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Abstract. Let M2n be a symplectic toric manifold with a fixed Tn-action

and with a toric Kähler metric g. Abreu [2] asked whether the spectrum of

the Laplace operator ∆g on C∞(M) determines the moment polytope of M ,
and hence by Delzant’s theorem determines M up to symplectomorphism. We

report on some progress made on an equivariant version of this conjecture. If
the moment polygon of M4 is generic and does not have too many pairs of

parallel sides, the so-called equivariant spectrum of M and the spectrum of its

associated real manifold MR determine its polygon, up to translation and a
small number of choices. For M of arbitrary even dimension and with integer

cohomology class, the equivariant spectrum of the Laplacian acting on sections

of a naturally associated line bundle determines the moment polytope of M .

1. Introduction

Given a Riemannian manifold (M, g), one can consider the Laplace operator 4g
acting on the space of smooth functions on M . The spectrum of ∆g is the set of
all eigenvalues of ∆g on C∞(M). It is natural to ask

Question 1.1. How much about the geometry of the Riemannian manifold (M, g)
does the spectrum of the Laplacian 4g determine?

A priori, the answer to this question could be “The spectrum of the Laplacian
determines (M, g).” However, there are now many examples of Riemannian mani-
folds with the same spectrum which are not isometric (e.g., [9], [13], [14]). On the
other hand, there are also positive results. For example, Tanno showed [15] that if
(Mn, g) is a compact orientable Riemannian manifold, then for n ≤ 6 the spectrum
of ∆g determines whether (Mn, g) is isometric to (Sn, round).

Translating Question 1.1 into the setting of symplectic toric geometry, Abreu [2]
asked

Question 1.2. Let M be a toric manifold equipped with a toric Kähler metric g.
Does the spectrum of the Laplacian ∆g determine the moment polytope of M?

In the spirit of Kac [11], this question can be rephrased as

Question 1.3. Can one hear the moment polytope of a toric manifold?

A toric manifold M2n is a symplectic manifold with a “compatible” Tn-action
(see §2 for precise definitions). Such an action determines a moment map from M
to Rn whose image is a convex polytope, called the moment polytope or Delzant
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polytope of M . It is a well-known theorem in symplectic geometry that the moment
polytope of M determines the symplectomorphism type of M .

Theorem 1.4. [6] The moment polytope of a toric symplectic manifold M deter-
mines M up to symplectomorphim.

Thus, if the answer to Abreu’s question is yes, the spectrum of the Laplacian of a
symplectic toric manifold determines its symplectomorphism type.

We examine a modified version of Abreu’s question, replacing the spectrum of
the Laplacian by what we call the equivariant spectrum of the Laplacian. This is
simply the spectrum of the Laplacian together with, for each eigenvalue, the weights
of the representation of Tn on the eigenspace corresponding to the given eigenvalue.
Question 1.2 then becomes

Question 1.5. Let M be a toric manifold equipped with a toric Kähler metric g.
Does the equivariant spectrum of ∆g on C∞(M) determine the moment polytope of
M?

We will use heat invariant techniques to study this question. Given a Riemannian
manifold (M, g), let Spec(M) be the set of eigenvalues of ∆g. When M is compact,
a fundamental solution of the heat equation, or heat kernel, is uniquely determined.
The trace of the heat kernel K(t, x, y) is given by Z(t) =

∫
M
K(t, x, x)dx, satisfies

Z(t) =
∑

λ∈Spec(M)

e−λt,

and has an asymptotic expansion as t goes to zero; this expansion yields heat
invariants, which have proven to be an important tool in studying inverse spectral
problems related to Question 1.1. For example, they show that geometric quantities
such as the volume, the dimension, and certain quantities involving the curvature
of M are determined by Spec(M).

In the present setting, the torus action gives a family of isometries ofM ; Donnelly
[7] gives an asymptotic expansion of the heat trace in the presence of an isometry,
and we will use this expansion to glean geometric data from the equivariant spec-
trum (see §3). The leading-order term appearing in Donnelly’s formula depends on
the dimension of the fixed point set of the isometry considered. We will see that
this is largest when the isometry corresponds to an element in the torus which is
perpendicular to a facet of the moment polytope of M , where we are identifying
the torus with the dual of its Lie algebra. Thus the equivariant spectrum tells us
when an element in the torus is perpendicular to a facet; moreover, we can recover
the volumes of facets from the coefficient of the leading-order term in Donnelly’s
expansion.

Combining these ideas with combinatorial and geometric arguments and the
usual heat invariants for the real manifold MR naturally associated to a toric man-
ifold M , we will prove that we can hear many Delzant polygons.

Theorem 1.6. Let M4 be a toric symplectic manifold with a fixed torus action and
a toric metric. Given the equivariant spectrum of M and the spectrum of MR, we
can reconstruct the moment polygon P of M up to two choices and up to translation
for generic polygons with no more than 2 pairs of parallel sides.

Remark 1.7. Even though we require knowledge of the equivariant and real spectra
and a fixed T2-action, we can recover the actual Delzant polygon, up to translation
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and two choices. In the original version of the question, the polygon is necessarily
recovered only up to an SL(2,Z)-transformation.

Finally, we show that if we consider the Laplacian acting on sections of a line bun-
dle naturally associated to our symplectic toric manifold, we can hear the Delzant
polytope.

The paper is organized as follows. In §2 we give the necessary background
from symplectic geometry, including a thorough treatment of fixed point sets of the
torus action on a symplectic manifold. Donnelly’s theorem and its consequences are
presented in §3. We explore the relationship between the combinatorial constraints
of Delzant polygons and their geometry in §4, and describe in detail the polygons to
which our results apply. Then, in §5, we examine how “frequent” these polygons are
among the set of all Delzant polygons. By replacing the equivariant spectrum of the
Laplacian acting on functions by the equivariant spectrum of a natural line bundle
associated to our toric manifold, we obtain results in arbitrary even dimension in
§6. We end with some concluding remarks.

Acknowledgments: We are very grateful to Ana Rita Pires for her enthusiasm
and insightful formulation of the statement of Lemma 4.1. The first and third
authors appreciate the hospitality shown to them by the Mathematics Department
at MIT during their visits there. We would also like to thank the referee for a
careful reading of and helpful comments on an earlier version of this paper.

2. Some toric geometry

2.1. Background. We begin by recalling some definitions and well-known facts
related to toric manifolds. For more details and background on symplectic and
toric geometry, a good general reference is [4].

Definition 2.1. A symplectic toric manifold M2n is a compact connected symplec-
tic manifold (M,ω) with an effective Hamiltonian Tn-action.

Such an action has a corresponding moment map φ : M → Rn, defined up to
translations in Rn, where we have identified Rn with its dual. This moment map
depends on the symplectic form ω but its image (up to translation) does not. It is
a convex polytope in Rn of Delzant type.

Definition 2.2. A convex polytope P in Rn is Delzant if

(1) there are n edges meeting at each vertex;
(2) for every facet of P , a primitive outward normal can be chosen in Zn;
(3) for every vertex of P , the outward normals corresponding to the facets meet-

ing at that vertex form a basis for Zn.

