
OPERATIONS RESEARCH CENTER

Working Paper

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

by

New Analysis and Results for the Conditional Gradient Method

OR 395-13

Robert M. Freund
Paul Grigas

July 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/16520464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

New Analysis and Results for the Conditional Gradient Method

Robert M. Freund∗ Paul Grigas†

July 1, 2013

Abstract

We present new results for the conditional gradient method (also known as the Frank-Wolfe
method). We derive computational guarantees for arbitrary step-size sequences, which are then
applied to various step-size rules, including simple averaging and constant step-sizes. We also
develop step-size rules and computational guarantees that depend naturally on the warm-start
quality of the initial (and subsequent) iterates. Our results include computational guarantees for
both duality/bound gaps and the so-called Wolfe gaps. Lastly, we present complexity bounds in
the presence of approximate computation of gradients and/or linear optimization subproblem
solutions.

1 Introduction

The use and analysis of first-order methods in convex optimization has gained a considerable
amount of attention in recent years. For many applications – such as LASSO regression, boost-
ing/classification, matrix completion, and other machine learning problems – first-order methods
are appealing for a number of reasons. First, these problems are often very high-dimensional and
thus, without any special structural knowledge, interior-point methods or other polynomial-time
methods are unappealing. Second, in many applications the optimization models are dependent on
data that can be noisy or otherwise limited, it is not necessary or even sensible to require a very
high-accuracy solutions. Thus the weaker rates of convergence of first-order methods are typically
satisfactory for such applications. Finally, first-order methods are appealing in many applications
due to the lower computational burden per iteration, and the structural implications thereof. In-
deed, most first-order methods require, at each iteration, the computation of an exact, approximate,
or stochastic (sub)gradient and the computation of a solution to a particular “simple” subproblem.
These computations typically scale well with the dimension of the problem and are often amenable
to parallelization, distributed architectures, efficient management of sparse data-structures, and
the like.

Our interest herein is the conditional gradient method, which is also referred to as the “Frank-
Wolfe method.” The original conditional gradient method, developed for quadratic programming

∗MIT Sloan School of Management, 77 Massachusetts Avenue, Cambridge, MA 02139 (rfreund@mit.edu). This
author’s research is supported by AFOSR Grant No. FA9550-11-1-0141 and the MIT-Chile-Pontificia Universidad
Católica de Chile Seed Fund.
†MIT Operations Research Center, 77 Massachusetts Avenue, Cambridge, MA 02139 (pgrigas@mit.edu). This

author’s research has been partially supported through NSF Graduate Research Fellowship No. 1122374 and the
MIT-Chile-Pontificia Universidad Católica de Chile Seed Fund.

1

mailto:rfreund@mit.edu
mailto:pgrigas@mit.edu

over a polytope, dates back to Frank and Wolfe [4], and was generalized to the more general smooth
convex objective function over a bounded convex feasible region thereafter, see Levitin and Polyak
[14], also Polyak [19]. More recently there has been renewed interest in the conditional gradient
method due to some of its properties that we will shortly discuss, see for example Clarkson [1],
Hazan [9], Jaggi [10], Giesen et al. [6], and most recently Harchaoui et al. [8] and Lan [13]. The
conditional gradient method is premised on being able to easily solve (at each iteration) linear
optimization problems over the feasible region of interest. This is in contrast to other first-order
methods, such as the accelerated methods of Nesterov [16, 17], which are premised on being able
to easily solve (at each iteration) certain projection problems defined by a strongly convex prox
function. In many applications, solving a linear optimization subproblem is much simpler than
solving the relevant projection subproblem. Moreover, in many applications the solutions to the
linear optimization subproblem are often highly structured and exhibit particular sparsity and/or
low-rank properties. The conditional gradient method solves one subproblem at each iteration
and produces a sequence of feasible solutions that are each a convex combination of all previous
subproblem solutions, for which one can derive an O(1

k) rate of convergence for appropriately chosen
step-sizes. Due to the structure of the subproblem solutions and the fact that iterates are convex
combinations of subproblem solutions, the feasible solutions returned by the conditional gradient
method are also typically very highly-structured. For example, when the feasible region is the
unit simplex ∆n := {λ ∈ Rn : eTλ = 1, λ ≥ 0} and the linear optimization oracle always returns
an extreme point, then the conditional gradient method has the following sparsity property: the
solution that the method produces at iteration k has at most k non-zero entries. (This observation
generalizes to the matrix optimization setting: if the feasible region is a ball induced by the nuclear
norm, then at iteration k the rank of the matrix produced by the method is at most k.) In many
applications, such structural properties are highly desirable, and in such cases the conditional
gradient method may be more attractive than the faster accelerated methods, even though the
conditional gradient method has a slower rate of convergence.

The first set of contributions in this paper concern computational guarantees for arbitrary step-
size sequences. In Section 2, we present a new complexity analysis of the conditional gradient
method wherein we derive an exact functional dependence of the complexity bound at iteration k
as a function of the step-size sequence {ᾱk}. We derive bounds on the deviation from the optimal
objective function value (and on the duality gap in the presence of minmax structure), and on the
so-called Wolfe gaps as first treated by Giesen et al. [6]. In Section 3, we use the technical theorems
developed in Section 2 to derive computational guarantees for a variety of simple step-size rules
including the well-studied step-size rule ᾱk := 2

k+2 , simple averaging, and constant step-sizes. Our

analysis retains the well-known optimal O(1
k) rate (optimal for linear optimization oracle-based

methods [13]) when the step-size is either given by the ᾱk := 2
k+2 rule or is determined by a line-

search. We also derive an O
(

ln(k)
k

)
rate for both the case when the step-size is given by simple

averaging and in the case when the step-size is simply a suitably chosen constant.

The second set of contributions in this paper concern “warm-start” step-size rules and associ-
ated computational guarantees that reflect the the quality of the given initial iterate. The O(1

k)
computational guarantees associated with the step-size sequence ᾱk := 2

k+2 are independent of
quality of the initial iterate. This is good if objective function value of the initial iterate is very
far from the optimal value, as the poor quality of the initial iterate does not affect the computa-
tional guarantee. But if the objective function value of the initial iterate is moderately close to

2

the optimal value, one would want the conditional gradient method, with an appropriate step-size
sequence, to have computational guarantees that reflect the closeness to optimality of the initial
objective function value. In Section 4, we introduce a modification of the ᾱk := 2

k+2 step-size

rule that incorporates the quality of the initial iterate. Our new step-size rule maintains the O(1
k)

complexity bound but now the bound is enhanced by the quality of the initial iterate. We also
introduce a dynamic version of this warm start step-size rule, which dynamically incorporates all
new bound information at each iteration. For the dynamic step-size rule, we also derive a O(1

k)
complexity bound that depends naturally on all of the bound information obtained throughout the
course of the algorithm.

The third set of contributions concern computational guarantees in the presence of approximate
computation of gradients and linear optimization subproblem solutions. In Section 5, we first con-
sider a variation of the conditional gradient method where the linear optimization subproblem at
iteration k is solved approximately to an absolute accuracy of δk. We show that, independent of the
choice of step-size sequence {ᾱk}, the conditional gradient method does not suffer from an accumu-
lation of errors in the presence of approximate subproblem solutions. We extend the “technical”
complexity theorems of Section 2, which imply, for instance, that when an optimal step-size such
as ᾱk := 2

k+2 is used and the {δk} accuracy sequence is a constant δ, then a solution with accuracy

O(1
k + δ) can be achieved in k iterations. We next examine variations of the conditional gradi-

ent method where exact gradient computations are replaced with inexact gradient computations,
under two different models of inexact gradient computations. We show that all of the complex-
ity results under the previously examined approximate subproblem solution case (including, for
instance, the non-accumulation of errors) directly apply to the case where exact gradient compu-
tations are replaced with the δ-oracle approximate gradient model introduced by d’Aspremont [2].
We also examine replacing exact gradient computations with the (δ, L)-oracle model introduced by
Devolder et al. [3]. In this case the conditional gradient method suffers from an accumulation of
errors under essentially any step-size sequence {ᾱk}. These results provide some insight into the
inherent tradeoffs faced in choosing among several first-order methods.

1.1 Notation

Let E be a finite-dimensional real vector space with dual vector space E∗. For a given s ∈ E∗

and a given λ ∈ E, let sTλ denote the evaluation of the linear functional s at λ. For a norm ‖ · ‖
on E, let B(c, r) = {λ ∈ E : ‖λ − c‖ ≤ r}. The dual norm ‖ · ‖∗ on the space E∗ is defined by
‖s‖∗ := max

λ∈B(0,1)
{sTλ} for a given s ∈ E∗. The notation “ṽ ← arg max

v∈S
{f(v)}” denotes assigning ṽ

to be any optimal solution of the problem max
v∈S
{f(v)}.

2 The Conditional Gradient Method

We recall the conditional gradient method for convex optimization, see Levitin and Polyak [14] and
Polyak [19] (also referred to as the “Frank-Wolfe algorithm” from [4]), stated here for maximization
problems:

max
λ

h(λ)

s.t. λ ∈ Q ,
(1)

3

where Q ⊂ E is convex and compact, and h(·) : Q → R is concave and differentiable on Q. Let
h∗ denote the optimal objective function value of (1). The basic conditional gradient method is
presented in Method 1, where the main computational requirement at each iteration is to solve
a linear optimization problem over Q in Step (2.) of the method. The step-size ᾱk in Step (4.)
could be chosen by inexact or exact line-search, or by a pre-determined or dynamically determined
step-size sequence {ᾱk}. Also note that the version of the conditional gradient method in Method
1 does not allow a (full) step-size ᾱk = 1, the reasons for which will become apparent below.

