
Mechanisms for Efficient, Protected Messaging

by

Whay Sing Lee

S.B. Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1992

S.M. Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1994

Submitted to the Department of Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
February 1999

0?1999 Massachusetts Institute of Technology.
All rights reserved.

Signature of Author

Department of Electrical Engineering and Computer Science
January 20, 1999

I

Certified by'

Professor of
Dr. William J. Dally

Electrical Engineering and Computer Science
Thesis Supervisor

(
Accepted by

m.Arthur C. Smith
Chairman, Committee on Graduate Students
Electrical Engineering and Computer Science

2

Mechanisms for Efficient, Protected Messaging
by

Whay Sing Lee

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of
the requirements for the Degree of Doctor of Philosophy in

Electrical Engineering and Computer Science

Abstract

Fine-grain parallelism is the key to high performance muticomputing. By partitioning
problems into small sub-tasks - grain-sizes as small as 70 cycles have been found in common
benchmark programs - fine-grain parallelization accelerates existing applications beyond
current limits, and promises efficient exploitation of multicomputers consisting of thousands
of processors. However, contemporary multiprocessor architectures are not equipped to
exploit parallelism at this level, due to high communication and synchronization costs that
must be amortized over a large grain size. Operating system-managed message interfaces
account for most of the high inefficiency in traditional systems. Conversely, in contemporary
user-level network interfaces, fast hardware is defeated by software layers that are needed
to provide safeguards against starvation and protection violation.

This thesis addresses both the efficiency and robustness issues in the message interface.
I propose a design which features a processor-register mapped, atomic-injection, streaming-
extraction message interface where handlers are dispatched in a dedicated hardware thread
slot. Compared to a conventional interrupt-driven, memory-buffered interface, this design
yields an order-of-magnitude performance improvement - of which 60% is due to the fast
dispatch mechanism while 30% is due to mapping and atomicity choices. Hardware-support
for address translation accounts for the remaining 10% overhead reduction.

Protection and starvation avoidance are achieved through bounded-time message injec-
tion from dedicated assembly buffers, and by using guarded pointers to regulate the data
and remote operations accessible to each user thread - only non-blocking trusted handlers
that honor the protection constrains are able to access the network port. With a flush
mechanism, the interface can quickly return to a known-good state from unexpected error
conditions, permitting flexible user-optimized message handlers, subject to simple restric-
tions that facilitate the certification of trusted properties by the compiler.

An analytical model is also developed to relate performance to the latency and occupancy
of message operations, and application grain-size. Performance is found to be extremely
sensitive to occupancy for a sample application with ~40 cycles thread length, but less so
to latency, due to masking by slack. Results suggest that occupancy < 50 processor cycles

and latency < 200 cycles are critical for fine-grain computing. At < 10 cycles null-message
SEND occupancy, the M-Machine interface enables even a moderately-sized program (16K-

Cell LIFE) to achieve > 50% efficiency while employing thousands of processors, and to

reach a speedup of 5000 times.

Thesis Supervisor: Dr. William J. Dally
Title: Professor of Electrical Engineering and Computer Science

4

Acknowledgments

I would like to thank Professor William Dally for being a most excellent mentor.
His guidance is what made this work possible. It has been a most enriching and
fulfilling experience for me, and I am grateful for the patience and understanding
that he has had for me in the process. My appreciation also goes to Tom Knight
and Anant Agarwal for their invaluable feedback towards this work, and to Charles
Leiserson for his insights and advice over the years. For their constant encouragement,
assistance and stimulating discussions, I would like to thank my esteemed colleagues
in the M-Machine project, Steve Keckler, Andrew Chang, Nick Carter and Marco
Fillo, and also other fellow members of the CVA group, especially Scoot Rixner. And
to my family, I owe a debt of gratitude for their unconditional support during all this
time.

The research in this thesis has been supported by the Defense Advanced Research
Projects Agency monitored by the Air Force Electronic Systems Division under con-
tract F19628-92-C-0045.

6

Contents

1 Introduction

1.1 Motivation. .

1.2 A pproach .

1.3 Thesis Overview. .

1.4 Contributions .

2 Background

2.1 Past and Present Architectures .

2.2 Related Work .

3 M-Machine Messaging Mechanisms

3.1 The MIT M-Machine

3.1.1 The MAP Chip

3.2 M-Machine Message Interface Architecture

3.2.1 Injection

3.2.2 Extraction

3.2.3 Dispatch

3.3 More SEND Instructions

3.3.1 The GTLB

3.3.2 Flow Control

3.3.3 In-Order Delivery

4 Microarchitecture and Implementation

4.1 Overview

7

15

16

17

20

21

23

24

29

31

32

33

35

35

37

37

40

41

43

44

47

48

4.2 Injection Interface

4.2.1 Netout Controller .

4.2.2 The GTLB module

4.2.3 Event Generation

4.2.4 Message Header .

4.3 Extraction Interface

4.3.1 Parity Error

4.3.2 Decoded Message F

4.3.3 Netin Controller . .

4.4 Network Router

4.4.1 Routing Decisions .

orm

.

.

.

at

.

.

.

.4.4.2 Resource Management

4.4.3 Mesochronous Router-to-Router Interface.

5 Protection and Starvation Avoidance

5.1 Starvation Avoidance

5.2 Protection .

5.2.1 Guarded Pointers

5.2.2 The GTLB and Virtually Addressed Messages

5.2.3 Trusted Handlers

5.2.4 Malformed Messages

5.2.5 Limitation .

5.3 Alternatives .

5.4 Summary .

6 Network Interface Primitives and Communication

6.1 Message Interface Models

6.2 Benchmark Programs

6.3 Experiments .

6.4 R esults .

6.5 Impact of Individual Design Choices

8

50

52

52

54

55

56

58

59

59

60

62

64

66

70

71

75

76

77

78

81

82

82

84

86

87

92

93

94

96

)verhead

6.5.1 Interface Mapping . 96

6.5.2 Message Atomicity . 100

6.5.3 Address Translation Facility 101

6.5.4 Dispatch Mechanisms . 103

6.6 Combined Effect of MM Mechanisms 106

6.7 Summary . 108

7 Communication Overhead and Fine Grain Parallelization 109

7.1 Overhead and Performance . 112

7.1.1 Slack and Latency . 113

7.1.2 Message Traffic and Occupancy 116

7.1.3 Grain Size, Slack, and Message Traffic 117

7.2 A Sample Application . 118

7.2.1 Constructing the Model . 120

7.2.2 Experimental Results . 122

7.3 Sensitivity Analysis . 126

7.4 Conclusion . 130

8 Conclusions 132

8.1 Fine Grain Computing . 133

8.2 Communication Overhead . 135

8.3 The M-Machine Message System . 137

8.4 Future Research . 139

8.5 Im pact . 141

9

List of Figures

1-1 Fine Grain Parallelism Exists

2-1 Past and Present Multicomputers . . .

3-1

3-2

3-3

3-4

3-5

3-6

3-7

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

Multithreaded, Loosely-Couple Clusters . .

Exploiting All Levels of Parallelism

M AP Chip

M-Machine Message Interfaces

A Rectangular Region of Nodes Defined by

GTLB Translation

Virtual Channels

MAP Chip Prototype

Network Interface Units

M-Machine Network Router

Network Output Unit

GTLB Data Path

Message Header Format

Network Input Unit

One Half of a Dimension Module in

a GTLB Entry

the Router Core

Router Timing for Straight-Through Traffic

Vacancy Counter and Free Flag

Mesochronous Interface

Phase Difference Between LCLK and RCLK

10

16

25

32

33

34

36

42

43

45

. 47

. 48

. 50

. 51

53

56

57

61

63

65

66

67

4-13 Selecting Between QD and SD Samples

4-14 Unreliable sqclk Does Not Affect DO .

Conventional Message Interfaces

"Bounded Time Lease" Allocation

M essage Handler .

Guarded Pointer .

Messaging Primitives Design Space

Injection Mechanisms: End-to-End Latency

Extraction Mechanisms: End-to-End Latency

Injection Mechanisms: Processor Occupancy

Extraction Mechanisms: Processor Occupancy

Latency Components in RPC Message Injection . . .

GTLB vs Software Address Translation : End-to-End

5-1

5-2

5-3

5-4

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8 GTLB vs Software Address Translation : Processor Occupancy

PING: Latency Components in Message Dispatch . . .

Dispatch Mechanisms: End-to-End Latency

Incrementally Enhanced (Memory-Mapped) Interfaces .

Incrementally Enhanced (Register-Mapped) Interfaces

Communication Overhead

Slack in Tightly Synchronized Applications

Slip in Loosely Synchronized Applications

Pipelined Applications

Supposed Elastic Zone

M essage Bundling .

Message Bundling and Slack

16-Cell Game of LIFE

64-Cell LIFE: Distribution of Cells onto 4 Processors

Fine-Grain Parallelization of LIFE

LIFE6 4: Runtime vs Latency

11

68

69

Latency

. 72

. 74

. 75

. 77

. 88

. 97

. 97

. 99

. 99

. 100

. . . 102

6-9

6-10

6-11

6-12

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-11

102

104

105

106

107

. . . . 112

. . . . 113

. . . . 114

. . . . 115

. . . . 116

- - - - 117

118

. . . . 118

. . . . 120

. . . . 121

123

7-12 LIFE6 4 : Speedup . 124

7-13 LIFE6 4 : Runtime vs Occupancy . 125

7-14 Overhead Limits Performance . 127

7-15 Overhead Limits Speedup . 128

7-16 Overhead Limits Utility of Massive Multicomputing 129

7-17 Overhead Limits Efficiency . 129

8-1 M-Machine, Relative to Past and Present Multicomputers 133

8-2 Fine Grain Performance and Communication Overhead 134

8-3 Primitive Mechanisms Design Space 136

8-4 Microbenchmark Results - some labels omitted to reduce clutter . . . 136

8-5 M-Machine Message Interfaces . 138

12

List of Tables

2.1 Round Trip Communication Cost in Past and Present Multicomputers 26

3.1 SEND Instructions . 40

6.1 Basic Network Interface Models . 90

6.2 Incrementally-Enhanced Models (Memory-Mapped) 91

6.3 Incrementally-Enhanced Models (Register-Mapped) 91

6.4 Micro Benchmark Results . 95

13

14

Chapter 1

Introduction

This thesis develops a very low overhead multicomputer messaging system that makes

no compromise on robustness. The design targets architectures that require an effi-

cient communication system for high performance computing through the exploitation

of fine-grain parallelism. It also recognizes that any software workaround needed to

circumvent starvation and protection problems overlooked in the underlying archi-

tecture greatly impedes efficiency. The system thus minimizes latency and processor

occupancy 1 while specifically preventing concurrently-executing user-level programs

from accessing unauthorized domains or denying service to one another.

Efficiency is achieved through a collection of simple, complementary user-level

mechanisms. Starvation by way of resource monopolization is prevented with a

bounded time lease allocation scheme, while protection is accomplished through a

lightweight capability system, using guarded pointers. To understand the tradeoffs,

the thesis also quantifies the overhead due to each primitive design choice, and de-

velops a LOG model - that relates performance to Latency, Occupancy and Grain

size - for measuring the impact of communication overhead on large scale, fine-grain

parallel computing.

The thesis is focused on the interface between user-level programs and the com-

munication system hardware. The multithreaded, multi-ALU MIT M-Machine [1] is

'Processor occupancy refers to the amount of productive computation displaced by message-

related operations.

15

used as the experimental platform for this study. In the resulting M-Machine system,

only five cycles of processor occupancy are consumed in sending a null message. It

thus demonstrates that a cost-effective design with occupancy < 50 processor cycles

and latency < 200 cycles - which the LOG model analysis shows to be critical for

fine-grain parallelization, at least in the LIFE program - is indeed practical.

1.1 Motivation

1000-

a 100-

Courtesy of Steve Keckler
10 - I . .'l. .,, .

4 10 16 32 64100 1000 2744
Problem Size

-- EAR (Cochlea Simulation)
- FFT (Fast-Fourier Transform)

CG (Conjugate Gradient)
EM3D (Electromagnetic Simulation)

-o-- MG-L (Multigrid, distributed inner-loop computation)
- -o- MG-E (Multigrid, concurrent inner-loop interations)

Figure 1-1: Fine Grain Parallelism Exists

Exploitation of fine-grain parallelism is the key to high performance computing,

while protection is a basic requirement in many of today's applications. Rather

than growing the problem sizes to amortize the large overhead, fine-grain computing

promises faster and more detailed solutions to existing, fixed-size problems. This

ability to extract performance at small granularities is in turn central to the success

of large-scale multicomputing, which is fueled by the growth in VLSI density and

16

chip size, and the emergence of affordable integrated processor components [2, 3, 4,

5, 6, 7]. Such systems would not be economically viable if limited to exotic, huge-size

problems.

Few existing architectures are able to take advantage of fine-grain parallelism, al-

though a recent study [8] shows that it is readily available even in common benchmark

programs. Figure 1-1 (reproduced from pp. 11 3 [8], courtesy of Stephen Keckler) for

example, shows that grain sizes as small as 70 cycles are accessible by parallelizing

the applications at the inner-loop level. Nonetheless, most existing machines, bur-

dened by communication overhead that ranges from many tens to many thousands

of processor cycles, are too inefficient to take advantage of parallelism at this level.

The few that are "lean-and-mean", such as [9, 10], lack robustness and lose their effi-

ciency when software layers are used as a workaround. To effectively exploit fine-grain

parallelism, an efficient and robust communication architecture is necessary.

1.2 Approach

This thesis focuses on the message interface. Conventional message interfaces - that

take tens to thousands of cycles to send a message - present a bottleneck in the

advent of advanced processors that are capable of generating multiple results on-chip

every cycle (e.g. [1, 2, 3]), and high-speed signaling pads [11, 12] that are able to

carry that data off-chip quickly. In terms of robustness, the message interface is also

the weakest link in the communication system. As user programs share the resources

such as message buffers, care must be taken to shield them from one another. The

challenge is to minimize overhead, without compromising robustness.

Message interface overhead comes from three sources: (a) operating system in-

volvement (b) software protocols and workarounds and (c) ad hoc interface mecha-

nism choices. To avoid operating system overhead, the M-Machine message interface

consists of user-level mechanisms. Software workarounds are minimized by making

higher level communication needs an inherent design consideration. Primitive mech-

anisms are carefully chosen to complement one another, thereby avoiding redundancy

17

and loopholes in their functionality.

The M-Machine message interface is register-mapped. The user thread assembles

a message in its regular register file, and launches it atomically into the network with

a SEND instruction. To eliminate address translation overhead, the remote object to

be referenced is specified with a virtual address, destination, which is translated into

routing information by a small hardware translation table called the Global Trans-

lation Lookaside Buffer (GTLB). The SEND instruction also indicates a HandlerIP

that directly specifies a message handler to be invoked at the destination processor.

The hardware requires both destination and HandlerIP to be unforgeable guarded

pointers, a lightweight capability mechanism [13]. As a result, the system has com-

plete control over the remote data as well as the remote operations accessible to each

user program.

The register-mapped message composition buffer eliminates buffer sharing, while

the atomic injection interface allows the network port to be assigned to each user for

only a bounded period of time. Therefore no user thread can cause starvation by

holding on to the injection interface for prolonged periods. At the destination end,

for flexibility and efficiency, the programmer may supply an optimized handler for

each message. The guarded-pointer protected HandlerIP however enables the system

to confine users to invoking verified trusted handlers, which always release the critical

resources promptly. Verification may be done conceivably through human inspection

or compiler analysis.

A streaming extraction interface is used so that a message can be dispatched upon

arrival of the first word. Message handlers are invoked in a reserved hardware thread

slot. Two registers known as MsgHead and MsgBody in the reserved slot are mapped

to the incoming message queue. Reading MsgBody causes the next word in the current

message to be popped and returned, while reading MsgHead causes any remnants from

the current message to be flushed, and the HandlerIP from the next message to be

popped and returned. This enables a message to be dispatched in a 3-cycle jump delay

after the arrival of its HandlerIP. The flush mechanism associated with MsgHead can

also be used to quickly return the message queue to a known good state after an error

18

is detected. In addition, MsgBody is automatically padded with null values when

the end of the message is reached, to guard against malformed messages. To avoid

wasting execution resources when the handler thread slot is idle, the availability of

the MsgHead and MsgBody data is connected into the register scoreboard, which is

consulted by the instruction-issue logic.

To efficiently support higher level communication services, the M-Machine mes-

sage system provides user-selectable in-order delivery and a flow-control counter.

When sending each message, the user may choose in-order delivery as needed by

the algorithm, or allow out-of-order delivery and enjoy the full performance benefits

of the four virtual channels in the network. The flow-control counter facilitates a

simple return-to-sender protocol, by tracking the number of unacknowledged mes-

sages injected by each node, and disabling user-level message injection on the node

when a pre-determined value is reached. In this system, each originating message is

either consumed and acknowledged by the receiver, or bounced back to the sender.

Nominally, the pre-determined value corresponds to the number of bounce buffers pre-

allocated on the node, so that storage space is guaranteed for every bounced message.

This scheme provides for efficient end-to-end flow control without explicitly allocating

a buffer during each message injection.

To evaluate the tradeoffs in primitive mechanism choices, the design space is con-

sidered in three aspects: (a) mapping (b) atomicity, and (c) dispatch. The mapping of

an interface defines how the messaging facility is presented to the software. Register-

mapped mechanisms 2 are compared against memory-mapped interfaces, where mes-

saging operations are performed by reading and writing reserved memory addresses.

Atomicity refers to whether messages are buffered and transfered whole in uninter-

ruptible blocks, or moved piece-wise in a streaming fashion as each word becomes

available. The dispatch mechanism determines how the destination processor reacts

to a incoming message. The dedicated thread slot mechanism in the M-Machine is

contrasted against conventional interrupt-driven and polling interfaces. An explicit

2While there also exist instruction-mapped interfaces such as [10] where the instruction set con-

tains specific messaging operations, I consider them only as a variant of register-mapped interfaces

due to the similarity of their overhead characteristics.

19

context swap is required to dispatch each message handler in the last two cases.

An analytical model that relates application performance to message Latency,

processor Occupancy and Grain size - the LOG model - is developed in this thesis

to further the understanding of architectural tradeoffs. A simple program, Conway's

Game of Life [14] (-40 cycles grain size) is used to demonstrate its construction. The

impact of communication overhead on fine-grain computing is then measured from

the model. While the effects of latency is partially masked by slack in the application,

processor occupancy is found to be generally unmaskable, and is therefore the critical

impediment to fine-grain performance.

1.3 Thesis Overview

The rest of this thesis is organized into seven chapters. To put this work in context,

I briefly review some existing message system architectures, and discuss some related

work in the next chapter. The MIT M-Machine multicomputer, its Multi-ALU Pro-

cessor (MAP) chip, and the architecture and implementation of its message system

are then described in Chapter 3. In this system, the mapping of message composi-

tion buffers into user register files results in a modular design that scales naturally

with the number of threads of control incorporated in the processor chip. Further de-

tails concerning the microarchitecture and implementation of the M-Machine network

interfaces are discussed in Chapter 4.

Chapter 5 details the complementary starvation avoidance and protection schemes

in the M-Machine. The system is equipped to regulate both the data objects and

remote handlers accessible to each user thread. The primitive design choices are

evaluated in Chapter 6. Taken together, the M-Machine messaging mechanisms are

found to provide an order of magnitude improvement over traditional interrupt-driven,

memory-mapped, atomic interfaces. The dedicated-thread dispatch mechanism ac-

counts for 60% of the improvement. Another 30% of the overhead reduction is due

to the register-based mapping and atomicity choices in the M-Machine, while the

GTLB provides the remaining 10% of the speedup. A round-trip message to the

20

nearest-neighbor processor takes only 38 cycles in the M-Machine.

In Chapter 7, the LOG model is constructed. Results from the sample application

(LIFE) suggest that occupancy < 50 cycles - a very steep performance curve shows

continuously increasing speedup as occupancy approaches zero - and latency < 200

cycles are crucial, enabling factors for efficient, large-scale parallelization. With such

low overhead, massive multicomputing is shown to be capable of delivering very-high

performance as well as efficiency. With the M-Machine mechanisms, 50% efficiency

is easily achievable for a 16K-cell LIFE problem distributed over 1000s of processors.

Employing one processor for each LIFE cell, a speedup of more than 5000 x can also

be achieved if raw performance, rather than efficiency, is the primary concern.

Finally, Chapter 8 summarizes the study and the findings. I examine the draw-

backs, explore the potential impacts and applications of the proposed design, and

discuss several future research opportunities. In particular, while the LIFE exam-

ple provides valuable insights into the behavior of fine-grain applications, general-

ized conclusions must not be drawn from its specific results. For a more thorough

understanding of the general tradeoffs, many more LOG models for other common

applications must be studied. The extremely-low overhead and solid robustness of

the M-Machine mechanisms on the other hand are very well suited for the upcoming

generation of highly integrated, massive multicomputers. A potential extension to the

basic design for addressing the higher bandwidth requirement between the processor

chip and the network fabric in such systems is also discussed.

1.4 Contributions

The major contributions of this research are

e Identifying the robustness problems in existing designs and proposing a simple

solution,

* Quantifying the overhead in the primitive mechanisms design space.

21

e Developing a LOG model for better understanding of the architectural issues in

fine-grain computing,

e Demonstrating the viability and potential of fine-grain multicomputing,

* Presenting the M-Machine architecture as proof of concept and implementation

example.

22

Chapter 2

Background

Traditional message interfaces do not have the efficiency required to support fine-grain

computing. In older machines, the operating system (OS) serves as a intermediate

layer between user programs and the communications hardware, and messaging op-

erations are performed by trapping into system code. High overhead results from

this heavy OS involvement, forcing the programmer to rely on various software tech-

niques, such as grain-packing, unrolling, and prefetching to amortize the communi-

cation cost over larger grain sizes and messages. While latter designs have opted

for more efficient user-level mechanisms, the inadequate robustness in many of these

architectures ends up defeating the carefully tuned hardware by necessitating cum-

bersome software layers. The mapping and atomicity choices also affect performance.

Memory-mapped interfaces force their messages to traverse the memory hierarchy

before entering the network, and are generally less efficient compared to integrated

messaging mechanisms that have a direct path. Streaming interfaces are faster than

atomic ones, as the message head can worm-hole through the system without waiting

for its tail. While the protection issue gained more specific attention in recent stud-

ies [15, 16, 17, 18]), careful treatment for the starvation problems, particularly those

due to erroneous or malicious message handlers and exhaustion of physical-memory

based message buffers, is still scarce.

23

2.1 Past and Present Architectures

To illustrate the prevalence of high communication overhead, the cost of a round-

trip message in a number of multicomputers from the past and present are shown

in Figure 2-1. The round trip cost, further explained in Table 2.1, is roughly based

on a two-way null remote procedure call (RPC), or a ping-pong operation. It is

obtained by doubling the reported value when only the one-way cost is provided in

the literature [19, 20, 21, 15, 22, 23, 24, 25, 26, 27]. Since an actual implementation

for [18] does not exist, the round trip cost is extrapolated from the specified overhead

of assembling, sending and receiving a remote read message 1.

On the horizontal axis, Figure 2-1 also shows that the systems employ a variety

of mechanisms for robustness. Protection in the network interface is enforced by

limiting the user's accessibility to the messaging resources, or by explicitly match-

ing up senders with legitimate receivers. The former category performs permission

checking through the operating system or virtual-memory translation layers, while

the latter uses gang-scheduling, process-identifier matching, and logically-insulated

communication channels to ensure that messages are presented only to their intended

receivers. Lacking a specific protection mechanism, the J-Machine [10] relies on the

program's good behavior to avoid protection violations. For comparison, the M-

Machine message system is also shown in Figure 2-1. For robustness, messages are

injected atomically from dedicated message buffers, and trusted message handlers are

enforced through guarded-pointers [13].

