
Interactive Supercomputing

by

Parry Jones Reginald Husbands

B.Sc., University of Toronto (1992)
S.M., Massachusetts Institute of Technology (1994)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1999

© Massachusetts Institute of Technology 1999. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

January 29, 1999

Certified by..............

Alan Edelman
Associate Professor of Applied Mathematics

Thesis Supervisor

Accepted by........

Chairman, De]
Arthur C. Smith

on Graduate Students

Interactive Supercomputing

by

Parry Jones Reginald Husbands

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 1999, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

MITMatlab is a system that provides users of high performance computers with
an interactive, easy-to-use environment for solving their scientific and engineering
problems. It is an effort to bridge the gap between scientific computing in the desktop
and supercomputer worlds by providing users of parallel machines with a tool for
manipulating and visualising large datasets. We believe that the many benefits of
interactive tools (such as MATLAB) can be enjoyed in supercomputer installations
without any appreciable loss in performance.

A key concept in our work is the development of a methodology that we denote
"Parallelism through Polymorphism". This is an alternative way of obtaining parallel
execution of existing code that falls between automatic parallelisation and complete
rewriting. In contrast to traditional compiler-based approaches such as preproces-
sor directives and automatic parallelisation, our technique has the advantage of not
requiring any internal changes to MATLAB while delivering parallelism to both in-
teractive sessions and programs. Careful implementation choices provide us with a
nearly transparent, seamless interface.

Our implementation is based on a simple client-server model. A server, the Par-
allel Problems Server, is responsible for manipulating application data and is con-
trolled using a seamless MATLAB user interface. This thesis primarily details the
design choices that lead to the creation of MITMatlab. In addition, we present its
performance and describe some of its uses.

Thesis Supervisor: Alan Edelman
Title: Associate Professor of Applied Mathematics

Acknowledgments

I would like to thank my advisor Alan Edelman for his guidance and support over the

last four and a half years. I am particularly grateful for all of the time and energy he

devoted to this project. Many thanks to my thesis committee, David Karger, Charles

Leiserson, and Paul Viola for their insightful comments and suggestions. Graduate

counsellors Albert Meyer, Randy Davis, and Silvio Micali also helped me immensely as

I attempted to navigate my way through the graduate program in Computer Science.

Thanks also to my fellow group members Ross Lippert, Peter McCorquodale,

Yanyuan Ma, and Tony Wen for their support. Several people contributed to the

development and implementation of MITMatlab including Susumo Kubo, Misha

Chechelnitsky, and Charles Isbell. Charles deserves special mention for his many

contributions to the project as collaborator, thesis reader, and friend. Sara Billey

also gave valuable comments on an earlier draft of this thesis. William Ang, Scott

Blomquist, and Fred Donovan were extremely helpful in making sure that the com-

puting resources were up and running and accommodating our peculiar requests. Sun

Microsystems provided funding during the last two years of the program and I am

grateful to Don Dudley, Brian Hammond, Greg Papadopoulos, and Georgi Johnson

for their interest in the project.

I am fortunate to have met a number of people during my time at the Lab. for

Computer Science who helped me grow as a researcher, teacher, and student. These

include Jakov Kuean, James Hoe, Mark Smith, Chris Hill, Mike Sipser, Mauricio

Karchmer, Ron Rivest, and Be Blackburn (a.k.a. Mom) who seldom ran out of

chocolate. The volleyball teams I've been part of provided a welcome relief from the

stresses of life at the lab. I owe a great deal to the Vile Servers, Slimers, IVC, GVC,

and chickvbfmit . edu.

Finally, many thanks to my parents Parry and Genetha Husbands and my sister

Mary-Gene for their unfailing love, support, and encouragement.

Contents

1 Introduction 10

1.1 Design Philosophy . 11

1.2 System Overview . 13

1.2.1 The Parallel Problems Server 13

1.2.2 MITMatlab . 15

1.3 Related Work . 18

1.3.1 Parallel MATLAB Systems . 18

1.3.2 Client-Server Systems . 19

1.3.3 Com pilers . 20

1.4 Thesis Roadmap . 20

2 Parallelism Through Polymorphism 21

2.1 Influencing Properties of Program Execution 21

2.2 Advantages of Polymorphism . 22

2.2.1 The Importance of Libraries 24

2.3 The Polymorphism Recipe . 24

2.4 Language Considerations . 25

3 The Parallel Problems Server 26

3.1 Matrix Management . 27

3.2 Client Communication . 29

3.3 The Package System . 29

3.3.1 Package Management . 30

4

3.3.2 Provided Packages . 31

3.3.3 The Package API . 31

3.3.4 Defining Package Functions 33

4 MITMatlab 39

4.1 New MATLAB Classes . 39

4.2 Calling the PPServer from MATLAB 40

4.3 Operator Overloading . 41

4.4 Code R euse . 44

4.4.1 A bottom-up view of p . 51

4.5 Language Features . 51

4.5.1 An Interpreted HPF? . 51

4.5.2 An Important Constraint: Dealing with Pointers 52

5 System Performance 55

5.1 Client Communication . 55

5.2 Memory Management . 56

5.3 Server Overhead....... 56

5.3.1 Data Distribution . 57

5.3.2 Speed of MPI . 57

5.4 Performance Summary . 58

5.4.1 Evaluation Platforms . 58

5.4.2 Distribution Costs . 59

5.4.3 Individual Server Operations 60

5.4.4 Combined Operations . 62

5.4.5 The Big Picture . 64

5.5 A ccuracy . 65

6 Applications 68

6.1 IR LA B . 68

6.1.1 Dimensionality Reduction . 70

5

6.1.2 Using MITMatlab. 71

6.2 Other Applications . 79

7 Conclusions 80

7.1 Future Directions . 80

7.1.1 Zero Finding and Optimisation 80

7.1.2 Partial Differential Equations 81

7.1.3 Q ueueing . 85

7.2 Applicability for Scientific Research 85

A Parallel Computing Models 88

A.1 Main Models . 88

A.2 Programming Shared Memory Machines 88

A.3 Programming Distributed Memory Machines 90

A.4 Automatic tools . 90

6

List of Figures

Organisation of the Parallel Problems Server with client

Sample MATLAB session .

MITMatlab input for the operations in Figure 1-2

2-1 The programming cost of adding parallelism

2-2 Other costs of adding parallelism .

3-1 Different ways of distributing a 4 by 4 matrix between two processors

Column and row major orders for a 3 by 2 matrix

Sample PPServer/client communication.

Steps to package creation and use

Package layout

Sample function definitions

The use of ppclient in constructors

Overloading sum in MITMatlab

MITMatlab operator overloading

p in MITMatlab

MATLAB code for producing Hilbert matrices. .

MATLAB code for Hadamard matrices

Alternative hilb.m

The steps to MITMatlab

15

16

17

23

23

28

. 28

. 29

. 30

. 34

. 36

. 42

. 43

. 45

. 47

. 49

. 50

. 50

. 51

62

63

5-1 MATLAB code for program experiment

5-2 The package version of the MATLAB code . . .

7

1-1

1-2

1-3

3-2

3-3

3-4

3-5

3-6

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

5-3 Computing a global sum

6-1 A perfect precision-recall curve . 70

6-2 Displaying documents in IRLAB . 73

6-3 Term matching in IRLAB . 76

6-4 getlsiscores.m . 77

6-5 LSI in IRLAB . 78

6-6 Performing LSI on a subset of documents 78

7-1 The PDE Toolbox . 82

7-2 Solution of Poisson's Equation . 83

7-3 First eigenmode of u2,, u -Au 84

A-i Parallel computing models . 89

8

66

List of Tables

3.1 Base package functions . 32

3.2 ScaLAPACK package functions . 33

3.3 PPServer m ethods . 38

4.1 Specifying distributions in HPF and MITMatlab 52

5.1 MPI-StarT broadcast performance 58

5.2 Redistribution costs for n x n dense matrices 59

5.3 Costs of converting n x n column distributed dense matrices (single

precision) to ScaLAPACK form . 60

5.4 Cholesky decomposition time of the n x n Moler matrix 60

5.5 n x n Matrix multiplication performance 61

5.6 Sparse SVD performance . 61

5.7 Performance of different implementations of the combined operations

test program . 64

5.8 Times (in seconds) for computing Moler matrices 65

9

Chapter 1

Introduction

This thesis details the design and implementation of a system that provides users of

high performance computers with an interactive, easy-to-use environment for solving

their scientific and engineering problems. In the desktop world, programs such as

MATLAB, Maple, and Mathematica have been extremely successful, primarily by

offering low development and maintenance costs through intuitive abstractions for

expressing ideas and powerful built-in visualisation for understanding complex sys-

tems. With these products, scientific applications can be easily designed, debugged,

and maintained with much less programming effort than with a traditional program-

ming language such as FORTRAN. The main disadvantage of using these tools, of

course, is speed. They were not written for use with very large datasets and do not

take full advantage of today's high performance computers. As a consequence of this,

interactive tools are typically used only for prototyping applications or small datasets.

In the supercomputer world, most programmers write their applications using

subroutine libraries'. These libraries provide the speed and functionality required,

but none of the user-friendliness, ease of use, and interactivity found in a package

such as MATLAB.

Our work is an effort to bridge the gap between scientific computing in the desktop

and supercomputer worlds by providing users of parallel machines with an interactive

'Readers unfamiliar with parallel programming are invited to read the short summary provided
in Appendix A.

10

environment where they can manipulate and visualise large datasets. It is our con-

tention that the benefits of interactive environments can be enjoyed in supercomputer

installations without any appreciable loss in performance.

Using the technique of "Parallelism Through Polymorphism" developed in Chap-

ter 2, we add fast parallel execution to MATLAB, a common interactive tool. In

contrast to traditional compiler-based approaches such as preprocessor directives and

automatic parallelisation, our method has the advantage of not requiring any inter-

nal changes to MATLAB while delivering parallelism to both interactive sessions and

programs.

1.1 Design Philosophy

We believe that for an interactive supercomputing tool to be successful, it should

provide users with:

" The advantages of interactive tools: Mechanisms for fast prototyping and imple-

mentation of different techniques for solving scientific problems in an interactive

setting. Easy visualisation of results.

" Support for very large dense and sparse matrices.

" Complex operations on these matrices such as matrix multiplication and singu-

lar value decomposition.

" Implementation on a wide variety of contemporary parallel platforms, including

clusters of Symmetric Multiprocessors (SMPs).

There are, of course, many different ways of implementing a system satisfying these

requirements. We therefore formulated a set of principles that guide the development

of our system:

11

Leverage Existing Technologies

There are many reasons for basing our system on "off the shelf" components. High

quality parallel libraries for both dense and sparse linear algebra abound and it would

be fruitless (and time consuming) to attempt to re-implement their functionality. In

addition the use of these libraries leads to portability across a wide range of platforms.

It is also important to present a familiar interface to users so that they are not

burdened with the task of learning a new programming language. MATLAB is already

very popular in science and engineering (for example, only 4 of 30 students in a

graduate Scientific Computing class at MIT confessed to never using it) and so we

decided that it should be used for our user interface.

These considerations lead naturally to the choice of a client-server architecture for

our system where we use the best tools possible both for numerical routines and the

user interface. The alternative, a monolithic system, would either involve adding a

user interface to parallel libraries or rewriting an interactive tool to work on a wide

range of parallel computers. These options have serious drawbacks: the first would

not present a familiar interface and the second would be tied to a particular version

of specific tool.

We use a common interactive tool (MATLAB, but with support for others) as

our client and user interface and a server that encapsulates the functionality of the

libraries. The use of an existing environment adds many constraints to our effort.

For example, we are not free to make major changes to the MATLAB programming

language. However we believe that the many benefits of using MATLAB (its familiar

user interface and visualisation features) far outweigh the difficulties that we may

encounter while implementing our system (see Chapter 4 for a further discussion).

Minimise Client-Server Communication

This principle follows directly from the choice of a client-server architecture and the

desire to achieve high performance. Sending large quantities of data to the server (or

client) should be avoided whenever possible so that we don't pay the performance

12

penalty. As a consequence of this, we decided to keep all of the data on the server

and only send small pieces of it to the client when explicitly requested.

Expose as Many Details of the System as Possible

In any system new functionality is always required. By providing an API (Application

Programming Interface) to the inner workings of our system, we have a mechanism

for experts to add new routines to the client and server whenever needed. This also

provides a way for the optimisation of existing routines if special purpose functions

are desired.

Present Client Functionality in an Intuitive Way

All of the familiarity of using an existing client would be lost if separate function calls

were needed to access server-side routines. As such, we attempt to provide this access

in as transparent a way as possible. This also lead to the choice of MATLAB as a

client. With its object oriented features we can implement our "Parallelism through

Polymorphism" technique and have MATLAB commands work on server objects in

the same way as MATLAB's native data types. It is through this interface that our

system derives much of its power; existing MATLAB code can be re-used with little

or no modification thus preserving investments made both in code and learning time.

1.2 System Overview

Our system is based on a simple client-server model. We first built a server that is

responsible for manipulating application data. We then constructed a user interface

using MATLAB, a popular desktop scientific computing tool.

1.2.1 The Parallel Problems Server

The Parallel Problems Server (PPServer) [23] forms the computing foundation of

our work. It runs on any Unix-like platform supporting the MPI message passing

13

library [19]. Simply, it is a (single-user) compute server for large matrices. It contains

functions for creating and removing dense and sparse matrices, performing elementary

matrix operations, and loading and storing matrices from/to disk using a portable

format. Because matrices are created within the PPServer's address space, functions

are also provided for transferring matrix sections to and from general clients, such as

MATLAB.

Currently PPServer matrices are (at most) two-dimensional. At compile-time

users have a choice of using either single or double precision numbers for server ma-

trices. In our implementation, dense matrices can be distributed across the MPI

processes by row or by column and sparse matrices are distributed by column. Sup-

port for more flexible distributions is planned as a future enhancement. Replicated

dense matrices (copies of which are stored on every processor) are also provided,

though very few operations use them.