Example 2.3. (cf. [4, p. 173]) Consider the manifold CP2 equipped with the
Fubini-Study form ωFS. A T2-action on CP2 is given by

(eiθ1 , eiθ2) · [z0, z1, z2] = [z0, e
−iθ1z1, e

−iθ2z2]

with moment map

φ[z0, z1, z2] =
1

2

(
|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2

)
.
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The moment polygon P = φ(CP2) is shown in Figure 1. One easily checks that it
is Delzant. Note that if we were to define a different T2-action on CP2 by

(eiθ1 , eiθ2) · [z0, z1, z2] = [z0, e
iθ1z1, e

iθ2z2]

then the moment polygon for this action would be −P , i.e., the rotation of P about
the origin by π.

@
@

@
@@

(0,0)

(0, 1
2 )

( 1
2 ,0)

Figure 1. The moment polygon P = φ(CP2)

Given a moment polytope P in Rn, Delzant [6] has given a canonical way to
associate to it a symplectic manifold (MP , ωP ) together with an effective Hamil-
tonian torus action τP with moment map φP such that φP (MP ) = P ; in fact, this
is a bijective correspondence. Moreover, Delzant proved that the moment polytope
of a toric manifold determines its symplectic type.

Theorem 2.4. [6] Every toric manifold whose Delzant polytope is SL(n,Z)-equivalent
to P is equivariantly symplectomorphic to MP .

Note that we say that two Delzant polytopes P and P ′ are SL(n,Z)-equivalent if
there exists A ∈ SL(n,Z) such that P ′ = AP as sets.

In addition to the symplectic structure associated to a Delzant polytope P ,
there is also a complex structure JP associated to P via a natural construction
(see [6], [10]). This complex structure is invariant under the torus action. Thus P
determines both a symplectic and a complex structure of the associated Kähler toric
manifold, and together these structures determine a torus-invariant Riemannian
metric gP . The triple (ωP , JP , gP ) is a Kähler structure on the manifold MP called
the reduced Kähler structure. Taking the symplectic point of view, one gets other
torus-invariant Riemannian metrics by starting with a fixed symplectic manifold
(MP , ωP ) and considering all complex structures on MP that are compatible with
ωP and invariant under the torus action. For such a complex structure J , a metric
is given by g(X,Y ) = ωP (X, JY ). Viewing toric manifolds from the perspective of
complex geometry, one starts with a fixed complex manifold (MP , JP ) and considers
all torus-invariant symplectic forms on MP that are compatible with JP . For such a
symplectic form ω, a torus-invariant metric is given by g(X,Y ) = ω(X, JPY ). It is
possible to translate between the symplectic and complex perspectives, and it turns
out that both perspectives give rise to the same set of torus-invariant Riemannian
metrics. We refer to these metrics as Kähler toric metrics or toric metrics for short.
Given a Delzant polytope P , the reduced Kähler structure (MP , ωP , JP ) gives a way
to build a toric metric from ωP and JP . This metric is called the reduced metric
and it has been completely determined in [10]. In [1] and [2], Abreu has shown how
to characterize all other toric metrics on MP using the reduced metric.
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We are interested in the spectrum of the Laplacian on a symplectic toric manifold
with any such toric metric g; the torus action associates some natural additional
data to the spectrum. To be more precise, we denote by ψ : Tn → Sympl(M) the
group homomorphism given by the Hamiltonian torus action. Note that a metric is
toric exactly when ψ(eiθ) is an isometry for all θ ∈ Rn. For each θ ∈ Rn and each
eigenvalue λ of the Laplacian on (M, g), ψ(eiθ) induces an action on the eigenspace
corresponding to λ. This action splits according to weights.

Definition 2.5. Let M be a toric manifold with a fixed torus action; denote by
ψ : Tn → Sympl(M) the corresponding group homomorphism, and let g be a toric
metric on M . The equivariant spectrum is the list of all the eigenvalues of the
Laplacian on (M, g) together with the weights of the action induced by ψ(eiθ) on
the corresponding eigenspaces, for all θ ∈ Rn. The eigenvalues and weights are
listed with multiplicities.

2.2. Fixed point sets. The goal of this subsection is to study the fixed point sets
of the isometries ψ(eiθ); these results will be used in the calculation of the heat
invariants. The results that follow are well known but we give proofs for the sake
of completeness. We start by recalling Delzant’s construction (see [10] for more
details).

Let P be a Delzant polytope with d facets. Consider the following exact se-
quences

0→ N → Td β′−→ Tn → 0 , (1)

0→ n
ι−→ Rd β−→ Rn → 0 . (2)

Here β : Rd → Rn is given by β(ei) = ui, where {ei} is the canonical basis for Rd
and ui denotes the primitive outward normal to the ith facet of the polytope; n is
the Lie algebra of N . The group N acts symplectically on Cd with moment map

h(z) =
∑
|zi|2ι∗ei,

where ι∗ is dual to ι. The toric manifold associated to P is

M = h−1(c)/N

where c ∈ n∗. We denote the projection map from h−1(c) to M by π. The torus
Td acts on Cd and therefore Td/N acts on M by

eiθ · [z1, . . . , zd] = [eiθ1z1, . . . , e
iθdzd],

where θ = (θ1, . . . , θd) ∈ Rd. The map β′ gives an identification Td/N → Tn; using
this identification we see that Tn acts on M and, for example,

eitul · [z1, . . . , zd] = [z1, . . . , e
itzl, . . . , zd].

The usual involution of Cd, namely σ(z1, . . . , zd) = (z̄1, . . . , z̄d), descends to an
involution of M . The fixed point set of σ is what we refer to as the real manifold
associated to M .

Definition 2.6. The real manifold associated to M , denoted by MR, is the fixed
point set of the involution induced on M by the usual involution on Cd.

Assume we endow Cd with its usual symplectic structure i
2

∑
dzi ∧ dz̄i. The

quotient construction preceding Definition 2.6 gives a symplectic form ωP .
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We may also construct M as a space with a TnC-action where TnC is the complex
torus; see [10] for details. The advantage of this viewpoint is that it shows that M
is also a complex manifold. The complex structure JP thus obtained is compatible
with the symplectic form on M and together these determine the reduced metric
gP (X,Y ) = ωP (X, JPY ) on M . The moment map with respect to ωP for the
TnC-action on M , φP : M → (Rn)∗, is given as follows. Consider

Cd h−→ (Rd)∗ p−→ (Rd)∗/n β∗←−− (Rn)∗.

The moment map for the TnC-action is given by

p ◦ h = β∗ ◦ φP ◦ π.

Therefore

〈φP [z1, . . . , zd], ul〉 = 〈φP [z1, . . . , zd], βel〉 = 〈β∗φP [z1, . . . , zd], el〉 = |zl|2 + λl,

where the λl correspond to a choice of a constant in the moment map.
Now suppose M has a different toric metric on it compatible with the given com-

plex structure. This metric can be seen to be associated with a different symplectic
form, and Delzant’s theorem gives a way to relate the two symplectic structures.
We will examine this in more detail in the proof of Lemma 2.9, which describes the
fixed point sets of ψ(eiθ) for various θ ∈ Rn. Before stating the lemma, we make
some conventions.

Definition 2.7. Given a face F of codimension r + 1 sitting inside a face F ′ of
codimension r in a convex polytope P , we say that a vector is normal to F in F ′ if
it is in the linear subspace determined by F ′ and is orthogonal to the linear subspace
determined by F .