The high cost of operating system involvement in the message interface is evident

in the original Intel iPSC/2, where 85% of the communication time for a short message

is spent in software overhead [19]. Context switches between user and system mode

alone account for 18% of that overhead. The overall latency is however reduced by

almost 7x when a co-processor is added to relieve the operating system [19]. More

recently, the Shrimp [25] system uses a user-level direct memory access (UDMA)

'Fifteen cycles are added to the total as an estimate for the network latency and dispatch
overhead.

24

Virtual Gang
OS Memory Scheduling GID

Programming
Convention

Robustness Mechanism

Figure 2-1: Past and Present Multicomputers

25

iPSC/2

10000

1000

100

10

NOW SP2

Myrinet-VMMC

AP1000

Paragon

CS-2 iWarp

Shrimp

T3D Alewife

CM5
FLASH

*T J-Machine

M-Machine

Logical
Isolation Capabilities

El

System Processors Round Trip Remarks/Features/Issues

iPSC/2 20 Mhz 710 pS[19] 85% sofware overhead
80386 100 byte message (18% from context switches)

110 piS[19] with MPC
100 byte message (Communication Co-Processor)

CM-5 32 Mhz SPARC 143pS swap[9] CMMD library
3.4pS swap[9] CMNF library

J-Machine 12.5 Mhz MDP 43 cyc[10] Streaming Injection
1024 max round-trip null RPC

CS-2 40 Mhz 20pS[39] Channel
SPARC 24.6pS[23] DMA w/

active message Hardware Table-Lookup
174iS[21] PARMACS macros
ping pong
206piS[20] mpsc library

mesg exhange
T3D 150 Mhz 21064 600nS[26] Shared Memory

2048 max remote read
2.76pS [40] Fast Messages F&I Specific

16-byte Fetch and Increment Hardware Support
~ 120pS[26] Interrupt-Driven

User-Level Message Message Handler
*T 88100MP dispatch + - 20 cyc microthreading

remote load [18]
NOW HP9000/735 501 S [24] LAN based

125Mhz PA-RISC 7150 sockets on Active Message cluster of workstations
Paragon 50 Mhz i860 -20pS[38] Active Message

1024 max Round Trip LogP analysis
116pS[20] NX library

mesg exhange
SP2 66.7 Mhz 96pS[20] MPI-F library

RS/6000 mesg exhange
SHRIMP 60 Mhz Pentium 9.5pS [25] User-Level DMA w/

Automatic Update
FLASH 100 Mhz T5/R4000 100 cyc [17] Shared Memory

remote read
175 cyc [41] Active Message

fetch-and-add
AP1000 25 Mhz 65.6pS[22] Line Sending &

SPARC ping pong Buffering Receiving
Alewife 33 Mhz SPARCLE 14.8pS[15] GID

round-trip null RPC
Myrinet VMMC 166 Mhz Pentium 19.6piS[42] LAN-based

ping pong Multicomputer
iWarp 20 Mhz ~800 cycles [27] Message Passing using

send-receive FX Deposit Model

Table 2.1: Round Trip Communication Cost in Past and Present Multicomputers

26

mechanism that removes the operating system from the critical path when sending

a message. However, a costly system-call is still required to setup the UDMA buffer

mappings for each sender-receiver pair. As the UDMA system requires locking down

physical memory pages at the destination end to receive asynchronous messages, a

starvation risk is also created by the exhaustion of physical memory.

At the other end of the spectrum, the Thinking Machines CM-5 [28] and the MIT

J-Machine [10] feature fast but unprotected message interfaces. To prevent a user

program from intercepting messages destined for others, the CM-5 relies on a high-

overhead gang scheduling technique, where the OS ensures that only threads from the

same job are scheduled to run within each time-slice on all processors. The J-Machine

features a streaming injection interface, to which a user thread may retain access

indefinitely, thereby causing starvation to the others. It is up to the programmer

to refrain from monopolizing the messaging resources. The same risk is present in

the iWarp system, where messages are delivered through logical pathways. As each

pathway cannot be reclaimed until it is voluntarily released by the user, programs are

vulnerable to starvation.

The AP1000 [22] maps the message composition buffer into its data cache. Mes-

sages are launched into the network using the cache-line flush mechanism. Mukher-

jee et.al. [29] take the caching approach further and show that the performance of

memory-mapped messaging interfaces can be improved by up to 88% by exploiting

the cache-coherent mechanisms in the processor, and caching the network device reg-

isters as well as the message queues. The performance of these memory-mapped

systems however are ultimately constrained by the memory hierarchy baggage. On

the other hand, by integrating the message interface into a set of special registers,

the *T [18] architecture provides an efficient interface optimized for short messages.

Each message however has to be explicitly copied into and out of these registers dur-

ing injection and reception. This copying overhead may be eliminated by making the

message registers directly accessible to the entire instruction set, as in the M-Machine.

A global virtual address is used to specify the destination in a *T message, which

goes through a translation layer that prevents the user from sending messages to

27

nodes not mapped into its protection domain. Similar mechanisms are also employed

in other virtual-memory mapped interfaces, such as the FLASH and Shrimp systems.

In *T, each message dispatches into a microthread at the destination. The successful

dispatch of a new message however hinges on its handler being scheduled by the

previously-executing microthread upon the latter's termination. Nonetheless, being

user-level programs, microthreads do not necessarily behave in a cooperative way.

Instead of scheduling the handler for the next message, a microthread may block and

cause a deadlock, or access the message itself and violate the protection model. This

problem is common across most implementations of handler-based interface that uses

a user-specified handler to receive each message. In FLASH, the problem is avoided

by renouncing support for user-level handlers.

Taking a different approach, the Alewife [15] messaging hardware stamps each

message with the sender's process group identifier (GID). At the destination, the

message is presented to the currently-running thread only if their process IDs match

up. Otherwise the message is handed to the operating system, which is notified via

an interrupt. To avoid starvation due to interrupt-masking, the technique is further

extended with a revocable interrupt-disable mechanism in the FUGU architecture [30].

Nonetheless, good performance in this approach relies on an GID-match being the

common case, making it suited mostly for a gang-scheduled machine.

Note also that software libraries are written for several systems in Table 2.1 to

provide a standardized messaging interface, such as MPI [31] and NX [32], to the

user. While it enhances program portability, this approach sacrifices efficiency for

generality. In the Meiko CS-2 for example, a 10 x degradation is observed when an

mpsc library is layered on top of its primitive mechanisms. For high performance

computing, the compiler needs to target the native communication interface itself.

Software layers are also needed if the underlying architecture does not provide suf-

ficiently flexible properties to meet common higher level communication needs. In

particular, Schoinas and Hill [33] show the need for a flexible address translation

mechanism, while Karamcheti and Chien [34] discover that 50%-70% of the software

overhead can be eliminated by providing efficient primitive mechanisms for buffer

28

management, flow-control, and in-order, lossless delivery. To take full advantage of

fine-grain computing, the message system has to be designed from the ground up

from low-overhead mechanisms which work together to constitute a robust system

that efficiently facilitates these high-level requirements.

2.2 Related Work

The M-Machine message interface architecture is influenced by a number of related

research efforts, especially its predecessor, the MIT J-Machine [10]. The J-Machine

has two thread slots on the processor chip, each of which is connected to an incoming

message queue. Because both thread slots are fully accessible to unprotected user-

level code, the J-Machine is susceptible to robustness problems, despite having one

of the fastest message system in existence. The M-Machine inherits its predecessor's

threaded fast dispatch mechanism, but avoids the robustness problems by reserving

the critical message-handling thread slots for trusted programs. The message handler

based reception interface is also promoted by Eicken et.al. through their work on the

Active Message [35] model. Now in its second revision, Active Message systems have

similar non-blocking, non-faulting and quick-completion requirements on their han-

dlers as the trusted handlers on the M-Machine. However, while the guarded pointer

facility in the M-Machine serves as a enforcement mechanism for these requirements,

most Active Message implementations do not have comparable provisions. Instead,

they must rely on cooperative behaviors in the software.

The register-mapped interface is inspired by Henry and Joerg [36], who describe

an interface that scrolls a register-window's worth of message words into or out of

the network. Variable-size messages are supported by way of successively scrolling

the message words in or out, one window at a time. In contrast, for starvation

avoidance, M-Machine messages are bounded-size, and message injection is made

atomic so that no incomplete message can occupy a network channel indefinitely.

Recognizing trusted handlers as starvation-free programs, and that most message

29

words are used exactly once by the handler 2, the M-Machine adopts a more efficient

streaming extraction interface that is optimized to automatically remove each word

from the message queue as it is consumed. Although it does not provide random access

to the message body through a window as in [36], no negative effect is expected as

most instructions cannot simultaneously use more than two operands anyway, while

the arrival-order of message words can be re-arranged so that those needed first also

arrive first.

The M-Machine network employs four virtual channels [37] for performance and

deadlock avoidance. Depending on the channel arbitration policy, virtual channel

systems usually do not guarantee ordered delivery. In the M-Machine implementation,

the channel selection logic is augmented to support in-order messaging by forcing all

messages tagged for ordered-delivery through one fixed channel 3.

The LOG analysis closely resembles the LogP model developed by Culler et.

al. [38]. The latter characterizes the capability of multicomputers in terms of their

communication system constraints - latency, occupancy, gap and available processors

- and has more of a programmer's perspective. In this thesis, I am concerned with

understanding the tradeoffs in defining a new architecture. Hence, the LOG model

adopts an architect-centric view.

2For example, when processing a simple remote-write message, the handler needs the the data
as well as the the memory address only once.

3A distinct in-order channel is used for each message priority.

30

Chapter 3

M-Machine Messaging

Mechanisms

The M-Machine message system accomplishes high efficiency by exposing the inter-

face to user programs and eliminating unnecessary copying of the messages. The

interface is mapped into registers that are accessible directly as operands to regular

instruction. In order to reduce message creation overhead, the translation of a vir-

tual address into routing information is performed transparently by a small, on-chip

hardware cache. A simple flow control mechanism is incorporated to help regulate

the network traffic. For communication protocols where message ordering is crucial,

the system supports optional in-order delivery between processor pairs. The system

also particularly addresses the issues of protection and starvation avoidance.

A brief overview of the M-Machine and its multi-ALU processor chip is first pre-

sented in the next section. A more detail description of the overall M-Machine ar-

chitecture can be found in [1]. The message interface architecture is described in

Section 3.2. In Section 3.3, I discuss the address translation, flow-control and in-

order delivery features. The prototype microarchitecture and implementation details

are presented in the next chapter, while the discussion of protection and starvation

issues are delayed until Chapter 5.

31

II

3.1 The MIT M-Machine

The MIT M-Machine [1] is designed to explore the architectural issues in high-

performance, fine-grain multicomputing. It employs the processor-coupling tech-

nique [48] to efficiently exploit instruction level parallelism, and incorporates mul-

tithreading to improve resource utilization. The M-Machine is constructed of an

array of up to 1024 Multi-ALU Processor (MAP) nodes, each of which contains three

loosely-coupled execution clusters. Five independent thread slots are incorporated

into each cluster. In every cycle, each cluster independently multiplexes one of its

thread slots onto its function units, which consist of a floating-point ALU, an inte-

ger ALU, and a memory ALU. Nominally, the thread slots on the three clusters are

grouped into 5 v-threads, each of which is assigned to the same problem, as shown in

Figure 3-1. However, depending on its resource requirements and inherent grain size,

a program may be distributed across the clusters, v-threads, and/or MAP chips.

SPACE SHA RE

-... V-Thread 0

instr V+n int +n instr r+n

instr V+1 instr q+1 istr r+1

instr p instr q rlptr r

Int-Op FP-Op Mem-Op

TIME v1 .
SHARE

Cluster 0 Cluster I Cluster 2

Figure 3-1: Multithreaded, Loosely-Couple Clusters

MAP chips communicate with one another through an integrated messaging net-

work, while thread slots on the same chip communicate through local memory. Within

each v-thread, the instructions streams on each cluster can communicate by writing

32

Suitable Grain Size Communication
(instructions)

Cost (cycles)

__5 22

ALU Cluster V-Thread Chip

Mechanisms

Figure 3-2: Exploiting All Levels of Parallelism

into each other's independent register files, while the ALUs on the same cluster sim-

ply share their register files 1. The communication cost associated with each of the

mechanisms, assuming a cache-hit in all cases, is recorded in Figure 3-2. A register

written by an ALU is available to another ALU in the same cluster in the immediately

following cycle. Writing within the same v-thread across clusters takes 3 cycles, and a

producer-write followed by consumer-read to the local memory takes 6 cycles. A 19-

cycle latency is incurred for a datum to be written into remote memory via a message

while the consumer then takes another 3 cycles to read the datum. These very low and

very gradually increasing communication costs enable the programmer to efficiently

exploit parallelism at all levels, and transition smoothly across the granularities to

take full advantage of the available resources.

3.1.1 The MAP Chip

A block diagram for the MAP chip, containing three execution clusters, a two-banked,

unified cache, and an external memory interface is found in Figure 3-3. The network

interface units and a two-dimensional router are also integrated into the chip. These

components are interconnected by two crossbars, the M-Switch and the C-Switch.

'Since each cluster is multithreaded, five sets of registers files are incorporated into each cluster.

Each 3-ALU instruction stream on the cluster can only access the register files - floating-point and

integer - associated with the stream's own thread slot.

33

External Memory

r------------------ --- -
External Memory

Interface

- - X-Bus

I External
Cache Bank 0 Cache Bank 1 I/xeBus

M-S itch

C-Switch

Message

Cluster 0 Cluster I Cluster 2 I trfce

Network
Interfaces

I I GTLB

| MAP
CHIP

Message Extraction
Interface

Integrated Router

2D Mesh Network

Figure 3-3: MAP Chip

Clusters make memory requests to the appropriate bank of the interleaved cache over

the 3 x 2 M-Switch. The 7 x 3 C-Switch provides inter-cluster communication,

returns data from the memory system [49], and connects the clusters to two outgoing

message queues. Each cluster may transmit on the M-Switch and receive on the

C-Switch one request per cycle. Each of the three clusters is a 64-bit, three-issue,

pipelined processor with two integer ALUs - one augmented to execute memory

instruction - a floating-point ALU, five sets of register files, and a 4KB instruction

cache 2

Each cluster implements cycle-by-cycle multithreading, with the register files and

2In the silicon implementation of the MAP architecture, only cluster 0 has a floating-point unit,
due to chip area constraints. The simulation studies performed in this thesis include floating-point
units for each of the three clusters.

34

pipeline registers at the top stages of the pipeline replicated for five independent thread

slots. Each thread has 14 integer registers, 15 floating-point registers, and also 16

condition code (CC) registers for boolean values. Instructions from the threads are

interleaved over the execution units on a cycle-by-cycle basis, with no pipeline stalls

when switching between threads. A synchronization pipeline stage [8] selects the

thread to issue based upon resource availability and data dependency, using a score-

board to keep track of the validity of each register. An instruction is not considered

for issue unless all of the resources needed are available, including the validity of its

operand registers.

3.2 M-Machine Message Interface Architecture

The M-Machine message interfaces, illustrated logically in Figure 3-4, are completely

mapped into the processor's general register name space. A buffered, atomic injection

interface is paired with a streaming extraction interface. Messages are dispatched

asynchronously upon arrival within a jump delay (3 cycles). Two message priorities

(P0 and P1) are supported. Canonically, to assist in deadlock avoidance, the P0

logical network is used for originating request messages, while P1 is used for reply

messages. The architecture is first described in abstract below. The details are

included in the later parts of this chapter and the next chapter.

3.2.1 Injection

To send a message, a user thread first assembles the message body, up to 10 words

in length, in either its integer or floating-point register-files, starting at register i4

or f4, respectively (Figure 3-4). A non-blocking SEND instruction then atomically

injects the message into the network:

SEND <length>, <DestAddr>, <HandlerIP>, <Ack>

35

II

General
Register
File

LDi12, i4
ADD i1O, ill, i5
MOV f 14, i6

message buffer

reg i12
reg ill
reg ilO

SEND 3, <DestAddr>,
A <HandlerlP>, <Ack>

SENDER

Incoming
Message

RECEIVER

reg i 14 = MsgHead
reg i15 = MsgBody

new mesg

current mesg

General
Register
File

Figure 3-4: M-Machine Message Interfaces

36

A virtual memory pointer, DestAddr, specifies the destination. During injection,

a small hardware cache, known as the global translation look-aside buffer (GTLB),

translates DestAddr into physical routing information. The action at the receiving

end is specified by HandlerIP, which is an instruction pointer to a message handler

routine. The M-Machine requires DestAddr and HandlerIP to be unforgeable point-

ers [13], and aborts the SEND instruction with a protection violation exception if

either is found to be invalid. Ack specifies a condition (CC) register to be validated

after the network controller has retrieved the message words from the register file.

As soon as the SEND instruction is issued, the program can thus proceed with fur-

ther computation, as long as it avoids contaminating the message registers or getting

swapped out before Ack is validated.

3.2.2 Extraction

The M-Machine reserves two thread slots for message reception, one each on cluster

1 and cluster 2, for PO and P1 respectively. Integer registers i14 (MsgHead) and i15

(MsgBody) in each of these slots are mapped to its corresponding incoming message

queue (Figure 3-4). Whenever MsgHead is read, the network hardware returns the

HandlerIP of the next message, discarding any remaining words from the current

message. Reading MsgBody returns the next word in the current message instead.

In either case, the returned word is also removed from the queue. Thus, a sequence

of reads to MsgBody returns the subsequent words in a message. After the tail of

a message is consumed, the network interface unit pads further reads to MsgBody

with a dummy value, until the next message is scrolled in by a read to MsgHead.

Both MsgHead and MsgBody can be used directly as the source operand in any regular

instruction.

3.2.3 Dispatch

For MsgHead and MsgBody, the corresponding register scoreboard presence bits are

mapped to the presence of a new message and the availability of the next word

37

in the current message, respectively. Consequently, an instruction sourcing these

registers does not issue until the corresponding message word is available. This allows

a message dispatcher installed in the reserved thread slot to wait for message arrival

without consuming any execution resource, yet remain able to activate immediately

when the first message word arrives.

An Example: Fetch And Add An example, which performs a Fetch and Add

operation, will be used to illustrate the simplicity of the M-Machine message inter-

faces. In this example, a value is to be added into a remote memory location. At

the originating end, the sender computes the remote address and the addend into its

register file, and then injects them into the network. Notice the simultaneous use of

the memory unit (MEMU) and the integer unit (IALU) for generating two results in

one cycle. The presence bit for the condition register ccO is cleared - set to empty -

when the SEND instruction issues, blocking the instruction that accesses cco until the

presence bit is set to full again, by the network interface hardware when the message

has been extracted from the register file.

/* Sender computes F&A Address into

/* register i4, and F&A Value into i5 */

_callFetchAdd:

instr MEMU lea ilO, #16, i4 IALU sub ill, i12, i5;

/* Inject two words.

/* Remote address in i4 automatically */

/* translated into routing info by GTLB. */

/* _fetchAdd HandlerIP assume present in */

/* some register.

instr IALU send 2 i4, _fetchAdd, ccO;

/* Sender may proceed with further

/* computation, but must sync on ccO */
/* before reusing i14 and i5

38

instr IALU ct ccO and i13, i9, i4;

At the destination, the message dispatcher waits within the reserved thread slot

for message arrival. Since the absence of a new message causes the presence bit of

the MsgHead register to be marked empty, the dispatcher thread does not compete

for execution resources until a new message arrives. However, upon message arrival,

it immediately jumps to the code pointed to by the HandlerIP in MsgHead, which is

_fetchAdd in this example:

/* Dispatcher jumps to HandlerIP */

_dispatch:

instr IALU jmp MsgHead;

A simple _fetchAdd handler is shown below. It first loads the original value from

the specified location, while also saving away the address for later use. The latter

step is necessary as the address is removed from the message queue when MsgBody is

read. Note that in the M-Machine, IALU and MEMU operations scheduled for the

same cycle are always also issued in the same cycle, and will get the same value from

MsgBody in that situation.

The new value is then added into the original value in _fetchAdd, and the result

is written back into memory. At this point, the handler is finished, and it branches

back to the dispatcher to wait for the next message:

/* Load from memory, stash away address */

_fetchAdd:

instr MEMU ld MsgBody, ilO IALU mov MsgBody ill;

39

/* Add in new value

instr IALU add MsgBody, i10, i10;

/* store back to memory, done.

instr MEMU st i10, ill IALU br _dispatch;

The entire fetch and add operation takes as few as 16 cycles to traverse the injec-

tion and extraction interfaces. Notice that copying is minimized due to the convenient

mapping of the interface into the processor register space.

3.3 More SEND Instructions

The SEND instruction has been described in the abstract thus far. In the M-Machine

implementation, a family of SEND instructions are included to provide optional fea-

tures, including transparent address translation, flow control and order-preserving

delivery. These instructions are listed in Table 3.1.

Instruction In-Order Flow-Control Message Physical Addressed
IALU FALU Delivery (Throttling) Priority (Privileged)

isndO f sndO x 0 x
isndOo fsndOo 0 x
isnd0p fsndOp x 0
isnd0po fsnd0po 0 V
isnd0pnt fsnd0pnt x x 0
isnd0pnto fsnd0pnto V x 0

isndlpnt fsndlpnt x x 1
isndlpnto fsndlpnto / x 1 V

Table 3.1: SEND Instructions

The isnd instructions are used in the integer unit, while the f snd instructions are

for the floating-point unit. Only the isndO and isndOo instructions and their floating-

point unit counterparts are accessible to user-level threads. While in-order delivery

40

is user-selectable, all user-level messages are subject to the flow-control mechanism,

and must be virtually-addressed.

The remaining SEND instructions are restricted to system-level threads, and would

cause a permission violation exception if their use is attempted by a user thread.

These privileged SEND instructions, used for configuration and other system tasks,

are physically-addressed - a physical node identifier is expected in the DestAddr

argument. Physically-addressed messages are not passed through the GTLB for au-

tomatic translation during injection. While system threads may also use the virtually-

addressed isndO, isndOo, fsndO, and fsndOo instructions, the system programmer

must be careful to prevent circular dependencies, as priority-0 messages may be

blocked, for example, while a GTLB-miss is being serviced by system routines.

Note that while PO messages may be rejected by the receiver under the flow-

control scheme, P1 messages are always consumed at the destination. Canonically,

the priority-0 network is used for originating requests, and only acknowledgments and

replies are sent as priority-1 messages. This guarantees that the network eventually

drains even under congested conditions, and helps avoid deadlock conditions.

3.3.1 The GTLB

The GTLB [49] translates virtual addresses into physical node identifiers (NID), which

take the form of absolute cartesian coordinates [x, y] within the M-Machine's 2D mesh

network. Each of x and y is a 5-bit unsigned integer, allowing up to 210 nodes to

be connected together. The translation is done implicitly for all messages injected

via the isndO, isndOo, fsndOo and fsndOo instructions. A GTLB-Miss event is

generated if the corresponding mapping is currently not cached in the GTLB. The

<Ack> condition register specified in the offending SEND instruction 3 is not validated

in this case, to indicate that the user must leave the message body intact in its

register file. The event is resolved in software by an event handler, which installs the

appropriate mapping into the GTLB and retrieves the message body from the user's

3 Recall that the SEND instruction format is
SEND <length>, <DestAddr>, <HandlerIP>, <Ack>.

41

register file for retransmission. The <Ack> register is validated by the event handler

after the message has been successfully injected. While the GTLB-Miss event is being

thus serviced, all isndOo and fsndOo instructions are blocked on the node to ensure

that order-preservation is not violated.

A virtual address may also be translated explicitly using the IGPRB instruction.

A condition code is used to indicate whether the translation is successful. If a match

is found, the translated NID and the matching GTLB-entry number are returned.

The GTLB is organized as a fully-associative, content-addressable cache with four

software-managed entries. Despite the small GTLB size, GTLB-Miss events are ex-

pected to be rare, due to an efficient encoding scheme capable of mapping a large

address space in each entry.

