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Abstract

Global light transport is composed of direct and indirect
components. In this paper, we take the first steps toward
analyzing light transport using high temporal resolution in-
formation via time of flight (ToF) images. The time profile
at each pixel encodes complex interactions between the in-
cident light and the scene geometry with spatially-varying
material properties. We exploit the time profile to decom-
pose light transport into its constituent direct, subsurface
scattering, and interreflection components.

We show that the time profile is well modelled using a
Gaussian function for the direct and interreflection compo-
nents, and a decaying exponential function for the subsur-
face scattering component. We use our direct, subsurface
scattering, and interreflection separation algorithm for four
computer vision applications: recovering projective depth
maps, identifying subsurface scattering objects, measuring
parameters of analytical subsurface scattering models, and
performing edge detection using ToF images.

1. Introduction

Light transport analysis is a lasting and challenging area
in computer vision and graphics. Existing methods for light
transport analysis usually rely on structured light techniques
that use active spatially and/or angularly varying illumina-
tion patterns. They enable a broad range of applications,
including material acquisition [8, 11], light transport sepa-
ration [13, 18], and robust geometry acquisition [5, 6, 7, 23].
On the other hand, ToF imaging is traditionally limited to
geometry acquisition. Emerging femto-second photography
techniques for multiple bounce acquisition enable new ap-
plications in computer vision, such as single view BRDF
capture [12].

In this paper, we propose a separation method based on
ToF imaging. Our approach is new in two aspects. First, we
utilize ToF imaging to measure 3D light transport; second,
we use the time profile of each pixel to decompose different

light transport effects in a very simple way. The key insight
of this research is to exploit ultra-high time resolution in
light transport by differentiating light transport effects with
different time profiles. The time models of different light
effects are analyzed and verified in this paper.

Contributions We show how to decompose ToF images
into direct, subsurface scattering, and interreflection com-
ponents for the following applications:

(i) recovering projective depth from the direct compo-
nent in the presence of global scattering;

(ii) identifying and label different types of global illumi-
nation effects;

(iii) measuring parameters of subsurface scattering mate-
rials from a single point of view;

(iv) performing edge detection using spatial-temporal ToF
information.

2. Related work

Global illumination effects, including interreflections,
caustics, and subsurface scattering, are important visual fea-
tures of real-world scenes. Structured light methods utilize
global light transport when decomposing multi-bounce light
transport into individual bounces [2, 18], extracting geo-
metric information from second-bounce light transport [10],
and compensating for global illumination [14, 20]. A
method for separating high-frequency direct transport from
low-frequency global transport requires as little as a single
photo under structured lighting [13]. These direct/global
separation techniques find uses in range acquisition appli-
cations for robustly capturing scene depth information in
the presence of global illumination [5, 7, 23]. Specifically
designed structured illumination patterns also allow for ro-
bust geometry acquisition that accounts for both interreflec-
tions and subsurface scattering light transport effects within
a scene [6].

ToF imaging methods provide another means for analyz-
ing global transport effects. ToF data used in LiDAR and
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Figure 1. The ToF image format. (a) The ToF acquisition method
consists of capturing multiple x-t (streak) images, and combining
the images into a single x-y-t volume. (b) Example of one x-t
image. (c) x-y image of the tomato tape scene (iv) (see Section 5
for details) when the direct component appears on the tomato at
time t1. (d) x-y image when the direct component appears on the
back wall at time t2, with t2 > t1.

gated viewing systems exploit the direct component of the
returned light to obtain a depth measurement [3, 4]. Coher-
ent LiDAR relies on the wave interference of the returned
light to recover depth [1, 9, 21, 22], so the technique can
detect only the direct component , as global illumination
poorly preserves coherence.

Recently, new cameras capture ToF images containing
direct and global components for reconstructing geometry
of occluded objects “around a corner” through the arrival
time of multi-bounce light transport [15, 19]. In addition
to geometry acquisition, ToF cameras allow for in-the-wild
BRDF acquisition without any encircling equipment [12].

3. Light transport analysis using ToF
3.1. 3D ToF images

We store our ToF images as x-y-t volumes, as shown in
Figure 1a, where x and y correspond to pixel locations in a
conventional image and t corresponds to time. An x-y slice
of the volume produces an image at a given time t, as shown
in Figure 1c and 1d. The time profile P (t) for a pixel (x, y)
returns the pixel’s intensity as a function of time. We detail
the capture process of these ToF images in Section 5. We
use datasets from [16].