Remark 2.8. A vertex in a polytope has maximal codimension in that polytope,
and every vector is normal to it. An n-dimensional polytope in Rn is itself a face
of codimension 0 whose only normal is zero. The normal to a facet is the normal
to that facet in the whole polytope.

We are now in a position to state our lemma.

Lemma 2.9. Let θ ∈ Rn. The fixed point set of ψ(eiθ), denoted Fθ, is the union
of the pre-images via the moment map of all faces to which θ is normal in a face
of lower codimension.

Proof. More specifically, we prove the following statements.

• If θ is generic then Fθ is the pre-image via the moment map of the vertices
of P .
• If θ is a (nonzero) multiple of a normal to a facet of P , then Fθ contains

the union of the pre-image via the moment map of the corresponding facet
with the pre-image of the vertices of P .
• Let F be a face of codimension (r+1) sitting inside a face F ′ of codimension
r. Let θ be a (nonzero) multiple of the normal to F in F ′. Then Fθ contains
the union of the pre-image of F via the moment map with the pre-image
of the vertices of P .
• Given any θ, Fθ is the union of the pre-images via the moment map of all

faces to which it is normal with respect to a face of lower codimension.
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This result depends on the metric on M via the moment map. We first treat
the case when the metric is reduced and no vector is normal to more than one
face (ignoring vertices). We begin by noting that from the characterization of the
moment map φP given by

〈φP [z1, . . . , zd], ul〉 = |zl|2 + λl,

we see that the pre-image of a facet {x ∈ Rn : x · ul−λl = 0} in P via the moment
map is

{[z1, . . . , zd] ∈M : zl = 0}.

In the same way we can describe the pre-image of any face of positive codimension.
For example, the pre-image via the moment map of the vertex where the first n
edges meet is [0, . . . , 0, zn+1, . . . , zd]. It is fixed by ul for l ∈ {1, . . . , n}.

Given u ∈ Rn, the Delzant condition implies that u can be written as a linear
combination u = α1u1 + · · · + αnun, where u1, . . . , un are the primitive outward
normals to the facets meeting at a given vertex and the αi are real numbers. Thus

eiu · [z1, . . . zd] = [eiα1z1, . . . , e
iαnzn, zn+1, . . . , zd]

and so the u-action always fixes points of the form [0, . . . , 0, zn+1, . . . , zd], i.e., the
pre-image of the vertex. The same reasoning applies to any vertex. We also see
from this that for generic u (that is, for generic αi) there are no other fixed points
under the u-action. This proves the first assertion in the lemma.

We also have

eitu1 · [z1, . . . , zd] = [eitz1, z2, . . . , zd].

Since e1 is not in N , [eitz1, z2, . . . , zd] = [z1, . . . , zd] in M for all t exactly when
z1 = 0. So the fixed point set of eitu1 is the pre-image of the first facet. In general,
the fixed point set of eitul is the pre-image of the lth facet. This proves the second
assertion.

We will now use the second assertion to prove the third one. Consider a face F ′

which is at the intersection of facets labeled i1, . . . , ir, and let G ⊂ Tn be the sub-
torus such that G∗ = {ui1 , . . . , uir}⊥ is the dual of its Lie algebra. This sub-torus
acts on the pre-image via the moment map of F ′, denoted MF ′ , making MF ′ into
a toric manifold with moment map φF ′ : MF ′ → G∗. There is an injective map

ιF ′ : G∗ → (Rn)∗

and we define φ̃F ′ := ιF ′ ◦φF ′ . It is clear that φP |MF ′ = φ̃F ′ . The second assertion
implies that if n is normal to one of the facets of the image of φF ′ , then the fixed
point set of the S1-action generated by n in G is the union of the pre-image via φF ′

of the facet with the pre-image of the vertices of φF ′(MF ′). Note that the vertices
of φF ′(MF ′) are contained in the vertices of P . Thus the fixed point set of the
image of n via ιF ′ in Rn (which we are identifying with its dual) is φ−1

F ′ of a facet

in φF ′(MF ′), i.e., φ−1
P of a facet in φ′F (MF ′), together with the pre-image of the

vertices of P . The image of n mentioned above is of course the normal to F in F ′.
Now suppose that a vector θ is normal to more than one face. The above argu-

ments can be applied to each of these faces to obtain the last assertion. Finally,
suppose M has an arbitrary toric metric on it compatible with the given com-
plex structure, and thus associated with a different symplectic form ω. The two
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symplectic structures are related via the commutative diagram

M
η−−−−→ MP

φ

y yφP
P

id−−−−→ P

with η∗ωP = ω. The function η is Tn-equivariant, i.e., η(t.x) = tη(x) for all t ∈ Tn.
Thus

η(FM,θ) = FMP ,θ.

We determined the set FMP ,θ and how it relates to the moment map φP in the
preceding arguments, so the commutative diagram gives the desired result. �

To complete our discussion of the fixed point sets of the isometries ψ(eiθ), we give
the relationship between the volume of a face in P and the volume of its pre-image
under the moment map.

Lemma 2.10. Consider a face F of dimension q in the Delzant polytope P of
a symplectic toric manifold M endowed with a symplectic form ω. Let φ be the
moment map of the torus action with respect to the form ω. Then

volω(φ−1(F )) = (2π)qvol(F ).

Proof. The key point is that there are symplectic coordinates on an open dense set
of M . Namely, this dense set can be viewed as P̊ × Tn, where P̊ is the interior of
P . Then φ determines coordinates x on P̊ , and there are coordinates v on Tn. The
volume of M is given by∫

P̊×Tn
(dx ∧ dv)n =

∫
P

(dx)n
∫
Tn

(dv)n = (2π)nvol(P ).

In the same way there are symplectic coordinates on an open dense subset of the
pre-image of a q-dimensional face and one can argue as above. One can also use
the fact that the pre-image of a face is itself toric with moment map the restriction
of φ. �

3. Heat invariants in a nutshell

Donnelly [7] gave an asymptotic expansion of the heat trace in the presence
of an isometry; we will use this expansion to obtain geometric information from
the equivariant spectrum of a toric manifold. For general background on heat
invariants, good references are [3] and [5]. We begin by recalling the setting in
which we work.

Let (M2n, ω) be a symplectic toric manifold equipped with a fixed effective Tn-
action and corresponding group homomorphism ψ : Tn → Sympl(M), and with
a toric metric g. Fix θ ∈ Rn. Then ψ(eiθ) is an isometry of M , and for each
eigenvalue λ of the Laplacian on (M, g), ψ(eiθ) induces a representation on the

eigenspace corresponding to λ which we denote by ψ]λ(θ). Let Fθ denote the fixed

point set of ψ(eiθ). For a fixed component Q in Fθ and a fixed point a in this
component, ψ(eiθ) induces an action A : (TaQ)⊥ → (TaQ)⊥; note that (Id−A) is
invertible, and let B denote (Id−A)−1.

