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ABSTRACT

Previous research has shown the importance of membrane waves to the radiation and
scattering properties of submerged finite-length cylindrical shells. Membrane waves
(shear and compressional) are the principal determinants of radiation and scattering in
the mid-frequency (2<ka<12), high aspect angle (+/- 30 degrees of beam aspect)
regimes because they are trace matched to sound waves in water. Conventional
damping treatments are not effective in damping membrane waves, but they work well
on out-of-plane flexural waves. This thesis studies the use of a circumferential
discontinuity, a keel, to transfer membrane wave energy into flexural waves, where it
can be dissipated.

This thesis shows that a longitudinal stiffener, or keel, couples mode 0 membrane
waves to higher order flexural waves. Compressional and flexural mode 0 waves were
excited on a cylindrical plastic shell using a circumferential source array. The source
array was located in the middle of a long shell, and a keel was attached to one end of
the shell. Longitudinal and circumferential array measurements were taken on each end
of the shell. Wavenumber-frequency transforms were used to separate the data by
modal order and wave type. The use of a plastic shell with high damping enabled
measurement of direct and reflected wave amplitudes.

Data taken on the unmodified end of the shell were used to verify the functionality of the
source array and to demonstrate the physics of wave propagation on cylindrical shells.
Thick shell theory was shown to match the measured data. Data taken on the end with
the keel were used to study wave coupling due to the keel. The keel introduces a new
axial wave herein called the keel wave. Two mechanisms of coupling to higher order
flexural waves are shown, one from the keel wave and one from the mode 0
compressional and flexural waves. The higher order flexural waves excited by these
two mechanisms are measured and identified using both longitudinal and circumferential
arrays. Wave coupling is shown to occur where the waves are trace matched along the
keel.

Thesis Supervisor: J. Kim Vandiver
Title: Professor of Ocean Engineering
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1. INTRODUCTION

The study of wave coupling in a cylindrical shell is motivated by the need for greater

understanding of the structural-acoustic behavior of ships. Cylindrical shells are often

used to model submarine hulls. They are also used to model ship piping. In both cases,

the structural-acoustic behavior of these structures is important to the overall

performance of the ship.

One problem of immediate interest is ship target strength, which controls the

detectability of the ship. The scattering of incident acoustic waves by cylindrical shells

bears a direct relationship to this problem. The incident acoustic waves excite structural

vibration waves in the shell. The response and subsequent radiation of these waves

has a major effect on the scattered acoustic field, particularly for non-specular

observation angles.

A second problem of interest is ship radiated noise. Internal machinery and other ship

components transmit vibratory energy to the hull where it is radiated to the acoustic far

field and may be detected. The radiation properties of vibration waves on cylindrical

shells relate directly to the calculation of hull radiated noise.

Membrane compressional and shear waves in the shell have been shown to have an

important effect on scattering, particularly on back-scattering to the monostatic position

for aspect angles between +/- 30 degrees of beam aspect (normal to the shell axis).

Conversely, flexural waves have a small effect on the scattering. The phase velocity of

the flexural waves is generally subsonic, so that they are weakly coupled to the incident

acoustic field and inefficient radiators of sound.

Methods to reduce the response of the membrane waves merit consideration because

of the importance of these waves to shell scattering. Use of visco-elastic materials to

dampen the hull vibrations is common in ship design. However, these materials are

found to be much more effective in damping the flexural waves than the membrane

waves. Due to the high strain energy per unit displacement in the membrane waves,

dissipation of membrane wave energy by typical damping treatments is ineffective.
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The idea of converting the membrane wave energy to flexural wave energy is a

promising idea for reducing membrane wave response, since the converted flexural

wave energy can be dissipated by damping treatments. An infinite, homogeneous

cylindrical shell provides no wave conversion mechanisms. However, addition of

impedance discontinuities at the ends of the shell provides one technique for wave

conversion. Impedance discontinuities along the shell in the form of ring stiffeners,

bulkheads, and longitudinal stiffeners or keels also provide mechanisms for wave

conversion. Unfortunately, these impedance discontinuities also increase the coupling

of the flexural waves to the incident acoustic field, thereby increasing the subsequent

response and re-radiation. It is unclear whether the benefit of reducing the response

and radiation by membrane waves is outweighed by the detrimental effect of increasing

the response and radiation by the flexural waves. The scattering of subsonic flexural

waves at discontinuities is known to be a major source of radiated noise. Thus, any

addition of structural discontinuities to the ship structure to reduce the scattered acoustic

field may increase the radiated noise.

Previous measurements of the scattered pressure field of cylindrical shells with ring

stiffeners and internal structures show a general increase in target strength due to the

added discontinuities. On the basis of this result, one might conclude that the addition

of a longitudinal stiffener, or keel would provide an added discontinuity and therefore

increase target strength and acoustic radiation. However, the previous measurements

did not include tests on shells with axial discontinuities, so this conclusion is open to

question.

Analytical studies of the scattering by a cylindrical shell with both circumferential and

axial discontinuities confirm the expected result that the discontinuities provide greater

coupling to the incident acoustic field and greater radiation and scattering. In these

studies, the increase in scattering is found to be due to an increase in the contribution of

the flexural waves. However, the damping of the flexural waves is assumed to be small.

It is recognized in one of the analytical studies that higher damping would make the

increase due to the flexural waves less important.

The possibility of reducing the amplitude of the scattered acoustic field by converting the

membrane wave energy to flexural wave energy and dissipating the flexural wave
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energy so these waves do not contribute to the scattered field has not been

demonstrated either from measured data or from analysis.

In this thesis, the use of a keel to convert membrane wave energy to flexural wave

energy is explored experimentally. Measurements are carried out in air to reduce the

cost that would be incurred by underwater scattering measurements. Membrane waves

are excited in the shell by a circumferential array of piezoelectric transducers embedded

in the shell wall. The keel provides a coupling mechanism whereby some of the energy

in the membrane waves is converted to flexural waves. Because of the high

wavenumber of the coupled flexural waves it is assumed that the flexural wave energy

can be dissipated before it is re-radiated into the scattered acoustic field. A reduction in

target strength would then be achieved.

The addition of a keel to the cylindrical shell creates a new coupled system. The

coupled system supports waves associated with both the keel and the shell, but their

dispersion relations will be different from the dispersion relations of the uncoupled

systems. The significance of the changes depends on the frequency of interest and the

strength of the coupling. In this thesis, the changes in the dispersion relations of the

shell waves due to coupling were assumed to be smaller than the resolution of the

measurements. The data supports this assumption.

Waves in the coupled shell-keel system which are associated with the keel will be called

'keel waves' in this thesis. The keel wave associated with bending of the keel in its stiff

direction was observed in the measured data. The axial velocity of this wave was found

to be slower than the shear wavespeed of the shell, but higher than the wavespeeds of

bending waves in the shell. A model was developed for the keel wave which showed

that it was a coupled bending wave in the stiff direction of the keel. The neutral axis of

the bending motion was shifted away from the neutral axis of the uncoupled keel. The

other keel waves were not seen in the data.

A plastic PVC shell is used for the experimental study. The selection of this material

was based in large part on cost. Fabrication of a steel cylinder without an axial seam

was found to be prohibitively expensive. The plastic material did provide some

advantages over a steel shell. Because of its relatively slow compressional and shear
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wavespeeds, membrane waves could be observed at lower frequencies in the plastic
shell than in a steel shell. Also because of its relatively high damping, the reverberant

build-up of wave amplitudes was not observed so that reflections from the ends of the

shell did not interfere with the measurements.

Compressional and flexural mode 0 waves were excited on the plastic shell using a

circumferential source array. The source array was located in the middle of the shell,
and a keel was attached to one end of the shell. Longitudinal and circumferential array
measurements were taken on each end of the shell. Wavenumber-frequency

transforms were used to separate the data by modal order and wave type.

The following sections of this thesis describe the research work that was completed.

Chapter 2 presents a review of previous work that has been carried out at MIT and work

that has been reported in the literature. Chapter 3 gives a general discussion of

scattering and radiation mechanisms in cylindrical shells. Chapter 4 describes the

design of an experiment to study wave coupling in a cylindrical structure with an axial

keel. Chapter 5 describes the longitudinal array data collected on the two ends of the

test shell. The response of a keel wave on the end of the shell with the keel is shown.

Chapter 6 discusses the keel wave and coupling mechanisms due to the keel. Chapter

7 discusses the circumferential array data collected on the two ends of the test shell.

The high modal orders of the coupled flexural waves are shown. Chapter 8 presents the
conclusions of this research and suggests possible avenues for further research.
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2. PREVIOUS WORK

2.1 Previous experimental work

Previous experimental work to study wave propagation in cylindrical structures has been
carried out both in air and in water. Many of these studies have focused on
measurements of the resonance frequencies of the shell. However, the complexity of
the end conditions and their effect on the resonance frequencies make it difficult to use
these data to determine the wave characteristics in the shell. In-water experiments
have been carried out in specially designed water tanks and in lakes. These
experiments can provide direct measurements of acoustic scattering and radiation.
However, their cost is very high. In-air experiments are less expensive, but do not
provide a direct measurement of scattering and radiation due to the large differences in
the acoustic wavespeed and characteristic impedance of air and water.

2.1.1 1-D experiments

A series of papers have been published describing work carried out as part of the
MIT/Industry Program in Structural Acoustics to study wave propagation in one-
dimensional systems with attached absorbers [1-6]. A description of the use of tuned
absorbers to reduce bending wave vibrations in a beam is also presented by Cremer [7]
and Klyukin [8].

Corrado, Zavistoski, and Dyer [6] present a general discussion of elastic waves in one-
dimensional structures with attached point-reacting structures. They refer to work
reported in references 1-5. Results for simple beams and rods with distributed elastic
absorbers are presented. All such systems are shown to exhibit stop-bands that form at
or near resonances of the coupled point-reacting structure. Results for other wave
types, such as torsional and helical waves in cylindrical shells are not presented, but the
authors believe it likely similar results would be exhibited.
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Corrado, Zavistoski, and Dyer [6] also consider coupling between two wave-bearing

one-dimensional structures. The coupling between flexural waves in two beams

coupled by a spring layer is considered in addition to the coupling between longitudinal

waves in two rods. When both structures are wave-bearing, two distinct wavenumber

branches associated with different wave types can be found. In general, these

correspond to in-phase and out-of-phase solutions, where the two structures are moving

in or out of phase. The behavior of the coupled wave-bearing systems is somewhat

different than the behavior of a system with a layer of point-reacting dynamic absorbers.

The existence of a stop band depends critically on the relative phase velocity in the two

uncoupled layers. Only if the velocities are significantly different will a significant stop

band occur.

The feasibility of using tuned absorbers to control membrane waves on ship hulls has

been considered. However, the following limitations are observed. First, high damping

and high rates of spatial attenuation are obtained only over a band of frequencies - the

stop band. Second, the width of the stop band and the attenuation rate within the stop

band depend on the mass ratio of the absorber mass to the hull mass. High mass ratios

are generally required. If it were possible to use the mass of components and

machinery within the ship as the tuned absorbers, these high mass ratios could be

achieved.

The goal of the work presented in this thesis is to control membrane wave amplitudes

over broad ranges of frequency without the addition of large amounts of mass. Based

on the work described above, tuned absorbers will not meet these requirements.

2.1.2 Underwater experiments

Corrado [9] has studied data from measurements carried out by NRL in the Building 71

scattering measurement tank. The goal of the study was to evaluate the influence of

membrane waves, resiliently mounted internal structures, and typical structural

discontinuities on the scattering properties of cylindrical shells. The structural

discontinuities include ring stiffeners, endcaps, and resiliently mounted internal

components. The effect of a circumferential discontinuity, such as a keel, was not

studied.
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The shells used in the study were designed by Conti and Dyer [10] to have properties

that are representative of full-scale ship structures. The shell thickness to radius ratio is

0.0096, the shell length to diameter ratio is 7.75, the compressional plate wavespeed is

5270 m/s, and the shear wave speed is 3100 m/s. Measurements were taken over

frequencies 2 < ka < 12, where k is the acoustic wavenumber in water and a is the shell

radius. This frequency range corresponds to approximately % to 3 times the ring

frequency of the shell.

The influence of membrane shear and compressional waves was seen in the scattered

pressure field for angles of incidence within +/- 30 degrees of beam aspect (normal to

the axis of the cylinder). Within this range of angles, the trace wavenumber of the

incident acoustic wave along the axis of the cylinder can match the axial wavenumber of

a membrane wave. The excitation of the membrane wave and subsequent re-radiation

by this wave was found to be the dominant source of back-scattered energy from the

shell for this range of angles.

2.1.3 Steel cylinder experiments in air

Bondaryk and others conducted experiments at MIT on a steel test shell in air. The steel

shell was 12 inches in diameter and 0.1 inches thick, giving it a thickness to radius ratio

of 1.7%. The steel shell was 17 feet long with conical endcaps welded onto each end.

The shell was constructed with a welded axial cusp seam running down the length.

Unlike earlier underwater measurements using shells designed by Conti and Dyer, the

welds were not ground smooth to eliminate the effects of surface discontinuities. Data

measured on the steel shell with mode 0 input showed response in compressional mode

0 and all flexural modes [11].

Possible explanations for the high response of the flexural modes include 1) errors in the

excitation so that higher order modes were excited, 2) mode coupling at the endcaps,

and 3) mode coupling at the welded axial seam. Measurements made by the author

(later repeated and reported by Bondaryk [11]) on a plastic shell suggest that there were

no errors in the excitation. Thus, the expected explanation is mode coupling at the shell

discontinuities. Because the steel shell has very low damping, even weak coupling

could result in significant transfer of energy. The energy ratio between the coupled
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higher order flexural waves and the mode 0 compressional wave can be expected to

follow the ratio of an appropriately defined coupling to damping factor. Equal wave

energy is expected when this ratio is large [12].

2.1.4 Plastic cylinder experiments

Work performed by Lin [13] at MIT (during the course of research for this thesis)

focussed on determining the pressure exerted by piezoelectric rings embedded in a

cylindrical shell. A mathematical model was developed and confirmed by comparing

predictions with data obtained on plastic PVC and aluminum plates. This model was

then used to predict both the near-field and far-field vibration response of a steel and

PVC cylindrical shell. Predictions were in good agreement with measured data thereby

validating the calculation of the pressure exerted by the piezoelectric rings.

2.2 Previous analytical work

Ricks [14] developed a Direct Global Matrix (DGM) numerical formulation to model

layered cylindrical shells. This formulation can be used to model any combination of

solid, fluid, and vacuum layers. The excitations used in the formulation include time-

harmonic ring forces for any circumferential order. Thus, the model can be used to

study the propagation of membrane and bending waves in layered shells. Shells with

visco-elastic constrained damping layers can be studied.