3.2. Composition of time profile

A photo is a composition of multiple light transport ef-
fects that occur within a scene. Similarly, the observed time
profile P (t) within our ToF image is a sum of time profiles,

including the direct time profile D(t), subsurface scattering
profile S(t), and interreflection profile I(t). Each of these
individual time profiles have unique features.

Among all light paths that arrive at a particular pixel
(x, y) at different times t, the direct light path, the path
consisting of a single bounce, travels the shortest distance
among all possible paths. It follows that the first impulse
observed in the time profile P (t) is the direct component.

Interreflections also produce individual impulses, though
they occur later in time and with reduced intensity when
compared to the direct impulse. For higher-order inter-
reflections, individual peaks overlap, producing a smoothly
decaying interreflection term.

Subsurface scattering materials exponentially attenuate
the intensity of a ray of light with respect to its path length.
By assuming path lengths directly correspond to the time of
arrival, we expect intensity to decay exponentially as a func-
tion of time. In general, subsurface scattering is very com-
plex and depends on several factors such as scene geometry,
lighting conditions, and material properties. We empirically
find that an exponentially decaying function closely approx-
imates these subsurface scattering effects, as demonstrated
in Figure 2b.

Decomposing a measured time profile into its individual
global effects is a non-trivial problem in practice. Ideally,
the measured time profile of a direct reflection or interreflec-
tions is an impulse of infinite short duration. Due to the lim-
itation of ToF imaging, a spatio-temporal point spread func-
tion blurs our measured time profiles P (t), as illustrated in
Figure 2. Moreover, the high-dynamic range of the ToF
images produces large amounts of saturation. A decompo-
sition algorithm must robustly estimate the individual time
profiles D(t), S(t), and I(t) even when subjected to large
blur kernels and amounts of saturation. A mixture model
approach of decomposing the time profile into a mixture of
Gaussians (as demonstrated in Figure2a) and exponentially
decaying functions is sensitive to blur and noise in the ToF
images, and produces poor results; we take a more relaxed
approach.

3.3. Direct and global separation

Our algorithm separates direct and global time profiles
by localizing the direct component within the time profile
P (t), and extracting the direct component D(t) by impos-
ing smoothness constraints on the global component G(t).
Note that some pixels within a ToF image may receive no
direct illumination. We thus reject time profiles without a
direct component by thresholding the first peak intensity.

In Algorithm 1, steps 1 and 2 localize the arrival time
tstart of the direct component. Step 3 finds the apex of
the direct component at time tmiddle. Step 4 returns the
departure time tend of the direct component, assuming the
apex occurs at the center of the direct impulse. The pro-
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Figure 2. (a) Tomato tape scene. A Gaussian closely approximates
the time profile of a point containing only the direct component.
(b) Backlit tomato scene. The time profile of a point lit by subsur-
face scattered light decays exponentially over time. A line closely
approximates the log of the time profile. (c) Mounted tomato
scene. A time profile containing both direct and subsurface scat-
tering light transport is a sum of a Gaussian and an exponentially
decaying function.

Algorithm 1 Direct/global separation

Require: the time profile P (t)
1. Compute the derivative of the time profile P ′(t)
2. Find the start of the direct component by solving tstart =
argmint P ′(t) > α, for some tolerance α (typical value of α:
0.05maxt P ′(t))
3. Find the apex of the direct component by solving tmiddle =
argmint P ′(t) < β subject to t > tstart, for some tolerance β (typi-
cal value of β: 0.0001)
4. Compute the end of the direct component tend = tstart +
2(tmiddle − tstart)
5. Smoothly interpolate time profile values between tstart and tend

using C0 and C1 continuity to generate the global component G(t)
6. Extract direct component D(t) = P (t)−G(t)

file values P (t) for t 6∈ [tstart, tend] are global component
values; step 5 predicts the unknown global values G(t) for
t ∈ [tstart, tend] through interpolation. Lastly, step 6 sub-
tracts the global component from the time profile to produce
the direct component, as in Figure 3 and 4a.

