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Abstract

Long-range migrations and the resulting admixtures between populations have been important

forces shaping human genetic diversity. Most existing methods for detecting and reconstructing

historical admixture events are based on allele frequency divergences or patterns of ancestry seg-

ments in chromosomes of admixed individuals. An emerging new approach harnesses the expo-

nential decay of admixture-induced linkage disequilibrium (LD) as a function of genetic distance.

Here, we comprehensively develop LD-based inference into a versatile tool for investigating ad-

mixture. We present a new weighted LD statistic that can be used to infer mixture proportions as

well as dates with fewer constraints on reference populations than previous methods. We define an

LD-based three-population test for admixture and identify scenarios in which it can detect admix-

ture events that previous formal tests cannot. We further show that we can uncover phylogenetic

relationships among populations by comparing weighted LD curves obtained using a suite of ref-

erences. Finally, we describe several improvements to the computation and fitting of weighted LD

curves that greatly increase the robustness and speed of the calculations. We implement all of these

advances in a software package, ALDER, which we validate in simulations and apply to test for ad-

mixture among all populations from the Human Genome Diversity Project (HGDP), highlighting

insights into the admixture history of Central African Pygmies, Sardinians, and Japanese.
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INTRODUCTION

Admixture between previously diverged populations has been a common feature throughout the

evolution of modern humans and has left significant genetic traces in contemporary populations (LI

et al. 2008; WALL et al. 2009; REICH et al. 2009; GREEN et al. 2010; GRAVEL et al. 2011; PU-

GACH et al. 2011; PATTERSON et al. 2012). Resulting patterns of variation can provide information

about migrations, demographic histories, and natural selection and can also be a valuable tool for

association mapping of disease genes in admixed populations (PATTERSON et al. 2004).

Recently, a variety of methods have been developed to harness large-scale genotype data to

infer admixture events in the history of sampled populations, as well as to estimate a range of gene

flow parameters, including ages, proportions, and sources. Some of the most popular approaches,

such as STRUCTURE (PRITCHARD et al. 2000) and principal component analysis (PCA) (PAT-

TERSON et al. 2006), use clustering algorithms to identify admixed populations as intermediates

in relation to surrogate ancestral populations. In a somewhat similar vein, local ancestry inference

methods (TANG et al. 2006; SANKARARAMAN et al. 2008; PRICE et al. 2009; LAWSON et al.

2012) analyze chromosomes of admixed individuals with the goal of recovering continuous blocks

inherited directly from each ancestral population. Because recombination breaks down ancestry

tracts through successive generations, the time of admixture can be inferred from the tract length

distribution (POOL and NIELSEN 2009; PUGACH et al. 2011; GRAVEL 2012), with the caveat that

accurate local ancestry inference becomes difficult when tracts are short or the reference popula-

tions used are highly diverged from the true mixing populations.

A third class of methods makes use of allele frequency differentiation among populations to

deduce the presence of admixture and estimate parameters, either with likelihood-based models

(CHIKHI et al. 2001; WANG 2003; SOUSA et al. 2009; WALL et al. 2009; LAVAL et al. 2010;

GRAVEL et al. 2011) or with phylogenetic trees built by taking moments of the site frequency

spectrum over large sets of SNPs (REICH et al. 2009; GREEN et al. 2010; PATTERSON et al. 2012;

PICKRELL and PRITCHARD 2012; LIPSON et al. 2012). For example, f -statistic-based three- and

four-population tests for admixture (REICH et al. 2009; GREEN et al. 2010; PATTERSON et al.
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2012) are highly sensitive in the proper parameter regimes and when the set of sampled popula-

tions sufficiently represents the phylogeny. One disadvantage of drift-based statistics, however, is

that because the rate of genetic drift depends on population size, these methods do not allow for

inference of the time that has elapsed since admixture events.

Finally, MOORJANI et al. (2011) recently proposed a fourth approach, using associations be-

tween pairs of loci to make inference about admixture, which we further develop in this article.

In general, linkage disequilibrium (LD) in a population can be generated by selection, genetic

drift, or population structure, and it is eroded by recombination. Within a homogeneous popu-

lation, steady-state neutral LD is maintained by the balance of drift and recombination, typically

becoming negligible in humans at distances of more than a few hundred kilobases (REICH et al.

2001; THE INTERNATIONAL HAPMAP CONSORTIUM 2007). Even if a population is currently

well-mixed, however, it can retain longer-range admixture LD (ALD) from admixture events in

its history involving previously separated populations. ALD is caused by associations between

nearby loci co-inherited on an intact chromosomal block from one of the ancestral mixing popula-

tions (CHAKRABORTY and WEISS 1988). Recombination breaks down these associations, leaving

a signature of the time elapsed since admixture that can be probed by aggregating pairwise LD

measurements through an appropriate weighting scheme; the resulting weighted LD curve (as a

function of genetic distance) exhibits an exponential decay with rate constant giving the age of

admixture (MOORJANI et al. 2011; PATTERSON et al. 2012). This approach to admixture dating

is similar in spirit to strategies based on local ancestry, but LD statistics have the advantage of a

simple mathematical form that facilitates error analysis.

In this paper, we comprehensively develop LD-based admixture inference, extending the method-

ology to several novel applications that constitute a versatile set of tools for investigating admix-

ture. We first propose a cleaner functional form of the underlying weighted LD statistic and provide

a precise mathematical development of its properties. As an immediate result of this theory, we

observe that our new weighted LD statistic can be used to infer mixture proportions as well as

dates, extending the results of PICKRELL et al. (2012). Moreover, such inference can still be per-
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formed (albeit with reduced power) when data are available from only the admixed population

and one surrogate ancestral population, whereas all previous techniques require at least two such

reference populations. As a second application, we present an LD-based three-population test for

admixture with sensitivity complementary to the 3-population f -statistic test (REICH et al. 2009;

PATTERSON et al. 2012) and characterize the scenarios in which each is advantageous. We further

show that phylogenetic relationships between true mixing populations and present-day references

can be inferred by comparing weighted LD curves using weights derived from a suite of refer-

ence populations. Finally, we describe several improvements to the computation and fitting of

weighted LD curves: we show how to detect confounding LD from sources other than admix-

ture, improving the robustness of our methods in the presence of such effects, and we present a

novel fast Fourier transform-based algorithm for weighted LD computation that reduces typical run

times from hours to seconds. We implement all of these advances in a software package, ALDER

(Admixture-induced Linkage Disequilibrium for Evolutionary Relationships).

We demonstrate the performance of ALDER by using it to test for admixture among all HGDP

populations (LI et al. 2008) and compare its results to those of the 3-population test, highlighting

the sensitivity trade-offs of each approach. We further illustrate our methodology with case stud-

ies of Central African Pygmies, Sardinians, and Japanese, revealing new details that add to our

understanding of admixture events in the history of each population.

METHODS

Properties of weighted admixture LD: In this section we introduce a weighted LD statistic that

uses the decay of LD to detect signals of admixture given SNP data from an admixed popula-

tion and reference populations. This statistic is similar to, but has an important difference from,

the weighted LD statistic used in ROLLOFF (MOORJANI et al. 2011; PATTERSON et al. 2012).

The formulation of our statistic is particularly important in allowing us to use the amplitude (i.e.,

y-intercept) of the weighted LD curve to make inferences about history. We begin by deriving

quantitative mathematical properties of this statistic that can be used to infer admixture parame-
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ters.

Basic model and notation: We will primarily consider a point-admixture model in which a pop-

ulation C ′ descends from a mixture of populations A and B to form C, n generations ago, in

proportions α+β = 1, followed by random mating (Figure 1). As we discuss later, we can assume

for our purposes that the genetic drift between C and C ′ is negligible, and hence we will simply

refer to the descendant population as C as well; we will state whether we mean the population

immediately after admixture vs. n generations later when there is any risk of ambiguity. We are

interested in the properties of the LD in population C induced by admixture. Consider two bial-

lelic, neutrally evolving SNPs x and y, and for each SNP call one allele ‘0’ and the other ‘1’ (this

assignment is arbitrary; ‘0’ and ‘1’ do not need to be oriented with regard to ancestral state via an

outgroup). Denote by pA(x), pB(x), pA(y), and pB(y) the frequencies of the ‘1’ alleles at x and y

in the mixing populations A and B (at the time of admixture), and let δ(x) := pA(x)− pB(x) and

δ(y) := pA(y)− pB(y) be the allele frequency differences.

Let d denote the genetic distance between x and y and assume that x and y were in linkage

equilibrium in populations A and B. Then the LD in population C immediately after admixture is

D0 = αβδ(x)δ(y),

where D is the standard haploid measure of linkage disequilibrium as the covariance of alleles at x

and y (CHAKRABORTY and WEISS 1988). After n generations of random mating, the LD decays

to

Dn = e−ndD0 = e−ndαβδ(x)δ(y)

assuming infinite population size (CHAKRABORTY and WEISS 1988). For a finite population, the

above formula holds in expectation with respect to random drift, with a small adjustment factor

caused by post-admixture drift (OHTA and KIMURA 1971):

E[Dn] = e−nde−n/2Neαβδ(x)δ(y),
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where Ne is the effective population size. In most applications the adjustment factor e−n/2Ne is

negligible, so we will omit it in what follows (MOORJANI et al. 2012, Note S1).

In practice, our data consist of unphased diploid genotypes, so we expand our notation accord-

ingly. Consider sampling a random individual from population C (n generations after admixture).

We use a pair of {0, 1} random variables X1 and X2 to refer to the two alleles at x and define ran-

dom variables Y1 and Y2 likewise. Our unphased SNP data represent observations of the {0, 1, 2}

random variables X := X1 +X2 and Y := Y1 + Y2.

Define z(x, y) to be the covariance

z(x, y) := cov(X, Y ) = cov(X1 +X2, Y1 + Y2), (1)

which can be decomposed into a sum of four haplotype covariances:

z(x, y) = cov(X1, Y1) + cov(X2, Y2) + cov(X1, Y2) + cov(X2, Y1). (2)

The first two terms measure D for the separate chromosomes, while the third and fourth terms

vanish, since they represent covariances between variables for different chromosomes, which are

independent. Thus, the expectation (again with respect to random drift) of the total diploid covari-

ance is simply

E[z(x, y)] = 2e−ndαβδ(x)δ(y). (3)

Relating weighted LD to admixture parameters: MOORJANI et al. (2011) first observed that pair-

wise LD measurements across a panel of SNPs can be combined to enable accurate inference of

the age of admixture, n. The crux of their approach was to harness the fact that the ALD between

two sites x and y scales as e−nd multiplied by the product of allele frequency differences δ(x)δ(y)

in the mixing populations. While the allele frequency differences δ(·) are usually not directly

computable, they can often be approximated. Thus, MOORJANI et al. (2011) formulated a method,

ROLLOFF, that dates admixture by fitting an exponential decay e−nd to correlation coefficients

between LD measurements and surrogates for δ(x)δ(y). Note that MOORJANI et al. (2011) define
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z(x, y) as a sample correlation coefficient, analogous to the classical LD measure r, as opposed to

the sample covariance (1) we use here; we find the latter more mathematically convenient.

We build upon these previous results by deriving exact formulas for weighted sums of ALD

under a variety of weighting schemes that serve as useful surrogates for δ(x)δ(y) in practice.

These calculations will allow us to interpret the magnitude of weighted ALD to obtain additional

information about admixture parameters. Additionally, the theoretical development will generally

elucidate the behavior of weighted ALD and its applicability in various phylogenetic scenarios.

Following MOORJANI et al. (2011), we partition all pairs of SNPs (x, y) into bins of roughly

constant genetic distance:

S(d) :=
{

(x, y) : d− ε

2
< |x− y| < d+

ε

2

}
,

where ε is a discretization parameter inducing a discretization on d. Given a choice of weights

w(·), one per SNP, we define the weighted LD at distance d as

a(d) :=

∑
S(d) z(x, y)w(x)w(y)

|S(d)|
.

Assume first that our weights are the true allele frequency differences in the mixing popula-

tions, i.e., w(x) = δ(x) for all x. Applying (3),

E[a(d)] = E

[∑
S(d) z(x, y)δ(x)δ(y)

|S(d)|

]

=

∑
S(d) 2αβE[δ(x)2δ(y)2]e−nd

|S(d)|
= 2αβF2(A,B)2e−nd, (4)

where F2(A,B) is the expected squared allele frequency difference for a randomly drifting neutral

allele, as defined in REICH et al. (2009) and PATTERSON et al. (2012). Thus, a(d) has the form of

an exponential decay as a function of d, with time constant n giving the date of admixture.

In practice, we must compute an empirical estimator of a(d) from a finite number of sampled

genotypes. Say we have a set of m diploid admixed samples from population C indexed by i =

1, . . . ,m, and denote their genotypes at sites x and y by xi, yi ∈ {0, 1, 2}. Also assume we have
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some finite number of reference individuals from A and B with empirical mean allele frequences

p̂A(·) and p̂B(·). Then our estimator is

â(d) :=

∑
S(d)

̂cov(X, Y )(p̂A(x)− p̂B(x))(p̂A(y)− p̂B(y))

|S(d)|
, (5)

where

̂cov(X, Y ) =
1

m− 1

m∑
i=1

(xi − x)(yi − y)

is the usual unbiased sample covariance, so the expectation over the choice of samples satisfies

E[â(d)] = a(d) (assuming no background LD, so the ALD in population C is independent of the

drift processes producing the weights).