Each GTLB entry contains five fields: base, ext, tag, mask and ppn. The base

and ext (extent) fields delineate a rectangular, 2xext x 2v-t region of nodes within the

network, with the origin at [Xbase, Ybase] (Figure 3-5). The tag and mask fields specify a

portion of the virtual address space to be mapped on to the selected nodes. An input

virtual address is masked by mask and then compared against tag to determined

if it falls within the region covered by the entry. The ppn (pages-per-node) then

determines the actual distribution - the selected address space is interleaved, with

wrap around, onto the nodes in the rectangle, 2PP" pages 4 at a time. Figure 3-6 shows

how the NID is finally computed for the processor hosting a given virtual address.

Note that with this encoding, large regions of, or even the entire address space can

4 Each memory page is 211 bytes on the M-Machine.

Rectangular Region

other nodes in 2 xext Defined by GTLB Entry
mesh network

0 0 0 0 2 y'''

L base ' base 0 0

Figure 3-5: A Rectangular Region of Nodes Defined by a GTLB Entry

42

l b:

EL
10bits 6bits 6bits11 bits

(# bits)
yext xext ppn

offset 2

xofs et=2

hit [x, y]

Figure 3-6: GTLB Translation

be mapped using a single entry.

3.3.2 Flow Control

A flow-control mechanism throttles message injection at the senders to prevent the

receivers from being overwhelmed by incoming messages. In the M-Machine, a simple

10-bit counter in the P0 injection unit, known as the outgoing message buffer counter

(OMBC), is used to implement a return-to-sender throttling protocol. In this scheme,

a message is bounced back to the sender if the receiver is unable to process an incoming

message immediately, due to local resource shortage, for example.

Nominally, the operating system reserves a number of bounce buffers in local

memory on each node at initialization. The OMBC is initialized to the same number.

Then, as each message - except those sent through a non-throttling SEND instruction

- is injected, the OMBC on the sending node is automatically decremented by one.

43

42 bits

When the counter reaches zero, SEND instructions, except the non-throttling variants,

are blocked.

Upon arrival at the destination, a message is either consumed, or rejected if the

destination node is unable to process nor buffer the message locally. If the message

is consumed, the handler returns a result or acknowledge message to the original

sender, which in response increments its counter. A rejected message on the other

hand is bounced back in its entirety ' to be deposited in a reserved bounce buffer on

the sender node, pending retry or special handling at a later time. To simplify the

design, message-bouncing and OMBC-increments are performed in software by the

handlers. While not as transparent as hardware-only schemes such as that used in

the Cray T3E [50], this approach affords more flexibility, to implement a hysteresis

behavior, for example.

Effectively, the OMBC records the number of bounced messages that each node

is able to absorb at any time. The simple accounting ensures that each injected

message is backed by a bounce buffer, and guarantees the system's ability to even-

tually remove from the network every message it injects, without requiring the user

to explicitly reserve a buffer when sending each message. To avoid double-counting,

the result, acknowledge, and bounced messages are injected with non-throttling SEND

instructions.

3.3.3 In-Order Delivery

The network router on the MAP chip features four 6 virtual channels [37] for each

physical path (Figure 3-7). Depending on the channel allocation and switch arbitra-

tion policies, virtual channel routers do not usually preserve ordering - a message

arriving later may overtake a previous message by being assigned to a channel that

is faster-moving, e.g. because it happens to be carrying shorter messages. In the M-

Machine however, the channel allocation policy is designed to provide user-selectable

'A special message up to 12 words in length is used in this case, to capture the original HandlerIP
and DestAddr as well as the message body.

6To fit into the alloted chip area, only VCO and VC1 are implemented in the prototype.

44

II

in-order delivery. The programmer may send certain messages in-order to simplify

particular protocols and algorithms, while allowing the others to be delivered out-of-

order to take advantage of the virtual channels for better performance.

--- > C 3 ---

Physical VC 2 Physical
Channel VC Channel

Virtual Channels

P1, unordered VC 3

PO, unordered VC 2

P1, ordered VC I

PO, ordered VC 0

Figure 3-7: Virtual Channels

To avoid deadlocks, the VC1 virtual channel is reserved for priority-1 messages,

so that there always exists a forward-progress path for P1 messages that is indepen-

dent of P0 traffic. Under normal conditions, non-ordered PO and P1 messages may

use any of VCO, VC2 and VC3 whenever they are available, to maximize through-

put. In addition, unordered P1 messages may also be routed on VC1. However,

ordered PO and ordered P1 messages are respectively routed strictly through VCO and

VC1 only. As a result, messages sent with the in-order delivery flag set from any

particular node to any particular destination are guaranteed to arrive in the same

order as their injection. To avoid overly complicating the design, in-order delivery

nonetheless applies only to messages of the same type, i.e. no ordering is guaranteed

between virtually-addressed and physically-addressed messages, nor between P0 and

P1 messages.

The channel allocation decision is determined from the availability of channels

downstream, and the type of message (ordered, priority) being routed. To simplify

the allocation decision logic, the following default assignments, statically built into

the router, are used in the absence of contention:

45

Sink VC number Default Assignment Alternate Dynamic Assignment

VC0 PO Ordered P1 Un-Ordered, or P0 Un-Ordered (decreasing preference)

VC1 P1 Ordered P1 Un-Ordered

VC2 PO Un-Ordered P1 Un-Ordered

VC3 P1 Un-Ordered PO Un-Ordered

These default assignments are used whenever possible in the allocation process. If,

and only if, no requests exist for a particular channel, that channel may be granted to

an alternate request, whose default channel is currently not available. When choosing

such an alternate assignment, the following preference orderings are used:

Finally, if a P1-unordered message fails to make progress for an excessive period of

time - nominally 16 successive loses to P1-ordered messages - the default preference

for VC1 is switched from P1-ordered to P1-unordered messages. This simple escape

mechanism prevents a P1-unordered message from being blocked indefinitely in a

router. Such a pathological scenario occurs when all of VCO/VC2/VC3 downstream

are occupied by PO messages that are also indefinitely stuck, and there is an incessant

stream of new P1-ordered messages which always preempts the waiting P1-unordered

message ' from using the downstream VC1.

The default channel assignments guarantees that no one type of messages can

be indefinitely starved out, even under full-capacity traffic conditions. This feature

greatly simplifies the reasoning of the messaging system, such as when layering a

software-implemented coherent shared memory model on top of the system.

7A deadlock condition may arise if we allowed P1 messages to be blocked behind PO messages,
given the request/reply relationship between P0 and P1 messages (P0 progress is dependent on P1
progress). Such is not the case here, as P1-unordered messages are only waiting on P1-ordered
messages, and both are reply type messages that are guaranteed to be sunk by their receivers. The
scheme is aimed at preventing unfair starvation conditions.

46

P1 Un-Ordered P0 Un-Ordered

VC3 (default) VC2 (default)

Decreasing VC2 (yields to PO Un-Ordered) VC3 (yields to P1 Un-Ordered)

Preference VC1

VCo VCO (yields to P1 Un-Ordered)

Chapter 4

Microarchitecture and

Implementation

A prototype of the MAP chip has been fabricated in 0.7um (drawn gate-length)

CMOS technology. It measures 18mm on a side and contains approximately 5 million

transistors. A plot of the prototype chip is shown in Figure 4-1.

Figure 4-1: MAP Chip Prototype

47

M-SWITCH

CtST 2 CLST 1

From Network Router

Event F132

CLST 0 CLST I CLST 2

C Switch

Word,
ach

16 Words
Each

RR

F- il

r SZ

EX

WB

C-Switch

Netout

-E control signals
data path

L- - --------------

To Network Router

Figure 4-2: Network Interface Units

4.1 Overview

The message subsystem is made up of three major components: the network

output (message injection) unit, the network input (message extraction) unit, and an

integrated network router. Figure 4-2 shows the organization of the network interface

units. Independent injection and extraction units are provided for each message

priority. The GTLB is implemented as a module of the network output unit. A

simplified illustration of the five-stage - instruction-fetch (IF), register-read (RR),

synchronization (SZ), execute (EX), and write-back (WB) - cluster pipeline is also

included in Figure 4-2 to indicate the interaction between the pipeline and the network

interface units. Each of the network input (NETIN) and network output (NETOUT)

units are connected to the synchronization and execute stages by resource availability,

48

arbitration, and commit handshake signals. Messages are injected through the C-

Switch to the NETOUT unit 1, but are bypassed directly into the SZ and EX stages

from the extraction unit.

Figure 4-2 also shows the MAP's event queue (EQ), which buffers non-blocking,

asynchronous events within the chip, such as GTLB misses and memory synchroniza-

tion failures. Functionally, it is rather similar to the network input unit, except the

EQ is connected to cluster 0, and receives its entries from the C-switch instead of the

network. Events are processed by a privileged event handler running in a reserved

thread slot. The EQ does not respond to MsgHd operations, nor have the associated

flush mechanism. The handler accesses the EQ by reading MsgBody, which also dis-

cards each word as it is consumed, but unlike the message queues, the EQ's entries

are not padded with null values.

A 2-dimensional mesh network connects together up to 1024 MAP chips, each

identified with its cartesian coordinates [x, y] within the mesh. Inside the network,

each message is represented as a sequence of flow control digits, or flits, which are

74-bit packets - 6 bits of control information, 68 bits of payload. A flit is the smallest

unit on which flow control is performed in the router, and is transfered across chip

boundaries in two 37-bit physical digits, or phits, per clock cycle.

The router performs dimension-order routing - messages are routed first in the x

dimension, then the y dimension - and is made up of 2 mostly-identical dimension

modules as shown in Figure 4-3. Each of the dimension modules is independently

responsible for the buffering and routing of messages in one of the x, y dimensions.

The inject and extract modules in the router core connect to the network interface

units. The inject module formats the flits by computing the initial turn direction and

a parity bit, while the extract module is responsible for verifying the parity bit of at

the destination. Parity is not checked in the middle of the route.

As shown in Figure 4-3, a message enters each dimension by being deposited into

'To conserve chip area, messages are streamed out from the register file into the C-Switch by
reversing the write-back bus in the prototype. This eliminates the need for a dedicated message
injection bus. Due to the small size of M-Machine messages, the penalty of stalling the pipeline
during message injection is not significant.

49

from local . - -
processor

inject
interface

/ 11 -jTurn Buffe \

from next chip X to next chip I \
to next chip from next chip I \

+ve

/ .- Virtual Channels
from next chip to next chip Virtual Channels

to next chip from next chip/ 4 /D4
extract
buffers

to local
processor

Figure 4-3: M-Machine Network Router

a virtual channel or a turn buffer 2, which are simple FIFO buffering elements. There

are 4 virtual channels 3 associated with each of the +ve/-ve directions, and also 4 turn

buffers going to each of the +ve/-ve direction. Messages leave a dimension module

by being delivered to the next router chip (in the same direction), or being deposited

into a turn buffer in the next dimension module or the extraction module.

4.2 Injection Interface

The netout units are accessed via the C-Switch crossbar. Each unit contains a 16-

word outgoing message queue and an injection controller. The message queue serves

as a buffer between the processor and the network, ensuring that an entire message

2 Logically, turn buffers perform the same function as virtual channels. They are named differently

to indicate that a message actually cross from one dimension to another when it is deposited into a
turn buffer.

3 Four of these FIFOs, VC3/VC2 and TB3/TB2, were eventually removed from the final prototype

implementation to fit into the alloted chip area. The description in the rest of this chapter refers to

the original architecture containing 4 virtual channels.

50

from C-Switch

I priori message paa SZ

sender NID hnulfy
EX

misstaleeto
'event

togeneration C-Switch

outgoing waddr
message 16 words

queue

- raddr

injdata injav injnxt

ROUTER

Figure 4-4: Network Output Unit

can be absorbed once a SEND instruction issues, even when the network is congested.

This is crucial for providing the atomic semantic of the SEND instruction without

causing prolonged blocking of the sender thread. To provide this guarantee, a SEND

instruction is permitted to issue only when the corresponding message queue has

vacancy for at least 13 words, which is the maximum length for a message, including

the header. If the network router is able to accept the message immediately, the

message is simply streamed out into the network through the queue, without waiting

until the entire message is deposited in the queue.

51

4.2.1 Netout Controller

The message queue is managed through a pair or pointers, raddr and wraddr, which

tracks the beginning and end of valid data within the FIFO structure. The netout

controller monitors the vacancy in the queue and the OMBC (P0 only), and provides

three signals, msgav, thtav and ordav, indicating the availability of the injection

resources, to the synchronization stage which contains the instruction issue logic. The

msgav signal indicates that the injection unit is not currently busy handling a message,

and that necessary vacancy is present in the message queue. The thtav signal is

cleared when the OMBC value is zero, indicating that throttling SEND operations

should be blocked. To maintain the in-order delivery property, ordav is de-asserted

whenever a GTLB-miss occurs, so that virtually-addressed, ordered SEND instructions

are blocked while a GTLB miss event is being resolved by the system software. This

prevents subsequent ordered messages ' from leaving the node while the previous,

GTLB-missed message is being retried.

The controller also contains an arbitrator which fairly assigns the injection re-

sources to the three clusters. Each cluster must first present a request stating a

message type, and be granted the use of the injection unit before it can issue a SEND

instruction. A cluster that recently used the injection unit is given lower preference

in the next round of arbitration, ensuring that each cluster gets an opportunity to

send its message eventually. Since a SEND instruction is not considered for issue until

the injection resources have been thus reserved, a predicated SEND operation must

also release the reserved resources if it is nullified. This is done with a nullify signal

from the EX stage.

4.2.2 The GTLB module

Once a SEND instruction issues, the message words are transfered across the C-Switch

in a burst. A scratch pad buffer is used to hold the message words momentarily while

4Recall that in-order delivery applies only to messages of the same type, i.e. no ordering is

guaranteed between virtually-addressed and physically-addressed messages.

52

gaddr

GTLB
index

Tag Array
at

(Content
Addressible
Entries)

hi NETOUT

compute
dest NIDE

Ram Array

gdata

I--

Figure 4-5: GTLB Data Path

address translation takes place, and the message header is being assembled. Address

translation, performed by the GTLB module, is available to PO messages only.

The GTLB consists of 4 entries which span two cache arrays. The tag array

holds the tag and mask fields, while the ram array contains the base, ext and ppn

information '. The first array is content-addressable by the input virtual address.

It provides an index into the second array if a match is found. A valid bit is also

associated with each GTLB entry, to indicate if the entry contains a valid mapping:

Tag Array Ram Array

Valid Tag Mask (Log) Pages Per Node Extents Base Node ID

1 bit 42 bits 42 bits 6 bits 6 bits 10 bits

LSB

The GTLB connects to the rest of netout unit via a GTLB Addr bus and a GTLB

Data bus, as shown in figure 4-5. It can be access in two ways - with a virtual

'The GTLB entry format is described in Section 3.3.1.

53

address, or with an entry index number. In the index-addressed mode, the low 2 bits

of the GTLB Addr bus is used to directly select a GTLB entry. This mode is used by

the IGTRD and IGTWR instructions, which directly read and write the GTLB arrays.

The C-Switch packets returned by the IGTRD instruction, and expected by the IGTWR

instruction, are shown below.

Bit 12 of Input Addr IGTRD C-Switch Data

0 (Word left-padded Entry Valid Bit Base Node ID GTLB Entry Tag

with O's) (1 bit) (10 bits, y/x) (42 bits)

1 (Word left-padded (Log) Pages Per Node Extents GTLB Entry Mask

with O's) (6 bits) (6 bits, y/x) (42 bits)

C-Switch Cycle IGTWR C-Switch Data

0 High bits GTLB Entry Index Clear GTLB Miss Flag Unused

Unused (6 bits) (1 bit) (12 bits)

1 High bits Entry Valid Bit Base Node ID) GTLB Entry Tag

unused (1 bit) (10 bits, y/x) (42 bits)

2 High bits (Log) Pages Per Node Extents GTLB Entry Mask

unused (6 bits) (6 bits, y/x) (42 bits)

LSB

The virtual-addressed mode is used in automatic address translation and to sup-

port the IGPRB instruction which performs an explicit translation. The input virtual

address is compared against the entries in the tag array, masked by mask. If a match

is found, the destination NID is computed using the contents of the corresponding

entry in the ram array:

hit = valid & ((tag & mask) == (vaddr & mask))

yoff set = ((vaddr>>ppn)>>ext .x) [ext .y-1:0]

yoffset = (vaddr>>ppn)[ext.x-1:0]

dstnid.y = base.y + yoffset

dstnid.x = base.x + xoffset

4.2.3 Event Generation

If a SEND instruction is successful, the netout unit validates the Ack condition register

after the final message word has been received over the C-switch, by writing back over

54

the C-switch itself 6. If a virtually-addressed message fails to find a translation in

the GTLB however, the validation write-back is suppressed, and the event generation

finite-state machine (event FSM) is triggered. A GTLB-Miss flag is also raised in the

netout unit, forcing oxlav to become low. The GTLB-miss flag stays asserted until

it is cleared explicitly with an IGTWR instruction. The event FSM assembles a three-

word event entry, and arbitrates for the C-switch bus to write it into the event queue.

When the event has been successfully enqueued, the netout unit is reset to wait for the

next SEND instruction. Ordered, virtually-addressed messages are blocked however,

until the GTLB-miss flag is cleared by the event handler. The GTLB-miss event entry

format, shown below, encodes the type of the offending message (ordered?, OMBC

decremented?), the sender thread identifier (sender cluster, sender thread slot), the

register file that contains the message body (rf), the message length (argc), and the

<Ack> condition code register (rtnCC) to be eventually validated by the event handler.

1 bit 1 bit 2 bits 3 bits 1 bit 4 bits 1 bit 4 bits 4 bits (event type)

Word 0 unused ordered decombc sclst stslot rf argc xlate rtnCC "GTLB miss"

65 bits

Word 1 HandlerIP (operand 2)

65 bits

word 2 Message Destination (operand 1)

4.2.4 Message Header

Every successfully injected message is prepended with a message header. Figure 4-6

shows the format of the header word. The x and y fields are the physical coordinates

for the destination node. The argcount field records the number of words contained in

the message body, not counting DestAddr, the HandlerIP, and the header itself. The

senderNID field carries the node identifier for the sender. The turns field contains

routing directives that indicate if the message should be routed to the +ve or -ve

6 The netout unit is both a receiver and a writer on the C-switch. It starts arbitrating for the

C-switch bus during the last cycle of the incoming burst, and can perform the write-back during the

subsequent cycle if the bus request is granted.

55

direction - these are computed and inserted into the header by router's injection

module as the message enters the network. The header also contains the flags for in-

order delivery and message priority. The assembled header is placed into the outgoing

message queue preceding the other message words, the last of which is tagged with

a tail bit. Data from the queue is presented to the router on the inj data bus. The

netout unit asserts an inj av signal when a valid datum is available on the bus, while

the router pulses an injnxt signal when it has consumed the word.

unused sender NID unused turns argcount ordered priority unused y x

21 10 8 3 4 1 1 6 5 5 bits

Figure 4-6: Message Header Format

4.3 Extraction Interface

The P0 and P1 extraction interfaces tie directly into the integer datapath on cluster 1

and cluster 2, respectively. Each extraction interface consists of an incoming message

queue and an extraction controller. The message queue is 32 words long, as shown in

Figure 4-7.

Five control signals go between the netin unit and the SZ and EX stages. Avail-

ability of the MsgHead and MsgBody data is indicated by the headav and bodyav

signals, which are connected into the scoreboard. To request for the MsgHead word,

the SZ stage asserts the rhead line. The MsgBody datum is returned otherwise. The

pop signal is pulsed when an instruction sourcing MsgHead or MsgBody is issued. This

causes the netout unit to optimistically advance the queue pointers to supply the

subsequent word. However, if the instruction is squished, the MsgHead / MsgBody

datum is not actually consumed. In this case, the EX unit can reverse the effect by

asserting the undo line in the immediately following cycle.

The netin unit interfaces to the network router via four control signals and an

extdata bus. The router asserts the extav signal to indicate that a valid word is

56

to

57

qda

EX tage EX

ta sz
bodyav pop

headav rhead undo

- Imsg eded Netin Controller

lIast g~head

graddr

2 wordsnxm

AD

qwaddr

16 x 4bit draddr

dwaddr dange

senderNID headerI

extfault extav exttail extnxt

extdata ROUTER

Figure 4-7: Network Input Unit

U5

bo

0

available on extdata, and uses exttail to indicate if it is the final word in a message.

The netout unit pulses extnxt if it consumes the datum, causing the router to supply

the next word in the following cycle. An extf ault line is also provided by the router

to signal a parity error, i.e. when the parity bit carried in a flit (tagged on by the

router's inject module at the sender node) fails to match up with the parity computed

7by the extract module in the router core

4.3.1 Parity Error

The netout unit responds to the extf ault signal differently, depending on whether the

parity error is detected in the message header, or one of the other message words. In

the former case, the corrupted header may have caused the message to be misrouted.

To avoid invoking a message handler on the wrong node, the HandlerIP is replaced

with an errval dummy value 8, and the message is truncated into 4 words:

1. handlerIP Replaced with dummy value

2. Message Argument Count whatever that is salvaged

3. Sender Node Indentifier from the header flit.

4. Destination Address 3rd flit from the message.

In the latter case, the netout unit simply replaces the corrupted word with an

errval before it is placed into the incoming message queue. The rest of the message

is enqueued normally. Note that the streaming extraction interface prevents the

netout unit from discarding the entire message when a parity fault is detected, since

a fault may occur towards the end of the message, after the first few words have

been consumed by the handler. For diagnostic purposes, a count of the parity faults

detected so far on the node is included in the errval encoding, shown below.

7 The M-Machine network does not implement error checking/recovery within the routing path.
8 An errvalis a special type of guarded pointers that encodes fault information for later processing.

Guarded pointers are described in Chapter 5.

58

4.3.2 Decoded Message Format

A successfully extracted message is placed into the incoming message queue. Front-

end logic is provided to reorder the first two words in each message, and disassemble

the message header into the sender's node identifier and the argument-count of the

message. From the message handler's point of view, the message words arrive in the

following sequence:

1. HandlerIP

2. Message Argument Count

3. Sender Node Indentifier

4. Destination Address

5 onwards. Message Body

Word following the header flit

Decoded from the

message header

3rd flit from the message.

Remaining flits

4.3.3 Netin Controller

As in the netout unit, the incoming message queue is managed through a number

of begin and end pointers. However, to implement the side-effects of MsgHead and

MsgBody, the netin controller has to be a little more sophisticated. The appending end

of the message queue is still tracked by a simple qtail pointer, but at the other end,

the rhead signal from the SZ stage selects between the nxtmsg and qhead registers,

which correspondingly point to the MsgHead and MsgBody words.

59

In addition to the main message queue, a small 4-entry queue is used to contain

the size of the messages. This small delta queue is managed simply by a pair of draddr

and dwraddr pointers. By adding 4 to the message size - to account for HandlerIP,

Destination Address, and the two extra words extracted from the message header

- a delta value is obtained, which can be added to the nxtmsg register to find the

location of the next MsgHead word. This allows the message handler to jump to the

next message instantly when it reads MsgHead.

As MsgHead is read, the qhead register is set to the location following nxtmsg.

Subsequent reads to MsgBody then increment the qhead register to return subsequent

words from the message. To implement the undo feature, the last qhead and nxtmsg

values are always preserved in the lastqhead and lastnxtmsg registers, so that the

side-effects can be reversed by simply copying back the old values.

A dangle register flags when a message is currently being extracted from the

network. When the message queue is empty, dangle indicates that the next MsgBody

word has yet to arrive, and the bodyav line should be de-asserted to stall accesses to

MsgBody. Otherwise, bodyav should be high and MsgBody is padded with null values

if the handler reads beyond the end of a message. To implement this, the end of each

message is also tagged with a tail bit in the message queue. When a message tail is

read, the msgended register is set. This causes all further reads to MsgBody to return

an errval dummy value, until MsgHead is accessed again.

4.4 Network Router

The router core consists of two nearly-identical dimension modules, each of which is

further made up of two mirrored halves. Each half-dimension, shown in Figure 4-

8, manages one set of four virtual channels and one set of four turn buffers, and is

responsible for routing in one direction. The virtual channels are 6-entry FIFOs,

while the turn-buffers are 2-deep.