The PPServer communicates with clients using a simple request-response protocol

(see Figure 1-1). A client requests that an action be performed by issuing a com-

mand with the appropriate arguments, the server executes that command, and then

notifies the client that the action is complete. At present no security measures are

implemented on the client communication channel. In keeping with our principle

of minimising client-server communication most results of PPServer operations are

stored on the server. Large matrices are only transferred to MATLAB when explicitly

requested by the user.

The PPServer is extensible via compiled libraries called packages. These packages

are written in C++ and access the server's data (and algorithms) using a provided

API. Clients (and other packages) can load and remove packages on-the-fly, as well

as execute commands within these packages. It is worth noting (see Figure 1-1) that

non-trivial operations do not always have to be implemented with packages. Client-

side scripts (such as MATLAB "m-files") can often be employed for this purpose,

using existing server operations as building blocks for more complex functions.

14

Figure 1-1: Organisation of the Parallel Problems Server with client

1.2.2 MITMatlab

MITMatlab provides MATLAB with a transparent way of accessing server data and

functions. It consists of a collection of MATLAB 5 classes and methods that make

it possible for users to interact with server data by using traditional MATLAB com-

mands. Figure 1-2 shows some sample input to an ordinary (serial) MATLAB session.

Figure 1-3 shows how the same commands can be executed in parallel in MITMatlab.

The only differences between the two sessions are the inclusion of "p" on lines

2 and 4 and the use of "whose" on line 6. The "p" serves as our "hook" into the

PPServer. Its presence in any MATLAB matrix constructor 2 (such as randn) signals

the creation of a PPServer matrix. This matrix is then operated on by methods

such as "inv" (line 13) that emulate the corresponding MATLAB functions. The

"whose" function is similar to MATLAB's "whos", but gives detailed information

about PPServer matrices.

In addition to the emulation of MATLAB functionality we have designed the

classes and methods so that ordinary MATLAB code can be executed with little

modification (in some cases no modification is needed). In fact, in order to get "up

to speed" with our system, MATLAB users only need to know how to use p, how

2A constructor is a function that creates an object of a specified type.

15

1 >> X Create a random (normally distributed) 512x512 matrix
2 >> a=randn(512,512);
3 >> % Create a 512x512 matrix full of ones
4 >> a2=ones(512,512);
5 >> % Display current variables
6 >> whos
7 Your variables are:

8 Name Size Bytes Class
9 a 512 x 512 2097152 double array
10 a2 512 x 512 2097152 double array
11 Grand total is 524288 elements using 4194304 bytes
12 >> % Find the inverse of a

13 >> b=inv(a);
14 >> % Multiply a by b
15 >> c=a*b;
16 >> % View the upper left part of c
17 >> c(1:3,1:3)
18 ans =
19 1 0 0
20 0 1 0
21 0 0 1
22 >>

Figure 1-2: Sample MATLAB session

16

1 >> X Create a random (normally distributed) 512x512 server matrix
2 >> a=randn(512,512*p);
3 >> % Create a 512x512 matrix full of ones
4 >> a2=ones(512*p,512);
5 >> % Display current variables
6 >> whose
7 Your variables are:
8 Name Size Bytes Class

9 a 512 x 512p 1048576 ddense array

10 a2 512px 512 1048576 ddense array
11 Grand total is 524288 elements using 2097152 bytes
12 >> % Find the inverse of a in parallel using the PPServer
13 >> b=inv(a);
14 >> X Multiply a by b
15 >> c=a*b;
16 >> % View the upper left part of c
17 >> c(1:3,1:3)

18 ans =
19 1 0 0
20 0 1 0
21 0 0 1
22 >>

Figure 1-3: MITMatlab input for the operations in Figure 1-2

17

to load and save PPServer matrices (which currently cannot be overloaded), and an

appreciation of the issue of garbage collection. Chapter 4 further discusses the design

choices that make this all possible.

1.3 Related Work

Most approaches to Interactive Supercomputing have also focused on using MATLAB.

In this section, we summarise these attempts and compare them with our PPServer

approach.

1.3.1 Parallel MATLAB Systems

Both MultiMATLAB from Cornell University [43] and the Parallel Toolbox for MAT-

LAB from Wake Forest University [21] make it possible to run and manage MATLAB

processes on different machines. In these systems MATLAB is extended to include

send, receive and global operations so that the MATLAB processes can communi-

cate to solve a computational task. This is much like MPI with MATLAB as the

implementation language.

Our approach to "parallel MATLAB" is different in many respects. Instead of

endowing MATLAB with communication primitives, we make the communication

implicit. The user is not responsible for moving the data around in our system. He

simply inputs standard MATLAB commands and they execute on a parallel machine.

Our approach can be viewed as bringing data parallel computing to MATLAB where

other efforts have focused on message passing. The main advantage of our path is that

complex operations on large matrices can be specified with only a single command

instead of code that explicitly moves data around.

Secondly, we do not use MATLAB for our computational engine. While functions

that are not implemented on the server can be emulated by transferring the data

to MATLAB and then executing the function there, this would incur a substantial

performance penalty. It would therefore be best to re-implement these functions.

This has the short-term disadvantage of limited functionality, but we eventually reap

18

the advantage of high performance. We are free to use the fastest available distributed

memory implementations of the algorithms that we need. We are also not limited

to double precision (MATLAB's default). Sometimes single precision computations

suffice, particularly when space is at a premium.

1.3.2 Client-Server Systems

There are also systems that implement a similar client-server model with MATLAB

as the front-end. RCS [2], Netsolve [12], PSI [34], and MatPar act as fast back-ends

for slower clients. In their model, clients issue requests with special function calls,

data is communicated to the remote machine and results sent back. Clients have been

developed for Netsolve using both MATLAB and Java. MATLAB and Mathematica

clients exist for PSI and it uses PLAPACK [1] for computation.

Our clients, however, are not responsible for storing the data to be computed

on. Generally, data is created and stored on the server itself; clients receive only a

"handle" to this data. This means that there is no cost for sending and receiving

large datasets to and from the computational server. Further, this approach allows

computation on data sets too large for the client itself to even store (for example,

when working on a workstation cluster).

We also support transparent access to server data from clients. PPServer vari-

ables can be created remotely but still be treated like local variables. It is worth

noting that our approach to the client-server model very clearly separates the large-

scale computation from the user interface. By doing so we can use the best possible

interface for the task at hand without considering its computational (or storage) facil-

ities. We can also use the fastest possible means to solve the computational problem.

This delegation of responsibilities thus results in extremely powerful, yet easy to use

applications.

19

1.3.3 Compilers

Compilers for MATLAB and similar languages have also been an active area of

research. The CONLAB system from the University of Umei [14] is a parallel

MATLAB-like simulator. CONLAB scripts may be compiled into C for parallel

execution. The FALCON environment from the University of Illinois at Urbana-

Champaign [39, 40] compiles MATLAB to Fortran 90 and pC++ (a parallel dialect

of C++). Otter [38, 37] converts MATLAB scripts into C code which calls a spe-

cial run-time library (based on ScaLAPACK [6]) that provides dense linear algebra

functionality. These conversions are accompanied by sophisticated analyses of the

MATLAB source so that the most efficient target code can be generated.

By contrast our system takes the view that we can obtain high performance by

simply providing users with the fastest available implementations of basic operations

in an interpreted environment. Because we work in an interactive setting, we can

reduce development time without severely affecting performance.

1.4 Thesis Roadmap

Chapter 2 introduces the concept of "Parallelism through Polymorphism". Chapters 3

and 4 show how it is implemented in our system with the PPServer and MITMatlab.

The performance of our implementation is then discussed in Chapter 5. In this

chapter we also attempt to characterise applications that are well-suited to our model

and implementation. Chapter 6 describes some applications of our system, including

IRLAB, an interactive environment for Information Retrieval research developed with

MITMatlab. Finally, Chapter 7 points to some further directions for our work and

concludes with a discussion of the applicability of our system for scientific research.

20

Chapter 2

Parallelism Through

Polymorphism

One of the main contributions of this work is the novel use of polymorphism to deliver

parallel execution of existing MATLAB code.

2.1 Influencing Properties of Program Execution

Currently there are a few options available to implementors who wish to add parallel

execution to routines in an existing programming language without changing the text

of the routines or the programming language itself:

" Use Compiler Directives embedded in comments. In this style, a compiler is

built that understands these "smart comments" and generates the appropriate

code. For example, in a "C"-like language the following comment could be used

to denote a parallel for loop:

/* (C) PARALLEL FOR */

" Write a new compiler for the language that automatically parallelises code.

These tools are currently the "holy grail" of supercomputing research and at-

tempt to discover from the program text opportunities for parallelism, mainly

21

in for loops. While this technology is very sophisticated it is often not suffi-

cient to fully parallelise applications as some loops to not fall into the set of

recognised "patterns".

e Translate the routine into another programming language that is implicitly

parallel. An example of this is the FALCON environment. MATLAB source

is translated to Fortran 90/pC++ where parallelism is an integral part of the

programming model.

If all else fails, the program may have to be rewritten to support the property.

However, if the language supports polymorphism, the ability of functions to take

arguments of different types, there is another way:

* Define new classes and overload operators in the language to provide for parallel

execution of these operators. In this case, to run routines in parallel, they are

called with arguments of the appropriate class.

Note that these techniques are all solutions to the general problem of influenc-

ing aspects of program execution while preserving the syntax and semantics of the

underlying programming language. Parallel execution can be replaced with other

run-time "properties" such as "has efficient garbage collection", "uses a certain algo-

rithm for operation x", "uses sparse instead of dense matrices", or "takes advantage

of specialised hardware".

In terms of programmer effort (measured by changes to the original routine 1),

the techniques can be ordered according to Figure 2-1.

2.2 Advantages of Polymorphism

In addition to not requiring code changes, the use of polymorphism enjoys several

other advantages:

'Depending on the programming language, the use of polymorphism may necessitate a change in
the way the routine is called.

22

Automatic ._______ CompilerAuoatc Polymorphism CoplrRewriting
Translation I Directives

none minimal some tons

Figure 2-1: The programming cost of adding parallelism

" Support for interpreted/interactive environments. Compiler directives are use-

less in an interactive environment (such as MATLAB) as there is no compiler.

For example, explicit statements must be added to users' sessions to perform

the required tasks at specified times. Automatic tools (translation, etc.) some-

how have to be integrated into the environment. However, this would entail

rewriting of the tool or environment. This has the disadvantage of tying the

implementation to a specific version of the tool.

" Modifiability/Extensibility, a.k.a Plug 'n Play. This refers to the ability of

"educated users" to tailor or extend the technique to their needs. For example,

if a new parallel method for a certain task is invented, a compiler would need

to be updated. Extensive modifications may be necessary depending in its

implementation. By contrast, in our approach, only the classes (and methods)

need to be changed. In addition it can be performed using the programming

language itself and requires no source code for the compiler/runtime system.

Figure 2-2 summarises all of these issues.

Automatic Polymorphism Directives Rewriting
Programmer Effort none minimal some tons
Interactive? no yes no yes
Plug 'n Play Cost high low high low

Figure 2-2: Other costs of adding parallelism

23

2.2.1 The Importance of Libraries

Libraries play a crucial role in all of the techniques described above. Compilers (Otter,

for example) may translate language constructs into library calls, and the overloaded

operators (as in our system) may use libraries to deliver functionality. In some cases

it may also be possible to simply recompile the routine using the library. For example,

if the routine uses MPI calls, a simple recompilation is needed when moving from a

shared memory to a distributed memory machine. However, if language keywords are

used (+, *, - in MATLAB, for example), libraries must be used in conjunction with

operator overloading.

2.3 The Polymorphism Recipe

The formula for using polymorphism is outlined below:

1. Define classes and overload the operations for the types of interest. In the

MATLAB case, we needed new dense and sparse sub-classes. Matrix operations

were overloaded to provide for parallel execution.

2. Analyse other types that influence the construction/behaviour of the types in

1) and overload/extend appropriately. Ordinary MATLAB doubles are passed

into functions that create MATLAB matrices. Therefore in order to complete

the task (making MATLAB routines execute in parallel on the PPServer), a

way of making these constructors work in parallel is required, ergo p.

This process may, of course, be iterative. As with automatic parallelisation, the

goal is to add the property to as much code as possible. Chapter 4 discusses the

design and implementation of the class system that we devised to enable MATLAB

code to execute in parallel.

24

2.4 Language Considerations

The success of the procedure outlined above depends, of course, on the language and

property under consideration. MATLAB, for example, supports (and encourages)

the data-parallel style of programming where complex operations are provided using

simple keywords and operators (A+B adds two matrices, for instance). In a language

such as C, such operations would have to be performed using either loops or function

calls. We can therefore deliver parallel execution to much more code in MATLAB

(by overloading +, * ,- etc.) than in a language such as C.

Another key point is that we provide parallelism directly through operators and

do not infer it from other language constructs (loops, for example). Further, we are

not able to perform optimisations based on program text. This has the disadvantage

of not being able to extract all of the parallelism available in routines. However, the

use of the data-parallel style in MATLAB makes it possible to execute many complex

operations on large matrices, which is sufficient for an important class of problems

(as seen in Chapter 6). In addition, we can provide parallel versions of operators in

an interactive environment.

Finally, the overhead involved in using overloaded methods also has to be taken

into account. This has direct bearing on the performance of the modified system. In

the context of our system, its impact on performance is discussed in Chapter 5.

25

Chapter 3

The Parallel Problems Server

The Parallel Problems Server (PPServer) provides an easy way for clients to perform

large scale linear algebra computations on parallel machines. Server functionality is

delivered through routines that assume a distributed memory model of parallelism

and use the MPI message passing library for communication. Clients then call these

routines without having to take care of parallel programming details.

The choice of MPI as our parallel environment follows our principle of leveraging

existing technologies and has two key advantages:

Richness of available software Many scientific software libraries are written for

MPI and can be incorporated into the server. These include ScaLAPACK [6],

PLAPACK [1], and S3L for dense linear algebra, PETSc [3] for the solution of

equations related to partial differential equations, KeLP [15] for domain decom-

position methods, and PARPACK [31] for Arnoldi methods for solving linear

equations and eigenproblems. In fact, most parallel scientific software today is

written for MPI.

