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Abstract

To identify the most promising positive electrodes for Ca-based liquid metal bat-
teries, the thermodynamic properties of diverse Ca-based liquid alloys were inves-
tigated. The thermodynamic properties of Ca-Sb alloys were determined by emf
measurements. It was found that Sb as positive electrode would provide the highest
voltage for Ca-based liquid metal batteries (1 V). The price of such a battery would
be competitive for the grid-scale energy storage market. The impact of Pb, a natural
impurity of Sb, was predicted successfully and confirmed via electrochemical mea-
surements. It was shown that the impact on the open circuit voltage would be minor.
Indeed, the interaction between Ca and Sb was demonstrated to be much stronger
than between Ca and Pb using thermodynamic modeling, which explains why the
partial thermodynamic properties of Ca would not vary much with the addition of
Pb to Sb. However, the usage of the positive electrode would be reduced, which would
limit the interest of a Pb-Sb positive electrode.

Throughout this work, the molecular interaction volume model (MIVM) was used
for the first time for alloys with thermodynamic properties showing strong negative
deviation from ideality. This model showed that systems such as Ca-Sb have strong
short-range order: Ca is most stable when its first nearest neighbors are Sb. This
is consistent with what the more traditional thermodynamic model, the regular as-
sociation model, would predict. The advantages of the MIVM are the absence of
assumption regarding the composition of an associate, and the reduced number of
fitting parameters (2 instead of 5). Based on the parameters derived from the ther-
modynamic modeling using the MIVM, a new potential of mixing for liquid alloys
was defined to compare the strength of interaction in different Ca-based alloys. Com-
paring this trend with the strength of interaction in the solid state of these systems
(assessed by the energy of formation of the intermetallics), the systems with the most
stable intermetallics were found to have the strongest interaction in the liquid state.
Eventually, a new criteria was formulated to select electrode materials for liquid metal
batteries. Systems with the most stable intermetallics, which can be evaluated by the
enthalpy of formation of these systems, will yield the highest voltage when assembled

3



as positive and negative electrodes in a liquid metal battery.
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Chapter 1

List of constants, symbols, and

acronyms

1.1 Constants

definition
Faraday's constant
Boltzmann's constant
Avogadro's number
gas constant
close packed coordination number

value
96 485 C/mol
8.617 x 10-5 eV/K
6.022 x 1023

8.314 J/mol/K
12

21
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k
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R
Zc



1.2 Symbols

definition unit
a activity
aca activity of calcium in Ca-X alloys
oav thermal coefficient of expansion K-1
Bij pair-potential energy interaction parameter of i around j in

the MIVM
AG Gibbs free energy of mixing J/mol
AG partial molar Gibbs free energy J/mol
AH enthalpy of mixing J/mol
AHI partial molar enthalpy J/mol
AH 0  enthalpy of formation of associate in regular association model J/mol
AH standard enthalpy of formation at 298K J/mol
AHfUS enthalpy of melting J/mol
AS entropy of mixing J/mol
A3 partial molar entropy J/mol
ASO entropy of formation of associate in regular association model J/mol
E emf vs. Ca(s) V
egg energy of a j atom surrounded by an i atom eV
6P mixing potential energy in the MIVM eV
<b) volume fraction

g pair distribution function

7 activity coefficient
G excess Gibbs free energy of mixing J/mol
A Debye length m

N number of particles (free atoms or associates) per mole of alloy
in the association model

i vapor pressure of pure i Pa

pi partial vapor pressure of i in a mixture Pa

Q partition function in canonical ensemble

Q, configurational partition function in canonical ensemble
ro beginning value of the radial distance m
rm first peak value of the radial distance m
s configurational entropy J/mol/K

Tiq liquidus temperature K

Tm melting point K

Vi potential of mixing of i - j liquid alloy eV

Vf us molar volume at the melting point m 3/ mol

Vm molar volume m 3 / mol

Wij bond energy of i - j bond eV
wij interaction coefficient between i and j in the regular associa- J/mol

tion model
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definition unit
x molar fraction
xij molar fraction of i first nearest neighbors of j in the MIVM
X molar fraction in compound forming liquid alloy in association

model, considering associates as separate species
z charge number
Z first coordination number
Zij the number of j atoms surrounding the central i atom in the

MIVM
phase boundary

1.3 Acronyms and abbreviations

definition
ANL Argonne National Laboratory
BNL Brookhaven National Laboratory
BSE back scattered electrons
bcc body centered cubic
DTA differential thermal analysis
emf electromotive force
EDS energy dispersive spectroscopy

g gas phase
ID inner diameter
1 liquid phase
LMB liquid metal battery
MIVM molecular interaction volume model
OCV open circuit voltage
OD outer diameter
PVA polyvinyl alcohol
r.d.f. radial distribution function
RE reference electrode
s solid phase
SS stainless steel
WDS wavelength dispersive spectroscopy
WE working electrode
XRD X-ray diffraction
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Chapter 2

Introduction

The objective of this work is to investigate the thermodynamic properties of Ca-based

liquid alloys, in particular to identify promising metallic systems to use as positive

electrodes in Ca-based liquid metal batteries.

2.1 Liquid metal batteries

2.1.1 From waste heat recovery to grid-scale storage

Systems with liquid metal electrodes and a molten salt electrolyte were first investi-

gated at the Argonne National Laboratory (ANL) by Cairns et al. in the 1960s and

1970s. The original aim of these galvanic cells with fused-salt electrolytes, which were

thermally regenerative cells, was to use the heat generated by a nuclear reactor to

produce electric energy. During the charge, the more volatile anode metal A from the

A-C cathode alloy vaporized due to the heat and migrated to the anode A (schematic

in Figure 2-1). During the discharge, metal A from the anode alloyed with the metal

C in the cathode by electrochemical reaction producing electricity. A and C were

chosen such that A was much more volatile than C, and the Gibbs free energy of

formation of the AC alloy was high. Demonstrated chemistries included Na| Bi, with

impressive lifespan (17 months) at current densities above 1 A/cm2 [19].

Later, the battery design evolved (Figure 2-2) for use in mobile applications with
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Figure 2-1: Schematic diagram of a thermally regenerative galvanic cell system [19]

COOUNG COIL

ELECTRICAL INSULA - - ..- aDIUM PETAINER

L-SItMONE RUSER '-ELECTRIC RING HEATER
GASKET

Figure 2-2: Schematic of a closed Na| Bi cell with molten salt electrolyte [19]

the advent of electric vehicles [20], charging the system with electricity instead of

heat. Eventually, the high temperature that was demanded by these cells limited their

application in electric vehicles, and the research ended without commercialization.

With use for grid-scale storage in mind, the concept of batteries with all liquid

components (two liquid metals sandwiching a layer of molten salt), was revisited by

Sadoway and Bradwell [14, 15], inspired by the success of the Hall-Heroult cell in

the aluminum industry. Targeting a low cost demanding application, Bradwell et

al. demonstrated the operation of the first Mg||Sb liquid metal battery [17], with

materials much cheaper than those used by Cairns et al.. The configuration chosen
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by Bradwell et al. is visible in Figure 2-3 on a post-experiment cross-section of such

a battery.

epoxy

negative
current collector

magnesium

salt electrolyte

antimony

boron nitride
insulating sheath

graphite crucible /
positive current collector

Figure 2-3: Sectioned Mg| Sb liquid metal battery after operation at 700 *C. The cell
was filled with epoxy prior to sectioning. [17]

2.1.2 Unique characteristics of liquid metal batteries

While liquid metal batteries may not have been appropriate for energy storage in

electric vehicles, they are very attractive for grid-scale energy storage [16]:

- Liquid-liquid interfaces can be challenging to stabilize, disqualifying their use in

portable applications. However, liquid-liquid interfaces allow the battery to withstand

high current densities, such as 1 A/cm 2 in the case of Na||Bi cells [19]. The current

density can therefore be adapted depending on high or low energy generation. This

is particularly interesting to store intermittent energies, such as solar or wind energy.

- The temperature required to keep the layers liquid (from 500 to 800 'C depending

on the materials used) would again be an issue for portable storage, but not for

stationary storage.
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2.1.3 Operating principles of liquid metal batteries

Liquid metal batteries come with different names and use different materials; however,

they all work similarly. A schematic in Figure 2-4 shows how the battery works during

charge and discharge. As the name indicates, liquid metal batteries are composed of

three liquid layers, that self segregate due to the difference in density. Two liquid

metals A and B are separated by a molten salt electrolyte layer that conducts Az+

cations.

Molten salt

Figure 2-4: Schematic
battery

I
Molten salt

I D Liquid metal B

charge discharge

of the charge and discharge mechanism in a AllB liquid metal

During the discharge, A is oxidized at the anode into AZ+, while the electrons

are released into the external circuit. Az+ migrates through the electrolyte from the

anode to the cathode. At the cathode I electrolyte interface Az+ is reduced to A,

which alloys with B at the cathode, according to:

anode I electrolyte: A -+ A z+ + ze -

cathode I electrolyte: A z+ + ze - -+ Ai B

The driving force for the electrochemical reaction is the difference in electrochem-

ical potential of A between pure A and A alloyed with B. Indeed, the electrochemical
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potential of A at each electrode can be expressed via the Nernst equation:

0 RT aAz+
Ecathoue A cathode In (aAz+ (2.1)

Eanode _E -+ RT ln aAz+ (2.2)
zF aAanode )

The standard state is defined as the state for which A is the most stable at the

temperature and pressure considered for the operation. The activity of pure A in the

anode is 1 by convention. The activity of A ± in the bulk electrolyte, aA z+, is the

same in the two expressions. The standard electrochemical potential of pure A, EO,

is also the same in the two expressions. Therefore, the difference of electric potential

between the two electrodes, which is also the OCV of the battery, can be expressed

as:

RT
AE = ln aA =-zFAGA (2.3)

zF

where aA the activity of A in B, and AGA the partial Gibbs free energy of A in

B. The theoretical discharge curve of a AllB liquid metal battery can therefore be

computed from the knowledge of the activity of A in B.

During charge, the reverse reactions occur, consuming energy to electrochemically

separate the A-B alloy into its constituents A at the negative electrode and B at the

positive electrode.

2.2 Selection of the materials of interest

Many materials are involved in the design of a liquid metal battery: the active compo-

nents, which are responsible for the energy storage, such as the electrodes; and passive

components, such as the electrolyte, and the positive and negative current collectors,

which let charge flow through them but ideally do not react with the active materials.

The choice of these passive materials is crucial to design an efficient battery. They
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might indeed react with the electrodes, through reactions such as the dissolution of

the electrodes in the electrolyte and corrosion of the current collectors. However,

this choice cannot be tackled until the electrodes, that will store the energy, have

been determined, since the reactivity, or not, of these ideally passive components will

depend on the active components they would interact with. Therefore, the first step

to design a liquid metal battery is the choice of the electrodes.