The modeling techniques developed by Ricks could extend the usefulness of the

research presented in this thesis. The plastic shell used for the experimental work of

this thesis had fairly high damping. Thus, it was not necessary to add a damping

treatment to control the response of the coupled membrane and flexural waves. Also,

since measurements were carried out in air, it was not necessary to include fluid loaded

effects. Use of a keel to provide wave coupling in a steel shell in water will require

techniques to dissipate the energy transmitted from the membrane waves to the flexural

waves. The DGM formulation of Ricks could be used to develop visco-elastic damping

layers to dissipate the flexural wave energy.
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In a series of papers, Guo [15-19] presents numerical studies of a number of cylindrical

shell configurations. In each case he shows that structures internal to the shell create

discontinuities that scatter non-radiating waves into radiating waves. This scattering

mechanism has a dominant effect on the sound scattering of incident acoustic waves on

the shell.

In ref. [19], Guo presents a numerical analysis of acoustic scattering from a cylindrical

shell with an elastic plate attached along the shell's axial direction. This study is

relevant to the experimental study presented in this thesis. The importance of the plate

as a circumferential discontinuity is shown by the numerical results. Flexural waves,

which contribute little to the scattered field of the empty shell, are strongly present in the

scattered field when the elastic plate is added. Guo uses a damping loss factor of 0.01,

but states that a more realistic factor for underwater vehicles of 0.1 is expected to

suppress the flexural wave signature in the scattered field. Although in-plane motion of

the plate is included in the analysis, the coupling of the membrane shell waves with the

plate in-plane waves is not discussed by Guo. His numerical results focus on the

acoustic field, and do not address the introduction of a "keel" wave as seen in the

measured data collected for the work in this thesis.

Hayner [20] has used a state-vector formulation to develop a Wave-based Finite

Element Method (WFEM) for cylindrical shells. Two numerical formulations are

presented: one for an axial wave formulation and one for a circumferential wave

formulation. Both formulations are based on the Herrmann-Mirsky theory for thick 2D

shells. Three different numerical models are developed using these formulations. The

first is used to analyze a finite length cylindrical shell with one or more axial

discontinuities, such as a ring frame or bulkhead. The second is used to analyze and

infinitely long cylindrical shell with one or more circumferential discontinuities, such as a

deck or keel. The third is used to analyze the through-thickness discontinuities

introduced by shell layering.

The models developed by Hayner show promise for developing a numerical model of

the cylindrical shell studied in this thesis. The WFEM is suitable to analyze either a shell

with a complete homogeneous cross-section and a finite axial extent or a shell with a

partial cross-section and an infinite axial length. Thus, further development would be
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needed to accurately model a shell with a finite length keel. Further development would

also be needed to model the wave coupling between an axial wave and higher-order

circumferential waves.
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3. SCATTERING AND RADIATION MECHANISMS ON CYLINDRICAL

SHELLS

Scattering occurs when acoustic waves impinge on an object that has a different

impedance than the acoustic media. The change in the incident acoustic field is

represented by the scattered field, which can be described by an acoustic disturbance

emanating from the scattering object. When pulses are used for the incident acoustic

field, the scattered field takes the form of an echo. The time history of the echo contains

information about the object that can be used not only to determine the range and

direction of the object but to determine additional characteristics about the object that

allow it to be identified. Echo ranging is used by bats in air and by dolphins in water to

detect, locate, and identify objects. It is also commonly used in water by sonar systems

to detect, locate, and identify submarines, ships, and fish. Echo ranging also forms the

basis of ultrasonic devices that allow babies to be seen before they are born or to

identify cracks and other flaws in elastic solids.

Scattering in air is easily understood. In air, the impedance of the scattering object is

typically much larger than that of the air so that the object can be modeled as rigid.

Scattering is then determined by the shape and orientation of the object relative to the

incident acoustic field. In this case the scattering is often called geometric scattering.

In water, scattering is determined by the dynamic response of the object as well as its

geometry. Because of the higher impedance of the water, scattering objects cannot be

modeled as rigid surfaces. In this case the excitation, response, and radiation by

vibration waves in the object has a major effect on the scattered field. For example,

membrane shear waves in cylindrical shells have been found to have a major effect on

the scattering by cylindrical shells representative of ship hulls in water.

An illustration of the wave scattering process is shown in Figure 3-1 taken from Corrado

[9]. Scattering first occurs when the wave front reaches the front termination of the

shell. A geometric scattered field is generated that depends on the impedance and

shape of the front structure. The incident wave front continues to travel along the shell

and excites vibration waves in the shell that have axial wavenumbers
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matching the trace wavelength of the incident wave. Trace matching can occur for both

membrane and flexural waves. However, the excitation of flexural waves is quite weak

due to their short wavelength in the circumferential direction. Trace matching for

membrane compressional or shear waves can also occur. Excitation of these

membrane waves by the incident acoustic field will be quite strong due to the long

wavelength in the circumferential direction. The radiation from the excited structural

waves forms the specularly reflected field. When the incident wave front reaches the

back termination of the shell, the structural waves are reflected from the termination and

travel back toward the front of the shell. Radiation from these reflected waves travel

back toward the monostatic receiver position and becomes the dominant source of

back-scattered energy at this position.

3.1 Out-of-plane versus in-plane motion

Vibration waves in a flat structure can be divided into two groups - bending waves and

in-plane waves. For structures with homogeneous cross-sections, the deformation of

the bending waves is out-of plane normal to the surface of the plate. The deformation of

the in-plane waves is primarily in the plane of the plate. For these in-plane waves a

small out-of-plane deformation occurs due to Poisson coupling.

Structural radiation results only from the out-of-plane vibrations of the structure. In-

plane vibrations result in very little radiation, since the acoustic medium is free to slide

across the structure restrained only by the viscosity of the acoustic medium.

Bending waves are generally the most significant radiating waves due to their out-of-

plane vibration. The radiation from in-plane extensional and shear waves is often

ignored due to the small out-of-plane deformation. However, further consideration must

be given since the phase speed of the bending and in-plane waves is significantly

different. At frequencies below the critical frequency, the bending wave speed is

subsonic while the wave speeds of in-plane extensional and shear waves are typically

supersonic. Thus, the in-plane waves may radiate more than the bending waves, even

though the out-of-plane deformation of these waves is significantly less than that of the

bending waves.
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In curved structures, the in-plane and bending deformations are coupled. For thin-

walled structures, however, the waves can be still be divided into bending and in-plane

extensional and shear waves. For a cylindrical shell, bending waves have deformations

that are primarily out-of-plane, i.e. radial, with small in-plane axial and tangential

deformations. In-plane, or membrane, waves have deformations that are primarily in-

plane, with a small out-of-plane component. For the steel cylindrical shells typically

used to model ships, the bending waves are generally subsonic in water, although the

curvature may increase the wave speeds for some bending waves so that they are

supersonic. The in-plane membrane waves in these structures are generally supersonic

in water.

The increased out-of-plane deformation of the in-plane waves in the cylindrical shell

result in greater radiation than would occur for the equivalent flat structure. Thus, the

membrane waves become the most significant wave type for radiation and scattering of

acoustic energy.

3.2 Subsonic versus supersonic waves

The radiation from structural vibration waves is strongly dependent on the phase speed

of the wave. Strong radiation occurs when the phase speed of the wave exceeds the

acoustic speed of sound in the surrounding media. Waves satisfying this condition on

wavespeed are frequently called supersonic, while waves with phase velocities less the

acoustic speed of sound are called subsonic. Supersonic waves are also called

acoustically-fast waves, while subsonic waves are called acoustically-slow.

Subsonic waves radiate significantly less energy than supersonic waves. For example,

a subsonic wave on a flat, infinite plate does not radiate any energy to the acoustic

media, although a non-propagating pressure fluctuation may extend some distance

away from the structure into the acoustic media.

The power radiated per unit area from an infinite plate can be expressed in terms of the

velocity normal to the plane of the plate and the ratio of wavespeeds,
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Wrad= PaCa (v2) for Ca> Cb (subsonic) Eq. 3-1
1 Ca

C b

Wrad = 0 for Ca < Cb (supersonic) Eq. 3-2

where Wrad is the radiated power, ca is the speed of sound in the acoustic media, Pa is

the density of the acoustic material, Cb is the phase speed of the structural wave, and v

is the velocity amplitude of the wave. For a finite plate the singularity at the critical

frequency (Ca = Cb) does not exist, but a peak in the radiated power occurs.

The phase speed for bending waves depends on frequency, increasing with the square-

root of frequency. Since the bending wave speed increases with frequency while the

acoustic speed of sound is constant, a frequency can be found at which the bending

wave speed is equal to the speed of sound in the acoustic media. This frequency is

called the critical or coincidence frequency. Above the critical frequency, the bending

waves are supersonic and radiate a significant amount of energy. Below the critical

frequency, the bending waves are subsonic and therefore radiate significantly less

energy.

On a curved structure, such as a cylindrical shell, subsonic waves radiate a small

amount of energy due to the curvature of the wave even though the phase speed of the

wave is less than the speed of sound in the acoustic media. Although the radiation of

the subsonic waves is significantly less than that from supersonic waves, it is not zero.

The power radiated by waves on a cylindrical structure can be generally written in terms

of the radiation impedance,

Wrad = Relzrad} < v2 > Eq. 3-3

where Re{zrad} is the real part of the radiation impedance. The real and imaginary parts

of the radiation impedance have been determined by Junger for the general cylindrical

shell. Although curvature has some influence on the radiation impedance, its

dependence on the ratio of acoustic wave speed to structural wave speed continues to

be strong with subsonic waves radiating significantly less than supersonic waves.
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Curvature of the structure may also cause the phase speed of the vibration waves to

increase due to the stiffening effect of the curvature. The effect is most pronounced at

and near the ring frequency.

Subsonic waves on a finite structure radiate a small amount of energy due to edge

effects at the boundaries of the structure. The amount of radiation depends on the

boundary conditions, with the greatest amount of radiation resulting from blocked

(clamped) boundaries and the least amount of radiation resulting from free boundaries.

Radiation from simply-supported boundaries fall between these two extremes.

Radiation from subsonic waves also occurs due to scattering of the waves by

discontinuities within the structure. Typical discontinuities include stiffeners, ring frames,

and bulkheads. Components mounted on the structure also represent discontinuities

that cause the subsonic waves to radiate.

The power radiated by waves on a finite structure with edge conditions and

discontinuities can be generally written in terms of a radiation efficiency,

wrad Pa a rad v2) Eq. 3-4

where cyrad is the radiation efficiency. Radiation efficiencies are typically less than one,

although values greater than one are possible.

Structural discontinuities and edge effects can also result in coupling of the subsonic

and supersonic waves. A fraction of the energy in a subsonic wave incident on a

discontinuity may be reflected and/or transmitted into a supersonic wave, which radiates

significant energy to the surrounding media. In this case, the structural discontinuity

greatly increases the radiation by the subsonic wave. Reciprocally, energy in the

supersonic wave may be reflected and/or transmitted into the subsonic wave. In this

case the radiation from the supersonic wave is reduced, since the subsonic waves

radiate significantly less energy. The net effect of adding a discontinuity that results in

coupling between subsonic and super sonic waves is to increase the radiation by energy

in the subsonic waves and decrease the radiation by energy in the supersonic waves.
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3.3 Adding a discontinuity may increase radiation and target strength

It is not immediately clear that adding a keel is a good idea. Eliminating discontinuities

is a traditionally successful strategy in the effort to reduce radiation and target strength.

Machinery noise (point sources) excites the short wavelength flexural waves. A keel

may serve to couple these flexural waves into radiating compressional waves.

The addition of a keel may also increase the acoustic scattering and target strength by

coupling the subsonic flexural waves to the acoustic field. Although it may be possible

to dampen the energy in these flexural waves, their response and re-radiation increases

the scattered field.

The axial keel wave introduced by adding a keel to the shell may be supersonic and may

create a strong scattered field at angles where axial trace matching occurs between the

keel wave and the incident acoustic wave. The response and re-radiation by the keel

wave may also increase the scattering and target strength.

3.4 Axial discontinuities increase radiation and target strength

The addition of ring stiffeners and other axial discontinuities provides added scattering

mechanisms. In addition, the membrane waves excited by the incident acoustic field

are partially reflected at each discontinuity. These reflected membrane waves radiate

back toward the monostatic position providing increased target strength. The effect is

illustrated in Figure 3-2, taken from Corrado [9].

Corrado's research shows that the addition of ring stiffeners has the detrimental effect of

increasing target strength. Thus, although it may be argued that axial discontinuities

provide mechanisms for converting the membrane wave energy into poorly radiating

flexural wave energy, thereby reducing the back-scattered energy, these discontinuities

also provide mechanisms for reflecting the membrane wave energy and increasing the

back-scattered energy. The measured data presented by Corrado suggest that the

detrimental effect is stronger, so that the target strength is increased by the axial

discontinuities.
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Figure 3-2: (Corrado figure 5.17) Illustration of propagation paths of the first incidence of
scattering from the ring stiffeners and endcaps of the shell models

3.5 Reducing target strength and radiation by adding a keel

The addition of an axial keel, which is being studied in this thesis, is advantageous

because it is a circumferential discontinuity rather than an axial discontinuity. Axial

discontinuities have been shown to reflect membrane waves, reversing their axial

propagation direction, and thus increasing the target strength. If it extends the entire

length of the shell, the keel does not provide an axial discontinuity.

Furthermore, the keel provides a mechanism to convert energy from the membrane

waves into poorly radiating, subsonic flexural waves. The membrane compressional and

shear waves are supersonic. This condition can be written in terms of the wavenumbers

as

+ k0 <k for supersonic waves

k+k! >0ka for subsonic waves

where kx is the axial wavenumber, ke is the circumferential wavenumber, and ka is the

acoustic wavenumber.

28



Membrane waves observed on cylindrical shells have low axial and circumferential

wavenumbers and therefore are supersonic. The addition of a keel causes the

membrane waves to be coupled to trace-matched flexural waves. Coupling occurs

when the axial wavenumbers of the membrane wave and the coupled flexural wave

match. However, the circumferential wavenumber of the coupled flexural waves will be

large, so that the helical wavespeed is subsonic. These subsonic flexural waves are

poor radiators. Thus, any transfer of energy from the supersonic membrane waves to

the subsonic flexural waves should help to reduce scattering.

The conversion of energy from membrane waves into flexural waves would reduce the

radiation by the membrane waves, particularly to the monostatic position. If the

conversion mechanism could be made strong enough so that all membrane energy

could be converted to flexural energy in the time it takes for the membrane wave to

propagate from the front to back of the shell, the observed field at the monostatic

position would be greatly reduced and would result only from the geometric scattering

when the incident wave passes the front and back termination of the shell.
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4. DESIGN OF EXPERIMENTS

4.1 Plastic test shell

The goal of this research was to investigate wave coupling on a cylindrical shell with a

keel. Before studying this complex structure, experiments were performed on a plain

cylindrical shell in order to verify the test setup and data processing techniques. A

testing system was needed which could excite and measure various waves on a

cylindrical shell. The test system previously used at MIT for steel shell measurements

was used as a starting point. In order to determine whether the test system was

functioning as desired, a relatively simple, well-understood test shell was needed. The

physics of ideal circular cylindrical shells are well-known, making these 'plain' shells a

good proving ground for the test system. The measurements on the plain shell would

also serve as comparison data for planned keel studies.