The weighted sum
∑
S(d) z(x, y)w(x)w(y) is a natural quantity to use for detecting ALD decay

and is common to our weighted LD statistic â(d) and previous formulations of ROLLOFF. Indeed,

for SNP pairs (x, y) at a fixed distance d, we can think of equation (3) as providing a simple lin-

ear regression model between LD measurements z(x, y) and allele frequency divergence products

δ(x)δ(y). In practice, the linear relation is made noisy by random sampling, as noted above, but

the regression coefficient 2αβe−nd can be inferred by combining measurements from many SNP

pairs (x, y). In fact, the weighted sum
∑
S(d) ẑ(x, y)δ̂(x)δ̂(y) in the numerator of formula (5) is

precisely the numerator of the least-squares estimator of the regression coefficient, which is the

formulation of ROLLOFF given in MOORJANI et al. (2012, Note S1). Note that measurements

of z(x, y) cannot be combined directly without a weighting scheme, as the sign of the LD can

be either positive or negative; additionally, the weights tend to preserve signal from ALD while

depleting contributions from other forms of LD.

Up to scaling, our ALDER formulation is roughly equivalent to the regression coefficient for-

mulation of ROLLOFF (MOORJANI et al. 2012, Note S1). In contrast, the original ROLLOFF

statistic (PATTERSON et al. 2012) computed a correlation coefficient between z(x, y) andw(x)w(y)

over S(d). However, the normalization term
√∑

S(d) z(x, y)2 in the denominator of the correla-

tion coefficient can exhibit an unwanted d-dependence that biases the inferred admixture date if the

admixed population has undergone a strong bottleneck (MOORJANI et al. 2012, Note S1) or in the
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case of recent admixture and large sample sizes. Beyond correcting the date bias, the â(d) curve

that ALDER computes has the advantage of a simple form for its amplitude in terms of meaningful

quantities, providing us additional leverage on admixture parameters. Additionally, we will show

that â(d) can be computed efficiently via a new fast Fourier transform-based algorithm.

Using weights derived from diverged reference populations: In the above development, we set the

weights w(x) to equal the allele frequency differences δ(x) between the true mixing populations

A and B. In practice, in the absence of DNA samples from past populations, it is impossible to

measure historical allele frequencies from the time of mixture, so instead, we substitute reference

populations A′ andB′ that are accessible, setting w(x) = δ′(x) := pA′(x)−pB′(x). In a given data

set, the closest surrogates A′ and B′ may be somewhat diverged from A and B, so it is important

to understand the consequences for the weighted LD a(d).

We show in Appendix 1 that with reference populations A′ and B′ in place of A and B, equa-

tion (4) for the expected weighted LD curve changes only slightly, becoming

E[a(d)] = 2αβF2(A
′′, B′′)2e−nd, (6)

where A′′ and B′′ are the branch points of A′ and B′ on the A–B lineage (Figure 1). Notably, the

curve still has the form of an exponential decay with time constant n (the age of admixture), albeit

with its amplitude (and therefore signal-to-noise ratio) attenuated according to how far A′′ and B′′

are from the true ancestral mixing populations. Drift along theA′–A′′ andB′–B′′ branches likewise

decreases signal-to-noise but in the reverse manner: higher drift on these branches makes the

weighted LD curve noisier but does not change its expected amplitude (Figure S1; see Appendix 3

for additional discussion). As above, given a real data set containing finite samples, we compute

an estimator â(d) analogous to formula (5) that has the same expectation (over sampling and drift)

as the expectation of a(d) with respect to drift (6).

Using the admixed population as one reference: Weighted LD can also be computed with only

a single reference population by using the admixed population as the other reference (PICKRELL
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et al. 2012, Supplement Sec. 4). Assuming first that we know the allele frequencies of the ancestral

mixing population A and the admixed population C, the formula for the expected curve becomes

E[a(d)] = 2αβ3F2(A,B)2e−nd. (7)

Using C itself as one reference population and R′ as the other reference (which could branch

anywhere between A and B), the formula for the amplitude is slightly more complicated, but the

curve retains the e−nd decay (Figure S2):

E[a(d)] = 2αβ(αF2(A,R
′′)− βF2(B,R

′′))2e−nd. (8)

Derivations of these formulas are given in Appendix 1.

A subtle but important technical issue arises when computing weighted LD with a single refer-

ence. In this case, the true weighted LD statistic is

a(d) = cov(X, Y )(µx − p(x))(µy − p(y)),

where

µx = αpA(x) + βpB(x) and µy = αpA(y) + βpB(y)

are the mean allele frequencies of the admixed population (ignoring drift) and p(·) denotes allele

frequencies of the reference population. Here a(d) cannot be estimated accurately by the naı̈ve

formula

̂cov(X, Y )(µ̂x − p̂(x))(µ̂y − p̂(y)),

which is the natural analog of (5). The difficulty is that the covariance term and the weights both

involve the allele frequencies µx and µy; thus, while the standard estimators for each term are

individually unbiased, their product is a biased estimate of the weighted LD.

PICKRELL et al. (2012) circumvents this problem by partitioning the admixed samples into

two groups, designating one group for use as admixed representatives and the other as a reference

population; this method eliminates bias but reduces statistical power. We instead compute a poly-

ache statistic (File S1) that provides an unbiased estimator â(d) of the weighted LD with maximal

power.
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Affine term in weighted LD curve from population substructure: Weighted LD curves computed

on real populations often exhibit a nonzero horizontal asymptote contrary to the exact exponen-

tial decay formulas we have derived above. Such behavior can be caused by assortative mating

resulting in subpopulations structured by ancestry percentage in violation of our model. We show

in Appendix 1 that if we instead model the admixed population as consisting of randomly mating

subpopulations with heterogeneous amounts α—now a random variable—of mixed ancestry, our

equations for the curves take the form

E[a(d)] = Me−nd +K, (9)

where M is a coefficient representing the contribution of admixture LD and K is an additional

constant produced by substructure. Conveniently, however, the sum M + K/2 satisfies the same

equations that the coefficient of the exponential does in the homogeneous case: adjusting equa-

tion (6) for population substructure gives

M +K/2 = 2αβF2(A
′′, B′′)2 (10)

for two-reference weighted LD, and in the one-reference case, modifying equation (8) gives

M +K/2 = 2αβ(αF2(A,R
′′)− βF2(B,R

′′))2. (11)

For brevity, from here on we will take the amplitude of an exponential-plus-affine curve to mean

M +K/2.

Admixture inference using weighted LD: We now describe how the theory we have developed

can be used to investigate admixture. We detail novel techniques that use weighted LD to infer

admixture parameters, test for admixture, and learn about phylogeny.

Inferring admixture dates and fractions using one or two reference populations: As noted above,

our ALDER formulation of weighted LD hones the original two-reference admixture dating tech-

nique of ROLLOFF (MOORJANI et al. 2011), correcting a possible bias (MOORJANI et al. 2012,
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Note S1), and the one-reference technique (PICKRELL et al. 2012), improving statistical power.

PICKRELL et al. (2012) also observed that weighted LD can be used to estimate ancestral mixing

fractions. We further develop this application now.

The main idea is to treat our expressions for the amplitude of the weighted LD curve as equa-

tions that can be solved for the ancestry fractions α and β = 1 − α. First consider two-reference

weighted LD. Given samples from an admixed population C and reference populations A′ and B′,

we compute the curve â(d) and fit it as an exponential decay plus affine term: â(d) ≈ M̂e−nd + K̂.

Let â0 := M̂ + K̂/2 denote the amplitude of the curve. Then equation (10) gives us a quadratic

equation that we can solve to obtain an estimate α̂ of the mixture fraction α,

2α̂(1− α̂)F2(A
′′, B′′)2 = â0,

assuming we can estimate F2(A
′′, B′′)2. Typically the branch-point populations A′′ and B′′ are

unavailable, but their F2 distance can be computed by means of an admixture tree (PATTERSON

et al. 2012; PICKRELL and PRITCHARD 2012; LIPSON et al. 2012). A caveat of this approach is

that α and 1 − α produce the same amplitude and cannot be distinguished by this method alone;

additionally, the inversion problem is ill-conditioned near α = 0.5, where the derivative of the

quadratic vanishes.

The situation is more complicated when using the admixed population as one reference. First,

the amplitude relation from equation (11) gives a quartic equation in α̂:

2α̂(1− α̂)[α̂F2(A,R
′′)− (1− α̂)F2(B,R

′′)]2 = â0.

Second, the F2 distances involved are in general not possible to calculate by solving allele fre-

quency moment equations (PATTERSON et al. 2012; LIPSON et al. 2012). In the special case that

one of the true mixing populations is available as a reference, however—i.e., R′ = A—PICKRELL

et al. (2012) demonstrated that mixture fractions can be estimated much more easily. From equa-

tion (7), the expected amplitude of the curve is 2αβ3F2(A,B)2. On the other hand, assuming no

drift in C since the admixture, allele frequencies in C are given by weighted averages of allele
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frequencies in A and B with weights α and β; thus, the squared allele frequency differences from

A to B and C satisfy

F2(A,C) = β2F2(A,B),

and F2(A,C) is estimable directly from the sample data. Combining these relations, we can obtain

our estimate α̂ by solving the equation

2α̂/(1− α̂) = â0/F2(A,C)2. (12)

In practice, the true mixing population A is not available for sampling, but a closely-related

population A′ may be. In this case, the value of α̂ given by equation (12) with A′ in place of

A is a lower bound on the true mixture fraction α (see Appendix 1 for theoretical development

and Results for simulations exploring the tightness of the bound). This bounding technique is

the most compelling of the above mixture fraction inference approaches, as prior methods cannot

perform such inference with only one reference population. In contrast, when more references

are available, moment-based admixture tree-fitting methods, for example, readily estimate mixture

fractions (PATTERSON et al. 2012; PICKRELL and PRITCHARD 2012; LIPSON et al. 2012). In such

cases we believe that existing methods are more robust than LD-based inference, which suffers

from the degeneracy of solutions noted above; however, the weighted LD approach can provide

confirmation based on a different genetic mechanism.

Testing for admixture: Thus far, we have taken it as given that the population C of interest is ad-

mixed and developed methods for inferring admixture parameters by fitting weighted LD curves.

Now we consider the question of whether weighted LD can be used to determine whether admix-

ture occurred in the first place. We develop a weighted LD-based formal test for admixture that

is broadly analogous to the drift-based 3-population test (REICH et al. 2009; PATTERSON et al.

2012) but sensitive in different scenarios.

A complication of interpreting weighted LD is that certain demographic events other than ad-

mixture can also produce positive weighted LD that decays with genetic distance, particularly in
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the one-reference case. Specifically, if population C has experienced a recent bottleneck or an

extended period of low population size, it may contain long-range LD. Furthermore, this LD typi-

cally has some correlation with allele frequencies in C; consequently, using C as one reference in

the weighting scheme produces a spurious weighted LD signal.

In the two-reference case, LD from reduced population size in C is generally washed out by

the weighting scheme assuming the reference populations A′ and B′ are not too genetically similar

to C. The reason is that the weights δ(·) = pA′(·)− pB′(·) arise from drift between A′ and B′ that

is independent of demographic events producing LD in C (beyond genetic distances that are so

short that the populations share haplotypes descended without recombination from their common

ancestral haplotype). Thus, observing a two-reference weighted LD decay curve is generally good

evidence that population C is admixed. There is still a caveat, however. If C and one of the

references, say A′, share a recent population bottleneck, then the bottleneck-induced LD in C can

be correlated to the allele frequencies of A′, resulting once again in spurious weighted LD. In fact,

the one-reference example mentioned above is the limiting case A′ = C of this situation.

With these considerations in mind, we propose an LD-based three-population test for admixture

that includes a series of pre-tests safeguarding against the pathological demographies that can

produce a non-admixture weighted LD signal. We outline the test now; details are in Appendix 2.

Given a population C to test for admixture and references A′ and B′, the main test is whether the

observed weighted LD â(d) using A′–B′ weights is positive and well-fit by an exponential decay

curve. We estimate a jackknife-based p-value by leaving out each chromosome in turn and re-

fitting the weighted LD as an exponential decay; the jackknife then gives us a standard error on

the fitting parameters—namely, the amplitude and the decay constant—that we use to measure the

significance of the observed curve.

The above procedure allows us to determine whether there is sufficient signal in the weighted

LD curve to reject the null hypothesis (under which â(d) is random “colored” noise in the sense

that it contains autocorrelation). However, in order to conclude that the curve is the result of

admixture, we must rule out the possibility that it is being produced by demography unrelated to
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admixture. We therefore apply the following pre-test procedure. First, we determine the distance

to which LD in C is significantly correlated with LD in either A′ or B′; to minimize signal from

shared demography, we subsequently ignore data from SNP pairs at distances smaller than this

correlation threshold. Then, we compute one-reference weighted LD curves for population C with

A′–C and B′–C weights and check that the curves are well-fit as exponential decays. In the case

that C is actually admixed between populations related to A′ and B′, the one-reference A′–C and

B′–C curves pick up the same e−nd admixture LD decay signal. If C is not admixed but has

experienced a shared bottleneck with A′ (producing false-positive admixture signals from the A′–

B′ and B′–C curves), however, the A′–C weighting scheme is unlikely to produce a weighted LD

curve, especially when fitting beyond the LD correlation threshold.

This test procedure is intended to be conservative, so that a population C identified as admixed

can strongly be assumed to be so, whereas if C is not identified as admixed, we are less confident

in claiming that C has experienced no admixture whatsoever. In situations where distinguishing

admixture from other demography is particularly difficult, the test will err on the side of caution; for

example, even if C is admixed, the test may fail to identify C as admixed if it has also experienced

a bottleneck. Also, if a reference A′ shares some of the same admixture history as C or is simply

very closely related to C, the pre-test will typically identify long-range correlated LD and deem A′

an unsuitable reference to use for testing admixture. The behavior of the test and pre-test criteria

are explored in detail with coalescent simulations in Appendix 3.