Using this notation, we can now state Donnelly’s theorem as it applies to our
setting.
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Theorem 3.1. [7] There is an asymptotic expansion as t ↓ 0 given by∑
λ

tr(ψ]λ(θ))e−tλ '
∑
Q⊂Fθ

(4πt)−q/2
∞∑
k=0

tk
∫
Q
bk(θ, a)dvolQ(a) (3)

where q is the dimension of the component Q of Fθ, bi(θ, a) = |detB|b′i(θ, a) and
b′i(θ, a) is an invariant polynomial in the components of B and the curvature tensor
R of M and its covariant derivatives.

Note that the equivariant spectrum determines the left side of (3). Hence we
seek to determine what the right side of (3) tells us about the toric geometry of
our manifold. For our purposes, we will only need to compute b0; Donnelly showed
that b′0(θ, a) = 1, hence our heat invariants will depend solely on B. Computing
the matrix B and examining the coefficient corresponding to the leading term in
the asymptotic expansion will allow us to prove the following proposition, which is
key to the proof of Theorem 1.6.

Proposition 3.2. Let (M2n, g) be a toric manifold with a fixed torus action and
corresponding group homomorphism ψ : Tn → Sympl(M), where g is a toric met-
ric. For each non-generic θ ∈ Rn, the equivariant spectrum determines a volume
and an (unsigned) normal vector corresponding to the face(s) of minimal codimen-
sion associated to Fθ. If there is a unique face of minimal codimension, this volume
is precisely the volume of that face; else, the volume is the sum of the volumes of
the parallel faces.

Remark 3.3. The reader may want to keep the case n = 2 in mind, as that will
be the setting of our present application of this result. For n = 2 the proposition
says that the equivariant spectrum determines the (unsigned) normal vectors to the
edges of the Delzant polygon and the sum of the lengths of the edges corresponding
to each normal vector.

Proof. We use Theorem 3.1. In particular, we calculate |detB| in the case when
θ ∈ Rn is non-generic. Let F be a face of minimal codimension q associated to Fθ,
say with normal uF . Let Q be the pre-image under the moment map of F ; the
dimension of Q is 2(n − q). Then the action A on the fiber of the normal bundle
over a point a ∈ Q takes the form

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Aq


where each Ai is of the form

Ai =

(
cos(αi(θ)) − sin(αi(θ))
sin(αi(θ)) cos(αi(θ))

)
.

Here αi(θ) is the weight of the action in the direction of uF . Thus

|detB| = 1∏q
i=1(2− 2 cos(αi(θ)))

and for θ ∈ Rn equal to a multiple of uF , the leading term in (3) is

(4πt)−(n−q) vol(Q)∏q
i=1(2− 2 cos(αi(θ)))

. (4)
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Note that the contributions of the other components of Fθ correspond to higher
powers of t than the power of t in this term. In particular, the pre-images of
the vertices contribute to the constant term, so that the normal directions are
“hotter” than the generic directions. Also, the assumption that F is a face of
minimal codimension associated to Fθ implies that there will not be contributions
to the leading term coming from the pre-images of other faces associated to Fθ.
Substituting sθ for θ in (4) and noting that αi(sθ) = sαi(θ) for all i ∈ {1, . . . , q},
we know

vol(Q)∏q
i=1(2− 2 cos(sαi(θ)))

for all values of s ∈ R. Hence we know vol(Q).
As we have seen in Lemma 2.10, one can relate the volume of Q to the volumes of

the faces in the polytope which correspond to it under the moment map. If F is the
only face of minimal codimension q associated to Fθ, then vol(Q) = (2π)n−qvol(F )
and we know the volume of F exactly; else, we have this relationship for each face
and its corresponding pre-image under the moment map and we know the sum of
the volumes of the faces of minimal codimension which are normal to uF .

We may also take θ ∈ Rn equal to zero, so that ψ(eiθ) is the identity. In this
case we get the usual asymptotic expansion of the heat trace, and thus we obtain
the usual heat invariants. In particular the spectrum determines the volume of M ,
so by Lemma 2.10 we hear the volume of P . �

When n = 2, we get additional information about our polygon from the spectrum
of the real manifold MR naturally associated to M .

Proposition 3.4. Let the setup be as in Proposition 3.2. If n = 2, the spectrum
of MR determines the number of vertices of P .

We postpone the proof of this proposition until §5, after the necessary back-
ground has been motivated and explained.

4. Constructing polygons

We now examine to what extent the geometric data provided by the equivariant
and real spectra determine a Delzant polygon. In the two-dimensional case the
data provided by these spectra as in Propositions 3.2 and 3.4 reduces to

(1) the number of edges;
(2) the set of (unsigned) normal vectors to the edges, denoted {u1, . . . , ur};
(3) the sums of the lengths of the edges with normal vector ui, denoted li, for

each i ∈ {1, . . . , r};
(4) the volume of the polygon.

We will refer to this collection of data as D.
Note that each (unsigned) normal determines a family of parallel lines, with a

corresponding edge lying along one of the lines in the family. Specifying the position
of a vertex of an edge then determines the line. If we also know the length of the
edge, we know the edge vector up to sign. The following lemma gives a procedure
for constructing a convex polygon from a specified set of edge vectors.

Lemma 4.1. Given a set of d vectors in R2 that are known to be the edges of a
convex polygon, an arbitrary element of the set (label it e1), and a signed normal
to e1 (labeled u1), there is a unique convex polygon Pe1,u1

satisfying
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• 0 ∈ Pe1,u1
;

• e1 ∈ Pe1,u1 ;
• u1 points outward from Pe1,u1 ;
• the d edge vectors form the edges of Pe1,u1

.

These conditions say that once e1 and u1 are chosen, there is only one ordering
of the set of edge vectors that gives rise to a convex polygon.

Proof. We place the initial vertex of the polygon at 0 and the second vertex at the
terminal point of e1. We may then arrange the remaining d−1 edge vectors so that
the d vectors form a convex polygon; the edge vector based at the second vertex is
labeled e2, the edge vector based at the terminal point of e2 is labeled e3, and so
on. We want to show that this ordering of the edge vectors is unique. To do so,
we use the “most obtuse” angle idea: we determine all the edge vectors that are in
the half-plane H determined by e1 that contains −u1, and draw them as a “spray”
with initial point at the second vertex. We claim that e2 is the edge that makes
the most obtuse angle with the edge e1, and thus is uniquely determined. We prove
this by induction on the number of edges of the polygon. To be more precise, we
want to prove

〈e1, eb〉 ≤ 〈e1, e2〉 (5)

for all b ∈ I, where I is the set of indices corresponding to edges in H.
The base case for the induction is triangles. The statement holds in this case

because there is a single edge that lies in the half-plane H determined by e1 and
−u1; if both edges were in H then the triangle would not close.