In order to ease the comparison of measured data with theoretical predictions, a test

shell was chosen to best meet the following criteria:

1) To best model an infinite shell, the test shell should have minimal reflections

at the ends;

2) To best model an ideal homogeneous circular cylindrical shell, the test shell

should be seamless, without end structures such as endcaps, and stiff

enough to maintain its circular shape and a straight longitudinal axis when

suspended at a limited number of points in the lab.

Additional practical criteria for the test shell were:

1) To maximize the number of measurable modes, the diameter should be as

large as possible;

2) To avoid the complications of thick shells, the thickness to radius ratio should

be as small as possible;
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3) To be maneuverable, the shell should fit into the existing laboratory and

should be lightweight enough to be lifted and positioned without a crane;

4) To be affordable, the shell should be available off-the-shelf.

With the goal of eliminating any coupling due to an axial seam, a seamless shell was

desired. Previous studies were carried out on a steel test shell, but a steel seamless

shell with a large diameter and small thickness to radius ratio could not be found off-the-

shelf. Fabrication of a seamless steel shell was investigated by Joe Bondaryk and

found to be prohibitively expensive.

The use of a plastic shell was suggested and investigated by the author. A plastic,

seamless test shell was found which met the above criteria and had additional benefits.

A large diameter, seamless, thin PVC Type I (poly-vinyl-chloride) duct pipe was

purchased off-the-shelf. Since plastic is relatively lightweight, a large diameter test shell

could be handled easily by 2 people in the existing laboratory. The plastic shell was 16

inches in diameter with a nominal thickness of 3/16 inches, giving it a thickness to radius

ratio of 2.3%. The wavespeed of quasi-longitudinal (or compressional) waves, cLi =

I(E/p), is 1580 meters per second for the PVC cylinder, around 1/3 that of steel. The

lower compressional wavespeed combined with the larger diameter gave a lower ring

frequency and allowed measurement of many more modes. In theory, up to 5

compressional, 10 shear and 30 flexural modes could be measured on the plastic shell

below 8 kHz. In addition, the plastic shell had much higher damping than the steel shell.

The plastic shell was 20 feet long, and because of the high damping, wave amplitudes

decayed significantly before hitting the ends of the shell and returning. The total number

of measurable reflections (round trips) was very small. This had the effect of reducing

any wave or mode coupling at the ends of the shell. It also made it possible to measure

direct and reflected wave amplitudes.

4.2 Discussion of coupling vs. damping

It is important to understand the relationship between coupling and damping effects.

High damping can mean that weak coupling factors do not have enough time to make a
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measurable change in wave energies. Conversely, low damping can give even weak

coupling factors ample time to equalize the coupled wave energies.

The steel shell used in previous research at MIT had very low damping, so that waves

traveled back and forth along the shell many times before they died out. Even very

small coupling between modes could have resulted in significant transfer of energy due

to the high number of reflections and long travel path. Coupling effects at the endcaps

or along the axial seam could have built up after many round trips of the modal waves,
so that at steady state, the measured modal energy was equal in all the coupled modes.

The presence of higher order modes in the steel shell response might be explained by

this phenomenon.

On the plastic shell, the damping is relatively high. Coupling mechanisms have to be

relatively strong to result in transfer of significant (i.e. measurable) amounts of energy

between the coupled waves. It will be shown in this thesis that a keel with reasonable

dimensions can provide measurable coupling between mode 0 compressional waves

and trace-matched higher order flexural waves on a plastic shell.

4.3 Keel

A keel was attached to the outside of the plastic shell along an axial line. The keel was

attached to the outside so that the bond could be carefully inspected. The keel was the

same material (PVC) and the same thickness (0.2 inches) as the cylinder. It was 5 feet

long (152 centimeters), and it was attached at one end of the cylinder as shown in

Figure 4-1. The keel was set with epoxy into a %" groove cut into the outer wall of the

cylinder using a router. The properties of the epoxy 'joint' between the cylinder and the

keel were not studied in this thesis.
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Figure 4-1: Position of keel

4.4 Source array

The input system was designed to generate a ring of shaped motion around the

circumference of the cylinder. An array of twelve piezo-ceramic sources was used to

enable shaping of single modes 0 - 6. A commercial frequency analyzer was used to

generate the source signal, a broadband white noise signal. The source signal was

passed through a series of filters and amplifiers to the piezo-ceramic source array. A

transformer was used to provide a high voltage, low current input to the piezo-ceramic

sources. Shaping the input signal to set up n > 0 modes required twelve individual

power amplifiers and transformers. Concerns about phase accuracy and difficulty in

achieving high enough excitation voltage made it necessary to consider only excitation

of the n = 0 mode in this thesis.

4.4.1 Aliasing of input mode

The input was generated by an array of twelve piezo-ceramic sources, spaced evenly

around the circumference of the shell. According to Nyquist theory on aliasing, at least

two sources are required per wavelength to set up a given modal shape. Thus, the

twelve sources could generate mode shapes 0 - 6, with aliasing into higher order

modes. Mode 0 was excited by sending an identical signal to all twelve sources. This

input theoretically excites mode 0 waves, in which all points around the circumference

move in unison, but it also excites modes 12, 24, 36, etc. The excitation of mode 12 is

shown in Figure 4-2.
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Figure 4-2: Mode 0 input, equal at all sources, excites modes 0 and 12

Input shaped to excite modes 1 through 6 also aliases into higher order modes. This

effect was seen in the accelerometer data collected at the beginning of this research

before the laser system was set up.

Although mode 0 waves can be excited with fewer transducers, a source array with

twelve individual transducers was chosen in order to facilitate separation of waves in the

wavenumber-frequency plots. The dispersion relations of flexural waves with modal

order 0 to 10 are very closely spaced in the wavenumber-frequency domain. It is

difficult to distinguish them from one another. A twelve element source array allowed

separate measurement of both the fundamental excitation mode 0 and the higher order

mode 12 excited through aliasing.

4.4.2 Piezo-ceramic transducers

The sources were piezo-ceramic hollow cylinders, embedded orthogonally into the wall

of the test shell so that their radial expansion imparted a force in the 'plane' of the shell.

(Figure 4-3) They were made of piezo-ceramic material 5700 (lead zirconate titanate)

from Channel Industries (Navy Type IV). They had an outer diameter of 0.313 inches,

were 0.027 inches thick and 0.312 inches long. The radial and longitudinal natural

frequencies of the sources were above 126 kHz, well out of the measured frequency

range. When a voltage was applied across the sources, they responded by expanding
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radially and longitudinally with respect to the source axis. The pressure exerted on the

shell by each transducer was calculated by Lin. [13]

z

(+)Ng

Cylinder Wall

Piezo-ceramic Source

Figure 4-3: Source installation

Because of the high damping in the plastic shell, and because of the desired distance

between the source array and the measurement locations, the source signal needed

amplification. The approximate maximum voltage that could be applied to the piezo-

ceramic sources without failure was calculated. In order to prevent failure due to

overload, the total power into the sources was limited. The frequency range of the input

was bandwidth-limited using filters so that the voltage levels could be boosted without

increasing the power too much. In this way, the signal-to-noise ratio was increased

enough to separate the data from the noise.
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4.5 Receiver arrays

The vibratory response of the shell was measured at an array of locations. The

measured time series was Fourier transformed to get a frequency spectrum for each

point in the array. The individual frequency spectra show peaks at the excited

frequencies, but do not differentiate between the different wave types or circumferential

mode numbers. Measuring at an array of locations enables spatial Fourier

transformation across the array, providing wavenumber spectra for each frequency.

The combination of frequency and wavenumber information allows differentiation among

various wave types and between circumferential mode numbers.

The receiver arrays were designed with the same principles used when collecting time

data for future Fourier transforms into the frequency domain. Spatial variable, x,

replaces time variable, t, and spatial frequency or wavenumber, k, replaces temporal

frequency, (o.

Temporal transform Spatial transform

Time t distance x

Frequency o0 wavenumber k

Time sample spacing At array spacing Ax

Sampling time T array length L

Frequency spacing Aco = 2n/T wavenumber spacing Ak = 2n/L

Sampling frequency OS = 2n/At sampling wavenumber ks = 27c/Ax

Nyquist frequency cos/2 = n/At Nyquist wavenumber ks/2 = it/Ax
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4.5.1 Array spacing

The longitudinal array spacing was determined based on the smallest longitudinal

wavelength desired to be measured. According to Nyquist theory, at least two points

per wavelength are required. Since wavelength and wavenumber are inversely

proportional, the wave with the smallest wavelength has the largest wavenumber. The

theoretical dispersion curves plotted in Figure A-1 indicate that the largest longitudinal

wavenumber to be measured is that of the mode 0 flexural wave at 8 kHz. (See

Appendix A for theory.) Figure 4-4 shows the theoretical dispersion curves for mode 0

flexural, compressional and shear modes. The figure shows that the normalized

longitudinal wavenumber of the mode 0 flexural wave, kxaflexo, is 30 @ 8 kHz. The

corresponding longitudinal wavelength can be calculated to be 4.3 centimeters.

kx,flexO @ 8 kHz = 2 it a / kxafiexo = 1.7 in or 4.3 cm

where radius, a = 8 inches.

This is the smallest longitudinal wavelength to be measured, and the longitudinal

measurement array spacing was chosen to avoid aliasing of these small wavelengths.

In accordance with the Nyquist criterion, spacing should be closer than 2.15

centimeters. A longitudinal array spacing of 1 centimeter was chosen to provide ample

oversampling at 8 kHz. Oversampling provides better rejection of noise and insures that

higher wavenumbers will not be aliased into the region of interest. The wavelengths for

mode 0 flexural, compressional and shear waves are shown in Figure 4-5. Wavelengths

at 8 kHz are listed below.

lex @ 8 kHz = 27Ea / 30 1.7 in or 4.3 cm

kshear @ 8 kHz = 27c a / 10 5.0 in or 12 cm

Xcomp @ 8 kHz = 27c a / 5.6 = 9.0 in or 22 cm
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The circumferential array spacing was also chosen based on the Nyquist criterion for

avoiding aliasing. According to plain cylinder theory, the highest circumferential mode

with a cut-on frequency below 8 kHz is flexural mode 30. (Figure A-1) In order to

measure circumferential mode 30, Nyquist theory suggests sampling at least 60 points

around the circumference. A circumferential array spacing of 1 cm corresponds to 125

points around the circumference, which amply oversamples the circumferential modes.

In addition, using the same spacing for both the longitudinal and circumferential arrays

facilitated processing and interpretation of the data.

4.5.2 Array length

The length of the longitudinal array was chosen to allow adequate resolution of

wavenumbers. The longitudinal laser array was 120 points, or 119 cm long, giving a

normalized longitudinal wavenumber resolution, Akxa, of 2ira/L or 1.07. The

circumferential array extended all the way around the cylinder. It was 125 points, or 124

cm long, giving a normalized circumferential wavenumber resolution of Akoa = 1.03.

4.5.3 Longitudinal array determines wave type via dispersion relation

When the equations of motion for an infinite cylindrical shell are written, they are

separated into modes in the circumferential direction and waves in the longitudinal

direction. Thus we can talk about mode 0 waves travelling longitudinally down the shell.

The separated equations of motion can be written in the form of longitudinal dispersion

relations, relating the frequency to the axial (longitudinal) wavenumber for each modal

order and for each wave type. The longitudinal wavenumber can be measured

experimentally using a longitudinal array. Data from the longitudinal array can be

spatially transformed to obtain a measurement of the dispersion curves. Information on

the modal order of the waves is not contained in the longitudinal data, although some

knowledge can be gained by comparison with theory.

4.5.4 Circumferential array determines modal order

Spatial transforms of the data from a circumferential array give information on the

circumferential wavenumber of the measured waves. The circumferential wavenumber
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corresponds directly to the circumferential modal order of the waves. Circumferential

modes of a circular cylinder can be expressed in terms of sin and cosine mode shapes,

sin(nO) and cos(nO), where 0 is the circumferential angle from 0 - 2iC radians and n is the

mode number. The mode shapes can also be written in terms of the circumferential

distance, y = a*0, and the circumferential wavenumber, ke, as sin(koa*0) and cos(koa*0).

It follows that the mode number and circumferential wavenumber are related, n = ko*a.

4.6 Data processing

4.6.1 Spatial variations of the transfer functions

In this research, transfer functions were collected at an array of locations on the shell.

For example, Figure 4-6 shows the magnitude of the transfer function versus position for

the 2 kHz and 4 kHz frequency lines. Based on theoretical studies of the shell we

expect to see waves corresponding to different circumferential mode numbers

propagating axially along the shell. For each mode number, n, five waves types are

possible corresponding to the five degrees of freedom: translation in the radial,

circumferential, and axial direction and rotation of the shell cross-section about an axial

line and about a circumferential line. The latter two degrees of freedom are added when

a thick shell theory is used to account for the effects of transverse shear deformations

and rotary inertia. The curvature of the shell and the Poisson effect cause the motion in

the different directions to be coupled for each mode. However, we can continue to refer

to modes as flexural, compressional, and shear based on the largest component of the

modal displacement, i.e compressional modes have the greatest amplitude in the axial

direction, shear modes have the greatest amplitude in the circumferential direction, and

flexural modes have the greatest amplitude in the radial direction. However, care must

be used when following the dispersion curve for a particular wave type, since the wave

may change its character. For example, the n=0 flexural modes at high frequency

become n=0 compressional modes at low frequencies below the ring frequency. Thus,

the naming convention is somewhat arbitrary.

The uniform excitation of the twelve source transducers is expected to excite n=0, n=12,
and higher multiples of 12. Based on theory, both n=0 compressional and flexural
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modes should be observed over the frequency range of interest for this thesis. The

n=12 flexural modes should also be observed. The shear modes are not excited and

should not be observed. The n=12 and higher order compressional waves do not exist

in the frequency range of these experiments. The n=24 flexural mode was expected in

the data but was not seen.

Figure 4-6 shows the longitudinal array data for the plain end of the shell at 2 kHz and 4

kHz. The interference pattern in the data suggests multiple waves. At 2 kHz the

interference pattern suggests two dominant waves. However, it is difficult to visually

determine the wavenumbers of these waves. At 4 kHz the interference pattern is even

more complicated, suggesting multiple waves. A Fourier transform with respect to the

spatial variable (position) can be used to extract all of the wavenumbers present in the

data.
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Figure 4-6: Longitudinal array data, plain end, at 2 kHz (top) and 4 kHz (bottom)
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The raw data can be visualized in a three-dimensional plot showing the magnitude of the

transfer function versus frequency and position. Figure 4-7 shows the unprocessed

longitudinal array data collected on the plain end of the shell. A wave pattern can be

seen in this figure, with generally longer wavelengths at lower frequencies and shorter

wavelengths at higher frequencies. The wave pattern shows fluctuations in the

magnitude of the transfer function, suggesting interference between two or more waves.