2.2.1 Selection criteria for the electrodes

To work as a liquid metal battery, the electrodes must possess the following char-

acteristics: (1) be liquid, (2) be metals, (3) provide a high voltage, and (4) have a

density difference high enough to self-segregate.

Criteria can be specified as follow:

(1) The melting temperature should be below 1000 'C to operate the liquid metal

battery at a reasonable temperature.

(2) The conductivity of the materials should be high enough ( > 105 S/m, i.e.

metals or semimetals) to avoid the addition of a complicated electrically conductive

matrix structure in the electrodes, which would be difficult to scale up.

(3) The OCV of an A lB liquid metal battery should be as large as possible. It is

directly related to the activity coefficient of A in A-B alloy, as demonstrated in the

previous section. This translates therefore into low activity coefficients of A in A-B

alloy.

(4) From the knowledge in the aluminum industry [28], the difference between

the positive electrode and the electrolyte on one side, and the negative electrode and

electrolyte on the other side, needs to be more than 0.2 g/cm 3 to allow the phases to

separate.

Additional characteristics need to be met to make them an interesting alternative

to current technologies for grid-scale storage.

- The materials used should not be radioactive and less toxic than mercury.

- For the technology to be competitive, the materials used should be abundant

and cheap. According to Bradwell [16], the capital cost of the battery should be
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less than $150 /kWh [16] to be competitive. As a comparison, the installed capacity

vs. the capital cost of different battery technologies is plotted in Figure 2-5 from

[14]. Today, only pumped hydro is cheaper than this $150 /kWh figure, but its

deployment is limited geographically. This means that the liquid metal battery could

have a potential market for grid-scale storage, even if it were not cheaper than pumped

hydro.
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Figure 2-5: Installed storage capacity of storage technologies as a function of cost [14]

Based on these criteria, alkali and alkaline earth metals were selected as candidates

for the negative electrode, while most semimetals were judged interesting for the

positive electrode.
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2.2.2 Ca-based liquid metal batteries

Choice of calcium

Among the alkali and alkaline earth candidates for the negative electrode, Li, Na,

and Ca are particularly appealing with a price below $0.5 /mol [40]. Li and Na-based

liquid metal batteries have been extensively studied by Cairns et al. at the ANL [19],

leading to batteries such as Lil Sn, Lil Te, Lil Bi, Na| Sn, Na| Pb, and Na||Bi.

Ca-based liquid metal batteries have been understudied, even though the predicted

values of OCV against the same positive electrode are comparable. For instance,

predicted average OCVs from activity measurements for liquid metal batteries (LMB)

using Sn as a positive electrode are compared in Table 2.1. It may be because Ca is

much more reactive with air and moisture than metals such as Na or Li, which makes

it more difficult to handle. Therefore, Ca-based liquid metal batteries were chosen as

the subject of this thesis.

A T (-C) AEmax (V) AEmin (V)
Li 550 0.87 [46] 0.46 [46]
Na 580 0.63 [61] 0.20 [61]
Ca 800 0.88 [23] 0.53 [23]

Table 2.1: Theoretical OCVs of AllSn LMBs fully charged and fully discharged,
calculated from activity measurements

High-melting intermetallics

Considering Ca-based liquid metal batteries, most semimetals are of interest for the

positive electrode using the criteria above. Some thermodynamic measurements are

available for Ca-X systems, with X the semimetal of interest. The corresponding open

circuit voltage of these Ca||X LMBs can be calculated using the Nernst equation.

The data available from the literature are reported in Table 2.2. The thermodynamic

data available in the literature are available only for limited ranges and only at one

temperature in most cases.

Interestingly, Ca-X systems with X a semimetal show the presence of high-melting

intermetallics. A few examples are given in Figure 2-6. This is the sign of a very
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X T ('C) AE (V) for xCa = 0.1 in the positive electrode
Ag 800 only 0.53 [24]
Bi 800 0.87 [23, 39]

700 0.86 [39]
600 0.85 [39]

In 800 only 0.56 [24]
Pb 800 only 0.65 [23]
Sb 800 1.01 [23]

805 0.67 [11]
Sn 800 only 0.71 [23]
Tl 800 only 0.58 [23]
Zn 800 only 0.39 [25]

Table 2.2: Theoretical voltages of Ca| X LMBs for XCa = 0.1 in the positive electrode,
calculated from activity measurements

favorable mixing between Ca and X in the solid state. Intuitively, these systems

should have strong interaction in the liquid state as well, and therefore be interesting

to use in liquid metal batteries. Indeed, a strong interaction would mean that Ca is

much more stable in contact with the semimetal than by itself, which should translate

in low Ca activity and high cell voltage.

Such an example is the Ca-Sb system, which has a particularly high-melting in-

termetallic. Looking at the phase diagram (Figure 2-6(c)), this system might be

promising since it shows strong interaction in the solid state. However, the knowl-

edge of the phase diagram determined experimentally does not allow one to predict

the properties of the liquid state and the Ca-Sb system deserves a more thorough

study since there is no consensus on the thermodynamic properties of this system in

the liquid state. Additionally, Sb is one of the cheapest semimetals ($1.8 /mol [1]),

and assuming an OCV of 1 V, a CalSb would meet the target price [55].
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2.3 Research objectives

The importance of exploring Ca-based liquid metal batteries, as potential storage

media for grid-scale applications, was demonstrated. To judge the performance of a

battery, the discharge curve is usually used, since it shows the storage capabilities

of the battery. The theoretical discharge curve, in particular, is crucial to evaluate

the maximal performances of a potential battery, and assess the suitability of a can-

didate electrode over another. This theoretical discharge curve is directly related to

the activity of Ca in the metal X chosen for the positive electrode, highlighting the

importance of the determination of the activity of Ca in different metals X and at

different temperatures.

To choose the best candidate(s) for the positive electrode of a Ca-based liquid

metal battery, the thermodynamic and experimental tools necessary will need to be

identified, and invented when they do not exist. To identify this (these) metals, the

following research questions will need to be answered:

2.3.1 How can we quantify the theoretical voltage of a Ca| Sb

LMB for appropriate ranges of temperature and com-

position?

Antimony was shown as a possible material for the positive electrode that would

generate the highest voltage for a Ca| X liquid metal batteries, and be a cheap metal

that would fulfill the price demand for grid-scale storage. However, data are not

consistent between the different sources in the literature.

A method will therefore need to be developed to measure the activity of Ca and

derive the thermodynamic properties of Ca-Sb liquid alloys. The range of interest to

cycle a Ca| Sb liquid metal battery will be identified, and the properties of Ca-Sb al-

loys will be evaluated for a temperature range, to the opposite of a single temperature,

as it is the case in the literature for most Ca-X alloys.
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2.3.2 How can we correlate the OCV of a Cal Sb LMB with

the structure of the Ca-Sb alloys?

To answer this question, one approach would have been to run neutron diffraction

experiments, here a more fundamental approach was chosen. To understand why a

metal is or is not an interesting candidate for the positive electrode of a Ca-based

liquid metal battery, the thermodynamic properties of the corresponding Ca-based

liquid alloys will be modeled. Indeed, a model (or several models) will help understand

how the atomic structure of the alloy of interest affects the activity of Ca in the Ca-X

alloy.

The example chosen is the case of antimony, since its thermodynamic properties

will have been evaluated. The appropriate model(s) will have to be selected, and

applied to the Ca-Sb liquid alloys, and show how Ca and Sb atoms are arranged in

the liquid alloy, based on the thermodynamic data.

2.3.3 Are systems with high-melting intermetallics interest-

ing to use in LMB, and if so why?

Systems with high-melting intermetallics intuitively have strong interaction in the

solid state, and might have strong interaction in the liquid state, which would be

interesting for a liquid metal battery. Indeed, the more stable Ca is in the alloy, the

lower the Ca activity and the greater the OCV.

To answer this question, multiple Ca-X systems with high-melting intermetallic

compounds will need to be modeled, and a new parameter to characterize the inter-

action in the liquid alloys will need to be derived, based on the thermodynamic data,

to compare the systems to one another.

The trend observed for the interaction parameter in the liquid state will have to

be compared to a parameter to show the strength of the interaction for these systems

in the solid state. The parameter for the solid state will also need to be selected and

justified.
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2.3.4 Can we use our thermodynamic modeling of binaries

to predict the OCV of a Ca||X-Y LMB?

Until now, only pure metal positive electrodes were considered, the reason being

that only thermodynamic measurements for binary Ca-X alloys were found in the

literature. To which extent can the binary thermodynamic modeling help design a

binary positive electrode?

An X-Y system of interest will need to be chosen, and the thermodynamic prop-

erties of Ca-X-Y will be modeled based on the thermodynamic modeling of the Ca-X,

Ca-Y and X-Y systems. The prediction will have to be compared with experimen-

tal data that will be collected, and the precision of the model will be assessed and

interpreted.

2.4 Conclusions of the chapter

The operating mechanism of AllB liquid metal batteries was explained, with A the

negative electrode and B the positive electrode, underlining the direct relationship

between the OCV of the battery and the activity of A in liquid A-B alloy. Therefore,

the knowledge of the thermodynamic properties of liquid A-B alloys is key to select

materials that will ensure a high voltage A B LMB.

The recent development of liquid metal batteries for grid-scale storage has high-

lighted the lack of work on Ca-based alloys. However, the few measurements available

suggest that Ca would be an interesting alternative to lithium and sodium as a nega-

tive electrode, since it would ensure an OCV as high as Li, while being much cheaper.

Therefore, this thesis will focus on the materials to use as positive electrodes for

Ca-based liquid metal batteries.

Sb was identified as a possibly interesting material for the positive electrode of

a Ca-based LMB, but the literature lacks reproducible data for Ca-Sb liquid alloys.

Partial data are available for other Ca-based liquid alloys, showing that Ca-X systems

with high-melting intermetallics are more likely to ensure a high voltage Ca| X LMB.
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Systematic modeling of these systems will therefore be performed, to complete the

database containing the thermodynamic properties of these alloys. A binary alloy X-

Y for the positive electrode will be considered, and properties of the Ca-X-Y systems

will be modeled to predict the OCV of such a Ca| X-Y battery.

Ultimately, the goal is to relate the thermodynamic properties of liquid Ca-based

alloys to their structure, and explain how a material X can or cannot be expected

to provide a high voltage Ca||X LMB from atomistics. Beyond the application to

Ca-based liquid metal batteries, this work will provide a more systematic approach

to the selection of materials for liquid metal batteries.
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Chapter 3

Thermodynamic properties of

mixing of liquid calcium-antimony

alloys via emf measurements

This chapter focuses on the experimental determination of the thermodynamic prop-

erties of liquid Ca-Sb alloys. The main methods that have been used in the literature

to determine these properties for liquid alloys will be reviewed, and the choice of an

emf method in the case of liquid Ca-Sb alloys will be justified. The experimental

set-up with the materials chosen, and the experimental procedure will be described

and explained. Finally, the results obtained for the entire range of compositions of

Ca-Sb alloys will be presented and analyzed to calculate the activities of Ca and Sb,

and the integral thermodynamic properties of mixing of liquid Ca-Sb alloys.
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3.1 Experimental methods for the determination

of the thermodynamic properties of liquid

alloys

Several methods can be used to determine the thermodynamic properties of liquid

alloys. This section will review these different methods, and justify the choice of emf

measurements for this work.