Two main functions are performed by the router unit: channel allocation and

switch arbitration. Each message arrives into a half-dimension by being deposited

60

from previous dimension

I -- -- -- -------
Local Local Swith

Channel Switch Ariter
Allocator Arbiter

f Main
Channe1

from next chip IvirtualAloar

channels(opposite

direction,

7'
j

to next dimension

Figure 4-8: One Half of a Dimension Module in the Router Core

61

to next chip

into a turn-buffer (TB) or a virtual-channel (VC). The router must allocate a a

TB or VC downstream to accommodate each message, and multiplex the buffered

messages onto the appropriate physical link, to be forwarded to the next dimension,

the neighboring router, or the network input unit. The high-level allocation policy

was described earlier in the discussion of in-order delivery in Section 3.3.3. The

implementation and microarchitecture are described in the rest of this section.

4.4.1 Routing Decisions

Messages are routed in dimension-order, first in the x dimension, then in the y di-

mension. The routing decision - where to route the message next - is made in the

dimension module on arrival of the header flit of a message. It is determined by com-

paring the subfield for the current dimension of the destination NID in the message

to the local NID. If the two are different, the message is forwarded to the next router

in the same direction. If they match, the message drops into a turn buffer in the next

dimension.

To enable this decision to be made quickly, a redundant 3-bit turn directions

field is pre-computed in the message inject module using the relative position of the

receiver node from the sender, and the message priority. This information encodes

the +ve/-ve direction to turn as the message reaches each terminal plane in the x and

y dimensions, and which of the P0 and P1 netin unit to contact at the destination. As

an convenience, a set of diagnostic-settable flipdir bits (one for each dimension) are

also included, to swap the +ve/-ve direction of the appropriate dimensions in a router,

so that neighboring MAP chips at the edge of the M-Machine can be assembled in a

stacked fashion.

Once the next route direction has been determined, a buffer downstream of the

route must be allocated to hold the message before any flits are forwarded. This

allocation is performed in a 2-stage process, using a main allocator (one for each

outgoing path) and a local allocator (one for each group of VCs or TBs). The main

allocator chooses a group of VCs/TBs to grant a particular sink FIFO, while the

local allocator determines which of the source FIFO within the chosen group gets

62

the resource. As discussed in Section 3.3.3, the allocation preference and decision are

determined by the type of message (ordered, priority) being routed. The physical links

to the neighboring routers, and the write ports into the TBs in the next dimension,

are multiplexed amongst the source FIFOs using a 2-level arbitration process much

like the allocators. One main arbiter is responsible for granting each output path from

each dimension to one of the relevant source FIFO groups. Within each group, a local

arbiter decides the final winner. No arbitration is needed in the y - extract boundary

however, since the data paths are not multiplexed there - a separate extraction buffer

is provided for each priority.

Once it is allocated a downstream FIFO, each VC/TB remembers its designated

sink information, to be presented for switch arbitration in subsequent cycles. For

newly arriving messages, switch arbitration is performed optimistically in parallel

with channel allocation, so that straight-through traffic can be forwarded in the cycle

immediately following its arrival, as shown in Figure 4-9. The timing diagram also

shows the incoming phits being retimed from the remote clock domain to the local

clock domain. This is described later in Section 4.4.3. To prevent a message from

being forwarded if a sink FIFO cannot be allocated to it, grant signals from the switch

arbiters are late-gated by the allocation results.

Remote CLK
........ . .100 M Hz

phit arriving
at router pins ,X 1 ,P~~......

Local CLK
Fi L 100MHz

INPUT re-timed to

PORT local clock phi ..
I |

| llocatn I

I I phit going to
I abitration I next router

OUTPUT
PORT C i

Figure 4-9: Router Timing for Straight- Through Traffic

63

4.4.2 Resource Management

A message may fail to secure a sink buffer if it loses in the allocation process,

or if no suitable unused FIFOs are available downstream. Even after a sink buffer

has been assigned, flits from a VC/TB still cannot be forwarded unless vacancy

exists in the sink buffer. The VC availability and vacancy information is kept in

4 resource manager modules - one for each group of VCs downstream. Each VC

resource manager contains 4 free flags, and 4 vacancy counters, one for each VC

in the group it monitors. Similar resource managers are used for downstream TBs,

except that the vacancy information is obtained directly from the TB modules instead

of being kept in counters, since the TBs are conveniently located locally.

The corresponding free flag is cleared as each FIFO downstream is allocated, while

the vacancy counter is decremented as flits are deposited into the sink. When flits are

forwarded from a VC, the resource manager requests for the corresponding vacancy

count in the upstream router to be incremented, by sending the information back

in the FVC field ' in each flit. After the message tail leaves the upstream router,

the upstream resource manager waits for the downstream FIFO to become empty

again, and then sets the free flag to indicate that the buffer has been de-allocated

(Figure 4-10). To prevent buffer overflow, the allocator assigns a FIFO only if it is

not already allocated, while the switch arbiter forwards a flit only if the vacancy for

the corresponding FIFO downstream is not zero.

The sink FIFO for a flit being forwarded is identified in the the DVC field. Both

the FVC and DVC fields are 3-bits wide - one valid bit, and two channel identifier

bits 10. The phit encodings are shown below. Two phits, phO and phi, make up a flit,

which also contains a parity bit and a tail bit.

9The VC length is set at 6 flits to minimize bubbles in the pipeline, as the FVC information takes
up to 5 cycles to affect the vacancy count upstream.

101n the prototype where VC2 and VC3 were removed, a 2-bit, one-hot vector is used.

64

Downstream Router

head
message virtual channel virtual channel

0 0 0 1~lL FEIIf
~tail free flag Itracks vacancy/availability

i vacancy counter of FIFO downstream

allocated

Dzz|| 4 | I 0Lo

1- | I I | I 101 - o
3

I I I1 100

dealoatd i

Figure 4-10: Vacancy Counter and Free Flag

65

00

so

e

Upstream Router

Clock phase 37-bit phit

Control (3 bits) Data (34 bits)

phO DVC T (1 bit) DO: Data 1 of 2

phi FVC P (1 bit) Dl: Data 2 of 2

MSB LSB

4.4.3 Mesochronous Router-to-Router Interface

The router interfaces to each of its four neighbors via a 39-pin port. Two of these pins

carry clock signals and are driven uni-directionally - one in each way. The remaining

37 pins carry signals in both directions simultaneously [51]. Using both phases on the

clock, two phits are transfered every cycle in each direction. To tolerate clock phase

differences across routers, the inter-chip interface employs a mesochronous technique

adapted from [52]. The system clock signal is assumed to be identical throughout the

M-Machine, except for fixed phase differences due to varying distribution distances.

RCLK

SCLK

QCLK

RD pO

SD
unreliable

QD region

LCLK (case 1)

LD sample off SD

LCLK (case 2)

LD sampled off QD X7 X X

Figure 4-11: Mesochronous Interface

Each chip transmits its local clock signal along with the data. The remote clock

signal RCLK, is used by the receiver pads [51] to derive two new clock signals, SCLK

and QCLK, with a delay lock loop. SCLK trails RCLK by either 90' or 2700, while QCLK

always trails SCLK by 90'. Depending on the phase difference between RCLK and the

66

II

local clock, LCLK, data latched off one of SCLK and QCLK can be sampled safely in the

local clock domain (Figure 4-11).

SCLK trails RCLK 270 degrees SCLK trails RCLK 90 degrees

RCLK RCLK

SCLK SCLK

QCLK QCLK

I II I II

LCLK LCLK

sph =0 sph=1

Figure 4-12: Phase Difference Between LCLK and RCLK

Figure 4-12 shows the 8 possible scenarios for the relationship between the clock

signals. The sph signal, generated by latching RCLK with SCLK using a positive-edge

flipflop, is 0 when SCLK trails RCLK by 2700. As shown, the rising edge of the local

clock must fall within one of four quadrants of an RCLK cycle. The location of the

LCLK edge relative to RCLK can be derived by sampling the SCLK and QCLK signals, as

shown in Figure 4-13. With this information, it is possible to select one of SD and QD

to be sampled by the local clock.

Note that if the edges of LCLK and SCLK or QCLK are too close together, the sampled

ssclk or sqclk signals may be unreliable. However, recognizing that at least one of

ssclk/sqclk must be correct, a careful selection can still be made to always provide

enough margin in the data latches. For example, Figure 4-14 shows a situation where

sqclk is unreliable because QCLK and LCLK are coincident. Depending on which value

is obtained, the mesochronous unit may choose to latch SDO or QDO into LDO, assuming

sph is zero in this example. However, in either case, LDO has at least one quarter of

a cycle to settle before it is latched again, off the opposite phase of the local clock,

to provide a clean DO signal. Note also that the latched data may also need to be

delayed by 1800 under half of the eight scenarios, so that the phO phit is received

67

RCLK

0 0 1 0 1 rd

SCLK ssclk 0 1 0 0 0
0 1 1 1 1
1 0 0 0 0 ph
1 0 1 1 1

QCLK lk 1 1 0 1 0
1 1 1 0 1

LCLK

SD-
00

SD1 01

SD1

QCLK LCLK LCLK

Figure 4-13: Selecting Between QD and SD Samples

68

SCLK

SCLK
SDO

QCLK
QDO X

LCLK

LDO sampled off QDO ositive latch sqclk =I

LDO sampled off SDO positive latch sqclk = 0

LCLK

DO sampled off LDO negative latch

Figure 4-14: Unreliable sqclk Does Not Affect DO

during the high phase of LCLK. This is accomplished by selectively switching another

set of latches into the data path.

69

Chapter 5

Protection and Starvation

Avoidance

The network interface is a critical resource shared by all processes on each node in

the multicomputer. This sharing calls for two crucial considerations in designing the

message system. First, to avoid starvation and deadlocks, the system must guarantee

that every messaging request is eventually serviced. Second, to protect message data

from being intercepted or corrupted, either inadvertently or intentionally, processes

must be insulated from one another within the message system.

These requirements are poorly addressed in many modern designs which have

adopted user-level message interfaces in an attempt to avoid the prohibitive overhead

of a system-software layer within the message system. Featuring direct user-level mes-

saging mechanisms, these designs reduced the cost of sending a message dramatically,

from many thousands of cycles [24, 22, 20], to as low as several tens of cycles [10, 18].

However, the direct exposure of critical, shared messaging resources to untrusted

user-level processes also compromised protection and created starvation risks.

The inadequacy of the message system hardware in these designs is sometimes

circumvented with scheduling protocols [28] and programming conventions [53]. Such

remedial solutions however seriously defeat the raw performance of the underlying

hardware, even when they are reliable. The performance penalty would be especially

pronounced within the fine-grain, fast-context-switching environment of a system like

70

the M-Machine. In order to benefit from user-level messaging interfaces, specific

robustness considerations must be incorporated inherently into the design,

In this chapter, I discuss the mutually complementary starvation avoidance and

protection solutions in the M-Machine. Section 5.1 focuses on the starvation problem.

Using a bounded-time lease allocation scheme, sender-side monopolization of messag-

ing resources is prevented. The risk of starvation is eliminated when this scheme is

coupled with trusted handlers at the receiving end. In conjunction with a guarded

pointer [13] based capabilities system, these mechanisms also constitute the protection

model in the M-Machine, which restricts the data objects as well as the remote oper-

ations accessible to each thread. The protection model is described in section 5.2. In

section 5.3, some alternative approaches are considered in contrast to the M-Machine

mechanisms which, despite their simplicity, are flexible, efficient, and reliable.

5.1 Starvation Avoidance

The fundamental cause of starvation is the open-ended allocation of critical, limited

resources, such as the network ports and message channels or buffers, to untrusted

processes. A shared resource thus allocated cannot be reclaimed until it is voluntarily

released by the user 1. Starvation ensues when processes fail to return the allocated

resources, and the critical resources run out.

Figure 5-1 illustrates the problem as manifested in conventional messaging sys-

tems. A buffered injection interface, a streaming-channel injection interface, and their

corresponding extraction models are shown in Figure 5-1A through 5-1D. Messages

are transferred en bloc between buffers on the processor node and the network in a

buffered interface, and piece-meal through a channel or conduit from the sender to

the receiver in a streaming interface.

In the former case, two threads must each obtain a pair of send/receive message

buffers from the system before they can communicate with each other. Communi-

'While the system may conceivably revoke allocated resources by force under certain condi-
tions, it is unclear how it can properly clean up after a user thread that is actively using the
buffer/channel/port being thus reclaimed.

71

(C) Shared Extraction Buffers

(B) Shared Injection Channels

©D
Ew
D?

Thread

Buffer

Network Port

Logical Channel

Resource Sharing

Open Ended Allocation

Bounded Time Sharing fair

Time Sliced Sharing multiplexing

Figure 5-1: Conventional Message Interfaces

72

(D) Shared Extraction Channels

(A) Shared Injection Buffers

0

cation may thus be hampered if the system is unable to fulfill the buffer allocation

requests, such as when the pool of available message buffers runs out. The user-level

direct memory access (UDMA) mechanism in the Shrimp [16] system, for exam-

ple, deposits messages directly into receive-buffers on the destination node. Because

messages can arrive asynchronously, the receive-buffers - even though they can be

virtual-memory mapped - must be locked down, or never evicted from physical mem-

ory, to guarantee that arriving messages can be accommodated. Therefore, unless

users cooperate by relinquishing their message buffers promptly, starvation ensues

when the limited physical memory pages are exhausted. The problem may become

less pressing if messages were buffered in virtual memory 2, due to the much larger

name space. It nonetheless complicates the interface, and is not immune to starvation

as the virtual memory name space remains a limited resource.

The message size is unbounded in a streaming interface. Message words are writ-

ten into a channel by the sender at one end, and read out by the receiver at the other

end. Until the sender/receiver pair agrees to relinquish access to the channel, it can-

not be reassigned. In the J-Machine [53] for example, the SEND instruction implicitly

establishes such a channel, which is closed only by the SENDE instruction. Therefore,

the code fragment between each SEND instruction and its corresponding SENDE in-

struction must be treated as a critical, exclusive region, within which no other thread

may inject another message. Failure to adhere to this convention causes the indepen-

dent messages to be spliced together. The situation is alleviated if multiple logical

channels are multiplexed on a fairly time-sliced basis onto the physical network port

(Figures 5-1C and 5-1D), such as in the iWarp [43] . By tagging each message word

with its logical channel identifier, multiple messages can be transmitted or received

concurrently on the same node without corruption. However, since the number of

logical channels is limited, this approach is also not free from starvation risks.

The M-Machine solution is to make monopolization of resources impossible by

2The virtual memory based buffers used in such an approach must be backed by secondary storage
that is local to the receiving node, or a separate memory paging network must be incorporated.
Otherwise, the system risks a deadlock condition if a buffer has be paged in from a remote node
through the same network.

73

Threads Bounded Time Sharing

:: -NETWORK

Network Port

Dedicated Injection Buffers

Figure 5-2: "Bounded Time Lease" Allocation

design. Figure 5-2 illustrates an atomic injection interface that permanently assigns

a message buffer to each thread. Competition for message buffers is completely elimi-

nated. Although the network port remains shared, it needs to be connected to a buffer

for only a bounded period of time, during which the message is transferred into the

network atomically. Given an appropriate fair arbitration module, this "bounded-time

lease" scheme guarantees non-starvation on the sender side. The solution is amenable

to both memory-based and on-chip buffering designs - a new thread is created only

if a corresponding free message buffer is available. The system does not need to be

concerned about fulfilling further requests from existing threads. In the M-Machine

implementation, the message buffer is embedded into each thread's register files. By

virtualizing the buffer, i. e. treating it as an integral part of the thread context that

is swapped in and out along with the rest of thread state, the system is also able to

migrate user threads freely between different physical thread slots. As more slots are

added to the chip, the modularity of this design enables natural scalability.

The same approach is however impractical on the receiver side, since a newly ar-

rived message risks corrupting a previous message if it asynchronously overwrites the

recipient's dedicated buffer. Conversely, if it is made to wait, subsequent messages

destined for other threads are blocked. A message handler based interface, shown

in Figure 5-3, is adopted in the M-Machine instead. The incoming network port is

exposed directly and exclusively to a dedicated thread slot. Each message specifies a

74

Message Handler

User Threads

NETWORK >cor T

Network Port

Figure 5-3: Message Handler

message handler which is invoked in this privileged slot upon arrival. To avoid abuse

of access privileges to the network port, only trusted routines may be used as han-

dlers. Otherwise, a handler may violate the protection model by accessing messages

other than its own in the queue, and can cause starvation or a deadlock if it fails to

complete quickly and dispatch the subsequent message properly. The enforcement of

these trusted handlers in the M-Machine relies on its protection mechanisms, and is

discussed further in section 5.2.3.

5.2 Protection

The challenge for a protection model that is both robust and efficient in a multicom-

puter comes from its distributed nature, as access control has to be enforced consis-

tently across node boundaries with minimal authentication-related network traffic.

The M-Machine system accomplishes this using a global addressing space that is ac-

cessed exclusively through guarded pointers [13]. Access permission is built into each

globally-addressed guarded pointer, which refers back to the same object regardless

of where the pointer is used.

The user thus cannot confuse the system by dereferencing a pointer at the wrong

processor. In fact, the Global Translation Lookaside Buffer (GTLB) facility prevents

the user from sending a message to the wrong processor at all. When a message

arrives to access an object, the embedded protection information eliminates the need

to query the originating node for permission checks or to authenticate the request

75

against any explicit access control table. In addition to restricting the accessibility of

data objects, the protection system also uses guarded pointers to regulate the trusted

handlers accessible to each process.

5.2.1 Guarded Pointers

The guarded pointer [13] is a primitive datatype that enables a fine grain access

control scheme on the M-Machine, without relying on any lookup table. This is

particular important in a multicomputer, as it is expensive to maintain an access-

rights database that must be either queried with a message upon every access or

replicated and synchronized on all processors.

A guarded pointer is distinguished from regular datatypes, such as integer and

boolean, by a pointer tag, as shown in Figure 5-4. The pointer tag can be set only

with a privileged instruction, making it impossible for guarded pointers to be created

by user-level programs. This unforgeability enables a very efficient segmentation and

capabilities system. Each pointer has a 6-bit segment length field and a 4-bit type

field, in addition to a 54-bit address field. The length field defines a segment that is

up to 26±11 words in size, aligned to 2-Kword (2" words) pages, and containing the

address in the pointer. Except for the ExecuteMessage, EnterUser and EnterSystem

types described below, address arithmetic may be performed by users on any pointer.

However, any calculation that crosses the segment boundaries results in an ErrVal,

which is a primitive datatype that encodes the error condition. The ErrVal triggers

an exception when it is dereferenced, confining user access to within the prescribed

segment. This results in a fine-grain (2KWord) segmentation system without any

explicit lookup overhead for bounds-checking.

The type field indicates the permitted access mode of a pointer. Common types

such as ReadOnly and Read Write are included, as well as executable Execute User and

ExecuteSystem types. The executable pointers define routines callable by user-level

and system-level programs, respectively. In addition, the guarded pointer facilitates

fast protection domain switching through EnterUser and EnterSystem types. When

control flow is transferred by jumping to these executable pointers, the privileges

76

Unforgeable
Pointer Tag Segment

Length
l l

1 4 bits 6 bits 54 bits

Type Address

Figure 5-4: Guarded Pointer

switch automatically to user-level and system-level, correspondingly. An ExecuteMes-

sage type is used for implementing trusted handlers. It is described in section 5.2.3.

The embedded protection information is checked by the hardware whenever a

pointer is used in an instruction. Any attempt to use a pointer in an illegal manner

results in an exception, which triggers an exception handler to remedy the condition

in software. Efficiency is thus preserved without sacrificing robustness.

5.2.2 The GTLB and Virtually Addressed Messages

The GTLB (Section 3.3.1) prevents users from misdirecting their messages, either

purposely or accidentally. Recall that the SEND instruction takes the form of SEND

<DestAddr> <HandlerIP>, where DestAddr specifies the target object, and HandlerIP

specifies the message handler. DestAddr is a virtual address pointer. The hardware

flags a type exception and cancels the SEND operation if the user fails to provide a

valid pointer in the DestAddr field. Otherwise, during message injection, the GTLB

transparently translates DestAddr into a physical node identifier and other physi-

cal routing information, which then directs the message through the network. Since

all user messages are virtually-addressed with transparently-translated, unforgeable

pointers, stray messages are impossible. Meanwhile, the DestAddr pointer is faith-

fully delivered as part of the message. When DestAddr is referenced by the message

handler at the destination, the embedded protection remains fully enforced by the

hardware. The primitive capabilities, such as ReadOnly and ReadWrite, are thus

77

universal across node boundaries.

5.2.3 Trusted Handlers

The ReadOnly and ReadWrite capabilities encoded in the guarded pointer are

adequate for simple access control, while the EnnterUser and EnterSystem types

facilitate fast switching between protection domains within the processor. However,

a more flexible scheme is desirable for remote operations in a multicomputer. Consider

for instance the case when the request in a message cannot be serviced immediately,

such as when the handler fails to secure a semaphore. Instead of blocking subsequent

messages or rejecting the request outright and incurring the cost of a retry message,

it may be more efficient for the handler to append the message to a retry-queue

in memory and move on. In this example, the receiver must however be assured

that the sender will not interfere with other requesters by corrupting the queue, even

though it is allowed to write into the data structure. To permit such high-level remote

operations without compromising robustness, trusted handlers are introduced in the

M-Machine.

A trusted handler is a routine that is certified to be safe, in that it honors the

protection model, never blocks indefinitely nor causes unrecoverable errors, and is gen-

erally "benign". Trusted handlers are enforced in the M-Machine with the guarded

pointer system. The HandlerIP in every user message is required to be an instruction

pointer of type ExecuteMessage. An exception is triggered if the hardware detects an

invalid HandlerIP. The ExecuteMessage pointer specifies the entry-point to a trusted

handler, but is otherwise not an executable pointer. The HandlerIP is mutated into

a executable pointer only when it is injected into the network. This restricts trusted

handlers to be accessible only via the message system, allowing simplifying assump-

tions, such as specific stack configurations, to be adopted by the handlers. Note that

the unforgeability of guarded pointers enables the system to permit only starvation-

free handlers, as well as independently control the remote operations accessible to

each process. Nominally, the operating system provides several stock handlers to user

78

threads, such as

* Fork - spawns a new thread at the destination,

e RemoteRead - returns the datum from a memory location on the destination.

e RemoteWrite - updates a remote memory location on the destination.

The Fork handler may simply install the new thread directly into an unoccupied

user slot if one is available, or place it into the scheduling queue for later execution.

The RemoteRead and RemoteWrite handlers on the other hand must be written more

carefully, to avoid undesirable interactions 3 with the coherent, distributed shared-

memory (DSM) system that is implemented in software on the M-Machine [49]. Such

interference can be prevented easily, however, by simply insulating the addressing

domains for message-passing and shared-memory programs from each other.

While more sophisticated operations may also be provided by the operating sys-

tem, the full advantage of a handler-based interface is realized through user-defined

handlers that are optimized for specific tasks. Such user-level handlers may be per-

missible, as long as they also exhibit the properties required of a trusted handler.

Although it is impossible to ascertain the "trustworthiness" of an arbitrary code

fragment - the general halting problem is undecidable [55) - a user routine may be

deemed trusted if it is carefully written to meet certain simple restrictions unambigu-

ously, which can be checked by the compiler. Several examples of such sufficiency

conditions are included below:

* The handler does not expose any protected data to the user.

Protected data, be it owned by the system or an unrelated program, can be ac-

cessed only via a pointer. If all operations in the handler involve only constants

and operands from the message body, and no pointer-creating setptr instruc-

tions are used, then no protection violation can occur, and the handler cannot

3For example, the virtual memory page being referenced by the handler may not be a shared copy
with the appropriate access mode, or may not even be present on the destination node. A deadlock
condition may arise if the message handler blocks while the DSM system attempts to bring in the
memory page via the network.