Learning about phylogeny: Given a triple of populations (C;A′, B′), our test can identify admix-

ture in the test population C, but what does this imply about the relationship of populations A′

and B′ to C? As with the drift-based 3-population test, test results must be interpreted carefully:

even if C is admixed, this does not necessarily mean that the reference populations A′ and B′ are

closely related to the true mixing populations. However, computing weighted LD curves with a

suite of different references can elucidate the phylogeny of the populations involved, since our am-

plitude formulas (10) and (11) provide information about the locations on the phylogeny at which
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the references diverge from the true mixing populations.

More precisely, in the notation of Figure 1, the amplitude of the two-reference weighted LD

curve is 2αβF2(A
′′, B′′)2, which is maximized when A′′ = A and B′′ = B and is minimized when

A′′ = B′′. So, for example, we can fix A′ and compute curves for a variety of references B′; the

larger the resulting amplitude, the closer the branch point B′′ is to B. In the one-reference case, as

the reference R′ is varied, the amplitude 2αβ(αF2(A,R
′′) − βF2(B,R

′′))2 traces out a parabola

that starts at 2αβ3F2(A,B)2 whenR′′ = A, decreases to a minimum value of 0, and increases again

to 2α3βF2(A,B)2 when R′′ = B (Figure S2). Here, the procedure is more qualitative because the

branches F2(A,R
′′) and F2(B,R

′′) are less directly useful and the mixture proportions α and β

may not be known.

Implementation of ALDER: We now describe some more technical details of the ALDER soft-

ware package in which we have implemented our weighted LD methods.

Fast Fourier transform algorithm for computing weighted LD: We developed a novel algorithm

that algebraically manipulates the weighted LD statistic into a form that can be computed using a

fast Fourier transform (FFT), dramatically speeding up the computation (File S2). The algebraic

transformation is made possible by the simple form (5) of our weighted LD statistic along with a

genetic distance discretization procedure that is similar in spirit to ROLLOFF (MOORJANI et al.

2011) but subtly different: instead of binning the contributions of SNP pairs (x, y) by discretizing

the genetic distance |x − y| = d, we discretize the genetic map positions x and y themselves

(using a default resolution of 0.05 cM) (Figure S3). For two-reference weighted LD, the resulting

FFT-based algorithm that we implemented in ALDER has computational cost that is approximately

linear in the data size; in practice, it ran three orders of magnitude faster than ROLLOFF on typical

data sets we analyzed.

Curve-fitting: We fit discretized weighted LD curves â(d) as M̂e−nd + K̂ from equation (9),

using least-squares to find best-fit parameters. This procedure is similar to ROLLOFF, but ALDER
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makes two important technical advances that significantly improve the robustness of the fitting.

First, ALDER directly estimates the affine term K that arises from the presence of subpopulations

with differing ancestry percentages by using inter-chromosome SNP pairs that are effectively at

infinite genetic distance (Appendix 1). The algorithmic advances we implement in ALDER enable

efficient computation of the average weighted LD over all pairs of SNPs on different chromosomes,

giving K̂ and, importantly, eliminating one parameter from the exponential fitting. In practice, we

have observed that ROLLOFF fits are sometimes sensitive to the maximum inter-SNP distance d

to which the weighted LD curve is computed and fit; ALDER eliminates this sensitivity.

Second, because background LD is present in real populations at short genetic distances and

confounds the ALD signal (interfering with parameter estimates or producing spurious signal en-

tirely), it is important to fit weighted LD curves starting only at a distance beyond which back-

ground LD is negligible. ROLLOFF used a fixed threshold of d > 0.5 cM, but some populations

have longer-range background LD (e.g., from bottlenecks), and moreover, if a reference population

is closely related to the test population, it can produce a spurious weighted LD signal due to recent

shared demography. ALDER therefore estimates the extent to which the test population shares

correlated LD with the reference(s) and only fits the weighted LD curve beyond this minimum

distance as in our test for admixture (Appendix 2).

We estimate standard errors on parameter estimates by performing a jackknife over the auto-

somes used in the analysis, leaving out each in turn. Note that the weighted LD measurements

from individual pairs of SNPs that go into the computed curve â(d) are not independent of each

other; however, the contributions of different chromosomes can reasonably be assumed to be inde-

pendent.

Data sets: We primarily applied our weighted LD techniques to a data set of 940 individuals in

53 populations from the CEPH-Human Genome Diversity Cell Line Panel (HGDP) (ROSENBERG

et al. 2002) genotyped on an Illumina 650K SNP array (LI et al. 2008). To study the effect of SNP

ascertainment, we also analyzed the same HGDP populations genotyped on the Affymetrix Human
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Origins Array (PATTERSON et al. 2012). For some analyses we also included HapMap Phase 3 data

(THE INTERNATIONAL HAPMAP CONSORTIUM 2010) merged either with the Illumina HGDP

data set, leaving approximately 600K SNPs, or with the Indian data set of REICH et al. (2009)

including 16 Andaman Islanders (9 Onge and 7 Great Andamanese), leaving 500K SNPs.

We also constructed simulated admixed chromosomes from 112 CEU and 113 YRI phased

HapMap individuals using the following procedure, described in MOORJANI et al. (2011). Given

desired ancestry proportions α and β, the age n of the point admixture, and the number m of

admixed individuals to simulate, we built each admixed chromosome as a composite of chromo-

somal segments from the source populations, choosing breakpoints via a Poisson process with

rate constant n, and sampling blocks at random according to the specified mixture fractions. We

stipulated that no individual haplotype could be reused at a given locus among the m simulated

individuals, preventing unnaturally long identical-by-descent segments but effectively eliminating

post-admixture genetic drift. For the short time scales we study (admixture occurring 200 or fewer

generations ago), this approximation has little impact. We used this method in order to maintain

some of the complications inherent in real data.

RESULTS

Simulations: First, we demonstrate the accuracy of several forms of inference from ALDER on

simulated data. We generated simulated genomes for mixture fractions of 75% YRI / 25% CEU

and 90% YRI / 10% CEU and admixture dates of 10, 20, 50, 100, and 200 generations ago. For

each mixture scenario we simulated 40 admixed individuals according to the procedure above.

We first investigated the admixture dates estimated by ALDER using a variety of reference

populations drawn from the HGDP with varying levels of divergence from the true mixing popula-

tions. On the African side, we used HGDP Yoruba (21 samples; essentially the same population as

HapMap YRI) and San (5 samples); on the European side, we used French (28 samples; very close

to CEU), Han (34 samples), and Papuan (17 samples). We computed two-reference weighted LD

curves using pairs of references, one from each group, as well as one-reference curves using the
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simulated population as one reference and each of the above HGDP populations as the other.

For the 75% YRI mixture, estimated dates are nearly all accurate to within 10% (Table S1).

The noise levels of the fitted dates (estimated by ALDER using the jackknife) are the lowest for the

Yoruba–French curve, as expected, followed by the one-reference curve with French, consistent

with the admixed population being mostly Yoruba. The situation is similar but noisier for the

90% YRI mixture (Table S2); in this case, the one-reference signal is quite weak with Yoruba and

undetectable with San as the reference, due to the scaling of the amplitude (equation (11)) with the

cube of the CEU mixture fraction.

We also compared fitted amplitudes of the weighted LD curves for the same scenarios to those

predicted by formulas (10) and (11); the accuracy trends are similar (Tables S3, S4). Finally, we

tested formula (12) for bounding mixture proportions using one-reference weighted LD ampli-

tudes. We computed lower bounds on the European ancestry fraction using French, Russian, Sar-

dinian, and Kalash as successively more diverged references. As expected, the bounds are tight for

the French reference and grow successively weaker (Tables S5, S6). We also tried lower-bounding

the African ancestry using one-reference curves with an African reference. In general, we expect

lower bounds computed for the major ancestry proportion to be much weaker (Appendix 1), and

indeed we find this to be the case, with the only slightly diverged Mandenka population producing

extremely weak bounds. An added complication is that the Mandenka are an admixed population

with a small amount of West Eurasian ancestry (PRICE et al. 2009), which is not accounted for in

the amplitude formulas we use here.

Another notable feature of ALDER is that, to a much greater extent than f -statistic methods,

its inference quality improves with more samples from the admixed test population. As a demon-

stration of this, we simulated a larger set of 100 admixed individuals as above, for both 75% YRI /

25% CEU and 90% YRI / 10% CEU scenarios, and compared the date estimates obtained on sub-

sets of 5–100 of these individuals with two different reference pairs (Tables S7, S8). With larger

sample sizes, the estimates become almost uniformly more accurate, with smaller standard errors.

By contrast, we observed that while using a very small sample size (say 5) for the reference pop-
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ulations does create noticeable noise, using 20 samples already gives allele frequency estimates

accurate enough that adding more reference samples has only minimal effects on the performance

of ALDER. This is similar to the phenomenon that the precision of f -statistics does not improve

appreciably with more than a moderate number of samples and is due to the inherent variability in

genetic drift among different loci.

Robustness: A challenge of weighted LD analysis is that owing to various kinds of model vio-

lation, the parameters of the exponential fit of an observed curve â(d) may depend on the starting

distance d0 from which the curve is fit. We therefore explored the robustness of the fitting param-

eters to the choice of d0 in a few scenarios (Figure 2). First, in a simulated 75% / 25% YRI–CEU

admixture 50 generations ago, we find that the decay constant and amplitude are both highly ro-

bust to varying d0 from 0.5 to 2.0 cM (Figure 2, top). This result is not surprising because our

simulated example represents a true point admixture with minimal background LD in the admixed

population.

In practice, we expect some dependence on d0 due to background LD or longer-term admixture

(either continuously over a stretch of time or in multiple waves). Both of these will tend to increase

the weighted LD for smaller values of d relative to an exact exponential curve, so that estimates of

the decay constant and amplitude will decrease as we increase the fitting start point d0; the extent

to which this effect occurs will depend on the extent of the model violation. We studied the d0-

dependence for two example admixed populations, HGDP Uygur and HapMap Maasai (MKK).

For Uygur, the estimated decay constants and amplitudes are fairly robust to the start point of

the fitting, varying roughly by ±10% (Figure 2, middle). In contrast, the estimates for Maasai

vary dramatically, decreasing by more than a factor of 2 as d0 is increased from 0.5 to 2.0 cM

(Figure 2, bottom). This behavior is likely due to multiple-wave admixture in the genetic history

of the Maasai; indeed, it is visually evident that the weighted LD curve for Maasai deviates from

an exponential fit (Figure 2) and is in fact better-fit as a sum of exponentials. (See Figure S4 and

Appendix 3 for further simulations exploring continuous admixture.)
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It is also important to consider the possibility of SNP ascertainment bias, as in any study based

on allele frequencies. We believe that for weighted LD, ascertainment bias could have modest

effects on the amplitude, which depends on F2 distances (PATTERSON et al. 2012; LIPSON et al.

2012), but will not affect the estimated date. Running ALDER on a suite of admixed populations

in the HGDP under a variety of ascertainment schemes suggests that admixture date estimates are

indeed quite stable to ascertainment (Table S9). Meanwhile, the amplitudes of the LD curves can

scale substantially when computed under different SNP ascertainments, but their relative values

are only different for extreme cases of African vs. non-African test populations under African vs.

non-African ascertainment (Table S10; cf. Table 2 of PATTERSON et al. (2012)).

Admixture test results for HGDP populations: To compare the sensitivity of our LD-based test

for admixture to the f -statistic-based 3-population test, we ran both ALDER and the 3-population

test on all triples of populations in the HGDP. Interestingly, while the tests concur on the majority

of the populations they identify as admixed, each also identifies several populations as admixed that

the other does not (Table 1), showing that the tests have differing sensitivity to different admixture

scenarios.

Admixture identified only by ALDER: The 3-population test loses sensitivity primarily as a re-

sult of drift since splitting from the references’ lineages. More precisely, using the notation of

Figure 1, the 3-population test statistic f3(C;A′, B′) estimates the sum of two directly competing

terms: −αβF2(A
′′, B′′), the negative quantity arising from admixture that we wish to detect, and

α2F2(A
′′, A) + β2F2(B

′′, B) + F2(C,C
′), a positive quantity from the “off-tree” drift branches.

If the latter term dominates, the 3-population test will fail to detect admixture regardless of the

statistical power available. For example, Melanesians are only found to be admixed according to

the ALDER test; the inability of the 3-population test to identify them as admixed is likely due

to long off-tree drift from the Papuan branch prior to admixture. The situation is similar for the

Pygmies, for whom we do not have two close references available.
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Small mixture fractions also diminish the size of the admixture term −αβF2(A,B) relative

to the off-tree drift, and we believe this effect along with post-admixture drift may be the reason

Sardinians are detected as admixed only by ALDER. In the case of the San, who have a small

amount of Bantu admixture (PICKRELL et al. 2012), the small mixture fraction may again play

a role, along with the lack of a reference population closely related to the pre-admixture San,

meaning that using existing populations incurs long off-tree drift.

Admixture identified only by the 3-population test: There are also multiple reasons why the 3-

population test can identify admixture when ALDER does not. For the HGDP European popu-

lations in this category (Table 1), the 3-population test is picking up a signal of admixture iden-

tified by PATTERSON et al. (2012) and interpreted there as a large-scale admixture event in Eu-

rope involving Neolithic farmers closely related to present-day Sardinians and an ancient northern

Eurasian population. This mixture likely began quite anciently (e.g. 7,000-9,000 years ago when

agriculture arrived in Europe (BRAMANTI et al. 2009; SOARES et al. 2010; PINHASI et al. 2012)),

and because admixture LD breaks down as e−nd, where n is the age of admixture, there is nearly

no LD left for ALDER to harness beyond the correlation threshold d0. An additional factor that

may inhibit LD-based testing is that in order to prevent false-positive identifications of admixture,

ALDER typically eliminates reference populations that share LD (and in particular, admixture his-

tory) with the test population, whereas the 3-population test can use such references.