Now assume the statement holds for all convex polygons with d ≥ 3 edges
and let P be a polygon with one vertex at the origin and ordered list of edges
e1, e2, . . . , ed+1. Move the edge e1 in the direction of −u1, and allow the length of
e1 to vary as necessary for the polygon to remain closed. Eventually the number of
edges in the polygon will decrease. Let P ′ denote the resulting polygon; note that
the lengths of some of the edges may be different in P ′ and P . One of the following
cases occurs.
Case 1: the edge ed+1 vanishes

Figure 2. The last edge vanishes

Let H′ be the half-plane determined by e′1 which contains −u1. Since ed+1 ∈
(H′)C , the set I ′ corresponding to e′1 ∈ P ′ is the same as the set I corresponding
to e1 ∈ P . By induction P ′ satisfies property (5). The result follows.
Case 2: the edge e2 vanishes

Since e′1 is parallel to e1, induction gives

〈e1, eb〉 < 〈e1, e3〉
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Figure 3. The second edge vanishes

for all b ∈ I ′. Moreover, 〈e1, e3〉 < 〈e1, e2〉, for otherwise the angle between e2 and
e3 in P would be greater than π, violating convexity. Therefore we must have

〈e1, e2〉 > 〈e1, e3〉 ≥ 〈e1, eb〉

for all b in I. Hence property (5) holds for P .
Case 3: both edges ed+1 and e2 vanish simultaneously

If d ≥ 4, then P ′ has at least three edges and we can invoke the induction
hypothesis; the arguments made in Cases 1 and 2 can be combined to show that
property (5) holds for P . If d = 3, then P ′ consists of e′1 collapsed onto e3. This
implies that e1 and e3 are parallel; combining this with the fact that e4 6∈ H, we
see that I = {2} so that property (5) is trivially satisfied.

Since the choice of e1 was arbitrary, the above argument shows that the edge
ek+1 in the polytope is always uniquely determined as the edge in the appropriate
half-plane making the most obtuse angle with ek. Thus the ordering of the edges
in the polytope is unique. �

We cannot yet apply Lemma 4.1 directly to our data D: we do not know the
lengths of the edges exactly, and we only know the edge vectors up to sign. One
situation in which we do know the lengths of the edges exactly is if there is one
edge corresponding to each normal vector in the data D. This occurs when P does
not have parallel sides. Since all Delzant polygons with four or more edges have at
least one pair of parallel sides (cf. §5), we know the lengths of the edges exactly
for Delzant triangles. In this case, we can easily dispatch with the problem of only
knowing the edge vectors up to sign. There is at least one choice of signs so that
the resulting vectors are the edges of a Delzant triangle; we arbitrarily choose an
initial vector in this triangle and label it e1. The subsequent vector is e2 and the
last edge vector is e3. Recalling that e1 + e2 + e3 = 0, we see that changing the
sign of exactly one or exactly two of our edge vectors corresponds to an edge vector
being identically zero. Thus the allowable sets of edge vectors for a Delzant triangle
are {e1, e2, e3} and {−e1,−e2,−e3}. We will return to the special case of Delzant
triangles shortly, but first discuss the more general situation.

Suppose that the only allowable sets of edge vectors for a Delzant polygon are
{e1, . . . , ed} and {−e1, . . . ,−ed}. The number of such polygons with data D is 4d,
since we can

(1) choose the initial vector of the polygon;
(2) choose the sign of that vector;
(3) choose the sign of the normal to that vector.
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We will see that all these choices give rise to polygons which are translates of Pe1,u1

or Pe1,−u1 .

Lemma 4.2. Fix the spectral data D and suppose that the only allowable sets of
edge vectors corresponding to D are {e1, . . . , ed} and {−e1, . . . ,−ed}. Then every
convex polygon corresponding to data D and with these edges is a translate of Pe1,u1

or Pe1,−u1
.

Proof. We have

Pe1,u1
= hull(0, e1, e1 + e2, . . . , e1 + · · ·+ ed−1).

It is easy to check that

Pe2,u2 = hull(0, e2, . . . , e2 + · · ·+ ed),

since such a polygon satisfies all the conditions in Lemma 4.1. Note that

hull(0, e2, . . . , e2 + · · ·+ ed) + e1 = hull(0, e1, e1 + e2, . . . , e1 + · · ·+ ed−1),

since e1 + · · · + ed = 0. Therefore Pe2,u2
is a translate of Pe1,u1

as claimed. The
same argument shows that Pel,ul is a translate of Pe1,u1

for any l.
Next consider what happens when we change the sign of the initial vector. We

have

P−e1,u1
= hull(0,−e1,−e1 − ed, . . . ,−e1 − ed − · · · − e3)

since, as one can check, the above hull satisfies all the properties in Lemma 4.1.
Furthermore,

hull(0,−e1,−e1 − ed, . . . ,−e1 − ed − · · · − e3) + (−e2)

= hull(e3 + · · ·+ ed + e1, e3 + · · ·+ ed, e3 + · · ·+ ed−1, . . . , 0)

= hull(0, e3, . . . , e3 + · · ·+ ed, e3 + · · ·+ ed + e1);

this follows from suitably manipulating e1 + · · · + ed = 0 to get expressions like
e3 = −e1 − ed − ed−1 − · · · − e4 − e2. Therefore P−e1,u1

is a translate of Pe3,u3

and hence of Pe1,u1
; again, the same argument shows that P−el,ul is a translate of

Pe1,u1 for any l.
Straightforward modifications of the above arguments show that Pel,−ul and

P−el,−ul are translates of Pe1,−u1
for any l. Thus, up to translation, Pe1,u1

and
Pe1,−u1

are the only two convex polygons corresponding to D with edges e1, . . . , ed
or −e1, . . . ,−ed. �

The following proposition now follows immediately.

Proposition 4.3. Let P be a Delzant triangle which corresponds to a fixed set of
data D. Then, up to translation, there are exactly two possibilities for P (see Figure
4).

We next examine Delzant polygons with one or two pairs of parallel sides. Note
that given the spectral data D, we immediately know when the corresponding
Delzant polygon P is a rectangle: we hear that there are four vertices and only
two normal directions, which means that P consists of exactly two pairs of parallel
sides and each edge which is normal to ui has length 1

2 li. It is not difficult to see
that we are again in the setting of Lemma 4.2, and there are two possibilities for
P , up to translation. For more general Delzant polygons with parallel sides, the
arguments are more complicated.
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Figure 4. Two possibilities for the Delzant triangle P

Proposition 4.4. Let P be a generic Delzant polygon in R2 with no more than
two pairs of parallel sides. Then, up to translation, the data D for P determine P
up to two choices.

Proof. For P with one or two pairs of parallel sides the following indeterminants
arise:

(1) We do not know the individual lengths of the edges in a parallel pair, only
the sum of their lengths.

(2) We do not know which of the vectors in our set of normal vectors are
repeated, i.e., which of the normal vectors are normal to two edges.

(3) We only know the edges up to sign.

We begin by addressing the first issue. Let {e1, . . . , ed} be the set of edge vectors
of the polygon. Without loss of generality, we may assume that e1 has a parallel
side; in the case of two pairs of parallel sides, assume for notational simplicity that
e1 and e2 have parallel sides. Let ei1, and ei2 if necessary, be the edge(s) parallel
to e1 (and e2). We have

e1 + e2 + · · ·+ ei1 + · · ·+ ei2 + · · ·+ ed = 0. (6)

Suppose there is another polygon with the same spectral data D and same edge
vectors, but the lengths of the individual edges in a parallel pair are different. The
new edges in this polygon are (1+α1)e1 and ei1+β1e1 (and (1+α2)e2 and ei2+β2e2,
if necessary). All other edges remain the same. So we must have

(1 + α1)e1 + (1 + α2)e2 + · · ·+ ei1 + β1e1 + · · ·+ ei2 + β2e2 + · · ·+ ed = 0.