The presence of more than one wavetype travelling at any given frequency makes the

plot difficult to interpret without further processing.
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Figure 4-7: Longitudinal array data, plain end
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4.6.2 Wavenumber-frequency transforms

Wavenumber-frequency transforms can be used to separate waves via their dispersion

relations. Compressional waves and flexural waves may propagate at the same

frequencies, but with different wavenumbers (or at the same wavenumber but different

frequencies). A two-dimensional (time and space) array of measured wave velocity

data can be transformed both temporally (for frequency) and spatially (for wavenumber),

giving a three dimensional surface on which the wavenumbers associated with each

frequency component are shown. The dispersion relations of the waves are thus clearly

seen and easily separated.

A Fourier transform with respect to position can be used to determine the various

wavenumbers present at each frequency based on the variations in the magnitude and

phase of the transfer functions. Figure 4-8 shows the Fourier transform of the data in

Figure 4-6. It shows that other wavelengths are also strongly present in the data. Three

dominant peaks occur in the wavenumber spectrum which correspond to the three

excited waves on the shell: mode 0 compressional, mode 0 flexural and mode 12

flexural.
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Figure 4-8: Wavenumber transform at 2 kHz (top) and 4 kHz (bottom)
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Assembling the wavenumber transforms for each frequency into one three-dimensional

matrix gives even more information. This matrix, called the frequency-wavenumber

transform, shows the changing relationship between the frequency and wavenumber of

each wave present in the data. In other words, the frequency-wavenumber transform

makes visible the dispersion relations for each wave. Figure 4-9 shows the frequency-

wavenumber transform of the data shown in Figure 4-7. Four distinct curves can be

easily distinguished, three with negative wavenumber and one with positive

wavenumber. Each of these curves represents the dispersion relation of a particular

wave. Two of the curves are straight, indicating non-dispersive waves such as

compressional or shear waves. The other two waves have curved dispersion relations,

like those of flexural waves.
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Figure 4-9: Frequency-wavenumber transform of the longitudinal array data collected on
the plain end of the cylinder
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4.7 Support of Shell

The shell was suspended by ropes at two locations along its length as shown in Figure
4-10. There were a few concerns with this method of suspension. The first concern
was that the ropes would act as a discontinuity and reflect waves. In order to check this
hypothesis, the radial velocity was measured at a single location on the shell while the
ropes were moved to various positions. Data was collected with the ropes 1) between
the source array and the measurement location, and 2) on the other end of the source
array, as shown in Figure 4-11. There was no noticeable change in the data due to the
position of the ropes.

source
array

20 ft = 6.1 m

Figure 4-10: Support of Shell

The second concern was that rotation of the shell would change the shell and/or support

system properties so that measurements would not be repeatable. To address this

concern, laser measurements were taken at the same location on the shell before and

after a large rotation. The 'before' and 'after' measurements were identical within the

accuracy of this type of measurement, as shown in Figure 4-12.
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Figure 4-11: Location of bungee cords in various tests
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Figure 4-12: Measurement repeatability
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The third concern was that the rope would anchor the mode shapes. For the

circumferential tests, the laser was stationary and the shell was rotated to each

measurement location. Each support rope was a continuous loop which ran around the

shell and through a pulley which was suspended from the wooden frame support. The

shell rolled along with the loops of rope, so that the rope was always in contact with the

bottom half of the shell.

Due to the axial symmetry of a cylindrical shell, the circumferential mode shapes can

theoretically be oriented in any rotational direction. In a real cylindrical shell, small

deformities in material or shape tend to determine the preferential orientation of the

mode shapes. The concern was that the ropes would anchor the mode shapes such

that they were oriented in a specific direction relative to the ropes. Since the

measurement location was also fixed relative to the ropes, the measured data would

always be at the same position in the mode shape. In other words, the mode shape

would remain fixed relative to the measurement location, rather than rotating with the

shell, making it impossible to measure the mode shape using the described

experimental technique.

To check this concern, data was collected simultaneously with an accelerometer

mounted at a permanent location and the laser directed at a varying location. Twelve

points were marked around the circumference of the shell, one centimeter apart. An

accelerometer was mounted on the shell at the same circumferential position as point 1,

approximately 1 centimeter down the shell, longitudinally. The input was white noise,

similar to the input used in the circumferential array tests. Transfer functions between

the input and the response were collected using the SRS analyzer.

First, data was collected with both the laser and the accelerometer at the reference

position (the permanent position of the accelerometer). This data was compared and

found to agree. (Figure 4-13) Noise baseline data was also collected with both the

accelerometer and the laser. This data shows good signal-to-noise ratios for both

transducers. (Figure 4-14) Next the shell was rotated 1 centimeter to the next marked

position. Laser data was collected at the new location and accelerometer data was

collected at the reference position. This process was repeated for all twelve marked

points around the circumference. The laser data varies with rotation, as expected.
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(Figure 4-15) The accelerometer data is identical at each rotated position, showing that

the shell response remains constant with rotation. (Figure 4-16) This data eliminates

the concern of mode shape anchoring by showing that the mode shapes are not

affected by the rope supports.

Laser data and accelerometer data at reference point
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Figure 4-13: Accelerometer vs. laser data at reference point
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Figure 4-14: Magnitude of the signal vs. magnitude of the noise (upper) and phase of
the signal (lower) for the accelerometer (top) and laser (bottom)
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Figure 4-15: Rotation tests - laser data
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Figure 4-16: Rotation tests - accelerometer data
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5. LONGITUDINAL ARRAY MEASUREMENTS

5.1 Test Procedure

The test shell was suspended horizontally from two ropes which ran through pulleys
attached to a wooden frame. Transfer functions were measured between the radial
velocity of the outer surface of the shell and the broad-band random input signal.

5.1.1 Input to the source array

For the longitudinal tests, the broad-band white noise input signal of 5 Volts rms was

low-pass filtered with a cut-off frequency of 25 kHz and a gain of 12 dB. A high-pass
500 Hz filter with unity gain was also applied. The signal was amplified by a power

amplifier with a gain of 13 and an impedance transformer with a gain of 5. The

longitudinal tests' source signal was thus band-limited to 500 Hz - 25 kHz with a total

gain of about 48 dB. The input signal was split twelve ways and sent to the twelve

transducers in the source array.

5.1.2 Data Collection

The longitudinal array data was collected using a system created by Joseph E.
Bondaryk, a Research Engineer at MIT. Bondaryk's 'Idv' program controlled the laser
positioning table and collected the data. The input signal and the laser output signal

were digitized using a 12-bit A/D board, anti-alias filtered at 25 kHz, and sampled at 50
kHz. The input autospectrum, output autospectrum and cross-spectrum were calculated
over 30 ensembles for 512 linearly-spaced frequencies in the range 0 - 25 kHz. The

data was then saved into a MATLAB file.

Data was collected at 120 points, spaced 1 centimeter apart. At each point, the radial

velocity of the outer surface of the shell was measured with the laser. The sensitivity of

the laser was set to 1 millimeter per second per Volt, the most sensitive setting. The

laser lens was 17 inches from the measurement point on the shell, and reflective tape

was mounted at the measurement point to improve reflection of the laser beam. The
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laser was mounted on a linear positioning table which was controlled by the ldv

program. After collecting data at one point, the ldv program moved the laser to the next

point in the array and repeated the process.

5.1.3 Calibrations

The input to the sources for the longitudinal array tests was measured via a transfer

function between the SRS analyzer's source signal and the output of the Wilcoxon

impedance matching network, which is split twelve ways and fed into the twelve piezo-

ceramic sources. The calibration was performed with a reduced voltage input of 0.2

volts. The transfer function shows the cumulative effect of the filters and amplifiers

used to shape the signal before sending it to the sources. At the high frequency end,

the signal is flat up to 20 kHz, then drops off. It is 3 dB down at 25 kHz. In the low

frequency range, the signal is flat above about 700 Hertz and 3 dB down at 100 Hertz.

The total linear gain in the flat region is 285 (49 dB).
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Figure 5-1: Input Transfer Function for the Longitudinal Array Tests

The output from the laser velocimeter was passed through various filters and amplifiers

before going into the frequency analyzer for collection and processing. The cumulative

effect of these filters and amplifiers is shown in the 'output transfer function' in Figure 5-

2. The 'input' for this calibration transfer function was a broad band white noise signal

generated by the SRS frequency analyzer, which was used in place of an actual velocity

signal from the laser. The output transfer function is basically flat between 200 Hz and

20 kHz with drop-offs to 3 dB down at 100 Hz and 25 kHz respectively. The total linear

gain in the flat region is 93 (40 dB).
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Figure 5-2: Output Transfer Function for the Longitudinal Array Tests

5.2 Plain end results

Figure 5-3 shows the wavenumber-frequency transform of the plain end longitudinal

array data. Wavenumber-frequency processing and three-dimensional imaging provide

an excellent means to identify the wave dispersion relations. Four dispersion curves are

clearly evident. The two less steeply sloped curves show the dispersive relationship

between frequency and wavenumber associated with flexural waves. They both have

negative wavenumbers, indicating travel in the outgoing direction (away from the source

array) on the plain end of the shell.

The two steeply sloped lines with very low wavenumbers are symmetric about kxa = 0,

one travelling in the outgoing direction (-kxa) and one travelling in the incoming direction

(+kxa). They are straight, indicating non-dispersive membrane waves. Their slope
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corresponds to the wavespeed of compressional waves, and they only exist above the

ring frequency, indicating that these lines represent mode 0 compressional waves

travelling in the plus and minus directions on the shell. The direct wave (-kxa) amplitude

is significantly larger than the returning wave amplitude, indicating a high decay rate. A

beating pattern of magnitude fluctuations can be seen on the compressional wave lines

which is due to interference between the direct wave and a wave reflected off the other

end of the shell, as explained in Section 5.2.3.
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Figure 5-3: Plain end longitudinal array data
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5.2.1 Comparison of plain end longitudinal array results with theory

Theoretical dispersion curves for the test shell were calculated using the state space

equations presented by Borgiotti and Rosen [22]. These equations represent a theory

similar to that of Herrmann-Mirsky, including the effects of rotary inertia and shear

deformations. The thick shell theory was required to match the data at high

wavenumbers. Since the material properties of PVC were not known, they were

selected (within an appropriate range) to best fit the experimental data. The material

properties and shell parameters used in this thesis are listed in Table 5-1. The values for

the radius and thickness of the cylinder were measured. The shell thickness was found

to be slightly larger than the manufacturer's stated nominal thickness. The values for

Poisson's ratio and compressional wave speed were tuned to best fit the data. Hayner

[20] used a 'plate speed' (cLI) of 1700 m/s to match data collected by Lin [13]. This

thesis uses a shell compressional wavespeed (cLII = 4(E/p)) of 1580 m/s and Poisson's

ratio equal to 0.42. The corresponding theoretical plate wavespeed (cLI = 4(E/p(1-.v2))) is

1741 m/s. These values produces a good match between theoretical dispersion curves

and the experimental data.

Radius, a 8 in

Thickness, t 0.2 in

Poisson's ratio, v 0.42

Compressional wavespeed, cui 1580 m/s

Table 5-1: Shell parameters used for theoretical modeling

The theoretical dispersion equations formulated by Borgiotti and Rosen [22] were

programmed in MATLAB by Mark Hayner. Hayner's program sorts the roots of the

eigenvalue matrix formulated by Borgiotti into wave types: flexural, compressional,

shear, evanescent, and through-thickness. The flexural, compressional and shear roots

sorted by Hayner's programs include complex values below the cut-off frequencies. The

complex values were removed from the theoretical curves and the remaining real-

valued flexural, compressional and shear dispersion curves were constructed. A plot of
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the normalized axial wavenumber as a function of frequency for mode 0 flexural,
compressional and shear waves is shown in Figure 4-4. The flexural wave has a curved
dispersion relation, indicating its' dispersive nature. The non-dispersive compressional

and shear membrane waves have linear dispersion relationships. The compressional

wave cuts-off at the ring frequency of the shell, which is the frequency at which the

compressional wavelength equals the circumference of the shell. A more detailed

discussion of the dispersion curves for cylindrical shells can be found in Reference 7,
pages 176-188.

Figure 5-4 shows the longitudinal array data collected on the plain end of the shell

overlaid with the theoretical dispersion curves for mode 0 and 12 flexural waves and

mode 0 compressional waves. The strongest lines of data line up with the outgoing

(negative wavenumber) mode 0 and 12 flexural and mode 0 compressional dispersion

curves. A slightly lower level of response occurs along the incoming (positive

wavenumber) mode 0 compressional curve. Other features of the data are less clear.

There is a faint indication of response along the incoming mode 0 flexural dispersion

curve. There are also faint regions of response inside the mode 12 flexural curve, which

line up with higher order flexural waves with orders 14 - 20. These regions could be due

to small phase errors in the source array.
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Figure 5-4: Theoretical dispersion curves for mode 0 compressional, mode 0 flexural
and mode 12 flexural overlaid on the plain end longitudinal array data

5.2.2 Extraction of the wave amplitudes

The amplitude of each wave shown in the wavenumber-frequency transform was

extracted along the theoretical dispersion curves. First, the theoretical dispersion curves

were digitized to match the resolution of the wavenumber-frequency transform data.

The kxa resolution is approximately 0.5, while the frequency resolution is approximately

16 Hertz. The mode 0 compressional wave has a steep slope, with kxa values ranging

from 0 to 6 over the 0-8 kHz frequency range. Figure 5-5 shows the wave amplitude

extraction points (small circles) for the mode 0 compressional wave. One extraction

point was calculated for each frequency in the data. There are many frequency values

associated with each kxa value due to the steep slope. Only the plus-kxa extraction
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points are shown, corresponding to a plus-going mode 0 compressional wave. The

extraction points for the minus-going wave are symmetrically located on the minus-kxa

end of the transform.
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Figure 5-5: Mode 0 compressional wave amplitude extraction points

The flexural waves, modes 0 and 12, were digitized to have one point for each kxa value

in the data due to their almost horizontal slope at kxa values around 10. This results in

rather sparse spacing at very low wavenumbers for the mode 0 flexural wave due to its

steep slope. This spacing could be improved if it becomes important for future

research. Figures 5-6 and 5-7 show the wave amplitude extraction points for the mode

0 and mode 12 flexural waves.
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Figure 5-6: Mode 0 flexural wave amplitude extraction points
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Figure 5-7: Mode 12 flexural wave amplitude extraction points
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The magnitude of the wavenumber-frequency transform at each of the extraction points
is a measure of the radial component of the wave amplitude of the corresponding wave.
The wave amplitudes were extracted for plus-going and minus-going waves of all three
present wave types: mode 0 compressional, mode 0 flexural and mode 12 flexural. The
wave amplitudes are a measure of the radial particle velocity of the surface of the shell.
It is important to remember that the radial amplitude of the flexural waves cannot be
directly compared to the radial amplitude of the compressional waves. The particle
velocity of flexural waves is primarily in the radial direction, but compressional waves
have primarily in-plane particle velocities. The measured (radial) compressional wave
amplitude is therefore a small fraction of the total compressional wave amplitude.