To summarize, the ALDER and 3-population tests both analyze a test population for admixture

using two references, but they detect signal based on different “genetic clocks.” The 3-population

test uses signal from genetic drift, which can detect quite old admixture but must overcome a

counteracting contribution from post-admixture and off-tree drift. The LD-based test uses recom-

bination, which is relatively unaffected by small population size-induced long drift and has no

directly competing effect, but has limited power to detect chronologically old admixtures because

of the rapid decay of the LD curve. Additionally, as discussed above in the context of simulation

results, the LD-based test may be better suited for large data sets, since its power is enhanced more
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by the availability of many samples. The tests are thus complementary and both valuable. (See

Figure S5 and Appendix 3 for further exploration.)

Case studies: We now present detailed results for several human populations, all of which ALDER

identifies as admixed but are not found by the 3-population test (Table 1). We infer dates of

admixture and in some cases gain additional historical insights.

Pygmies: Both Central African Pygmy populations in the HGDP, the Mbuti and Biaka, show

evidence of admixture (Table 1), about 28 ± 4 generations (800 years) ago for Mbuti and 38 ± 4

generations (1100 years) ago for Biaka, estimated using San and Yoruba as reference populations

(Figure 3A,C). The intra-population heterogeneity is low, as demonstrated by the negligible affine

terms. In each case, we also generated weighted LD curves with the Pygmy population itself as one

reference and a variety of second references. We found that using French, Han, or Yoruba as the

second reference gave very similar amplitudes, but the amplitude was significantly smaller with the

other Pygmy population or San as the second reference (Figure 3B,D). Using the amplitudes with

Yoruba, we estimated mixture fractions of at least 15.9 ± 0.9% and 28.8 ± 1.4% Yoruba-related

ancestry (lower bounds) for Mbuti and Biaka, respectively.

The phylogenetic interpretation of the relative amplitudes is complicated by the fact that the

Pygmy populations, used as references, are themselves admixed, but a plausible coherent expla-

nation is as follows (see Figure 3E). We surmise that a proportion β (bounds given above) of

Bantu-related gene flow reached the native Pygmy populations on the order of 1000 years ago.

The common ancestors of Yoruba or non-Africans with the Bantu population are genetically not

very different from Bantu, due to high historical population sizes (branching at positions X1 and

X2 in Figure 3E). Thus, the weighted LD amplitudes using Yoruba or non-Africans as second ref-

erences are nearly 2α3βF2(A,B)2, where B denotes the admixing Bantu population. Meanwhile,

San and Western (resp. Eastern) Pygmies split from the Bantu-Mbuti (resp. Biaka) branch toward

the middle or the opposite side from Bantu (X3 and X4), giving a smaller amplitude (Figure S2).

25



Our results are in agreement with previous studies that have found evidence of gene flow from

agriculturalists to Pygmies (QUINTANA-MURCI et al. 2008; VERDU et al. 2009; PATIN et al.

2009; JARVIS et al. 2012). QUINTANA-MURCI et al. (2008) suggested based on mtDNA evidence

in Mbuti that gene flow ceased several thousand years ago, but more recently, JARVIS et al. (2012)

found evidence of admixture in Western Pygmies, with a local-ancestry-inferred block length dis-

tribution of 3.1± 4.6 Mb (mean and standard deviation), consistent with our estimated dates.

Sardinians: We detect a very small proportion of Sub-Saharan African ancestry in Sardinians,

which our ALDER tests identified as admixed (Table 1; Figure 4A). To investigate further, we

computed weighted LD curves with Sardinian as the test population and all pairs of the HapMap

CEU, YRI and CHB populations as references (Table 2). We observed an abnormally large amount

of shared long-range LD in chromosome 8, likely do to an extended inversion segregating in Eu-

ropeans (PRICE et al. 2008), so we omitted it from these analyses. The CEU–YRI curve has the

largest amplitude, suggesting both that the LD present is due to admixture and that the small non-

European ancestry component, for which we estimated a lower bound of 0.6±0.2%, is from Africa.

(For this computation we used single-reference weighted LD with YRI as the reference, fitting the

curve after 1.2 cM to reduce confounding effects from correlated LD that ALDER detected between

Sardinian and CEU. Changing the starting point of the fit does not qualitatively affect the results.)

The existence of a weighted LD decay curve with CHB and YRI as references provides further

evidence that the LD is not simply due to a population bottleneck or other non-admixture sources,

as does the fact that our estimated dates from all three reference pairs are roughly consistent at

about 40 generations (1200 years) ago. Our findings thus confirm the signal of African ancestry

in Sardinians reported in MOORJANI et al. (2011). The date, small mixture proportion, and ge-

ography are consistent with a small influx of migrants from North Africa, who themselves traced

only a fraction of their ancestry ultimately to Sub-Saharan Africa, consistent with the findings of

DUPANLOUP et al. (2004).
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Japanese: Genetic studies have suggested that present-day Japanese are descended from admix-

ture between two waves of settlers, responsible for the Jomon and Yayoi cultures (HAMMER and

HORAI 1995; HAMMER et al. 2006; RASTEIRO and CHIKHI 2009). We also observed evidence of

admixture in Japanese, and while our ability to learn about the history was limited by the absence

of a close surrogate for the original Paleolithic mixing population, we were able to take advantage

of the one-reference inference capabilities of ALDER. More precisely, among our tests using all

pairs of HGDP populations as references (Table 1), one reference pair, Basque and Yakut, pro-

duced a passing test for Japanese. However, as we have noted, the reference populations need not

be closely related to the true mixing populations, and we believe that in this case this seemingly

odd reference pair arises as the only passing test because the data set lacks a close surrogate for

Jomon.

In the absence of a reference on the Jomon side, we computed single-reference weighted LD

using HapMap JPT as the test population and JPT–CHB weights, which confer the advantage of

larger sample sizes (Figure 4B). The weighted LD curve displays a clear decay, yielding an estimate

of 45 ± 6 generations, or about 1,300 years, as the age of admixture. To our knowledge, this is

the first time genome-wide data have been used to date admixture in Japanese. As with previous

estimates based on coalescence of Y-chromosome haplotypes (HAMMER et al. 2006), our date is

consistent with the archaeologically attested arrival of the Yayoi in Japan roughly 2300 years ago

(we suspect that our estimate is from later than the initial arrival because admixture may not have

happened immediately or may have taken place over an extended period of time). Based on the

amplitude of the curve, we also obtain a (likely very conservative) genome-wide lower bound of

41± 3% “Yayoi” ancestry using formula (12) (under the reasonable assumption that Han Chinese

are fairly similar to the Yayoi population). It is important to note that the observation of a single-

reference weighted LD curve is not sufficient evidence to prove that a population is admixed, but

the existence of a pair of references with which the ALDER test identified Japanese as admixed,

combined with previous work and the lack of any signal of reduced population size, makes us

confident that our inferences are based on true historical admixture.
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Onge: Lastly, we provide a cautionary example of weighted LD decay curves arising from demog-

raphy and not admixture. We observed distinct weighted LD curves when analyzing the Onge, an

indigenous population of the Andaman Islands. However, this curve is only present when using

Onge themselves as one reference; moreover, the amplitude is independent of whether CEU, CHB,

YRI, GIH (HapMap Gujarati), or Great Andamanese is used as the second reference (Figure 5),

as expected if the weighted LD is due to correlation between LD and allele frequencies in the test

population alone (and independent of the reference allele frequencies). Correspondingly, ALDER’s

LD-based test does not identify Onge as admixed using any pair of these references. Thus, while

we cannot definitively rule out admixture, the evidence points toward internal demography (low

population size) as the cause of the elevated LD, consistent with the current census of fewer than

100 Onge individuals.

DISCUSSION

Strengths of weighted LD for admixture inference: The statistics underlying weighted LD are

quite simple, making the formula for the expectation of â(d), as well as the noise and other errors

from our inference procedure, relatively easy to understand. By contrast, local ancestry-based

admixture dating methods (e.g., POOL and NIELSEN (2009) and GRAVEL (2012)) are sensitive

to imperfect ancestry inference, and it is difficult to trace the error propagation to understand the

ultimate effect on inferred admixture parameters. Similarly, the wavelet method of PUGACH et al.

(2011) uses reference populations to perform (fuzzy) ancestry assignment in windows, for which

error analysis is challenging.

Another strength of our weighted LD methodology is that it has relatively low requirements

on the quality and quantity of reference populations. Our theory tells us exactly how the statistic

behaves for any reference populations, no matter how diverged they are from the true ancestral

mixing populations. In contrast, the accuracy of results from clustering and local ancestry methods

is dependent on the quality of the reference populations used in ways that are difficult to character-

ize. On the quantity side, previous approaches to admixture inference require a surrogate for each
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ancestral population, whereas as long as one is confident that the signal is truly from admixture,

weighted LD can be used with only one available reference to infer times of admixture (as in our

analysis of the Japanese) and bound mixing fractions (as in our Pygmy case study and PICKRELL

et al. (2012)), problems that were previously intractable.

Weighted LD also advances our ability to test for admixture. As discussed above, ALDER

offers complementary sensitivity to the 3-population test and allows the identification of additional

populations as admixed. Another formal test for admixture is the 4-population test (REICH et al.

2009; PATTERSON et al. 2012), which is quite sensitive but also has trade-offs; for example, it

requires three distinctly branching references, whereas ALDER and the 3-population test only need

two. Additionally, the phylogeny of the populations involved must be well understood in order

to interpret a signal of admixture from the 4-population test properly (i.e., to determine which

population is admixed). Using weighted LD, on the other hand, largely eliminates the problem of

determining the destination or direction of gene flow, since the LD signal of admixture is intrinsic

to a specified test population.

One-reference versus two-reference curves: In practice, it is often useful to compute weighted

LD curves using both the one-reference and two-reference techniques, as both can be used for

inferences in different situations. Generally, we consider two-reference curves to be more reliable

for parameter estimation, since using the test population as one reference is more prone to intro-

duce unwanted signals, such as recent admixture from a different source, non-admixture LD from

reduced population size, or population structure among samples. In particular, populations with

more complicated histories and additional sources of LD beyond the specifications of our model

will often have different estimates of admixture dates with one- and two-reference curves. There

is a small chance that date disagreement can reflect a false-positive admixture signal, but this is

very unlikely if both one- and two-reference curves exist beyond the correlated LD threshold (see

Appendix 2). Two-reference curves also allow for direct estimation of mixture fractions, although,

as discussed above, we prefer instead to use the method of single-reference bounding.
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There are a number of practical considerations that make the one-reference capabilities of

ALDER desirable. Foremost is the possibility that one may not have a good surrogate available

for one of the ancestral mixing populations, as in our Japanese example. Also, while our method

of learning about phylogenetic relationships is best suited to two-reference curves because of the

simpler form of the amplitude in terms of branch lengths, it is often useful to begin by comput-

ing a suite of single-reference curves, both because the data generated will scale linearly with the

number of references available and because observing a range of different amplitudes gives an

immediate signal of the presence of admixture in the test population.

Overall, then, a sample sequence for applying ALDER to a new data set might be as follows: (1)

test all populations for admixture using all pairs of references from among the other populations;

(2) explore admixed populations of interest by comparing single-reference weighted LD curves;

(3) learn more detail by analyzing selected two-reference curves alongside the one-reference ones;

(4) estimate parameters using one- or two-reference curves as applicable. Of course, step (1) itself

involves the complementary usefulness of both one- and two-reference weighted LD, since our test

for admixture requires the presence of exponential decay signals in both types of curves.

Effect of multiple-wave or continuous admixture: As discussed in our section on robustness

of results, in the course of our data analysis, we observed that the weighted LD date estimate al-

most always becomes more recent when the exponential decay curve is fit for a higher starting

distance d0. Most likely, this is because admixtures in human populations have taken place over

multiple generations, such that our estimated times represent intermediate dates during the process.

To whatever extent an admixture event is more complicated than posited in our point-admixture

model, removing low-d bins will lead the fitting to capture proportionately more of the more re-

cent admixture. By default, ALDER sets d0 to be the smallest distance such that non-admixture

LD signals can be confidently discounted for d > d0 (see Methods (Testing for admixture) and

Appendix 2), but it should be noted that the selected d0 will vary for different sets of populations,

and in each case the true admixture signal at d < d0 will also be excluded. Theoretically, this
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pattern could allow us to learn more about the true admixture history of a population, since the

value of a(d) at each d represents a particular function of the amount of admixture that took place

at each generation in the past. However, in our experience, fitting becomes difficult for any model

involving more than two or three parameters. Thus, we made the decision to restrict ourselves to

assuming a single point admixture, fit for a principled threshold d > d0, accepting that the inferred

date n represents some form of average value over the true history.

Other possible complications: In our derivations, we have assumed implicitly that the mixing

populations and the reference populations are related through a simple tree. However, it may be

that their history is more complicated, for example involving additional admixtures. In this case,

our formulas for the amplitude of the ALD curve will be inaccurate if, for example, A and A′ have

different admixture histories. However, if our assumptions are violated only by events occurring

before the divergences between the mixing populations and the corresponding references, then the

amplitude will be unaffected. Moreover, no matter what the population history, as long as A and

B are free of measurable LD (so that our assumption of independence of alleles conditional on a

single ancestry is valid), there will be no effect on the estimated date of admixture.

Conclusions and future directions: In this study, we have shown how linkage disequilibrium

(LD) generated by population admixture can be a powerful tool for learning about history, extend-

ing previous work that showed how it can be used for estimating dates of mixture (MOORJANI

et al. 2011; PATTERSON et al. 2012). We have developed a new suite of tools, implemented in

the ALDER software package, that substantially increases the speed of admixture LD analysis,

improves the robustness of admixture date inference, and exploits the amplitude of LD as a novel

source of information about history. In particular, (a) we show how admixture LD can be lever-

aged into a formal test for mixture that can sometimes find evidence of admixture not detectable

by other methods, (b) we show how to estimate mixture proportions, and (c) we show that we can

even use this information to infer phylogenetic relationships. A limitation of ALDER at present,
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however, is that it is designed for a model of pulse admixture between two ancestral populations.