But the spectral data tells us that the sum of the lengths of two parallel sides must
be the same in the new polygon as in the original. In the new polygon, one such
sum is

|(1 + α1)e1 − ei1 − β1e1| = |e1 − ei1|+ |α1 − β1||e1|,
and in the original the corresponding sum is |e1 − ei1|; thus α1 = β1. In the case
of two pairs of parallel sides, we would also obtain α2 = β2. In fact we have

(1 + α1)e1 + (1 + α2)e2 + · · ·+ ei1 + α1e1 + · · ·+ ei2 + α2e2 + · · ·+ ed = 0. (7)

Subtracting equation (7) from equation (6) leads to

α1e1 + α2e2 = 0,

which implies that α1 = α2 = 0 since {e1, e2} is a basis for R2.
Now we address the second issue. Suppose we are given a set of spectral data D.

It is not necessarily the case that there is only one choice of repeated normals which
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corresponds to a valid polygon P . However, we will show that there is another valid
polygon arbitrarily close to P with the same number of repeated normals as P for
which there is a unique choice of repeated normals.

Without loss of generality, we may assume that P is such that the normal to
e1, say u1, is repeated; in the case of two pairs of parallel sides, suppose u2 is also
repeated. Using the same notational conventions as above, we have that equation
(6) holds. If there is another polygon P ′ with the same spectral data as P and
different repeated normals we will assume for notational convenience that the new
repeated normals are u3 and u4. Since the length of e′1 ∈ P ′ must equal the sum
of the lengths of e1 and ei1, we have e′1 = ±(e1− ei1) (and e′2 = ±(e2− ei2)). Also,
e′3 = αe3 and e′i3 = (α− 1)e3 since |e′3− e′i3| = |e3| (and e′4 = βe4, e′i4 = (β− 1)e4).
We have

±(e1−ei1)±(e2−ei2)+αe3+βe4±e5±· · ·+(α−1)e3±· · ·+(β−1)e4±· · ·±ed = 0, (8)

where the ± signs come from the fact that we only know the edges of P ′ up to sign.
Adding equations (6) and (8) gives

a1e1 + a2e2 + αe3 + βe4 +
∑
i∈I

ei = 0, (9)

where ai ∈ R account for ei1 and ei2 as necessary and I is a certain subset of indices
in {5, . . . , d}. Namely, I consists of the indices on the edges which have the same
sign in P and P ′. We can assume that I ( {5, . . . , d} by using the negative of
equation (6) to replace the sum in (9) by

a′1e1 + a′2e2 + (α− 1)e3 + (β − 1)e4 = 0 (10)

if I is as large as possible.
Now choose ei in equation (9) or (10) such that ei+1 is not in the sum and such

that ei−1 and ei+1 are not parallel; this is always possible since we have treated the
case of rectangles separately. Perturb the λi corresponding to ei in P by a small
amount. This will modify the relevant sum by ciei + ci−1ei−1, and we can choose
the perturbation so that the sum is no longer zero. Note that we will have to do
this for each possible choice of repeated normal, but there are only finitely many
such choices; moreover, we may choose the change in λi sufficiently small that a set
of edges whose sum was nonzero keeps a nonzero sum under the perturbation. So
we can ensure that our perturbed polygon satisfies none of the relevant equations
(9) or (10). Since varying λi does not interfere with the Delzant condition, we
have found a valid polygon arbitrarily close to P with the same number of repeated
normals as P and with a unique choice of these normals.

Note that this argument addressing repeated normals can also be used to deal
with the sign ambiguity for the edges. For the convenience of the reader, we make
this more explicit. We say that P has a subpolygon if there exists a proper subset
of {1, . . . , d}, say {i1, . . . , ik} with k ≥ 3, such that ei1 + · · · + eik = 0; we also
require that the complement of {i1, . . . , ik} in {1, . . . , d} contains at least three
elements. The subset of vectors with changed signs gives rise to a closed polygon,
and these vectors must be non-consecutive in our larger polygon. We may again
encode this behavior in an equation like (9), choose an ei as above, and perturb
the λi corresponding to ei so that the sum is no longer zero. By varying λi, we
decrease the number of closed subpolygons.
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Thus for a Delzant polygon P with no more than two pairs of parallel sides,
“generic” will mean that P does not contain subpolygons and has a unique choice
of repeated normals. Lemma 4.2 then implies that there are two choices for P , up
to translation. �

Finally, we examine the case when P has three pairs of parallel sides. It is only
at this stage that we use that the volume of P is determined by D.

Proposition 4.5. Let P be a generic Delzant polygon with no more than three
pairs of parallel sides. Then, up to translation, the data D determines P up to at
most four possibilities.

Proof. If P has at most two pairs of parallel sides we have seen that the first three
items in D determine P up to two possibilities. So we assume that P has three pairs
of parallel sides. Note that the edge vectors which are not in a parallel pair are
determined up to sign, while the lengths of the individual edges in a parallel pair
are a priori not determined. We will show that for every choice of edge signs and
choice of repeated normals there are in fact only two choices for these lengths. Then
we proceed as in the proof of Proposition 4.4: if necessary, we perturb P slightly
a finite number of times to avoid situations which would correspond to different
choices of signs for the edges or different choices of repeated normals. Since there
are only a finite number of choices for the lengths of the parallel edges, we have a
finite number of “bad” cases to perturb away.

Let {e1, . . . , ed} be the set of edge vectors of P . For notational simplicity, we as-
sume that the edges which have a parallel partner are e1, e2, and e3. Let ei1, ei2, ei3
be the edges parallel to e1, e2, e3, respectively. We have seen that for a generic
polygon P the ordering of the edges, the signs of the normals, and the collection
of repeated normals is completely determined, once we choose an initial vector and
the sign of its normal. Therefore another polygon with the same data D has the
same edges as P except the edges {e1, e2, e3, ei1, ei2, ei3} may be replaced by

{e1 − α1e1, e2 − α2e2, e3 − α3e3, ei1 − α1e1, ei2 − α2e2, ei3 − α3e3};
note that if we subtract α1e1 from the edge e1, then we must subtract the same
quantity from ei1 in order for the sum of the lengths to be preserved (cf. Proposition
4.4). We must have

e1−α1e1 + e2−α2e2 + e3−α3e3 + ei1−α1e1 + ei2−α2e2 + ei3−α3e3 +
∑
i∈I

ei = 0

where I is the set of indices in {1, . . . , d} which are distinct from {1, 2, 3, i1, i2, i3}.
We also have

e1 + e2 + e3 + · · ·+ ei1 + · · ·+ ei2 + · · ·+ ei3 + · · ·+ ed = 0.

Therefore
α1e1 + α2e2 + α3e3 = 0.

We see that all polygons with the same data D, same choice of sign for the edge
vectors, and same choice of repeated normals as P come from a linear relation
among the vectors e1, e2, and e3. Figure 5 shows a polygon P0 with three pairs
of parallel sides and a modification Pt of P0 with the same normals and sums of
lengths.

We will show that vol(Pt) is a degree two polynomial in t. To this end, fix t and
consider the quantity vol(Pt)− vol(P ). This is in fact a (signed) sum of volumes of
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(a) P0 (b) Pt

Figure 5. P0 and Pt

Figure 6. A modified piece of polygon

parallelograms and trapezoids as in Figure 6, where the solid lines are edges of P
and the dashed lines are edges of Pt.