3.1.1 Vapor pressure measurements

Numerous methods have been developed over the years to extract thermodynamic

data from vapor pressure measurements [35]. These methods rely on the relationship

between the partial vapor pressure of one component, pi, and its activity, ai, by

pi = ai x po, with p' is the vapor pressure of pure component i. The vapor pressure

that is measured, Ptot, is related to the partial vapor pressure of each one of its

components via Dalton's law:

Ptot = p aip (3.1)
i i

To obtain the partial vapor pressure pi from the total vapor pressure ptot, the

composition of the vapor must be measured or hypothesized. For instance, for liquid

alloys of elements that have very different vapor pressures, the contribution of the less

volatile elements can be neglected, and the total vapor pressure is equal to the vapor

pressure of the more volatile element, as in the case of Ca-Mg, where Mg is much

more volatile than Ca at 1010K, for XCa < 0.8 [68]. Otherwise, the composition of the

vapor is usually determined by mass spectroscopy and, assuming that the vapor is an

ideal mixture, the partial pressure of each species can be determined by pi = ptot x xi .

In the case of Ca-Sb, the vapor pressures of pure Ca and Sb have the same order

of magnitude: at 800 'C, the vapor pressure of antimony is 240 Pa, mainly as Sb 4 (g),
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while the vapor pressure of calcium is 106 Pa, mainly as Ca(g) [32]. Also, given the

stability of the intermetallics (higher melting points than pure Ca and Sb), associates

would likely form, as it has been observed for Au-Dy [30]. Therefore, the composition

could only be inferred from mass spectroscopy analysis. However, the reactivity

of calcium with most ceramics makes it particularly difficult to find an apparatus

equipped with a mass spectrometer that would not react with the vapor, in which

case its measured composition could be inaccurate.

3.1.2 Calorimetric measurements

For high temperature work, the most used calorimetric method is the direct drop

method: pure solid A is dropped in the calorimeter containing a bath of pure B

or liquid alloy AXBY [41]. With knowledge of the temperature of the calorimeter,

the partial enthalpy of formation of A can be calculated from measuring the heat of

reaction. Indeed, since the quantity of A added is much smaller than the quantity of

the bath, the heat of reaction measured represents the heat of the reaction A(s, T)

- A(alloy, Tf).

An important requirement for the use of calorimetric methods is the identification

of a non-reactive container and the calibration of its properties. Indeed, the calorime-

try of the sample and of the container cannot be separated, and to measure the partial

enthalpy of formation of A in A-B alloys, the alloying reaction must be the only one

happening. This is particularly challenging in the case of Ca-Sb alloys since Sb alloys

with most metals that do not alloy with Ca. One of the few metals it doesn't alloy

with is tungsten, particularly challenging to machine. Additionally, Ca reacts with

most common ceramics such as alumina or quartz since CaO is particularly stable.

Bouhajib [10] reported using a drop calorimetry method to measure the partial

enthalpy of Ca and the enthalpy of mixing of Ca-Sb liquid alloys at 805 'C and

xca < 0.6. The calorimeter used was an in-house retrofitted Calvet calorimeter, with

alumina crucibles.
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3.1.3 Electromotive force (emf) measurements

Emf measurements are usually performed in a cell of the type A | Az-based elec-

trolyte | A-B, where A is the reference electrode (RE) and A-B the working electrode

(WE). The overall cell reaction is the alloying of A in B according to the following

two steps, which correspond to the half reactions at the electrodes:

RE : A = Az+ + ze-

WE: A" +ze~ = Ain B

At equilibrium, the difference of potential measured between the reference elec-

trode and the working electrode is related to the activity of A in the A-B alloy by

the Nernst equation E = -1ln aIn B. The electrolyte should contain Az+ and A

should be present in both electrodes to have an equilibrium at each interface. If pure

A is not an option for the RE, an A-based alloy of known A activity can be used.

More details about the use of solid state galvanic cells are available in Chapter 9.2 of

[65].

The choice of the electrolyte is crucial so that it does not affect the emf measured.

The electronic conduction needs to be negligible or calibrated to obtain a correct value

for the activity of A [25]. The electrolyte can be a molten salt or a solid electrolyte.

Emf measurements can then be broken down into two subcategories:

- emf measurements at a constant composition for a range of temperatures;

- emf measurements at a constant temperature for a range of compositions using

coulometric titration. In this case, A from the Az+ conductor is deposited onto B

and the composition of the A-B alloy (working electrode) varies with time, according

to the current density used. Since A needs to diffuse through the electrolyte to be at

equilibrium at the interfaces, these measurements can take several days. This method

is mostly used with liquid electrolytes, since the diffusion is much faster. Otherwise,

the solid electrolyte needs to be thin.

In the case of Ca-based alloys, Delcet et al. [58] used a CaF 2 single crystal

electrolyte, while Fray et al. [27] preferred the used of solid calcium magnetoplumbite.
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Kim et al. [39] reported that the solubility of Ca in Ca-based molten salts was too

high to allow reproducible measurements with a liquid electrolyte.

Delcet et al. [23] used a coulometric titration to evaluate the activity coefficient of

calcium in calcium-antimony alloys at 800 C for xCa < 0.6, using a Ca-Bi (1) reference

electrode of known Ca activity, and solid CaF 2 as electrolyte. The measured partial

molar Gibbs free energy of Ca in Ca-X alloys, related to the activity of Ca in Ca-X

alloys by AGCa = RTln(aca) (more details in Chapter 2), is reported in Figure 3-1.

-500000-

mlb

-40000--

-30000 - TxO -Oc-

-0000

10000--

0 0,2 0.4 0. 0.6 1.0

Figure 3-1: Partial molar Gibbs free energy of Ca in binary alloys at 800'C measured
by coulometric titration by Delcet [23]

3.1.4 Application to liquid Ca-Sb alloys

The activity of Ca in Ca-Sb alloys was measured at two close temperatures (800 [23]

and 805 *C [10]) for Xca < 0.6 using emf measurements via coulometric titration [23],

and a drop calorimetry technique [10]. However, the results from these two datasets

differ substantially: Bouhajib obtained -129 and -119 kJ/mol for the partial Gibbs

free energy of calcium at Xca = 0.1 and 0.2 respectively [11] while Delcet measured
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- 195 and -185 kJ/mol [23]. Depending on the dataset, this would translate into an

OCV of 1 V (Delcet) vs. 0.6 V (Bouhajib) for a Cal Sb battery with xca = 0.1 in the

positive electrode at 800 *C.

To evaluate the suitability of Sb as a positive electrode in a Ca-based liquid metal

battery, the activity of Ca needs to be evaluated and its temperature dependence to

be quantified to determine the cycling range and operating temperature of a Ca||Sb

LMB. The advantage of the emf measurement at constant composition is that it will

provide this information, while revealing clearly the phase transformations of the

Ca-Sb alloy, and in particular its liquidus. Therefore, choosing an emf method with

constant composition seems appropriate to obtain, in particular, all the information

necessary to evaluate the theoretical discharge curve of a Ca| Sb LMB.

Based on the review of the different methods that could have been used, the main

challenge was to find a non-reactive container for the Ca-Sb alloys. A sintered CaF2

electrolyte, which can be machined to accommodate wells that will hold the liquid Ca-

Sb alloys, solves the problem by avoiding the introduction of an additional material

to contain the alloys.

3.2 Experimental set-up

Standard operating procedures for the preparation of the electrolyte, caps, alloys

and assembling of the set-up are available in the Appendix A. The main points are

described here as well.

3.2.1 Preparation of the electrolyte and caps

To prepare the custom-shaped CaF 2 solid electrolyte, 500 g of CaF 2 (Fischer Scientific,

Stock No. C89-500) and 20 g of polyvinyl alcohol (Sigma Aldrich, Stock No. 341584)

were mixed with 150 mL of deionized water. After drying for 48 h in air, 150 g of

powder (< 850 pum) was pressed into a pellet 75 mm in diameter using 30 MPa of

uniaxial pressure for 10 minutes. As shown on the right hand side of Figure 3-2, 6

wells were machined into the CaF 2 electrolyte pellet to contain 2 reference electrodes
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Figure 3-2: Experimental set-up for emf measurements

(RE) and 4 working electrodes (WE), the latter consisting of the Ca-Sb alloys of

interest. An additional well is present in the center for a thermocouple. Similarly, 6 g

of powder was pressed successively into 19 mm diameter pellets for 1.5 min at 94 MPa

to produce CaF 2 pellets (caps), and a hole of 1.1 mm in diameter was drilled in the

center. The electrolyte and caps were then fired in ambient environment for 12 h at

120 0C, 8 h at 550 0 C, and 4 h at 1000 *C to remove moisture, burn out the binder,

and sinter, respectively. The final pellets were white in color with approximately 98%

theoretical density.

3.2.2 Preparation of the alloys

The alloys probed through this set of emf measurements are identified in Figure 3-3,

on the phase diagram [53].

For most alloys, the calcium (99.99% metals basis, Sigma Aldrich, Stock No.

441872) and the antimony (99.999% metals basis, Alfa Aesar, Stock No. 11348) were

weighed out in an Ar-filled glovebox (< 0.1 ppm 02, < 0.1 ppm H2 0), then arc

melted using a MAM1 (Edmund Biihler GmbH). These samples were machined into

cylinders 3-5 mm high and 9 mm in diameter, and a hole was drilled to accommodate
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Figure 3-3: Alloys of interest for the emf measurements, with the temperature range
of the test

the tungsten electrode lead. Tungsten was chosen since it does not alloy with either

calcium or antimony.

For the alloys with high-melting points (Ca11 Sbio + Ca5 Sb 3 and Ca5 Sbs + CaSb 2

regions), arc melted samples were inhomogeneous, porous and fragile, resulting in

poor contact to electrical leads. For this reason, samples for Xca = 0.55 and 0.63 were

prepared by a powder processing method, adapted from Zevalkink et al. [81] with

the help from Alex Zevalkink of the Snyder group at Caltech. The author is very

grateful to Alex Zevalkink for her help and advice. For these samples, pure metals

were weighed out in an Ar-filled glovebox, ball milled for 1 h in stainless steel crucibles

and steel ball milling media, uniaxially hot pressed at 40 MPa under Ar gas at 800 *C

for 4 h (Xca = 0.55) or at 1600 *C for 12 h (xca = 0.63), and then annealed for 72 h

under vacuum at 650 *C (xca = 0.55) or 400 *C (xca = 0.63). These samples were

prepared in the shape of cylinders 3-5 mm high and 12 mm in diameter. Tungsten

rods of 3 mm in diameter were used as electrical leads, providing a larger contact

area for these samples that remained solid throughout the experiment.
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3.2.3 Set-up

The air-tight stainless steel crucible was assembled inside an ultra-high purity Ar-

filled glovebox (< 0.1 ppm 02, < 0.1 ppm H2 0) and the vessel was sealed at the same

time, to avoid any contamination from moisture and oxygen. A schematic of the set-

up is presented in Figure 3-2, and pictures of the electrochemical cell are presented

in Figure 3-4. The CaF2 caps positioned above the samples proved to be effective in

reducing the evaporation of the alloys, and in particular of the more volatile Sb.