Important directions for future work will be to generalize these ideas to make inferences about

the time course of admixture in the case that it took place over a longer period of time (POOL

and NIELSEN 2009; GRAVEL 2012) and to study multi-way admixture. In addition, it would be

valuable to be able to use the information from admixture LD to constrain models of history for

multiple populations simultaneously, either by extending ALDER itself or by using LD-based test

results in conjunction with methods for fitting phylogenies incorporating admixture (PATTERSON

et al. 2012; PICKRELL and PRITCHARD 2012; LIPSON et al. 2012).

SOFTWARE

Executable and C++ source files for our ALDER software package are available online at the

Berger and Reich Lab websites: http://groups.csail.mit.edu/cb/alder/, http:

//genetics.med.harvard.edu/reich/Reich_Lab/Software.html.
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APPENDIX 1: DERIVATIONS OF WEIGHTED LD FORMULAS

Expected weighted LD using two diverged reference populations: We now derive equation (6)

for the expected weighted LD (with respect to random drift) using references A′ and B′ in place of

A andB, retaining the notation of Figure 1. LetA′ andB′ have allele frequencies pA′(·) and pB′(·),

and let δ′(·) := pA′(·) − pB′(·) denote the allele frequency divergences with which we weight the

LD z(x, y), giving the two-site statistic

a(d) := z(x, y)δ′(x)δ′(y).

(For brevity, we drop the binning procedure of averaging over SNP pairs (x, y) at distance |x−y| ≈

d here.) The value of the random variable z(x, y) is affected by sampling noise as well as genetic

drift between A and B, while the random variables δ′(x) and δ′(y) are outcomes of genetic drift

37



between A′ and B′. These random variables are uncorrelated conditional on the allele frequencies

of x and y in A′′ and B′′. We also assume that x and y are distant enough to have negligible

background LD and hence the drifts at the two sites are independent. We then have

E[a(d)] = E[z(x, y)δ′(x)δ′(y)]

= E[E[z(x, y)δ′(x)δ′(y) | pA′′(x), pB′′(x), pA′′(y), pB′′(y)]]

= E[2αβδ(x)δ(y)δ′(x)δ′(y)e−nd]

= 2αβe−ndF2(A
′′, B′′)2,

where in the last step the relation E[δ(x)δ′(x)] = E[δ(y)δ′(y)] = F2(A
′′, B′′) follows from the

fact that the intersection of the drift paths δ(·) and δ′(·) is the branch between A′′ and B′′ (REICH

et al. 2009).

Expected weighted LD using one diverged reference population: Using the admixed popu-

lation C as one reference and a population A′ as the other, we have pC(·) = αpA(·) + βpB(·)

(assuming negligible post-admixture drift), giving weights

δA′C(·) = pA′(·)− αpA(·)− βpB(·) = αδA′A(·) + βδA′B(·),

where δPQ denotes the allele frequency difference between populations P and Q. Arguing as

above, the expected weighted LD is given by

E[a(d)] = E[2αβδ(x)δ(y)δA′C(x)δA′C(y)e−nd].

To complete the calculation, we compute

E[δ(·)δA′C(·)] = αE[δ(·)δA′A(·)] + βE[δ(·)δA′B(·)].

For the first term, the intersection of the A–B and A′–A drift paths is the A–A′′ branch, so

E[δ(·)δA′A(·)] = −F2(A,A
′′) with the negative sign arising because the paths traverse this branch

in opposite directions. For the second term, the intersection of the A–B and A′–B drift paths is the
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A′′–B branch (traversed in the same direction), so E[δ(·)δA′B(·)] = F2(B,A
′′). Combining these

results gives equation (8). (Note that a slight subtlety arises now that we are using population C

in our weights: sites x and y can exhibit admixture LD at appreciable distances, so δA′C(x) and

δA′C(y) are not independent. However, only the portions of δA′C(x) and δA′C(y) arising from post-

admixture drift are correlated, and this drift is negligible for typical scenarios we study in which

admixture occurred 200 or fewer generations ago.)

Bounding mixture fractions using one reference: We now establish our claim in the main text

that the estimator α̂ given in equation (12) for the mixture fraction α is a lower bound when the

reference population A′ is diverged from A. Equation (12) gives a correct estimate when A′ = A

but becomes an approximation when there is genetic drift between A and A′ or between C and C ′.

(For accuracy, in this section we relax our usual assumption of negligible drift from C to C ′.)

Rearranging equation (12), we have by definition

2α̂

1− α̂
:=

â0
F2(A′, C ′)2

. (13)

From equation (7), the amplitude â0 is in truth given by

â0 = 2αβ(−αF2(A,A
′′) + βF2(B,A

′′))2e−n/2Ne ,

where we have included the post-admixture drift multiplier e−n/2Ne from the C–C ′ branch. It

follows that
â0

(−αβF2(A,A′′) + β2F2(B,A′′))2
=

2α

β
e−n/2Ne <

2α

1− α
. (14)

We claim that F2(A
′, C ′)2 > (−αβF2(A,A

′′) + β2F2(B,A
′′))2, in which case combining (13)

and (14) gives α̂/(1− α̂) < α/(1− α) and hence α̂ < α. Indeed, we have

F2(A
′, C ′) > F2(A

′′, C)

= α2F2(A,A
′′) + β2F2(B,A

′′)

> −αβF2(A,A
′′) + β2F2(B,A

′′).
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Squaring both sides appears to give our claim, but we must be careful because it is possible for

the final expression to be negative. We will assume A′ is closer to A than B, i.e., F2(A,A
′′) <

F2(B,A
′′). Then, if α < β, the final expression is clearly positive. If α > β, we have α2F2(A,A

′′) >

αβF2(A,A
′′) and so

F2(A
′, C ′) > α2F2(A,A

′′) + β2F2(B,A
′′) > αβF2(A,A

′′)− β2F2(B,A
′′).

Thus, squaring the inequality is valid in either case, establishing our bound. From the above

we also see that the accuracy of the bound depends on the sizes of the terms that are lost in

the approximation—αF2(A,A
′′), F2(A

′, A′′) and F2(C,C
′)—relative to the term that is kept,

β2F2(B,A
′′). In particular, aside from the bound being tighter the closer A′ is to A, it is also

more useful when the reference A′ comes from the minor side α < 0.5.

Affine term from population substructure: In the above, we have assumed that population C is

homogeneously admixed; i.e., an allele in any random admixed individual fromC has a fixed prob-

ability α of having ancestry from A and β of having ancestry from B. In practice, many admixed

populations experience assortative mating such that subgroups within the population have vary-

ing amounts of each ancestry. Heterogeneous admixture among subpopulations creates LD that is

independent of genetic distance and not broken down by recombination: intuitively, knowing the

value of an allele in one individual changes the prior on the ancestry proportions of that individual,

thereby providing information about all other alleles (even those on other chromosomes). This

phenomenon causes weighted LD curves to exhibit a nonzero horizontal asymptote, the form of

which we now derive.

We model assortative mating by taking α to be a random variable rather than a fixed probability,

representing the fact that individuals from different subpopulations of C have different priors on

their A ancestry. As before we set β := 1 − α and we now denote by ᾱ and β̄ the population-

wide mean ancestry proportions; thus, µx = ᾱpA(x) + β̄pB(x). We wish to compute the expected

diploid covariance E[z(x, y)], which we saw in equation (2) splits into four terms corresponding

to the LD between each copy of the x allele and each copy of the y allele.
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Previously, the cross-terms cov(X1, Y2) and cov(X2, Y1) vanished because a homogeneously

mixed population does not exhibit inter-chromosome LD. Now, however, writing cov(X1, Y2) =

E[(X1 − µx)(Y2 − µy)] as an expectation over individuals from C in the usual way, we find if we

condition on the prior α for A ancestry,

E[(X1 − µx)(Y2 − µy) | p(A ancestry) = α]

= E[X1 − µx | p(A ancestry) = α] · E[Y2 − µy | p(A ancestry) = α]

= (αpA(x) + βpB(x)− µx)(αpA(y) + βpB(y)− µy)

= ((α− ᾱ)pA(x) + (β − β̄)pB(x))((α− ᾱ)pA(y) + (β − β̄)pB(y))

= ((α− ᾱ)pA(x)− (α− ᾱ)pB(x))((α− ᾱ)pA(y)− (α− ᾱ)pB(y))

= (α− ᾱ)2δ(x)δ(y).

That is, subpopulations with different amounts of A ancestry make nonzero contributions to the

covariance. We can now compute cov(X1, Y2) by taking the expectation of the above over the

whole population (i.e., over the random variable α):

cov(X1, Y2) = E[(α− ᾱ)2δ(x)δ(y)] = var(α)δ(x)δ(y) (15)

and likewise for cov(X2, Y1).

To compute the same-chromosome covariance terms, we split into two cases according to

whether or not recombination has occurred between x and y since admixture. In the case that

recombination has not occurred—i.e., the ancestry of the chromosomal region between x and y

can be traced back as one single chunk to the time of admixture, which occurs with probability

e−nd—the region from x to y has ancestry from A with probability α and from B with probability
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β. Thus,

E[(X1 − µx)(Y1 − µy) | no recomb, p(A ancestry) = α]

= αE[(X1 − µx)(Y1 − µy) | A ancestry] + βE[(X1 − µx)(Y1 − µy) | B ancestry]

= α(pA(x)− µx)(pA(y)− µy) + β(pB(x)− µx)(pB(y)− µy)

= α(β̄pA(x)− β̄pB(x))(β̄pA(y)− β̄pB(y)) + β(ᾱpB(x)− ᾱpa(x))(ᾱpB(y)− ᾱpA(y))

= (αβ̄2 + βᾱ2)δ(x)δ(y).

Taking the expectation over the whole population,

E[(X1 − µx)(Y1 − µy) | no recomb] = (ᾱβ̄2 + β̄ᾱ2)δ(x)δ(y) = ᾱβ̄δ(x)δ(y) (16)

as without assortative mating.

In the case where there has been a recombination, the loci are independent conditioned upon

the ancestry proportion α, as in our calculation of the cross-terms; hence,

E[(X1 − µx)(Y1 − µy) | recomb] = var(α)δ(x)δ(y), (17)

and this occurs with probability 1− e−nd.

Combining equations (15), (16), and (17), we obtain

E[z(x, y)] = E[(X − µx)(Y − µy)]

= 2 var(α)δ(x)δ(y) + 2e−ndᾱβ̄δ(x)δ(y) + 2(1− e−nd)var(α)δ(x)δ(y)

= (e−nd(2ᾱβ̄ − 2 var(α)) + 4 var(α))δ(x)δ(y).

Importantly, our final expression for E[z(x, y)] still factors as the product of a d-dependent term—

now an exponential decay plus a constant—and the allele frequency divergences δ(x)δ(y). Because

it is the product δ(x)δ(y) that interacts with our various weighting schemes, the formulas that we

have derived for the weighted LD curve E[a(d)]—equations (4), (6), (7), and (8)—retain the same

factors involving F2 distances and change only in the replacement of 2αβe−nd with e−nd(2ᾱβ̄ −

2 var(α)) + 4 var(α).

42



APPENDIX 2: TESTING FOR ADMIXTURE

Here we provide details of the weighted LD-based test for admixture we implement in ALDER.

The test procedure is summarized in the main text; we focus here on technical aspects not given

explicitly in Methods.

Determining the extent of LD correlation: The first step of ALDER estimates the distance to

which LD in the test population is correlated with LD in each reference population. Such corre-

lation suggests shared demographic history that can confound the ALD signal, so it is important

to determine the distance to which LD correlation extends and analyze weighted LD curves â(d)

only for d greater than this threshold. Our procedure is as follows. We successively compute LD

correlation for SNP pairs (x, y) within distance bins dk < |x− y| < dk+1, where dk = kr for some

bin resolution r (0.05 cM by default). For each SNP pair (x, y) within a bin, we estimate the LD

(i.e., sample covariance between allele counts at x and y) in the test population and the LD in the

reference population. We then form the correlation coefficient between the test LD estimates and

reference LD estimates over all SNP pairs in the bin. We jackknife over chromosomes to estimate

a standard error on the correlation, and we set our threshold after the second bin for which the

correlation is insignificant (p > 0.05). To reduce dependence on sample size, we then repeat this

procedure with successively increasing resolutions up to 0.1 cM and set the final threshold as the

maximum of the cutoffs obtained.

Determining significance of a weighted LD curve: To define a formal test for admixture based

on weighted LD, we need to estimate the significance of an observed weighted LD curve â(d).

This question is statistically subtle for several reasons. First, the null distribution of the curve â(d)

is complex. Clearly the test population C should not be admixed under the null hypothesis, but

as we have discussed, shared demography—particularly bottlenecks—can also produce weighted

LD. We circumvent this issue by using the pre-tests described in the next section and assume that if

the test triple (C;A′, B′) passes the pre-tests, then under the null hypothesis, non-admixture demo-
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graphic events have negligible effect on weighted LD beyond the correlation threshold computed

above. Even so, the â(d) curve still cannot be modeled as random white noise: because SNPs con-

tribute to multiple bins, the curve typically exhibits noticeable autocorrelation. Finally, even if we

ignore the issue of colored noise, the question of distinguishing a curve of any type—in our case,

an exponential decay—from noise is technically subtle: the difficulty is that a singularity arises in

the likelihood surface when the amplitude vanishes, which is precisely the hypothesis that we wish

to test (DAVIES 1977).

In light of these considerations, we estimate a p-value using the following procedure, which

we feel is well-justified despite not being entirely theoretically rigorous. We perform jackknife

replicates of the â(d) curve computation and fitting, leaving out one chromosome in each replicate,

and estimate a standard error for the amplitude and decay constant of the curve using the usual

jackknife procedure. We obtain a “z-score” for the amplitude and the decay constant by dividing

each by its estimated standard error. Finally, we take the minimum (i.e., less-significant) of these

z-scores and convert it to a p-value assuming it comes from a standard normal; we report this

p-value as our final significance estimate.