Portability MPI runs on a wide variety of platforms, from clusters of workstations

to high end multiprocessors. Shared-memory multithreading packages such as

PThreads [35] were considered as alternatives. However, these packages are

only supported on a limited range of architectures (not, for example, on many

clusters of SMPs) and their use would adversely affect the portability of our

26

system.

In addition to actually operating on data, the PPServer has three main responsi-

bilities:

1. Matrix Management

2. Client Communication

3. Function Management and Dispatch: The Package System

3.1 Matrix Management

The PPServer operates on two main types of matrices - dense and sparse. Sparse

matrices have a very small number of non-zero elements and space can often be

saved by only storing these elements (in addition to their row and column indices).

Users decide on the type of matrix that is best for their data, and functions are

provided for conversion between the two. Because the server runs in a distributed

memory environment (MPI), the matrix data has to be spread across the processes

that form the server program. For dense matrices, the server supports three types

of distribution: by row, by column, and replicated. In our current system, sparse

matrices are only distributed by column (with more distributions planned). See Figure

3-1 for examples of the row and column distributions used in the PPServer.

The local pieces of dense server matrices (residing on a single processor) are always

stored in column major (FORTRAN) order as opposed to row major (C) order. In

column major order, each column of the matrix is contiguous in memory while in row

major order each row is contiguous. Figure 3-2 shows an example of the two orders.

Each PPServer matrix has an associated identifier (a natural number). These

identifiers are allocated at matrix creation time and are reclaimed when the matrix

is deleted.

At compile time, a user can decide between single or double precision storage in

the PPServer. For some applications, the full accuracy of double precision may not

27

Column distributed Row distributed
Processor 0 Processor 1 Processor 0 (1,1) (1,2) (1,3) (1,4)
(1,1) (1,2) (1,3) (1,4) (21,1) (2,2) (2,3) (2,4)
(2,1) (2,2) (2,3) (2,4) (2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4) Processor 1 (3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) -(43) (44) (4,1) (4,2) (4,3) (4,4)

Figure 3-1: Different ways of distributing a 4 by 4 matrix between two processors

Location 1 a(1,1) a(1,1)
2 a(2,1) a(1,2)
3 a(3,1) a(2,1)
4 a(1,2) a(2,2)
5 a(2,2) a(3,1)
6 a(3,2) a(3,2)

Figure 3-2: Column and row major orders for a 3 by 2 matrix

be required and so the space requirements of the server can be cut in half by using

single precision.

PPServer matrices can also be stored to and read from disk in either precision. To

ensure portability of the saved matrices across different machines we have to address

the issue of byte order. Floating point numbers occupy many bytes (4 for single

precision, for example) and these bytes can be read either from "left to right" or from

"right to left". Therefore, if a matrix is saved with its floating point numbers in one

order, these numbers have to be "reversed" when loaded on a machine assuming a

different order.

PPServer are always stored in "little endian" format (Sun's native order) and

automatic conversions are performed when running on "big endian" (e.g. DEC)

machines.

28

3.2 Client Communication

Clients communicate with the PPServer using a pair of Unix sockets that are typically

opened and initialised at program startup. The client can either reside on the same

machine as the server or on any networked host. The server implements a simple

request/response protocol with clients (independent of the MPI layer that the server

uses internally). Client requests consist of a command followed by the required argu-

ments. Server responses first contain an error code and error string (in the event of

a problem) and then the particular return arguments of the command.

Figure 3-3 gives an example of an exchange between a client and the server.

The client would like the value of element (10,15) from the matrix with id 1. The

server function for this is "pp-view-element". In the figure, the client packs up the

request and sends it over through the upstream socket. The server replies through

the downstream socket with an error code, an error string, and the requested value.

Note that each datatype (matrix id, integer, double, vector of integers) that can be

communicated has an associated tag.

15
"pp-view-elem

3
PPMATRIX

1
DOUBLE

10
DOUBLE

15

Client Request:
Command string length Server Res

ent" Command string Error cc
Number of arguments Error string len

ID First argument type Error str
First argument value Number of argume
Second argument type First return arg. t
Second argument value
Third argument type
Third argument value

Figure 3-3: Sample PPServer/client communication.

ponse:
de 0
gth 0
ing
nts 1
pe DOUBLE
lue 3.14159

3.3 The Package System

The PPServer's package system makes it possible for routines to be added to the

system at run-time allowing both for the optimisation of existing functions and the

29

addition of new functionality. Several of our principles come into play here. Through

the package system we provide an interface to the inner workings of our system and

we also make it possible to include third-party libraries.

The package system is basically a mechanism that allows users to write functions

in C++ that can be dynamically linked into the server as a shared library. In fact,

all basic server functionality is implemented with the package system. Using shared

libraries for functionality allows us to reap several benefits. First, the server does not

need to be recompiled whenever new functions are needed. In addition, debugging

is expedited as packages can be loaded, modified, and re-loaded without having to

restart the server. Moreover, if needed, the server can be customised on a per-user

basis with only one copy of the PPServer executable. In this case users simply load

the packages they need.

Collections of related functions implementing a package are compiled and linked

(see Figure 3-4) with any additional libraries to form binary packages (shared li-

braries). These packages can be loaded into the server at run-time (through the Unix

shared library facility) making their routines available to clients. Packages only need

to be loaded once and their functions can then be called over and over again.

C++ source Compile + Binary Server load Server with
calling server API >ik 1 package package
mypackage .cc Link mypackage .bin loaded

Figure 3-4: Steps to package creation and use

3.3.1 Package Management

At server startup, the "base" package gets loaded automatically. It contains most of

the basic matrix functionality that the server needs (functions for creating, saving,

adding, and multiplying matrices, for example). Clients request that other pack-

ages be loaded through the ppusepackage server function. Packages can also be

30

"unloaded" with ppreleasepackage. This removes their functions from use by the

server. When functions in two different packages have the same name, the server

always uses the one that was loaded last.

3.3.2 Provided Packages

To date we have implemented a number of PPServer packages, the most important

being the base package, ppbase .pp. A partial list of this package's routines is given

in Table 3.1. A ScaLAPACK package has also been written that makes it possible to

call ScaLAPACK functions on PPServer matrices. Its functions are detailed in Table

3.2. The reader is encouraged to consult one of the many books ([18], for example)

on numerical linear algebra for descriptions of the algorithms used in these routines.

3.3.3 The Package API

The package API is implemented using two classes, PPServer and PPArg (see section

3.3.4). These classes give access to the server's data structures and algorithms. More

complex functions (such as matrix multiplication, for example) are then built using

these methods. Because the PPServer is linked with the MPI library, package creators

have direct access to all MPI functions and variables.

The C++ source for a package is usually made up of three main components (see

Figure 3-5 for an example):

" Header files and global variable definitions. For example, all packages need to

include PPServer.h and mpi.h so that the API functions and communication

services are available.

" Package function definitions. See 3.3.4 for more details.

" The package initialisation and registration routine. When a package is loaded,

the server calls the ppinitialize routine that must be present. Its main pur-

pose is to register (through addPPFunction) with the server the routines that

31

pp-make-dense Create a new dense matrix
pp-make-sparse Create an empty (no element) sparse matrix
pp-load-dense Load a dense matrix from a file
ppiload-sparse Load a sparse matrix from disk
pp-view-element Get the value of a specific matrix element
pp-set-element Insert a value into the matrix
pp-set-random Fill a dense matrix with random (uniform [0,1]) values
pp-getcol Retrieve an entire row or column of a dense matrix
pp-setcol Set a row or column of a dense matrix
pp-getdist Return the distribution of a matrix
pp distribute-by-rows Make the matrix row distributed
pp-distribute-by-cols Make the matrix column distributed

pp-gc Perform garbage collection - delete a subset of matrices
pp pp-transpose Transpose a matrix
pp-delete Delete the specified matrix
pp-sum Sum the rows or columns of a matrix
pp-sumsquares Find the sum of the squares of the rows or

columns of a matrix
pp-cumsum Perform the prefix operation on the rows or

columns of a matrix
pp-sort Sort the rows or columns of a matrix
pp-nnz Find the number of nonzeros in a matrix
_mm Matrix multiplication
pp-add Matrix addition
pp-sub Matrix subtraction
pp-getdiag Get the diagonal elements of a dense matrix
pp-setdiag Set the diagonal elements of a dense matrix
pptriu Extract the upper triangular part of a dense matrix
pptril Extract the lower triangular part of a dense matrix
pp-svds Perform the sparse SVD (from PARPACK)

Table 3.1: Base package functions

32

pp-inv Find the inverse of a matrix
pp-solve Solve systems of linear equations
pp-schur Compute the Schur decomposition of a matrix
pp-qr Compute the QR decomposition of a matrix
pp-svd Find the complete SVD
pp-chol Compute the Cholesky decomposition of a symmetric

positive definite matrix

Table 3.2: ScaLAPACK package functions

make up the package. Additional initialisation (such as the seeding of random

number generators) can also occur here.

3.3.4 Defining Package Functions

Package functions come in two main types: map functions and general functions.

Map functions provide an easy way for programmers to apply operations to every

element, row, or column of a matrix. General functions give the user full access to

the server environment.

Map functions

As an example of a map function consider applying the prefix operation (or Fourier

transform) to all of the rows or columns of a matrix. With the PPServer, the only

code that needs to be specified is the function that maps a single vector to another

vector as in the following example that computes the sine of every row or column of

a dense matrix:

void sine(int numElements, PPELTYPE *in, PPELTYPE *out, int step) {

int ptr=O;

for (nt i=O; i<numElements; i++,ptr+=step)

out [ptr]=sin(in[ptr]);

}

}

33

{

#include "PPServer.h"

#include <mpi.h>

/* Two functions are defined here: sumall (find the sum of all matrix

elements) and sine (compute the sine of all matrix elements) */

<definitions for sumall and sine functions>

void sumall(...) {}
void sine(...) {}

/* The initialisation and registration routine */

extern "C" ppinitialize(PPServer &theServer);

PPError ppinitialize(PPServer &theServer)

{
theServer. addPPFunct ion("sumall" , sumall); // Register sumall

theServer.addPPFunction("sine",sine); // Register sine

return(NOERR);

}

Figure 3-5: Package layout

34

Here the vectors are of type PPELTYPE. This type denotes the precision used for

server matrices. It is either float or double depending on the precision chosen for

the server. The integer numElements specifies the number of elements in the vector

and step gives the stride. This way we can operate either on the columns (step=1)

or rows (step=local number of rows) of matrices. The two different values of step

reflect the use of column major order for storing the local pieces of matrices. The

columns are contiguous when working down columns, but when working across rows,

successive row elements are separated by a distance equal to the number of (local)

rows in the matrix.

When the function mapfunction is called, the server first ensures that it can be

executed locally. For example, if the user wishes to apply the function to the rows of

a matrix, the matrix must be distributed by rows. Similarly, the distribution of the

output matrix must match that of the input matrix. Redistributions of the argument

matrices are performed if necessary. After this, the function is then executed (in

parallel) on the input matrix.

Map functions also exist for scalar functions of columns (or rows) and for applying

functions to all non-zero elements of sparse matrices.

General functions

The situation is a little more complicated for general functions (see Figure 3-6 for an

example). The prototype for such a function is:

void genfunction(PPServer &theServer,PPArgList &inArgs,

PPArgList &outArgs);

The server environment is passed in with theServer, the input argument list with

inArgs, and the output arguments are communicated with the client using outArgs.

The input argument list, inArgs, is an array of pointers to arguments (much

as argv is in C programs). To determine the total number of arguments passed,

inArgs. length() can be called. The primary way of extracting arguments from

these pointers is through casting. For example, if an integer is expected in argument

35

void sumall(PPServer &theServer,PPArgList &inArgs,

PPArgList &outArgs) {
PPArgType types[] = {PPMATRIXID};
int mtypes[] = {ANYDENSEBY};

// Validation: Make sure that the input is a dense matrix id

if (!(inArgs.validArgTypes(types, 1)) I
!(theServer.validIDs(inArgs)) |1

!(theServer.validMatrixTypes(inArgs,mtypes))) {
outArgs.addError(BADINPUTARGS,"Expected a dense matrix");

outArgs.add((PPELTYPE)0.0);

return;

}

// Get the id from the argument list

PPMatrixID srcID = *(inArgs[O]);

PPELTYPE mysum=O;

PPELTYPE theAnswer;

// Get the local part of the matrix

PPDenseMatrix *src = (PPDenseMatrix *)theServer.getData(srcID);

PPELTYPE *srcData = src->dataO;

const int tot = src->numRows() * src->numColso;

// Sum up the local part

for (nt i=0; i<tot; i++) {

mysum += srcData[i];

}

// Sum up over all processors using an MPI function for

// communication. Package routines have access to any MPI routine

MPIAllreduce(&mysum,&theAnswer,1,PPMPITYPE,MPISUMMPICOMMWORLD);

// Return the answer to the client

outArgs.addNoError();

outArgs.add(theAnswer);

}

Figure 3-6: Sample function definitions

36

2, the line:

int i= *(inArgs[2]);

will place the argument in variable i. The scalar types supported in input arguments

include float, double, char, int, and PPMatrixID (for passing matrix identifiers).

Vector arguments can also be passed. For example, if the client wants to pass an

array of floats to the server, the following code will do the trick:

int length = inArgs[3]->lengtho;

float *vector = (float *) *(inArgs[3]);

// Now use vector[O..length-1]

In addition to extracting arguments, there are validation functions that check the

types of arguments passed and return an error if the input is not in order (see Figure

3-6 for an example). At present input error checking needs to be done (if desired) by

package programmers. In the future we may look into a more automated mechanism

where the types of input arguments expected are registered along with the function

in ppinitialize. In this scheme arguments are checked before the function is called

and this checking could even be turned off for optimised performance.