79

corrupt any system-level data structures. Alternatively, software fault isolation

techniques such as sandboxing [56] may also be used to contain the handler

within its own domain, while secure procedures written carefully by the system

programmer and entered through protected EnterSystem pointers, can be used

to provide the handler with controlled access to critical data structures, such

as the scheduling queue.

" The handler does not block indefinitely.

In the M-Machine, an instruction stalls when referencing an empty register 4.

If all instructions can be shown to reference only registers that have previously

been updated, no such stalling is possible. In order to prevent failed mem-

ory operations from blocking the handler, the compiler/assembler may insist

that only special LDSU (synchronizing load, unfaulting) and STSU (synchroniz-

ing store, unfaulting) instructions [54] are used in a handler - these are special

M-Machine memory instructions which return an error condition code instead

of causing a fault if the operation cannot be completed successfully. To avoid

complicated deadlock analysis, SEND operations should also be simply proxied

to a non-privileged thread running in a separate thread slot. Meanwhile, the

risk of infinite loops may be disregarded if a small, constant number of iterations

can be clearly established for each jump and branch construct.

* The handler dutifully dispatches the next message.

Once a handler is recognized to be non-blocking, a secure DispatchNext code

fragment can be appended to process the next message upon termination of the

handler. Naturally, to prevent handlers from illegally reading the next message,

each handler must be allowed to access the MsgHead register exactly once, i.e.

upon exit.

Note that plenty of flexibility remains even with these restrictions. Sophisticated

4The instruction also stalls if a needed resource such as the FALU, is busy. However, resource
availability is beyond the control of the handler. In any case, under the fair arbitration scheme in
the SZ unit, an instruction cannot be blocked indefinitely due to resource conflicts.

80

user-level handlers such as Fetch&Add, Test&Set and Update&Forward are conceiv-

able, and the user may operate on its own data structures, as he should be. In fact,

if the above properties are clearly established, the user-level handler does not even

need to be unfaulting, since only the caller program can be affected by the exception

condition, and the user can already sabotage himself without having access to the

message system anyway. Any exception encountered in a message handler, such as

divide-by-zero or illegal pointer reference, thus simply causes the routine to be killed,

and the next message to be dispatched.

5.2.4 Malformed Messages

In addition to restricting the data objects and operations accessible to each process,

the protection system must also guard against malformed messages, which can cause

erroneous behaviors in an otherwise trusted message handler. To guard against mes-

sages that are shorter than unexpected, the M-Machine pads the message with an

infinite stream of null values when MsgBody is read beyond the end of a message '.

This prevents the handler from becoming blocked forever, waiting for the arrival of

the non-existent arguments that it expects.

As a precaution against messages that are too long, the message interface discards

the remaining words of the current message when MsgHead is read. The message

handler therefore cannot be tricked into accessing the next message in the queue, nor

using any stale data from the previous message. As a last defense, the flush feature

associated with MsgHead also allows the system to easily reset the message queue to

a known good state, should it become necessary to recover from a message handler

exception.

'The message interface recognizes the end of a message by the tail tag in the last arriving word.
Only reads beyond this last word are padded with null values. If the handler attempts to read
MsgBody when the incoming message queue is empty, but the tail tag has not been encountered, the
read operation is stalled until the next word arrives.

81

5.2.5 Limitation

Although the M-Machine constrains both the objects and remote operations accessible

to each thread, it does not associate the permitted operations with particular objects.

This creates a loophole for users to mix-and-match the data objects and operations

accessible to them. For example, an ENQUEUE handler may be called with a data

structure that is not a queue at all. Nonetheless, because the protection information

embedded in the guarded pointers is honored universally, this limitation may be

acceptable under most circumstances. In particular, if a user owns a ReadWrite

pointer to an object, then it can already corrupt the object without any help from the

message system. Conversely, if the user has only read permission, it would generally

not be able to write to the data object through a handler that honors the protection

model. The problem arises when the message handler has more powerful capabilities

than its caller, such as the ability to mutate the type field in guarded pointers. In this

case, the handler must be matched to the intended target object. While this stricter

protection model is not implemented inherently by the guarded pointer system, a

simple software solution is possible. For example, suppose handler H may only be

invoked with data object D. Instead of granting access to H, the system may hand

out handler H' and a a read-only pointer to the tuple [H', D], which the user then

sends along with the message. H' can then quickly authenticate itself and the data

object specified in the message against the tuple before proceeding with its task.

5.3 Alternatives

Many systems have adopted user-level network interfaces. Few however provide the

same level of efficiency, flexibility, and robustness afforded by the M-Machine. The

very fast message systems in the CM-5 [28] and the J-Machine [10] feature a streaming

interface which allows the user to tie up the network port indefinitely by initiating and

then failing to complete a message injection. To avoid starvation, software conventions

and workarounds are necessary in these designs. The CM-5 typically relies on a gang-

scheduling scheme, which time-slices the machine and drains the network at the end

82

of every interval, while the J-Machine merely counts on the user to release critical

resources promptly.

The more robust FUGU system [30] prevents message interception in its user-level

network interface by identifying each message and thread with a hardware stamp. A

message is presented to the current process at the destination only if their stamps

match up, and is referred to the operating system otherwise. To prevent starvation,

FUGU also allows the OS to revoke interrupt-disables which mask out message-arrival

signals, and regain control if incoming messages are blocked for too long. Nonetheless,

frequent operating system intervention may degrade performance unless the schedul-

ing of communicating processes are carefully synchronized across nodes, due to the

explicit send-receive messaging model. The timeout-interrupt solution can also be ef-

fective against resource monopolization in a more general sense, but only if the archi-

tecture provides suitable mechanisms for cleaning up after a misbehaving user process

is forcibly displaced. It is fairly straight forward, for example, to interrupt a sender

thread in a streaming injection interface if it fails to complete its message within a

predetermined period of time. To safely reclaim the critical resources, however, the

system must be equipped with the ability to explicitly reset the injection port and

notify the receiving end of the exceptional condition. In addition, the sender thread

must also be prevented from blindly accessing the resources to which it no longer

owns, if it is not terminated out right when interrupted. Especially when used in

a multithreaded architecture like the M-Machine, the timeout value must be chosen

carefully, so that a thread is unlikely to be interrupted prematurely just because of

the normal variabilities in its execution timings.

Flexibility is a major factor for the many implementations of the Active Message

interface [35, 57, 23]. Robustness however is not. The protocol uses integer tags to

match up messages with their intended destination nodes. This reduces the likelihood

for an inadvertently misdelivered message to be accepted at the destination, but can

give no guarantees due to the unprotected integer tags. In any case, the message

interface privileges are open to abuse, as no facility is provided for regulating user-

level message handlers. System control over message handlers are accomplished on

83

the FLASH system [41] via the virtual address translation layer in its virtual-memory

mapped message interface. A handler is accessible to a user only if the corresponding

entry point is mapped into the user's virtual memory domain. User-level handlers

are however not supported.

In general, a simple protection model is easily obtained from the virtual-memory

system by annotating the page tables with permissions such as ReadWrite and Read-

Only. Illegal accesses can then be blocked in the address translation layer. However,

this approach becomes complicated when the user may encapsulate an address within

a message to be accessed in a remote processor. At the destination, before the legality

of the access can even be determined, the system must fetch the relevant access control

information, potentially from yet another processor. By embedding the permission

into the guarded pointer, the M-Machine makes this overhead unnecessary.

In message interfaces that are mapped into the virtual-memory system, such as

on SHRIMP [16], the system can remap critical network resources to fresh virtual

addresses from the huge virtual memory space. This makes the message system

less sensitive, but by no means immune, to starvation. In the end, such systems

must rely on the user to release the allocated resources voluntarily. Even then, the

system must ensure that the user genuinely no longer has access to a resource it has

released. Otherwise, new messages that use the re-allocated resource would be open

to corruption. The same problem is in fact inherent to message system that share

the message buffer among processes. In the Alewife [15], a specialized fast buffer is

provided for message assembly. When a process is swapped out, any data left in the

message buffer becomes exposed to the next process that occupies the thread slot.

This is however not an issue in the M-Machine, since the register files containing the

message buffer is naturally overwritten in the process of swapping in a new thread.

5.4 Summary

The multicomputer system has to enforce protection consistently across node bound-

aries. In doing so, it should also minimize overhead and authentication-related net-

84

work traffic. These requirements are compromised in many user-level message inter-

faces, which expose critical shared resources to untrusted user processes in exchange

for efficiency. In addition, starvation risks are created when users are allowed to mo-

nopolize the resources. The M-Machine however accomplishes a flexible and efficient

user-level message system, without sacrificing robustness.

Based on the guarded pointer system, the M-Machine provides a fine-grain pro-

tection model, and facilitates fast domain switching using EnterUser and EnterSys-

tem pointers. Primitive Read Only/Read Write capabilities embedded in the guarded

pointer are honored universally, while high-level, user-defined remote operations can

be supported through trusted handlers. The system prevents abuse of network in-

terface privileges by creating ExecuteMessage pointers only for safe, starvation-free

handlers. At the sending end, dedicated message buffers embedded into the regis-

ter files of each thread ensure that messages are insulated from unrelated processes.

Starvation is also avoided, since the network port is allocated to each thread for

only a bounded period during atomic injection. With the transparent translation

facility provided by the GTLB, users are also prevented from maliciously misdirect-

ing the virtually-addressed messages. At the receiving end, the behaviors of the

MsgBody/MsgHead interface are specifically designed to thwart all attempts to con-

fuse the message handler using messages of the wrong size.

In short, by making robustness considerations an inherent part of the design, the

M-Machine serves as a model for user-level message interfaces, which can be efficient

and flexible, and remain protected.

85

Chapter 6

Network Interface Primitives and

Communication Overhead

The message interface defines how programs interact with the messaging facility.

Traditionally, messaging operations are managed by the operating system. User-level

programs copy data into a memory buffer and make a system-call when they want

to send a message. They then wait passively for the operating system to copy the

message into the network hardware to be transported to the destination, to be even-

tually copied back into a memory buffer accessible to the users. This model is very

inefficient due to three reasons - excessive copying, high context-switch overhead,

and inflexible handling of message arrivals. For example, Burns et.al. [58] show that

the conventional message passing protocol can be reduced from seven steps to one

by avoiding copying the message from one buffer to another whenever possible, while

Hsu and Banerjee [19] accounted that 18% of the 85% software overhead in sending

an OS-managed short message in the Intel iPSC/2 is due to context switches. By

exposing more of the primitive messaging facilities to the user and employing a more

flexible handler-based Active Message dispatch model - which quickly incorporates

the message into normal computation at the destination, Eicken et.al. [35] demon-

strated that nearly an order-of-magnitude reduction in communication overhead can

be achieved in the nCUBE/2. As a result, modern message systems have largely

abandoned the old model, in favor of user-level mechanisms. Nonetheless, to actually

86

result in an efficient system, the messaging primitives must still be designed carefully

to complement one another, so as to avoid overlaps and oversights in functionality.

This chapter is focused on such direct, user-level messaging interfaces that feature

a handler-based dispatch model. The primitives design space for the modern message

interface is considered along three axes: (a) mapping - how the interface is presented

to the software, (b) atomicity - whether messages are transfered uninterruptibly, and

(c) dispatch - how the message is incorporated into computation at the destination.

When compared to a conventional interrupt-driven, fully-buffered, memory-mapped

design, the M-Machine's register-mapped, atomic injection and dedicated-threadslot

dispatched, streaming extraction interfaces are shown to be an order-of-magnitude

faster. Results indicate that the dispatch mechanism choice contributes 60% of the

overhead reduction, while the mapping and atomicity decisions together account for

30% of the improvement. The remaining 10% of the speedup is due to fast address

translation in the GTLB.

The message interface models used in this study are described in the next section.

The micro benchmark programs and experiments then follow in Sections 6.2 and 6.3.

Section 6.4 records the raw results, which are then analyzed in detail throughout

Section 6.5. The impact of each choice in the design space of the network interface is

examined, exposing the high cost of sending and receiving messages through memory-

mapped interfaces, the pitfall of register-pressure in register-mapped designs and the

tradeoffs between buffered and streaming interfaces. The advantage of multithreaded

dispatch mechanism over an interrupt-based or polled system, and the impact of an

efficient address translation mechanism are also discussed. In section 6.6, the effects of

combining the features used in the M-Machine are examined. A summary is presented

as the chapter ends in Section 6.7.

6.1 Message Interface Models

In general, the design space for these modern message interfaces can considered

from three aspects: (a) mapping, (b) atomicity and (c) dispatch (Figure 6-1). The

87

Dispatch

Interrupt

Polled

Dedicated Context Atomicity

) Streaming _ Buffered

Memory

Register/Instruction

Mapping

Figure 6-1: Messaging Primitives Design Space

mapping of an interface determines how it is accessed by user programs. An interface

may be mapped into the memory, such that messaging operations are performed by

reading and writing certain reserved regions of the memory address space. Alterna-

tively, messages may be sent and received by accessing network-device registers, or

using specialized instructions native to the architecture. The former is popular among

designs based on off-the-shelf components, since it is easily implemented by connecting

up a network controller to snoop on the memory bus. Messaging operations in such

designs however suffer from the overhead of traversing increasingly-complex on-chip

cache hierarchies. The latter category of interfaces are more efficient, but must be in-

tegrated tightly with the processor, and are therefore only feasible in custom-designed

chips. For this study, I consider instruction-mapped designs as only a variant of the

device-register mapped interface, since both consume processor cycles in moving the

message words between the network device and processor-registers, i.e. the regular

registers that serve as operands to all instructions. The M-Machine interface on the

other hand is processor-register mapped. Its network-connected registers can be used

as the source or sink in any of its instructions.

In terms of atomicity, a message can be injected or extracted either in a piece-wise

fashion, or as an un-interruptible unit. A piece-meal, streaming interface allows the

first word of the message to "worm-hole" through the message system without waiting

88

for the rest of the message. Conversely, a buffered interface requires each message to

be completely stored into a buffer before it is injected or made available for extraction.

Due to this waiting, atomic interfaces tend to be slower, but are also more robust

since a message is either completely delivered, or not. In a streaming interface, the

network may become blocked if the sender or receiver stops in the middle of injecting

or extracting a message.

The dispatch mechanism determines how the processor is notified of message ar-

rivals. Conventionally, an interrupt mechanism asynchronously and forcibly displaces

the current program with an interrupt handler upon message arrival. The resident

program may also periodically poll the network interface, and jump to a message

handler if a message has arrived. In either case however, a very high overhead is

incurred as the resident program is swapped out to make room for a handler. This

can be avoided by providing dedicated hardware resources, such as a co-processor in

the case of [19], for the message handler. The usually low utilization of the handler

context however may not justify a full-featured processor. Thus, in the M-Machine,

only a thread slot on cluster 1 and cluster 2 are reserved for the message system.

A set of micro benchmarks are run on a number of network interface models that

represent different points in the design space. In addition, the efficacy of the global

translation lookaside table is also quantified in the these experiments. The models

are listed in Table 6.1. Since they each explore a particular aspect, these models

may not correspond exactly to existing architectures. However, familiar points of ref-

erence include the CM-5 [28] (memory-mapped streaming injection and extraction),

the *T [18] (register-mapped buffered injection and extraction), the J-Machine [10]

(register-mapped streaming injection 1 and extraction), and SHRIMP [16] (memory-

mapped buffered injection and extraction). The M-Machine message interface archi-

tecture is represented as MM.

The experiments are conducted on msim [59], a cycle-accurate simulator of the

M-Machine architecture written in C. Experiments on the IRS and IMS models are

'The J-Machine uses a SEND instruction to move each message word into the network. Effec-
tively, this is equivalent to writing each message word into a special network-mapped register.

89

Simulation Differs from Mapping Atomicity
Model MM Architecture Memory Register Buffered Streaming

IMB injection V
IMS injection V
IRB injection
IRS injection V V
EMB extraction V V
EMS extraction
ERB extraction
ERS extraction
SWX translation Software-based address translation
INT dispatch Interrupt-driven dispatch
POL dispatch Polled dispatch

Table 6.1: Basic Network Interface Models

made possible by a special feature incorporated into msim so that it can optionally

emulate a streaming injection interface that is mapped to register i15 of the user

program's register file. For IMS and EMS, extra cycles are added to the benchmark

programs to account for the overhead associated with memory-mapped messaging

operations. Similar instrumentation is done to the code for IRB and ERB to account

for buffering delay. Meanwhile, to emulate the SWX model, additional code is added

to the programs to perform explicit address translation using a 4-entry lookup table

in memory.

In experiments involving POL and INT, a simple counter program is installed in

the message handler thread slot in msim, alongside with the benchmark program.

This counter program represents the user application that must be displaced by the

message handler whenever a message arrives in a polled or interrupt-driven dispatch

mechanism. In POL, the counter program is augmented with a short polling routine

that is invoked once every 120 cycles, for a ~15% null-poll overhead. When a message

arrival is detected, the volatile state in the counter program (6 registers in these

experiments) is spilled, and a message dispatcher is swapped in. The dispatcher then

jumps to the message handler specified by the message, and eventually restores the

counter program when the handler completes. To emulate the INT model, an infinite-

90

Model Translation Injection Extraction Dispatch
mechanisms similar to

SWXIMBEMBINT SWX IMB EMB INT
SWX_IMB_EMB_POL SWX IMB EMB POL
SWX_IMB_EMB SWX IMB EMB MM
SWX_IMB_EMS SWX IMB EMS MM
SWXIMSEMS SWX IMS EMS MM
SWXIMS SWX IMS MM MM

Table 6.2: Incrementally-Enhanced Models (Memory-Mapped)

Model Translation Injection Extraction Dispatch
mechanisms similar to

SWXIRBERBINT SWX IRB ERB INT
SWX_IRBERB.POL SWX IRB ERB POL
SWXIRBERB SWX IRB ERB MM
SWXIRBERS SWX IRB ERS MM
SWXIRSERS SWX IRS ERS MM
SWXIRS SWX IRS MM MM

Table 6.3: Incrementally-Enhanced Models (Register-Mapped)

loop routine, in addition to the counter program above, is installed in one of the msim

hardware thread slots otherwise unused by the benchmark program. This "daemon"

routine emulates interrupt-detection hardware by continuously checking for message

arrival. When a new message is detected, this daemon simulates a system interrupt by

saving the entire state of the counter program and swapping in an interrupt handler in

its place. The interrupt handler then dispatches to the appropriate message handler,

and eventually restores the counter program when the message handler is done. Care

is taken to discount the extra cycles introduced by the daemon thread in the final

results.

In a second set of micro benchmark experiments, starting with the MM model,

a single feature is removed and measurements are taken for each of the programs.

The procedure is repeated until the last experiment is run on a classic buffered,

interrupt-based interface. When the results are considered in reverse order, this set

91

of experiments provide a measurement of the incremental benefit that each of the

described mechanism brings to the MM architecture. The models involved in these

experiments are listed in Table 6.2 and Table 6.3.

6.2 Benchmark Programs

Four micro benchmarks are devised for the experiments, namely PING, RPC, DIST,

and BLKW. Each benchmark program has distinct characteristics that capture cer-

tain message operation patterns.

* PING

The PING benchmark involves two nodes and is characteristic of communication

patterns with very short messages. It is a simple ping-pong program, where an

empty ping message from node A is sent to node B, causing the latter to respond

with an empty pong message to node A.

e RPC

The RPC benchmark involves two nodes, and represents a typical remote pro-

cedure call operations. In this benchmark, an rpc message is sent from node

A to spawn a new user thread on node B. Eight arguments are passed in the

rpc message, in addition to the initial instruction pointer (IP) of the code to be

spawned.

e DIST

The DIST benchmark involves the distribution of eight rpc messages to eight

distinct nodes. Each message carries 8 arguments in addition to the IP to

be spawned. In this benchmark, four of the arguments are identical across all

eight messages, while four others are different, so as to model the distribution of

parallel threads across a number of processors with a mix of similar initial data

and different seeds that direct the computation path of each child thread. Since

the receivers are able to overlap the extraction of their corresponding messages

92

with one another, this benchmark is less sensitive to changes in the mechanisms

at the receiving end.

* BLKW

The BLKW benchmark models a large memory-to-memory transfer between

two nodes. A total of 1024 words are moved from node A to node B, explicitly

packetized into small (8 to 10-word) messages when appropriate.

6.3 Experiments

Experiments are conducted for each of the programs on a spectrum of network in-

terface models, and network interface overhead is measured, in terms of latency and

processor occupancy. For these simulations, a matched bandwidth of 1 word/cycle is

assumed for both the network and the memory system.

Latency is the measure of how much time it takes to propagate the relevant infor-

mation through the message system. This includes the time to format the message, to

effect the transfer, and then to receive and respond to the message at the other end.

To isolate the effects of the network fabric, end-to-end latency is measured in these

experiments using a zero-latency network model. In PING, latency is measured from

the initial creation of the ping message, to the time its corresponding reply is written

to memory in the originating node, while for RPC, it is measured from the sender's

initial assembly of the rpc message, to the first instruction execution in the newly

created thread on the neighboring processor. It is measured from the initial call to

DIST to the first instruction execution in the last child thread, and from the initial

call to BLKW to the time when the last transferred word is written into memory on

the destination.

Processor occupancy is the number of instruction issue opportunities consumed

by the message operations, which is otherwise available for productive computation.

Occupancy comes from the execution of instructions needed explicitly to format,

inject, dispatch and extract the message, and other message-related functions such

as address translation, flow control and protection enforcement. Measurements of

93

processor occupancy are taken from each benchmark by counting instruction-issue

opportunities that are consumed or otherwise made unavailable by all message-related

operations, at both the sender and the receiver nodes.

Latency and occupancy are related but distinct metrics of network interface over-

head. Occupancy may be reduced, without changing the latency, if the network

interface features special hardware to offload some messaging functions from the pro-

cessor On the other hand, a less efficient queuing unit in the network interface may

lengthen the overall latency, without having an impact on occupancy. While successful

in masking latency, pre-fetching and other similar techniques are generally ineffective

against processor occupancy. In any case, both forms of overhead are severely affected

by any additional software layers imposed on the message sender/receiver, such as in

architectures where the interface between the user program and the message facility

is accessed by trapping into the operating system.

6.4 Results

The results for each of the experiments are recorded in Table 6.4. The latency

results are measured end-to-end, while the occupancy numbers account for all op-

erations issue-slots consumed by message-related operations at both injection and

extraction interfaces. The results are optimistic for SWX and POL. For SWX, since

the table is small (4 entries), only a simple sequential lookup algorithm is used. The

results shown are based on the assumption that the matching translation is found in

the first entry of the lookup table. Each missed entry costs an additional 16 cycles of

latency and 22 cycles of occupancy in this lookup process 2. The POL results shown

are collected for the optimistic scenario where message arrival occurs exactly when

the polling is done. A penalty of 121 cycles of latency is incurred whenever a message

barely misses a poll and must wait for the next poll to be dispatched.

2 Since multiple function units are used in the benchmark programs, it is possible for the the
occupancy (the number of operations consumed) to be greater than the latency.

94

Interface Models Latency (cycles) [Occupancy (cycles)
PING RPC I DIST J BLKW PING RPC DIST BLKW

MM 38 44 185 2665 28 42 223 4691

IRS 35 38 209 2621 30 52 303 5069

IRB 43 53 167 3415 33 51 260 5684

IMS 117 68 492 7068 46 59 317 5790

IMB 103 99 595 9253 47 59 281 5882

ERS 39 47 198 3116 31 54 349 5716

ERB 55 62 203 6292 29 51 325 5612

EMS 87 77 225 6840 31 54 349 5818

EMB 109 90 231 10094 33 55 357 5819

SWX (entry 0) I 79 85 535 3051 741901622 6 5

POL (optimistic) 76 166 211 2684 a - - I -

INT 292 189 333 2792 -

SWXIMBEMBINT 476 341 943 - -

SWXIMBEMBPOL 254 251 855 -

SWX-IMBIMB 219 198 939 - - -

SWXAMBEMS 207 188 885 -

SWXAMSEMS 199 142 867 - - - -

SWX-MS 156 109 844 -

SWXJRBERBINT 350 248 697 - - -

SWXRBERBYOL 142 139 560 -

SWXIRBERB 100 114 537 -

SWXIRBERS 85 97 520 -

SWXIRSERS 82 82 555 -

SWXIRS 76 79 552 - - -

Table 6.4: Micro Benchmark Results

a Derived from PINGMM, PINGPOL and BLKWMM

b Derived from PINGMM, PINGINT and BLKWMM

95

6.5 Impact of Individual Design Choices

To understand the effects of each particular design choice, the micro benchmark

results are compared in terms of (a) mapping, (b) atomicity, (c) address translation

facility and (d) dispatch mechanisms.