(a) Electrodes in place in the electrolyte before (b) Electrodes covered with the caps, W leads
addition of the caps and thermocouple in place

Figure 3-4: Preparation of the experimental set-up, in the glovebox, before enclosure
in the test vessel

3.3 Experimental procedure

After assembly inside the glovebox, the air tight crucible was brought outside, and

kept under active vacuum (~1 Pa) for 12 h at 120 0C in a furnace. Except for the

high-melting samples (XCa = 0.55 or 0.63), the experiment was started at a tem-

perature above the melting point of the electrodes to ensure good contact with the

tungsten electrical leads and the electrolyte. Samples were then cooled to 600 'C

or less (depending on composition) in increments of 40 to 20 *C. The dwell time at
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each step was about 90 min, then the cell was heated back up to 800 *C, via steps

at intermediate temperatures. All temperature changes were made with a 5 'C/min

ramp rate. The duration of the experiment was under 24 h.

The emf between one of the REs and the other electrodes was measured using a

potentiostat-galvanostat (Autolab PGSTAT 302N, Metrohm AG), and the temper-

ature was measured simultaneously using an ASTM K-type thermocouple. For the

analysis of the results, the emf data considered were those recorded after the tem-

perature reached a constant value (standard deviation < 0.5 'C). For all-liquid and

partially liquid alloys, the thermodynamic equilibrium was reached almost immedi-

ately, while for alloys in a solid + solid 2-phase region, the thermodynamic equilibrium

was reached up to 30 min after temperature equilibration. At each temperature step,

the alloys were held at thermodynamic equilibrium for more than 30 min.

Sample results, showing the temperature and emf variation vs. time, are shown

in Figure 3-5.
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Figure 3-5: Temperature and emf measurements over time of an experiment
Ca(s)|CaF 2|Ca-Sb cell

3.4 Sources of experimental errors

3.4.1 Temperature deviation

The temperature deviation between the temperature measured by the thermocouple

in the middle of the setup and the different peripheral wells was mapped out by Dr.

Hojong Kim. The author is grateful to Dr. Hojong Kim to let her use these results.

They show that the temperature of the wells is about 3 t 1 *C warmer than the

temperature measured by the central thermocouple (Figure 3-6).
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Figure 3-6: Temperature of the wells vs. measured temperature

3.4.2 Reference electrodes

The emf measured between the two reference electrodes on opposite sides of each

other was less than 2 mV, as shown on Figure 3-7, in a representative example. This

represents less than 0.3 % of the emf signal for samples on the high Sb side of the

intermetallic, but up to 15 % of the emf signal on the high Ca side of the intermetallic.
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Figure 3-7: Emf measured between 2 Ca REs, in a Ca(s)|CaF2 Ca-Sb cell, error bar
corresponds to the variation of the signal at equilibrium over a 30 min duration

3.4.3 Electrode composition

Low-melting samples (Tiq < 1000 'C)

The critical step in the preparation of these low-melting point samples, to keep the

final composition as close to the nominal composition as possible, was the arc melting

step. Indeed, during this step, the calcium and the antimony heat separately before

mixing up in the liquid state, since they have different melting points and vapor

pressures. The mixing was also observed as a violent exothermic reaction, which

further elevated the temperature. After arc melting, the inside chamber of the are

melter was covered with black powder. To mitigate the loss of material, the samples

were never heated more than 2-3 s at a time, through several short heatings (usually

3), to avoid heating the whole sample for a long time, while the pieces of Sb and
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Ca were positioned close together during the rest times. The sample was also turned

upside down before the last heating, to homogenize it.

Since antimony is the lower melting metal, and has a higher vapor pressure than

calcium, the loss of material could potentially be attributed to antimony alone, which

would mean that the final composition of the sample would differ from the prepared

composition. Therefore, the alloys were all weighed after the arc melting step to

quantify the weight loss. However, even when attributing the loss to antimony alone,

the composition did not vary by more than 1 at%.

The composition of some the samples was also checked afterwards with WDS,

since the strongest energy peaks of Ca and Sb are less than 200 eV apart from each

other. It confirmed that the composition of the samples was within 1 at% of the

nominal composition. As an example, the results for the SEM (BES) analysis of a

XCa= 0.05 sample (nominal composition), obtained using a JEOL-JSM-5910 SEM

are available in Figure 3-8. The average composition of the sample by WDS analysis,

obtained using a JEOL-JXA-733 Superprobe upgrade microscope, was found to be

XCa = 0.05 t 0.02, using 20 spots of 50pLm in diameter. The sample was homogeneous,

with bright grains of antimony of approximately 20 tm in diameter. The darker phase

in between the grains was composed of a lamelar submicron microstructure. The

composition of the 2 phases was identified using XRD as CaSb 2 and Sb, as expected.

The scan, obtained with a PANalytical X'pert Pro Multipurpose Diffractometer over

a 1.5 h measurement, after identification of the peaks, is available in Figure 3-9. The

semiquantitative analysis gave a composition of zca =0.06, which is consistent with

the WDS quantitative analysis.
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Figure 3-8:
5910 SEM
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Back-scattered image of xca = 0.05 Ca-Sb alloy obtained using a JSM-
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Figure 3-9: Scan of Xca = 0.05 Ca-Sb alloy obtained using a PANalytical X'pert Pro
Multipurpose Diffractometer in 90 min
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High-melting samples (Tig > 1000 *C)

The critical step in the preparation of these high-melting point samples, to keep the

final composition as close to the nominal composition as possible, was the scraping

of the inside of the stainless steel crucible and of the stainless steel balls, after ball

milling. Even though the calcium and antimony react together during the ball milling,

a lot of black powder cannot be completely scraped off, and the weight loss between

before and after ball milling was up to 5 % of the total weight, while the composition

of the black powder lost is not necessarily the same as the nominal composition of the

sample. However, these samples' composition remains in a 2-phase domain during

the emf measurement, so even if the composition had shifted by a few at%, the emf

signal would have stayed the same.

The average composition of the samples was checked using WDS. The XRD scans

run under air were not conclusive, because the high-melting intermetallics have com-

plex structures, with numerous peaks, and the samples were reacting with oxygen and

moisture during the scan, even with a film protection. Indeed, the activity of Ca in

these samples is much higher than in the samples considered previously, and the cal-

cium reactivity is much higher. The SEM (BSE) images available in Figures 3-10 and

3-11 were obtained with a ZEISS 1550VP Field Emission SEM at Caltech University,

with the help of Alex Zevalkink. For the Xca= 0.55 sample, the back-scattered image

shows 2 phases, with a very fine structure of the darker phase (submicron features).

After analysis with WDS, the brighter phase corresponds to xca = 0.535+0.002, while

the darker phase intertwined with the bright phase, corresponds to XCa = 0.57 ± 0.01,

which is consistent with a Can1 Sbio + Ca5 Sb3 structure. The average composition was

measured as XCa= 0.54. For the xCa = 0.63 sample, the back-scattered image shows

3 phases, with a very fine structure (submicron features). The darker phase corre-

sponded to the medium dark phase oxidizing (the oxygen content was measured as

high as 25 at% with EDS). After analysis with WDS, the brighter phase corresponds

to XCa= 0.614 ± 0.002, while the darker phase corresponded to XCa =0.660 t 0.002,

which is consistent with a Ca 5 Sb 3 + Ca 2Sb structure. The average composition was
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measured as xca = 0.63.

Figure 3-10: Back-scattered image of xca = 0.55 Ca-Sb alloy obtained using a ZEISS
1550VP Field Emission SEM

0.63 Ca-Sb alloy obtained using a ZEISS
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Figure 3-11: Back-scattered image of XCa =
1550VP Field Emission SEM
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3.5 Results and data analysis

3.5.1 Results

The overall cell reaction is the alloying of calcium in antimony according to the

following two steps, which correspond to the half reactions at the electrodes:

RE: Ca(s) Cai +CaF2  e

WE: Ca j 2+ +2e- =Caf~
WE : aiCaF2 Sin Sb

In most cases, Ca(s) was used as reference electrode. However, for the two highest-

melting samples, a Ca-Sb alloy (xca= 0.40) served this purpose. In a two-phase region

L + Caj1 Sbj 0 during the emf measurements, the latter RE allowed to start the exper-

iment at slightly higher temperature, for a better contact between the high-melting

electrodes and the electrical leads. The emf of this second RE was measured vs.

Ca(s), in the temperature range of interest. Based on this calibration, all data re-

ported herein have been expressed in terms of the pure calcium reference electrode, in

its most stable state (solid state) at the temperature and pressure (1 atm) of interest.

The variation of emf with temperature is plotted in Figure 3-12. The alignment of the

datapoints upon heating and cooling and between different experiments (for instance

in the case of XCa = 0.10), attests to the reversibility and reproducibility of these

measurements. The datapoints obtained for Ca-rich alloys (Xca > 0.625) were not

reproducible enough to be used in the derivation of the thermodynamic properties of

mixing. Indeed, the error in emf was almost as high as the values themselves (less

than 10 mV) for Xca > 0.80. The data for Xca = 0.63 were irreproducible (possibly

due to oxidation during the experiment).

56



500 550 600 650 700 750 800 850
TI C

(a) xca= 0.01 to 0.14

0.35

0.30.

0.25

> 0.20

Cd0.15

0.10

0.05

0.00

1.05

1

Ud
U
C/)

.00 p

0.95

0.90

0.85

0.80

x
Ca

0.19
99ofofP99 0.20

0.25
0.30

0.40

0.51

0.55

500 550 600 650 700 750 800 850
TI C

(b) XCa = 0.19 to 0.55

.

00

*

00

SCa

@0 0.

0.63
0

0.80
a0. 090

*6. ~95
500 550 600 650 700 750 800 850

T/*C

(c) xca = 0.63 to 0.95

Figure 3-12: Emf vs. temperature data for Ca(s)|CaF 2 |Ca-Sb cells between 500 *C
and 830 *C
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Figure 3-13 presents the isothermal variation of emf at 700 'C with increasing Ca

content. The data were extracted from the measurements at constant Ca concentra-

tion presented in Figure 3-12 and show a major drop in the emf value (about 0.6 V)

from the low Ca to high Ca sides of Ca5 Sb3 . This is consistent with the qualitative

observation that samples with XCa > 0.625 oxidize much faster than those at lower

Ca concentrations, indicating a large increase in Ca activity, which corresponds to a

much lower emf.
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Figure 3-13: Emf vs. Ca concentration in Ca-Sb alloy for Ca(s)|CaF 2|Ca-Sb cells at
700 0C
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3.5.2 Data analysis

The emf E measured between the reference and working electrode can be expressed

by the Nernst equation:

RT
ERE = ECa+ 2F In aca 2+ (3.2)

2F a

EWE= Ea + lIn aCa2+ (3.3)
Ca 2F aCa

RT
E = EWE- ERE R n aCa (3.4)

2F

where E'a is the standard potential of pure calcium at the temperature T (in K), and

R and F are the gas constant and the Faraday constant, respectively. The activity

of pure Ca is 1 by convention. The activity of Ca 2 in the electrolyte, aca2+, is the

same in equations (3.2) and (3.3). The activity of Ca in the Ca-Sb alloy is noted aca.