In order to clearly identify the different waves travelling on the shell and the wave
amplitudes measured by the longitudinal arrays, the following terminology is used.
'Plus-k' and 'minus-k' waves are measured waves with positive and negative

wavenumbers, respectively. Waves travelling away from the source array will be called
outgoing waves', and waves travelling toward the source array will be called 'incoming

waves'. Note that on the plain end of the shell, due to the orientation of the longitudinal

array, waves travelling away from the source array have negative wavenumbers. These
outgoing waves are measured as minus-k waves. Conversely, on the keel end of the
shell, waves travelling away from the source array have positive wavenumbers. They
are also outgoing waves, but they are measured as plus-k waves. Finally, waves which
come directly from the source (before any reflections) are called 'direct waves'. Waves
which are travelling toward the source array after reflecting or scattering at

discontinuities are called 'reflected' or 'returning' waves.

By tracing the path of each wave as it travels away from the source we can determine

which waves will be present in the extracted plus-k and minus-k wave amplitudes on
each end of the cylinder. Figure 5-8 shows a diagram of the wave paths. On the plain
end of the cylinder, the three waves generated by the source array (the direct waves)

propagate freely until they hit the end of the cylinder, where they are reflected with

minimal loss of energy. Some wave conversion between membrane and flexural waves
is expected when the waves impinge on the free end of the shell. The waves then freely

propagate back along the cylinder, passing the plain end longitudinal array a second
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time, in the opposite direction. The reflected waves continue to propagate, passing the

source array and the keel end longitudinal array, but by this point they have lost a great

deal of energy and are assumed to have very small amplitude.

incoming wave outgoing wave, outgoin wave, incoming wave

source
array direct waves

waves reflected from
start of keel

waves reflected from
keel end of shell

-waves reflected from
,plain end of shell

Figure 5-8: Tracing the wave paths to track the plus-k and minus-k waves measured by
the longitudinal array on the plain end of the shell

On the keel end of the cylinder, the three waves generated by the source array (the

direct waves) first hit the start of the keel. The discontinuity at the start of the keel

reflects a small amount of wave energy into the three incident wave types. These

reflected waves decay as they propagate toward the plain end of the cylinder, so that

they are assumed to be negligible by the time the reach the plain end longitudinal array.

The discontinuity at the start of the keel also scatters some of the wave energy into

waves with different modes or wave types, some of which continue to propagate along

the keel. (The wave coupling at the keel is discussed in more detail in Chapter 6.) The

direct waves also propagate along the keel, which transfers additional energy into other

waves. The waves pass the keel end longitudinal array and are reflected at the end of

the cylinder to propagate past the keel end longitudinal array a second time, in the

opposite direction. By the time they reach the plain end longitudinal array the reflected
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waves have lost much of their energy due to dissipation through material damping and

scattering into other waves.

By tracing the wave paths, the outgoing (minus-k) waves measured by the plain end

longitudinal array have been shown to be a combination of 1) the direct waves from the

source, 2) waves reflected off the start of the keel, and 3) waves reflected off the keel

end of the shell. The incoming (plus-k) waves are the waves reflected from the plain

end of the shell. The outgoing and incoming wave amplitudes measured on each end of

the shell are discussed below.

The wave amplitude for the mode 0 compressional wave was determined at the

extraction points shown above in Figure 5-5. The extraction points are overlaid on the

data for the plain end of the shell in Figure 5-9. The extracted radial wave amplitude

and phase for the outgoing compressional mode 0 wave are shown in Figure 5-10. The

wave amplitude decreases as the frequency increases. The wave amplitude is

approximately 25 dB at the ring frequency and approximately 20 dB lower at 8 kHz.

The interference or beating pattern seen in the wave amplitude indicates the presence

of more than one wave. The beating pattern will be analyzed in Section 5.2.3.

The amplitude of the incoming wave decreases more quickly with frequency than the

outgoing wave amplitude. The extraction points and the extracted radial wave amplitude

and phase for the incoming compressional mode 0 wave on the plain end of the shell

are shown in Figures 5-11 and 5-12. The peak at the ring frequency is probably the sum

of the incoming wave amplitude and smeared amplitude from the outgoing wave (due to

the Hanning window). If the initial peak is ignored, the amplitude decreases from about

15 dB at 2 kHz to 0 dB at 5 kHz. This steeper drop-off is explained by a frequency

dependent wave decay rate, as discussed in Section 5.2.3. The beating pattern seen in

the outgoing wave amplitude is also seen in the incoming wave amplitude. This will be

discussed in Section 5.2.3.

The extraction points and the extracted radial wave amplitude of the outgoing and

incoming mode 0 flexural waves on the plain end of the shell are shown in Figures 5-13,

5-14, 5-15 and 5-16. The amplitude of the outgoing flexural mode 0 wave is similar to

that of the outgoing mode 0 compressional wave. The data extraction algorithm takes
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the data with the highest amplitude within a range around the extraction point. The

extracted incoming wave amplitude shown in Figure 5-16, which essentially follows the

peaks in the noise amplitude, is contaminated by noise.

The extraction points and the radial wave amplitudes of the outgoing and incoming

mode 12 flexural waves on the plain end of the shell are shown in Figures 5-17, 5-18, 5-
19 and 5-20. The amplitude of the outgoing mode 12 flexural wave is approximately 5
dB lower than the amplitude of the outgoing mode 0 compressional wave. The incoming

mode 12 flexural wave amplitude shown in Figure 5-20, which essentially follows the

peaks of the noise amplitude, is contaminated by noise. The high amplitudes near the

ring frequency are probably due to spreading of the mode 0 compressional waves,

rather than any presence of the incoming mode 12 flexural wave.
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Figure 5-9: Extraction points for the OUTGOING mode 0 compressional wave measured
on the plain end of the shell (small circles)
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Figure 5-10: Extracted radial wave amplitude and phase of the OUTGOING mode 0
compressional wave measured on the plain end of the shell
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Figure 5-11: Extraction points for the INCOMING mode 0 compressional waves on the
plain end of the shell (small circles)
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Figure 5-12: Extracted radial wave amplitude
compressional waves on the

and phase of the INCOMING mode 0
plain end of the shell
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Figure 5-14: Extracted radial wave amplitude and phase of the OUTGOING mode 0
flexural waves on the plain end of the shell
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Figure 5-16: Extracted radial wave amplitude of the INCOMING mode 0 flexural waves
on the plain end of the shell (-x-), and noise amplitude(- -)
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Figure 5-17: Extraction points for the OUTGOING mode 12
end of the shell (small circles)
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Figure 5-18: Extracted radial wave amplitude and phase of the OUTGOING mode 12
flexural waves on the plain end of the shell
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Figure 5-20: Extracted radial wave amplitude of the INCOMING mode 12 flexural waves
on the plain end of the shell (-x-), and noise amplitude (- -)
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5.2.3 Compressional wave amplitudes and decay rates

The interference or beating pattern observed in outgoing and incoming compressional

mode 0 wave amplitudes on the plain end of the cylinder indicates the presence of more

than one wave. In section 5.2.2 the paths of the waves were traced as they traveled

along the shell. The outgoing waves measured by the plain end longitudinal array were

shown to be a combination of 1) the direct waves from the source, 2) waves reflected off

the start of the keel, and 3) waves reflected off the keel end of the shell. Assuming that

the amplitudes of the waves reflected off the start of the keel are negligible by the time

they reach the plain end longitudinal array, the measured outgoing wave amplitude can

be decomposed into its two wave components: the direct waves and the waves

reflected off the keel end of the shell.

This hypothesis can be supported by calculating the distance between the peaks in the

beating pattern based on the phases of the two component waves.

The amplitude ratio of the two component waves can be determined from the peak-to-

valley ratio of the beats. Each peak in measured amplitude equals the sum of the two

component wave amplitudes, while each valley equals the difference. Expressing the

measured peak and valley amplitudes as A, and AV and expressing the amplitudes of

the two component waves as Ad (direct wave) and Ar (reflected wave), the amplitude

ratio can be expressed as follows.

Ap = Ad + Ar

AV = Ad - Ar

Ar/Ad = (Ap/A - 1) / (Ap/A + 1)

From Figure 5-21 the amplitudes of the peak and valley are seen to differ by about 3dB

at 2.5 kHz, which corresponds to a ratio of Ap/AV equal to 2. Thus the predicted

amplitude ratio of the two component waves, Ar/A, is 1/3 at 2.5 kHz. Logically, the

smaller of the two component waves would be the compressional wave reflected off the

keel end of the shell.
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Figure 5-21: Ratio of peak amplitudes to valley amplitudes for the outgoing
compressional wave on the plain end of the shell

The decay associated with this decrease in wave amplitude can be calculated by
assuming the following form for the wave amplitudes:

Ar = Ade-ak(xr-xd)

where a is the decay coefficient, k is the frequency-dependent wavenumber of the

wave, xd is the distance traveled by the direct wave and Xr is the distance traveled by the

wave reflected off the keel end of the shell. The direct wave has traveled 100.7 cm, and

the reflected wave has traveled 554.1 cm. Thus the reflected wave has traveled 453.4

cm farther than the direct wave. At 2.5 kHz, the wavenumber of the mode 0
compressional wave is approximately 10 m1. Using these values, the decay at 2.5 kHz
can be estimated to be:

atbeating (2.5 kHz) = -in(Ar/Ad)/k*(xr-xd) = -ln(0.33) /(10 m1 )*(4.5m) = 0.025
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Figure 5-22 shows more exact calculations for the decay coefficient, which agree with

the above estimate. The average decay coefficient is 0.0267 for frequencies between

one and three-and-a-half times the ring frequency (1.4 kHz - 5 kHz).
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Figure 5-22: Decay coefficient for the mode 0 compressional wave calculated using the
beating pattern on the outgoing plain end longitudinal array data

Another measure of the decay rate of the compressional wave can be calculated using

the ratio between the amplitudes of the incoming and outgoing waves on the plain end

of the shell. The measured amplitude of the incoming waves on the plain end of the

shell is compared to the amplitude of the outgoing waves in Figure 5-23. The ratio

between the wave amplitudes can be approximated to be 0.26 at 2.5 kHz. Figure 5-8

shows that the distance from the center of the plain end longitudinal array to the plain

end of the shell is 282.2 cm. Thus the incoming compressional wave has traveled 564.4

cm farther than the outgoing wave.
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Figure 5-23: Outgoing

4 4.5 5

and incoming wave amplitudes measured by the longitudinal
array on the plain end of the shell.

The decay associated with the decrease in amplitude between the outgoing and

incoming waves is calculated below at 2.5 kHz. The amplitude of the outgoing wave is

A0, the amplitude of the incoming wave is Ai, and the distances traveled by the two

waves are xi and xo respectively. The wavenumber of the compressional wave at 2.5

kHz is taken from the wavenumber-frequency data to be 10 m1.

ctincoming (2.5 kHz) = -ln(Ai/Ao)/k(xi-xo) = -ln(0.26) / (10 m1 )*(5.6 m) = 0.024

This estimate is supported by the more exact calculations shown in Figure 5-24, which

shows an average decay coefficient of 0.0240 for frequencies between 2.6 kHz and 5

kHz.
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Figure 5-24: Decay rate for the mode 0 compressional wave calculated using the
outgoing and incoming wave amplitudes from the plain end longitudinal array data

The two methods for calculating the decay give slightly different results. The decay
coefficient calculated from the beating pattern in the outgoing wave on the plain end of
the shell is 0.0267. This decay coefficient is a measure of the energy lost by the wave
reflected off the keel end of the shell, as shown in Figure 5-8. This wave travels along
the keel for 3 meters on its way from the source array to the keel end of the shell and
back to the plain end measurement array. Thus, in addition to material damping, the
decay measures losses into other wave types due to coupling at the keel and at the end
of the shell.

The decay rate calculated from the ratio between the outgoing and incoming wave
amplitudes measured by the plain end longitudinal array is 0.0240. This decay is based
on travel along the plain end of the shell. Thus the decay measures loss due to material
damping and loss into other wave types due to coupling at the end of the shell.
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The difference in the two calculated decay coefficients is 0.0027. This difference is due

to wave coupling at the keel. The decay rate calculated from the beating pattern is

based on a travel path of 453.4 centimeters, of which 304.8 centimeters is along the

keel. More direct evidence of the wave coupling at the keel is shown in the data from

the keel end array.

5.3 Results for the end of the shell with a keel

Figure 5-25 shows the wavenumber-frequency transform measured by the longitudinal

array on the end of the shell with the keel. Outgoing waves measured by the keel end

array have positive wavenumbers due to the placement of the array relative to the

source array. The four dispersion curves seen in the plain end data are also seen on

the keel end. The two less steeply sloped curves show the dispersive relationship

between frequency and wavenumber associated with flexural waves. They both have

positive wavenumbers, indicating travel in the outgoing direction (away from the source

array). The two steeply sloped lines with very low wavenumbers are symmetric about

kxa = 0, one travelling in the outgoing direction (+kxa) and one travelling in the incoming

direction (+kxa). They are straight, indicating non-dispersive membrane waves. Their

slope corresponds to the wavespeed of compressional waves, and they begin above the

ring frequency, suggesting that these lines represent mode 0 compressional waves

travelling in the plus and minus directions on the shell.
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Figure 5-25: Keel-end longitudinal array data

The interesting feature of the keel end data is the new response which lies between the

compressional and flexural dispersion curves on the positive end of the wavenumber

axis. Rather than a solid line of response, the data shows points of higher response that

fall roughly along a line. This line lies in the vicinity of the mode 0 shear wave, but there

is no excitation of the shear wave. Comparison with theoretical dispersion curves

shows that the new response falls outside the shear line. The axial wavenumbers of the

new response are slower than the membrane waves on the shell, and faster than the

bending waves.
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5.3.1 Comparison with theory

Figure 5-26 shows the theoretical dispersion curves for a homogeneous cylinder

(without a keel) overlaid on the keel end data. The two outer curves are the mode 0 and

mode 12 flexural waves. The inner two v-shaped curves are the mode 0 shear (outer)

and compressional (inner) waves. The wavenumbers of the mode 0 compressional

wave and the mode 12 flexural wave go to zero close to the ring frequency of the shell.

Within the wavenumber resolution of the data, the addition of the keel has very little

effect on the dispersion relations for the n=0 compressional and flexural waves and the

n-12 flexural wave. A small difference is observed for the flexural waves at high

wavenumbers, where the slope has slightly increased.

A new line of response is seen in the data which lies

mode 12 flexural wave. This wave will be discussed

between the shear wave and the

in more detail in Chapter 6.
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Figure 5-26: Theoretical dispersion curves overlaid on the keel end data

79

I



6. MODELING THE ADDITION OF A KEEL

6.1 Wave coupling due to the keel

New wave types are expected in the shell response due to addition of the keel. These
result from two effects. First, the keel acts as a discontinuity restraining the motion of
the shell and causing the shell waves to be coupled. Shell waves not directly excited by
the source array will appear in the shell response due to coupling at the keel

discontinuity. Second, since the keel is a wave-bearing system, new wave types will be

introduced into the shell response.

The keel and the shell are both wave-bearing systems. Thus, coupling these two

systems will result in multiply-branched dispersion curves. [6] The total number of

branches is governed by the total number of degrees of freedom of the coupled system.
Addition of the keel adds degrees of freedom corresponding to flexural, longitudinal, and

torsional motion of the keel.