6.5.1 Interface Mapping

The effects of mapping choices for the network interface include different levels of

memory overhead, redundant copying and register pressure. The end-to-end latency

and occupancy results from above are graphed in Figures 6-2, 6-4, 6-3 and 6-5

for interfaces with different mapping options. A program communicating through

memory-mapped interfaces must generate/retrieve the appropriate addresses before

it can perform any messaging operations. To prevent resource contention with other

programs, it usually must also secure semaphores that are typically implemented

as data structures in memory. These extra operations consume execution cycles on

the processor, resulting in processor occupancy that is up to 1.6x that of the MM

reference model (Figures 6-4 and 6-5). Since each message word has to traverse the

on-chip memory hierarchy in a memory-mapped interface, which can take 10 - 30

cycles in aggressively pipelined systems 3, the resulting latency is also significantly

higher, up to about 3.5 x when compared with corresponding integrated register-based

mechanisms (Figures 6-2 and 6-3).

Although an integrated, instruction/register-mapped interface can be accessed

directly without address-creation overhead, its performance is limited as the typical

implementation requires each message word to be copied explicitly between specialized

network interface registers and general registers, the latter being usable as operands to

regular instructions. This copying overhead is avoided in the MM architecture, where

the injection buffer, as well as both MsgHead and MsgBody, are accessible through

the general register name space. The message words are bypassed directly from the

3 For example, in implementing Active Messages on the CM-5, Eicken et.al. [35] found that the
largest fraction of send/receive time is spent accessing the network interface across the memory bus.

96

PING RPC DIST BLKW

Figure 6-2: Injection Mechanisms: End-to-End Latency

PING RPC DIST BLKW

Figure 6-3: Extraction Mechanisms: End-to-End Latency

97

message queue into the execution unit. As a result, it commands an advantage over

the other corresponding register-mapped models (IRB, ERS) in Figure 6-2 through 6-

5. Because this advantage is proportional to the message length, it does not show

up as significant differences in the charts due to the short messages used in these

benchmarks. Although some, such as ERS, achieve a latency that is comparable

to MM, they rely on having multiple function units for overlapping the copying of

message words with computation. These interfaces must however pay for that with

higher processor occupancy (Figure 6-4 and 6-5).

While mapping the network interface into the general-register name space elimi-

nates unproductive copying of the message words, it effectively reduces the number

of general-purpose registers that a program can freely use. In the MM architecture,

the number of registers usable by the message handler is reduced by two to accom-

modate MsgHead and MsgBody. On the sender's side, mapping the message buffer

into the general register file in fact causes appreciable register pressure in, for ex-

ample, the DIST benchmark, due to the small register file in the MM architecture.

In this benchmark, four arguments have to be regenerated for each message. With

the current message occupying 10 registers, too few registers are left to overlap that

computation with message injection. Although MM can pipeline messages by send-

ing them from the integer and floating-point register files alternately, this capability

is limited in DIST because the floating-point unit does not support all of the in-

structions needed by the message-update phase in DIST. This latter shortcoming can

be alleviated in an architecture with larger register-files, by allowing messages to be

pipeline-injected from different regions of the same register-file that is attached to the

appropriate function unit. Although currently restricted by the fixed message buffer

mapping (always starts at i4) in MM, the revised pipelining method can be enabled

with a simple modification to allow more flexible placement of the message buffer

within each register-file, e.g.:

SEND <begin>, <length>, <DestAddr>, <HandlerIP>, <Ack>

98

0

PING RPC

*MM
*IRS

*RB
IMS

EIMB

DIST BLKW

Figure 6-4: Injection Mechanisms: Processor Occupancy

EMM
E ERS

0 ERB

0.5

EMS

2 EMB

00

PING RPC DIST BLKW

Figure 6-5: Extraction Mechanisms: Processor Occupancy

99

195-

0.5

0.0-

18 25

18 25 D Generate

* Buffering

IRS * Launch / Inject

D Net Latency & Handling

Figure 6-6: Latency Components in RPC Message Injection

6.5.2 Message Atomicity

In a buffered interface, messages are transfered between the network and the

program only when the entire message is ready. When sending a message, this forces

the head of the message, no matter how early it is ready, to delay its progress through

the network by a duration that is the cumulation of all latencies incurred in the

generation of each word. While it is usually collapsed via pipelining techniques, this

delay can remain significant in the presence of cache-misses and other long latency

events. Such an effect is illustrated in Figure 6-6, where the RPC benchmark latency

is shown in detail for the the three integrated interfaces. Both MM and IRB are

buffered interfaces, and are therefore penalized when compared to the streaming IRS.

However, by targeting instructions that generate the message words to write directly

into its register-mapped message buffer, MM reduces the overhead by avoiding the

copying cost that IRB incurs.

On the receiving end, the message handler in a streaming interface activates upon

the arrival of the message head, while the rest of the message slowly dribbles in from

the network. This allows the handler to begin performing the requested task imme-

diately if the necessary code and data are already cached, or at least starts bringing

them into the cache. As a result, streaming extraction interfaces have a latency ad-

vantage over their buffered counterparts. The streaming extraction interface in MM

also adds the side-effect of removing a message word from the incoming message queue

as it is used in an instruction. Since most of the payload in a message is used only

100

IRB

MM

once, this optimization streamlines the extraction process, further reducing processor

occupancy (Figure 6-5).

There are however conditions under which streaming interfaces do not fare well.

With very short messages, the fixed overhead for opening a streaming channel into the

network dominates the per-word buffering overhead, as demonstrated in the memory-

mapped PING results in Figure 6-2. A streaming interface is also unable to exploit

message reuse. Therefore when the message assembly time can be amortized over

several messages such as in DIST, IRS become slower than MM and IRB. In BLKW,

the latency results are similar among the three tightly-integrated designs, as a result

of aggressive software-pipelining compensating for the buffering delay in very large

transfers.

The performance difference between buffered interfaces and streaming interfaces

is proportional to the message length. For fine-grain messages such as those used in

the micro benchmarks above, atomic interfaces incur only a small amount - as low as

10% - of extra overhead. Considering atomicity tends to simplify not only correctness

reasoning but also many practical programming issues, buffered interfaces do have

their rightful place in the message system, especially when robustness concerns are

involved.

6.5.3 Address Translation Facility

In classic message-passing systems, remote objects are often referenced using

(nodeID, localAddress) tuples. This requires the sender program to have up-

to-date knowledge of the physical placement of its remote objects. As a result, the

system must either forego dynamic object placement and migration (for purposes

such as load-balancing), or require the user programs to confirm/update their object-

location database before sending messages. The former approach is too restrictive for

the efficient use of parallel systems, while the latter can be costly and cumbersome

without the proper supporting mechanisms.

The MM architecture remedies the translation issue with the GTLB, which is a

4-entry fully-associative hardware cache that translates a virtual address into routing

101

II

2-

3-

0]

Figure 6-7: GTLB vs

5-

4-

'C

Software Address Translation : End-to-End Latency

I Ks

*MM

* swx2
* swx3ED SWX2
ED SWX3

mum

U]EiII0lPING RPC DIST BLKW

Figure 6-8: GTLB vs Software Address Translation : Processor Occupancy

102

information. In Figures 6-7 and 6-8, the MM model is compared to SWX, which

implements the same functionality in software, without the benefit of the GTLB.

Each bar labeled SWXi represents the latency/occupancy when the sequential-search

SWX implementation finds a match in the ith entry of the lookup table.

Since the overhead in SWX comes from executing the extra instructions in the

lookup subroutine, which incur latency as well as consume processing resources, the

similarity between the two charts is expected. Both figures show that the MM mech-

anism reduces the overhead dramatically, down to as low as i x. For SWX, although

only a moderate incremental overhead (16 cycles latency, 22 cycles occupancy) is

added for each mismatched entry, a large cost is incurred going from MM to SWXO.

This abrupt jump in overhead is in part due to the lookup instructions being im-

plemented as a subroutine instead of being inlined in SWX (and therefore incurs

procedure call overhead), but mostly due to register-pressure, which forces the pro-

gram to spill a number of registers to make way for the lookup instructions.

Although the user program may save the translation result and thereby amortize

the translation cost over a number of messages, it accomplishes that only by incur-

ring the additional overhead of explicitly managing the saved result, and the cost

of cleaning up after an exception should the address-location mapping become obso-

lete. In general therefore, the high cost of software-based translation forms a strong

disincentives for fine-grain messaging.

6.5.4 Dispatch Mechanisms

A multi threaded processor, such as the MAP in the M-Machine, allows multiple

threads of control to be simultaneously installed in hardware, ready for execution on

very short notice. The MM network interface exploits this feature for fast message

dispatch, installing in one of the hardware slots a message dispatcher thread that

activates instantly upon message arrival. Upon activation, the message dispatcher

jumps immediately to a message handler specified by the incoming message. By

contrast, in conventional processors, the currently-running program must be saved

away to make way for the message handler. This thread-swap process constitutes

103

II

125 cycles 177 cyclesINT

poll ret rn 17 cycles

POL

instruction
issue - Context Swap (Full)

MM Z Context Swap (Partial)

- Resident Application

Message
Arrival

Figure 6-9: PING: Latency Components in Message Dispatch

most of the dispatch overhead in such systems.

In a polled dispatch system, the polling program, which is being displaced, needs

to save away only the contents of its live registers that cannot be regenerated easily (6

registers are saved in the experiments). For an interrupt-driven architecture, however,

since the system does not know exactly which of the registers are live, all of them

must be saved away (32 in the experiments), resulting in a very large overhead. The

end-to-end PING latency for the interrupt-driven (INT) and polled (POL) systems

are shown in detail in Figure 6-9 alongside the MM model. Note that for INT, the

thread swap overhead is nearly 18x the time it takes to actually service the PING

request. The polled model, is less inefficient, but still results in a PING response

time that is more than 3x that of MM. Nonetheless, the dispatch speed in a polled

system is variable. Only the best case scenario is represented in Figure 6-9, where

the message arrives exactly when the polling takes place. In the worst case, when

message arrival just misses the poll by one cycle, the message would be dispatched

only 120 cycles later - assuming a poll-frequency of 1 per 120 cycles.

In Figure 6-10, which shows the latency results for each of the benchmarks. The

POLMIN bar indicates the best-case scenario while POLMAX represents the worst-

case. For the INT model, the interrupt handler is designed to check for new messages

104

Inter t
return

-MM

EPOLMIN

SPOL MAX

INT MIN

6 ElINTMAX

0 PING RPC DIST BLKW

Figure 6-10: Dispatch Mechanisms: End-to-End Latency

before returning to the displaced program. The INTMIN and INT-MAX bars in

Figure 6-10 represent the best-case and worst-case scenarios where subsequent mes-

sage arrivals happen to barely hit and miss this check, respectively. Naturally, the

difference between INTMIN and INTMAX is only relevant when multiple messages

are received in rapid succession, as in BLKW benchmark. It should be noted however

that the INT-MIN result for BLKW is deceptively optimistic, as it achieves such good

performance only by shutting out the displaced program for an extended period of

time, until all 103 messages in BLKW have been received. In effect, the benchmark

pays for the interrupt overhead only once, which is not a realistic scenario normal

network loads, and not a desirable condition as far as the application programs at

the receiving node are concerned.

The disparity between POLMIN and POLMAX illustrates the high variability

in dispatch speed that can be expected in a polled interface, while the results for

both INTMIN and INT.MAX demonstrate the very high overhead in an interrupt-

driven system. In contrast, the handler designated by the message is able to activate

almost instantly in the MM interface, showing that very low overhead dispatch is

very amenable with multi threaded hardware, without the higher cost of dedicated

105

Legend

SWX IMB EMBINT 300W

SWXIMBEMB_POL

400 .]SWXIMBEMB 20 -
SWX IMBEMS

Z CL SWXIMSEMS

300 _44
tj SWX

- MM RPC

200 -........

600) -

400 -

4((X)

C. 200) 185

0 1 0

PING DIST

Figure 6-11: Incrementally Enhanced (Memory-Mapped) Interfaces

message handling co-processors.

6.6 Combined Effect of MM Mechanisms

The effects of incrementally combining the mechanisms in the MM architecture are

shown in Figures 6-11 and 6-12. For PING and RPC, the results show that a signifi-

cant portion of latency reduction comes from eliminating the context swap overhead

upon message arrival. In particular, in Figure 6-11, about 60% of the improvement in

PING is accomplished when interface switches from an interrupt-driven mechanism

to a polled protocol, and then to the multi threaded MM architecture. Because of the

small size of the PING messages, the various combinations of atomicity options do not

have much impact on this benchmark, until the interface departs from the memory-

mapped model for the register-mapped MM model. This change in mapping accounts

for almost 30% of the performance boost. Finally, the remaining latency reduction is

attributed to the fast address translation mechanism in the GTLB. In sum, the MM

architecture shortens the PING latency by approximately an order of magnitude, even

without considering software layers often present between user threads and the net-

work in more classic systems, over a interrupt-driven, fully-buffered, memory-mapped

106

Legend

SWXIRBERB INT 2(X-

300 L--I SWXIRBERB POL 150

SWXJIRBERB

SWXIRBERS 100

- SWXIRSERS

-SWXIRS 50-

200 -SWX
MM RPC

~ 600-

0

PING DIST

Figure 6-12: Incrementally Enhanced (Register-Mapped) Interfaces

interface with no hardware address-translation support.

The above trend is quite evident for PING and RPC in both the memory-mapped

and register-mapped lineages. The results for DIST are however slightly different.

As described earlier, the DIST benchmark is not very effective in highlighting the

impact of receiver-side mechanisms because the eight receivers in the benchmark are

able to overlap the extraction of their corresponding messages. Therefore the effects

of the dispatch and extraction mechanisms do not show up as clearly in Figures 6-11

and 6-12. On the other hand, as DIST delivers messages to multiple targets, the

impact of the translation facility is much more pronounced.

Common across all these results however is the fact that for fine-grain messag-

ing with user-level mechanisms, the actual transfer of the message words between the

program and the network accounts for a relative small part of the overhead. The dom-

inant costs are due to address-translation at the sending side, and message-dispatch

at the receiving side. Optimizing those two components should therefore yield sub-

stantial performance improvements. The choice of atomicity models is significant only

when these two costs are minimized to the extent they are in the MM architecture.

107

II.-

6.7 Summary

The micro benchmarks show that the mechanisms in the M-Machine architecture

collectively provide a substantial performance boost - up to an order-of-magnitude

better than the traditional interrupt-drive, memory-mapped, buffered design - even

when no additional software layer is present between the program and the network.

Results show that the memory-mapped interface is slow, address translation with

insufficient hardware support is a bottleneck, and above all, the very high thread

swap overhead for invoking the message handler is a severe limiting factor in the

conventional message system. On the other hand, while register-mapped interfaces

are more efficient, the benefits may be diminished due to register-pressure if the

register file is too small. In terms of atomicity, the additional delay incurred in

buffered interfaces appears to be insignificant for small messages.

The interface models discussed in this study require message injection to be ex-

plicitly managed by the user program. Their performance however is not necessarily

inferior to systems that incorporate a communication co-processor or DMA (Direct

Memory Access) engine to offload the messaging operations from the main processor.

In particular, for fine-grain messaging, the potential performance improvement in the

latter is defeated by the overhead of initializing a DMA engine or passing parame-

ters to a co-processor. For large transfers, as in the case of the BLKW benchmark,

the lower occupancy factor in DMA-based systems may put it in a more favorable

position. But in any case, given the 1 word per cycle memory/network bandwidth

in these simulations, end to end latency is lower-bounded at 1024 cycles for the 1

Kword transfer in BLKW, compared to which the software-packetized MM model is

only 2.6x slower. Therefore, for a system targeted primarily at fine-grain compu-

tation, such co-processing/DMA hardware features may not be cost-effective. Their

inclusion into the architecture is however in no way precluded by MM and the other

models used here.

108

Chapter 7

Communication Overhead and

Fine Grain Parallelization

Fine grain parallelization is the key to very-high-performance computing. On one

hand, a recent study [8] shows that many common applications have grain sizes as

small as 70 cycles. This implies that even small problems can be accelerated through

parallelization. On the other hand, increasing chip density and current research di-

rections [2, 3, 4, 5, 6, 7] suggest that inexpensive components will be readily available

for constructing affordable massive machines with many thousands of processors. To

effectively take advantage of such machines, existing applications have to be bro-

ken down into many more, much smaller tasks. Both scenarios thus rely on the

successful exploitation of fine grain parallelism. Unfortunately, these opportunities

are hampered in current multicomputers that have 100s - 1000s cycles of messaging

overhead, which negates the gains from fine grain parallelization. To amortize the

high communication cost, the programmer is confined to using run lengths of tens of

thousands of cycles.

To exploit fine grain parallelism, a more efficient messaging system is necessary.

But how low does the overhead have to be? Design effort, system robustness, and

programming complexity must all be balanced with the desire to support smaller

grain sizes. To help understand the tradeoffs, this chapter focuses on how perfor-

mance, communication overhead and grain size relate to one another. The study may

109

be reminiscent of the LogP model proposed by Culler et.al. [60]. The LogP model

is aimed at characterizing the capability of multicomputers in a small number of pa-

rameters - latency, processor occupancy, minimum messaging gap, and the number

of available processors - and understanding how parallel programs may be structured

to take most advantage of the existing platforms under those constraints. In contrast,

the analysis here adopts an architect-centric view, and is more concerned with un-

derstanding the requirements imposed on the communication system under fine-grain

computing.

Grain size is the unit of parallelization, or the size of self-contained parcels of work

being assigned to the processors. Each such parcel of computation is performed by a

single thread, and runs to completion from an initial state without requiring further

synchronization or updates from other threads. The run length is the amount of time,

in terms of processor cycles, needed to complete this computation. As an example,

in a particle simulation problem, the grain size may be expressed in terms of the

number of particles allocated to each parallel thread. The new state of each group

of particles can be computed independently, and the updated values are propagated

to the appropriate neighboring processors, where they are needed only in the next

phase. The time it takes for a thread to complete one such iteration of computation

over all its particles is the run length, during which multiple messages may be sent.

The minimum grain size is limited by the complexity of managing the increased

parallelism itself, e.g. it would be counter-productive to split the computation for

a single particle onto multiple processors in example above. This smallest, natural

grain size, G0, is thus a basic limit in fine grain parallelization. The maximum

performance at G, is seldom accessible, as the speedup is negated by communication

and synchronization overhead. In addition, diminishing returns force the programmer

to use a larger implementation grain size 1 and fewer processors, in order to maintain

an acceptable level of resource usage efficiency. Parallelization is also constrained by

the amount of computational work available to go around within a given problem,

'In other words, natural grain size is inherent to the problem/algorithm, and implementation
grain size is chosen by the programmer. In this chapter, when not specifically distinguished, grain
size refers to the latter.

110

and the number of processors available for use. In this study, I assume that processors

are plentiful, the data set size D is fixed 2, and focus on developing a performance

model that expresses execution time T, as a function of grain size G and messaging

overhead in the forms of latency and occupancy.

While the shape of the T, function is specific to each application, the effects of

latency and occupancy are commonly influenced by slack and message traffic. Slack

is the time elapsed from the creation of a critical datum till it is needed by the con-

sumer. It is known to mask the deleterious effects of latency. Message traffic refers to

the communication pattern and the ratio of the number of messages to computation.

Increased traffic accentuates the effects of occupancy. These behaviors are discussed

in Section 7.1. In Section 7.2, a sample performance model is constructed, using a

simple LIFE program with a natural grain size of 38 cycles, as example. A few sim-

ulation experiments are also conducted, which validate the model. The performance

model enables the sensitivity analysis in section 7.3 for determining the impact of

communication overhead on accessible grain size, and consequently performance and

efficiency. Both processor occupancy and latency are found to be limiting factors

in fine-grain applications, although the latter is partially hidden by slack. Results

show that performance and efficiency degrade rapidly when communication overhead

dominates the run length.

For this study, I concentrate only on recurring costs, and ignore initialization and

termination overhead which correspond to the initial distribution of work and data to,

and the eventual merging of results from, the processors. Although they do tend to

grow with the degree of parallelization, these one-time initialization and termination

costs have limited impact in most reasonably sized applications.

2Since the objective is a faster solution for the given application, the problem size must not be
scaled up arbitrarily just to compensate for falling efficiency.

111

II

k
datum generated k occupancy

by producer 0

I I I
compute send

latency

datum available
to consumer

Figure 7-1: Communication Overhead

7.1 Overhead and Performance

Communication overhead consists of latency and processor occupancy, as illustrated

in Figure 7-1. The terms k, and v, represent the fixed and variable components of

processor occupancy - the former is always incurred for every message, and the later

is proportional to the message length. Latency is represented as the constant k, in the

diagram. The absence of a variable latency component is due to the assumption of

a wormhole-routed, streaming reception interface in this study. An atomic injection

interface is assumed, so there is no overlap between k; and v. Note that receiver

side occupancy is not explicitly represented in Figure 7-1. As parallel applications

typically have recurring phases and every message received must have been sent during

some previous phase, it is sufficient to account for the receive overhead at the next

injection point '. This approximation simplifies the model greatly.

3 Even in cases where many messages sent in parallel from different senders are serialized at one

receiver, the hot-spot receiver eventually has to send out the responses serially too.

112

critical datum
produced critical datum

slack produced

X | I
| X X | X X |- | X ** X -

k I k

K- I01 I LT LL

slack slack

__________________ sackfinally arrives to

already available daneybe consumed
for consumption datum neededs

when needed before it arrives

arrives X critical datum produced thread blocked
before needed

X datum needed by consumer
(A) slack >= kI X datum actually consumed (B) slack < k

Figure 7-2: Slack in Tightly Synchronized Applications

7.1.1 Slack and Latency

Slack is the time from the creation of a critical datum, to the point of it being needed

at the destination, as shown in Figure 7-2. Processor occupancy has been omitted

for clarity in the diagram, which depicts a pair of producer-consumer threads. As

illustrated in Figure 7-2A, up to the size of the slack, latency has no effect on the

execution time, because the message arrives before it is needed. However, if the

latency exceeds the slack, the consumer has to idle its resources and wait for the

datum it needs, as shown in Figure 7-2B.

The above scenario represents a program that is tightly synchronized, where each

thread must stall if the update message has not arrived when it is needed. A different

behavior is found in more loosely synchronized applications, where the program is

allowed to skip an iteration or reuse an old value if an update has not been received.

This behavior, illustrated in Figure 7-3A, can be seen in search problems or incre-

mental algorithms where an intermediate, approximate result is gradually improved

over many phases using currently-best information.

113

(A) Loosely Synchronized

I pipelined

lslack slip

K

x.

1K K
slip

Kt

K Kx..K .

............K
x

.........K
K *

adjusted slack

consumed pipelined

X critical datum produced

X datum needed by consumer

® thread slipped

X datum actually consumed

(B) Tightly Synchronized

blocked blocked blocked blocked

x x

.ol .00 j

x - x-
blocked blocked blocked *

Figure 7-3: Slip in Loosely Synchronized Applications

114

initia

k

produced

K

K
x

x xI X I
I

k

X X X
FX X X X 1X X - - --

k
X Produced

X Needed

X Consumed

thread block

X X

thread block

Figure 7-4: Pipelined Applications

In such programs, the threads are able to slip relative to one another, which in

effect changes the slack dynamically. Slippage tends to gradually create a pipelined

pattern among the threads. Eventually fresh data becomes always available for con-

sumption before it is needed. As a result, save for a few iterations right after cold-start

and before termination, the effects of messaging latency are virtually eliminated. Fig-

ure 7-3B provides a contrast, where tightly-synchronized threads which are unable to

slip continue to block periodically throughout their entire execution.