• For each parallelogram in the sum, only the length of one of the sides
depends on t; it is in fact proportional to t. The angles of the parallelogram
as well as the lengths of the sides parallel or equal to an edge in P do not
depend on t. So the volume of a parallelogram is of the form At, where A
only depends on P .
• As for the trapezoids whose volumes appear in the sum, their angles are

fixed. The length of the side which is an edge in P is also fixed, while the
lengths of the sides transversal to this side are again proportional to t. The
length of the side parallel to an edge in P is of the form l+ ct where l and
c are constants independent of t. So the volume of such a trapezoid is of
the form At+Bt2 where A and B only depend on P .

Thus vol(Pt) = vol(P )+At+Bt2 for some constants A and B, and there is at most
one nonzero value of t for which vol(Pt) = vol(P ). Hence there are at most two
choices for the lengths of the individual edges in a parallel pair. Taking the same
definition of generic as in Proposition 4.4 and applying Lemma 4.2 to each of the
two possible sets of edge vectors, we see that up to translation there are at most
four possibilities for P . �

Remark 4.6. When the number of parallel pairs for the polygon P is p ≥ 3, the
family of polygons with data D is a priori of dimension p−2. There is one parameter
per linear relation among the parallel edges. The volume of each polygon in such
a family is a polynomial of degree 2 in each of the parameters. The condition that
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the volume is fixed reduces the number of degrees of freedom by one, leaving a p− 3
parameter family of polygons with data D. For p ≥ 4, there is no longer a finite
number of polygons determined by D.

5. Zoology

The goal of this section is to discuss the set of Delzant polygons to which our
theorems apply. We have seen that our methods can be applied to all Delzant
triangles and generic Delzant polygons in R2 without too many pairs of parallel
sides, so it makes sense to ask if such polygons are “frequent.”

Theorem 5.1. The set of all Delzant polygons in R2 with d ≥ 5 sides and one pair
of parallel sides is a nonempty, proper open set in the set of all Delzant polygons
in R2. The same holds for the set of all Delzant polygons with at most three pairs
of parallel sides.

We prove this theorem below. A priori one could hope to prove an analogous
theorem for Delzant polygons without parallel sides. In fact, all Delzant polygons
with four or more sides have at least one pair of parallel sides. To explain this
claim, we begin by recalling that a Hirzebruch surface is a Kähler toric surface. It
is in fact P(O⊗O(r)), the projectivization of the vector bundle O⊗O(r) over CP1

for some integer r. For our purposes it is enough to draw a picture of the moment
polygons of Hirzebruch surfaces:

b
b
b

b
bbθ

Figure 7. The moment polygon of a Hirzebruch surface with
tan θ = 1

r , where r ranges over the nonnegative integers

Note that if d = 4, knowing the number of repeated normals allows us to construct
P , up to translation and two choices; P is either a parallelogram or the moment
polygon of a Hirzebruch surface.

In fact moment polygons of Hirzebruch surfaces are in some sense the building
blocks from which we can get all Delzant polygons.

Theorem 5.2. Given a Delzant polygon P with d ≥ 5 sides, there is an SL(2,Z)
transformation that takes P into a corner chopping of a Delzant polygon of a Hirze-
bruch surface.

The corner chopping of a convex polytope P at a subset of the set of vertices of
P is a polytope P ′ which is obtained from P by deleting a neighborhood of each
vertex in the subset and replacing it with the convex hull of what is left. In the
following picture we have chopped the moment polygon of a Hirzebruch surface at
one vertex.

It is well known that among Delzant polytopes this operation corresponds to a
symplectic blow-up of the toric manifold associated with the Delzant polytope. See
[8] for a proof of Theorem 5.2 and [12] for further discussion. Since an SL(2,Z)
transformation preserves the number of parallel sides and the Delzant polygon of a
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Figure 8. A chopped moment polygon

Hirzebruch surface has parallel sides, we conclude that all Delzant polygons with 5
or more sides have at least one pair of parallel sides.

Lemma 5.3. Given a Delzant polygon P in R2 and a vertex v in P there is a
1-parameter family of choppings of P at v.

Proof. The proof is very simple. Using an SL(2,Z) transformation if necessary, we
may assume that v = 0 ∈ R2 and that the two edges of P meeting at v lie along
the positive coordinate axes. Now let a and b be the two new angles in the triangle
determined by the chopping of P at v.

v

a
b

These two angles sum to π
2 , and the Delzant condition implies that there are

integers m and n such that

tan(a) =
1

m
, tan(b) =

1

n
.

Now

tan(a+ b) =
tan(a) + tan(b)

1− tan(a) tan(b)

and tan(a + b) = tan(π2 ) = ∞. So tan(a) tan(b) = 1 which implies mn = 1, and
thus the angles a and b are both π

4 . The one parameter corresponds to the length
of the new side. �

We now prove Theorem 5.1.

Proof. Given the characterization of Delzant polygons provided by Theorem 5.2,
we see that the space of all Delzant polygons with d edges is parametrized by

{(A,H,α, l) : A ∈ SL(2,Z), H ∈ B, α ∈ CH , l ∈ Rd−4},

where B is the set of all Delzant polygons corresponding to Hirzebruch surfaces,
CH is the set of all sequences of positions at which one may chop to get a Delzant
polygon from H, and l records the lengths of the d − 4 chopped edges associated
to α. Note that for a fixed d, CH is a finite set.

Polygons with more than one pair of parallel edges correspond to specific chop-
pings, i.e., to specific sequences α. The set of such polygons is parametrized by

{(A,H,α, l) : A ∈ SL(2,Z), H ∈ B, α ∈ C1
H , l ∈ Rd−4}
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where C1
H is the subset of CH which gives rise to more pairs of parallel sides. We

claim that C1
H is a nonempty proper subset of CH . It is proper because there are

choices for the chopping data which will not give rise to more pairs of parallel sides.
As one example, consider all choppings involving only the right angle of H which
is opposite the acute angle of H:

One can see by inspection that there are many other examples. Since there
are α’s for which there are more pairs of parallel sides introduced through corner
chopping, C1

H is nonempty. For example, every α which involves chopping opposite
corners of a Delzant rectangle H introduces at least one more pair of parallel sides.
Hence both C1

H and the complement of C1
H in CH are proper, nonempty subsets of

CH . �

The proof above shows that a random Delzant polygon with d sides has a positive
probability p(d) of having no more than three pairs of parallel sides. It also shows
that p(d) is not one. In fact, p(d) is the number of choppings which give rise to no
more than three pairs of parallel sides divided by the total number of choppings
which give rise to a polygon with d edges.

We conclude our discussion of choppings of Delzant polygons by proving Propo-
sition 3.4, which tells us that we can recover the number of vertices of a Delzant
polygon from the spectrum of the real manifold naturally associated to a toric
surface.

Proof. Let M4 be a symplectic toric manifold, and let d be the number of sides of
the associated Delzant polygon P . Theorem 5.2 tells us that if d ≥ 5 then M is
symplectomorphic to a blow up of CP2, i.e., it is symplectomorphic to a connected
sum

CP2#(d− 3)CP2.