Method 1 Conditional Gradient Method for maximizing h(λ)

Initialize at λ1 ∈ Q, (optional) initial upper bound B0, k ← 1 .
At iteration k:
1. Compute ∇h(λk) .
2. Compute λ̃k ← arg max

λ∈Q
{h(λk) +∇h(λk)

T (λ− λk)} .

Bw
k ← h(λk) +∇h(λk)

T (λ̃k − λk) .
Gk ← ∇h(λk)

T (λ̃k − λk) .
3. (Optional: compute other upper bound Bo

k), update best bound Bk ← min{Bk−1, B
w
k , B

o
k} .

4. Set λk+1 ← λk + ᾱk(λ̃k − λk), where ᾱk ∈ [0, 1) .

As a consequence of solving the linear optimization problem in Step (2.) of the method, one
conveniently obtains the “Wolfe upper bound” on the optimal value h∗ of (1):

Bw
k := h(λk) +∇h(λk)

T (λ̃k − λk) , (2)

and it follows from the fact that the linearization of h(·) at λk dominates h(·) that Bw
k is a valid

upper bound on h∗. We are also interested in the “Wolfe gap” Gk at each iteration:

Gk := Bw
k − h(λk) = ∇h(λk)

T (λ̃k − λk) . (3)

Note that Gk ≥ h∗ − h(λk) ≥ 0. In certain contexts, Gk is an important quantity by itself, see
Khachiyan [12], Giesen et al. [6], as well as [5]. Jaggi [10] first showed that the conditional gradient
method generates upper bound guarantees on Gk, see also Harchaoui et al. [8], although Khachiyan
implicitly derived such bounds for the conditional gradient method applied to the minimum volume
covering ellipsoid problem in [12]. Both Bw

k and Gk are computed directly from the solution of the
linear optimization problem in Step (2.) and are recorded therein for convenience.

In some of our analysis of the conditional gradient method, the computational guarantees will
depend on the quality of upper bounds on h∗. In addition to the Wolfe bound Bw

k , Step (3.) allows
for an “optional other upper bound Bo

k ” that also might be computed at iteration k. Sometimes
there is structural knowledge of an upper bound as a consequence of a dual problem associated
with (1), as when h(·) is conveyed with minmax structure, namely:

h(λ) = min
x∈P

φ(x, λ) , (4)

where P is a closed convex set and φ(·, ·) : P × Q → R is a continuous function that is convex in
the first variable x and concave in the second variable λ. In this case define the convex function
f(·) : P → R given by f(x) := max

λ∈Q
φ(x, λ) and consider the following duality paired problems:

4

(Primal): min
x∈P

f(x) and (Dual): max
λ∈Q

h(λ) , (5)

where here it is the dual problem that corresponds to our problem of interest (1). Weak duality
holds, namely h(λ) ≤ h∗ ≤ f(x) for all x ∈ P, λ ∈ Q. At any iterate λk ∈ Q of the conditional
gradient method one can construct a “minmax” upper bound on h∗ by considering the variable x
in that structure:

Bm
k := f(xk) := max

λ∈Q
{φ(xk, λ)} where xk ∈ arg min

x∈P
{φ(x, λk)} , (6)

and it follows from weak duality that Bo
k := Bm

k is a valid upper bound for all k. Notice that xk
defined above is the “optimal response” to λk in a minmax sense and hence is a natural choice
of duality-paired variable associated with the variable λk. Under certain regularity conditions, for
instance when h(·) is globally differentiable on E, one can show that Bm

k is at least as tight a bound
as Wolfe’s bound, namely Bm

k ≤ Bw
k for all k (see Proposition A.1), and therefore the Wolfe gap

Gk conveniently bounds this minmax duality gap: Bm
k − h(λk) ≤ Bw

k − h(λk) = Gk.

(Indeed, in the minmax setting notice that the optimal response xk in (6) is a function of the
current iterate λk and hence f(xk)− h(λk) = Bm

k − h(λk) is not just any duality gap but rather is
determined completely by the current iterate λk. This special feature of the duality gap Bm

k −h(λk)
is exploited in the application of the conditional gradient method to rounding of polytopes [12],
parametric optimization on the spectrahedron [6], and to regularized regression [5] (and perhaps
elsewhere as well), where bounds on the Wolfe gap Gk are used to bound Bm

k − h(λk) directly.)

We also mention that in some applications there might be exact knowledge of the optimal value
h∗ (as in certain linear regression applications where one knows a priori that the optimal value of
the residuals is zero), whereby one can set Bo

k ← h∗.

It will also be useful to analyze a version of the conditional gradient method wherein there is
a single “pre-start” step. In this case we are given some λ0 ∈ Q and some upper bound B−1 on
h∗ (one can use B−1 = +∞ if no information is available) and we proceed like any other iteration
except that in Step (4.) we set λ1 ← λ̃0, which is equivalent to setting ᾱ0 := 1. This is shown
formally in the Pre-start Procedure 2.

Procedure 2 Pre-start Step of Conditional Gradient Method given λ0 ∈ Q and (optional) upper
bound B−1

1. Compute ∇h(λ0) .
2. Compute λ̃0 ← arg max

λ∈Q
{h(λ0) +∇h(λ0)T (λ− λ0)} .

Bw
0 ← h(λ0) +∇h(λ0)T (λ̃0 − λ0) .

G0 ← ∇h(λ0)T (λ̃0 − λ0) .
3. (Optional: compute other upper bound Bo

0), update best bound B0 ← min{B−1, B
w
0 , B

o
0} .

4. Set λ1 ← λ̃0 .

Towards stating and proving complexity bounds for the conditional gradient method, resembling
Clarkson [1] we consider the following curvature constant Ch,Q, which is defined to be the minimal
value of C satisfying:

h(λ+ α(λ̄− λ)) ≥ h(λ) +∇h(λ)T (α(λ̄− λ))− 1

2
Cα2 for all λ, λ̄ ∈ Q and all α ∈ [0, 1] . (7)

5

For any choice of norm ‖ · ‖ on E, let DiamQ denote the diameter of Q measured with the norm
‖ · ‖, namely DiamQ := max

λ,λ̄∈Q
{‖λ − λ̄‖} and let Lh,Q be the Lipschitz constant for ∇h(·) on Q,

namely Lh,Q is the smallest constant L for which it holds that:

‖∇h(λ)−∇h(λ̄)‖∗ ≤ L‖λ− λ̄‖ for all λ, λ̄ ∈ Q .

It is straightforward to show that Ch,Q is bounded above by the more classical metrics DiamQ and
Lh,Q, namely

Ch,Q ≤ Lh,Q(DiamQ)2 , (8)

see Proposition A.2. In contrast to other (proximal) first-order methods, the conditional gradient
method does not depend on a choice of norm. The norm invariant definition of Ch,Q and the fact
that (8) holds for any norm are therefore particularly appealing properties of Ch,Q as a behavioral
measure for the conditional gradient method.

Towards stating our main technical results, we define the following two auxiliary sequences,
where αk and βk are functions of the first k step-size sequence values, ᾱ1, . . . , ᾱk, from the condi-
tional gradient method:

βk =
1

k−1∏
j=1

(1− ᾱj)
, αk =

βkᾱk
1− ᾱk

, k ≥ 1 . (9)

(Here and in what follows we use the conventions:
∏0
j=1 · = 1 and

∑0
i=1 · = 0 .)

The following two theorems are our main technical constructs that will be used to develop the
results herein. The first theorem concerns optimality gap bounds.

Theorem 2.1. Consider the iterate sequences of the conditional gradient method (Method 1) {λk}
and {λ̃k} and the sequence of upper bounds {Bk} on h∗, using the step-size sequence {ᾱk}. For the
auxiliary sequences {αk} and {βk} given by (9), and for any k ≥ 0, the following inequality holds:

Bk − h(λk+1) ≤ Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1
. (10)

The summation expression in the rightmost term above appears also in the bound given on the
dual averaging method of Nesterov [18]. Indeed, this is no coincidence as the sequences {αk} and
{βk} given by (9) arise precisely by a connection between the conditional gradient method and the
dual averaging method, see [7]. For this reason we will henceforth refer to the sequences (9) as
the “dual averages” sequences associated with {ᾱk}. The second theorem concerns the Wolfe gap
values Gk from Step (2.) in particular.

Theorem 2.2. Consider the iterate sequences of the conditional gradient method (Method 1) {λk}
and {λ̃k}, the sequence of upper bounds {Bk} on h∗, and the sequence of Wolfe gaps {Gk} from

6

Step (2.), using the step-size sequence {ᾱk}. For the auxiliary sequences {αk} and {βk} given by
(9), and for any ` ≥ 0 and k ≥ `+ 1, the following inequality holds:

min
i∈{`+1,...,k}

Gi ≤
1∑k

i=`+1 ᾱi

B` − h(λ1)

β`+1
+

1
2Ch,Q

∑`
i=1

α2
i

βi+1

β`+1

+
1
2Ch,Q

∑k
i=`+1 ᾱ

2
i∑k

i=`+1 ᾱi
. (11)

Theorems 2.1 and 2.2 can be applied to yield specific complexity results for any specific step-size
sequence {ᾱk} (satisfying the mild assumption that ᾱk < 1) through the use of the implied {αk}
and {βk} dual averages sequences. This is shown for several useful step-size sequences in the next
section.

Proof of Theorem 2.1: We will show the slightly more general result for k ≥ 0:

min{B,Bk} − h(λk+1) ≤ B − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1
for any B , (12)

from which (10) follows by substituting B = Bk above.