Output arguments are returned to the client through outArgs. Every function

must first return an error code and error string in addition to other, more specific

arguments. The methods addNoError and addError automate the return of errors to

clients. The rest of the return values are added to outArgs through the add method.

Both scalars and vectors can be passed to clients as the following example shows:

// Return a scalar

outArgs.add((double) 3.1415926535);

// Return a vector

outArgs.add(vector,length);

With the exception of argument handling, all access to the PPServer's environment

goes through the PPServer class. An instantiated object (called theServer in all

37

examples) of this class is passed in as the first argument to all general PPServer

functions. With this object, package programmers have access to:

" Information about the MPI environment.

* Information about server matrices.

" Other PPServer functions.

Table 3.3 describes the available methods in more detail.

getType Return the type (dense/sparse) of the matrix argument
isDense Is the matrix dense?
isSparse Is the matrix sparse?
getRows How many rows (globally) does this matrix have?
getCols The number of columns of the matrix argument
getData A pointer to local data of the matrix
global2local Convert global matrix indices to local matrix indices
getBlockSize How many rows/columns are assigned to each processor
getStartingRow What's the global row number of local row 0?
getStartingCol What's the global column number of column 0?
getCommand Get a function pointer to the specified command
dispatchCommand Execute another PPServer function
isRoot Am I processor 0?
processorID What's my processor number?
numProcessors How many processors are there?
log Send a string to the log file
rootlog Send a string to the log file only if I'm the root

Table 3.3: PPServer methods

Access to the local pieces of PPServer matrices is provided through the PPMatrix

class and its two subclasses PPDenseMatrix and PPSparseMatrix. Pointers to these

classes are returned by the PPServer's getData method. Matrix elements are re-

trieved and set using the get and set methods. The sizes of the matrices are obtained

through numrows and numcols. Pointers to the actual data of the matrices are also

provided through the data (for both dense and sparse matrices) and indices (for

sparse matrices) methods.

38

Chapter 4

MITMatlab

In order to present a familiar and transparent user interface to the Parallel Problems

Server we developed MITMatlab. MITMatlab offers users:

* Large matrix support through the PPServer.

* Transparency through MATLAB's object oriented features.

tional information is needed for MATLAB users to access

PPServer and no special function calls are needed for most

manipulations.

Very little addi-

the power of the

PPServer matrix

" Ease of application development with MATLAB's scripting language.

" Use of MATLAB's environment for analysis and visualisation of results.

4.1 New MATLAB Classes

MATLAB 5's classes and objects are the mechanism by which transparent access to

the PPServer is achieved. Two new classes are defined in MATLAB, ddense and

dsparse, corresponding to the two main types of matrices that are available on the

PPServer (distributed dense and distributed sparse). These classes can be viewed

as the parallel analogues of MATLAB's own double and sparse classes. An object

belonging to the ddense or dsparse class holds the id of the associated PPServer

39

matrix and its size (rows and columns). Distributions (row or column) are not kept

in MATLAB as these are likely to change on the server.

The MATLAB constructors for these classes have different forms matching the

different ways matrices can be created on the server:

a=ddense(m,n[,dist]) This creates an empty dense matrix on the server using

pp-make-dense of size m by n. The optional argument dist specifies the distri-

bution of this matrix (1 distributes by row, 2 by column, and 3 replicates the

matrix).

a=ddense ('filename' [,dist]) Here the matrix is loaded in with optional distribu-

tion dist from file f ilename.

Equivalent dsparse constructors (without the distribution argument) also exist.

4.2 Calling the PPServer from MATLAB

As detailed in Chapter 3, any program implementing the client communication proto-

col can control the PPServer. In MATLAB's case we have provided a function called

ppclient. This function, written in C++ and linked into MATLAB using its MEX

API [25], allows users to send commands to the PPServer and receive the return

values. Its syntax is as follows:

[code,string,outi,out2,.. .,outn]=ppclient('functionname',inl,in2,

. . . ,inm);

The ppclient function takes the function name and input arguments, converts

them into the format required by the protocol, and sends them through the upstream

socket. It then listens on the downstream socket for the server's response. Finally,

it converts this byte stream into the corresponding MATLAB variables. When it en-

counters a ddense or dsparse object in the input arguments, ppclient only forwards

the matrix identifier to the server. All other arguments (such as character strings) are

sent without modification. For example, to retrieve element (10,15) of the distributed

matrix associated with variable A, a user would enter:

40

[code,string,value]=ppclient('pp.view_element' ,A,10,15);

The required element will then be placed in variable value (if no errors occured).

Figure 4-1 shows how ppclient is used in the ddense constructor.

4.3 Operator Overloading

Operator overloading enables MATLAB users to treat ddense and dsparse objects

in the same way as ordinary MATLAB matrices. They can, for example, type c=a*b

with a and b PPServer matrices and have the result c be the matrix product of a

and b.

As another example, consider MATLAB's sum function. In MATLAB, s=sum(x, 1)

sums up each column of x and places these sums in the row vector s. Similarly,

s=sum(x,2) sums up each row. On the PPServer, the pp-sum function accomplishes

the same task for parallel matrices. We can therefore overload the sum function in

MATLAB so that it parses the input arguments, creates the output matrix and calls

the PPServer using ppclient. This function is listed in Figure 4-2.

It is also possible to emulate MATLAB's complex subscripting. MATLAB pro-

vides two functions, subsref and subsasgn that handle expressions such as B =

A(1:3,1:3) and A(1:3,1:3)=C. Here, simple expressions such as v=A(3,4) return

values to MATLAB while more complicated sections such as B=A ([1 4 5] , :) return

PPServer matrices. The decision to keep sections on the PPServer is motivated by

the desire not transfer large quantities of data to and from MATLAB. As discussed

in Chapter 5, sending huge chunks of data to and from the server severely impacts

performance.

We have also overloaded the display method for parallel arrays. This function

comes into play when commands are entered that do not end in semicolons. For

example, c=a*b prints out variable c. Because inadvertently printing out large ma-

trices is a frequent source of frustration for MATLAB users, we decided that only

small matrices (under 50 elements) be displayed. This also minimises client-server

communication. For other matrices, only information about their sizes is displayed.

41

function m=ddense(varargin)

% DDENSE Distributed dense matrix class constructor
X m=ddense(a,dist) creates a distributed dense matrix from the

X char array a with optional distribution dist.

X m=ddense(m,m,dist) creates a zeroed matrix of size mxn

numargs = length(varargin);

if isa(varargin{1}, 'char')

% Load the matrix from a file

m.name = varargin{1};

if numargs > 1, disttype = varargin{2}; else disttype = 1; end

% Make the server cd to MATLAB's current working directory

[errorcode,errorstr] = ppclient('pp-do-cd',pwd);

% Load the file
[errorcode,errorstr,m.id,m.rows,m.cols] = ppclient('pp-loaddense',

m.name,disttype-1);

if errorcode ~= 0, error(errorstr); end

m=class(m,'ddense');

return;

elseif isa(varargin{1}, 'double')

m.name = 'Internally Created';

rows = varargin{1};

cols = varargin{2};
if numargs > 2, disttype = varargin{3}; else disttype = 1; end

% Make an empty dense matrix
[errorcode,errorstr,m.id,m.rows,m.cols] = ppclient('pp-make-dense',

rows,cols,disttype-1);

if errorcode -= 0, error(errorstr); end

m=class(m,'ddense');
elseif isa(varargin{1},'dsparse')

% Convert from sparse to dense

else
error('Input is of wrong type');

end

Figure 4-1: The use of ppclient in constructors

42

function s = sum(x,d)

% S = SUM(X,D)

X This is the same as the MATLAB sum

if nargin == 1

if x.rows == 1

d = 2;

elseif x.cols == 1

d = 1;

else

d = 1;

end

end

if d == 1

s = ddense(1,x.cols,getdist(x));

elseif d == 2

s = ddense(x.rows,1,getdist(x));

else

error('Distributed objects only have two dimensions');

end

[errorcode,errorstr] = ppclient('pp-sum',x,d,s);
if errorcode ~= 0
ppclear(s); X Delete s
error(errorstr);

end

Figure 4-2: Overloading sum in MITMatlab

43

Figure 4-3 shows MITMatlab's operator overloading in action.

The technique of invoking procedures on remote data used here is an active area

of research. More complete treatments of the issues involved can be found in the

Network Objects [5] and CORBA [4] projects. These efforts are primarily concerned

with providing support for writing general purpose distributed applications. Our

prototype is considerably simpler (we only have matrix objects, for example) and

complex issues such as object migration and security are not considered.

4.4 Code Reuse

The operator overloading discussed in the previous section completes the first step of

our "Parallelism through Polymorphism" recipe. It is now possible in most cases for

users to write ordinary MATLAB code and apply it to PPServer matrices. Code that

calls MATLAB operators on MATLAB matrices does not have to rewritten to use

PPServer matrices as long as all of the appropriate functions are properly overloaded.

Therefore investments in MATLAB code are not wasted.

However, MATLAB code that creates matrices with its own constructors such as

zeros, ones, rand, randn, and sprand cannot be reused in this way as MATLAB

matrices would result. For example, the following code cannot be reused with operator

overloading alone:

function m=randomeig(n)

% Find the mean of the eigenvalues of a random

X symmetric matrix

a=rand(n,n);

a=a+a';

e=eig(a);

m=mean(e);

It would thus be advantageous if the matrices created in this way were parallel and

so we proceed with the second step of our recipe.

44

b
O

er-

-QC0

This is solved by creating a new class (layout) for use as the arguments to MAT-

LAB constructors. The members of this class behave in the same way as MATLAB's

double, but when they appear as arguments to matrix constructors, overloaded func-

tions get called:

zeros(10,10) calls MATLAB's internal routine for creating an empty 10 by 10 matrix

zeros(layout(10),10) calls the overloaded function zeros for the layout class.

Easy creation of layout variables is provided by the p function. This function

always returns layout (1). Because the class has been designed so that arithmetic on

layout variables yields layout variables, any layout variable can be easily constructed

as a multiple of p: layout (100) -- 100*p.

In constructors the position of layout variables plays a role in the distribution

of the created matrix; zeros (100*p, 100) results in a row-distributed matrix while

zeros (100, 100*p) gives a column-distributed matrix. General block distributions

are not supported on the server and so zeros (100*p, 100*p) is row distributed. Fig-

ure 4-4 illustrates the use of p in matrix constructors and further operator overloading

on the resulting matrices.

The use of p is not just limited to constructors. Matrix information functions such

as size return layout variables. For example, size (zeros (100*p,100)) returns

[100*p 100*p]. Layout variables are returned in both places so that any matrix

derived from a parallel matrix is also parallel (and so maximise the possibilities for

introducing parallelism). For example, both b and c are parallel matrices in the

following code:

a=zeros (100*p, 100);

[m,n]=size(a);

b=zeros(1,2*m);

c=zeros(n,n);

In addition, constructions such as x=1:n (the vector [1 2 ... n]) result in

equivalent distributed objects if n is a layout object. This makes it possible to support

46

Figure 4-4: p in MITMatlab

a common style of MATLAB programming; code that creates matrices often starts

with a : construction:

x=1: n;

y=x' ;

z=sqrt(x*y);

Of the many alternatives considered, this behaviour is ideal. The result of 1: 10*p

can either be stored in MATLAB or on the server. The consequences of both choices

are discussed below:

0 If 1:10*p returns an ordinary MATLAB matrix, it cannot be subscripted with

a distributed array due to a restriction in MATLAB:

A=1: 10*p;

I=ones(10*p,1);

C=A(I,:)

47

" If 1:10*p returns a layout array we risk losing performance due to extra client-

server communication if this possibly large array is used in another computation:

A=1: 1000000*p;

B=ones(1000000*p, 1);

C=A*B;

" Returning a distributed array does not adversely affect for loops:

1 for i=1:n

2 a(i,i)=2;

3 end

When MATLAB parses line 1 above, if n is a layout object, a distributed ma-

trix is created; however, the semantics of MATLAB's f or loops dictate that i

is assigned to each column this matrix in turn. Retrieving a column of a dis-

tributed object returns a MATLAB variable, and so i gets assigned the numbers

1 through n.

As an example of the use of layout variables, consider the function hilb (Figure

4-5 shows the code). This function is part of MATLAB and the call hilb(n) produces

the n x n Hilbert matrix (hj - j1). When n is a layout object, a parallel array

results:

* J=1 : n in line 2 creates a PPServer object with 1, 2,.-. , n and places it in J.

9 ones (n, 1) in line 3 produces a PPServer matrix.

* Emulation of Matlab's indexing functions results in the correct execution of line

3.

* Overloading of ' (transpose) in line 4 makes I a parallel array.

* In line 5, E is generated on the PPServer because of the overloading of ones.

48

1 function H=hilb(n)

2 J = 1:n;

3 J = J(ones(n,1),:);
4 I = ;
5 E = ones(n,n);

6 H =E./(I+J-1);

Figure 4-5: MATLAB code for producing Hilbert matrices.

Finally H is also a PPServer matrix (line 6) because of proper overloading of

elementary matrix operations.

We have also been able to execute much of Nicholas Higham's Test Matrix Toolbox

[20] without any modification. Much of the work of this task involves supporting

the multitude of Matlab's indexing capabilities and built-in functions. In addition

MATLAB's iterative solvers pcg and gmres also work "out of the box". Successes

from Higham's Toolbox include cauchy, circul, clement, cycol, dingdong, frank,

kahan, lehmer, moler, parter, pei, and triw. Some routines (kms, orthog, seqm,

signm, and smoke) need support for complex numbers, an important extension not

currently in the PPServer. Others (such as hadamard and wilk) that return explicit

MATLAB matrices cannot be overloaded in this way. Part of the code for hadamard. m

is summarised in Figure 4-6. It shows that even though k is a layout variable, H will

never be distributed because k (and by extension n) has no direct influence on the

construction of any part of H.

Users of our system should therefore be aware of the way parallelism gets propa-

gated through our system so that their code benefits from the use of the PPServer.