3.4. Subsurface scattering and interreflection

The ToF images provide more information than sim-
ply the direct and global components; they are a compo-
sition of multiple global light transport effects, including
interreflections and subsurface scattering. Our interreflec-
tion/subsurface scattering separation algorithm takes as in-
put the global time profile G(t) and the departure time of
the direct component tdirect. Our separation algorithm lo-
calizes and extracts the interreflection component from the
global time profile.

Algorithm 2 Interreflection/subsurface scattering separation

Require: global time profile G(t) and end of direct component tdirect
1. Compute the derivative of the time profile G′(t)
2. Find the start of the interreflection component by solving tstart =
argmintG′(t) > αG subject to t > tdirect, for some tolerance αG

(typical value of αG: 0.05maxt P ′(t))
3. Find the apex of the interreflection component by solving tmiddle =
argmintG′(t) < βG subject to t > tstart, for some tolerance βG
(typical value of βG: 0.0001)
4. Compute the end of the interreflection component tend = tstart +
2(tmiddle − tstart)
5. Smoothly interpolate time profile values between tstart and tend

using C0 and C1 continuity to generate the subsurface scattering com-
ponent S(t)
6. Extract interreflection component I(t) = G(t)− S(t)

Algorithm 2 finds the start of a new impulse, identifies
the apex of the impulse, computes the end of the impulse,
and interpolates time profile values between the start and
end points. Figure 4b decomposes the global time profile
from Figure 4a into its interreflection and subsurface scat-
tering components.

Both algorithms rely on the ability to detect individual
impulses. High-order bounces have diminished intensity,
and lose temporal locality (appears less impulse-like). As a
result, our approach only reliably separates second-bounce
interreflection from the global time profile.

4. Exploiting light transport components
Decomposing a single ToF image into its direct, subsur-

face scattering, and interreflection components has many
applications in computer vision. Our paper focuses on four
such applications: recovering projective depth from direct
component, labelling image regions to identify subsurface
scattering objects, measuring scattering coefficients, and
edge detection.

Projective depth from ToF Monostatic LiDAR systems
use a colocated light source and sensor to recover geometry
using ToF. These devices capture depth by measuring the
time elapsed between emitting a pulse of light onto a point
in a scene, and the backscattered light returning to the sen-
sor. LiDAR systems typically sweep the light across an area
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Figure 3. Our algorithm takes a pixel’s time profile (black), computes its gradient (green), identifies the direct component region (pink),
and decomposes the original time profile (black) into direct (red) and global (blue) components. The illustrated time profiles represent: (a)
the direct component, (b) direct and global, (c) direct and subsurface scattering (with saturation), and (d) direct and subsurface scattering
(without saturation). Time profiles (a-d) correspond respectively to points 1-4 in Figure 8.
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Figure 4. The time profile corresponds to point 5 in Figure 8c. (a)
Algorithm 1 decomposes the profile into its direct and global com-
ponents. (b) Algorithm 2 further decomposes the global time pro-
file into the interreflection and subsurface scattering components.

in the scene to recover a full depth map. Our ToF imaging
device for capturing depth in a single image is similar to a
bistatic LiDAR system [17], in that it requires no coloca-
tion between sensor and light source. The laser illuminates
an unknown point in the scene and produces a virtual light
source (see Section 5). This virtual light source illuminates
the scene, and the resulting direct component provides suf-
ficient information to recover a projective depth map of the
scene.

The laser intersects a (unknown) point L = (Lx, Ly, Lz)
in world space at a (unknown) time t0 in the scene, with
the camera centered at point C = (0, 0, 0). If the camera
receives the first bounce of light at time t at camera pixel
(x, y), the direct reflection point P = (Px, Py, Pz) must
satisfy the following equation:

‖P − L‖2 + ‖P − C‖2 = k(t− t0) (1)

Note k is a constant that maps units in time to units in
space. The intersection of the ellipsoid in Equation 1 with a
ray emitted from pixel (x, y) produces a unique depth map
value, representing the depth value for camera pixel (x, y).

In practice, we calibrate the system to recover L, t0, and
k. Our calibration approach fits these parameters to multi-
ple points on the surface, each containing the same depth
value. Once these constants are known, our depth recovery
algorithm solves for the unknown depth value given a time

t for each pixel, as Figure 51.