It is the only unknown and can be directly calculated from the emf.

The activity of the calcium, aca, can be related to the partial Gibbs free energy

of calcium, A Ca, by A Ca = RTln(aca). The results for the partial Gibbs free

energy of calcium at 800 'C are presented in Figure 3-14 along with the results from

the literature reported by Delcet [23] and Bouhajib [11]. The results obtained in this

work are consistent with those of Delcet.
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Figure 3-14: Measured partial molar Gibbs free energy vs. Ca concentration of
calcium in Ca-Sb alloys at 800 C compared with the results from Delcet [23] and
Bouhajib [11]

3.5.3 Activity coefficients and thermodynamic properties of

mixing

The activity coefficient of antimony and the integral thermodynamic properties of

mixing: the Gibbs free energy, AG, the entropy, AS, and the enthalpy, AH, were

derived according to the integral Gibbs-Duhem relationship:

ln'7sb = -XCa(1 - Xca)a(xca) - jo a (c) dc
X/Za

AG = (1 - xca) Oa(c) dc

XCa

AS = (1 - XCa) Ja (c) dc

AH = AG+TAS

X~a)
2 /3 (AIGCa/DT)xpp

where: a(Xca) = (1CCp, #(XCa) (lXCa)
2  , and Xca is the mole fraction of

calcium in the alloy.

AGca(XCa, T) was fitted as a linear function of temperature for constant com-

position, giving AHCa(Xca, T) and A5ca(Xca, T) by the relation AGCa(XCa, T)

AHCa(XCa, T) - TASca(xca, T) in the all-liquid region, in the liquid + Caj1 SbjO re-
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XCa T (C) AHCa (kJ/mol) ASCa (J/mol/K)
0.01 616- 800 -181 ± 1 43 ± 1
0.03 619- 822 -177 ±1 35 ± 1
0.05 624- 825 -177 ± 2 27 ± 2
0.10 591 - 821 -180.4 ± 0.5 15.8 ± 0.6
0.14 591 - 821 -180.3 ± 0.6 12.1 ± 0.6
0.19 640- 825 -181 ± 1 6.2 ± 0.9
0.20 638- 824 -182 ± 1 4 ± 1
0.25 720- 824 -188 ± 2 -6 ± 2
0.30 726- 798 -202 ± 2 -22 ± 2
L + Ca1 1 Sbio 666 - 828 -226.6 ± 0.7 -45.8 ± 0.7
L + CaSb 2  580- 641 -261±4 -83 ±4
Ca 11Sbio + Ca5 Sb 3 high T 734 - 798 -178 ± 3 -15 ± 3
Sb + CaSb 2  502 - 580 -190.10 ±0.02 0
CaSb 2 + Caj1 SbiO 508 - 577 -185.9 ± 0.1 0

Table 3.1: Partial molar enthalpy and entropy of calcium in Ca-Sb alloys vs. Ca(s)
determined from the linear fit of the experimental data (T in K), with the temperature
range over which the fit is valid

XCa T ('C) a b c
L + Sb 571 - 617 82 ± 8 -0.75 ± 0.07 0.097 ± 0.009
Caj1 Sbio + Ca 5 Sb3 low T 627 - 734 9 ± 2 -0.07 ± 0.01 0.008 ± 0.002

Table 3.2: Emf (in V) measured vs.
linear fits: E = a + bT + cT ln(T)

Ca(s) as a function of temperature (in K) non

gion, and in the Caj1 Sbio + Ca5 Sb 3 region (Table 3.1). In the low temperature solid

+ solid regions (Sb + CaSb 2 and CaSb 2 + Caj1 SbiO regions), ATCa was found to

be independent of temperature. In the liquid + Sb and low temperature Caj1 SbiO

+ Ca 5 Sb 3 regions, the emf did not vary linearly with temperature and was found to

follow E = a + bT + cT ln(T), with T in K (Table 3.2). The same fit was used by

Petric et al. [56] in the case of K-Bi alloys.

a(xca) and #(xca) were then fitted with a piecewise cubic hermite interpolating

polynomial before the integration to obtain asb, AG, AS and AH. The results at

800 'C are presented in Figures 3-15 and 3-16, with the data in Table 3.3. aca and asb

are reported with reference to Ca(s) and Sb(l) , while the thermodynamic properties

of mixing are reported with reference to Sb(l) and undercooled Ca(l). The solid

phase of Ca in the temperature range of interest is bcc. Using the Ca(bcc) phase as
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reference, the Gibbs energy of Ca(l) is G0 (Ca, 1) = +8540 - 7.659T in J/K [37].

In the two-phase regions, the chemical potentials of Ca and Sb do not change with

composition; therefore, the integral properties of mixing vary linearly with composi-

tion at a given temperature. AH(xca) and AS(xca) in these regions are also reported

in Table 3.3, together with the values for Caj1 SbiO and Ca 5 Sb 3.

Ef

- /Liquid

Ca

0.1 0.2 0.3
C~a

aca experimental

a Sb Gibbs-Duhem

L + CalSb

Sb + Ca 5 Sb3

0.4

Figure 3-15: Activities of Ca and Sb vs. Ca concentration in Ca-Sb alloys at 800 *C
vs. Ca(bcc) and Sb(l) (data in Table 3.3)
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XCa aca asb AH (kJ/mol) AS (J/mol/K)
0.01 8.15E-12 0.989 -1.97 0.380
0.02 1.97E-11 0.976 -3.85 0.713
0.04 6.06E-11 0.944 -7.56 1.25
0.06 1.19E-10 0.910 -11.3 1.63
0.08 1.81E-10 0.883 -15.0 1.89
0.10 2.46E-10 0.857 -18.8 2.06
0.12 3.11E-10 0.832 -22.6 2.17
0.14 3.90E-10 0.806 -26.4 2.24
0.16 5.12E-10 0.770 -30.1 2.27
0.18 6.65E-10 0.729 -33.9 2.25
0.20 8.16E-10 0.693 -37.7 2.15
0.22 1.O1E-9 0.657 -41.5 1.96
0.24 1.24E-9 0.617 -45.5 1.68
0.26 1.46E-9 0.583 -49.5 1.28
0.28 1.69E-9 0.553 -53.6 0.74
0.30 1.93E-9 0.523 -57.8 0.0122
0.32 2.30E-9 0.493 -62.4 -1.08
Caj1 SbiO 2.23E-9 0.483 -114 -16.8
Ca 5 Sb 3  1.43E-8 0.0654 -130 -18.5
L + Ca Sbi0  2.23E-9 0.483 18.8 - 2 54xca 23.6 - 7 7 .lxca
Ca 11 Sbio + Ca5 Sb 3 1.43E-8 0.0654 -32.3 - 156xCa -7.46 - 17.6xCa

Table 3.3: Activities of Ca (with the measured standard deviation) and Sb vs. Ca(s)
and Sb(l), and enthalpy and entropy of mixing vs. Ca(l) and Sb(l) at 800 C in Ca-Sb
alloys
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Figure 3-16: AH, AG and AS vs. Ca concentration of Ca-Sb alloys at 800 C vs.
Ca(l) and Sb(l) (data in Table 3.3)

3.5.4 Phase diagram

The goal here was not to derive a new phase diagram for the Ca-Sb system, but rather

to use the data we could get from our emf measurements to provide additional data

to the existing ones, and check the consistency with what was in the literature.

From the intersection points of the emf fitting lines, the liquidus temperatures of

the Ca-Sb alloys as well as the eutectic and peritectic temperatures can be extracted

for XCa < 0.5. From Tables 3.1 and 3.2, the fit for the emf signal can be extracted

for the samples at different temperatures. By finding numerically the temperature at

which these fits intersect, the temperature of the phase change can be estimated. The

use of intersection points minimized the impact of metastable states on the results.

The uncertainty in our temperature evaluation comes from the temperature variation
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between the different wells, which was measured to be ±1 C, the average temperature

difference between the central and peripheral wells having been corrected. Also, the

emf was not measured continuously with temperature, but only every 20 C. And

finally, while the emf data lie on a line in a single-phase region, such as the liquid

region, they do not necessarily in a two-phase region, such as the L + Sb region.

Therefore it is not as straightforward to choose a fit for these points, which will impact

the intersection temperature of the data fits that indicate the liquidus temperature.

In Figure 3-17, the results are plotted on the latest version of the Ca-Sb phase diagram

[53], together with the differential thermal analysis (DTA) measurements by Niyazova

[49] and Bouhajib [12]. The intersection points are reported in Table 3.4.

The overall shape is consistent with the Ca-Sb phase diagram from Okamoto

[53], even though the temperature of the L + Sb liquidus is lower than the previous

measurements. The emf fit for the L + Sb phase was not very satisfying due to

the low number of points, as it can be seen on Figure 3-12 (a), and therefore the

temperatures at which this fit intersects with the liquid phase fitting lines may have

been underestimated in this case. The peritectic temperature (633 0C 12 0C) is

between the inconsistent temperatures measured by Niyazova (730 'C t 5 C) and

Bouhajib (597 0C). This study suggests that the eutectic point occurs at lower Ca

content (xca = 0.14 vs. 0.18) than reported in [53], although the eutectic temperature

is fairly consistent.

XCa Tiq (0C)
0.01 621
0.03 610
0.05 601
0.10 588
0.14 575
0.19 625
0.20 631
0.25 685
0.30 736

Table 3.4: Liquidus temperatures of Ca-Sb alloys found by intersecting the emf fitting
lines
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Figure 3-17: Liquidus and transition temperatures from emf and DTA measurements
[49, 12] on Ca-Sb phase diagram [53] (data in Table 3.4)

3.6 Conclusions of the chapter

The partial thermodynamic properties of Ca and Sb in Ca-Sb liquid alloys, as well as

the integral mixing properties, were determined via emf measurements. They confirm

the results obtained by Delcet et al. [23] via coulometric titration at 800 C and

expand the scientific knowledge of the thermodynamic properties of this system, down

to 600 C over the full range of compositions. This confirmation of the measurements

by Delcet et al. also gives confidence that the measurements realized by the same

research team for Ca-Ag, Ca-Bi, Ca-In, Ca-Pb, Ca-Sn, Ca-Tl, and Ca-Zn are reliable,

and could be used to compare the Ca-Sb system to other systems with high-melting

intermetallics. The melting points of Ca-Sb alloys between xca = 0.01 and Xaa = 0.25

were also estimated by intersecting the fitted emf vs. temperature lines, questioning
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in particular the peritectic temperature of the currently accepted phase diagram.