For lightly coupled systems, the dispersion curves for the different wave types in the

coupled system follow the dispersion curves for the uncoupled systems. Although small

amounts of coupling cause the motions of the two systems to be coupled, it is still

possible to identify waves for which the dominant response is in one of the coupled

systems. Higher coupling causes significant shifts in the dispersion curves. It is no

longer possible to associate a wave of the coupled system with one of the uncoupled

dispersion curves.

Based on the above discussion, the dispersion curves for the test shell should change

due to the addition of a keel, but the extent of the change will depend on the strength of
the coupling between the shell and the keel. The changes in wavenumber may be

smaller than the resolution of the axial array measurements and therefore may not be

observed in the data. The new waves associated with the coupled system may be

evanescent or they may not have enough energy to show up in the measurements. In

additon, waves whose principal motion is in the keel may not be observed by
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measurements taken at the longitudinal array which is approximately 90 degrees from
the keel.

The measured data show no significant change in the dispersion curves corresponding
to the n=O compressional and flexural waves and the n=12 flexural wave. However, a
new dispersion curve is observed. This curve corresponds to a coupled wave in the
keel and shell.

6.2 Keel wave excitation and response

Since the keel and the shell are made from the same material, the n=0 compressional
wave in the uncoupled shell and the longitudinal wave in the keel will have similar

dispersion curves. Due to differences in the Poisson effect, the membrane

compressional waves in the shell travel slightly faster than longitudinal wave in the keel.
However, the difference between the wavespeeds is so small that changes in the

dispersion curves for these waves are expected to be smaller than the wavenumber

resolution of the measurements. Thus, even though the n=0 compressional wave is

coupled to the longitudinal keel wave, the dispersion relation for the coupled system is
not significantly changed from that for the n=0 compressional wave in the homogeneous

shell.

The n=0 compressional wave will also be coupled to bending waves in the keel, since

the attachment between the shell and the keel is off the neutral axis of the keel.

Extension of the shell in the axial direction results in bending of the keel in the stiff

direction. The dispersion relation for uncoupled keel bending was developed using a

theoretical model for beam bending which includes the effects of shear deformations but

assumes that the effects of rotary inertia are negligible. The wavenumber of uncoupled

keel bending waves, kb, was predicted from the following dispersion relation:

pK2AE
Elkb4 = pAco2 + k'G , 2 kb2

where p is the density, A is the cross-sectional area, K is the radius of gyration of the

cross-sectional area, E is Young's modulus, k' is a shear correction factor which
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depends on the cross-sectional shape, G is the shear modulus, and o is the frequency.

The shear correction factor, k', is set to 0.833 as suggested for a rectangular beam by

Timoshenko [30]. The radius of gyration for uncoupled keel bending is H/243, where H

is the height of the keel (3 inches).

Figure 6-1 shows a comparison of the measured dispersion relations from the keel-end

array with the theoretical dispersion relation for bending of the uncoupled keel. The new

dispersion curve observed in the data does not line up with the dispersion curve for the

uncoupled keel. However, due to the coupling between the keel and the shell, the keel

bending wave in the coupled system can be expected to be different than that for the

uncoupled system.
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Figure 6-1: Dispersion curve for uncoupled keel bending overlaid on the wavenumber
frequency transform measured on the end of the shell with a keel
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A theoretical model for bending waves of the coupled keel-shell system which involve

primarily bending of the keel in the stiff direction can be developed. Although an exact

theoretical development is beyond the scope of the work in this thesis, an approximate

theory was derived.

The addition of the shell to one edge of the keel causes the neutral axis for bending of

the keel to shift away from the center of the keel. The extent of the shift depends on the

extensional stiffness of the shell. For low extensional stiffness, the shift in the neutral

axis will be small. However, for high stiffness the neutral axis will shift to a location near

the edge of the keel.

The bending radius of gyration is expected to be in the range

H H

2-3 K 3

For an approximate theory the bending radius of gyration was adjusted to best fit the

observed dispersion curve. The best fit was found using a value of K = H/1.443.

Figure 6-2 shows the theoretical estimate of the dispersion curve for the coupled keel

bending wave overlaid on the measured wavenumber-frequency data.
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Figure 6-2: Dispersion curve of the keel wave overlaid on the wavenumber frequency
transform measured on the end of the shell with a keel.

6.2.1 Excitation of the keel wave

The keel is not present at the source array. Thus, the keel wave is not directly excited

by the sources. Excitation of the keel wave occurs primarily at the start of the keel,

where the addition of the keel creates an axial discontinuity. Wave scattering at this

discontinuity provides excitation of the keel wave. Figure 6-3 shows the scattering of

the incident waves at the start of the keel.
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Figure 6-3: Wave scattering at the keel

The dispersion relation for the keel wave shows that the axial wavenumbers of the keel

wave do not match those of the n=0 compressional wave in the coupled system. Thus,

coupling of these two wave types along the keel is not expected.

The axial wavenumbers for the n=0 and n=12 flexural waves do not match the axial

wavenumber of the keel wave over most of the frequency range. However, at selected

frequencies axial wavenumber matching does occur. At these frequencies, the keel

wave will be excited by both wave scattering at the start of the keel and by coupling to

the shell flexural waves along the entire length of the keel.

Excitation of the keel wave by wave scattering at the start of the keel could have been

eliminated by extending the keel. However, the keel wave would then have been

directly excited by the source array.
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6.2.2 Coupling between the keel wave and higher order flexural waves

The keel wave will be coupled to higher order flexural waves in the shell when the axial

wavenumber of these waves (the trace wavenumber) matches the axial wavenumber of

the keel wave. Figure 6-4 shows the dispersion curves for the higher order flexural

waves in the shell and the keel wave. The figure plots the axial trace wavenumber of

each wave versus frequency. Coupling is expected at the frequencies where these

wavenumbers match. The coupling points are indicated by small circles in Figure 6-4.
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Figure 6-4: Coupling points for the keel wave

The axial array data on the keel end was measured along an axial line 90 degrees away

from the keel. Thus, motion of the keel (ie the keel wave) is not directly measured.

Rather, the response of higher order flexural waves in the shell which are trace-matched

to the keel wave are measured. Fluctuation in the amplitude of the array data along the
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keel wave dispersion curve is expected from this effect. High response amplitudes are

expected at frequencies where matching between the keel wavenumber and the trace

wavenumber of a shell flexural wave occurs. Low amplitudes are expected at

frequencies where no match occurs.

Figure 6-5 shows an overlay of the trace matching points with the measured data. High

response amplitudes are observed at these points, which supports the above

hypothesis.
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Figure 6-5: Keel wave coupling points overlaid on the keel end longitudinal array data
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6.3 Coupling of shell membrane waves to flexural waves

Addition of the keel introduces a circumferential discontinuity which causes the shell

waves to be coupled. Coupling occurs along the length of the keel when the trace axial

wavenumbers are matched. Coupling also occurs at the ends of the keel where wave

scattering occurs. These two mechanisms are illustrated in Figure 6-3. Coupling at the

ends of the keel causes energy to be transferred from the incident membrane

compressional and flexural waves to other wave types.

Since the start of the keel presents a point discontinuity to the incident waves, all

circumferential wave types will be excited. However, only some of the waves will

propagate down the shell. Waves whose wavenumber goes to zero at a frequency

above the frequency of excitation will be evanescent and will decay exponentially with

distance away from the start of the keel.

Coupling along the length of the keel causes energy to be transferred from the incident

compressional and flexural waves to higher order flexural waves. However, only flexural

waves with trace wavenumbers in the axial direction that match the axial wavenumber

of the incident waves will be excited. This trace matching only occurs at selected

frequencies which will be determined in the section below.

6.3.1 Determination of the coupling frequencies

The points at which the mode 0 compressional wave couples to higher order flexural

waves were calculated using the theoretical dispersion relations formulated by Borgiotti

and Rosen and programmed into a MATLAB program, 'skbar2.m' by Hayner. Waves

travelling down the axis of the shell can only couple to other waves with the same axial

wavenumber and frequency. Although the coupling by the keel is expected to shift the

shell dispersion curves, the measured longitudinal array data shows that this effect is

small. Thus, the frequencies at which coupling can occur can be approximated from the

frequencies at which the dispersion curves for any two waves in the homogeneous shell

cross. Figure 6-6 shows the theoretical dispersion curves for the mode 0 compressional

wave and the modes 0-29 flexural waves. Flexural modes n=12 and n=28 are labeled.

The intersections between the sharp v-shape of the mode 0 compressional wave and
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the u-shaped flexural modes are the coupling points. They are marked by small circles.

The lower order flexural waves do not couple to the mode 0 compressional wave since

there is no point at which their dispersion curves cross. The mode 0 compressional

wave begins to propagate at approximately 1400 Hertz. The mode 12 flexural wave

begins to propagate at a slightly higher frequency. The mode 12 flexural wave is the

lowest flexural wave which couples to the mode 0 compressional wave. All flexural

waves with modal order higher than 12 also couple to the mode 0 compressional wave.
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Figure 6-6: Theoretical dispersion curves and wave coupling points
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Hayner's program, 'skbar2.m', calculates the theoretical value of the normalized axial

wavenumber, kxa, at a user-specified set of frequencies. In order to facilitate the

comparison between theory and experimental data, kxa was calculated at each multiple

of 10 Hertz up to 8000 Hertz. Figure 6-7 shows the points at which the theoretical

values were calculated. Because of the difference in slopes, the points defining the

dispersion curve of the compressional wave are much more closely spaced than the

points defining the flexural curves. This effect is particularly noticeable at low

wavenumbers.
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Figure 6-7: Calculation points for the theoretical dispersion curves.

The coupling points between the mode 0 compressional curve and each flexural curve

were calculated by finding the least-squared difference between the kxa values for the
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two curves at each frequency. For each flexural curve, modes 12 through 28, a

coupling frequency was identified at which the flexural curve crossed the mode 0

compressional curve. Associated with that coupling frequency is the kxa value of the

crossing. Since the compressional wave is more finely defined along the frequency axis

than the flexural wave, the coupling kxa value was defined as the kxa value of the

compressional wave at the coupling frequency.

Each coupling point is thus defined by three parameters: frequency, normalized axial

wavenumber, kxa, and the modal order of the flexural wave. The modal order of the

waves is directly related to their normalized circumferential wavenumber, k0a. Figure 6-

8 shows the coupling points plotted as frequency versus modal order, n = k0a. The

coupling point between mode 0 compressional and mode 12 flexural occurs near 1400

Hertz. Higher order flexural modes couple to the mode 0 compressional wave at higher

frequencies.
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Figure 6-8: Coupling points plotted versus normalized circumferential wavenumber.

The coupling points are accurate only to within the frequency and wavenumber

resolutions of the calculation process. The frequency resolution of the theoretical

dispersion curves was defined to be Af = 10 Hertz. A coupling point was calculated for

each modal order (or normalized circumferential wavenumber), n = k0a, so of course, An

= 1. The resolution along the longitudinal wavenumber axis, Akxa, is not constant. It is

a function of the kxa spacing between points on the theoretical dispersion curve for the

mode 0 compressional wave. Near the ring frequency (where the mode 0

compressional wave begins to propagate), the resolution is a maximum of Akxamax =

0.0944, but it decreases with increasing frequency to a minimum of Akxamin = 0.0071.
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Figure 6-9: Frequency and wavenumber accuracy of the coupling points

The points at which the mode 0 flexural wave couples to higher order flexural waves and

the points at which the keel wave couples to higher order flexural waves were calculated

in the same way. The coupling points for the mode 0 flexural wave are shown in

Figures 6-10 and 6-11, and the coupling points for the keel wave are shown in Figures

6-12 and 6-13.
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Figure 6-11: Circumferential wavenumber versus frequency for the coupling points
between the mode 0 flexural wave and higher order flexural waves
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7. CIRCUMFERENTIAL ARRAY MEASUREMENTS

When the equations of motion for an infinite cylindrical shell are written, they are

separated into modes in the circumferential direction and waves in the longitudinal

direction. Thus we can talk about mode 0 waves travelling longitudinally down the shell.

The separated equations of motion can be written in the form of longitudinal dispersion

relations, relating the frequency to the axial (longitudinal) wavenumber for each modal

order and for each wave type. The longitudinal wavenumber can be measured

experimentally using a longitudinal array. Data from the longitudinal array can be

spatially transformed to obtain a measurement of the dispersion curves. Information on

the modal order of the waves, however, is not contained in the longitudinal data.

Circumferential array measurements provide information on the circumferential

wavenumber of the measured waves. The circumferential wavenumber corresponds

directly to the circumferential modal order of the waves. This information is necessary

for identifying the modal order of the waves traveling on the shell.

7.1 Test procedure for the circumferential array measurements

The test shell was suspended horizontally from two ropes which ran through pulleys

attached to a wooden frame. Transfer functions were measured between the radial

velocity of the outer surface of the shell and the broad-band random input signal.

7.1.1 Input to the source array

For the plain end circumferential tests, a broad-band white noise input signal of 5 Volts

rms was passed through a Frequency Devices filter which applied a low-pass 8 pole

Butterworth filter with a cut-off frequency of 8 kHz and a gain of 6 dB. Since the source

signal power was concentrated in the lower frequencies, and since the response of the

shell below the ring frequency was not of interest, a 500 Hz high-pass filter with a gain

of 10 dB was also applied to the input signal. The signal was then amplified by a

Wilcoxon PA7D power amplifier with a gain of 13 and a Wilcoxon N9 impedance
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transformer with a gain of 5. The source signal for the plain end circumferential array
measurements was thus band-limited to 500 Hz - 8 kHz with a total gain of about 52 dB.

The input signal was split twelve ways and fed to the twelve transducers in the source

array. Figure 7-1 shows typical laser data overlaying system noise data. The signal is

clearly above the noise level over the entire input frequency range of 500 Hz and 8 kHz.

10

101

0 2 4 6

Frequency [k~iz]

8 10 12

Figure 7-1: Signal vs. noise for the circumferential array measurements

The input for the keel end circumferential tests was slightly different. The broad-band

white noise input signal was 2.5 Volts rms instead of 5 Volts rms. To compensate for

this, the gain on the low-pass filter was boosted to 12 dB.

7.1.2 Assembling the data

The data collection for the circumferential arrays was conceptually the same as the data

collection for the longitudinal arrays, but there were some significant differences. First,

a commercial analyzer was used to collect and save the data instead of the Bondaryk's

ldv program. Second, the cylinder had to be rotated by hand to each of the 125
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measurement locations on the circumferential array. Third, the gain settings on some of

the filters were higher. (See Appendix B for details.)

Data was collected at 125 points, spaced 1 centimeter apart to span almost 360

degrees around the cylinder. At each point, the radial velocity of the outer surface of the

shell was measured with the laser. The sensitivity of the laser was set to 1 millimeter

per second per Volt, the most sensitive setting. The laser lens was 17 inches from the

shell and reflective tape was mounted at the measurement points to improve reflection

of the laser beam. The laser remained fixed throughout the circumferential

measurements, and the shell was rotated from point to point.