For k = 0 the result follows trivially since β1 = 1 and the summation term on the right side
of (12) is zero by the conventions for null products and summations stated earlier. For k ≥ 1, we
begin by observing that the following equalities hold for the dual averages sequences (9):

βi+1 − βi = ᾱiβi+1 = αi and βi+1ᾱ
2
i =

α2
i

βi+1
for i ≥ 1 , (13)

and

1 +

k∑
i=1

αi = βk+1 for k ≥ 1 . (14)

We then have for i ≥ 1:

βi+1h(λi+1) ≥ βi+1

[
h(λi) +∇h(λi)

T (λ̃i − λi)ᾱi −
1

2
ᾱ2
iCh,Q

]
= βih(λi) + (βi+1 − βi)h(λi) + βi+1ᾱi∇h(λi)

T (λ̃i − λi)−
1

2
βi+1ᾱ

2
iCh,Q

= βih(λi) + αih(λi) + αi∇h(λi)
T (λ̃i − λi)−

1

2

α2
i

βi+1
Ch,Q

= βih(λi) + αi

[
h(λi) +∇h(λi)

T (λ̃i − λi)
]
− 1

2

α2
i

βi+1
Ch,Q

= βih(λi) + αiB
w
i −

1

2

α2
i

βi+1
Ch,Q .

The inequality in the first line above follows from the definition of Ch,Q in (7) and λi+1 − λi =
ᾱi(λ̃i − λi). The second equality above uses the identities (13), and the fourth equality uses the

7

definition of the Wolfe upper bound (2). Rearranging and summing the above over i, it follows
that for any scalar B:

B +

k∑
i=1

αiB
w
i ≤ B + βk+1h(λk+1)− β1h(λ1) +

1

2

k∑
i=1

α2
i

βi+1
Ch,Q . (15)

Therefore

min{B,Bk}βk+1 = min{B,Bk}

(
1 +

k∑
i=1

αi

)

≤ B +
k∑
i=1

αiB
w
i

≤ B + βk+1h(λk+1)− h(λ1) +
1

2

k∑
i=1

α2
i

βi+1
Ch,Q ,

where the first equality above uses identity (14), the first inequality uses the fact that Bk ≤ Bw
i

for i ≤ k, and the second inequality uses (15) and the fact that β1 = 1. The result then follows by
dividing by βk+1 and rearranging terms.

Proof of Theorem 2.2: For i ≥ 1 we have:

h(λi+1) ≥ h(λi) +∇h(λi)
T (λ̃i − λi)ᾱi − 1

2 ᾱ
2
iCh,Q

= h(λi) + ᾱiGi − 1
2 ᾱ

2
iCh,Q ,

(16)

where the inequality follows from the definition of the curvature constant in (7), and the equality
follows from the definition of the Wolfe gap in (3). Summing the above over i ∈ {`+ 1, . . . , k} and
rearranging yields: ∑k

i=`+1 ᾱiGi ≤ h(λk+1)− h(λ`+1) +
∑k

i=`+1
1
2 ᾱ

2
iCh,Q . (17)

Combining (17) with Theorem 2.1 we obtain:

k∑
i=`+1

ᾱiGi ≤ h(λk+1)−B` +
B` − h(λ1)

β`+1
+

1
2Ch,Q

∑`
i=1

α2
i

βi+1

β`+1
+

k∑
i=`+1

1

2
ᾱ2
iCh,Q ,

and since B` ≥ h∗ ≥ h(λk+1) we obtain:

(
min

i∈{`+1,...,k}
Gi

)(k∑
i=`+1

ᾱi

)
≤

k∑
i=`+1

ᾱiGi ≤
B` − h(λ1)

β`+1
+

1
2Ch,Q

∑`
i=1

α2
i

βi+1

β`+1
+

k∑
i=`+1

1

2
ᾱ2
iCh,Q ,

and dividing by
∑k

i=`+1 ᾱi yields the result.

8

3 Computational Guarantees for Specific Step-size Sequences

Herein we use Theorems 2.1 and 2.2 to derive computational guarantees for a variety of specific step-
size sequences. We first present a property of the pre-start step (Procedure 2) that has implications
for such computational guarantees.

Proposition 3.1. Let λ1 and B0 be computed by the pre-start step Procedure 2. Then B0−h(λ1) ≤
1
2Ch,Q.

Proof. We have λ1 = λ̃0 and B0 ≤ Bw
0 , whereby from the definition of Ch,Q using α = 1 we have:

h(λ1) = h(λ̃0) ≥ h(λ0) +∇h(λ0)T (λ̃0 − λ0)− 1

2
Ch,Q = Bw

0 −
1

2
Ch,Q ≥ B0 −

1

2
Ch,Q ,

and the result follows by rearranging terms.

3.1 A Well-studied Step-size Sequence

Suppose we initiate the conditional gradient method with the pre-start step Procedure 2 from a
given value λ0 ∈ Q (which by definition assigns the step-size ᾱ0 = 1 as discussed earlier), and then
use the step-size ᾱi = 2/(i+ 2) for i ≥ 1. This can be written equivalently as:

ᾱi =
2

i+ 2
for i ≥ 0 . (18)

Computational guarantees for this sequence appeared in Hazan [9] (with a corrected proof in Giesen
et al. [6]). In unpublished correspondence with the second author in 2007, Nemirovski [15] presented
a short inductive proof of convergence of the conditional gradient method using this step-size rule.

We use the phrase “bound gap” to generically refer to the difference between an upper bound B
on h∗ and the value h(λ), namely B−h(λ). The following result describes guarantees on the bound
gap Bk − h(λk+1) and the Wolfe gap Gk using the step-size sequence (18), that are applications of
Theorems 2.1 and 2.2, and that are very minor improvements of existing results as discussed below.

Bound 3.1. Under the step-size sequence (18), the following inequalities hold for all k ≥ 1:

Bk − h(λk+1) ≤
2Ch,Q
k + 4

(19)

and

min
i∈{1,...,k}

Gi ≤
4.5Ch,Q

k
. (20)

The bound (19) is a very minor improvement over that in Hazan [9] and Giesen et al. [6], see also
Harchaoui et al. [8], as the denominator is additively larger by 1 (after accounting for the pre-start
step and the different indexing conventions). The bound (20) is a modification of the original
bound in Jaggi [10] (which required changing to a constant step-size for iterations k + 1, . . . , 2k),
and is also a slight improvement of the bound in Harchaoui et al. [8] inasmuch as the denominator
is additively larger by 1 and the bound is valid for all k ≥ 1.

9

Proof of Bound 3.1: Using (18) it is easy to show that the dual averages sequences (9) satisfy

βk = k(k+1)
2 and αk = k + 1 for k ≥ 1. Utilizing Theorem 2.1, we have for k ≥ 1:

Bk − h(λk+1) ≤ Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

≤ B0 − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

≤
1
2Ch,Q

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

=
Ch,Q

(k + 1)(k + 2)

[
1 +

k∑
i=1

2(i+ 1)2

(i+ 1)(i+ 2)

]

=
Ch,Q

(k + 1)(k + 2)

[
k∑
i=0

2(i+ 1)

(i+ 2)

]

≤
2Ch,Q
k + 4

,

where the second inequality uses Bk ≤ B0, the third inequality uses Proposition 3.1, the first equal-
ity substitutes the dual averages sequence values, and the final inequality follows from Proposition
A.3. This proves (19).

To prove (20) we proceed as follows. First apply Theorem 2.2 with ` = 0 and k = 1 to obtain:

G1 ≤
1

ᾱ1
[B0 − h(λ1)] +

1

2
Ch,Qᾱ1 ≤

1

2
Ch,Q

[
1

ᾱ1
+ ᾱ1

]
=

1

2
Ch,Q

[
3

2
+

2

3

]
=

13

12
Ch,Q ,

where the second inequality uses Proposition 3.1. Since 13
12 ≤ 4.5 and 13

12 ≤
4.5
2 , this proves (20) for

k = 1, 2. Assume now that k ≥ 3. Let ` = dk2e − 2 so that ` ≥ 0. We have:

k∑
i=`+1

ᾱi = 2

k∑
i=`+1

1

i+ 2
= 2

k+2∑
i=`+3

1

i
≥ 2 ln

(
k + 3

`+ 3

)
≥ 2 ln

(
k + 3
k
2 + 1.5

)
= 2 ln(2) , (21)

where the first inequality uses Proposition A.5 and the second inequality uses dk2e ≤
k
2 + 1

2 . We
also have:

k∑
i=`+1

ᾱ2
i = 4

k∑
i=`+1

1

(i+ 2)2
= 4

k+2∑
i=`+3

1

i2
≤ 4(k − `)

(`+ 2)(k + 2)
≤

4
(
k
2 + 2

)
k
2 (k + 2)

=
4(k + 4)

k(k + 2)
, (22)

where the first inequality uses Proposition A.5 and the second inequality uses dk2e ≥
k
2 . Applying

10

Theorem 2.2 and using (21) and (22) yields:

min
i∈{1,...,k}

Gi ≤
1

2 ln(2)

B` − h(λ1)

β`+1
+

1
2Ch,Q

∑`
i=1

α2
i

βi+1

β`+1
+

2Ch,Q(k + 4)

k(k + 2)

≤ 1

2 ln(2)

[
2Ch,Q
`+ 4

+
2Ch,Q(k + 4)

k(k + 2)

]
≤

2Ch,Q
2 ln(2)

[
2

k + 4
+

k + 4

k(k + 2)

]
=

2Ch,Q
2 ln(2)

[
3k2 + 12k + 16

(k + 4)(k + 2)k

]
≤

2Ch,Q
2 ln(2)

(
3

k

)
≤

4.5Ch,Q
k

,

where the second inequality uses the chain of inequalities used to prove (19), the third inequality
uses `+ 4 ≥ k

2 + 2, and the fourth inequality uses k2 + 4k+ 16
3 ≤ k

2 + 6k+ 8 = (k+ 4)(k+ 2).