The rules are simple:

* Operations on parallel matrices give parallel matrices

* Arithmetic on layout variables yields layout variables

* 1: n*p produces a parallel matrix

* Use of layout variables in constructors results in parallel matrices

49

function H=hadamard(n)

X Construct a Hadamard Matrix H, such that:
X 1) H(i,j) = +1 or -1

X 2) H*H'=n*eye(n).
X Assumes n is a power of 2.
k=log2(n);
H=[1] ;
for i=1:k

% Double the size by making a block matrix
H=[H H

H -H];

end

Figure 4-6: MATLAB code for Hadamard matrices

function H=hilb(n)

H=zeros(n,n);

for i=1:n
for j=1:n

H(i,j)=1/(i+j-1);
end

end

Figure 4-7: Alternative hilb.m

In examining the routines in the toolbox, it is clear that even with the capabilities

of the PPServer it is not feasible to create very large instances of some matrices. For

example, even in double precision, pascal (800) (the numbers of Pascal's triangle),

contains Inf. Further, functions that make extensive use of element-wise operations

will not make full use of the parallelism of the PPServer. For example, the alternative

hilb implemented with loops in Figure 4-7 is much less efficient than the one in Figure

4-5 as the server cannot exploit any parallelism. It is instructive to note that the data-

parallel version of hilb.m (Figure 4-5) performs better even in traditional MATLAB

and this style of programming is encouraged where possible, fitting well with our

model.

50

4.4.1 A bottom-up view of p

In the preceding discussion, we started with the PPServer and then introduced p as a

way of getting parallel execution of a larger subset of MATLAB code. In this section

we present another view of the process, starting MATLAB, adding different versions

of p and ending with the full MITMatlab environment. Figure 4-8 explains the steps

taken in "reverse" order.

MATLAB with: Effect on code reuse

p=1 None
Code runs in MATLAB
environment

p=layout (1) Arithmetic and functions using
layout need to be overloaded for
code reuse. Routines still run
in MATLAB environment

p=layout (1) + Parallel execution of MATLAB
PPServer routines

Figure 4-8: The steps to MITMatlab

4.5 Language Features

In this section we discuss some new features of the MITMatlab "language".

4.5.1 An Interpreted HPF?

The MATLAB language shares many similarities with HPF (High Performance For-

tran) [27]. These include the use of array syntax (c=a+b can be used to add two matri-

ces without using loops), triplet notation (1: 2:n), and array sections (a(1: 10, 1:5)).

MITMatlab also introduces parallelism in a similar way. In HPF parallel arrays are

created using DISTRIBUTE compiler directives that specify how the arrays are parti-

tioned among processors. For example, a 1000 by 1000 row-distributed single precision

matrix is declared using:

51

REAL, DIMENSION(1000,1000) :: A

!HPF$ DISTRIBUTE A(BLOCK,*)

In MITMatlab, a similar matrix is created with A=zeros (1000*p, 1000).

With HPF's directives other distributions (such as cyclic) can also be specified.

As opposed to the block distributions currently implemented in the PPServer where

row (or column) i is assigned to processor i div n/p (with n the number of rows

(columns) and p the number of processors), cyclic distributions assign row (column)

i to processor i mod n/p. Block cyclic distributions also exist, where the rows (or

columns) of a matrix are first partitioned into blocks of a certain size and these blocks

are then distributed to the processors in a cyclic fashion. For example, the ordinary

cyclic distribution can be viewed as a block cyclic distribution with a block size of 1.

These additional distributions are not currently implemented in our prototype,

but can easily be accommodated using our framework. Cyclic distributions can be

described with c (or another suitable letter), instead of p as Table 4.1 demonstrates.

MITMatlab HPF
A=zeros(1000*p,1000*p) A(BLOCK,BLOCK)

A=zeros(1000*c,1000) A(CYCLIC,*)
A=zeros(1000*c,1000*p) A(CYCLIC,BLOCK)
A=zeros(1000*c(10),1000) A(CYCLIC(10),*)

Table 4.1: Specifying distributions in HPF and MITMatlab

4.5.2 An Important Constraint: Dealing with Pointers

While MATLAB supports object-oriented programming, it does not yet implement

true user-defined destructors (as in C++). Consequently, there is no way for an

object to be notified automatically when it is about to be deleted, either explictly via

MATLAB's clear or implicitly by going out of scope. To make matters worse, there

is no way in the curent version of MATLAB to obtain a list of all active variables

52

using a function. These combine to make it impossible to have automatic garbage

collection in MITMatlab. The inclusion of destructors in a future version of MATLAB

would eliminate this problem.

MITMatlab users are thus burdened with having to explicitly clear variables that

are not wanted (using the ppclear function). Complicating things even further is

the need to break up complex expressions like e=a+b+c+d to avoid creating garbage

when subexpressions (such as a+b) are evaluated within Matlab, creating "temporary"

objects.

To reduce some of this programming effort, we have implemented a semi-automatic

mechanism for garbage collection. We provide a function called ppscope that returns

a time stamp. When ppgc is called with a time stamp created by ppscope, all

variables created since that time that are not in ppgc's argument list are deleted. For

example,

SCOPE=ppscope;

g=(a+b+c+d)*e + f;

ppgc (SCOPE, g);

deletes all of the temporary variables that were created in the complex assignment to

g.

Another issue relating to object oriented support in MATLAB is the inability

to define a copy constructor. In MATLAB, when a=b is encountered, the bytes for

variable b are copied to form the bytes for variable a. However, in the case of ddense

and dsparse variables, copying the bytes means that both a and b point to the same

PPServer matrix. We would like to be able to (as in C++) define a copy constructor

that allows us to create a copy of b on the server, but it is impossible with the current

version of MATLAB. As a result the following code does not execute as expected:

b=ones(10*p,10);

a=b;

a(1,1)=2;

c=a(1,1)-b(1,1);

53

The variable c should contain the value 1, but because a and b are the same matrix,

c equals 0. As with the garbage collection issue, this results from the fact that we

use MATLAB variables to hold "pointers" to data stored elsewhere. The problem of

garbage collection is one of "dangling references" and the copy constructor problem

deals with "aliasing". In MATLAB, storage for the class variables (and other native

types) is automatically reclaimed, pointers are not followed.

54

Chapter 5

System Performance

Due to the architecture of MITMatlab, overall system performance depends on sev-

eral factors in addition to the quality of the computational routines residing in the

PPServer. These factors can be classified as:

* Client Communication

* Memory Management

* Additional Server Overhead

After discussing these issues in sections 5.1-5.3, the operational performance of

MITMatlab is presented in section 5.4 and compared with other implementation

strategies.

5.1 Client Communication

Because MITMatlab is a client-server system, the cost of operations includes the time

it takes to communicate with the server. In experiments on a DEC Alpha system,

a simple ping to and from the server averages 2 ms (round trip). Some of this time

(about 0.4 ms) can be attributed to MATLAB overhead in calling the ppclient

function. The rest of this time it taken up by socket communication and server

execution.

55

These costs conspire to make accessing a single matrix element relatively expen-

sive. Compared to MATLAB's 141 us, the statement v=A (i, j) takes 3 ms when A is

a server matrix. This means that MITMatlab applications fare poorly when forced

to transfer many small matrix pieces to or from the PPServer. In addition, functions

that execute very quickly on the server will be dominated by the client communication

involved.

5.2 Memory Management

In MATLAB code many statements involve assignment (for example, c=a*b creates

c). If the assignment is to an entire parallel variable (as opposed to an element,

A(ij), or section, A(i, :)), a new PPServer variable is created. Because we do

not have access to MATLAB's parser, simple operations and assignments to current

variables (as in the following code) also create new matrices:1

a=ones(10,10*p);

a=2*a;

Combined with the necessary garbage collection that this entails, we find that

MITMatlab applications spend a non-trivial amount of time managing memory. By

contrast, in most compiled code, programmers take great pains to ensure that new

variables are created only when necessary. In Section 5.4.4 we perform some experi-

ments that quantify the effects of memory management on our applications.

5.3 Server Overhead

The performance of server computational functions is primarily dictated by their

implementation. For example, the time taken by inv(A) in MITMatlab depends

mainly on the quality of the ScaLAPACK routines pdgetrf and pdgetri. In addition

iFor this reason, we have implemented a separate "self" function (scaleself)that allows a=2*a
to execute without wasting memory.

56

to this there is the overhead of finding the right function to call (negligible on the

DEC Alpha), possible data redistributions, and of course, the performance of the

underlying MPI library.

5.3.1 Data Distribution

In some cases, the server spends time redistributing matrix data to comply with

external library constraints. Libraries such as ScaLAPACK (but not S3L) require

their input to be distributed in a certain way. For example, in a call to pdgehrd (the

routine that reduces matrices to Upper Hessenberg form), the input matrix must be

2-D block distributed with square blocks. Because PPServer dense matrices do not

conform to this distribution, a copying and re-alignment phase must precede each call

to this routine (and others).

Redistributions from row to column (and vice-versa) also take place on the server

prior to certain operations. For these operations certain distributions are preferable

to others but the cost of redistribution impacts their performance. In our current

system there are a few operations that begin with a redistribution step. In the

future we hope to rewrite these routines where necessary so that they are executed

"in place". By minimising redistributions we achieve higher performance while giving

users more control (if desired) on the placement of their matrices. However MATLAB

is a declaration-free language and matrices are only created when assigned to (C=A+B

creates C). While we have tried to make reasonable choices for the distribution of

target matrices (such as C), there are some cases where these will not be optimal for

performance.

5.3.2 Speed of MPI

The quality of the MPI implementation used with the server has a great impact

on the performance of server routines. As an example, consider the server's matrix

multiplication routine (C=A*B). In most cases it broadcasts each local piece of matrix

A and performs a local multiplication and sum. As observed in [22], if great care

57

is not taken with the MPI broadcast implementation on a network of SMPs, dismal

performance may result. Most routines implement a tree-like broadcast algorithm and

assume that the performance of each link between processors is identical. However, in

a clustered environment this is not the case and collective operations that incorporate

this knowledge into their communication patterns exhibit much better performance.

In MPI-StarT [22], a two-stage broadcast algorithm is implemented where data is

first broadcast to all machines and then broadcast within each machine.

Table 5.1 compares the performance of the original and optimised broadcasts in

MPI-StarT on a network of Sun E5000s. In the benchmark, each process broadcasts a

different 1 MB buffer in turn and the time for such a "round" is recorded. In the table

(and in all subsequent experiments) 2+2 means 4 processes equally divided between

two machines.

p Optimised Original
1+1 0.148 0.147
2+2 0.466 0.781
4+4 1.158 2.420
8+8 3.591 6.934

Table 5.1: MPI-StarT broadcast performance

This improvement translates directly into enhanced matrix multiplication perfor-

mance.

5.4 Performance Summary

5.4.1 Evaluation Platforms

Hardware

The following sections detail the results of experiments performed on dedicated Sun

Ultra Enterprise 5000 and Digital AlphaServer 4100 clusters. The Sun machines

each contain 8 167MHz Sparc Ultra 1 processors, 512 MB of main memory and are

58

connected either with 100 Mbit/s Ethernet or with MIT's Arctic Network. The

Digital cluster is comprised of 4-way SMPs each with 466 MHz Alpha processors,

2GB of main memory and uses MemoryChannel as its interconnect.

Software

The majority of the results here were obtained via MATLAB scripts. For example,

timing a single matrix multiply is as easy as:

a=rand(1000*p) ;b=rand(1000*p);

tic;c=a*b;t=toc;

The time for the operation can be extracted from the variable t. As a consequence

of this, the times reported include client communication and reflect the performance

that MITMatlab users see.

5.4.2 Distribution Costs

Table 5.2 summarises the cost of converting matrices of various sizes between row and

column distributions on the DEC cluster. These matrices are all in single precision

and distributed among 2, 4, 6, and 8 processors.

The time for conversion to ScaLAPACK's block form is also presented in Table

5.3.

Processors
2 4 3+3 4+4

n r -+c c -+ r r -+c c -+r r -+ c -+r r -+c c -+r
1024 0.179 0.179 0.097 0.103 0.110 0.081 0.085 0.066
2048 1.521 1.334 0.578 0.577 0.418 0.361 0.376 0.312
4096 8.498 8.770 5.996 5.644 3.153 2.542 3.085 2.216

Table 5.2: Redistribution costs for n x n dense matrices

To weigh the impact of this operation we must consider what happens to the

matrix after it has been redistributed. For complex operations that take a while (such

59

Processors
n 2 4 3+3 4+4

1024 0.108 0.050 0.051 0.047
2048 0.854 0.403 0.212 0.202
4096 1.947 1.998 1.175 0.932

Table 5.3: Costs of converting
sion) to ScaLAPACK form

n x n column distributed dense matrices (single preci-

as those in Section 5.4.3) we see that redistribution adds only a little extra time (for

example, on the Suns it takes 5.85s to redistribute a 2K x 2K single precision matrix,

but 69.5s to multiply two 2K x 2K matrices). However, for simple operations it should

be avoided.

5.4.3 Individual Server Operations

The performance of large, complex linear algebra operations is summarised in this

section. As an example of this, we compare the costs of finding the Cholesky factori-

sation of a large matrix using MITMatlab (and ScaLAPACK) against a compiled

code using the Sun Performance Library (Sun's optimised version of LAPACK) on

the Sun E5000. Table 5.4 presents these times along with the time that MATLAB

takes to perform the same operation on the same matrix. Here the matrices are all

in double precision (so that the comparison with MATLAB is fair). Note that these

times include the time to convert the PPServer matrix to ScaLAPACK form.

Processors
2 4 6 8

n MATLAB MIT Sun MIT Sun MIT Sun MIT Sun
1024 22.78 5.45 3.19 3.03 2.46 2.30 2.17 2.19 2.04
2048 202.17 31.26 24.95 16.17 16.51 11.94 13.45 9.95 12.11

Table 5.4: Cholesky decomposition time of the n x n Moler matrix

The results show that the MITMatlab/PPServer approach is competitive with

using the optimised library and clearly outperforms MATLAB on the same machine.