Similar latency masking effects can also be observed in applications with an in-

herently pipelined dependency pattern. Figure 7-4 illustrates an example where each

thread produces data only for the next thread, a characteristic often found in graphics

manipulation and signal processing applications. Each thread is blocked until its first

update message arrives, but they all merge into a pipeline eventually, and message

latency is masked.

For sufficiently long-running programs, network latency can be left out of the

performance model in the last two categories. Only a few iterations are needed to

prime the pipeline the former case. In the latter case, it may take as many iterations as

the number of threads. For strictly synchronized applications with a tight dependency

loop, the latency effect must be considered carefully. Ignoring the initial offset, the

115

execution time for the fragments shown in Figure 7-2, for instance, can be modeled as

[i x (C + max(O, k; - s))], where i is the number of iterations, C is the per-iteration

computation time for the corresponding grain size, and s represents the slack. Note

that slack may in fact have a negative value, if the datum is generated way too late.

7.1.2 Message Traffic and Occupancy

Interestingly, it may seem at first that occupancy is also subject to masking, in

that it adds to the overall execution time only if it displaces productive computation.

Figure 7-5 for example shows an otherwise idle "elastic zone" which apparently allows

a much higher message-induced occupancy without affecting the runtime. In the

larger picture however, this is seldom the case, for the elastic zone most likely exists

in the first place because the thread is stalled waiting for an incoming message. With

higher occupancy, the message would arrive even later. The overhead is only shifted,

not masked. Each additional cycle of processor occupancy on the critical path is

essentially a cycle taken away from productive computation.

X Produced

X Needed

X Consumed
dX

elastic Zone

Figure 7-5: Supposed Elastic Zone

Multiple messages with the same destination are often bundled together in coarse-

grain applications to incur fewer instances of the k, occupancy, as illustrated in Fig-

ure 7-6. This is however ineffective in systems with small k, and short run lengths, as

the savings are defeated by the overhead in reorganizing the communications. Fur-

thermore, message bundling changes the slack and may add to stalling, as shown in

Figure 7-7. Therefore, the potential gain from message bundling is limited in fine-

grain systems, and will be ignored in the performance model. To cap the benefits

of bundling under large values of ko, the execution time for a message-bundled pro-

116

same destinations

Message Bundling

bundling
overhead

,net
savings

Figure 7-6: Message Bundling

gram can be approximated by factoring out the appropriate instances of k, from the

simpler model. For a thread that sends m messages of size w, the runtime can thus

be modeled simply as C + (m x (ko + w - v,)) - recall that k, is incurred for every

message, and v, is incurred by each message word.

7.1.3 Grain Size, Slack, and Message Traffic

The T, model is instrumental for understanding the important fine grain architec-

tural issues - What amount of overhead is acceptable? What size multicomputers

are useful? How fast must the network be? To answer these questions, the overall

execution time under different degrees of parallelization and overhead can be ob-

tained by expressing C, s, w and m, and the number of phases in terms of grain size.

For instance, in a matrix application with a many-to-many traffic pattern, as the

problem is distributed to more processors, the number of messages sent and received

by each thread also increases. On the other hand, as grain size shrinks, the slack

also tends to shrink, as less computation is performed between messages. Naturally,

the relationship is specific to each applications, and the architect has to understand

the applications he wishes to support. In the rest of this chapter, I construct the

T, model for a sample application and show how it is used to understand how the

program responses to communication overhead.

117

slack

Message Bundling

I X | X I I

X Produced

K Needed

X Consumed

X

Figure 7-7: Message Bundling and Slack

7.2 A Sample Application

A simple application, LIFE is used to demonstrate the construction and analysis of

a performance model. It uses a phased algorithm, and has a natural grain size of

about 38 cycles. A nearest-neighbor messaging pattern is involved in LIFE, which

has strict dependencies among threads between phases that precludes unrolling and

similar software techniques. This example is simple to understand and analyze, yet

bears a close resemblance to a broad class of real applications based on relaxation-like

algorithms.

0000
000

0000
0000 Odead

* alive

Generation r

0000
0000
0000
0000

Generation (r+1)

Figure 7-8: 16-Cell Game of LIFE

The LIFE program is an implementation of Conway's Game of Life [14] simula-

118

tion. It models a 2-dimensional, toroidal array of cells. Each cell is surrounded by

8 others, and contains a value of either 0 or 1, representing respectively the absence

and presence of a living entity in the cell. The game is played in terms of generations,

with an arbitrary pattern of Os and Is occupying the array during the initial, 0 th

generation. At the end of each generation, the status of each cell changes according

to the following birth-death rules. A 16-cell example is shown in Figure 7-8 4.

" Birth

If a dead cell (containing the value 0) has exactly 3 live neighbors (containing

the value 1), a new being is born. resulting in the cell having a value of 1 in

the next generation.

" Death

If a live cell is surrounded by 4 or more other live neighbors, it dies of over-

crowding and gets the value 0 in the next generation. A live cell that has fewer

than 2 live neighbors also dies, but of loneliness.

" Survival

If a live cell has exactly two or three live neighbors, it survives and remains un-

changed. A dead cell also remains unchanged if it has 2 or fewer live neighbors.

In this implementation, each processor is responsible for a rectangular section of

the the LIFE environment, containing V x Y cells (Figure 7-9), where N and P

represent the number of cells in the system and the number of processors, respectively.

During each phase, every processor iterates over all the cells it hosts, and sends their

updated status to the relevant neighbors. As an example, the messages that must be

sent by processor 2 are shown in Figure 7-9 (the edges wrap around to form a torus).

Each thread blocks at the beginning of each phase until all expected updates have

been received. No redundant messages are ever sent to the same processor. Message

bundling is not attempted in this implementation.

4 For simplicity, the toroidal array is represented as a rectangle in the illustrations.

119

II

--- message

processor1

processopOocessorO@3

140Ju rw 00 0 0 1 procesor

processor 2 10, K1 0 '

Y Y VY Y\ __

Figure 7-9: 64-Cell LIFE: Distribution of Cells onto 4 Processors

7.2.1 Constructing the Model

For concreteness, I consider the execution time for 1000 generations of an 8 x 8-

cell LIFE system, using P =p1, 4, 16 or 64 processors in P x / configurations,

corresponding to grain sizes of 64, 16, 4, and 1 cell-per-node. A fully connected

network is assumed, and contention within the network fabric is not modeled.

The LIFE program involves a tightly synchronized algorithm with a nearest-

neighbor traffic pattern. Each node hosts a number of cells and computes their

new values serially during each phase. Figure 7-10 shows LIFEs 4 as it is parallelized

to four cells per node (16 nodes), and to one cell per node (64 nodes). Each processor

sends 2-argument update messages to its neighbors as soon as it finishes computing

the new value for each cell. In the critical path, the last-generated value on some

processors also happens to be the first-needed value on some of their neighboring

nodes . This gives the worse-case slack, where the update information is needed

about 6 cycles after the consumer finishes sending its own messages in the current

cThe slack may be lengthened by making each processor update its internal cells (cells whose
neighbors all reside on the same processor) last. This optimization is not implemented as it is not
applicable at the small grain-sizes shown in Figure 7-10 - there are no internal cells. The only
configuration with internal nodes in LIFE 4 is the one-processor configuration, where slack does not
matter. For larger problem sizes, the effect of such an optimization can be captured by expressing
the slack in term of the number of internal cells: s = (Vd - 4)2 . Ccel.

120

update cell 0

cell 0 cell 1 cell 2 cell 3

injection of
cell 0 update messages I

worst-case
slack-s

phase i

I ~ ~~~~~ Iii V11IIIIl
h

atency o0 o

o o
- - - -

3 messages

phase (i+J)7

(A) 4 Cells per Node

latency

worst-case ~
slack 8 messages

(B) 1 Cell per Node

Figure 7-10: Fine-Grain Parallelization of LIFE

phase. For the one-cell per node configuration, this yields a slack that is equivalent

to 6 cycles beyond the injection overhead of 8 messages, for a total of about 78 cycles

(Figure 7-10). For all other configurations, the slack is about 33 cycles, corresponding

to 6 cycles beyond 3 message injections, which is the maximum number of update

messages for any one newly computed value in those configuration.

Since no bundling is attempted, the absolute number of messages sent by each

processor in each generation is reduced as the grain size shrinks in LIFE. In every

generation, the one-cell/node configuration requires 8 update messages for each value

computed, the four-cells/node configuration uses 12 messages for 4 values, and the 16-

cells/node configuration sends 20 messages in the course of computing 16 new values.

In general, 4 - (1 + f) messages are required for an n-cells/node configuration. The

execution time for one thousand generations of LIFE parallelized to have V x

cells hosted on each processor is thus captured in the following equation:

T ,IFE = 1000 X [n Cceil + 4 * (1 + v/?) (ko + 2 ' v,) + max(0, k - s)]

121

W

II.~

The time for computing a new cell value, Cceii, is approximately 35 cycles in

this implementation. Notice that the runtime is minimized when the application is

maximally-parallelized. However, since both the occupancy and latency stand to con-

tribute significantly to the overall runtime when n is small, fine-grain parallelization

is rendered inefficient if either is significant compared to Cel.

7.2.2 Experimental Results

To test the correctness of the model, the 64-cell LIFE program is hand-coded in M-

Machine assembly language for P = 1, 4, 16 and 64 processors, and executed on the

msim simulator [59]. Execution time is measured for 1000 generations of LIFE. The

initialization and termination costs are factored out. The experiments are conducted

first under the base overhead of the M-Machine (MM) message system, and then

with additional cycles of latency and processor occupancy. The base latency in the

M-Machine is 11 cycles 6, while the occupancy costs k, and v, are 5 cycles and 1

cycle, correspondingly. The results are found to be in agreement with the theoretical

model.

Figure 7-11 shows the execution time for LIFE, charted against latency. The

measured results are shown as the solid lines while the predicted execution times are

represented by the dotted lines. As expected, LIFE is sensitive to latency when the

slack is exceeded, with a slope of approximately 1000, corresponding to the number

of generations executed. In the measured results, a shorter slack of about 21 cycles

is observed - bear in mind the base MM architecture has 11 cycles of latency. The

discrepancy between the predicted and measured results, in terms of the observed

slack and total execution time, is likely due to an inaccurate estimate for ki. Under

zero-contention, k, is 11 cycles at the origin of the chart in Figure 7-11. However,

when multiple messages share the network ports, the base latency increases due to

contention.

6This includes both the routing latency in the network fabric, and the message handling time on
the receiver processor. As the M-Machine dedicates a thread slot to message handling, the receiver
side occupancy does not affect the user thread at all.

122

2000000 Single Processor

1500000 -

1000000

4 Processors

500000-

16 Processors

020 410 60 80 11o
Latency (cycles) Added to MM Architecture

64-cell Game of Life

Figure 7-11: LIFE6 4 : Runtime vs Latency

123

The results also suggest that fine grain computing is indeed very viable, given

an efficient communication system. Using the low overhead message system in the

M-Machine, very good speed up is observed at 4 processors (about 4x), 16 processors

(more than 8x), and even down to the very fine grain size of 1 cell-per-node - 12x

speedup at 64 processors, The speedup curves under different latency and occupancy

values are shown in Figure 7-12.

15- -- 4- Base MM Overhead
-A- - Latency + 1 (cycle)

-- 0- Latency+10
- -0- Latency + 100
- -0- - Latency + 500

A---- Occupancy +
0--- Occupancy + 10

--- Occupancy + 100
-e- Occupancy + 500 -.A

10 --

-

Single Processor

0
I0 20 40 60

Processors

64-cell Game of Life

Figure 7-12: LIFE6 4 : Speedup

124

2(XXXXX)

15(XXXXX) -

S1(XXXXXX) -

5(XXXXX)-.

Single Processor

0 2(4(X) 6) 8(X) 1(X)
Processor Occupancy (cycles) Added to MM Architecture

64-cell Game of Life

Figure 7-13: LIFE6 4: Runtime vs Occupancy

The impact of processor occupancy on the execution time is also shown in Fig-

ure 7-13. Again, the measured results are plotted in solid lines, while the predicted

values are shown in dotted lines. Reflecting the 4 (1 + v~/) coefficient for k, discussed

earlier, the sensitivity towards occupancy goes down as more processors are used. As

expected, processor occupancy is a severe limitation for parallelization of LIFE. At

about only 225 cycles, parallelization of LIFE6 4 becomes counter productive for every

one of the implemented grain sizes. It should be pointed out that the experiment

methodology plays a role in the accuracy of the predicted results in Figure 7-13. In

the experiments, occupancy is varied by calling on a feature of the msim simulator

to explicitly stall the pipeline for the desired number of extra cycles after each SEND

instruction is issued, but before the message is injected. All three function units

(IALU, FALU, and MEMU) are made unavailable for this duration to simulate occu-

pancy by message-related operations. In reality, such operations may occupy only a

subset of the function units, and productive computation can be interleaved with the

125

message operations. Nonetheless, this artifact is not expected to significantly impact

the results, since all three function units are needed in each iteration of the LIFE

program. It cannot make progress beyond an iteration if any one of the units is busy

with message-related operations.

7.3 Sensitivity Analysis

By varying the various parameters in the T, expression, much can be learned about

the general fine-grain behavior of the target application. In the case of LIFE, both

performance in terms of speedup of total execution time, and efficiency - measured as

speedup - are extremely sensitive to processor occupancy. It is found that (ko+w -v,) <P

50 and k; < 200 are highly desirable. In particular, very low occupancy (< 10 cycles)

is a critical factor for large scale multicomputing, enabling the high efficiency (>

50%) necessary for 1000-processor machines to be economically viable, and providing

thousand-times speedups when performance is the main goal. Since w is small for

LIFE, and k, is the bulk of the communication overhead in most existing system, the

effects of k, and v, are not separately discussed.

Figure 7-14 plots the best achievable speedup for LIFE, against communication

overhead. The chart is normalized to the linear speedup computed at the grain size of

1 cell per processor. This represents the best possible parallel performance under the

given communication overhead, as a fraction of the theoretical maximum. The curves

are obtained by selecting the best results among all different grain-size configurations

of LIFE, assuming that an infinite number of processors are available. Since the

perfect speedup scales with problem size - theoretically, a larger problem allows the

use of more processors for a higher speedup - the curves are independent of problem

size. With zero overhead in the communication system, 60% of linear speedup can

be achieved '. The performance however tails off extremely quickly as processor

occupancy increases, dropping to 34% at 5 cycles of occupancy, and less than 4% at

TLinear speedup is not achieved even with zero overhead, because extra instructions are added
to coordinate the parallelized computation.

126

100 cycles of occupancy. The subsequent region of the occupancy curve suggests that

efforts to reduce processor occupancy do not pay off as far as fine grain performance

is concerned, until it is brought well under a hundred cycles. On the other hand, the

steep slope from k, = 100 -+ 0 indicates that very much can be gained if occupancy

is further lowered, to zero ideally. The latency curve shows a less severe impact, and

reflects the slack effect. At least for this application, it appears that it is sufficient to

keep latency under about 200 cycles, which is within the capability of most existing

multicomputer networks.

1.0 - --
Linear Speedup @ I Cell/Processor

0.8-

Zero Comm. Overhead Speedup
--0.6 -. - - - ..

0.4

0.2-

Latency
Occupancy -

0.0-...............
0 100 200 300 400 500

Overhead (cycles)

Figure 7-14: Overhead Limits Performance

The curves in Figure 7-14 also suggest that the very fine grain parallelism of

LIFE is impractical in existing multicomputers, where the communication overhead

ranges from many tens to many thousands of cycles. To maintain an acceptable level

of efficiency, these architectures must rely on much larger grain sizes to amortize

the communication cost, compromising performance in the process. In particular,

Figure 7-15 shows the speedup of a 16K-cell LIFE program under different grain sizes

when an efficiency level of at least 30% is imposed as a constraint. While the M-

Machine easily supports the smallest grain size to achieve a speedup of more than

5000 x, the maximum speedup drops to less than 100 x when occupancy rises to only

127

M-Machine Problem Size = 16K Cells
Desired Efficiency >= 30%

Lat 100.

1000-

Lat 1000 L

100 -p

@Ocp 200

10 10

Ocp 500

Ocp 10000

1 4 6 64 256 1024 4096

Grain Size (Cells/Processor)

Figure 7-15: Overhead Limits Speedup

a hundred cycles.

This larger grain size requirement in conventional designs also constrains the util-

ity of massive multicomputers which have a large number of processors. For instance,

the maximum number of processors that can be deployed without going below 30%

efficiency is shown in Figure 7-16, for problem sizes ranging from 64 cells to 16384

cells. The quantized behavior of the curves is simply due to LIFE being distributed

into even power-of-2 cells per node in this implementation. As overhead increases,

a larger problem size is needed to justify a particular machine size. For instance,

a 256-processor machine hosts a 256-cell problem efficiently if the occupancy is no

more than 7 cycles. When the overhead exceeds 120 cycles however, a much larger

16384-cell problem is needed to make good use of the processors. This suggests that

very-low occupancy is a necessary enabling factor for economical, large scale paral-

lelization. Without it, the utility of large machines is limited to less common, huge

sized problems.

Conversely, with adequately low overhead, not just huge problems, but even mod-

erately sized ones can employ a large number of processors very efficiently. Figure 7-17

shows a set of "iso-efficiency" curves. With implementation grain size on the vertical

axis, these curves are independent to problem size. Given the M-Machine system

(k, ; 7) for example, 50% efficiency is easily obtainable for grain sizes down to 4 cells

128

W

300-

200-

100-

0-

30% Efficiency

256
i .

409Y 16384ptsI.-0'Pt

100 200 300

Occupancy

Figure 7-16: Overhead Limits Utility of Massive Multicomputing

75% 50% 25% Efficiency
1000-

800-

600-

r 400-

200-

0-
0 200 400 600

Occupancy

Figure 7-17: Overhead Limits Efficiency

129

6

per node, and even 75% efficiency is attainable, with a 64 cells grain size. In other

words, up to 256 processors can run at 50% efficiency with a problem containing just

1024 cells, and reach 75% returns if a large 16K-cells problem is available.

While these analyses are specific to the LIFE program, they are useful for un-

derstanding the fine-grain behaviors of other relaxation-like algorithms exhibiting a

nearest-neighbor traffic pattern. The performance/efficiency response to communi-

cation overhead can be obtained for such applications easily, by varying the C 11

and s parameters value in T, accordingly. For other applications with more complex

communication patterns, separate models will have to be constructed.

7.4 Conclusion

Fine grain parallelization with thread lengths of around 100 cycles, used whether

for accelerating a small application or exploiting a massive multicomputer, relies on

an efficient communication system. Without it, the performance gain is negated by

messaging latency and occupancy that dominates the short run lengths.

Although latency is sometimes masked by slack, occupancy displaces productive

computation from the processing resources, and is generally not maskable. To under-

stand the architectural issues in supporting a fine grain application, it is necessary

to understand how its performance relates to grain size, occupancy and latency. The

construction and analysis of such a model is demonstrated using LIFE as a simple

example. Under fine grain parallelization, the performance response to occupancy is

found to be extremely steep under 100 cycles, but is largely insensitive beyond that

region. Latency has a similar but less severe impact, but only takes effect when the

slack is exceeded. It appears that (ko + w - vo) < 50 and kr < 200 are extremely de-

sirable. At these levels, efficiency levels of > 50% are easily attainable with a number

of processors that is just an order of magnitude lower than the problem size itself,

e.g. 1000s of processors for the 16K-cell LIFE. The maximum achievable speedup is

also only an order of magnitude below the problem size numerically - several 1000 x

for the 16K-cell example.

130

The reader is cautioned against drawing generalized conclusions from these specific

results. Nonetheless, with appropriate parameter substitutions, the analysis readily

applies to the broad class of applications that share the traffic pattern of LIFE. More

importantly, the example demonstrates the viability and potential of large scale, fine

grain machines, and shows how the Latency, Occupancy and Grain Size model can be

used to understand the important architectural issues in fine grain computing. Many

more such models should be constructed for other classes of common applications,

for a full understanding of the general tradeoffs.

131

Chapter 8

Conclusions

High performance fine-grain multicomputing demands a communication system that

is both efficient and robust. In this thesis, I developed an analytical model to

better understand the architectural issues in designing the messaging interface. It

demonstrates that large-scale, fine-grain multicomputers are a viable concept that

can achieve very high performance if communication overhead is kept low. In par-

ticular, in an example program, LIFE, speedup of several 1000x is observed when

processor occupancy is kept to below 10 cycles.

In addition, I quantified the overhead incurred by different primitive mechanisms

in the design space of modern message interfaces, and found that the high context-

switch cost in dispatching message handlers is the critical factor. I also addressed

the robustness problem plaguing many existing designs. Recognizing open-ended

allocation as a fundamental cause of starvation hazards that necessitate expensive

software workarounds in existing machines, I demonstrated that a simple solution

can be found in bounded time lease schemes. Taking advantage of the guarded pointer

light-weight capabilities system and carefully integrating it into the messaging facility,

I devised an enforcement mechanism for trusted handlers, thereby closing a major

protection loophole in existing message-handler based interfaces.

The concepts discussed in this thesis are validated in the M-Machine communi-

cation system. It serves not just as an example for future designs, but also as an

affirmation to the importance of incorporating complementary mechanisms into the

132

iPSC/2

NOW SP2

Myrinet-VMMC

AP1000

1000 Paragon

CS-2 iWarp

Shrimp

T3D Alewife

CM5
100 FLASH

J-Machine

(:M-=Machine)

10

Virtual Gan g D Programming Logical aailteOS anor Shduling GID Crneto ng laio Capabilities

Robustness Mechanism

Figure 8-1: M-Machine, Relative to Past and Present Multicomputers

system. The simple M-Machine mechanisms - carefully chosen to supplement one

another - constitute one of the fastest message interfaces ever proposed (Figure 8-1)

when taken together, without sacrificing cost effectiveness, starvation-freedom, nor

protection.

8.1 Fine Grain Computing

Exploiting fine-grain parallelism is the key to high performance computing. By break-

ing down problems down into short threads that are no more than a few hundred

instructions long, fine-grain parallelization makes it possible to accelerate a fixed size

application beyond current limits, and to take advantage of large-scale multicom-

puters made affordable by emerging highly integrated components [2, 3, 4, 5, 6, 7].

However, although task lengths as short as 70 cycles have be found in common bench-

mark applications [8], programmers in general are still unable to take advantage of

133

1.0 - --
Linear Speedup @ 1 Cell/Processor

08-

Zero Comm. Overhead Speedup
S 0.6 -- - - -- - - - - - - - - - - - - - - - - - - -

S04

02-

- -- Latency

L Occupancy -----

0 100 200 300 400 500

Overhead (cycles)

Figure 8-2: Fine Grain Performance and Communication Overhead

parallelism at that level, due to the high communication overhead in current machines.

To understand the impact of messaging overhead, an analytical model relating

performance to Latency, processor Occupancy, and Grain size - the LOG model -

is developed for a sample application, LIFE, with a thread length of ~40 cycles. It

is found that while latency is sometimes masked by slack, occupancy is generally

unmaskable. Results (Figure 8-2) suggest that performance is extremely sensitive in

the region where occupancy < 50 processor cycles and latency < 200 cycles. On the

other hand, optimization efforts that tune the communication overhead in the range

of 100s - 1000s of cycles appear to be ineffectual for improving performance in very

fine-grain programs, such as the implementation of LIFE in this thesis. They are

beneficial only if more computation is packed into each thread, to increase the grain

size to many thousands of instructions.

The fine grain model is indeed very viable and capable under sufficiently low com-

munication overhead. In particular, with occupancy < 10 cycles, efficiency levels of

> 50% are easily achievable, even when the problem size is only a order of magnitude

larger than the number of processors (e.g. 1000s of processors for 16K-cell LIFE),

while speedup as high as just an order of magnitude below the problem size is also

possible (several 1000x for 16K-cell LIFE).