3.2 Simple Averaging

Consider the following step-size sequence:

ᾱi =
1

i+ 1
for i ≥ 0 , (23)

where, as with the step-size sequence (18), we write ᾱ0 = 1 to indicate the use of the pre-start step
Procedure 2. It follows from a simple inductive argument that, under the step-size sequence (23),
λk+1 is the simple average of λ̃0, λ̃1, . . . , λ̃k, i.e., we have

λk+1 =
1

k + 1

k∑
i=0

λ̃i for all k ≥ 0 .

Bound 3.2. Under the step-size sequence (23), the following inequality holds for all k ≥ 0:

Bk − h(λk+1) ≤
1
2Ch,Q(1 + ln(k + 1))

k + 1
, (24)

and the following inequality holds for all k ≥ 2:

min
i∈{1,...,k}

Gi ≤
3
4Ch,Q (2.3 + 2 ln(k))

k − 1
. (25)

Proof of Bound 3.2: Using (23) it is easy to show that the dual averages sequences (9) are given
by βk = k and αk = 1 for k ≥ 1. Utilizing Theorem 2.1 and Proposition 3.1, we have for k ≥ 1:

Bk − h(λk+1) ≤
1
2Ch,Q

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

=
1
2Ch,Q

k + 1

[
1 +

k∑
i=1

1

i+ 1

]

≤
1
2Ch,Q

k + 1
[1 + ln(k + 1)] ,

11

where the first equality substitutes the dual averages sequence values and the second inequality
uses Proposition A.5. This proves (24). To prove (25), we proceed as follows. Let ` = bk2c − 1,
whereby ` ≥ 0 since k ≥ 2. We have:

k∑
i=`+1

ᾱi =
k∑

i=`+1

1

i+ 1
=

k+1∑
i=`+2

1

i
≥ ln

(
k + 2

`+ 2

)
≥ ln

(
k + 2
k
2 + 1

)
= ln(2) , (26)

where the first inequality uses Proposition A.5 and the second inequality uses ` ≤ k
2 − 1. We also

have:

k∑
i=`+1

ᾱ2
i =

k∑
i=`+1

1

(i+ 1)2
=

k+1∑
i=`+2

1

i2
≤ k − `

(`+ 1)(k + 1)
≤

k
2 + 1.5

(k2 −
1
2)(k + 1)

=
k + 3

(k − 1)(k + 1)
, (27)

where the first inequality uses Proposition A.5 and the second inequality uses ` ≥ k
2−1.5. Applying

Theorem 2.2 and using (26) and (27) yields:

min
i∈{1,...,k}

Gi ≤
1

ln(2)

B` − h(λ1)

β`+1
+

1
2Ch,Q

∑`
i=1

α2
i

βi+1

β`+1
+

1
2Ch,Q(k + 3)

(k − 1)(k + 1)

≤ 1

ln(2)

[
1
2Ch,Q(1 + ln(`+ 1))

`+ 1
+

1
2Ch,Q(k + 3)

(k − 1)(k + 1)

]

≤
1
2Ch,Q

ln(2)

[
1 + ln(k2)
k
2 −

1
2

+
k + 3

(k − 1)(k + 1)

]

≤
1
2Ch,Q

ln(2)

[
2 + 2 ln(k)− 2 ln(2)

k − 1
+

5
3

k − 1

]

≤
3
4Ch,Q (2.3 + 2 ln(k))

k − 1
,

where the second inequality uses the bound that proves (24), the third inequality uses k
2 − 1.5 ≤

` ≤ k
2 − 1 and the fourth inequality uses k+3

k+1 ≤
5
3 for k ≥ 2.

3.3 Constant Step-size

Given ᾱ ∈ (0, 1), consider using the following constant step-size rule:

ᾱi = ᾱ for i ≥ 1 . (28)

This step-size rule arises in the analysis of the Incremental Forward Stagewise Regression algorithm
(FSε), see [5], and perhaps elsewhere as well.

Bound 3.3. Under the step-size sequence (28), the following inequality holds for all k ≥ 1:

Bk − h(λk+1) ≤ (Bk − h(λ1)) (1− ᾱ)k + 1
2Ch,Q

[
ᾱ− ᾱ(1− ᾱ)k

]
. (29)

If the pre-start step Procedure 2 is used, then:

Bk − h(λk+1) ≤ 1
2Ch,Q

[
(1− ᾱ)k+1 + ᾱ

]
. (30)

12

If we decide a priori to run the conditional gradient method for k iterations after the pre-start step
Procedure 2, then we can optimize the bound (30) with respect to ᾱ. The optimized value of ᾱ in
the bound (30) is easily derived to be:

ᾱ∗ = 1− 1
k
√
k + 1

. (31)

With ᾱ determined by (31), we obtain a simplified bound from (30) and also a guarantee for the
Wolfe Gap sequence {Gk} if the method is continued with the same constant step-size (31) for an
additional k + 1 iterations.

Bound 3.4. If we use the pre-start step Procedure 2 and the constant step-size sequence (31) for
all iterations, then after k iterations the following inequality holds:

Bk − h(λk+1) ≤
1
2Ch,Q (1 + ln(k + 1))

k
. (32)

Furthermore, after 2k + 1 iterations the following inequality holds:

min
i∈{1,...,2k+1}

Gi ≤
1
2Ch,Q (1 + 2 ln(k + 1))

k
(33)

It is curious to note that the bounds (24) and (32) are almost identical, although (32) requires
fixing a priori the number of iterations k.

Proof of Bound 3.3: Under the step-size rule (28) it is straightforward to show that the dual
averages sequences (9) are for i ≥ 1:

βi = (1− ᾱ)−k+1 and αi = ᾱ(1− ᾱ)−k ,

whereby
k∑
i=1

α2
i

βi+1
=

k∑
i=1

ᾱ2(1− ᾱ)−i = ᾱ2

(1
(1−ᾱ)k

− 1

ᾱ

)
= ᾱ

[
(1− ᾱ)−k − 1

]
.

It therefore follows from Theorem 2.1 that:

Bk − h(λk+1) ≤ Bk−h(λ1)
βk+1

+
1
2
Ch,Q

∑k
i=1

α2i
βi+1

βk+1

= (Bk − h(λ1)) (1− ᾱ)k +
(
Ch,Q

2

)
ᾱ
[
(1− ᾱ)−k − 1

]
(1− ᾱ)k

= (Bk − h(λ1)) (1− ᾱ)k +
(
Ch,Q

2

) [
ᾱ− ᾱ(1− ᾱ)k

]
,

(34)

which proves (29). If the pre-start step Procedure 2 is used, then using Proposition 3.1 it follows
that Bk − h(λ1) ≤ B0 − h(λ1) ≤ 1

2Ch,Q, whereby from (29) we obtain:

Bk − h(λk+1) ≤ 1

2
Ch,Q(1− ᾱ)k +

(
Ch,Q

2

)[
ᾱ− ᾱ(1− ᾱ)k

]

=
1

2
Ch,Q

[
(1− ᾱ)k+1 + ᾱ

]
,

13

completing the proof.

Proof of Bound 3.4: Substituting the step-size (31) into (30) we obtain:

Bk − h(λk+1) ≤ 1

2
Ch,Q

[(
1

k
√
k + 1

)k+1

+ 1− 1
k
√
k + 1

]

≤ 1

2
Ch,Q

[(
1

k
√
k + 1

)k+1

+
ln(k + 1)

k

]

≤ 1

2
Ch,Q

[
1

k + 1
+

ln(k + 1)

k

]

≤ 1

2
Ch,Q

[
1

k
+

ln(k + 1)

k

]
,

where the second inequality follows from (i) of Proposition A.4. This proves (32). To prove (33),
notice that inequality (34) together with the subsequent chain of inequalities in the proofs of (29),
(30), and (32) show that:Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

 ≤ 1

2
Ch,Q

(
1 + ln(k + 1)

k

)
. (35)

Using (35) and the substitution
∑2k+1

i=k+1 ᾱi = (k + 1)ᾱ and
∑2k+1

i=k+1 ᾱ
2
i = (k + 1)ᾱ2 in Theorem 2.2

yields:

min
i∈{1,...,2k+1}

Gi ≤
1

(k + 1)ᾱ

(
1
2Ch,Q(1 + ln(k + 1))

k

)
+

1
2Ch,Q(k + 1)ᾱ2

(k + 1)ᾱ

≤ 1
2Ch,Q

(
1 + ln(k + 1)

k

)
+ 1

2Ch,Q · ᾱ

≤
1
2Ch,Q (1 + 2 ln(k + 1))

k
,

where the second inequality uses (ii) of Proposition A.4 and the third inequality uses (i) of Propo-
sition A.4.

3.4 Extensions using Line-Searches

The original method of Frank and Wolfe [4] used a line-search to determine the next iterate λk+1

by assigning α̂k ← arg max
α∈[0,1]

{h(λk + α(λ̃k − λk))} and λk+1 ← λk + α̂k(λ̃k − λk). When h(·) is

a quadratic and the dimension of the space E of variables λ is not huge, an exact line-search is

14

easy to compute analytically, otherwise an inexact line-search can be used. It is a straightforward
extension of Theorem 2.1 to show that if an exact line-search is utilized at every iteration, then
the bound (10) holds for any choice of step-size sequence {ᾱk}, and not just the sequence {α̂k}
of line-search step-sizes. In particular, the O(1

k) computational guarantee (19) holds, as does (24)
and (29), as well as the bound (38) to be developed in Section 4.

This observation generalizes as follows. At iteration k of the conditional gradient method, let
Ak ⊆ [0, 1) be a closed set of potential step-sizes and suppose we select the next iterate λk+1 by
assigning α̂k ← arg max

α∈Ak
{h(λk+α(λ̃k−λk))} and λk+1 ← λk+ α̂k(λ̃k−λk). Then after k iterations

of the conditional gradient method, we can apply the bound (10) for any choice of step-size sequence
{ᾱi}ki=1 in the cross-product A1 × · · · ×Ak.