The circumferential test data was collected with the SRS frequency analyzer. For each

point in the array, the input signal and the laser output signal were processed with 100

averages for 801 linearly-spaced frequencies between 0 and 12.5 kHz. For the plain

end tests, the transfer function calculated by the analyzer were saved. For the keel end

tests, the input and output autospectra and cross-spectrum were saved. The data were

translated into MATLAB format, where the transfer functions were calculated by dividing

the cross-spectrum by the input autospectrum. (See Appendix B for details.)

7.1.3 Calibrations

The input to the sources for the circumferential array tests was measured via a transfer

function between the SRS analyzer's source signal and the output of the Wilcoxon

impedance matching network, which is split twelve ways and fed into the twelve piezo-

ceramic sources. The calibration was performed with a reduced voltage input of 0.2

volts. The transfer function shows the cumulative effect of the filters and amplifiers

used to shape the signal before sending it to the sources.

Figure 7-2 shows the input calibration for the plain end circumferential array tests. The

data is quite noisy because of the form of the transfer function (See Appendix B). The

signal is flat between about 700 Hertz and 6 kHz with a linear gain of about 455 (53 dB).
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Figure 7-2: Input calibration for the plain end circumferential array tests.

Figure 7-3 shows the input calibration for the keel end circumferential array tests. At the

high frequency end, the signal is flat up to 6 kHz, then drops off to 3 dB down at 8 kHz.

In the low frequency range, the signal is flat above about 700 Hertz and 3 dB down at

500 Hertz. The total linear gain in the flat region is 910(59 dB). This is twice the gain

used during the plain end measurements. However, the source signal voltage for the

keel end measurements was half the voltage for the plain end measurements. Thus,
the input level to the sources was the same during the two sets of measurements.
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Figure 7-3: Input calibration for the keel end circumferential array tests

The output from the laser velocimeter was passed through various filters and amplifiers

before going into the frequency analyzer for collection and processing. The cumulative

effect of these filters and amplifiers is shown by the 'output transfer functions'. The

'input' for these transfer functions was a broad band white noise signal generated by the

SRS frequency analyzer, which was used in place of an actual velocity signal from the

laser.

Figure 7-4 shows the output transfer function for the plain end circumferential array.

Again, the data is quite noisy because of the form of the transfer function (See Appendix

B). The signal is flat between about 200 Hertz and 8 kHz with a linear gain of about 93

(40 dB).
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Figure 7-4: Output calibration for the plain end circumferential array test

Figure 7-5 shows the output transfer function for the keel end circumferential array. It is

basically flat between 200 Hz and 8 kHz with drop-offs to 3 dB down at 100 Hz and 8

kHz respectively. The total linear gain in the flat region is 93 (40 dB).
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Figure 7-5: Output calibration for the keel end circumferential array test
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7.2 Plain end circumferential array results

Figure 7-6 shows the wavenumber-frequency transform of the plain end circumferential

array data. The transform shows the normalized circumferential wavenumber, k0a,

versus frequency. The circumferential wavenumber corresponds directly to the

circumferential modal order of the waves.

For a homogeneous circular cylinder (without a keel), the circumferential modes can be

expressed in terms of sin and cosine mode shapes, sin(ne) and cos(nO), where 0 is the

circumferential angle from 0 - 27c radians and n is the mode number. The mode number

and circumferential wavenumber are related, n = ke*a.

The longitudinal array data for the plain end of the shell (Figure 5-4) showed response

along the dispersion curves of the three directly excited waves: mode 0 compressional,

mode 0 flexural and mode 12 flexural. The circumferential array data shows the modal

order associated with all these waves. Strong response is seen at koa = 0,

corresponding to the mode 0 compressional and flexural waves. Response is also

clearly seen along lines at koa = +12 and -12, corresponding to the mode 12 flexural

wave.

The absence of strong response at other values of kea indicates that no other modes

were excited. This is an important finding, since it shows that the test setup was

functioning as designed. The following three conclusions can be drawn from this

measurement. 1) The source array was working as designed to excite only mode 0 and

12 waves on the shell. 2) The plastic test shell is sufficiently homogeneous to support

single order waves without coupling to higher order modes. 3) There is no significant

coupling to higher order modes at the ends of the shell or at the support ropes. These

conclusions are for the plastic test shell, which has high damping, and may not be

applicable to a test shell with lower damping.
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Figure 7-6: Circumferential array data for the plain end of the shell
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7.3 Keel end circumferential array results

Figure 7-7 shows the wavenumber-frequency transform of the keel end circumferential

array data. The transform shows the normalized circumferential wavenumber, k0a,

versus frequency. The circumferential wavenumber corresponds directly to the

circumferential modal order of the waves.

For a homogeneous circular cylinder (without a keel), the circumferential modes can be

expressed in terms of sin and cosine mode shapes, sin(nO) and cos(nO), where 6 is the

circumferential angle from 0 - 27t radians and n is the mode number. The mode number

and circumferential wavenumber are related, n = ko*a.

Addition of the keel changes the expected mode shapes. A wave traveling axially down

the shell will still have an associated circumferential mode shape, but it may not be

sinusoidal. However, the mode shape can be expressed as a sum of sinusoidal

components, A1sin(n16) + A2sin(n 20) + etc. where n1 and n2 are the 'modal orders' of

each component. In other words, the new mode shapes can be expressed as a

summation of the old mode shapes.

The longitudinal array data for the keel end of the shell (Figure 5-26) showed response

along 5 lines. Four of the response lines lay along the dispersion curves of the mode 0

compressional, mode 0 flexural and mode 12 waves for an uncoupled shell (without a

keel). The fifth response 'line' was a sequence of high response points that laid along

the dispersion curve of the keel wave. The circumferential array data shows the modal

order associated with all these waves.

A strong response line is seen at k0a = 0, which corresponds to a modal order of n = 0.

Although the keel changes the 'mode 0' mode shapes, the dominant modal order of the

'mode O' waves on the coupled shell is still expected to be n=0. Strong lines of

response are also seen at kea = +12 and -12. These lines indicate the dominant modal

order of the 'mode 12' flexural wave on the coupled shell. The new and exciting feature

in Figure 7-7 is the presence of diagonal lines with higher modal orders. The diagonal

lines extend over the whole excited frequency range, 500 Hz - 8 kHz, with modal order

varying from about n = 7 to n = 30. The next section shows that the diagonal lines
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correspond to the higher order flexural waves excited through trace-matched coupling

with the mode 0 flexural and compressional waves and the keel wave.
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Figure 7-7: Circumferential array data for the end of the shell with a keel
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7.3.1 Comparison with theory

The theoretical coupling points calculated in Section 6.3.1 (shown in Figures 6-6, 6-8,

and 6-10 to 6-13) are each associated with a circumferential modal order, n = k0a.

Figure 7-8 shows the coupling points plotted as modal order versus frequency. The

triangles are the coupling points between the keel wave and higher order flexural waves,

the circles are the coupling points between the mode 0 compressional waves and higher

order flexural waves, and the squares are the coupling points between the mode 0

flexural waves and higher order flexural waves. The keel wave coupling points and the

compressional mode 0 coupling points are very close together at low frequencies, but

spread apart at higher frequencies.

Couling poirts due to the keel
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Figure 7-8: Theoretical coupling points plotted as modal order versus frequency
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Figure 7-9 shows the coupling points (represented by lines) overlaid on the

circumferential array data measured on the keel end of the shell. The theoretical

coupling points clearly model the data quite well. The coupling points in the middle of

the plot (at low wavenumbers and near the ring frequency) represent coupling between

the flexural mode 0 wave and higher order flexural waves.
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Figure 7-9: Coupling points due to the keel overlaid on the circumferential array data
measured on the end of the shell with the keel
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8. CONCLUSIONS AND FUTURE WORK

This thesis has shown that adding a longitudinal stiffener, or keel, to a circular cylindrical

shell results in coupling between mode 0 waves and higher order flexural waves.

Compressional and flexural mode 0 waves were excited on a plastic shell using a

circumferential source array. The source array was located in the middle of a long shell,

and a keel was attached to one end of the shell. Longitudinal and circumferential array

measurements were taken on each end of the shell. Wavenumber frequency

transforms were used to separate the data by modal order and wave type.

The addition of a keel to the cylindrical shell creates a new coupled system. The

coupled system supports the waves associated with both of the coupling systems (keel

and shell), but their dispersion relations will be different from the dispersion relations of

the uncoupled systems. The significance of the changes depends on the frequency of

interest and the strength of the coupling. In this thesis, changes in the dispersion

relations of the shell waves due to coupling are not seen in the data. This result

suggests that the changes are smaller than the resolution of the measurements.

The keel wave associated with bending of the keel was observed in the measured data.

The axial velocity of this wave was found to be greater than the membrane shear

wavespeed, but less than the bending wavespeed in the shell. A model was developed

for the keel wave which showed that it was a coupled bending wave in the stiff direction

of the keel. The neutral axis of the bending motion was shifted away from the neutral

axis of the uncoupled keel. The other keel waves were not seen in the data.

The response of the keel wave is not directly measured in this thesis, since the

longitudinal array measurements were taken along an axial line 90 degrees away from

the keel. Rather, the measured response is that of the higher order flexural waves in

the shell which are coupled to the shell wave through axial trace-matching. Trace-

matching along the keel is shown to be a necessary geometric condition for wave

coupling. However, the impedance ratio between the shell and the keel is also

important in determining the efficiency of the coupling mechanism.
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A plastic PVC test shell is used for the experiments in this thesis. The selection of this

material was based in large part on cost. Fabrication of a steel cylinder without an axial

seam was found to be prohibitively expensive. The use of plastic was critical in enabling

the measurements conducted in this thesis, however. Because the compressional and

shear wavespeeds are relatively slow in the plastic shell, membrane waves could be

observed at lower frequencies in the plastic shell than in a steel shell. Also because of

its relatively high damping, the reverberant build-up of wave amplitudes was not

observed so that reflections from the ends of the shell did not interfere with the

measurements. This enabled measurement of the direct and reflected wave amplitudes,

which were used to calculate decay coefficients for the compressional mode 0 wave on

the shell.

The conclusions drawn in this thesis are critically dependent on the relative levels of

coupling and damping in the shell. On the plastic shell, the damping is relatively high.

Coupling mechanisms have to be relatively strong to result in transfer of significant (i.e.

measurable) amounts of energy between the coupled waves. High damping can mean

that weak coupling factors do not have enough time to make a measurable change in

wave energies. Conversely, on a shell with low damping, even weak coupling factors

could result in significant energy transfer due to the high number of reflections and long

travel path. In addition, other weak coupling factors might become significant on a shell

with low damping. Coupling effects at the shell ends, at the support ropes, or due to

slight bending or misshaping of the cylinder could become significant.

More in-depth modeling of the cylindrical shell with a keel could be used to determine

specific design parameters for the keel. The models developed by Hayner [20] are

suitable for analyzing either a shell with a complete homogeneous cross-section and a

finite axial extent or a shell with a partial cross-section and an infinite axial length.

Further development would be needed to accurately model a shell with a finite length

keel. Further development would also be needed to model the wave coupling between

an axial wave and higher-order circumferential waves.

In future experiments, the longitudinal wavenumber resolution should be increased by

making the longitudinal array longer. This may enable distinction of changes in the shell

dispersion relations due to the keel, and may enable better definition of the keel wave.
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Better wavenumber resolution in the circumferential direction would also be helpful,

since it might enable distinction between the compressional mode 0 coupling points and

the keel wave coupling points, which are quite closely spaced in circumferential

wavenumber. Another way to increase the distinction between the keel wave coupling

points and the mode 0 compressional wave coupling points is to make the keel wave

slower.
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Appendix A: CYLINDRICAL SHELL THEORY

A-1 Cylindrical shell theory

The equations of motion for a thin-walled cylindrical shell have been a topic of interest

for over 100 years [23,24]. Hundreds of papers have been published dealing with the

basic equations of motion and various improved formulations [25]. In spite of the many

choices, the relatively simple equations presented by Donnell [26] and Mushtari [27]

continue to be used for many studies. Junger and Feit [28] have used these equations

to study the scattering of acoustic waves incident on an empty cylindrical shell. Corrado

[9] has used the Donnell-Mushtari equations to interpret the scattered acoustic field data

for cylindrical shells representative of submarine structures with stiffeners, end caps,
and internal structures.

Improvements to the basic Donnell-Mushtari equations typically focus on corrections for

1) lower order (n 2) circumferential modes, and 2) thick shells and high frequencies,

where transverse shear and rotary inertia corrections may be required. Both types of

correction are important for the research in this thesis. The lower order membrane

waves are important because they are significant contributors to scattering and

radiation. Shear and rotary inertia are expected to be important in describing the high

order bending waves, which are coupled to the membrane waves by the keel.

Many of the improvements to the basic shell equations are described by Leissa [25], but

papers with improved shell theories continue to be published. Borgiotti and Rosen [22]

studied vibration waves using a state vector formulation which included the effects of

rotary inertia and transverse shear deformations. Ricks [14] used a direct global matrix

technique to develop numerical models with the full three-dimensional elasticity

equations. These models can be used as reference models to check the accuracy of

simpler thin-shell theories. They can also be used to study the dynamic behavior of

layered shells. Hayner [20] has used the two-dimensional thick shell theory of

Herrmann-Mirsky [29] to develop a wave-based finite element method, WFEM. He has

114



validated this thick shell theory by comparing solutions with numerical results from a full

three-dimensional elastic analysis.

The improved shell theories can provide greater accuracy, particularly for lower order

circumferential waves, n 2, and for high frequencies. Unfortunately, the greater

complexity of these improved theories may cloud the physical insight that can be gained

from a simpler theory. The work presented in this thesis is primarily experimental.

Theory is used to gain a physical understanding of the measured data, so simplicity is

important. It is worth studying the assumptions behind the simple Donnell-Mushtari

equations and exploring ways in which these equations can be used to interpret the

measured data. The more exact shell equations can be used if necessary to expand the

range of applicability of this thesis.

The Donnell-Mushtari equations for a cylindrical shell are analogous to the Bernoulli-

Euler equations for bending of a beam or flat plate [7]. They neglect the effects of rotary

inertia and transverse shear deformations. For cylindrical shells, the assumptions

associated with this simplification were introduced by Love [Reference 28, p216].

1. The shell thickness is small compared to the radius.

2. The displacement is small compared to the thickness.

3. The transverse normal stress acting on planes parallel to the shell's middle

surface is negligible (no thickness deformation).

4. Sections of the shell normal to the middle surface remain so after

deformation.

With these assumptions, the stress across the thickness of the shell wall can be

expressed in terms of a displacement vector, [u] and its derivatives, where [u]

represents the displacement of the centerline of the shell wall in the axial (u),

circumferential (v) and radial (w) directions.
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u

[u] = v

_w_

More complex theories such as Herrmann-Mirsky [29], Borgiotti and Rosen [22] and

Hayner [20] expand the displacement vector to include the mid-surface rotations (or

transverse shearing angles) about the two in-plane axes. In these theories, the rotation

angles are no longer assumed to equal the spatial derivative of the mid-surface radial

displacement.

u

v

[u] = W

In general, the homogeneous (unforced) equations of motion for a cylindrical shell can

be written using a differential operator, [L].