Based on these emf measurements, and especially based on the low Ca activity

in Ca-Sb alloys on the Sb side of the high-melting intermetallics, Sb is an attractive

material for a positive electrode in a Ca-based LMB, since the OCV would be more

than 0.9 V in the 650-800 'C range.
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Chapter 4

Thermodynamic modeling of

Ca-Sb liquid alloys at 800 'C

Ca-Sb liquid alloys, like most alloys of systems with high-melting intermetallics, ex-

hibit thermodynamic properties far from ideality. By modeling the thermodynamic

properties of the Ca-Sb liquid alloys, one can understand the relationship between

their atomic structure and their macroscopic thermodynamic properties. Two models

were chosen to answer this question: an association model and the molecular inter-

action volume model (MIVM). With Ca-Sb as the physical system of interest, the

objective is to reconcile these two models and to show how the structure of liquid

Ca-Sb alloys affects their thermodynamic properties at 800 C.
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4.1 Association model

4.1.1 Evidence of short-range order

The association model was introduced by Bhatia in 1974 [8]. This model is used to

describe short-range order for liquid alloys with compound-forming tendency. The

short-range ordered volume parts are described as associates with a well defined

composition, C = AaBb, while the rest of the A and B atoms are considered as

free atoms. The attribution of a well defined composition to the short-range ordered

parts of the liquid alloy is justified by the observation of maximal deviation from ideal

mixing of the properties of the alloy, such as electrical conductivity or thermodynamic

properties, at a specific ratio of A and B, that corresponds to C. Sometimes, only

one maximum is observed, as in Li-Pb, but in other cases, several local maxima are

observed, as in Na-Pb and Na-Sn [45, 72], which are explained by the presence of

several compositions of associates (2 and 3 respectively). Therefore, the modeling

can become very complicated, involving many parameters.

The variation in AH and AS with composition differs substantially between the

case of a compound-forming alloy and the case of an alloy of very similar elements.

Indeed, in the case of an alloy of very similar elements, the shape of AH and AS can

be described by a parabola. However, in the case of compound-forming alloys with

one associate, the shape of AH is closer to a triangle, while AS exhibits 2 maxima

and a minimum instead of only one maximum. AH and AS reach their minima for

C - AB, as in the case of Sn-Te alloys, or off-stoichiometry, as in the case of Li-Pb,

as exhibited in Figure 4-1 from [70]. The associate usually has the same composition

as an intermetallic of the system, but not always. For instance, in the two cases

considered above, the compositions for which the entropy and the enthalpy of mixing

reach their minima correspond to the highest-melting intermetallics of these systems:

SnTe and Li17Pb 4 . However in the case of Ca-Mg, the entropy of mixing reaches its

minimum for xca = 0.5, while the only intermetallic in the Ca-Mg system is Ca 2 Mg,

as seen in Figure 4-2.

70



S- -1
-10

9 0 5 0

~-10 ~--10

AG2 F-2
-20

F--3

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

Sn x-r. Te Li XI% Pb

(a) Properties of mixing of Sn-Te liquid alloys at(b) Properties of mixing of Li-Pb liquid alloys at
1140K, experimental data from [9] ' 1000K, experimental data from [60]

01

1450 401
t - 3U

20- -3 -MIR

10a..

0 10 20 3 do A h 'fo 1 10 30 0 60 IS W a

Sn at % To U at. % Pb

11 ASM inerna 2009. ag N 1 16 IASM In Ht tIna200, D IA mNo, 11004

(c) Sn-Te phase diagram [44] (d) Li-Pb phase diagram [52]

Figure 4-1: Thermodynamic properties of mixing of Sn-Te and Li-Pb alloys, modeled
by Sommer using the association model [70], and corresponding phase diagrams from
ASM international

Other data can give insight into short-range ordering in liquid alloys. For in-

stance, the shape of the structure factor, obtained via XRD or neutron diffraction

measurements, and in particular the presence of pre-peaks, is directly indicative of

short-range order. By identifying the composition for which the intensity of the pre-

peak is maximal, Alblas et al. [3] were able to identify the existence of an associate

of the approximate composition NaSn/ Na 4Sn 3 in the Na-Sn system, as reproduced

in Figure 4-3.

'The slopes of the Gibbs free energy and entropy of mixing should be infinite for x = 0 and 1.
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Figure 4-3: Total structure factor S(q) for liquid Na-Sn alloys, from neutron diffrac-
tion measurements at different compositions 25 0C above the liquidus temperature [3]

72

U

I

842

700.

100-

Mg0

MgCa
Ob io i



Short-range order can also affect properties such as the electrical resistivity. For

instance, Rais et al. [61] developed a set-up that allowed them to measure the elec-

trical resistivity and thermodynamic properties of liquid alloys simultaneously, and

applied it to liquid Na-In and Na-Sn alloys. They showed that the electrical resis-

tivity presented a peak very close to the same composition that corresponded to a

minimum of the enthalpy of mixing, suggesting that, close to maximum short-range

order, the properties of the associate can greatly affect the properties of the overall

solution.

4.1.2 Model theory

Figure 4-4 presents a schematic of the melt as envisioned by the associate model. 3

types of atom are present in solution, located at lattice sites. A and B are the pure

elements, while C is an associate formed of A and B atoms.

0
00

A
B
c 0

Figure 4-4: Schematic of an A-B melt forming a C associate according to the associate
model

First assumption: composition of the associate(s)

First, the presence and composition of an associate needs to be assumed to start mod-

eling the system. Once the composition of the associate has been determined using

one of the above techniques, the composition of the ternary melt can be expressed

via the equilibrium constant of the association reaction. The association model has

been used many times since its introduction by Bhatia [7, 42, 69, 70]. The notations

used here are the same as those used by Bergman et al. [7].
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For a reaction aA + bB -± C = AaBb, of equilibrium reaction K:

K = exp RT = = C (4.1)
RT aalab (X )a(X )b

XA XA aNc (4.2)
NT

XB= 1-XA-bNC (4.3)
NT

Xc Nc (4.4)
NT

where NC is the number of associates per mole of alloy. NT = 1 - (a + b - 1) Nc is the

number of "particles" (free atoms or associates) per mole of alloy. AH 0 and AS' are

the enthalpy and entropy of formation of the associate respectively, XA is the fraction

of A in the binary alloy, Xi is the molar fraction of the species i in the ternary melt.

Second assumption: configurational entropy

The free atoms and associates are supposed to be located on lattice sites. Indeed,

the association model is based on a description used for alloys in the solid state,

that has been adapted to take into account the presence of associates. Based on the

analogy with the solid state, three expressions have been used in the literature for the

configurational entropy, even though the simplest, sr, is usually good enough. Indeed,

the difference in configurational entropy depending on the expression chosen is often

negligible compared to the entropy of mixing of the alloy. The first expression for

the configurational entropy, sj, used by Sommer and Krull [42], assumes that the free

atoms and the associates all have the same volume (each species occupies one lattice

site only) and are randomly distributed. The two other expressions take the difference

in volume into account by assuming that the associate AaBb occupies a+b lattice sites.

The Flory expression, sr, based on Flory's description of polymer solutions, takes

this difference in volume into account and assumes that the A and B atoms involved

in C can be exchanged with free A and B atoms. The third expression, sirr, proposed

by Bergman in 1982 [7], also assumes that the associate AaBb occupies a+b lattice

sites, but A and B atoms involved in C cannot be exchanged with free A and B atoms.

74



These different expressions for the configurational entropy are:

s 1 =-R ( Xi ln Xi
i=A,B,C

s11 = -R ( X, In Qi,
i=A,B,C

where:

XA
XA - XB- (a + b)Xc

XB
XA + XB + (a + b)Xc

(a +b)Xc
XA + XB + (a + b)Xc

SIII - -R Xi lnX- + In NT)
=A,B,

+ R (a

-R ln(a + b)
NT

- 1)(1 - (a + b)Nc)
(a + b)NT

ln(1 - (a + b)Nc)

The entropy of mixing is then defined as AS = NAS' + NTsi.

Third assumption: interaction model

Depending on the degree of interaction between the monoatomic species and the asso-

ciate, an interaction model is chosen. In most cases, the regular solution model is suffi-

cient. The enthalpy of mixing is then defined as AH = NCAH 0 + NT ZY (wijXiXj),

where wij is the interaction coefficient between species i and j.

4.1.3 Applications of the association model

The association model has been used for many compound-forming alloys, such as In-

Te [63], Al-Te [63], Li-Mg, Al-Li, Sn-Te, Lu-Pb, Cu-Si, Cu-Ce, Cu-Zr, Al-La, Ce-Mg,

Cu-Mg [70] to name a few. It is mainly used to model the thermodynamic properties
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of mixing, which explains why the minimum in the entropy is usually the indication

used to identify to composition of the associate, since it does not require any other

experiment. From the thermodynamic properties of mixing, other properties can

then be derived, such as the partial molar properties, by considering the partial

differentials of the properties of mixing, and the heat molar capacity. Assuming that

the entropy and enthalpy of formation of the associates do not vary with temperature,

the temperature dependence of the thermodynamic properties of the liquid alloys can

be derived as well. A couple of applications of the association model are reproduced

in Figure 4-5, from the work of Sommer [70].
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mer using the association model [70]
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4.2 Molecular interaction volume model (MIVM)

The other model considered here is the MIVM, introduced by Tao in 2000 [73]. Even

though the association model was expected to give reasonable agreement with the

experiment, since Ca-Sb has properties very far from ideality, and forms high-melting

intermetallics, like the other systems for which the association model was successful,

there was a need for an easier-to-manipulate model. Indeed, the association model

requires the identification of at least one associate, which leads to at least 5 constants

that need to be fitted simultaneously. In addition, the expression of the properties of

mixing requires the use of a functional: the thermodynamic functions depend on the

molar fractions of associate(s) and free atoms, that depend on each other through the

equilibrium constant.

Multiple models have been developed to describe the properties of liquid mixtures

[59]. Most are based on the description of the liquid state as a quasicrystal, where

each molecule tends to stay in a small region, a more or less fixed position in the

space about which it vibrates back and forth. The association model is an example

of such a lattice model. However, since a liquid is not completely equivalent to a

quasicrystal, other authors have developed other types of models, where the liquid

mixture is considered as a gas mixture, such as van der Waals-type theories.

4.2.1 Model theory

Figure 4-6 presents a schematic of the melt as envisioned by the MIVM. The MIVM

is a model derived from statistical thermodynamics that considers the stability of

each type of atom, i and j, based on the pair potential interaction energies 6 with its

nearest neighbors. It is a fluid-based model that takes into account the volume and

number of nearest neighbors of each one of the species.