4 Computational Guarantees for a Warm Start

In the framework of this study, the well-studied step-size sequence (18) and associated computa-
tional guarantees (Bound 3.1) corresponds to running the conditional gradient method initiated
with the pre-start step from the initial point λ0. One feature of the main computational guarantees
as presented in the bounds (19) and (20) is their insensitivity to the quality of the initial point λ0.
This is good if h(λ0) is very far from the optimal value h∗, as the poor quality of the initial point
does not affect the computational guarantee. But if h(λ0) is moderately close to the optimal value,
one would want the conditional gradient method, with an appropriate step-size sequence, to have
computational guarantees that reflect the closeness to optimality of the initial objective function
value h(λ0). Let us see how this can be done.

We will consider starting the conditional gradient method without the pre-start step, started at
an initial point λ1, and let C1 be a given estimate of the curvature constant Ch,Q. Consider the
following step-size sequence:

ᾱi =
2

2C1
B1−h(λ1) + i+ 1

for i ≥ 1 . (36)

Comparing (36) to the well-studied step-size rule (18), one can think of the above step-size rule as
acting “as if” the conditional gradient method had run for 2C1

B1−h(λ1) iterations before arriving at
λ1. The next result presents a computational guarantee associated with this step-size rule.

Bound 4.1. Under the step-size sequence (36), the following inequality holds for all k ≥ 1:

Bk − h(λk+1) ≤
2 max{C1, Ch,Q}

2C1
B1−h(λ1) + k

. (37)

Notice that in the case when C1 = Ch,Q, the bound in (37) simplifies conveniently to:

Bk − h(λk+1) ≤
2Ch,Q

2Ch,Q
B1−h(λ1) + k

. (38)

Also, as a function of the estimate C1 of the curvature constant, it is easily verified that the bound
in (37) is optimized at C1 = Ch,Q.

15

We remark that the bound (37) (or (38)) is small to the extent that the initial bound gap
B1 − h(λ1) is small, as one would want. However, to the extent that B1 − h(λ1) is small, the
incremental decrease in the bound due to an additional iteration is less. In other words, while the
bound (37) is nicely sensitive to the initial bound gap, there is no longer rapid decrease in the

bound in the early iterations. It is as if the algorithm had already run for
(

2C1
B1−h(λ1)

)
iterations

to arrive at the initial iterate λ1, with a corresponding dampening in the marginal value of each
iteration after then. This is a structural feature of the conditional gradient method that is different
from first-order methods that use prox functions and/or projections.

Proof of Bound 4.1: Define s = 2C1
B1−h(λ1) , whereby ᾱi = 2

s+1+i for i ≥ 1. It then is straightforward

to show that the dual averages sequences (9) are for i ≥ 1:

βi =

i−1∏
j=1

(1− ᾱj)−1 =

i−1∏
j=1

s+ j + 1

s+ j − 1
=

(s+ i− 1)(s+ i)

s(s+ 1)
,

and

αi =
βiᾱi

1− ᾱi
=

2(s+ i)(s+ i− 1)(s+ i+ 1)

s(s+ 1)(s+ i+ 1)(s+ i− 1)
=

2(s+ i)

s(s+ 1)
.

Furthermore, we have:

k∑
i=1

α2
i

βi+1
=

k∑
i=1

4(s+ i)2(s)(s+ 1)

s2(s+ 1)2(s+ i)(s+ i+ 1)
=

k∑
i=1

4(s+ i)

s(s+ 1)(s+ i+ 1)
≤ 4k

s(s+ 1)
. (39)

Utilizing Theorem 2.1 and (39), we have for k ≥ 1:

Bk − h(λk+1) ≤ Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

≤ s(s+ 1)

(s+ k)(s+ k + 1)

(
B1 − h(λ1) +

Ch,Q
2
· 4k

s(s+ 1)

)

=
s(s+ 1)

(s+ k)(s+ k + 1)

(
2C1

s
+

2kCh,Q
s(s+ 1)

)

≤
2 max{C1, Ch,Q}

(s+ k)(s+ k + 1)
(s+ 1 + k)

=
2 max{C1, Ch,Q}

s+ k
,

which completes the proof.

16

4.1 A Dynamic Version of the Warm-Start Step-size Strategy

The step-size sequence (36) determines all step-sizes for the conditional gradient method based on
two pieces of information at the initial point λ1: (i) the initial bound gap B1 − h(λ1), and (ii)
the given estimate C1 of the curvature constant. The step-size sequence (36) is a static warm-
start strategy in that all step-sizes are determined by information that is available or computed
at the first iterate. Let us see how we can improve the computational guarantee by treating every
iterate as if it were the initial iterate, and hence dynamically determine the steps-size sequence as
a function of accumulated information about the bound gap and the curvature constant.

At the start of a given iteration k of the conditional gradient method, we have the iterate value
λk ∈ Q and an upper bound Bk−1 on h∗ from the previous iteration. We also will now assume
that we have an estimate Ck−1 of the curvature constant from the previous iteration as well. Steps
(2.) and (3.) of the conditional gradient method then perform the computation of λ̃k, Bk and Gk.
Instead of using a pre-set formula for the step-size ᾱk, we will determine the value of ᾱk based on
the current bound gap Bk − h(λk) as well as on a new estimate Ck of the curvature constant. (We
will shortly discuss how Ck is computed.) Assuming Ck has been computed, and mimicking the
structure of the static warm-start step-size rule (36), we compute the current step-size as follows:

ᾱk :=
2

2Ck
Bk−h(λk) + 2

, (40)

where we note that ᾱk depends explicitly on the value of Ck. Comparing ᾱk in (40) with (18),
we interpret 2Ck

Bk−h(λk) to be “as if” the current iteration k was preceded by 2Ck
Bk−h(λk) iterations of

the conditional gradient method using the standard step-size (18). This interpretation is also in
concert with that of the static warm-start step-size rule (36).

We now discuss how we propose to compute the new estimate Ck of the curvature constant
Ch,Q at iteration k. Because Ck will be only an estimate of Ch,Q, we will need to require that Ck
(and the step-size ᾱk (40) that depends explicitly on Ck) satisfy:

h(λk + ᾱk(λ̃k − λk)) ≥ h(λk) + ᾱk(Bk − h(λk))−
1

2
Ckᾱ

2
k . (41)

In order to find a value Ck ≥ Ck−1 for which (41) is satisfied, we first test if Ck := Ck−1 satisfies
(41), and if so we set Ck ← Ck−1. If not, one can perform a standard doubling strategy, testing
values Ck ← 2Ck−1, 4Ck−1, 8Ck−1, . . ., until (41) is satisfied. Since (41) will be satisfied whenever
Ck ≥ Ch,Q from the definition of Ch,Q in (7) and the inequality Bk − h(λk) ≤ Bw

k − h(λk) =
∇h(λk)

T (λ̃k − λk), it follows that the doubling strategy will guarantee Ck ≤ max{C0, 2Ch,Q}. Of
course, if an upper bound C̄ ≥ Ch,Q is known, then Ck ← C̄ is a valid assignment for all k ≥ 1.
Moreover, the structure of h(·) may be sufficiently simple so that a value of Ck ≥ Ck−1 satisfying
(41) can be determined analytically via closed-form calculation, as is the case if h(·) is a quadratic
function for example. The formal description of the conditional gradient method with dynamic
step-size strategy is presented in Method 3.

We have the following computational guarantees for the conditional gradient method with dynamic
step-sizes (Method 3):

17

Method 3 Conditional Gradient Method with Dynamic Step-sizes for maximizing h(λ)

Initialize at λ1 ∈ Q, initial estimate C0 of Ch,Q, (optional) initial upper bound B0, k ← 1 .
At iteration k:
1. Compute ∇h(λk) .
2. Compute λ̃k ← arg max

λ∈Q
{h(λk) +∇h(λk)

T (λ− λk)} .

Bw
k ← h(λk) +∇h(λk)

T (λ̃k − λk) .
Gk ← ∇h(λk)

T (λ̃k − λk) .
3. (Optional: compute other upper bound Bo

k), update best bound Bk ← min{Bk−1, B
w
k , B

o
k} .

4. Compute Ck for which the following conditions hold:
(i) Ck ≥ Ck−1 , and
(ii) h(λk + ᾱk(λ̃k − λk)) ≥ h(λk) + ᾱk(Bk − h(λk))− 1

2Ckᾱ
2
k , where ᾱk := 2

2Ck
Bk−h(λk)

+2
.

5. Set λk+1 ← λk + ᾱk(λ̃k − λk) .

Bound 4.2. The iterates of the conditional gradient method with dynamic step-sizes (Method 3)
satisfy the following for any k ≥ 1:

Bk − h(λk) ≤ min
`∈{1,...,k}

{
2Ck

2Ck
B`−h(λ`)

+ k − `

}
. (42)

Furthermore, if the doubling strategy is used to update the estimates {Ck} of Ch,Q, it holds that
Ck ≤ max{C0, 2Ch,Q}.

Notice that (42) naturally generalizes the static warm-start bound (37) (or (38)) to this more
general dynamic case. Consider, for simplicity, the case where Ck = Ch,Q is the known curvature
constant. In this case, (42) says that we may apply the bound (38) with any ` ∈ {1, . . . , k} as the
starting iteration. That is, the computational guarantee for the dynamic case is at least as good
as the computational guarantee for the static warm-start step-size (36) initialized at any iteration
` ∈ {1, . . . , k}.