60

For such operations we basically get the performance of the underlying library.

The ubiquitous matrix multiplication operation also exhibits speedups compared

with MATLAB. Table 5.5 shows the performance of our our single precision imple-

mentation on the Sun SMP cluster using MIT's Arctic network and MPI-StarT.

Processors
n 1+1 2 2+2 4 4+4 8 8+8 8+8+8

1024 9.7 9.6 4.8 4.7 2.6 3.0 2.0 3.0
2048 69.5 69.4 35.1 35.0 17.5 17.7 10.6 9.5
4098 NA NA 403.5 402.9 204.2 207.8 102.9 79.1

Table 5.5: n x n Matrix multiplication performance

One advantage of our software is its ability of perform computations that would

not be feasible with traditional MATLAB. To illustrate this, consider finding large

sparse singular value decompositions. The algorithm incorporated into the PPServer

uses the PARPACK library and deals quite easily with very large matrices. As an

example, we created 10K by 10K random sparse matrices with 1, 2, and 4 million

nonzero elements and then attempted to find their first five singular triplets. MAT-

LAB failed to complete the computation but the MITMatlab approach found the

required triplets and even exhibited speedups when more processors were added. The

results are detailed in Table 5.6.

Processors
size 2 4 3+3 4+4
IM 116.8 60.6 43.6 37.7
2M 301.6 158.4 119.5 95.7
4M 425.5 316.7 205.0 167.0

Table 5.6: Sparse SVD performance

61

5.4.4 Combined Operations

All of the issues discussed in Sections 5.1-5.3 come into play when MATLAB scripts

are run in MITMatlab. To better understand the effects of these factors, we imple-

mented the same program in many different ways and analysed the execution time of

each version. Figure 5-1 shows the MATLAB code for our test program. It basically

performs many matrix/vector products and vector additions in a loop. The following

versions of the code were created in:

1. MATLAB

2. MITMatlab - running the MATLAB code on PPServer arrays. In this version,

ppscope and ppgc (see Chapter 4) calls were added for garbage collection.

3. MITMatlab, but implementing the entire program as a package (see Figure 5-2)

4. FORTRAN 77 using LAPACK.

A=rand(3000,3000);
xO=rand(3000,1);
Q=rand(3000,9);
n=10;

function X=testfun(A,xO,Q,n)
X Form columns of X in the following way:

X Column i+1 of X is the product of column i
% of X added to column i of Q

X(: ,1)=x0;
for i=1:n-1

X(:,i+1)=A*X(:,i)+Q(:,i);

end

Figure 5-1: MATLAB code for program experiment

Table 5.7 shows the results of the experiments. Not surprisingly the native For-

tran version is the fastest; however, the PPServer package version does not incur

a substantial performance penalty. The interpreted MITMatlab version, while still

62

void pp-mc(PPServer &theServer,PPArgList &inArgs,PPArgList &outArgs)

{
// First get the arguments

PPMatrixID A=*(inArgs[O]);PPMatrixID xO=*(inArgs[1]);

PPMatrixID Q=*(inArgs[2]);int n=*(inArgs[3]);
PPMatrixID X=*(inArgs[41);
// First make sure that xO,X, and Q row distributed.

// First copy xO to the first column of X, x(:,1) = xO

PPDenseMatrix *matX = (PPDenseMatrix *)theServer.getData(X);

PPDenseMatrix *vecxO =(PPDenseMatrix *) theServer.getData(xO);

PPDenseMatrix *matQ = (PPDenseMatrix *)theServer.getData(Q);

int i;

for(i=O;i < matX->numRowso;i++) {
matX->set(i,O,vecxO->get(i,O));

}
// Create temp vector vecxl and set x1 to be xO

// Now implement the loop

PPArgList multArgs;

for(int j=1;j < n;j++) {
// We're setting X(:,j) in this iteration

// First multiply A by X(:,j-1)

multArgs.clearArgs();

multArgs.add(A); multArgs.add(xl); multArgs.add(x2); //x2=A*xl

multArgs.add(O); // Don't transpose A

answer=theServer.dispatchCommand("pp-mm",multArgs);

delete answer;

// Make sure x1 and x2 are row distributed

// Because the local data may have changed because of the

// redistribution get new pointers

vecx2=(PPDenseMatrix *) theServer.getData(x2);

vecxl=(PPDenseMatrix *) theServer.getData(xl);

// Add Q(:,j-1) to x2 and set it to both x1 and X(:,j)

for(i=O;i < vecx2->numRows(;i++) {
vecxl->set(i,O,vecx2->get(i,O)+matQ->get(i,j-1));

matX->set(i,j,vecxl->get(i,O));

}
}
outArgs.addNoError();

}

Figure 5-2: The package version of the MATLAB code

63

faster than the pure MATLAB version, was predictably slower than the two compiled

versions. It had to manage the temporary variables that were created in the loop

and incurred a little overhead for every server function called. We believe that this

small cost is well worth the advantages we obtain in ease of implementation (a simple

MATLAB script) and interactivity.

Time (sec)
Processors Fortran Server MITMatlab MATLAB

Used Package
1 5.50 49.93
2 2.94 3.18 3.62
4 1.60 1.78 2.25
6 1.13 1.60 2.12
8 0.97 1.76 2.73

Table 5.7: Performance of different implementations of the combined operations test
program

Table 5.8 shows the times for calling moler(n) from Higham's Toolbox. This

routine creates an n x n matrix using mostly data parallel operations. Various values

of n were tested on the DEC Alpha platform in double precision. The results show

that for small sizes MATLAB is faster due to the overhead involved in the parallel

operations but the PPServer shines for larger sizes. This behaviour is typical of most

parallel computing systems and MITMatlab is no exception; the gains in parallelism

are only seen when the problem sizes are large enough to justify the overhead involved

in parallel execution.

5.4.5 The Big Picture

Based on the results presented in this chapter, we can draw a few conclusions on

the performance of the MITMatlab environment. The main point is that code that

performs complex operations on large PPServer matrices is very competitive. By

contrast, code that uses many elementwise operations and accesses fares very poorly.

It is interesting to note that this is also the case for sequential MATLAB code.

64

Processors
n MATLAB 2 4 3+3 4+4
10 0.020 0.192 0.133 0.194 0.154
50 0.004 0.175 0.134 0.192 0.148

100 0.027 0.190 0.138 0.196 0.155
200 0.208 0.243 0.173 0.231 0.173
500 3.016 0.947 0.555 0.571 0.452

1000 42.95 4.78 2.84 2.45 1.95
2000 352.1 27.84 19.01 14.09 11.99

Table 5.8: Times (in seconds) for computing Moler matrices

The use of f or loops and elementwise assignments is eschewed in favour of the data-

parallel style of programming which is suitable for many scientific computing tasks (as

evidenced by the proliferation of languages such HPF). Further, using the PPServer

for operations on small matrices may not result in performance gains due to the

overhead involved.

5.5 Accuracy

In addition to the usual accuracy and stability concerns of numerical routines dis-

cussed at length in numerical analysis books such as [18], the use of parallelism in

the PPServer introduces issues of coherence and repeatability.

Loosely speaking, an algorithm is termed incoherent if "values that should be the

same on all processors somehow aren't". A common way this can happen is when

the value is the result of some global operation. For example, if all processors have

a floating point number x and wish to find the global sum of all the local xs, it is

possible that this sum could be different on each processor. This can occur if the

values are added up in a different order on each processor as floating point addition

is not associative (a + (b + c) does not always equal (a + b) + c).

Repeatability is the property that "different runs of the algorithm obtain the same

results". As an example, consider the algorithm of Figure 5-3 that computes a global

sum. Because the values sent to processor 0 can arrive in any order, the sum can be

65

if processor number != 0

send x to processor 0

wait for sum to be broadcast from processor 0

else

sum=my local x

for i=1:number of processors-1

receive a value v from some processor

sum=sum+v

end
broadcast sum to all other processors

end

Figure 5-3: Computing a global sum

computed in any order. The non-associativity of floating point addition results in a

nonrepeatable algorithm.

It is therefore up to library writers to ensure that their algorithms are coherent

and repeatable. ScaLAPACK for example, ensures coherence and repeatability if the

following three conditions are met:

* The processors are identical

* The message passing library used to compile ScaLAPACK does not convert

messages while sending them

e The same binary program is executed on each processor

These conditions hint at the role the MPI implementation plays in guaranteeing

reliable computation. For example, a bad implementation of the MPIAllreduce

function (that performs global operations such as sums) could be incoherent and/or

nonrepeatable.

The situation is considerably more complicated in a heterogeneous computing

environment. In such environments the processors may have different floating point

formats and use non-IEEE arithmetic. These and other issues are discussed in [7].

Finally, the precision used in the PPServer is also an issue. Programmers (and

users) must take care not to use single precision when accuracy is required. For

66

example, in single precision hilb(1000)*invhilb(1000) does not return the identity

matrix (invhilb computes the inverse of a Hilbert matrix using a formula).

67

Chapter 6

Applications

In a research setting MITMatlab combines MATLAB's ease of development with the

ability to operate on very large data sets. This provides users with the ability to use

MATLAB for applications instead of having to build special purpose tools written in

a compiled language.

In this chapter we describe some demonstrations of this idea, presenting IRLAB,

a research Information Retrieval system "written" mainly in MATLAB, and sum-

marising other applications that use MITMatlab. The key point here is that only

familiarity with MATLAB and domain-specific (Information Retrieval, for example)

knowledge is necessary to build the applications described here. Familiarity with the

intricacies of parallel programming is not a prerequisite.

6.1 IRLAB

Efficiently searching large collections of documents for relevant articles is one of the

most challenging problems in Computer Science. Compounding the problems of scale

(such collections typically reach several gigabytes in size) are those of semantics.

Natural language words can have several meanings (polysemy) and many different

words can refer to the same concept (synonymy). As a result, individual words

are often insufficient to disambiguate meaning. Thus, a crucial issue in Information

Retrieval (IR) involves deriving representations that capture as much meaning as

68

possible while remaining space and time efficient (see [16] for a discussion of the

many issues involved in building IR systems).

The Vector Space Model (VSM) [41] is one of the most popular representations

in IR. In this model, each document is represented as a vector v where vi is some

number reflecting the existence of term i in the document. This number is usually

some function of the number of times the term appears in the document and of-

ten takes into account global (across the entire document collection) term counts.

Very frequent terms ("how" being an extreme example), often have little use in dis-

tinguishing relevant from non-relevant documents. To mitigate the effects of these

terms various term-weighting schemes have been developed. In IRLAB we use the

TF-IDF strategy. The entire document collection can then be represented as a term

by document matrix.

This model is particularly appealing because it is easy to reason about concepts

such as relevance and document similarity using well known (and understood) opera-

tions on vectors. For example document/query similarity is usually the inner product

between the respective vectors. In a production environment (such as a Web search

engine) inverted indices optimise the task of finding documents that contain a given

set of terms (and hence relevant documents).

The work of IR systems is to find relevant documents. To evaluate their effec-

tiveness they are usually run against sets of queries for which relevant documents

have been tagged (usually by humans). Based on the documents returned and the

documents judged relevant measures of the system's accuracy can be computed. One

of the standard measures of retrieval performance is precision-recall. Retrieval sys-

tems typically rank the documents in order of relevance to a particular query. The

precision at rank i is the fraction of documents at ranks 1, . . . , i that are relevant

to the query. The recall at this point is the fraction of total relevant documents

retrieved. Precision-recall curves are usually plotted (precision on the y-axis and

recall on the x-axis) to give graphical representations of the effectiveness of differ-

ent retrieval methods (see Section 6.1.2). In general, "higher" curves indicate better

performance. Figure 6-1 shows a "perfect" precision-recall curve where all relevant

69

documents are returned first.

0.8 -

0

0.6 -

0.4-

0.2-

0 0.2 0.4 0.6 0.8 1
Recall

Figure 6-1: A perfect precision-recall curve

6.1.1 Dimensionality Reduction

Dimensionality reduction techniques attempt to represent the data in the term-

document matrix A by a reduced matrix B which has fewer rows (the number of

columns, i.e. documents, stays the same). If the documents were originally rep-

resented as d (the number of documents) points in an m-dimensional vector space

(where m is usually the number of terms), they will now be points in a k-dimensional

space (k < m). The hope of these techniques is that the important relationships

among the documents will be more easily revealed in the smaller space. Dimension-

ality reduction has been used successfully in other fields. Factor Analysis has been

used for most of this century to summarise multivariate data. Principal Components

Analysis is widely used in Pattern Recognition applications such as face recognition

[44].

70

Linear projection schemes are some of the more widely used dimensionality reduc-

tion techniques. Here a k x m matrix P (called a projection matrix) is found such

that the reduced matrix B = P -A.

One of the first linear projection schemes was introduced by Deerwester, Dumais,

et. al. [13]. Called Latent Semantic Indexing, it used the Singular Value Decomposi-

tion (see [18] for properties and algorithms) of A to find P. If the SVD of A is written

as A = USV', then the LSI Projection Matrix is S-U'.

It is interesting to note that using LSI, the reduced matrix B may not necessarily

occupy less space than A. Since most documents only contain a small fraction of

all possible terms, A will be sparse. If A is encoded using one of the popular sparse

matrix encoding schemes, it can use much less than the m x d floating point locations

that a naive scheme would need. However, in LSI, the reduced matrix is dense and

so needs all k x m floating point locations. Depending on the choice of k, more space

than the original matrix may be required.

Most dimensionality reduction approaches, however, rely on matrix decomposi-

tions that are computationally intensive and so the sheer size of the data matrices

used in IR has greatly hindered their usefulness.

6.1.2 Using MITMatlab

The large matrix support in MITMatlab enables IR researchers to focus on refinement

of techniques instead of directly dealing with problems of scale. Term-document

matrices are simply dsparse objects and the myriad of provided matrix operations

form the building blocks for retrieval schemes.