To derive the Gibbs energy of the liquid mixture, Tao goes back to statistical

mechanics, defining the partition function for independent indistinguishable particles,

taking into account the translational energy and the potential energy, which depends

on the interaction between the molecules: for a pure metal i, using the notations from
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Figure 4-6: Schematic of an i - j melt according to the MIVM: two types of hypo-
thetical fluids are present in solution, which depend on the center atom considered.

Tao, the partition function is expressed as:

Q, 1
Qi N!A N - N!A Ni

Vi N
X N i i ex 2kT

where AN is the partition function of molecular kinetic energy, N the molecular

number, V the volume, Z is the atomic first coordination number, ejj is the i - i pair

potential energy.

For i - j liquid mixture, the partition function is expressed as:

Qp
Ni!A NiN!A N

1

NIA 3NN!A 3 Nj .2i j

where e, is the i - j mixing potential energy.

Using the relation between Gibbs energy and partition function, the molar excess

Gibbs energy can then be defined:

= xi ln (i) + xj ln ( )+
2E, - Zixieii - Zjxgje2

2kT

According to the two-liquid theory [59], the molar excess Gibbs energy can then
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be expressed as:

xi In VM )
(xi Vai + xj VMg Bgi

xi In 
jxiVmj + xi VXm Bij

xixj ZBI lnB- Z B ln Bij
2- +
2 xi + xjBi xj + xiB.

where Vm is the molar volume, and Bjj and Bij the pair potential interaction

parameters. The pair potential interaction parameters are defined as:

' Big = exp (
- 6ii (4.12)

with the energy coefficients defined as eij = -kTln(Zij/xj), where Zij is the number

of j atoms surrounding the central i atom. The other energy coefficients are defined

similarly.

From these new expressions for the configurational partition functions of liquids

and their mixtures, Tao expressed the activity coefficients of each of the species i and

j in a binary liquid alloy i - j [73].

In -y, = n V
n xiV i + xj Vmj Bj)

ln -yj In ( lrj
xjVMj + xjVmj Big

+I x;

xiVm + xBVmj Bjj

x2 Zi B? In Bjj

2 (xi + xjBji)2

" Xi Vmj Bi
xj Vmj + xi Vmi Big

x, Zj BigIn Big

2 (x + xiBij)2

VMi Bij
Xj Vmj + xi Vmi Bi/

ZjBij ln Bij
(xi + x Bi) 2 (4.13)

VmjBjy
xiVmi + xjVmj Bjj

ZBj In B3
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(4.14)

4.2.2 Applications of the MIVM

Tao developed the MIVM to predict activity coefficients in multicomponent systems,

taking into account only the interaction between a center atom and its nearest neigh-

G E
RT

(4.11)

Bj = exp
kT )



bors in the mixing energy of the multicomponent alloy. He was able to use his model

to describe the properties of binary alloys of similar elements such as Al, Bi, Cd, In,

Pb, Sn, Zn [74], and from that derived properties for the ternary [75, 74, 73], quater-

nary [78, 73] and quinary systems [76, 79]. For instance, Tao predicted the activities

of the different components in lead-free solder [78] using the MIVM.

The MIVM has never been used to model liquid alloys with very dissimilar ele-

ments, such as Ca and Sb. However, the fact that it introduces different interaction

coefficients corresponding to the interaction in the environment of a i vs. a j atom,

instead of a global coefficient, as well as the fact that the range of interest for our

application only corresponds to one side of the high-melting intermetallics (the Sb

side), are encouraging.

4.3 Application to Ca-Sb liquid alloys at 800 'C

4.3.1 Application of the regular association model to Ca-Sb

liquid alloys

The regular association model was first used to model the interaction between the

monoatomic species and the associate. The first challenge was to identify which

associate was formed, assuming only one was formed. Bouhajib [11] had modeled

this system using the data he had obtained through his calorimetric measurements

[10]. He found that the associate formed was CaSb. It fits indeed very well the

experimental data he had obtained (Figure 4-7). The paper does not disclose however,

how Bouhajib obtained experimental data for liquid Ca-Sb alloys with xca > 0.3, since

at 1078 K, the Ca-Sb alloys are not completely liquid starting at XCa > 0.3, and he

doesn't report measurements for Xca > 0.6 anywhere else.

It is indeed challenging to infer the composition of the associate in the case of

Ca-Sb liquid alloys because there is only a limited range of compositions for which

the properties of mixing of the fully liquid alloys can be measured at 1073 K. And in

particular, the entropy and enthalpy of mixing do not reach a minimum in this range.
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Figure 4-7: Thermodynamic properties of mixing of Ca-Sb liquid alloys at 1078 K,
solid points: experimental points; line: calculated using the association model assum-
ing the presence of a CaSb associate [11]

However, the entropy of mixing reaches a maximum, and by trying out different

compositions for the associate C when modeling the thermodynamic properties, this

maximum can or cannot be reproduced. Following Bouhajib's work [11], the first

associate considered in this work was CaSb. However, the simultaneous fit of the

entropy and enthalpy of mixing poorly modeled our experimental data. The associate

CaSb 2, corresponding to the intermetallic with the highest antimony to calcium ratio,

was next tried and much more satisfactory results were achieved.

The equations introduce 5 parameters: 3 interaction coefficients, as well as the

entropy and enthalpy of formation of the associate. These were optimized simulta-

neously by fitting the thermodynamic properties of mixing AH, AG and AS. De-

pending on the starting values chosen, a different solution set can be found for those

parameters due to the complexity of the equations, as has been observed by Krull

[42]. The optimized values for each of the configurational entropy expressions are

presented in Table 4.1. The results for AH and AS after optimization are presented

in Figure 4-8 in comparison with the experimental values obtained in chapter 3. All

3 expressions for the configurational entropy were tried, and all yielded good results

(1 0.2 kJ/mol error on AH and ± 0.1 J/mol/K error on AS). However, AS modeled

using s, and s1r reproduce the shape of the experimental data, and in particular its

maximum, more accurately. This implies that the hypothesis made for s1rr, namely
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AHO ASO Ca-sb cGa)CaSb 2  Wsb-Casb2
(kJ/mol) (J/mol/K) (kJ/mol) (kJ/mol) (kJ/mol)

with s, -194 1 -5.5 + 0.1 -10.5t1 -28 + 1 7.5 + 1
with srr -192 + 1 -10.1±0.1 -138 +1 -136.5±1 1.5 ± 1
with srrr -190 + 1 -2 ± 0.1 -195 +1 -113 + 1 -2 + 1

Table 4.1: Enthalpy and entropy of formation of CaSb 2 and interaction coefficients
found for each expression of the configurational entropy at 800 0C

that free Ca and Sb cannot be exchanged with atoms involved in the formation of

CaSb 2 , is not valid for Ca-Sb liquid alloys.

80 . . _ _ . .

60-

40 -S
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E 0 4 0E

-20
-20 3 experimental 
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-40 -..- using s1

-60 - - using s, -2
-- using sII
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XCa

Figure 4-8: Enthalpy and entropy of mixing of Ca-Sb liquid alloys vs. Ca concentra-
tion at 800 C (reference Sb(l) and Ca(l))

The negative Gibbs free energy of formation of the associate CaSb 2 confirm that it

is stable in Ca-Sb liquid alloys. Figure 4-9 gives information about the arrangement of

the "lattice". It shows that Ca atoms do not exist free in the melt but are completely

associated with Sb forming CaSb 2-
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Figure 4-9: Composition of the ternary melt at 800 C using s1 r

element Vm (m3 / mol) [34] Z [77]
Ca at 842 0C 29.54 x 10-6 10.33
Sb at 800 0C 19.21 x 10-6 8.53

Table 4.2: Input parameters in the MIVM: molar volume and atomic first coordination
number

4.3.2 Application of the MIVM to Ca-Sb liquid alloys

While the regular solution model does not require any input coefficient, but has 5

fitting parameters, the MIVM introduces only two interaction coefficients: BsbCa and

BCasb. The other parameters that appear in the expression of the activity coefficients

are properties of the pure metals, which can be found in the literature: Z the number

of first nearest neighbors and Vm the molar volume. The values used for the input

parameters V, and Z are reported in Table 4.2. For Ca, these properties were as-

sessed at 842 'C, its melting point, even though the temperature of interest is 800 0C.

However, the temperature variation of these parameters over 42 'C is minimal in the

liquid state.

To find the interaction coefficients, Tao uses the values of the activity coefficients
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XCa aca exp aca model emf error AGCa error
(mV) (kJ/mol)

0.01 8.15 x 10-12 1.10 x 10-" -14 3
0.03 3.65 x 10-" 3.80 x 101 -2 0.4
0.05 8.97 x 10-1 7.26 x 101" 10 -2
0.10 2.46 x 10-10 2.03 x 10-10 9 -2
0.14 3.90 x 10-10 3.71 x 10-10 2 -0.5
0.19 7.41 x 10-10 7.00 x 10-10 3 -0.5
0.20 8.16 x 10-10 7.88 x 10-10 2 -0.3
0.25 1.35 x 10-' 1.37 x 10-9 -0.8 0.2
0.30 1.93 x 10-9 2.31 x 10-9 -8 2

Table 4.3: Experimental and modeled activities of Ca in Ca-Sb alloys at 800 'C and
corresponding emf and AGCa difference

of each species at infinite dilution, which simplifies the equations [74]. Here, Bjj and

Bij were found by fitting all the datapoints for aca obtained in this work. Only aca

was used for fitting since asb was not measured independently. Since aca was obtained

via emf measurements, the emf error |EMIVM - Eexpl was minimized, where aca is

related to E by the Nernst equation E = -- ln aca. This corresponds to minimizing

the error in the partial Gibbs free energy of Ca since AGCa = -zFE. The algorithm

used is discussed in Chapter 5.

The interaction parameters found are BSbCa = 24 and BCasb = 1.2. The average

difference between the emf modeled and the emf measured was ± 5.6 mV, or 0.6% of

the emf measured (Table 4.3, Figure 4-10). This corresponds to an average absolute

error of 1 kJ/mol in AGCa, or 0.6%.

In the case of alloys with similar elements [73], Tao found interaction parameters

both close to 1, while in the case of Ca-Sb liquid alloys, BSbCa is very far from 1. It

is the first time that an interaction parameter with a value far from 1 is observed

when using the MIVM. To interpret this difference in terms of the structure of the

liquid alloys, the fractions of Ca and Sb surrounding Ca and Sb are presented in

Figure 4-11. While the fractions of Ca and Sb surrounding Sb correspond to the

average composition of the liquid alloy, as in the alloys studied by Tao, Ca atoms are

surrounded almost exclusively by Sb atoms.
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Figure 4-10: Activity of Ca vs. Ca concentration in Ca-Sb liquid alloys at 800 C,
with experimental error, (reference Sb(l) and Ca(bcc))

4.4 Comparison of the association model and the

MIVM

4.4.1 Quantitative comparison

To compare the results of the modeling approaches, the activity of Ca was also calcu-

lated from the Gibbs free energy of mixing modeled via the regular association model.