Our intuition for this procedure is that checking the “z-score” of the decay constant essentially

tells us whether or not the exponential decay is well-determined: if the â(d) curve is actually just

noise, then the fitting of jackknife replicates should fluctuate substantially. On the other hand, if

the â(d) curve has a stable exponential decay constant, then we have good evidence that â(d) is

actually well-fit by an exponential—and in particular, the amplitude of the exponential is nonzero,

meaning we are away from the singularity. In this case the technical difficulty is no longer an issue

and the jackknife estimate of the amplitude should in fact give us a good estimate of a z-score

that is approximately normal under the null. The “z-score” for the decay constant certainly is not

normally distributed—in particular, it is always positive—but taking the minimum of these two

scores only makes the test more conservative.

Perhaps most importantly, we have compelling empirical evidence that our z-scores are well-

behaved under the null. We applied our test to nine HGDP populations that neither ALDER nor the
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3-population test identified as admixed; for each test population, we used as references all popula-

tions with correlated LD detectable to no more than 0.5 cM. These test triples thus comprise a suite

of approximately null tests. We computed Q-Q plots for the reported z-scores and observed that

for z > 0 (our region of interest), our reported z-scores follow the normal distribution reasonably

well, generally erring slightly on the conservative side (Figure S6). These findings give strong

evidence that our significance calculation is sufficiently accurate for practical purposes; in reality,

model violation is likely to exert stronger effects than the approximation error in our p-values, and

although our empirical tests cannot probe the tail behavior of our statistic, for practical purposes

the precise values of p-values less than, say, 10−6 are generally inconsequential.

Pre-test thresholds: To ensure that our test is applicable to a given triple (C;A′, B′), we need

to rule out the possibility of demography producing non-admixture-related weighted LD. We do

so by computing weighted LD curves for C with weights A′–B′, A′–C, and B′–C and fitting an

exponential to each curve. To eliminate the possibility of a shared ancestral bottleneck between C

and one of the references, we check that the three estimated amplitudes and decay constants are

well-determined; explicitly, we compute a jackknife-based standard error for each parameter and

require the implied p-value for the parameter being positive to be less than 0.05. If so, we conclude

that whatever LD is present is due to admixture, not other demography, and we report the p-value

estimate defined above for the significance of the A′–B′ curve as the p-value of our test.

We are aware of one demographic scenario in which the ALDER test could potentially return a

finding of admixture when the test population is not in fact admixed. As illustrated in Figure S7,

this would occur when A′ and C have experienced a shared bottleneck and C has subsequently had

a further period of low population size. We do not believe that we have ever encountered such a

false positive admixture signal, but to guard against it, we note that if it were to occur, the three

decay time constants for the reference pairs A′–B′, A′–C, and B′–C would disagree. Thus, along

with the test results, ALDER returns a warning whenever the three best-fit values of the decay

constant do not agree to within 25%.
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Multiple-hypothesis correction: In determining statistical significance of test results when test-

ing a population using many pairs of references, we apply a multiple-hypothesis correction that

takes into account the number of tests being run. Because some populations in the reference set

may be very similar, however, the tests may not be independent. We therefore compute an effective

number nr of distinct references by running PCA on the allele frequency matrix of the reference

populations; we take nr to be the number of singular values required to account for 90% of the

total variance. Finally, we apply a Bonferroni correction to the p-values from each test using the

effective number
(
nr

2

)
of reference pairs.

APPENDIX 3: COALESCENT SIMULATIONS

Here we further validate and explore the properties of weighted LD with entirely in silico simu-

lations using the Markovian coalescent simulator MaCS (CHEN et al. 2009). These simulations

complement the exposition in the main text in which we constructed simulated admixed chromo-

somes by piecing together haplotype fragments from real HapMap individuals.

Effect of divergence and drift on weighted LD amplitude: To illustrate the effect of using refer-

ence populations with varying evolutionary distances from true mixing populations, we performed

a set of four simulations in which we varied one reference population in a pair of dimensions: (1)

time depth of divergence from the true ancestor, and (2) drift since divergence. In each case, we

simulated individuals from three populations A′, C ′, and B′, with 22% of C ′s ancestry derived

from a pulse of admixture 40 generations ago from B, where A′ and B′ diverged 1000 generations

ago. We simulated 5 chromosomes of 100 Mb each for 20 diploid individuals from each of A′ and

B′ and 30 individuals from C ′, with diploid genotypes produced by randomly combining pairs of

haploid chromosomes. We assumed an effective population size of 10,000 and set the recombi-

nation rate to 10−8. We set the mutation rate parameter to 10−9 to have the same effect as using

a mutation rate of 10−8 and then thinning the data by a factor of 10 (as it would otherwise have

produced an unnecessarily large number of SNPs). Finally, we set the MaCS history parameter
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(the Markovian order of the simulation, i.e., the distance to which the full ancestral recombination

graph is maintained) to 104 bases.

For the first simulation (Figure S1A), we set the divergence of A′ and C ′ to be immediately

prior to the gene flow event, altogether resulting in the following MaCS command:

macs 140 1e8 -i 5 -h 1e4 -t 0.00004 -r 0.0004 -I 3 40 40 60 -em 0.001

3 2 10000 -em 0.001025 3 2 0 -ej 0.001025 1 3 -ej 0.025 2 3

For the second simulation (Figure S1B), we increased the drift along the A′ terminal branch by

reducing the population size by a factor of 20 for the past 40 generations:

-en 0 1 0.05 -en 0.001 1 1

For the third and fourth simulations (Figure S1C,D), we changed the divergence time of A′ and C ′

from 41 to 520 generations, half the distance to the root:

-ej 0.001025 1 3 -> -ej 0.013 1 3

We computed weighted LD curves using A′–B′ references (Figure S1), and the results corrob-

orate our derivation and discussion of equation (6). In all cases, the estimated date of admixture

is within statistical error of the simulated 40-generation age. The amplitude of the weighted LD

curve is unaffected by drift in A′ but is substantially reduced by the shorter distance F2(A
′′, B′′)

in the latter two simulations. Increased drift to A′ does, however, make the weighted LD curves in

the right two panels somewhat noisier than the left two.

Validation of pre-test criteria in test for admixture: To understand the effects of the pre-test

criteria stipulated in our LD-based test for admixture, we simulated a variety of population histories

with and without mixture. In each case we used the same basic parameter settings as above, except

we set the root of each tree to be 4000 generations ago and we simulated 10 chromosomes for each

individual instead of 5.

Scenario 1: True admixture 40 generations ago; reference A′ diverged 400 generations ago (simi-

lar to Figure S1C). All pre-tests pass and the our test correctly identifies admixture.
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Scenario 2: True admixture 40 generations ago; reference A′ diverged 41 generations ago (similar

to Figure S1A). Because of the proximity of the admixed population C ′ and the reference A′, the

test detects long-range correlated LD and concludes that using A′ as a reference may produce

unreliable results.

Scenario 3: True admixture 40 generations ago; contemporaneous gene flow (of half the magni-

tude) to the lineage of the reference population A′ as well. Again, the pre-test detects long-range

correlated LD and concludes that A′ is an unsuitable reference.

Scenario 4: No admixture; A and C simply form a clade diverging at half the distance to the root

(similar to Figure S1C without the gene flow). The test finds no evidence for admixture; weighted

LD measurements do not exhibit a decay curve.

Scenario 5: No admixture; A and C diverged 40 generations ago. As above, the test finds no

decay in weighted LD. In this scenario the pre-test does detect substantial correlated LD to 1.95

cM because of the proximity of A and C.

Scenario 6: No admixture; same setup as Scenario 4 with addition of recent bottleneck in pop-

ulation C (100-fold reduced population size for the past 40 generations). Here, the test finds no

weighted LD decay in the two-reference curve and concludes that there is no evidence for ad-

mixture. It does, however, detect decay curves in both one-reference curves (with A–C and B–C

weights); these arise because of the strong bottleneck-induced LD within population C.

Scenario 7: No admixture; shared bottleneck: A and C diverged 40 generations ago and their

common ancestor underwent a bottleneck of 100-fold reduced population size for the preceding 40

generations. In this case the pre-test detects an enormous amount of correlated LD between A and

C and deems A an unsuitable reference.
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Sensitivity comparison of 3-population test and LD-based test for admixture: Here we com-

pare the sensitivities of the allele frequency moment-based 3-population test (REICH et al. 2009;

PATTERSON et al. 2012) and our LD-based test for admixture. We simulated a total of 450 admix-

ture scenarios in which we varied three parameters: the age of the branch point A′′ (1000, 2000,

and 3000 generations), the date n of gene flow (20 to 300 in increments of 20), and the fraction

α of A ancestry (50% to 95% in increments of 5%), as depicted in Figure S5. In each case we

simulated 40 admixed individuals, otherwise using the same parameter settings as in the scenarios

above. Explicitly, we ran the commands:

macs 160 1e8 -i 10 -h 1e4 -t 0.00004 -r 0.0004 -I 3 40 40 80 -em tMix

3 2 migRate -em tMixStop 3 2 0 -ej tSplit 1 3 -ej 0.1 2 3

where tMix and tSplit correspond to n and the age of A′′, while migRate and tMixStop

produce a pulse of gene flow from the B′ branch giving C ′ a fraction α of A ancestry.

We then ran both the 3-population test (f3) and the ALDER test on C ′ using A′ and B′ as

references (Figure S5). The results of these simulations show clearly that the two tests do indeed

have complementary parameter ranges of sensitivity. We first observe that the f3 test is essentially

unaffected by the age of admixture (up to the 300 generations we investigate here). As discussed

in the main text, its sensitivity is constrained by competition between the admixture signal of

magnitude αβF2(A
′′, B′′) and the “off-tree drift” arising from branches off the lineage connecting

A′ and B′ (REICH et al. 2009)—in this case, essentially the quantity α2F2(A
′′, C ′). Thus, as the

divergence point A′′ moves up the lineage, the threshold value of α below which the f3 test can

detect mixture decreases.

The ALDER tests behave rather differently, exhibiting a drop-off in sensitivity as the age of

admixture increases, with visible noise near the thresholds of sufficient sensitivity. The difference

between the f3 and ALDER results is most notable in the bottom panels of Figure S5, where the

reference A′ is substantially diverged from C ′. In this case, ALDER is still able to identify small

amounts of admixture from the B′ branch, whereas the f3 test cannot. Also notable are the vertical

swaths of failed tests centered near α = 0.9, 0.75, and 0.65 for A′′ respectively located at distances
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0.75, 0.5, and 0.25 along the branch from the root to A′. This feature of the results arises because

the amplitude of the single-reference weighted LD curve with A′–C ′ weights vanishes near those

values of α (see equation (8) and Figure S2), causing the ALDER pre-test to fail. (The two-

reference weighted LD exhibits a clear decay curve, but the pre-test is being overly conservative in

these cases.) Finally, we also observe that for the smallest choice of mixture age (20 generations),

many ALDER tests fail. In these cases, the pre-test detects long-range correlated LD with the

reference B′ and is again overly conservative.

Effect of protracted admixture on weighted LD: The admixture model that we analyze in this

manuscript treats admixture as occurring instantaneously in a single pulse of gene flow; however,

in real human populations, admixture typically occurs continuously over an extended period of

time. Here we explore the effect of protracted admixture on weighted LD curves by simulating

scenarios involving continuous migration. We used a setup nearly identical to the simulations

above for comparing the f3 and ALDER tests, except here we modified the migration rate and start

and end times to correspond to 40% B ancestry that continuously mixed into population C over

a period of 0–200 generations ending 40 generations ago. We varied the duration of admixture in

increments of 20 generations.

For each simulation, we used ALDER to compute the two-reference weighted LD curve and fit

an exponential decay. In each case the date of admixture estimated by ALDER (Figure S4A) falls

within the time interval of continuous mixture, as expected (MOORJANI et al. 2011). For shorter

durations of admixture spanning up to 50 generations or so, the estimated date falls very near the

middle of the interval, while it is downward biased for mixtures extending back to hundreds of

generations. The amplitude of the fitted exponential also exhibits a downward bias as the mixture

duration increases (Figure S4B). This behavior occurs because unlike the point admixture case,

in which the weighted LD curve follows a simple exponential decay (Figure S4C), continuous

admixture creates weighted LD that is an average of exponentials with different decay constants

(Figure S4D).
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FIGURES
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Figure 1. Notational diagram of phylogeny containing admixed population and references.

Population C ′ is descended from an admixture between A and B to form C; populations A′ and

B′ are present-day references. In practice, we assume that post-admixture drift is negligible, i.e.,

the C–C ′ branch is extremely short and C ′ and C have identical allele frequencies. The branch

points of A′ and B′ from the A–B lineage are marked A′′ and B′′; note that in a rooted phylogeny,

these need not be most recent common ancestors.
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Figure 2. Dependence of date estimates and weighted LD amplitudes on fitting start point. Rows

correspond to three test scenarios: Simulated 75% YRI / 25% CEU mixture 50 generations ago

with Yoruba–French weights (top); Uygur with Han–French weights (middle); HapMap Maasai

with Yoruba–French weights (bottom). The left panel of each row shows the weighted LD curve

â(d) (blue) with best-fit exponential decay curve (red), fit starting from d0 = 0.5 cM. Remaining

panels show the date estimate (middle) and amplitude (right) as a function of d0. (We note that

our date estimates for Uygur are somewhat more recent than those in Patterson et al. (2012), most

likely because of our direct estimate of the affine term in the weighted LD curve.)52
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Figure 3. Weighted LD curves for Mbuti using San and Yoruba as reference populations (A) and

using Mbuti itself as one reference and several different second references (B), and analogous

curves for Biaka (C, D). Genetic distances are discretized into bins at 0.05 cM resolution. Data

for each curve are plotted and fit starting from the corresponding ALDER-computed LD

correlation thresholds. Different amplitudes of one-reference curves (B, D) imply different

phylogenetic positions of the references relative to the true mixing populations (i.e., different split

points X ′′i ), suggesting a sketch of a putative admixture graph (E). Relative branch lengths are

qualitative, and the true root is not necessarily as depicted.53
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Figure 4. Weighted LD curves for HGDP Sardinian using Italian–Yoruba weights (A) and

HapMap Japanese (JPT) using JPT itself as one reference and HapMap Han Chinese (CHB) as

the second reference (B). The exponential fits are performed starting at 1 cM and 1.2 cM,

respectively, as selected by ALDER based on detected correlated LD.
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TABLES

Table 1. Results of ALDER and 3-population tests for admixture on HGDP populations.