Labelling subsurface scattering regions The time pro-
file for subsurface and volumetric scattering objects after re-
ceiving an initial light pulse has a unique appearance. When
light hits an object in a scene, either transmission, reflection,
or absorption occurs. Certain objects with subsurface scat-
tering properties will scatter the transmitted light internally
and slowly release the light over time.

To distinguish subsurface scattering objects from other
objects within a scene, our algorithm labels subsurface scat-
tering regions by evaluating the following equation for each
pixel (x, y):

T ≥ Ratio(x, y) =
∫ T
t=0

P (t)x,y

maxTt=0P (t)x,y
≥ 1 (2)

When the function returns a value near 1, the energy con-
centrates to a single instant in time within the time profile,
indicating the corresponding point has no subsurface scat-
tering properties. A larger Ratio(x, y) value corresponds
to distributed energy within a time profile, a characteristic
of subsurface scattering points.

Our algorithm for identifying subsurface scattering ma-
terials relies on thresholding the Ratio(x, y) function at
each pixel. When the function returns a value larger than
a particular threshold T (0.35 for Figure 6), the algorithm
identifies the pixel as a point with subsurface scattering.

1 Figure 5d shows the projective depth of simulation ToF data for “cor-
ner” scene (We modify PBRT to simulate ToF of scenes with interreflec-
tions). The number of unknown variables is 5: (Lx, Ly , Lz , t0, k). We
choose pixels lie on a horizontal line on the bottom plane, solving the above
parameters based on Equation 1, using local search method fminsearch
in Matlab. However, giving selected pixel constraints, it is hard to optimize
variables up to 5. As in Figure 5d, the projective depth result has some er-
ror. In real world data, it is ever harder to pick pixels with same depth
even for planar object, as the surface might be slightly tilted. Therefore,we
reduce the unknown variables by setting L = (1, 0, 0) and recover t0 and
k by choosing a set of pixels with the same depth value. (In Figure 5c,
we choose the pixels along a vertical line on the back wall.) The pro-
jective depth corresponds to another coordinate system transformed based
on constrain L = (Lx, Ly , Lz) in the original coordinate system to be
L = (1, 0, 0) in the new one. In Figure 5c, the depth value preserve the
plane structure, observed from another point of view.
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Figure 5. Projective depth computation from direct component. (a)
The points on a plane in the scene with the same ToF are dis-
tributed on an ellipse. (b) Direct peak time map of the back and
bottom plane in the corner scene. (c) The corresponding projective
depth map. (d) The projective depth of simulated ToF data. From
left to right: scene illustration; direct component intensity map,
the right wall has no direct component for serving as virtual light
source; the tof of time profile peaks, we do not consider right wall
which does not has direct component; projective depth from tof of
direct component. The color corresponds to values in color bar in
Figure 6a.
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Figure 6. Labelling subsurface scattering for the mounted tomato
scene (ii). (a) The image is given by computing the ratio per pixel
using Equation 2. Note that higher values correspond to more sub-
surface scattering. (b) The image after thresholding. Cyan identi-
fies subsurface scattering regions, magenta indicates no subsurface
scattering, and black corresponds to background regions.

Measuring scattering model parameters An important
application of ToF images is material acquisition, and in
particular, modelling volumetric scattering. When a short
pulse of light illuminates a volumetric scattering medium,
the time profile shows an exponential decay in the mea-
sured irradiance that lasts from a few picoseconds to several
nanoseconds. The time profile provides sufficient informa-
tion to accurately model light scattering within a homoge-
neous medium.

Our model for volumetric scattering mediums is an ex-
ponential αe(γt) = elog(α)+γt, where γ is the scattering co-
efficient and α is the incident illumination. Our algorithm
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Figure 8. Images of setup for (a) backlit tomato scene, (b) the cor-
ner scene, (c) mounted tomato scene, (d) tomato tape scene. The
blue arrows simulate the incident laser beam, each producing a vir-
tual point light source within the scene. The separation plots for
point 1-4 is in Figure 3, and point 5 is in Figure 4.

for capturing the scattering coefficient requires two steps.
First, the algorithm computes log(P (t)). Second, a line
of the form log(α) + γt is fit to the logarithmic time pro-
file log(P (t)) to produce the scattering coefficient. Given
the scattering coefficient, the time profile of the volumetric
scattering medium is a function of the incident illumination.