IRLAB is basically a collection of MITMatlab scripts and programs that are used

to create document retrieval applications. The functionality of IRLAB can be broken

down into three main areas:

" Text conversion programs

" Matrix manipulation routines

71

* IR-specific functions

Text conversion

Text collections do not usually come in term-document form. As such, a number of

external Unix programs are provided that take collections of text and produce the

matrices that are used in MITMatlab.

We assume that all incoming documents and queries are in SMART [41, 11] format.

The first step is to convert into another format (called HI) that delimits sentences

and paragraphs (in case such information is needed by the researcher). This is accom-

plished by the f ilter-stopwords program. It also removes stopwords (commonly

used words) and has a facility for part of speech tagging using the PRINCIPAR parser

[30].

Next, text2matrix converts a document collection from HI format to a term-

document matrix readable by the PPServer. qtext2matrix converts a set of queries

in HI format to term-document matrices. For this program the mapping from words

to indices is required so that term i in both the document and query matrices refer

to the same word.

If pre-computed relevance judgements exist for the document/query pair, qrel2-

matrix takes these judgements and produces a sparse document-query matrix R,

where R(i, j) = 1 if (and only if) document i is relevant to query j.

Finally, indexdocs takes the SMART document collection and produces files that

enable easy access to the text of any document in the collection. The MATLAB

functions readwindices and showindexed use this information to display individual

documents within MATLAB. Figure 6-2 shows these functions in action.

Matrix manipulation

Because ddense and dsparse objects are produced by the programs detailed in the

above section, application designers have access to all PPServer operations. Some

have been extended to deal more efficiently with the scale of the data under consid-

eration.

72

Figure 6-2: Displaying documents in IRLAB

73

"Self" versions of some frequently used operations are provided so that an addi-

tional copy of the matrix arguments are not created. These operations transform a

matrix without allocating new space on the server and include scaleself that scales

the rows or columns, normself that normalises columns, powerself that raises all

entries to a specific integer power, and idf self discussed in the next section.

The matrix decomposition functions svds (Sparse Singular Values) and pcas

(Principal Components Analysis) have been broadened to work on matrices derived

from products in the following way:

[u, s , v] =svds (A, 5) returns the five largest singular triplets of A, but

[u, s , v] =svds (A, B, C, D, 5) operates on the matrix A -B -C -D without ever forming

the product (which may be prohibitively large).

The functions described above were programmed into the PPServer directly in an

attempt to optimise performance. In fact, these optimisations are relevant to ordinary

(serial) MATLAB code as well. It would be possible to implement IRLAB without

them, but the routines would not be as time and space efficient.

IR-specific functions

A few commonly used IR operations have already been provided in MITMatlab.

These are written entirely in MATLAB (no PPServer modifications were made) and

include:

e idf=idf self (D) extracts the TF-IDF weights for server term-document matrix

D, puts them in idf, and applies these weights to D. .

" sc=getdqscores (D, Q) performs simple term-matching retrieval on documents

D and queries Q and places the document/query scores in sc

" sc=getdddqscores(D,Q) computes sc = D'DD'Q. The idea behind this tech-

nique is to use document/document similarity to assist document/query simi-

larity. D'D 3 gives the similarity of document i to document j and D'Qmn gives

the similarity of document m to query n. If these two matrices are multiplied,

74

then
nd

D'DD'Qkl =((D'D)kd(D'Q)d1
d=1

In other words, if document k is similar to document d and document d is

similar to query 1 then the score of document k and query 1 is increased.

" sc=getlsiscores(U,S,V,Q) computes the document/query scores based on

LSI: sc = V'S- 1 U'Q

* [pr,re]=precisionrecall(sc,R) evaluates the average precision and recall

based on scores sc and relevance matrix R.

Examples

Term Matching

The easiest and most common IR technique used today is term matching. Here the

document similarity to the query is measured in terms of the number of words in

the document that are contained in the query. A number of variants of this idea

(in addition to term weighting described above) exist and are easily implemented in

IRLAB:

Boolean matching The MATLAB function bool takes a sparse matrix and re-

places all nonzero elements with 1. Combined with dot products we get doc-

ument/query scores that reflect the number of times document words match

query words.

Normalising documents Long documents with terms that appear many times will

seem more favourable to term matching algorithms. In order to "level the

playing field", each document is typically normalised to have unit length (in

the Euclidean sense). The normself function normalises each column of a

term-document matrix in place.

Figure 6-3 shows how these ideas come together in IRLAB. Here we perform

term matching on term weighted and normalised documents. The performance of the

75

method can be seen by viewing the associated precision-recall curve. This method is

usually used as the baseline for retrieval experiments.

Figure 6-3: Term matching in IRLAB

Using SVDs

Another retrieval technique involves the use of the Singular Value Decomposition of

the term/document matrix. The hope of this technique is to project the documents

into a lower dimensional space where similar documents would "move" closer together,

thus improving retrieval performance. Using the svds function in MITMatlab we can

easily implement this idea:

D=dsparse('term-doc');

Q=dsparse ('queries');

76

[U,S,V]=svds(D,200);

sc=getlsiscores(U,S,V,Q);

The getisiscores function simply projects the queries into the lower dimensional

space and computes their inner products with the projected documents (see Figure

6-4).

function c = getlsiscores(u,s,v,q)
X C = GETLSISCORES(U,S,V,Q) returns the dot products of the LSI
X documents (V)

X and the queries (Q). It uses U and S to project the queries

X according to
% the rule S^{1-}U'Q

if isa(u, 'double')
temp1 = u'*q;

else
temp1 = atb(u,q); % a'*b in one operation

end
oneOvers = 1./diag(s);
if isa(templ,'ddense')
temp2 = oneOvers'*templ;

ppclear (templ);
else

temp2 = diag(oneOvers)*templ;
end

c = v*temp2;
if isa(temp2,'ddense')
ppclear (temp2);

end

Figure 6-4: getlsiscores.m

Computing SVDs for very large sparse matrices is an extremely computationally

intensive process. As such, the example shown here is for a very small collection (only

1033 documents). The only difference between this example and larger collections is

the time necessary to compute the decomposition. Figure 6-5 shows how LSI can be

used in IRLAB and its precision-recall performance relative to term matching (LSI is

the solid line).

77

Figure 6-5: LSI in IRLAB

Other schemes

More complex retrieval schemes can also be easily implemented with our software.

For example, due to the computational complexity of SVDs, we may only want to

perform it on a subset of the documents and use the projection matrix on the entire

collection. The MATLAB code of Figure 6-6 accomplishes this.

nd=size(D,2);

scores = getdqscores(D,q);
indices=sortself(scores);
topdocs=indices(nd-n+1:nd,1);

newdocs=D(:,topdocs);
[U,S]=svds(newdocs,m);

scaleself(U,1./S,2);

newscores=getdxxqscores(D,U,q);

% Sort document/query scores
X Get the top documents
% Select these documents
X Find the new SVD

X Find the new scores, (U'D)'(U'q)

Figure 6-6: Performing LSI on a subset of documents

78

6.2 Other Applications

As seen with IRLAB, applications needing large matrix support can be quickly de-

veloped without having to explicitly deal with problems of scale. MITMatlab has

been used as a platform for teaching the concepts of parallel scientific computing. In

a research setting, it has aided efforts in Ocean Modelling and Machine Learning.

In the Ocean Modelling example, the researchers attempted to validate their ocean

model by comparing predicted sea surface heights with actual observations from satel-

lite data. They already had a collection of MATLAB programs to do the task, but

these did not run on the production data due to its size. These programs were modi-

fied slightly (as reported before, loading of matrices from disk uses a different syntax)

and run successfully using MITMatlab. Their results and conclusions are discussed

in [32].

79

Chapter 7

Conclusions

7.1 Future Directions

MITMatlab currently possesses the majority of the core linear algebra routines that

large scale scientific applications need. Based on this infrastructure several extensions

to the software are possible that expand the range of easily supported applications.

7.1.1 Zero Finding and Optimisation

A class of problems where reuse of MATLAB software seems particularly challenging

is zero finding and optimisation. In these problems a function f is presented and its

zeros (x s.t. f(x) = 0) or extreme points (x s.t. f(x) is maximised or minimised) are

requested. The difficulty is that users specify the function in an interpreted MATLAB

script. For example, fmin('myf un' ,0,1) in MATLAB finds the minimum of myf un

in the interval from 0 to 1. The obvious problem is that the PPServer does not

contain a MATLAB interpreter and thus it seems impossible to interactively evaluate

such functions. This problem does not only arise with minimisation. Any MATLAB

function that takes another as an argument (thus using code as data) cannot be easily

parallelised with the PPServer.

A solution that we believe is promising and wish to further explore is to quickly

compile the function at runtime using a serial MATLAB compiler and then dynami-

80

cally load the produced object code (a la packages). Multiple instances of the function

with different arguments may then be evaluated in parallel and so the optimisation

can be carried out on the server. A preliminary study of this approach using PGA-

Pack [28], a parallel genetic algorithms package, was successfully carried out as a class

project. In this package, the various parameters of the algorithm (such as the fitness

and mutation functions) are specified as C functions. In order to fully integrate this

package into MATLAB's environment these functions need to be implemented as or-

dinary MATLAB scripts. The project achieved this by first compiling the MATLAB

scripts to C++, running an automated script to remove unnecessary statements and

declarations from the C++ source, compiling the C++ to an object file, and then

loading it into the server.

Another approach would be to use MATLAB's interpreter on each MPI process

to evaluate any MATLAB code that gets passed on to the PPServer. The main

disadvantage of this is that the MATLAB interpreter would not run in the same

address space as the PPServer and so arguments would have to be unnecessarily

copied. For this problem we believe that the perfect solution would be the inclusion

of MATLAB's interpreter (in some way) within the PPServer's address space.

In the context of optimisation, further enhancements using MATLAB's symbolic

toolbox are also planned. Using this feature, algebraic expressions may be manip-

ulated symbolically. Jacobians and Hessians (first and second derivatives that are

used in zero-finding and optimisation routines) can thus be computed automatically,

freeing programmers from the tedium of hand computations.

7.1.2 Partial Differential Equations

MATLAB already provides a flexible interface for solving Partial Differential Equa-

tions in its PDE toolbox [24] (see Figure 7-1 for a screendump of the toolbox in

action).

This software makes it easy to express complex domains, specify the equation to

be solved, and provide boundary conditions. The solution is then performed in serial

and results can be graphically displayed for further analysis. For example, Figure 7-2

81

II I I I

-05 0 0.5

Figure 7-1: The PDE Toolbox

82

0.8-

0.6 -

0.4 -

0.2-

0-

-0.2-

-0.4 -

-0.6-

-0.8-

-1.5 -1 1.5

shows a representation of the solution to Poisson's equation (uXX + uY, = -10, u = 0

on boundary) that was generated with the toolbox and Figure 7-3 shows the first

eigenmode of uxx + uY, = -Au.

Color: u
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 7-2: Solution of Poisson's Equation

We would like to extend the functionality of the PDE toolbox by making it possible

to work with larger, more realistic problems in an intuitive way and of course, be able

to reap the benefits of parallel computing. As always we attack the problem from

both the computation and interface ends.

First we plan to include more support in the Parallel Problems Server for solving

the large (often sparse) linear systems that arise in this application. We already

have routines for solving dense linear systems, and we are working on integrating

PETSc's sparse solvers (mainly Krylov Subspace Methods and preconditioners) into

MITMatlab.

With these solvers in place it will be possible to specify the geometry and param-

eters with the toolbox, export the equations to the PPServer and find the solution

in parallel. This method of introducing parallelism may not be the most efficient as

the matrix is first formed in MATLAB and then shipped over to the server. The

next step would be to only export the geometry and have the matrix assembly and

83

0.3,

0.25,

0.2,

0.15,

0.1,

0.05,

01

10

8 6 15 20

10

2 5

0 0

Figure 7-3: First eigenmode of u, + uY, = -Au

solution take place in parallel.

In our proposed system the user draws a figure made up of many regions. These

regions are then distributed in parallel by the server, and the solution of the PDE

obtained by domain decomposition [42]. The KeLP [15] library from UCSD contains

routines for the management of many parallel domains and we are in the process of

incorporating its functionality into the PPServer.

A further extension is to add grids (discretised areas of n-dimensional space)

as first class data objects into MITMatlab itself. Even the serial MATLAB PDE

Toolbox uses ordinary sparse matrix structures for specifying grids with no further

abstractions. Our proposal is to introduce new classes and methods for grids so

that, for example, common multigrid [10] operations such as refinement, coarsening,

and operator restriction are easily expressed. The grids will be server objects and

therefore distributed in parallel. We intend to create a simple stencil language for

specifying operators (on these grids) and using the features of PETSc and KeLP we

intend to allow ghost images from neighbouring grids to be communicated correctly.

In multigrid, many coarsening and restricting operators may be implemented easily

84

**4

using the descriptions provided in the stencil language. The stencil language can be

designed for both regular and irregular grids.

7.1.3 Queueing

The resources of supercomputers are traditionally managed by queueing systems that

ensure controlled (or even exclusive) access to the machine. In this model batch

jobs (user programs) are submitted and are run when the required resources become

available.

This style of use presents many challenges for our system. At MIT our users have

two options:

" Submit a (Unix) shell job and run MATLAB interactively when the shell starts

running.

" Submit a MATLAB script and have it execute (in parallel) without user inter-

vention.

The first approach suffers from unpredictability as users do not know exactly when

their shell will be run. In the second approach all of the interactivity is lost.

At present, we do not have a solution that completely satisfies both batch and in-

teractive users. Several proposals, with varying degrees of implementation complexity,

have been suggested. These range from the preemption of long running background

jobs by interactive sessions to the close interaction of the PPServer with the queueing

system on a per-MATLAB operation basis.

7.2 Applicability for Scientific Research

There are many different criteria for determining the suitability of a programming

language (or environment) to a particular task. In our case we believe that expres-

siveness, portability, extensibility and interactivity are paramount and we designed

MITMatlab with these considerations in mind.