Both #LD #f3 Only LD # Only f3 # Neither

Adygei 205 139 BiakaPygmy 81 French 99 Basque

Balochi 123 204 Colombian 5 Han 13 Dai

BantuKenya 30 182 Druze 128 Italian 46 Hezhen

BantuSouthAfrica 27 11 Japanese 1 Orcadian 1 Karitiana

Bedouin 300 63 Kalash 20 Tujia 8 Lahu

Brahui 363 16 MbutiPygmy 77 Tuscan 59 Mandenka

Burusho 450 377 Melanesian 96 Miao

Cambodian 266 158 Pima 489 Naxi

Daur 29 8 San 155 Papuan

Han-NChina 1 77 Sardinian 45 She

Hazara 699 593 Yakut 435 Surui

Makrani 173 163 Yi

Maya 784 124 Yoruba

Mongola 76 385

Mozabite 313 107

Oroqen 68 5

Palestinian 308 64

Pathan 113 348

Russian 158 153

Sindhi 264 366

Tu 22 315

Uygur 428 616

Xibo 101 335

We ran both ALDER and the 3-population test for admixture on each of the 53 HGDP populations

using all pairs of other populations as references. We group the populations according to whether

or not each test methodology produced at least one test identifying them as admixed; for each

population, we list the number of reference pairs with which with each method (abbreviated “LD”

and “f3”) detected admixture. We used a significance threshold of p < 0.05 after

multiple-hypothesis correction.
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Table 2. Amplitudes and dates from weighted LD curves for Sardinian using various

reference pairs.

Ref 1 Ref 2 Weighted LD amplitude Date estimate

CEU YRI 0.00003192 ± 0.00000903 48 ± 10

CHB YRI 0.00001738 ± 0.00000679 34 ± 8

CEU CHB 0.00000873 ± 0.00000454 52 ± 21

Data are shown from ALDER fits to weighted LD curves computed using Sardinian as the test

population and pairs of HapMap CEU, YRI, and CHB as the references. Date estimates are in

generations. We omitted chromosome 8 from the analysis because of anomalous long-range LD.

Curves â(d) were fit for d > 1.2 cM, the extent of LD correlation between Sardinian and CEU

computed by ALDER.
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Figure S1. Weighted LD curves from four coalescent simulations of admixture scenarios with

varying divergence times and drift between the reference population A′ and the true mixing

population. In each case, gene flow occurred 40 generations ago. In the low-divergence scenarios,

the split point A′′ is immediately prior to gene flow, while in the high-divergence scenarios, A′′ is

halfway up the tree (520 generations ago). The high-drift scenarios are distinguished from the

low-drift scenarios by a 20-fold reduction in population size for the past 40 generations. Standard

errors shown are ALDER’s jackknife estimates of its own error on a single simulation.58
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When taking weights as allele frequency differences between the admixed population and a single

reference population R′, the weighted LD curve a(d) has expected amplitude proportional to

(αF2(A,R
′′)− βF2(B,R

′′))2, where R′′ is the point along the A–B lineage at which the

reference population branches. Note in particular that as R′′ varies from A to B, the amplitude

traces out a parabola that starts at 2αβ3F2(A,B)2, decreases to a minimum value of 0, and

increases to 2α3βF2(A,B)2.
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Figure S3. Comparison of binning procedures used by ROLLOFF and ALDER. Instead of

discretizing inter-SNP distances, ALDER discretizes the genetic map before subtracting SNP

coordinates.
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Figure S4. Weighted LD curve parameters from coalescent simulations of continuous admixture.

In each simulation the mixed population receives 40% of its ancestry through continuous gene

flow over a period of 0–200 generations ending 40 generations ago. Panels (A) and (B) show the

admixture dates and weighted LD amplitudes computed by ALDER for each of 11 simulations

(varying the duration of mixture from 0 to 200 in increments of 20). Panels (C) and (D) show the

curves and exponential fits for mixture durations at the two extremes. Standard errors shown are

ALDER’s jackknife estimates of its own error on a single simulation.
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Figure S5. Coalescent simulations comparing the sensitivities of the 3-population moment-based

test for admixture (f3) and the LD-based test implemented in ALDER. We varied three

parameters: the age of the branch point A′′, the date n of gene flow, and the fraction α of A

ancestry.
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Figure S6. Q-Q plots comparing ALDER z-scores to standard normal on null examples. We show

results from nine HGDP populations that neither ALDER nor the 3-population test found to be

admixed. We are interested in values of z > 0; the Q-Q plots show that these values follow the

standard normal reasonably well, tending to err on the conservative side.
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A’ B’C

shared
bottleneck

Figure S7. Non-admixture-related demography producing weighted LD curves. The test

population is C and references are A′ and B′; the common ancestor of A′ and C experienced a

recent bottleneck from which C has not yet recovered, leaving long-range LD in C that is

potentially correlated to all three possible weighting schemes (A′–B′, A′–C, and B′–C).
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Table S1. Dates of admixture estimated for simulated 75% YRI / 25% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 9±1 20±1 49±2 107±5 195±9

Yoruba Han 9±1 21±1 50±2 107±6 191±12

Yoruba Papuan 9±1 21±1 49±3 118±8 223±23

San French 9±1 20±1 50±2 109±4 197±15

San Han 9±0 21±1 51±3 111±4 194±16

San Papuan 9±1 21±1 51±3 115±6 209±16

Yoruba 9±1 21±1 48±2 107±5 181±17

San 9±1 20±2 56±7 139±22 213±97

French 9±1 20±1 50±2 108±3 194±9

Han 9±0 21±1 52±2 110±6 192±17

Papuan 9±1 21±1 53±3 125±8 217±26

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago and

show results from runs of ALDER using various references. Rows in which only one reference is

listed indicate runs using the admixed population itself as one reference. Note that standard errors

shown are ALDER’s jackknife estimates of its own error on a single simulation (not standard

errors from averaging over multiple simulations).
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Table S2. Dates of admixture estimated for simulated 90% YRI / 10% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 10±0 21±1 50±2 107±7 193±19

Yoruba Han 10±0 20±1 51±2 109±10 220±32

Yoruba Papuan 10±0 22±1 53±3 111±11 233±65

San French 10±0 21±1 51±2 112±6 223±19

San Han 10±0 21±1 52±3 121±5 254±40

San Papuan 11±0 23±1 53±3 126±8 287±56

Yoruba 9±1 20±2 55±7 100±27 363±183

San 98±87 56±28 94±69 2±0 9±5

French 10±0 21±1 51±2 107±5 217±13

Han 11±0 21±1 52±2 111±7 234±25

Papuan 11±0 23±1 56±3 117±8 256±47

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago and

show results from runs of ALDER using various references. Rows in which only one reference is

listed indicate runs using the admixed population itself as one reference. Note that standard errors

shown are ALDER’s jackknife estimates of its own error on a single simulation (not standard

errors from averaging over multiple simulations).
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Table S3. Amplitudes of weighted LD curves (multiplied by 106) for simulated 75% YRI / 25%

CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 1173 1139±20 1203±40 1188±54 1283±100 1202±88

Yoruba Han 693 678±17 717±28 711±43 774±73 716±74

Yoruba Papuan 602 598±13 631±23 595±34 775±96 835±152

San French 1017 981±23 1028±34 1044±49 1128±70 1037±130

San Han 574 556±18 590±24 604±42 667±39 626±65

San Papuan 491 487±17 514±20 503±34 589±45 574±60

Yoruba 75 77±2 81±4 74±4 83±6 71±13

San 40 40±3 42±3 50±6 66±13 43±34

French 655 626±12 660±21 666±31 721±42 656±49

Han 312 304±10 324±14 332±23 364±25 332±36

Papuan 252 256±9 273±13 267±17 331±34 314±55

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago and

show results from runs of ALDER using various references. Rows in which only one reference is

listed indicate runs using the admixed population itself as one reference. Expected amplitudes

were computed according to formulas (10) and (11). Note that standard errors shown are

ALDER’s jackknife estimates of its own error on a single simulation (not standard errors from

averaging over multiple simulations).
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Table S4. Amplitudes of weighted LD curves (multiplied by 106) for simulated 90% YRI / 10%

CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 563 587±27 579±26 550±25 600±43 562±96

Yoruba Han 333 353±20 336±15 339±17 381±49 456±128

Yoruba Papuan 289 307±19 303±16 309±18 343±54 426±248

San French 488 522±25 512±22 488±25 519±28 625±89

San Han 276 305±18 291±12 289±16 338±23 464±132

San Papuan 236 266±18 262±13 254±12 306±38 486±186

Yoruba 6 6±1 6±1 7±1 7±3 44±89

San 1 16±15 8±3 10±7 -0±0 -1±1

French 454 473±19 471±18 450±19 481±19 566±55

Han 250 268±13 261±10 264±11 288±23 369±68

Papuan 212 231±14 233±13 243±11 276±35 366±125

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago and

show results from runs of ALDER using various references. Rows in which only one reference is

listed indicate runs using the admixed population itself as one reference. Expected amplitudes

were computed according to formulas (10) and (11). Note that standard errors shown are

ALDER’s jackknife estimates of its own error on a single simulation (not standard errors from

averaging over multiple simulations).
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Table S5. Mixture fraction lower bounds on simulated 75% YRI / 25% CEU mixtures.

Ref 10 20 50 100 200

French 24.6±0.3 25.7±0.5 25.7±0.7 27.0±1.0 25.2±1.3

Russian 23.8±0.3 24.9±0.5 24.8±0.7 25.6±0.8 25.3±1.0

Sardinian 21.3±0.3 21.9±0.5 22.0±0.6 23.6±0.9 22.3±1.1

Kalash 14.7±0.2 15.5±0.4 15.5±0.5 16.4±0.6 15.6±0.9

Yoruba 73.6±0.7 74.8±0.4 74.0±0.6 76.2±1.3 73.8±3.4

Mandenka 50.5±0.6 51.2±1.0 50.4±1.4 54.9±2.0 60.8±5.6

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago and

show results from runs of ALDER using various single references. The first four rows are

European surrogates and give lower bounds on the amount of CEU ancestry (25%); the last two

are African surrogates and give lower bounds on the amount of YRI ancestry (75%). Note that

standard errors shown are ALDER’s jackknife estimates of its own error on a single simulation

(not standard errors from averaging over multiple simulations).
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Table S6. Mixture fraction lower bounds on simulated 90% YRI / 10% CEU mixtures.

Ref 10 20 50 100 200

French 10.5±0.4 10.5±0.3 9.9±0.3 10.6±0.4 12.3±1.0

Russian 10.2±0.3 10.0±0.3 9.7±0.3 10.3±0.5 11.8±0.9

Sardinian 9.3±0.3 9.2±0.3 8.7±0.3 9.5±0.4 10.3±1.2

Kalash 7.2±0.3 7.0±0.3 6.8±0.2 7.4±0.4 8.9±0.8

Yoruba 89.1±1.0 89.1±1.1 90.1±1.5 89.4±3.7 98.5±2.0

Mandenka 18.2±2.3 17.3±2.5 19.5±4.8 63.1±25.5 30.7±220.4

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago and

show results from runs of ALDER using various single references. The first four rows are

European surrogates and give lower bounds on the amount of CEU ancestry (10%); the last two

are African surrogates and give lower bounds on the amount of YRI ancestry (90%). Note that

standard errors shown are ALDER’s jackknife estimates of its own error on a single simulation

(not standard errors from averaging over multiple simulations).
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Table S7. Dates of admixture estimated for simulated 75% YRI / 25% CEU mixtures.

Yoruba–French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 12±2 18±2 55±3 103±7 258±24

10 10±1 19±2 50±2 105±7 236±24

20 10±1 20±1 52±2 104±5 223±16

50 9±0 20±1 52±1 96±2 186±10

100 10±0 20±0 52±1 101±2 210±9

San–Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 12±2 18±2 58±5 107±11 283±73

10 10±1 19±2 54±3 114±8 219±64

20 10±1 21±1 55±2 115±6 219±46

50 9±0 21±1 54±1 107±5 213±20

100 9±0 21±1 53±1 105±5 216±13

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago and

show results from runs of ALDER using varying numbers of admixed samples. Note that standard

errors shown are ALDER’s jackknife estimates of its own error on a single simulation (not

standard errors from averaging over multiple simulations).
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Table S8. Dates of admixture estimated for simulated 90% YRI / 10% CEU mixtures.

Yoruba–French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 11±2 21±2 52±6 101±17 253±42

10 11±1 19±1 48±4 94±8 241±46

20 11±1 21±1 48±3 102±8 209±30

50 11±0 21±1 48±2 98±5 202±21

100 10±0 20±1 50±1 99±4 185±15

San–Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 14±2 22±3 63±8 110±30 335±91

10 12±1 20±2 54±4 110±15 265±55

20 12±1 21±1 52±4 131±15 234±33

50 11±0 20±1 53±4 122±8 221±23

100 11±0 20±0 53±3 109±5 219±10

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago and

show results from runs of ALDER using varying numbers of admixed samples. Note that standard

errors shown are ALDER’s jackknife estimates of its own error on a single simulation (not

standard errors from averaging over multiple simulations).
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Table S9. Effect of SNP ascertainment on date estimates.