Edge detection using ToF The local spatial properties of
the time profile can improve edge detection methods. It is
difficult to distinguish between a depth edge and a shadow
edge. The time profile of a depth edge has two distinct di-
rect time values, whereas shadow edges have at most one
distinct peak. By analyzing the time profile of a set of pix-
els, our algorithms distinguish between the two edges.

To identify a depth edge, we analyze the time profiles
for points within a 7×7 sliding window, as illustrated in
Figure 7. For each time profile within the window, our al-
gorithm computes the position and intensity of the maxi-
mum, and evaluates the variance of these quantities within
the window, denoted as Vapex and Vtime respectively. The
higher value of Vtime × Vapex, the higher possibility that it
belongs to a depth edge.

5. Experiment data
The acquisition system for capturing the data is de-

scribed in separate work [16]. Please refer to [16] for more
original moives.

We illuminate our scene with a virtual point light source,
a diffuse point within the scene directly lit by the laser. We
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Figure 7. The time profiles correspond to points in the following patches: (a) patch on tomato, (b) patch on perimeter of tomato, (c) patch
on edge of shadow, (d) patch crossing another shadow edge.

intentionally occlude the virtual point light source within
the scene; otherwise, the brightness of the virtual light
source produces severe lens flare artifacts in the ToF im-
age. The time resolution for the following dataset is 4, 4, 3,
4 picosecond respectively.

(i) Backlit Tomato: pure subsurface scattering The laser
illuminates the backside of a tomato, as shown in Figure 8a.
The dominant transport effect within the tomato scene is
subsurface scattering.

(ii) Mounted Tomato: subsurface and simple multi-
bounce scattering Figure 8c contains a diffuse wall and
a tomato mounted on a post. The laser produces a virtual
point light source on the diffuse wall, which then illumi-
nates the tomato. This scene contains primarily direct, sub-
surface scattering and interreflection light transport effects.

(iii) Corner: complex multibounce scattering Figure 8b
consists of three diffuse planes arranged to form a concave
corner. The laser illuminates an occluded point on the wall.
Because of the large number of near discrete bounces oc-
curring in this setup, decomposing the time profile into its
individual components is challenging.

(iv) Tomato and Tape: complex subsurface and multi-
bounce scattering Figure 8d combines several light trans-
port effects: direct, interreflection, and subsurface scatter-
ing. The scene consists of a roll of tape, a tomato and a
wall. The laser creates a virtual light source on a diffuser.
Complex interreflections occur in the roll of tape, and sub-
surface scattering effects appear on the tomato.

6. Results and performance validation
Separation results We perform direct and global separa-
tion for the mounted tomato scene (ii), corner scene (iii),
and tomato and tape scene (iv). We show several x-y slices
of the separated scenes in Figures 9, 10a, and 10b respec-
tively. In general, we observe the direct component in the
earlier frames, whereas subsurface and multibounce scatter-
ing dominate the later frames.

We capture a ToF image for the mounted tomato scene
(ii), and separate the image into its direct, subsurface scat-

tering, and interreflection components. Figure 9a shows
direct/global separation results on an x-y image at a time
when the direct component intersects the tomato. The
tomato produces strong subsurface scattering effects as il-
lustrated by the rightmost image. Figure 9b shows subsur-
face scattering/interreflection separation on an x-y image at
a later time when no direct component exists. The inter-
reflection originates from light transport between the floor
and the tomato.

The corner scene (iii) in Figure 10a contains interreflec-
tions between the three walls forming a concave corner.
The time profile for pixels near the corner of the wall be-
haves similarly to a subsurface scattering profile that de-
cays slowly over time. Our separation algorithm identifies
the direct and global components, although cannot distin-
guish between interreflection and subsurface scattering in
this example.

We also analyze the tomato and tape scene (iv) in Fig-
ure 10b. The figure shows the direct and global components
at two different time frames. The tomato produces subsur-
face scattering effects, and we observe interreflections in the
inner part of the tape roll and between the wall and tomato.
The light from the subsurface scattering glow of the tomato
illuminates the rest of the scene over a prolonged period of
time. The algorithm once again separates the image into its
direct and global components. Please refer to the supple-
mentary video for additional results.

