr-diagonal and right
numdiag = xdiff;
numstr = ydiff - xdiff;
total = ydiff;

if numdiag <= numstr % more right steps than dr-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1);
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) -= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(1) = next(1) + 1;
used = used + 1;

end
next(2) = next(2) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more dr-diagonal steps than right
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(1) = next(1) + 1;
end
next(2) = next(2) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end

elseif xdiff > ydiff % move dr-diagonal and down
numdiag = ydiff;
numstr = xdiff - ydiff;
total = xdiff;

if numdiag <= numstr % more down steps than dr-diagonal
ratio = floor(total/numdiag);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2);
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))
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path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numdiag)

next(2) = next(2) + 1;
used = used + 1;

end
next(1) = next(1) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

elseif numdiag > numstr % more dr-diagonal steps than down
ratio = floor(total/numstr);
used = 0;
s = 1;
next(1) = start(1) + 1;
next(2) = start(2) + 1;
while (next(1) ~= finish(1)) & (next(2) ~= finish(2))

path = [path; next(1) next(2)];
if (mod(s, ratio) == 0) & (used < numstr)

used = used + 1;
else

next(2) = next(2) + 1;
end
next(1) = next(1) + 1;
s = s + 1;

end
path = [path; next(1) next(2)];
path = gostraight(next, finish, m, path);

end
end

end
end

% mainwave.m

% Serves as the main program when wavelets are not used.

% Get the aerial image:
getimage

% Get values from user that will be inputted into functions later:
dlevel = input('What decomposition level should be used? ');
glevel = input('What block size for grayscale variation? ');

numdirs = input('How many directions should be polled to determine primary and secondary directions? ');
tooshort = input('How short should the shortest edge kept be? Any edge shorter than this will be deleted
');
maxgap = input('How long should the search area be? ');
maxsoc = input('How wide should the search area be? ');

dirsize = floor((input('How long an edge piece should be used to determine the local direction? '))/2);
minwidth = input('What is the minimum width of the roads? ');
maxwidth = input('What is the maximum width of the roads? ');
angtol = input('What is the maximum difference in direction for two edges to be paired? ');

% Get angles and edge values for each pixel:
[ang, edgevals] = getdirections(data);

157



% Pick the edge points and thin:
thinedge = waveedgepts(data, dlevel, glevel);

% First link, then pair:
[linkedge, branches, branchlength] = link(thinedge, ang, edgevals, numdirs, tooshort, maxgap, maxsoc);
[pairs, pairedge] = linepairs(linkedge, branches, branchlength, dirsize, minwidth, maxwidth, angtol);

% waveedgepts.m

% Finds the edge points of an image using the Mallat-Zhong code (local maxima) combined with % gray
scale variation. 'dlevel' is the level of decomposition used to get the edge points - must % be 1, 2, 3, 4, or
5. 'glevel' is the size of the neighborhood used in grayvar.m - must be odd. % Called from 'mainwave.m'

function edge = waveedgepts(data, dlevel, glevel)

h = [0.125 0.375 0.375 0.125];
g = [-2 2];

= [1.50 1.12 1.03 1.01 1.00];

[w1t, w12, si] = doconvs(data, h, g, I, 1);
[ml, at] = modphase(w11, w12);

if dlevel == 1
Im = localmax4(m1, al);

else
[w21, w22, s2] = doconvs(sl, h, g, I, 2);
[m2, a2] = modphase(w21, w22);

if dlevel == 2
Im = localmax4(m2, a2);

else
[w31, w32, s3] = doconvs(s2, h, g, I, 3);
[m3, a3] = modphase(w31, w32);

if dlevel == 3
Im = localmax4(m3, a3);

else
[w41, w42, s4] = doconvs(s3, h, g, I, 4);
[m4, a4] = modphase(w41, w42);

if dlevel == 4
Im = localmax4(m4, a4);

else
[w51, w52, s5] = doconvs(s4, h, g, I, 5);
[m5, a5] = modphase(w51, w52);

Im = localmax4(m5, a5);
end

end
end

end

tgv = grayvar(data, glevel);

[x, y] = size(Im);
edge = zeros(x, y);
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for i = 2:x-1
for j = 2 :y-1

if Im(i, j) == 1
tmp = tgv(i-1:i+1, j-1:j+l);
yon = 0;

for s = 1:3
for t = 1:3

if tmp(s, t) == 0
yon = 1;

end
end
end

if yon == 1
edge(i, j) = 1;

end
end

end
end

% doconvs.m

% This takes the smoothed image at level j and does the convolutions so get the smoothed % image,
the horizontal edges, and the vertical edges at level j+1. Called from %'waveedgepts.m'.

function [w1, w2, snew] = doconvs(sold, h, g, I, level)

[n, m] = size(sold);
lh = length(h);
Ig = length(g);

w1 = zeros(n, m+lg-1);
w2 = zeros(n+lg-1, m);
smid = zeros(n, m+lh-1);
snew = zeros(n+lh-1, m+lh-1);

for i = 1:n
w1(i, :) = (1/l(level))*conv2(sold(i, :), g);
smid(i, :) = conv2(sold(i, :), h);

end

for i = 1:m
w2(:, i) = (1/l(level))*conv2(sold(:, i), g');

end

for i = 1:(m+lh-1)
snew(:, i) = conv2(smid(:, i), h');

end

w1 = w1(1:500, 1:500);
w2 = w2(1:500, 1:500);
snew = snew(2:501, 2:501);