Proof of Bound 4.2: Let i ≥ 1. For convenience define Ai = 2Ci
Bi−h(λi)

, and in this notation (40)

18

is ᾱi = 2
Ai+2 . Applying (ii) in Step (4.) of Method 3 we have:

Bi+1 − h(λi+1) ≤ Bi+1 − h(λi)− ᾱi(Bi − h(λi)) + 1
2 ᾱ

2
iCi

≤ Bi − h(λi)− ᾱi(Bi − h(λi)) + 1
2 ᾱ

2
iCi

= (Bi − h(λi))(1− ᾱi) + 1
2 ᾱ

2
iCi

=
2Ci
Ai

(
Ai

Ai + 2

)
+

2Ci
(Ai + 2)2

= 2Ci

(
Ai + 3

(Ai + 2)2

)

<
2Ci
Ai + 1

,

where the last inequality follows from the fact that (a+2)2 > a2 +4a+3 = (a+1)(a+3) for a ≥ 0.
Therefore

Ai+1 =
2Ci+1

Bi+1 − h(λi+1)
=
Ci+1

Ci

(
2Ci

Bi+1 − h(λi+1)

)
>
Ci+1

Ci
(Ai + 1) . (43)

We now show by reverse induction that for any ` ∈ {1, . . . , k} the following inequality is true:

Ak ≥
Ck
C`
A` + k − ` . (44)

Clearly (44) holds for ` = k, so let us suppose (44) holds for some `+ 1 ∈ {2, . . . , k}. Then

Ak ≥
Ck
C`+1

A`+1 + k − `− 1

>
Ck
C`+1

(
C`+1

C`
(A` + 1)

)
+ k − `− 1

≥ Ck
C`
A` + k − ` ,

where the first inequality is the induction hypothesis, the second inequality uses (43), and the third
inequality uses the monotonicity of the {Ck} sequence. This proves (44). Now for any ` ∈ {1, . . . , k}
we have from (44) that:

Bk − h(λk) =
2Ck
Ak
≤ 2Ck

Ck
C`
A` + k − `

=
2Ck

2Ck
B`−h(λ`)

+ k − `
,

proving the result.

19

5 Analysis of the Conditional Gradient Method with Inexact Gra-
dient Computations and/or Subproblem Solutions

In this section we present and analyze extensions of the conditional gradient method in the presence
of inexact computation of gradients and/or subproblem solutions. We first consider the case when
the linear optimization subproblem is solved approximately.

5.1 Conditional Gradient Method with Inexact Linear Optimization Subprob-
lem Solutions

Here we consider the case when the linear optimization subproblem is solved approximately, which
arises especially in optimization over matrix variables. For example, consider instances of (1)
where Q is the spectrahedron of symmetric matrices, namely Q = {Λ ∈ Sn×n : Λ � 0, I • Λ = 1},
where Sn×n is the space of symmetric matrices of order n, “�” is the Löwner ordering thereon,
and “· • ·” denotes the trace inner product. For these instances solving the linear optimization
subproblem corresponds to computing the leading eigenvector of a symmetric matrix, whose solution
when n � 0 is typically computed inexactly using iterative methods. For δ ≥ 0 an (absolute) δ-
approximate solution to the linear optimization subproblem max

λ∈Q

{
cTλ

}
is a vector λ̃ ∈ Q satisfying:

cT λ̃ ≥ max
λ∈Q

{
cTλ

}
− δ , (45)

and we use the notation λ̃← approx(δ)λ∈Q
{
cTλ

}
to denote assigning to λ̃ any such δ-approximate

solution. In Method 4 we present a version of the conditional gradient algorithm that uses approx-
imate linear optimization subproblem solutions. Note that Method 4 allows for the approximation
quality δ = δk to be a function of the iteration index k. Note also that the definition of the Wolfe
upper bound Bw

k and the Wolfe gap Gk in Step (2.) are amended from the original conditional
gradient algorithm (Method 1) by an additional term δk. It follows from (45) that:

Bw
k = h(λk) +∇h(λk)

T (λ̃k − λk) + δk ≥ max
λ∈Q

{
h(λk) +∇h(λk)

T (λ− λk)
}
≥ h∗ ,

which shows that Bw
k is a valid upper bound on h∗, with similar properties for Gk. The following two

theorems extend Theorem 2.1 and Theorem 2.2 to the case of approximate subproblem solutions.
Analogous to the the case of exact subproblem solutions, these two theorems can easily be used to
derive suitable bounds for specific step-sizes rules such as those in Sections 3 and 4.

Method 4 Conditional Gradient Method with Approximate Subproblem Solutions

Initialize at λ1 ∈ Q, (optional) initial upper bound B0, k ← 1 .
At iteration k:
1. Compute ∇h(λk) .
2. Compute λ̃k ← approx(δk)λ∈Q{h(λk) +∇h(λk)

T (λ− λk)} .
Bw
k ← h(λk) +∇h(λk)

T (λ̃k − λk) + δk .
Gk ← ∇h(λk)

T (λ̃k − λk) + δk .
3. (Optional: compute other upper bound Bo

k), update best bound Bk ← min{Bk−1, B
w
k , B

o
k} .

4. Set λk+1 ← λk + ᾱk(λ̃k − λk), where ᾱk ∈ [0, 1) .

20

Theorem 5.1. Consider the iterate sequences of the conditional gradient method with approximate
subproblem solutions (Method 4) {λk} and {λ̃k} and the sequence of upper bounds {Bk} on h∗,
using the step-size sequence {ᾱk}. For the auxiliary sequences {αk} and {βk} given by (9), and for
any k ≥ 0, the following inequality holds:

Bk − h(λk+1) ≤ Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1
+

∑k
i=1 αiδi
βk+1

. (46)

Theorem 5.2. Consider the iterate sequences of the conditional gradient method with approximate
subproblem solutions (Method 4) {λk} and {λ̃k}, the sequence of upper bounds {Bk} on h∗, and the
sequence of Wolfe gaps {Gk} from Step (2.), using the step-size sequence {ᾱk}. For the auxiliary
sequences {αk} and {βk} given by (9), and for any ` ≥ 0 and k ≥ ` + 1, the following inequality
holds:

min
i∈{`+1,...,k}

Gi ≤
1∑k

i=`+1 ᾱi

B` − h(λ1)

β`+1
+

1
2Ch,Q

∑`
i=1

α2
i

βi+1

β`+1
+

∑`
i=1 αiδi
β`+1

 (47)

+
1
2Ch,Q

∑k
i=`+1 ᾱ

2
i∑k

i=`+1 ᾱi
+

∑k
i=`+1 ᾱiδi∑k
i=`+1 ᾱi

.

Remark 5.1. The pre-start step (Procedure 2 can also be generalized to the case of approximate
solution of the linear optimization subproblem. Let λ1 and B0 be computed by the pre-start step
with a δ = δ0-approximate subproblem solution. Then Proposition 3.1 generalizes to:

B0 − h(λ1) ≤ 1

2
Ch,Q + δ0 ,

and hence if the pre-start step is used (46) implies that:

Bk − h(λk+1) ≤
1
2Ch,Q

∑k
i=0

α2
i

βi+1

βk+1
+

∑k
i=0 αiδi
βk+1

, (48)

where α0 := 1.

Let us now discuss implications of Theorems 5.1 and 5.2, and Remark 5.1. Observe that the
bounds on the right-hand sides of (46) and (47) are composed of the exact terms which appear
on the right-hand sides of (10) and (11), plus additional terms involving the solution accuracy
sequence δ1, . . . , δk. It follows from (14) that these latter terms are particular convex combinations
of the δi values and zero, and in (48) the last term is a convex combination of the δi values, whereby
they are trivially bounded above by max{δ1, . . . , δk}. When δi := δ is a constant, then this bound
is simply δ, and we see that the errors due to the approximate computation of linear optimization
subproblem solutions do not accumulate, independent of the choice of step-size sequence {ᾱk}. In
other words, Theorem 5.1 implies that if we are able to solve the linear optimization subproblems
to an accuracy of δ, then the conditional gradient method can solve (1) to an accuracy of δ plus

21

a function of the step-size sequence {ᾱk}, the latter of which can be made to go to zero at an
appropriate rate depending on the choice of step-sizes. Similar observations hold for the terms
depending on δ1, . . . , δk that appear on the right-hand side of (47).

Note that Jaggi [11] considers the case where δi := 1
2 ᾱiCh,Q and ᾱi := 2

i+2 for i ≥ 0 (or ᾱi is

determined by a line-search), and shows that in this case Method 4 achieves O
(

1
k

)
convergence in

terms of both the optimality gap and the Wolfe gaps. These results can be recovered as a particular
instantiation of Theorems 5.1 and 5.2 using similar logic as in the proof of Bound 3.1.

Proof of Theorem 5.1: First recall the identities (13) and (14) for the dual averages sequences
(9). Following the proof of Theorem 2.1, we then have for i ≥ 1:

βi+1h(λi+1) ≥ βi+1

[
h(λi) +∇h(λi)

T (λ̃i − λi)ᾱi −
1

2
ᾱ2
iCh,Q

]
= βih(λi) + (βi+1 − βi)h(λi) + βi+1ᾱi∇h(λi)

T (λ̃i − λi)−
1

2
βi+1ᾱ

2
iCh,Q

= βih(λi) + αi

[
h(λi) +∇h(λi)

T (λ̃i − λi)
]
− 1

2

α2
i

βi+1
Ch,Q

= βih(λi) + αiB
w
i − αiδi −

1

2

α2
i

βi+1
Ch,Q ,

where the third equality above uses the definition of the Wolfe upper bound (2) in Method 4. The
rest of the proof follows exactly as in the proof of Theorem 2.1.