85

In [36], Pancake and Bergman discuss the properties of parallel languages that

make them useful to scientific researchers. These properties were proposed in the

context of compiled languages but it is instructive to see how MITMatlab measures

up to their standards. The four "desirable characteristics" proposed are:

Convenience Because of its popularity, a FORTRAN-like syntax would be beneficial.

Few additional language constructs should be introduced, but the language should

support fine-grained parallelism.

It could be argued that today, MATLAB has joined FORTRAN as one of the

dominant languages in scientific programming. Because we haven't changed any

MATLAB internals, MITMatlab only introduces the concept of the distributed

array (p), thus keeping learning time to a minimum. However, support for fine-

grained parallelism is absent. The easiest way to provide this support would be

to add a "parallel for loop" in MATLAB. This would necessitate a change in

MATLAB's design and unfortunately there is some evidence [33] that this will

not occur.

Reliability Existing language constructs should work as before (with only a few

changes). The well-known FORTRAN model of storing and operating on data

should be supported. Critical sections and barriers should be included. Program-

mers should know where the parallelism lies in their applications.

In our system, we have tried to exactly emulate MATLAB's functionality and

so existing constructs (and code) work as before. The PPServer supports the

FORTRAN model of data layout (column major). Because parallel execution

only takes place on distributed arrays, programmers know exactly what sections

of their code execute in parallel. As with support for parallel loops, critical

sections and barriers would require changes to MATLAB itself.

Expressiveness It must be easy for the language to express frequently used tech-

niques in scientific programming. Programmers should be able to specify data

distributions and operators need to be provided for working directly with these

distributed arrays.

86

The rich library of functions that MATLAB supports (with extension to MIT-

Matlab via the package system) makes it possible for a wide variety of techniques

to be easily implemented. In MITMatlab we have user-specified distributions

and operators for processing parallel arrays (by using operator overloading).

Compatibility The language should be portable across different architectures and be

"reasonably efficient". It is also paramount that the language have access to

visualisation routines and exploit available parallel libraries.

By using MPI, MITMatlab gains portability and efficiency as well as a host of

functionality through available software libraries. As demonstrated in Chapter

6, we can also use MATLAB's visualisation routines.

While the features listed above are certainly important, users will ultimately de-

cide on the suitability of our work. As an interactive supercomputing tool, we believe

MITMatlab offers the community many important features not found (in total) ei-

ther in traditional supercomputing tools or desktop environments. To conclude we

list these features and point out how they are provided in our tool:

" Interactive "Scientific" syntax. Our evidence: MATLAB

" Ability to interface to parallel libraries. Our evidence: The PPServer and its

package system

" A return on users' investment in code. Our evidence: Over 70% of Higham's

Toolbox runs without modification. In addition code such as pcg and ginres also

work with our system. The fruits of the "Parallelism through Polymorphism"

tree.

" Large scale support. Our evidence: The PPServer's ability to distribute matri-

ces across multiple processors.

87

Appendix A

Parallel Computing Models

The promise of parallel computing is to deliver improved application performance

through the use of multiple cooperating processors. This appendix summarises con-

temporary ways of characterising and programming parallel machines.

A.1 Main Models

The two major models of parallel computing differ in the way the processors access

main memory. In the shared-memory model, each processor can read and write to

any memory location. In the distributed-memory model, processors can only access

their own local (private) memory. In this model processors determine the contents of

other processors' memory only through the exchange of messages. Figure A-1 gives

a graphical description of the two models.

A.2 Programming Shared Memory Machines

The main challenge in programming shared memory machines is ensuring controlled

access to memory. For example, many programs maintain a queue of pending work

and a common way of parallelising programs is to have processors add work to and

remove work from this queue. The add (or remove) operation is seldom atomic as

many separate memory operations are needed and interleaving these operations would

88

Distributed Memory

Figure A-1: Parallel computing models

result in an inconsistent queue.

Programming support for overcoming these difficulties is provided in the form of

synchronisation primitives. The simplest of these is a lock. If the shared queue of

the example above has an associated lock, a processor wishing to modify its contents

can (atomically) acquire the lock, make changes, and then release the lock. If other

processors adhere to the protocol of only modifying the queue when holding the lock,

the queue will never be in an inconsistent state.

It is sometimes desirable for the processors to wait until all processors have com-

pleted a specific task. This is accomplished by calling a barrier function. The seman-

tics of this function dictate that no processor returns until all processors have called

the function.

Critical Sections can be viewed as locks for code. They ensure that only one

processor is able to execute a particular piece of code (such as modifying the queue's

contents). In the Unix world, libraries such as PThreads [35] give users access to

functions for these and other synchronisation primitives.

Popular machines of this model are the so-called "Symmetric Multiprocessors"

89

Shared Memory

(SMPs) such as the Sun Ultra Enterprise series and Digital Alphaserver series.

A.3 Programming Distributed Memory Machines

As each processor's memory cannot be accessed by other processors in distributed

memory machines, synchronisation is not needed to manipulate memory. However,

no processor has a global view of main memory. In order for the processors to coop-

erate messages need to be exchanged. For example, if the queue is contained in the

local memory of one processor, other processors must send messages to it in order to

add or delete elements. The data used by the algorithm is therefore distributed among

the processors. The most common programming libraries used with this model are

MPI [19] and PVM [17]. They contain routines for sending and receiving different

datatypes between pairs of processors as well as collective operations such as reduc-

tions (finding the sum, product, or logical and of data in each processor's memory).

There have also been efforts (TreadMarks [26], for example) at building Distributed

Shared Memory systems. These systems are distributed memory systems at the

hardware level but have an extra layer of software that enable them to behave (from

a programming point of view) like shared memory machines.

Machines such as Thinking Machines' CM-5, Cray's T3D are distributed memory

machines. Clusters of workstations linked together with message passing software

also fall into this category.

A.4 Automatic tools

In order to spare programmers the burden of writing their applications in an explicitly

parallel way (using MPI or PThreads), parallel extensions have been made to contem-

porary programming languages. In these languages the compiler is then responsible

for generating parallel code.

A widely used example of this style of programming is HPF (High Performance

Fortran) [27]. The commonly used FORTRAN language is extended to include mech-

90

anisms for specifying the distribution of data (by the programmer) and parallel loops.

In addition it supports data parallel programming where operations on the distributed

data can be carried out with one statement (or function call). For example C=A+B per-

forms the addition (in parallel) of matrices A and B. Many extensions to the C/C++

family such as pC++ [9] have also been developed. New languages such as ZPL [29]

and NESL [8] where parallelism is an integral part of the programming model have

also been proposed.

Compilers for sequential languages have also been enhanced. Any loop where

iterations do not depend on each other can be easily parallelised by allocating different

iterations to different processors. Even loops with some dependencies (such as those

that compute some reduction operators) can be automatically parallelised by the

compiler. Programmers can also give hints by using compiler directives, identifying

pieces of code that can be parallelised.

Parallel subroutine libraries are also very common. Usually tuned to a particular

model (shared or distributed memory) these libraries provide parallel implementations

of commonly used routines. Programmers can then view their program as basically

sequential with library calls that work on their data in parallel.

91

Bibliography

[1] Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow,

James Overfelt, Robert van de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel

linear algebra package. In Proceedings of the SIAM Parallel Processing Confer-

ence, 1997.

[2] P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. Tech-

nical Report 245, ETH Zurich, 1996.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient Management of

Parallelism in Object-Oriented Numerical Software Libraries. Birkhauser Press,

1997.

[4] Ron Ben-Natan. CORBA:A guide to Common Object Request Broker Architec-

ture. McGraw-Hill, 1995.

[5] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network

objects. Technical Report 115, DEC Systems Research Center, 1995.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhilon, J. Don-

garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C.

Whaley. ScaLAPACK Users' Guide. Society for Industrial and Applied Mathe-

matics, 1997.

[7] L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

A. Petitet, H. Ren, K. Stanley, and R.C. Whaley. Practical experience in the

92

dangers of heterogeneous computing. Technical Report CS-98-330, Computer

Science Department, University of Tennessee, Knoxville, July 1996.

[8] Guy E. Blelloch. NESL: A nested data-parallel language (3.1). Technical Report

CMU-CS-95-170, School of Computer Science, Carnegie Mellon University, 1995.

[9] Frangois Bodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and

Shelby X. Yang. Distributed pC++: Basic ideas for an object parallel language.

Scientific Programming, 2(3), 1993.

[10] William Briggs. A Multigrid Tutorial. Society for Industrial and Applied Math-

ematics, 1987.

[11] C. Buckley. Implementation of the SMART information retrieval system. Tech-

nical Report 85-686, Cornell University, 1985.

[12] Henri Casanova and Jack Dongarra. NetSolve: A network server for solving

computational science problems. In Proceedings of SuperComputing 1996, 1996.

[13] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-

man. Indexing by latent semantic analysis. Journal of the Society for Information

Science, 41(6):391-407, 1990.

[14] Peter Drakenberg, Peter Jacobson, and Bo Kaigstr6m. A CONLAB compiler

for a distributed memory multicomputer. In Proceedings of the Sixth SIAM

Conference on Parallel Processing from Scientific Computing, volume 2, pages

814-821. Society for Industrial and Applied Mathematics, 1993.

[15] S. J. Fink, S. R. Kohn, and S. B. Baden. Efficient run-time support for irregular

block-structured applications. To appear in Journal of Parallel and Distributed

Computing, 1998.

[16] William B. Frakes and Ricardo Baeza-Yates, editors. Information Retrieval:

Data Structures and Algorithms. Prentice-Hall, 1992.

93

[17] Al Geistand, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,

and Vaidyalingam S. Sunderam. PVM: Parallel Virtual Machine: A Users' Guide

and Tutorial for Networked Parallel Computing. The MIT Press, 1994.

[18] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns

Hopkins University Press, 1993.

[19] William Gropp, Ewing Lusk, and Anthong Skjellum. Using MPI: Portable Par-

allel Programming with the Message-Passing Interface. The MIT Press, 1994.

[20] Nicholas J. Higham. The Test Matrix Toolbox for MATLAB (version 3.0). Nu-

merical Analysis Report No. 276, Manchester Centre for Computational Mathe-

matics, September 1995.

[21] J. Hollingsworth, K. Liu, and P. Pauca. Parallel Toolbox for MATLAB PT v.

1.00: Manual and Reference Pages. Wake Forest University, 1996.

[22] P. Husbands and J. C. Hoe. MPI-StarT: Delivering network performance to

numerical applications. In Proceedings of SC98, 1998.

[23] Parry Husbands and Charles Isbell. The Parallel Problems Server: A client-

server model for interactive large scale scientific computation. In Proceedings of

VECPAR98, June 1998.

[24] The MathWorks Inc. Partial differential equation toolbox users' guide, 1995.

[25] The MathWorks Inc. Application program interface guide, 1996.

[26] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks: Dis-

tributed shared memory on standard workstations and operating systems. In

Proceedings of the Winter 94 Usenix Conference, 1994.

[27] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Jr. Guy L. Steele,

and Mary E. Zosel. The High Performance FORTRAN Handbook. MIT Press,

1994.

94

[28] David Levine. Users' guide to the PGAPack parallel genetic algorithm library.

Argonne National Laboratory, Mathematics and Computer Science Division,

1996.

[29] Calvin Lin and Lawrence Snyder. ZPL: An array sublanguage. In Proceedings of

the 6th International Workshop of Languages and Compilers for Parallel Com-

puting, 1993.

[30] Dekang Lin. PRINCIPAR - an efficient, broad-coverage, principle-based parser.

In Proceedings of COLING-94, 1994.

[31] K. J. Maschhoff and D. C. Sorensen. A portable implementation of ARPACK

for distributed memory parallel computers. In Preliminary Proceedings of the

Copper Mountain Conference on Iterative Methods, 1996.

[32] D. Menemenlis and M. Chechelnitsky. Error estimates for an ocean general

circulation model from altimeter and acoustic tomography data. To appear in

Monthly Weather Review, 1999.

[33] Cleve Moler. Cleve's Corner - Why there isn't a parallel MATLAB. MATLAB

News and Notes, September 1995.

[34] Greg Morrow and Robert van de Geijn. A parallel linear algebra server for

matlab-like environments. In Proceedings of SC98, 1998.

[35] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Pro-

gramming. O'Reilly and Associates, 1996.

[36] Cherri M. Pancake and Donna Bergmark. Do parallel languages respond to the

needs of scientific programmers? IEEE Computer, 23(12):13-23, December 1990.

[37] Michael J. Quinn, Alexey Malishevsky, and Nagajagadeswar Seelam. Otter:

Bridging the gap between MATLAB and ScaLAPACK. In Proceedings of the 7th

IEEE International Symposium on High Performance Distributed Computing,

August 1998.

95

[38] Michael J. Quinn, Alexey Malishevsky, Nagajagadeswar Seelam, and Yan Zhao.

Preliminary results from a parallel matlab compiler. In Proceedings of the 12th

International Parallel Processing Symposium, March 1998.

[39] L. De Rose, K. Gallivan, E. Gallopoulos, B. Marsolf, and D. Padua. FALCON:

An environment for the development of scientific libraries and applications. In

Proceedings of KBUP'95 - First International Workshop on Knowledge-Based

Systems for the (re) Use of Program Libraries, November 1995.

[40] Luiz De Rose and David Padua. A MATLAB to FORTRAN 90 translator and

its effectiveness. In Proceedings of the 10th ACM International Conference on

Supercomputing - ICS'96, May 1996.

[41] Gerald Salton, editor. The SMART Retrieval System: Experiments in Automatic

Document Processing. Prentice-Hall, 1971.

[42] Barry Smith, Petter Bjorstad, and William Gropp. Domain Decompisition: Par-

allel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge

University Press, 1996.

[43] Anne E. Trefethen, Vijay S. Menon, Chi-Chao Chang, Gregorz J. Czajkowski,

Chris Myers, and Lloyd N. Trefethen. MultiMATLAB: MATLAB on Multiple

Processors. Technical Report CTC96TR293, Cornell Theory Center, 1996.

[44] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 586-591, 1991.

96