% modphase.m

% Finds the modulus image and the phase image at level j. Called from 'waveedgepts.m'.
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function [m, a] = modphase(w1, w2)

m = sqrt(abs(wl).^2 + abs(w2).A2);
a = angle(wl + i*w2);

% localmax4.m

% Finds the local maximums in the modulus images. Called from 'waveedgepts.m'.

function Im = localmax4(m, a)

H = 1;
D1 = 2;
V = 3;
D2 = 4;

[x, y] = size(a);
Im = zeros(x, y);

for i = 5:x-4
for j = 5:y-4

if ((a(i, j) <= 7*pi/8) & (a(i, j) > 5*pi/8))
% diagonal 1
if ((m(i, j) > m(i+1, j-1)) & (m(i, j) > mi-1, j+1)) & (m(i, j) > m(i+2, j-2)) & (m(i, j) >

m(i-2, j+2)) & (m(i, j) > m(i+3, j-3)) & (m(i, j) > m(i-3, j+3)) & (m(i, j) > m(i+4, j-4)) & (m(i, j) > m(i-4,
j+4)))

Im(i, j) = 1;
end

elseif ((a(i, j) <= 5*pi/8) & (a(i, j) > 3*pi/8))
% horizontal
if ((m(i, j) > m(i-1, j)) & (m(i, j) > m(i+1, j)) & (m(i, j) > m(i-2, j)) & (m(i, j) > m(i+2, j))

& (m(i, j) > m(i-3, j)) & (m(i, j) > m(i+3, j)) & (m(i, j) > m(i-4, j)) & (m(i, j) > m(i+4, j)))
Im(i, j) = 1;

end
elseif ((a(i, j) <= 3*pi/8) & (a(i, j) > pi/8))

% diagonal 2
if ((m(i, j) > m(i-1, j-1)) & (m(i, j) > m(i+1, j+1)) & (m(i, j) > m(i-2, j-2)) & (m(i, j) >

m(i+2, j+2)) & (m(i, j) > m(i-3, j-3)) & (m(i, j) > m(i+3, j+3)) & (m(i, j) > m(i-4, j-4)) & (m(i, j) > m(i+4,
j+4)))

Imi, j) = 1;
end

elseif ((a(i, j) <= -pi/8) & (a(i, j) > -3*pi/8))
% diagonal 1
if ((m(i, j) > m(i+1, j-1)) & (m(i, j) > m(i-1, j+1)) & (m(i, j) > m(i+2, j-2)) & (m(i, j) >

m(i-2, j+2)) & (m(i, j) > m(i+3, j-3)) & (m(i, j) > m(i-3, j+3)) & (m(i, j) > m(i+4, j-4)) & (m(i, j) > m(i-4,
j+4)))

lIm(i, j) = 1;
end

elseif ((a(i, j) <= -3*pi/8) & (a(i, j) > -5*pi/8))
% horizontal
if ((m(i, j) > m(i-1, j)) & (m(i, j) > m(i+1, j)) & (m(i, j) > m(i-2, j)) & (m(i, j) > m(i+2, j))

& (m(i, j) > m(i-3, j)) & (m(i, j) > m(i+3, j)) & (m(i, j) > m(i-4, j)) & (m(i, j) > m(i+4, j)))
lm(i,j) = 1;

end
elseif ((a(i, j) <= -5*pi/8) & (a(i, j) > -7*pi/8))

% diagonal 2
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if ((m(i, j) > m(i-1, j-1)) & (m(i, j) > m(i+1, j+1)) & (m(i, j) > m(i-2, j-2)) & (m(i, j) >
m(i+2, j+2)) & (m(i, j) > m(i-3, j-3)) & (m(i, j) > m(i+3, j+3)) & (m(i, j) > m(i-4, j-4)) & (m(i, j) > m(i+4,
j+4)))

lm(i, j) = 1;
end

else
% vertical
if ((m(i, j) > m(i, j-1)) & (m(i, j) > m(i, j+1)) & (m(i, j) > m(i, j-2)) & (m(i, j) > m(i, j+2))

& (m(i, j) > m(i, j-3)) & (m(i, j) > m(i, j+3)) & (m(i, j) > m(i, j-4)) & (m(i, j) > m(i, j+4)))
lm(i, j) = 1;

end
end

end
end

% grayvar.m

% Does something with the variance of grayscale levels in an image 'm'. 'w' is the size of the % block
used. Called from 'waveedgepts.m'.

function tgv = grayvar(m, w)

[x, y] = size(m);
gv = zeros(x, y);

hw = (w - 1)/2;

for i = (1+hw):(x-hw)
for j = (1+hw):(y-hw)

Im = m(i-hw:i+hw, j-hw:j+hw);
mel = mean(mean(Im));
lgv = 0;
for s = 1:w
for t = 1:w

lgv = lgv + (mel - Im(s, t))A2;

end
end
gv(i, j) = lgv;

end
end

me2 = mean(mean(gv));
ngv = gv/me2;

tgv = zeros(size(ngv));

for i = 1:x
for j = 1:y

if ngv(i, j) > 1
tgv(i, j) = 0;

else
tgv(i, j) = 1;

end
end
end
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