Proof of Theorem 5.2: For i ≥ 1 we have:

h(λi+1) ≥ h(λi) +∇h(λi)
T (λ̃i − λi)ᾱi − 1

2 ᾱ
2
iCh,Q

= h(λi) + ᾱiGi − ᾱiδi − 1
2 ᾱ

2
iCh,Q ,

where the equality above follows from the definition of the Wolfe gap in Method 4. Summing the
above over i ∈ {`+ 1, . . . , k} and rearranging yields:∑k

i=`+1 ᾱiGi ≤ h(λk+1)− h(λ`+1) +
∑k

i=`+1
1
2 ᾱ

2
iCh,Q +

∑k
i=`+1 ᾱiδi . (49)

The rest of the proof follows by combining (49) with Theorem 5.1 and proceeding as in the proof
of Theorem 2.2.

5.2 Conditional Gradient Method with Inexact Gradient Computations

We now consider a version of the conditional gradient method where the exact gradient computation
is replaced with the computation of an approximate gradient. We analyze two different models of
approximate gradients and derive computational guarantees for each model. We first consider the
δ-oracle model of d’Aspremont [2], which was developed in the context of accelerated first-order
methods. For δ ≥ 0, a δ-oracle is a (possibly non-unique) mapping gδ(·) : Q→ E∗ that satisfies:∣∣(∇h(λ̄)− gδ(λ̄))T (λ− λ̄)

∣∣ ≤ δ for all λ, λ̄ ∈ Q . (50)

Note that the definition of the δ-oracle does not consider inexact computation of function values.
Depending on the choice of step-size sequence {ᾱk}, this assumption is acceptable as the conditional

22

gradient method may or may not need to compute function values. (The warm-start step-size rule
(40) requires computing function values, as does the computation of the Wolfe bounds {Bw

k }, in
which case a definition analogous to (50) for function values can be utilized.)

The next proposition states the following: suppose one solves for the exact solution of the
linear optimization subproblem using the δ-oracle instead of the exact gradient. Then the absolute
suboptimality of the computed solution in terms of the exact gradient is at most 2δ.

Proposition 5.1. For any λ̄ ∈ Q and any δ ≥ 0, if λ̃ ∈ arg max
λ∈Q

{
gδ(λ̄)Tλ

}
, then λ̃ is a 2δ-

approximate solution to the linear optimization subproblem max
λ∈Q

{
∇h(λ̄)Tλ

}
.

Proof. Let λ̂ ∈ arg max
λ∈Q

{
∇h(λ̄)Tλ

}
. Then, we have:

∇h(λ̄)T (λ̃− λ̄) ≥ gδ(λ̄)T (λ̃− λ̄)− δ
≥ gδ(λ̄)T (λ̂− λ̄)− δ
≥ ∇h(λ̄)T (λ̂− λ̄)− 2δ

= max
λ∈Q

{
∇h(λ̄)Tλ

}
−∇h(λ̄)T λ̄)− 2δ ,

where the first and third inequalities use (50), the second inequality follows since λ̃ ∈ arg max
λ∈Q

{
gδ(λ̄)Tλ

}
,

and the fourth inequality follows since λ̂ ∈ arg max
λ∈Q

{
∇h(λ̄)Tλ

}
. Rearranging terms then yields the

result.

Now consider a version of the conditional gradient method where the computation of ∇h(λk)
at Step (1.) is replaced with the computation of gδk(λk). Then Proposition 5.1 implies that such
a version can be viewed simply as a special case of the version of the conditional gradient method
with approximate subproblem solutions (Method 4) of Section 5.1 with δk replaced by 2δk. Thus,
we may readily apply Theorems 5.1 and 5.2 and Proposition 5.1 to this case. In particular, similar
to the results in [2] regarding error non-accumulation for an accelerated first-order method, the
results herein imply that there is no accumulation of errors for a version of the conditional gradient
method that computes approximate gradients with a δ-oracle at each iteration. Furthermore, it is
a simple extension to consider a version of the conditional gradient method that computes both
(i) approximate gradients with a δ-oracle, and (ii) approximate linear optimization subproblem
solutions.

5.2.1 Inexact Gradient Computation Model via the (δ, L)-oracle

The premise (50) underlying the δ-oracle is quite strong and can be restrictive in many cases. For
this reason among others, Devolder et al. [3] introduce the less restrictive (δ, L)-oracle model. For
scalars δ, L ≥ 0, the (δ, L)-oracle is defined as a (possibly non-unique) mapping Q→ R× E∗ that
maps λ̄→ (h(δ,L)(λ̄), g(δ,L)(λ̄)) which satisfy:

h(λ) ≤ h(δ,L)(λ̄) + g(δ,L)(λ̄)T (λ− λ̄) , and (51)

h(λ) ≥ h(δ,L)(λ̄) + g(δ,L)(λ̄)T (λ− λ̄)− L

2
‖λ− λ̄‖2 − δ for all λ, λ̄ ∈ Q , (52)

23

where ‖ · ‖ is a choice of norm on E. Note that in contrast to the δ-oracle model, the (δ, L)-oracle
model does assume that the function h(·) is smooth or even concave – it simply assumes that there
is an oracle returning the pair (h(δ,L)(λ̄), g(δ,L)(λ̄)) satisfying (51) and (52).

In Method 5 we present a version of the conditional gradient method that utilizes the (δ, L)-
oracle. Note that we allow the parameters δ and L of the (δ, L)-oracle to be a function of the iteration
index k. Inequality (51) in the definition of the (δ, L)-oracle immediately implies that Bw

k ≥ h∗. We
now state the main technical complexity bound for Method 5, in terms of the sequence of bound
gaps {Bk − h(λk+1)}. Recall from Section 2 the definition DiamQ := max

λ,λ̄∈Q
{‖λ − λ̄‖}, where the

norm ‖ · ‖ is the norm used in the definition of the (δ, L)-oracle (52).

Method 5 Conditional Gradient Method With (δ, L)-Oracle

Initialize at λ1 ∈ Q, (optional) initial upper bound B0, k ← 1 .
At iteration k:
1. Compute hk ← h(δk,Lk)(λk), gk ← g(δk,Lk)(λk) .

2. Compute λ̃k ← arg max
λ∈Q
{hk + gTk (λ− λk)} .

Bw
k ← hk + gTk (λ̃k − λk) .

3. (Optional: compute other upper bound Bo
k), update best bound Bk ← min{Bk−1, B

w
k , B

o
k} .

4. Set λk+1 ← λk + ᾱk(λ̃k − λk), where ᾱk ∈ [0, 1) .

Theorem 5.3. Consider the iterate sequences of the conditional gradient method with the (δ, L)-
oracle (Method 5) {λk} and {λ̃k} and the sequence of upper bounds {Bk} on h∗, using the step-size
sequence {ᾱk}. For the auxiliary sequences {αk} and {βk} given by (9), and for any k ≥ 0, the
following inequality holds:

Bk − h(λk+1) ≤ Bk − h(λ1)

βk+1
+

1
2Diam2

Q

∑k
i=1 Li

α2
i

βi+1

βk+1
+

∑k
i=1 βi+1δi
βk+1

. (53)

As with Theorem 5.1, observe that the terms on the right-hand side of (53) are composed of the
exact terms which appear on the right-hand side of (10), plus an additional term that is a function
of δ1, . . . , δk. Unfortunately, Theorem 5.3 implies an accumulation of errors for Method 5 under
essentially any choice of step-size sequence {ᾱk}. Indeed, suppose that βi = O(iγ) for some γ ≥ 0,

then
∑k

i=1 βi+1 = O(kγ+1), and in the constant case where δi := δ, we have
∑k
i=1 βi+1δi
βk+1

= O(kδ).

Therefore in order to achieve an O
(

1
k

)
rate of convergence (for example with the step-size sequence

(18)) we need δ = O
(

1
k2

)
. This negative result nevertheless contributes to the understanding of the

merits and demerits of different first-order methods as follows. Note that in [3] it is shown that the
“classical” gradient methods (both primal and dual), which require solving a proximal projection
problem at each iteration, achieve an O

(
1
k + δ

)
accuracy under the (δ, L)-oracle model for constant

(δ, L). On the other hand, it is also shown in [3] that all accelerated first-order methods (which also
solve proximal projection problems at each iteration) generically achieve an O

(
1
k2

+ kδ
)

accuracy
and thus suffer from an accumulation of errors under the (δ, L)-oracle model. As discussed in

24

Method/ Type of Accuracy with Accuracy with Special Structure
Class Subproblem Exact Gradients (δ, L)-oracle of Iterates

Conditional Gradient Linear Optimization O (1/k) O (1/k) +O(δk) Yes

Classical Gradient Prox Projection O (1/k) O(1/k) +O(δ) No

Accelerated Gradient Prox Projection O
(
1/k2

)
O
(
1/k2

)
+O(δk) No

Figure 1: Properties of three (classes of) first-order methods after k iterations.

the Introduction herein, the conditional gradient method offers two possible advantages over these
proximal methods: (i) the possibility that solving the linear optimization subproblem is easier than
the projection-type problem in an iteration of a proximal method, (ii) the possibility of greater
structure (sparsity, low rank) of the iterates. In Figure 1 we summarize the cogent properties of
these three methods (or classes of methods) under exact gradient computation as well as with the
(δ, L)-oracle model. As can be seen from the table in Figure 1, no single method dominates in the
three categories of properties shown in the table; thus there are inherent tradeoffs among these
methods/classes.

Proof of Theorem 5.3: Note that (51) and (52) with λ̄ = λ imply that:

h(λ) ≤ h(δ,L)(λ) ≤ h(λ) + δ for all λ ∈ Q . (54)

Recall properties (13) and (14) of the dual averages sequences (9). Following the proof of Theorem
2.1, we then have for i ≥ 1:

βi+1h(λi+1) ≥ βi+1

[
hi + gTi (λ̃i − λi)ᾱi −

1

2
ᾱ2
iLiDiam2

Q − δi
]

= βihi + (βi+1 − βi)hi + βi+1ᾱig
T
i (λ̃i − λi)−

1

2
βi+1ᾱ

2
iLiDiam2

Q − βi+1δi

= βihi + αi

[
hi + gTi (λ̃i − λi)

]
− 1

2

α2
i

βi+1
LiDiam2

Q − βi+1δi

≥ βih(λi) + αiB
w
i −

1

2

α2
i

βi+1
LiDiam2

Q − βi+1δi ,

where the first inequality uses (52), and the second inequality uses (54) and the definition of the
Wolfe upper bound in Method 5. The rest of the proof follows as in the proof of Theorem 2.1.