[L][u] = [0]

The Donnell-Mushtari operator takes the form [LD-M]

a
2  (1-V) 1a

2  12 -

x 2 a2 a92 cat2

(1+ v) 1 a2-

2 a ax86

[v-"-

(1+ V) 1 Z2
-2 a WxO6

(1 _ V) a2 1 a2 
1 f2l

2 Nx2 +T a2 a02 C at2

a2 09%

[v4]

[a2 +k
-- 2V + 1 2

a2 c2B

where the x-coordinate runs along the axis of the shell, the 0-coordinate is angular

about the x-axis, and a is the radius of the shell. The elastic modulus and density of the

shell are defined in terms of the 2-D longitudinal wavespeed, or plate wavespeed, as

defined by Cremer & Heckl (a condition of plane stress). [Reference 7, CLI, p 86]
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E
ce = p(1-v 2 )

where E is Young's modulus, p is the material density, and v is Poisson's ratio.

A-2 Description of model chosen for this research

Theoretical dispersion curves for the test shell were calculated using the state space

equations presented by Borgiotti and Rosen [22]. These equations represent a theory

similar to that of Herrmann-Mirsky [29], including the effects of rotary inertia and shear

deformations. This theory was expected to model the test cylinder more accurately for

high frequencies.

Borgiotti and Rosen [22] present a state vector approach that can be used to determine

the dispersion relations for a thick-walled cylindrical shell. A state vector with ten

elements is used for the thick shell. These include five "velocity" variables and five

corresponding "force" variables, selected so that the product of pairs of velocity and

force variables is power. The velocity variables include the velocity in the radial,

tangential, and circumferential directions and the angular velocities about the axial and

circumferential directions. The force variables include the membrane extensional force,

in-plane and transverse shear forces, and moments about the axial and circumferential

directions. The state-vector approach leads to matrix equations in the form

dX(z,n) A
= A(n)X(z,n) + B(n)Y(z,n)

z

and

C(n)X(z, n) + D(n)Y(z, n) = 0

where X(z,n) is the state vector, z is the axial direction, n is the circumferential wave

number, Y(z,n) is a secondary state vector, and A(n), B(n), C(n), and D(n) are matrices

of shell parameter values, given by equations 9, 10, 11, and 12 of reference 22. These

equations can be easily solved for the eigenvalues and eigenvectors as a function of
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frequency and circumferential wave number. The eigenvalues provide the desired axial

wavenumbers which can be compared with the measured data obtained for this thesis.

The theoretical dispersion relations formulated by Borgiotti and Rosen were

programmed into MATLAB by Mark Hayner. Hayner's program sorts the roots of the

eigenvalue matrix formulated by Borgiotti into wave types: flexural, compressional,

shear, evanescent, and through-thickness. The flexural, compressional and shear roots

sorted by Hayner's programs include complex values below the cut-off frequencies. The

complex values were removed from the theoretical curves and the remaining real-

valued flexural, compressional and shear dispersion curves were constructed. A plot of

the normalized axial wavenumber as a function of frequency for mode 0-30 flexural,

mode 0 compressional and mode 0 shear waves is shown in Figure A-1.

U-

-30 -2D -10 0 10
Nomaized Axial Venumber, k *a

2D 30

Figure A-1: Theoretical dispersion curves
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Appendix B: RAW DATA

B-1 Plain end longitudinal array data

Data on the plain end of the shell was collected at 120 longitudinal array points with the

laser Doppler vibrometer. A broad-band random input was generated by the SRS

analyzer.

Plan-ide bngtLdna amy port 60
-11.5 _____

-12

-125

-13

5-wa
e-1415 1

-14.5

-15

1-15.5

-16

0 5 10 15 20 2

Frequncy [kW]

Pande inp ato-pectRm 10100) [CB)

0 Q2 C4 G6 c8 1 1.2
Lntda poition [mtes]

Figure B-1: Input auto-spectra for the plain end longitudinal array measurements

Spectra with 512 frequency lines, a sampling frequency of 50 kHz, a Hanning window,

and 30 averages were collected and saved using the ldv system, which outputs a

MATLAB file (a2.mat) containing the input and output auto-spectra, the cross-spectrum

and the transfer function matrices. An 8 kHz low-pass filter was applied to the input

signal after it was measured but before it was sent to the piezo-ceramic sources. The

output auto-spectrum, cross-spectrum and transfer function data shown in Figures B-2,

B-3 and B-4 are therefore valid only below 8 kHz.

119

-11.5

-12

-125

-13

-135

-14

-14.5

-15

-15.5

-16

-165



Ptk-b a t a b0P ideipA ao-peCi 10 Og1a1l) [B]

I 10

5 5

15

-10 10

-15 -15

2D ~ ~ ~ ~ _ 0 --- - -- 2
0 5 10 15 2D 25 0 .2 Q4 0.6 Q8 1 1.2

Fmqency [kir. Lrgdnd positionmte

Figure B-2: Output auto-spectra for the plain end longitudinal array measurements
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Figure B-3: Cross-spectra for the plain end longitudinal array measurements
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Figure B-4: Transfer function for the plain end longitudinal array measurements
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The transfer function matrix calculated by the Idv program is quite noisy. An alternative

way to calculate the transfer function is to divide the averaged cross-spectrum by the

averaged input auto-spectrum. The phase information is contained in the cross-

spectrum and is not lost during the averaging process. Magnitude information is

smoothed by the use of the averaged cross-spectrum and averaged input auto-

spectrum.
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Figure B-5: Transfer function xf vs. cr/aO for the plain end longitudinal array data

122

5.

1 4

13

10

10

0

-10

Ptlicb d a wk rLneem DCK10da.craiwa)[dN

1

Plain~ide bransdornUzio (AnglecrJ)

1



The transfer function matrices were spatially transformed to obtain wavenumber-

frequency matrices. A Hanning window and zero-padding (256 points) were used to

minimize edge effects and to smooth the data. The wavenumber-frequency matrices

show the radial velocity response per unit volt input in dB. Use of the calculated transfer

function cr/a0 reduces the noise in the wavenumber-frequency diagram considerably.

The data presented in the main chapters of this thesis is based on the calculated

transfer function cr/aO.
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Figure B-6: Plain end longitudinal array wavenumber-frequency matrices: xf from Idv
program (left) and calculated transfer function, cr/aO (right)
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B-2 Keel end longitudinal array data

The collection and processing of the keel-end longitudinal array data was identical to

that of the plain-end data. Data on the keel end of the shell was collected at 120

longitudinal array points with the laser Doppler vibrometer. A random input was

generated by the SRS analyzer.
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Figure B-7: Input auto-spectra for the keel end longitudinal array measurements

Spectra with 512 frequency lines, a sampling frequency of 50 kHz, a Hanning window,

and 30 averages were collected and saved using the Idv system, which outputs a

MATLAB file (a2.mat) containing the input and output auto-spectra, the cross-spectrum

and the transfer function matrices. An 8 kHz low-pass filter was applied to the input

signal after it was measured but before it was sent to the piezo-ceramic sources. The

output auto-spectrum, cross-spectrum and transfer function data shown in Figures B-8,

B-9 and B-1 0 are therefore valid only below 8 kHz. The stripes in the output

autospectrum were determined to be caused by dust on the reflective tape mounted on

the shell at the measurement locations. The response of the dust appears to be

frequency dependent, with more response at higher frequencies.
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Figure B-8: Output auto-spectra for the keel end longitudinal array measurements
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Figure B-9: Cross-spectra for the keel end longitudinal array measurements
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Figure B-1 0: Transfer function for the keel end longitudinal array measurements
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The transfer function matrix calculated by the ldv program is quite noisy. An alternative

way to calculate the transfer function is to divide the averaged cross-spectrum by the

averaged input auto-spectrum. The phase information is contained in the cross-

spectrum and is not lost during the averaging process. Magnitude information is

smoothed by the use of the averaged cross-spectrum and averaged input auto-

spectrum.
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Figure B-11: Transfer function xf vs. cr/aO for the keel end longitudinal array data

127

1.2

20

10

0

-10

3

2

0

-1

.3

1.2

Keleide in iolltridio 21g1%(da4x)) [cqI Keelide bral&%errdion 2"lO(das(crJMI)) [cB

1

1I



The transfer function matrices were spatially transformed to obtain wavenumber-

frequency matrices. A Hanning window and zero-padding (256 points) were used to

minimize edge effects and to smooth the data. The wavenumber-frequency matrices

show the radial velocity response per unit volt input in dB. Use of the calculated transfer

function cr/aG reduces the noise in the wavenumber-frequency diagram considerably.

The data presented in the main chapters of this thesis is based on the calculated

transfer function cr/a0.
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Figure B-12: Keel end longitudinal array wavenumber-frequency matrices: xf from ldv
program (left) and calculated transfer function, cr/a0 (right).
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B-3 Keel end circumferential array data

The data processing for the circumferential arrays was conceptually the same as the

data processing for the longitudinal arrays, but a commercial analyzer was used to

collect and save the data instead of the Idv program. For the keel end data, the input

and output autospectra and the cross-spectrum were collected with 100 averages, a

Hanning window, and a maximum un-aliased frequency of 12.8 kHz. Data was

collected at 125 measurement locations, one at a time, and saved onto a floppy in the

analyzer's proprietary format. An 8 kHz low-pass filter was applied to the input signal

after it was measured but before it was sent to the piezo-ceramic sources. The output

auto-spectrum, cross-spectrum and transfer function data shown in Figures B-14, B-15

and B-16 are therefore valid only below 8 kHz.

KeN-skie akrcuiemti aWu pdrt M~

I
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Figure B-1 3: Input autospectrum for keel end circumferential array point 60
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Figure B-14: Output autospectrum for keel end circumferential array point 60
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Figure B-1 5: Cross-spectrum for keel end circumferential array point 60
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The input and output autospectra and the cross spectrum were translated into MATLAB.

The transfer function at each measurement location was calculated by dividing the

averaged cross-spectrum by the averaged input auto-spectrum. This form of the

transfer function, commonly called H1, is preferred when noise is present in the output

signal [31]. The phase information is contained in the cross-spectrum and is not lost

during the averaging process. Magnitude information is smoothed by the use of the

averaged cross-spectrum and averaged input auto-spectrum.

Trnslier imtimfor keel ske circ ertia arra poirt 60

I,'
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10 12 14

Figure B-16: Transfer function hi = <cr>/<aO> for keel end circumferential array point 60

The 125 transfer functions were assembled into a matrix which was spatially

transformed to obtain the wavenumber frequency transform. The circumferential arrays

went all the way around the shell, so the assumption that the spatial sample is periodic

made when taking the Fourier transform is true. Therefore, no window was applied to

the data and no zero-padding was used. The wavenumber-frequency matrices show

the radial velocity response per unit volt input in dB.
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Figure B-17: Magnitude and unwrapped phase of the transfer function matrix for the keel
end circumferential array
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Figure B-1 8: Unwrapped phase of the transfer function matrix for the keel end
circumferential array
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Figure B-1 9: Magnitude of the wavenumber frequency transform for the keel end
circumferential array
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B-4 Plain end circumferential array data

The data processing of the plain end circumferential array data was conceptually the

same as the processing of the keel end data, but a different form of the transfer function

was used. The commercial analyzer used to collect and save the data provided two

forms of the transfer function; <F2/F1> and <F2>/<F1>, where F1 is the spectrum of the

input and F2 is the spectrum of the output. Data was collected at each measurement

point one at a time, and both forms of the transfer function were saved onto a floppy.

Neither of these forms of the transfer function were ideal, however. <F2/F1>

maintained phase relationships, but did nothing to reduce the noise in the output signal.

<F2>/<F1> reduced the noise considerably, but lost the phase. The magnitude of the

wavenumber-frequency transform calculated with the first form is very noisy. On the

other hand, the magnitude of the wavenumber-frequency transform calculated with the

second form contains 'data' at zero wavenumber and at twice the wavenumber of the

real data, artifacts of the processing. In future work, neither of these forms of the

transfer function should be used. The H1 transfer function [31], <cr>/<aO> works best to

eliminate noise in the output and preserves phase.

For the plain-end circumferential array, data was collected at 125 points around the

circumference, 1 centimeter apart, to cover almost 360 degrees around the shell. A

random input was generated by the SRS analyzer. The input and the response

measured by the laser Doppler vibrometer were Fourier transformed and saved by the

SRS analyzer. Spectra with 801 frequency lines were collected out to an un-aliased

maximum frequency of 12.5 kHz. A Hanning window was applied and 100 averages

were taken.

The two forms of the transfer function saved by the analyzer, <F2/F1> and <F2>/<F 1>,

are shown below for point 60 on the circumferential array. Because the source was

newly generated for each measurement, the phase of the input was random over the

125 measurement points. Averaging of the input spectrum therefore averaged out the
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phase. The same loss of phase occurred for the response spectrum, so that the

<F2>/<F1> transfer function did not contain any phase information.
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Figure B-20: Two forms of the transfer function saved by SRS

An 8 kHz low-pass filter was applied to the input signal after it was measured but before

it was sent to the piezo-ceramic sources. The transfer functions shown in Figure B-20

above are therefore valid only below 8 kHz.
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Transfer function <F2/F1> was not saved for point 21. Data from point 20 was

substituted. The measurement locations were closely spaced relative to the measured

wavelengths, so that the transfer functions for two consecutive locations were quite

similar.
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Figure B-21: Variation of pnb data for points 20, 21 & 22 and 10, 20 & 30.
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Figure B-22: Substitution of p20a data for missing p2la data.
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The transfer function files were translated into MATLAB format using 'translate.m' which

runs the SRS translation program 'srtrans.exe'. The resulting files were assembled into

two transfer function matrices, one for each form of the transfer function, 'pna' and 'pnb',

using 'assemble.m', which created files 'pna.mat' and 'pnb.mat'.
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Figure B-23: Transfer function matrices for the plain-end circumferential array
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Figure B-24: Transfer function matrices for the plain-end circumferential array

Replotting the transfer functions in decibels shows their character more clearly. The

averaged transfer function matrix <F2/F1> is quite noisy. The transfer function

calculated from the averaged input and response spectra, <F2>/<F1>, has a much

cleaner magnitude, but the phase is lost.
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Figure B-25: Transfer function matrices for the plain-end circumferential array

The transfer function matrices were spatially transformed to obtain wavenumber-

frequency matrices. The circumferential arrays went all the way around the shell, so

that the assumption that the spatial sample is periodic made when taking the Fourier

transform is true. Therefore, no window was applied to the data and no zero-padding

was used. The waven umnber-freq uency matrices show the radial velocity response per

unit volt input in dB. Use of the transfer function <F2>/<F1> reduces the noise in the
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wavenumber-frequency diagram considerably, but puts an artificial spike at zero

wavenumber.
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Figure B-26: Spatial transforms of the 2000 Hz and 2875 Hz data
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Figure B-27: Wavenumber-frequency matrices for the plain-end circumferential array
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