134

8.2 Communication Overhead

Communication overhead stems from three sources: (a) operating system involve-

ment, (b) software workarounds and (c) incompatible primitive mechanisms. The

operating system has traditionally been used to abstract the messaging facility from

user programs. By requiring user-level messaging operations to be managed by the

OS, high-level properties such as order-preserving delivery, end-to-end flow-control,

error-correction, transparent address-translation and access-control can be provided.

However, while this presents a convenient interface, the overhead of switching between

user-level and system-level domains is prohibitive to fine-grain computing.

Having abandoned the OS-managed model in favor of more efficient user-level

interfaces, most modern systems are inadequate in supporting higher level commu-

nication needs. Consequently, software workarounds are needed to make up for the

missing high level properties, which account for up to 70% overhead [34]. Many

designs are vulnerable to starvation problems due to their open-ended allocation of

critical resources. It is shown that bounded-time lease schemes that assign resources

to users for only bounded periods of time make a good defense against starvation

risks. In message-handler based dispatch systems - a model widely-adopted due to

its flexibility in allowing the user to specify an optimized handler for each message

- protection risks due to malicious or erroneous handlers are abound. As a solution,

the guarded pointers, a lightweight capability mechanism described in [13], is shown

to integrate well with the message system, allowing the system to regulate the data

as well as the handlers accessible to each user program.

Primitive mechanisms in the message interface must be complementary to avoid

redundancy and oversights in functionality. Their design space (Figure 8-3) is con-

sidered in three aspects: (a) mapping - memory vs. register-mapped, (b) atomicity

- buffering vs. streaming, and (c) dispatch - interrupt-driven, polled, or dedicated

hardware. Microbenchmark studies (Figure 8-4) show that interface overhead is

reduced by an order of magnitude when a traditional interrupt-driven, fully buffered,

memory-mapped interface is replaced by a processor-register mapped, atomic injec-

135

Dispatch

Interrupt

Polled

Dedicated Context Atomicity

Streaming _ Buffered

Memory

Register/Instruction

Mapping

Figure 8-3: Primitive Mechanisms Design Space

tion, streaming extraction interface that also incorporates a hardware address trans-

lation facility and dispatches messages in a dedicated hardware thread slot. The

elimination of context-switching upon message arrival accounts for 60% of the over-

head reduction, while the mapping and atomicity choices together contribute 30%

of the improvement. The fast address translation facility accounts for the remaining

10% of the speedup.

500-

Incremental Substitution of Mechanisms:

Interrupt Driven / Software Translation /
Memory Buffered Injection & Extraction

Dedicated Thread DispatchS300-

2Streaming Injection & Extraction

ion 8Register-Mapped Injection & Extraction

38 cyc.

M-Machine Message Architecture
PING

Figure 8-4: Microbenchmark Results - some labels omitted to reduce clutter

136

8.3 The M-Machine Message System

The M-Machine message interfaces (Figure 8-5) are completely mapped into the pro-

cessor's general register name space. Messages are injected from within the user's

register files using a SEND instruction, which specifies a DestAddr, a HandlerIP and

the number of registers, starting from either i4 or f4, to be injected as the message

body. Only five cycles of processor occupancy is incurred to send a null message. Both

DestAddr and HandlerIP are required to be unforgeable guarded pointers. DestAddr

is translated into routing information by a small hardware translation table called

the Global Translation Lookaside Buffer (GTLB), which prevents messages from be-

ing sent outside the user's mapped domain. The handlerIP is of pointer-type Exe-

cuteMessage and points to a non-faulting, non-blocking, trusted handler that honors

all protection restrictions at the destination. The HandlerIP is mutated into an ex-

ecutable pointer during injection, making trusted handlers accessible only through

the message system, and thus allowing hard-coded assumptions and optimizations in

them.

A bounded-time, atomic injection interface is chosen to prevent users from monop-

olizing the injection port, while mapping the message buffer into the user's register

file eliminates starvation-inducing resource conflicts. At the receiving end, the ability

to enforce trusted handlers permits a more efficient streaming extraction interface

that dispatches upon arrival of the message head. Registers i14 and i15 - also called

MsgHead and MsgBody - in two reserved thread slots, one each for priority 0 and prior-

ity 1, are mapped to the incoming message queues. Reading MsgBody pops and returns

the next word in the message currently being processed, while reading MsgHead flushes

any remnants from the current message, and then pops and returns the HandlerIP

in the next message. Both MsgHead and MsgBody can be used directly as the source

operand in any regular instruction. The reserved thread slots enable messages to be

dispatched within a 3-cycle jump delay, yet because the availability of the MsgHead

and MsgBody data is tied into the scoreboard consulted by the instruction-issue logic,

no execution resources are consumed when the handler threads slots idle.

137

General
Register
File

LD i12, i4
ADD ilO, il 1, i0
MOV f 14, i6

message buffer start = reg

reg i12
reg il
reg ilO

SEND 3, <DestAddr>,
A <HandlerlP>, <Ack>

SENDER

Incoming

RECEIVER

reg i14 = MsgHead
reg i15 = MsgBody

*new mesg

current nesg

General
Register
File

Figure 8-5: M-Machine Message Interfaces

138

To guard against malformed messages, MsgBody is padded with null data when the

user reads beyond the end of the message, while the flush mechanism associated with

MsgHead guarantees to return the message queue to a sane state when recovering from

error conditions. In addition, the M-Machine system also supports user-selectable

pair-wise in-order delivery, and features a flow-control counter that can be used to

efficiently implement return-to-sender or other higher-level protocols.

8.4 Future Research

The M-Machine opens many opportunities for future research. Is this the lowest we

can go in reducing messaging overhead without compromising robustness? What can

we actually do in a thread with a 50-cycle run-length? How do we extract parallelism

at this level from real applications? Of course, more LOG models will also need to

be constructed to understand other classes of common applications.

More immediately however, a most important issue is designing the compiler to

take full advantage of the register-mapped message buffer. To avoid copying, the

compiler should ensure that message words are deposited directly into the appropriate

message registers by the instructions that generate them. The complexity this adds

to the register-allocation scheme in the compiler has to be studied. To keep the finite

state machine that transfers the message from the register file to the network simple,

the message words are assembled in a contiguous region of the register file. This

constraint however complicates register-renaming mechanisms in both the hardware

and the compiler. To simplify their interactions, the designer may consider adopting

a more general SEND instruction format, such as with a bit vector, for specifying the

location of message words within the register file.

Cache effects were ignored in this study. In reality, message handlers have little

locality if message arrivals are sparsely distributed in time, and conversely may pol-

lute the cache if they arrive too frequently. To ensure fast handler dispatch while

minimizing the impact to other resident threads, smarter cache management schemes

are desired. A more crucial issue is the resolution of references to non-resident mem-

139

ory pages from within the message handler. The ExecuteMessage guarded-pointer

type enables the system to confine the user to calling only message handler code that

is resident on the destination node. However, the system has little control over the

memory addresses that the handler references. In the M-Machine, trusted handlers

use special non-faulting memory operations that return a negative condition code

upon a page fault instead of trapping into the machine's software-based page-fault

handling system. Under this condition, the trusted handler is responsible for vacat-

ing itself - together with its message - out into a software scheduling queue, and

then calling the coherent memory manager to import the missing page. The memory

manager subsequently reactivates the dormant message handler after installing the

affected memory page. This convoluted solution is necessary because user messages

share the the priority 0 network with the response-messages used by the memory

manager to transfer cache lines between nodes. A deadlock condition would result if

the response message is blocked by the message handler that needs it. Future designs

might explore simpler schemes, such as providing independent logical networks for

user and system level messages.

A drawback of the guarded pointers - and other similar capability-based protec-

tion schemes - is the difficulty in revoking privileges. In the short term, the system

may "destroy" the privileges associated with a pointer by removing the correspond-

ing mapping from the virtual address translation layer. However, once a pointer is

granted to the user, it can be copied, shared, or even saved into long term storage me-

dia. The system thus cannot safely recycle the "destroyed" virtual addresses without

performing a full garbage collection by scanning all user-accessible domains. Taking a

lesson from Chapter 5, the designer may attempt to replace the open-ended allocation

of guarded pointers with a bounded-time lease scheme. Nonetheless, such a system

would have to distinguish one time slice from another, and is ultimately faced with

the more general problem of recycling a bounded name space, for which an efficient

solution is yet unknown.

As more simultaneous threads of control are incorporated into the processor chip,

the M-Machine interface scales naturally with the additional thread slots and their

140

register files. The basic architecture however does not address the higher bandwidth

requirement that comes with the higher aggregate computation power of the chip.

To relieve contention for the network ports, the architecture may be extended with

multiple handler thread slots and message queues - possibly a number of logical

queues being multiplexed onto a high bandwidth physical off-chip link - so that

several messages may be extracted and injected concurrently. As the network will

also be competing with the memory system for pin bandwidth, the requirements and

tradeoffs in each case must be characterized so that a balance can be achieved, bearing

in mind that on-chip locality may ease some of the off-chip bandwidth problems.

8.5 Impact

By fabricating an actual prototype system, the M-Machine design team not only cre-

ates an experimental platform for fine-grain computing, but also provides an imple-

mentation example for future designs. The proposed Latency, Occupancy and Grain

Size performance model will also serve as a valuable tool in achieving a thorough

understanding of the general tradeoffs in fine-grain multicomputing.

More importantly, the high efficiency and robustness in this architecture paves

the way for an upcoming breed of massive multicomputers that incorporate thou-

sands of processors. The excellent potential of such machines are already reflected in

the performance/overhead sensitivity analysis in this study, while their economical

viability are evident from the rapid emergence of affordable, highly-integrated com-

ponents [2, 3, 4, 5, 6]. These machines are the future of high-performance computing,

and the ability to exploit fine-grain parallelism - so that they are readily applicable

to existing problems and not just exotic, huge-size programs - is the key to their

success.

Specifically, the current research trends point to the emergence of three broad

classes of high-performance processor chips: (a) multiprocessors-on-a-chip [61, 4], (b)

memory-integrated processors [53, 62, 6], and (c) multithreaded (superscalar, multi-)

processors [63, 1, 2, 3, 64]. All of these are aimed at exploiting the ever-growing chip

141

area more efficiently, without relying on the diminishing improvements provided by

the currently-popular, but increasingly-complex, superscalar architectures.

The first category integrates multiple independent processors on to each chip. In

current designs [61, 4], the geographical locality is not exploited to provide direct

processor-to-processor communication - they communicate via a shared L2 cache

or other on-chip memory. More recently however, the idea of an on-chip routing

network is proposed [7]. While this gives rise to an extremely fast network fabric, the

performance would be hindered if a conventional network interface is employed. To

this end, the very efficient M-Machine messaging interface, or parts of it, can provide

the necessary solution.

By augmenting the processor chip with random-accessed memory, or vice-versa,

the second category of integrated components avoid the bandwidth and latency lim-

itations of the external memory bus. Such architectures however accentuate the dis-

crepancy between local-memory and remote-memory access times. Since the on-chip

memory is finite, performance must plunge quickly when the frequency of references

beyond the chip boundary increases due to a large data size, myriad sharing patterns

or the simple lack of locality in the application. In such cases, the extremely-low

overhead in the M-Machine messaging system allows a gradual transition between

single-chip and multi-chip computation.

The M-Machine itself falls into the third category, where multiple hardware con-

texts or thread slots are incorporated into each processing pipeline. Although the

designers of each system tend to experiment with a different collection of specific

features [63, 1, 2, 3, 64], they all share a common ground - the critical resources

are time-shared by many different threads-of-control on these chips. Protection and

starvation avoidance are therefore important concerns in designing a communication

system for such machines. These issues are well-addressed by the M-Machine mech-

anisms.

It is foreseeable, therefore, that the M-Machine message architecture, and its

derivatives, will play an important role in the future of high-performance multicom-

puting.

142

Bibliography

[1] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew

Chang, Yevgeny Gurevich, Whay S. Lee, "The M-Machine Multicomputer," in

Proceedings of the 28th Annual International Symposium on Microarchitecture,

1995. pp. 104-114.

[2] Dean M. Tullsen, Susan J. Eggers, Henry M. Levy, "Simultaneous Multithreading:

Maximizing On-Chip Parallelism", in ISCA, 1995.

[3] Gurindar S. Sohi, Scott E. Breach, T. N. Vijaykumar, "Multiscalar Processors",

in ISCA, 1995.

[4] Tadaaki Yamauchi, Lance Hammond, Kunle Olukotun, "A Single Chip Multipro-

cessor Integrated with DRAM", in ISCA, 1997.

[5] Kimberly Keeton, Remzi Arpaci-Dusseau, David Patterson, "IRAM and Smart-

SIMM: Overcoming the I/O Bus Buttleneck", in ISCA 1997.

[6] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly

Keeton, Christoforos Kozyrakis, Randi Thomas, Katherine Yelick, "A Case for

Intelligent RAM: IRAM", in IEEE Micro, 1997.

[7] Mark Horowitz, "Smart Memories: A Universal Computing Element", Project

Proposal, DARPA Contract Number MDA904-98-C-A933, Stanford University,

1998.

143

[8] Steve Keckler, "Fast Thread Communication and Synchronization Mechanisms

for a Scalable Single Chip Multiprocessor", PhD. Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, 1998.

[9] Mengjou Lin, Rose Tsang, David H. C, Du, Alan E. Klietz, Stephen Saroff, "Per-

formance Evaluation of the CM-5 Interconnection Network", in COMPCON 1993,

pp. 189-197.

[10] Michael D. Noakes, Deborah A. Wallach, William J. Dally, "The J-Machine

Multicomputer: A Architectural Evaluation", ISCA 1993, pp. 224-235.

[11] William J. Dally, Ming-Ju Edward Lee, Fu-Tai An, John Poulton, Steve Tell,

"High-Performance Electrical Signaling", in the Proceedings of the Fifth Inter-

national Conference on Massively Parallel Processing Using Optical Interconnec-

tions, 1998.

[12] Mark Horowitz, Chih-Kong Ken Yang, Stefanos Sidiropoulos, "High-speed Elec-

trical Signaling: Overview and Limitations", in IEEE Micro, January/February

1998, pp. 12- 24 .

[13] Nicholas P. Carter, Stephen W. Keckler, William J. Dally, "Hardware Support

for Fast Capability-Based Addressing", in ASPLOS VI, 1998.

[14] Martin Gardner, "Mathematical Games: The Fantastic Combinations of John

Conway's New Solitaire Game life", in Scientific American, October, 1970, pp.

120-123.

[15] John Kubiatowicz, Anant Agarwal, "Anatomy of a Message in the Alewife Mul-

ticomputer", in ICS 1993.

[16] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward W.

Felten, "Virtual Memory Mapped Network Interface for the SHRIMP Multicom-

puter", ISCA 1994, pp. 142-153.

[17] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,

"The Stanford FLASH Multicomputer", in ISCA 1994, pp. 302-313.

144

[18] Michael Beckerle,"Overview of the START (*T) Multithreaded Computer", in

COMPCON 1993, pp. 148-156.

[19] Jiun-Ming Hsu, Prithviraj Banerjee, "A Message Passing Coprocessor for Dis-

tributed Memory Multicomputers", in SuperComputing 1990, pp. 720-729.

[20] Shahid H. Bokhari, "Communication Overhead on the Intel Paragon, IBM SP2

and Meiko CS-2", NASA Contractor Report 192811, 1995.

[21] Roger W. Hockney, "The Communication Challenge for MPP: Intel Paragon and

Meiko CS-2", Parallel Computing 1994, pp. 389-398.

[22] Toshiyuki Shimizu, Takeshi Horie, Hiroaki Ishihata, "Low-Latency Message

Communication Support for the AP1000", in ISCA 1992, pp. 288-297.

[23] Klaus E. Shauser, Chris J. Scheiman, "Experience with Active Messages on the

Meiko CS-2" in IPPS 1995, pp pp. 140-149.

[24] Thomas E. Anderson, David E. Culler, David A. Patterson, "The Berkeley Net-

works of Workstations (NOW) Project", in COMPCON 1995, pp. 322-326.

[25] Edward W. Felten, Richard D. Alpert, Angelos Bilas, Matthias A. Blumrich,

Douglas W. Clark, Stefanos N. Damianakis, Cezary Dubnicki, Liviu Iftode, Kai

Li, "Early Experience with Message-Passing on the SHRIMP Multicomputer",

ISCA 1996, pp. 296-307.

[26] Remzi H. Arpaci, David E. Culler, Arvind Krishnamurthy, Steve G. Steinberg,

Katherine Yelick, "Empirical Evaluation of the CRAY-T3D: A Compiler Perspec-

tive", ISCA 1995, pp. 142-153.

[27] Susan Hinrichs, Corey Kosak, David R. O'Hallaron, Thomas M. Stricker, Richiro

Take, "An Architecture for Optimal All-to-All Personalized Communication", in

SPAA 1994, pp. 310-319.

[28] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,

Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,

145

Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, Robert

Zak, "The Network Architecture of the Connection Machine CM-5", in SPAA

1992. pp. 272-285.

[29] Shubhendu S. Mukherjee, Babak Falsafi, Mark D. Hill, David A. Wood, "Co-

herent Network Interfaces for Fine-Grain Communication", in ISCA 1996. pp.

247-258.

[30] Kenneth Mackenzie, John Kubiatowicz, Matthew Frank, Walter Lee, Victor Lee,

Anant Agarwal, M. Frans Kasshoek, "Exploiting Two-Case Delivery for Fast Pro-

tected Messaging", in HPCA 1998. pp. 231-242.

[31] The MPI Forum, "MPI: a message passing interface", in Supercomputing '93,

pp. 878-883.

[32] Paul Pierce, "The NX/2 operating system", in Proceedings of the 3rd Conference

on Hypercube concurrent Computers and Applications, 1988. pp. 384-390.

[33] loannis Schoinas, Mark D. Hill, "Address Translation Mechanisms in Network

Interfaces", in HPCA 1998, pp. 219-230.

[34] Vijay Karamcheti, Andrew A. Chien, "Software Overhead in Messaging Layers:

Where Does the Time Go?", in ASPLOS VI, 1994, pp. 51-60.

[35] T. von Eicken, D. E. Culler, S. C. Goldstein, K. E. Shauser, "Active Messages:

a Mechanism for Integrated Communication and Computation", in ISCA 1992.

[36] Dana S. Henry, Christopher F. Joerg, "A Tightly-Coupled Processor Network

Interface", in ASPLOS V, 1992, pp. 111-122.

[37] William J. Dally, "Virtual Channel Flow Control", in ISCA 1990. pp. 60-68.

[38] David E. Culler, Lok Tin Liu, Richard P. Martin, Chad Yoshikawa, "LogP Per-

formance Assessment of Fast Network Interfaces". in IEEE Micro 1996.

[39] Eric Barton, James Cownie, Moray McLaren, "Message Passing on the Meiko

CS-2", in Parallel Computing 1994, pp. 97-507.

146

[40] Vijay Karamcheti, Andrew A. Chien, "A Comparison of Architectural Support

for Messaging in the TMC CM-5 and the Cray T3D", in ISCA 1995, pp. 298-308.

[41] John Heinlein, Kourosh Gharachorloo, Scott Dresser, Anoop Gupta, "Integration

of Message Passing and Shared Memory in the Stanford FLASH Multiprocessor",

in ASPLOS VI, 1994, pp. 38-50.

[42] Cezary Dubnicki, Angelos Bilas, Kai Li, James Philbin, "Design and Implemen-

tation of Virtual Memory-Mapped Communication on Myrinet", in IPPS 1997,

pp 388-396.

[43] Shekhar Borkar, Robert Cohn, George Cox, Thomas Gross, H. T. Kung, Monica

Lam, Margie Levine, Brian Moore, Wire Moore, Craig Peterson, Jim Susman,

Jim Sutton, John Urbanski, Jon Webb, "Supporting Systolic and Memory Com-

munication in iWarp", in ISCA 1990, pp. 70-81.

[44] T. D. Wagner, E. Smirni, A. W. Apon, M. Madhukar, L. W. Dowdy, "The Effects

of Thread Placement on the KSR1", in IPPS 1994, pp 618-624.

[45] Mitsuhisa Sato, Yuetsu Kodama, Shuichi Sakai, Yoshinori Yamaguchi, "Experi-

ence with Executing Shard Memory Programs Using Fine-Grain Communication

and Multithreading in EM-4", in IPPS 1994, pp pp. 630-636.

[46] James Laudon, Daniel Lenoski, "The SGI Origin: A ccNUMA Highly Scalable

Server", http://www.sgi.com, Silicon Graphics Inc.

[47] Daniel Lenoski, James Laudon, Truman Joe, Dvaid Nakahira, Luis Stevens,

Anoop Gupta, John Hennessy, "The DASH Prototype, Implementation and Per-

formance", in ISCA 1992, pp 92-103.

[48] Stephen W. Keckler, William J. Dally, "Processor Coupling: Integrating Compile

Time and Runtime Scheduling for Parallelism", in ISCA, 1992, pp. 202-213.

[49] Nicholas Carter, "Hardware Mechanisms for Efficient, Flexible, Shared Mem-

ory", PhD. Thesis, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 1999.

147

[50] Steven L. Scott, "Synchronization and Communicationin the T3E Multiproces-

sor", in ASPLOS VII. 1996. pp. 26-30.

[51] Jeff Bowers, "The Design and Implementation of the Bidirectional Pads", CVA

Memo 102, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-

ogy, 1996.

[52] William J. Dally, Larry Dennison, David Harris, Kinhong Kan, Thucydides Xan-

thopoulos, "Architecture and Implementation of the Reliable Router", in Proceed-

ings of Hot Interconnects, 1004. pp. 122-133.

[53] William J. Dally, Linad Chao, Andrew Chien, Soha Hassoun, Waldemar Horwat,

Jon Kaplan, Paul Song, Brian Totty, Scott Wills, "Architecture of a Message-

Driven Processor", in ISCA, 1987. pp. 189-196.

[54] William J. Dally, Stephen W. Keckler, Nick Carter, Andrew Chang, Marco Fillo,

Whay S. Lee, "The MAP Instruction Set Reference Manual v1.55", CVA Memo

59, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1997.

[55] John E. Hopcroft, Jeffrey D. Ullman, "Introduction to Automata Theory, Lan-

guages and Computation", Addison-Wesley Publishing Company, Inc. 1979.

[56] Robert Wahbe, Steven Lucco, Thomas E. Anderson, Susan L. Graham, "Efficient

Software-Based Fault Isolation", in SIGOPS, 1993, pp. 203-216.

[57] Lok T. Liu, David E. Culler, "Evaluation of the Intel Paragon on Active Message

Communication", in Proceedings of Intel Supercomputer users Group Conference,

1995.

[58] Charles M. Burns, Robert H. Kuhn, Eric J. Werme, "Low Copy Message Passing

on the Alliant CAMPUS/800", in Supercomputing, 1992. pp. 760-769.

[59] Steve Keckler, Whay S. Lee, Nick Carter, "MSIM UsersGuide", CVA Memo 63,

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1994.

148

[60] David E. Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik

Schauser, Eunice Santos, Ramesh Subramonian, Thorsten von Eicken, "LogP:

Towards a Realistic Model of Parallel Computing" in Proceedings of the 4th Sym-

posium on Principles and Practices of Parallel Programming, 1993.

[61] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, Kunyung

Chang, "The Case for a Single-Chip Multiprocessor", in ASPLOS VII, 1996.

[62] Ashley Saulsbury, Fong Pong, Andreas Nowatzyk, "Missing the Memory Wall:

the Case for Processor/Memory Integration", in ISCA, 1996. pp. 90-101.

[63] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Pro-

terfield, Burton Smith, "The Tera Computer System", in Supercomputing, 1990.

pp. 1-6.

[64] Bernard Goossens, Duc Thang Vu, "On-Chip Multiprocessing", in the Proceed-

ings of the 2n1 International Euro-Par Conference 1996. pp. 789-796.

149