Since the real manifold associated to CP2 is RP2 we see that the real manifold MR
is diffeomorphic to

RP2#(d− 3)RP2,

which has Euler characteristic 4− d. As one can check directly, this expression for
the Euler characteristic also holds when d = 3 or d = 4. For a real 2-dimensional
manifold, the spectrum determines the Euler characteristic; this is a simple conse-
quence of the Gauss-Bonnet theorem and the fact that the spectrum determines the
integral of the scalar curvature via the asymptotic expansion of the usual heat trace
(e.g., [3, p. 222]). Hence the spectrum of MR determines d, and thus determines
the number of vertices of P . �

6. The spectrum of a canonical line bundle

In this section we will give a complete and relatively short argument answering
a stronger version of Question 1.5. Assume that (M,ω) is a toric manifold and
the cohomology class of ω has integer coefficients, i.e., [ω] ∈ H2(M,Z). There is a
line bundle L over M naturally associated to this data, namely a line bundle such
that c1(L) = [ω]. There is also a connection on L whose curvature is ω, and the
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connection allows us to define a Laplace operator 4L on C∞(L). As an example,
one may consider the toric manifold associated to a Delzant polytope with vertices
in Zn and endowed with the reduced metric. When we consider the equivariant
spectrum of the Laplacian acting on smooth sections of L, we are able to recover
the Delzant polytope exactly.

Theorem 6.1. The equivariant spectrum of the Laplacian 4L : C∞(L) → C∞(L)
determines the Delzant polytope of M .

Proof. As usual φ denotes the moment map of the Tn-action on M and P = φ(M) is
the Delzant polytope of M . Let p be a fixed point for the Tn-action and v = φ(p) a
vertex in P . There is a Tn-action on the total space of L and therefore an induced
action on the space of smooth sections of L, denoted C∞(L). The infinitesimal
action associated to this induced action is given by Kostant’s formula:

LXθs = OXθs+ iφ · θs,

where s ∈ C∞(L), θ ∈ Rn, and Xθ is the vector field in M induced by the Tn-action.
From this we see that the weight of the isotropy representation of Tn on the fiber
of L over p is φ(p).

We make the following notational conventions:

• e1, . . . , en are the edges of P meeting at v,
• Fi is the hyperplane spanned by {e1, · · · , êi, · · · , en},
• ui is the outward normal to Fi in Rn,
• Gi is the one-parameter subgroup of Tn generated by ui, i.e., the Lie algebra

of Gi is spanned by ui,
• βi is the weight of the isotropy representation of Gi on the normal bundle

to φ−1(Fi) in M ,
• and ξi is an element of the Lie algebra of Gi such that βi(ξi) = 1.

As we have seen in Lemma 2.9, the fixed point set of each Gi contains the pre-
image via the moment map of the facets which are perpendicular to ui; hence the
fixed point set has at most two connected components of nonzero dimension. Fix
i ∈ {1, . . . , n}. We will consider two cases.
Case 1: Assume there is only one facet perpendicular to ui, say Fi. This is the
simplest case. The coefficient of the leading term in the heat trace corresponding
to the eiξ ∈ Gi action on L is

eiφ(p)·ξvol(Fi)

2− 2 cos(βi(ξ))
;

setting ξ = tξi gives

eitv·ξivol(Fi)

2− 2 cos(t)
.

Hence vol(Fi) and esv·ξi , for any s ∈ R are spectrally determined. Thus we know
the quantity v · ξ for any ξ which is a multiple of ui and the spectrum determines
the hyperplane containing the facet Fi, namely

{x ∈ Rn : x · ui = v · ui}.

Case 2: Now assume that there are two facets perpendicular to ui, say F+ and
F−. Let v+ and v− be vertices on F+ and F−, respectively. The coefficient of the
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leading term in the heat trace corresponding to the eiξ ∈ Gi action on L is

eiv+·ξvol(F+) + eiv−·ξvol(F−)

2− 2 cos(βi(ξ))
.

Again one can set ξ = tξi and the above formula becomes

eitv+·ξivol(F+) + eitv−·ξivol(F−)

2− 2 cos(t)
.

Therefore v+ · ξ and v− · ξ are spectrally determined for any ξ which is a multiple
of ui, and so are the sets

{x ∈ Rn : x · ui = v+ · ui},

and

{x ∈ Rn : x · ui = v− · ui}.
We can assume without loss of generality that our polytope has center of mass

at the origin. The spectrum determines the hyperplane containing a facet F and
the “in” direction determines the half-space HF . Hence we know

P =
⋂
F

HF .

�

7. Concluding Remarks

One may ask to what extent our results are optimal. We note that the proba-
bilites p(d) mentioned in §5 could be calculated explicitly, providing a more concrete
idea of the “size” of the set of Delzant polygons to which Proposition 4.5 applies.
Propositions 4.5, 4.4 and 4.3 conclude that the equivariant spectrum determines
the Delzant polygon up to a small number of possibilities; in Propositions 4.3 and
4.4, the two possibilities correspond to a set of weights for the torus action and
the set of conjugate transposes of these weights. Can these two possibilities be
distinguished using spectral data? Regarding our genericity assumptions, it would
be nice to have examples of symplectic toric manifolds (and their corresponding
Delzant polygons) which show that these assumptions are necessary. That is, can
one construct pairs of (non-isometric) toric manifolds with the same equivariant
spectrum whose Delzant polygons are either non-generic or have many pairs of
parallel sides?

One obstacle to generalizing the results of §§4 and 5 to higher-dimensional poly-
topes is the lack of knowledge of the number of vertices of the Delzant polytope.
For a toric manifold M2n, knowledge of the number of vertices is equivalent to
knowledge of any one of the following three quantities: the Euler characteristic
of M , the Lefschetz number of a torus-induced isometry of M , and the number of
critical points of a generic component of the moment map. By considering the equi-
variant spectrum corresponding to even p-forms for 0 < p ≤ n, one could recover
the number of vertices; in fact, one only needs the multiplicity of the 0-eigenspaces.
If one fixes the number of vertices and assumes that there are no repeated normals,
our methods can be applied. In particular, there are “many” Delzant polytopes
in dimension three with four vertices and no repeated normals which can be dis-
tinguished by the equivariant spectrum, up to translation and a small number of
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possibilities. It is also possible that using more terms in Donnelly’s asymptotic ex-
pansion (3) could lead to stronger results; however, the presence of normals to faces
of varying codimension hinders calculation of these higher-order terms in general.

We should mention again that if the Delzant polygon of M is generic and doesn’t
have too many pairs of parallel sides, then our results imply that the symplectomor-
phism type of M , and hence its diffeomorphism type, are completely determined
by the equivariant and real spectra. In fact, if we know a priori that M is endowed
with the reduced metric, the metric on M is also determined by the spectra since
the polygon determines a unique reduced metric. Of course one can ask what can
be said about the metric on M in general. For example, one can ask whether the
real and equivariant spectra determine if the metric on M is extremal in the sense
of Calabi.

The relatively strict constraints on perturbation imposed by the Delzant condi-
tions provide another obstacle to generalizing our results to all Delzant polytopes.
These constraints are significantly relaxed for generic toric orbifolds, which corre-
spond to rational polytopes with a labelling that encodes the local group actions.
Thus the inverse problem is to recover both the polytope and its labels from the
equivariant spectrum; the authors are working on a generalization of this work to
that setting.
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