References

[1] K.L. Clarkson, Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm, 19th
ACM-SIAM Symposium on Discrete Algorithms (2008), 922–931.

[2] A. d’Aspremont, Smooth optimization with approximate gradient, SIAM Journal on Optimiza-
tion 19 (2008), no. 3, 1171–1183.

[3] O. Devolder, F. Glineur, and Y.E. Nesterov, First-order methods of smooth convex optimization
with inexact oracle, Tech. report, CORE, Louvain-la-Neuve, Belgium, 2013.

25

[4] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics
Quarterly 3 (1956), 95–110.

[5] R.M. Freund, P. Grigas, and R. Mazumder, A first-order view of boosting methods, with im-
plications for regularization and computational guarantees for loss minimization algorithms,
Tech. report, MIT Operations Research Center, in preparation, 2013.

[6] J. Giesen, M. Jaggi, and S. Laue, Optimizing over the growing spectrahedron, ESA 2012: 20th
Annual European Symposium on Algorithms (2012).

[7] P. Grigas, Dual averaging as a unifying framework in first-order methods, Tech. report, MIT
Operations Research Center, in preparation, 2013.

[8] Z. Harchaoui, A. Juditsky, and A. Nemirovski, Conditional gradient algorithms for norm-
regularized smooth convex optimization, Technical Report, 2013.

[9] E. Hazan, Sparse approximate solutions to semidefinite programs, Proceedings of Theoretical
Informatics, 8th Latin American Symposium (LATIN) (2008), 306–316.

[10] M. Jaggi, Convex optimization without projection steps, Technical Report arXiv:1108.1170v6,
2011.

[11] M. Jaggi, Sparse convex optimization methods for machine learning, Ph.D. thesis, ETH Zurich,
October 2011.

[12] L. Khachiyan, Rounding of polytopes in the real number model of computation, Mathematics
of Operations Research 21 (1996), no. 2, 307–320.

[13] G. Lan, The complexity of large-scale convex programming under a linear optimization ora-
cle, Tech. report, Department of Industrial and Systems Engineering, University of Florida,
Gainesville, Florida, 2013.

[14] E. Levitin and B. Polyak, Constrained minimization methods, USSR Computational Mathe-
matics and Mathematical Physics 6 (1966), 1.

[15] A. Nemirovski, private communication, (2007).

[16] Y.E. Nesterov, Introductory lectures on convex optimization: a basic course, Applied Opti-
mization, vol. 87, Kluwer Academic Publishers, Boston, 2003.

[17] Y.E. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming
103 (2005), no. 1, 127–152.

[18] Y.E. Nesterov, Primal-dual subgradient methods for convex problems, Mathematical Program-
ming 120 (2009), 221–259.

[19] B. Polyak, Introduction to optimization, Optimization Software, Inc., New York, 1987.

26

A Appendix

Proposition A.1. Let Bw
k and Bm

k be as defined in Section 2. Suppose that there exists an open

set Q̂ ⊆ E containing Q such that φ(x, ·) is differentiable on Q̂ for each fixed x ∈ P , and that h(·)
has the minmax structure (4) on Q̂ and is differentiable on Q̂. Then it holds that:

Bw
k ≥ Bm

k ≥ h∗ .

Furthermore, it holds that Bw
k = Bm

k in the case when φ(x, ·) is linear in the variable λ.

Proof. It is simple to show thatBm
k ≥ h∗. At the current iterate λk ∈ Q, define xk ∈ arg min

x∈P
φ(x, λk).

Then from the definition of h(λ) and the concavity of φ(xk, ·) we have:

h(λ) ≤ φ(xk, λ) ≤ φ(xk, λk) +∇λφ(xk, λk)
T (λ− λk) = h(λk) +∇λφ(xk, λk)

T (λ− λk) , (55)

whereby ∇λφ(xk, λk) is a subgradient of h(·) at λk. It then follows from the differentiability of h(·)
that ∇h(λk) = ∇λφ(xk, λk), and this implies from (55) that:

φ(xk, λ) ≤ h(λk) +∇h(λk)
T (λ− λk) . (56)

Therefore we have:

Bm
k = f(xk) = max

λ∈Q
{φ(xk, λ)} ≤ max

λ∈Q
{h(λk) +∇h(λk)

T (λ− λk)} = Bw
k .

If φ(x, λ) is linear in λ, then the second inequality in (55) is an equality, as is (56).

Proposition A.2. Let Ch,Q, DiamQ, and Lh,Q be as defined in Section 2. Then it holds that
Ch,Q ≤ Lh,Q(DiamQ)2.

Proof. Since Q is convex, we have λ+α(λ̃−λ) ∈ Q for all λ, λ̃ ∈ Q and for all α ∈ [0, 1]. Since the
gradient of h(·) is Lipschitz, from the fundamental theorem of calculus we have:

h(λ+ α(λ̃− λ)) = h(λ) +∇h(λ)T (α(λ̃− λ)) +

1∫
0

[∇h(λ+ tα(λ̃− λ))−∇h(λ)]T (α(λ̃− λ))dt

≥ h(λ) +∇h(λ)T (α(λ̃− λ))−
1∫

0

‖∇h(λ+ tα(λ̃− λ))−∇h(λ)‖∗(α)‖λ̃− λ‖dt

≥ h(λ) +∇h(λ)T (α(λ̃− λ))−
1∫

0

Lh,Q‖(tα)(λ̃− λ)‖(α)‖λ̃− λ‖dt

= h(λ) +∇h(λ)T (α(λ̃− λ))− α2

2
Lh,Q‖(λ̃− λ)‖2

≥ h(λ) +∇h(λ)T (α(λ̃− λ))− α2

2
Lh,Q(DiamQ)2 ,

whereby it follows that Ch,Q ≤ Lh,Q(DiamQ)2.

27

Proposition A.3. For k ≥ 0 the following inequality holds:

k∑
i=0

i+ 1

i+ 2
≤ (k + 1)(k + 2)

k + 4
.

Proof. The inequality above holds at equality for k = 0. By induction, suppose the inequality is
true for some given k ≥ 0, then ∑k+1

i=0
i+1
i+2 =

∑k
i=0

i+1
i+2 + k+2

k+3

≤ (k+1)(k+2)
k+4 + k+2

k+3

= (k + 2)
[
k2+5k+7
k2+7k+12

]
.

(57)

Now notice that

(k2 + 5k + 7)(k + 5) = k3 + 10k2 + 32k + 35 < k3 + 10k2 + 33k + 36 = (k2 + 7k + 12)(k + 3) ,

which combined with (57) completes the induction.

Proposition A.4. For k ≥ 1 let ᾱ := 1− 1
k√k+1

. Then the following inequalities holds:

(i)
ln(k + 1)

k
≥ ᾱ , and

(ii) (k + 1)ᾱ ≥ 1 .

Proof. To prove (i), define f(t) := 1− e−t, and noting that f(·) is a concave function, the gradient
inequality for f(·) at t = 0 is

t ≥ 1− e−t .

Substituting t = ln(k+1)
k yields

ln(k + 1)

k
= t ≥ 1− e−t = 1− e−

ln(k+1)
k = 1− 1

k
√
k + 1

= ᾱ .

Note that (ii) holds for k = 1, so assume now that k ≥ 2. To prove (ii) for k ≥ 2, substitute

t = − ln(k+1)
k into the gradient inequality above to obtain − ln(k+1)

k ≥ 1 − (k + 1)
1
k which can be

rearranged to:

(k + 1)
1
k ≥ 1 +

ln(k + 1)

k
≥ 1 +

ln(e)

k
= 1 +

1

k
=
k + 1

k
. (58)

Inverting (58) yields:

(k + 1)−
1
k ≤ k

k + 1
= 1− 1

k + 1
. (59)

Finally, rearranging (59) and multiplying by k + 1 yields (ii).

28

Proposition A.5. For any integers `, k with 2 ≤ ` ≤ k, the following inequalities hold:

ln

(
k + 1

`

)
≤

k∑
i=`

1

i
≤ ln

(
k

`− 1

)
, (60)

and

k − `+ 1

(k + 1)`
≤

k∑
i=`

1

i2
≤ k − `+ 1

k(`− 1)
, (61)

Proof. (60) and (61) are specific instances of the following more general fact: if f(·) : [1,∞) → R
is a monotonically decreasing continuous function, then∫ k+1

`
f(t)dt ≤

k∑
i=`

f(i) ≤
∫ k

`−1
f(t)dt . (62)

It is easy to verify that the integral expressions in (62) match the bounds in (60) and (61) for the
specific choices of f(t) = 1

t and f(t) = 1
t2

, respectively.

29

	Introduction
	Notation

	The Conditional Gradient Method
	Computational Guarantees for Specific Step-size Sequences
	A Well-studied Step-size Sequence
	Simple Averaging
	Constant Step-size
	Extensions using Line-Searches

	Computational Guarantees for a Warm Start
	A Dynamic Version of the Warm-Start Step-size Strategy

	Analysis of the Conditional Gradient Method with Inexact Gradient Computations and/or Subproblem Solutions
	Conditional Gradient Method with Inexact Linear Optimization Subproblem Solutions
	Conditional Gradient Method with Inexact Gradient Computations
	Inexact Gradient Computation Model via the (,L)-oracle

	References
	Appendix