Characterization of subsurface scattering The subsur-
face scattering properties associated with different concen-
trations of milk in water can be characterized as a decay-
ing exponential. We analyze subsurface scattering by first
filling a tank with 3.6 liters of water, and gradually adding
milk (2% reduced fat) to the water to increase the scatter-
ing properties of the medium. Our camera captures an x-t
image for 0, 5, 10, 20, 40, 80, and 160 ml concentrations
of milk within the tank. The milk contains emulgated fat
bubbles that serve as scattering centers. Observing a point
in the scatterer, the time profile of the returned light allows
us to distinguish between the different milk emulgations.

A straight line closely approximates the logarithm of the

6



(a) Direct/global decomposition

(b) Subsurface scattering/interreflection decomposition

Figure 9. Global light transport decomposition of the mounted
tomato scene (ii) at two different times. (a) Direct/global sepa-
ration. Algorithm 1 takes a ToF image (left) and decomposes the
image into its direct (middle) and global (right) components. (b)
Algorithm 2 takes a global image (left) and returns two images:
the subsurface scattering component (middle) and the interreflec-
tion component (right). Light bouncing between the floor and the
tomato produces the interreflection component. Note this global
image occurs at a time when the direct component has passed.

(a) Direct/global decomposition: corner scene (iii)

(b) Direct/global decomposition: tomato tape scene (iv)

Figure 10. Direct/global separation results at two different times
for each of (a) corner scene and (b) tomato tape scene. Our algo-
rithm separates the original x-y images (left) into its direct com-
ponent (middle) and global component (right).

observed time profile log(P (t)) for different concentrations
of milk in Figure 11b. Figure 11c illustrates the exponen-
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Figure 11. Subsurface scattering in milky water. (a) The time pro-
files of the same point in 7 different concentrations of milky water.
(b) Lines are fit to the log plot of the time profiles. (c) Log-log
plot for slope of lines versus concentration. (d) 4 raw streak im-
ages captured for milky water scene.

(a) (b) (c) (d)

Figure 12. Differentiation of depth edges and shadow edges. (a)
Edge detection using Canny edge detector for the tomato tape
scene. (b) Vapex map, (c) Vtime map, (d) Vtime × Vapex map.

tial relationship between the decay constant and the milk
concentration.

Validation of edge detection Edge detection algorithms
aim to find edges through variations in depth, texture, and
lighting. Different vision applications require different
types of edges. Typical image edge detection algorithms ex-
tract edges due to brightness variations, which are coupled
for all depth, texture, and light edges. In our ToF images,
the depth edge points and shadow edge points have differ-
ent local properties. We compare our edge detection based
on 3D light transport with the Canny algorithm acting in the
time integrated ToF image in Figure 12 for the tomato tape
scene (iv). The results show that our ToF approach to edge
detection generates cleaner depth edges and shadow edges
compared to the Canny algorithm.

Limitations of ToF imaging The fast attenuation of the
direct component in the scene produces scenes with a high
dynamic range. Because our 12-bit camera sensor cannot
capture the full range of intensity values, we allow some
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saturation in the ToF images. The time resolution dictates
the ability to recover direct and multibounce components,
especially in the presence of many interreflections. A one
hour capture time for a 600 slices ToF image limits our mea-
surements to static scenes.

Limitations of the separation method When consider-
ing separation of discrete bounces from subsurface scatter-
ing, it is important to note that these are not two completely
distinct phenomena. Most surfaces contain at least some
subsurface scattering. A second or third bounce striking a
subsurface scatterer causes subsurface scattering just like
the direct component does. Light emerging from a subsur-
face scatterer can afterwards undergo discrete bounces in
the scene. This light is not distinguishable from immediate
subsurface scattering light using our methods.

7. Conclusion
This work represents the first steps toward using ToF in-

formation in light transport analysis. We decompose and
label scene elements according to the type of global light
transport, measure coefficients of volumetric scattering and
produce depth maps from direct light transport.

In the future, combining ToF imaging with structured il-
lumination could more accurately identify transport proper-
ties. Compact and low cost ultra-fast systems are becoming
available due to massive commercial interest in optical com-
munication and optical computing. We believe the addition
of the time dimension in computer vision, computational
photography, and active illumination techniques will enable
a new range of applications.
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