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 47±12 51±13 56±10 41±10

Uygur French Han 15±2 14±2 13±2 16±2

Hazara French Han 22±2 22±3 23±2 22±3

Melanesian Dai Papuan 93±24 62±15 76±13 70±18

Bedouin French Yoruba 27±3 23±3 23±3 24±3

MbutiPygmy San Yoruba 33±12 33±6 41±14 30±8

BiakaPygmy San Yoruba 39±6 50±14 35±6 36±7

We compared dates of admixture estimated by ALDER on a variety of test triples from the HGDP

using SNPs ascertained as heterozygous in full genome sequences of one French, Han, San, and

Yoruba individual (Panels 1, 2, 4, and 5 of the Affymetrix Human Origins Array (PATTERSON

et al. 2012)). Standard errors are from a jackknife over the 22 autosomes.
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Table S10. Effect of SNP ascertainment on weighted LD curve amplitudes (multiplied by 106).

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 180±44 171±53 61±11 65±15

Uygur French Han 360±28 304±29 102±7 161±19

Hazara French Han 442±31 436±48 146±10 203±21

Melanesian Dai Papuan 868±277 559±150 207±51 312±91

Bedouin French Yoruba 227±32 196±25 104±11 146±13

MbutiPygmy San Yoruba 64±23 78±14 83±26 82±18

BiakaPygmy San Yoruba 104±19 133±46 90±15 103±22

We compared amplitudes of weighted LD curves fitted on a variety of test triples from the HGDP

using SNPs ascertained as heterozygous in full genome sequences of one French, Han, San, and

Yoruba individual (Panels 1, 2, 4, and 5 of the Affymetrix Human Origins Array (PATTERSON

et al. 2012)). Standard errors are from a jackknife over the 22 autosomes.

74



File S1. Unbiased polyache estimator for weighted LD using the admixed population itself

as one reference.

In[1]:= CentralMoment@81, 1<D

Out[1]= CentralMoment@81, 1<D

In[2]:= CentralMoment@81, 1<D �� TraditionalForm

Out[2]//TraditionalForm=

Μ
~

1,1

In[4]:= CentralMoment@1D �� TraditionalForm

Out[4]//TraditionalForm=

Μ
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1

In[28]:= MomentConvert@
MomentConvert@CentralMoment@81, 1<D HMoment@81, 0<D - pAxL HMoment@80, 1<D - pAyL,

"UnbiasedSampleEstimator"D, "PowerSymmetricPolynomial"D �� TraditionalForm
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In[13]:= MomentConvert@Moment@81, 1<D Moment@81, 1<D, "UnbiasedSampleEstimator"D �� TraditionalForm

Out[13]//TraditionalForm=

A81,1<,81,1<

S0
H2L

In[12]:= PowerSymmetricPolynomial@0D

Out[12]= PowerSymmetricPolynomial@0D

Printed by Mathematica for Students

Mathematica code and output are shown for computing the polyache statistic that estimates the

one-reference weighted LD, E[(X − µx)(Y − µy)(µx − pA(x))(µy − pA(y))], where pA(·) are

allele frequencies of the single reference population and µx and µy denote allele frequencies of the

admixed population. In the above, S(k)
0 := m(m − 1) · · · (m − k + 1) and Sr,s :=

∑m
i=1X

r
i Y

s
i ,

where m is the number of admixed samples and i ranges over the admixed individuals, which have

allele counts Xi and Yi at sites x and y.
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File S2. FFT computation of weighted LD.

In this note we describe how to compute weighted LD (aggregated over distance bins) in time

O(m(S +B logB)),

where m is the number of admixed individuals, S is the number of SNPs, and B is the number

of bins needed to span the chromosomes. In contrast, the direct method of computing pairwise

LD for each individual SNP pair requires O(mS2) time. In practice our approach offers speedups

of over 1000x on typical data sets. We further describe a similar algorithm for computing the

single-reference weighted LD polyache statistic that runs in time

O(m2(S +B logB))

with the slight trade-off of ignoring SNPs with missing data.

Our method consists of three key steps: (1) split and factorize the weighted LD product; (2)

group factored terms by bin; and (3) apply fast Fourier transform (FFT) convolution. As a special

case of this approach, the first two ideas alone allow us to efficiently compute the affine term (i.e.,

horizontal asymptote) of the weighted LD curve using inter-chromosome SNP pairs.

TWO-REFERENCE WEIGHTED LD

We first establish notation. Say we have an S ×m genotype array {cx,i} from an admixed popula-

tion. Assume for now that there are no missing values, i.e.,

cx,i ∈ {0, 1, 2}

for x indexing SNPs by position on a genetic map and i = 1, . . . ,m indexing individuals. Given

a set of weights wx, one per SNP, we wish to compute weighted LD of SNP pairs aggregated by

inter-SNP distance d:

R(d) :=
∑
|x−y|≈d
x<y

D2(x, y)wxwy =
1

2

∑
|x−y|≈d

D2(x, y)wxwy
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where D2 is the sample covariance between genotypes at x and y, the diploid analog of the usual

LD measure D:

D2(x, y) :=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)

m∑
i=1

cx,i

m∑
j=1

cy,j

=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy, (1)

where we have defined

sx :=
m∑
i=1

cx,i.

Substituting for D2(x, y), we have

R(d) =
1

2

∑
|x−y|≈d

(
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy

)
wxwy

=

 m∑
i=1

1

2(m− 1)

∑
|x−y|≈d

cx,iwx · cy,iwy

− 1

2m(m− 1)

∑
|x−y|≈d

sxwx · sywy. (2)

We have thus rewritten R(d) as a linear combination of m+ 1 terms of the form

∑
|x−y|≈d

f(x)f(y).

(The sum over i consists of m such terms, and the final term accounts for one more.)

In general, sums of the form ∑
|x−y|≈d

f(x)g(y)

can be efficiently computed by convolution if we first discretize the genetic map on which the

SNP positions x and y lie. For notational convenience, choose the distance scale such that a unit

distance corresponds to the desired bin resolution. We will compute

∑
bxc−byc=d

f(x)g(y). (3)

That is, we divide the chromosome into bins of unit distance and aggregate terms f(x)g(y) by the

distance between the bin centers of x and y. Note that this procedure does not produce exactly the

same result as first subtracting the genetic positions and then binning by |x−y|: with our approach,
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pairs (x, y) that map to a given bin can have actual distances that are off by as much as one full bin

width, versus half a bin width with the subtract-then-bin approach. However, we can compensate

simply by doubling the bin resolution.

To compute expression (3), we write

∑
bxc−byc=d

f(x)g(y) =
B∑
b=0

∑
bxc=b

∑
byc=b−d

f(x)g(y)

=
B∑
b=0

∑
bxc=b

f(x)

 ∑
byc=b−d

g(y)

 . (4)

Writing

F (b) :=
∑
bxc=b

f(x), G(b) :=
∑
bxc=b

g(x),

expression (4) becomes
B∑
b=0

F (b)G(b− d) = (F ? G)(d),

a cross-correlation of binned f(x) and g(y) terms.

Computationally, binning f and g to form F and G takes O(S) time, after which the cross-

correlation can be performed in O(B logB) time with a fast Fourier transform. The full computa-

tion of the m+ 1 convolutions in equation (2) thus takes O(m(S +B logB)) time. In practice we

often have B logB < S, in which case the computation is linear in the data size mS.

One additional detail is that we usually want to compute the average rather than the sum of

the weighted LD contributions of the SNP pairs in each bin; this requires normalizing by the

number of pairs (x, y) that map to each bin, which can be computed in an analogous manner

with one more convolution (setting f ≡ 1, g ≡ 1). Finally, we note that our factorization and

binning approach immediately extends to computing weighted LD on inter-chromosome SNP pairs

(by putting all SNPs in a chromosome in the same bin), which allows robust estimation of the

horizontal asymptote of the weighted LD curve.

Missing Data The calculations above assumed that the genotype array contained no missing data,

but in practice a fraction of the genotype values may be missing. The straightforward non-FFT
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computation has no difficulty handling missing data, as each pairwise LD term D2(x, y) can be

calculated as a sample covariance over just the individuals successfully genotyped at both x and

y. Our algebraic manipulation runs into trouble, however, because if k individuals have a missing

value at either x or y, then the sample covariance contains denominators of the form 1/(m−k−1)

and 1/(m− k)(m− k − 1)—and k varies depending on x and y.

One way to get around this problem is simply to restrict the analysis to sites with no missing

values at the cost of slightly reduced power. If a fraction p of the SNPs contain at least one missing

value, this workaround reduces the number of SNP pairs available to (1 − p)2 of the total, which

is probably already acceptable in practice.

We can do better, however: in fact, with a little more algebra (but no additional computational

complexity), we can include all pairs of sites (x, y) for which at least one of the SNPs x, y has no

missing values, bringing our coverage up to 1− p2.

We will need slightly more notation. Adopting eigenstrat format, we now let our genotype

array consist of values

cx,i ∈ {0, 1, 2, 9}

where 9 indicates a missing value. (Thus, {cx,i} is exactly the data that would be contained in a

.geno file.) For convenience, we write

c
(0)
x,i :=


cx,i if cx,i ∈ {0, 1, 2}

0 otherwise.

That is, c(0)x,i replaces missing values with 0s. As before we set

sx :=
∑

i:cx,i 6=9

cx,i =
m∑
i=1

c
(0)
x,i

to be the sum of all non-missing values at x, which also equals the sum of all c(0)x,i because the

missing values have been 0-replaced. Finally, define

kx := #{i : cx,i = 9}
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to be the number of missing values at site x.

We now wish to compute aggregated weighted LD over pairs (x, y) for which at least one of

kx and ky is 0. Being careful not to double-count, we have:

R(d) :=
∑
|x−y|≈d
x<y

kx=0 or ky=0

D2(x, y)wxwy

=
1

2

∑
|x−y|≈d

kx=0 and ky=0

D2(x, y)wxwy +
∑
|x−y|≈d

kx=0 and ky 6=0

D2(x, y)wxwy

=
∑
|x−y|≈d

I[kx = 0]

1 + I[ky = 0]
D2(x, y)wxwy, (5)

where the shorthand I[·] denotes a {0, 1}-indicator.

Now, for a pair of sites (x, y) where x has no missing values and y has ky missing values,

D2(x, y) =
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i −

1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy. (6)

Indeed, we claim the above equation is actually just a rewriting of the standard covariance formula

(1), appropriately modified now that the covariance is over m− ky values rather than m:

• In the sum
∑m

i=1 cx,ic
(0)
y,i , missing values in y have been 0-replaced, so those terms vanish

and the sum effectively consists of the desired m− ky products cx,icy,i.

• Similarly, sy is equal to the sum of the m− ky non-missing cy,i values.

• Finally, sx −
∑m

i=1 I[cy,i = 9]cx,i represents the sum of cx,i over individuals i successfully

genotyped at y, written as the sum sx over all m individuals minus a correction.

80



Substituting (6) into expression (5) for R(d) and rearranging, we have

R(d) =
∑
|x−y|≈d

I[kx = 0]

1 + I[ky = 0]

(
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i

− 1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy

)
wxwy

=
m∑
i=1

∑
|x−y|≈d

(I[kx = 0]cx,iwx) ·
(

1

1 + I[ky = 0]

(
c
(0)
y,i +

I[cy,i = 9]sy
m− ky

)
wy

m− ky − 1

)

−
∑
|x−y|≈d

(I[kx = 0]sxwx) ·
(

sywy

(1 + I[ky = 0])(m− ky)(m− ky − 1)

)
.

The key point is that we once again have a sum ofm+1 convolutions of the form
∑
|x−y|≈d f(x)g(y)

and thus can compute them efficiently as before.

ONE-REFERENCE WEIGHTED LD

When computing weighted LD using the admixed population itself as a reference with one other

reference population, a polyache statistic must be used to obtain an unbiased estimator (File S1).

The form of the polyache causes complications in our algebraic manipulation; however, if we

restrict our attention to SNPs with no missing data, the computation can still be broken into con-

volutions quite naturally, albeit now requiring O(m2) FFTs rather than O(m).

As in the two-reference case, the key idea is to split and factorize the weighted LD formula.

We treat the terms in the polyache separately and observe that each term takes the form of a

constant factor multiplied by a product of sub-terms of the form Sr,s, pA(x), or pA(y). We can use

convolution to aggregate the contributions of such a term if we can factor it as a product of two

pieces, one depending only on x and the other only on y. Doing so is easy for some terms, namely

those that involve only pA(x), pA(y), Sr,0, and S0,s, as the latter two sums depend only on x and y,

respectively.

The terms involving Sr,s with both r and s nonzero are more difficult to deal with but can

be written as convolutions by further subdividing them. In fact, we already encountered S1,1 =∑m
i=1 cx,icy,i in our two-reference weighted LD computation: the trick there was to split the sum
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into its m components, one per admixed individual, each of which could then be factored into

x-dependent and y-dependent parts and aggregated via convolution.

Exactly the same decomposition works for all of the polyache terms except the one involving

S2
1,1. For this term, we write

S2
1,1 =

m∑
i=1

cx,icy,i

m∑
j=1

cx,jcy,j =
m∑
i=1

m∑
j=1

cx,icx,j · cy,icy,j,

from which we see that splitting the squared sum into m2 summands allows us to split the x- and

y-dependence as desired. The upshot is that at the expense of O(m2) FFTs (and restricting our

analysis to SNPs without missing data), we can also accelerate the one-reference weighted LD

computation.
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