The best results were achieved with the first expression for the configurational en-

tropy, used by Sommer and his collaborators. These results are reported in Table

4.4. As can be seen, the results are not as good as in the case of the MIVM, which

is expected since only the integral properties were modeled. However, they are still

close. The average error between the emf modeled and measured is ± 14 mV (1 %).

This corresponds to an average absolute error of 3 kJ/mol in AGCa, or 1%.

The partial properties of Ca, and the activity of Ca, are related to the Gibbs free
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Figure 4-11: The variation of Ca and Sb environments vs. Ca concentration in Ca-Sb

liquid alloys at 800 'C

energy of mixing via:

BAG
ACa(XCa) = AG(xca) + (1 - zoa) ax

Special care was taken regarding the state of reference of Ca, since the properties

of mixing had been optimized vs. Ca(l) and Sb(l), and the activity of Ca is defined

vs. Ca(bcc).

4.4.2 Qualitative comparison

Both models show that Ca-Sb liquid alloys do not exhibit random mixing but short-

range ordering. In the association model, the formation of CaSb 2 associates explains

the shape of the thermodynamic properties of mixing of the Ca-Sb alloys. In this

case, Ca does not exist as a free atom in the ternary melt, but is stabilized when

associated with Sb to form CaSb 2. Since CaSb 2 and Sb are the two species present in

the melt, the Ca atoms forming CaSb 2 associates are almost exclusively surrounded
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XCa aca exp aca model emf error AGca error

(mV) (kJ/mol)

0.01 8.15 x 10-12 1.59 x 10-11 -31 6
0.03 3.65 x 10-1 5.02 x 10-" -15 3
0.05 8.97 x 10-" 8.80 x 10-" 0.9 -0.2
0.10 2.46 x 10-10 2.03 x 10-10 9 -2
0.14 3.90 x 1010 3.26 x 10-10 8 -2
0.19 7.41 x 10-10 5.58 x 10-' 0  14 -3
0.20 8.16 x 10-10 6.07 x 10-10 14 -3
0.25 1.35 x 10- 9  1.09 x 10- 9  10 -2

0.30 1.93 x 10- 9  3.30 x 10-9 -25 5

Table 4.4: Experimental and modeled activities of Ca vs. Ca(bcc) in Ca-Sb alloys at

800 C via the regular association model and corresponding emf and AZca error

by Sb atoms. The MIVM gives a different perspective of the same phenomenon by

considering the first nearest neighbors of Ca and Sb and showing that Ca atoms are

almost exclusively surrounded by Sb. Both models show therefore that there is a

strong short-range order, that is Ca-centered, in Ca-Sb liquid alloys.

4.5 Conclusions of the chapter

The activity of Ca and the mixing properties of Ca-Sb liquid alloys were successfully

modeled using the MIVM and the regular association model. These two models give

a different perspective of the structure of the liquid alloys but agree on the type of

structure, that is highly ordered:

- the association model, which is a "lattice" model, shows that Ca-Sb liquid alloys

form CaSb 2 associates, and that the alloys are almost a binary mixture of CaSb 2 and

Sb free atoms;

- the MIVM, which is fluid-based model, shows that the Ca atoms are almost

completely surrounded by Sb atoms at the atomic level.

The structure of the liquid alloys, i.e., short-range order, is therefore directly

related to the particularly low activity of Ca that was measured in the Ca-Sb liquid

alloys.

For the first time, the MIVM was used successfully to model the thermodynamic
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properties of liquid alloys in a system with high-melting intermetallics without mak-

ing assumptions about the presence of an associate and decreasing the number of fit

parameters from 5 to 2, offering an alternative to the commonly used regular associ-

ated model. These results are particularly important because the MIVM is also much

easier to work with, since it has fewer parameters, and directly models the partial

properties of mixing, which are the object of interest in this study.

The properties of other Ca-based liquid alloys with high-melting intermetallics are

available in the literature, from the work of Delcet et al. Based upon the suitability of

the MIVM to model Ca-Sb liquid alloys, these other alloys can potentially be modeled

similarly.
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Chapter 5

Interaction in calcium-based liquid

alloys

This chapter focuses on the application of the MIVM, introduced in the last chapter

in the case of Ca-Sb liquid alloys, to other calcium-based liquid alloys of systems

with high-melting intermetallics, namely Ca-Ag, Ca-Bi, Ca-In, Ca-Pb, Ca-Sb, Ca-Sn,

Ca-Tl, and Ca-Zn, as well as a system with a low-melting intermetallic Ca-Mg. Using

the physical meaning of the interaction coefficients derived through the application of

the MIVM to these alloys, a new mixing potential for liquid alloys will be proposed,

that will allow one to compare the strength of interaction in different Ca-X liquid

alloys.
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5.1 Derivation of the interaction parameters in the

MIVM

5.1.1 Input parameters: molar volume and first coordination

number

The only input parameters in the MIVM correspond to properties of the pure liquid

metals involved in the alloy, namely the molar volume, Vm, and the first coordination

number, Z, in the liquid state [73]. These two parameters depend on the temperature

of the liquid metal. For the molar volume, Iida and Guthrie [34] compiled a list with

most liquid metals on it, including the temperature dependence of the molar volume

of liquid metals, reported in Table 5.1 in the form:

Vm = Vfs (1 + aev(T - Tm)) (5.1)

with Vfu, the molar volume at the melting point and av the coefficient of thermal

expansion.

For the first coordination number, Z, the formula derived by Tao was used [77]:

4v2_W ri - ro Na AHfus(T - Tm)Z ( )- rml exp RT )(5.2)
3 (rm - ro) V. Il Ze RT Tm )(52

This formula is based on the definition of the coordination number as twice the area

under half of the first peak in the radial distribution function. The shape of the first

peak in the radial distribution function near its melting point is approximated by a

normal distribution, depending on the beginning (ro) and the first peak values (rm)

of the radial distance, as it can be visualized on Figure 5-1. The temperature depen-

dence of the radial distribution is assumed to decrease exponentially with increasing

temperature, depending on the enthalpy of fusion AHfus.

Tao compared his predicted coordination number for metals with experimental

values, estimated by Waseda [80] via the relationship between the radial distribution

function and the structure factor obtained experimentally using x-ray and neutron
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Figure 5-1: Z (shaded area) corresponds to the integral of the first peak of the radial
distribution function (r.d.f), represented here in a typical case [34]

scattering data. To determine Z, different methods to compute the area under the

first peak of the r.d.f. function can be used. Hines [31] reported that depending on

the method used to construct the separate coordination shells (only the first shell

should be included to obtain the first coordination number), the value determined for

Z could vary by 20%. Waseda reported average values for the coordination numbers

computed from the r.d.f. curve by three methods, to minimize the error. Tao found

an average 6 % difference for all 39 metals considered between his estimation and the

experimental values from Waseda [80]. Therefore, the precision obtained by Tao was

deemed acceptable.

In all the metals of interest in this chapter, except Ca and Ag, the temperature

dependence of the input parameters was taken into account. In the case of Ca and

Ag, the values of the input parameters at the melting point were used even though

the temperatures of interest (< 800 C) was below their melting points.

The values used for the parameters necessary to compute Z and Vm of all the

metals of interest in this chapter are reported in Table 5.1.
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metal Vf (m 3/mol) av (10--4 K- 1 ) rm (A) ro (A) Tm (K) AH,, (kJ/mol)
Ag 11.6 0.98 2.89 2.46 1235 11.09
Bi 20.80 1.17 3.38 2.68 545 10.88
Ca 29.5 1.6 3.95 3.19 1115 8.40
In 16.3 0.97 3.33 2.64 430 16.30
Mg 15.3 1.6 3.20 2.50 923 8.80
Pb 19.42 1.24 3.50 2.70 601 4.81
Sb 18.8 1.3 3.14 2.57 904 39.70
Sn 17.0 0.87 3.16 2.59 505 7.07
TI 18.00 1.15 3.43 2.72 577 4.31
Zn 9.94 1.5 2.79 2.30 693 7.28

Table 5.1: Input parameters for MIVM [34, 77]

5.1.2 Output parameters: the pair-potential energy interac-

tion parameters Bij

As reviewed in Chapter 4, Tao derived new expressions for the activity coefficients of i

and j in a binary i - j alloy, that introduce only two pair-potential energy interaction

parameters Bij and Bjj [73]. Bjj depends on the difference in energy for a j atom vs.

an i atom next to a central i atom while Bij depends on the difference in energy for

an i atom vs. a j atom next to a central j atom.

ln y = In VM )
(xi Vmi + xj Vmj Bjj

± Xj ( Vmj Bmji
(xi Vmi + xj Vmj Bjj

Vmj Bij
xjVmj + xi Vmi Bij

x2 Z Bj ln Bj

2 (xi + xjBj)2

ZjBi ln Bij( + x2B j)2

The activity coefficient of j is defined similarly. The interaction coefficients can

therefore be obtained by fitting the activity coefficients obtained experimentally with

these expressions. The values obtained for the interaction coefficients will differ

slightly depending on the parameter minimized during the fitting and the method

used to minimize this parameter.
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5.1.3 Derivation of the interaction parameters

The parameter that was minimized through our fitting was the error on ln(aca). Tao

minimized the error on aca in his work, in which he was considering activities that

were all in the same order of magnitude. However, in our case, the activities span

several orders of magnitude. Also, the experimental values were obtained by emf

measurements, whose measured values are directly related to ln(aca) by the Nernst

equation : E = -! ln(aa), with aca the activity of calcium in the calcium alloy of

interest. Therefore, ln(aca) is a more relevant quantity in this case. The norm 2 of

the error vector, err = (E' 1 (ln(acaexp) - ln(aca,MvM))2)1/ 2 /n, with n the number

of experimental datapoints, was chosen to be minimized.

The first method used to determine the interaction parameters was an algorithm

developed in-house on MuPAD, the numerical solver of MATLAB. This iterative

method was optimizing the interaction parameters by keeping one constant and op-

timizing the other one, then keeping the other constant and optimizing the first one

to minimize err. During the first optimization, one of the parameters was varied

by steps of 1, and the other parameter was optimized for each of these new values.

err was compared at each one of these steps, and the solution for the interaction

parameters that corresponded to the minimum of err was kept. The same scheme

was performed with smaller steps of 0.1 and 0.01. The numerical routine was fairly

simple and robust, however, one concern was that there might be several local minima

in the err function, and that this program would only lead to the identification of

one of these minima, depending on the starting values for Bij, and not necessarily

the global one.

Therefore, the second method used to obtain the interaction parameters was based

on the study of err(Bij, Bjj). By graphing the function in 3D, one would quickly see

that there seemed to be only one minimum, a global one, as it can be seen in Figure

5-2 for instance in the case of Ca-Sn. This minimum could be identified by finding

the values for which the partial differentials of err were equal to 0. The advantage of

this more direct method, which was quick to run as well, was that it didn't require
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to choose starting values, and the interaction parameters were given with a better

precision, even though this didn't affect the value of the error that much, as the

minimum of err was usually fairly flat. This second method was only possible because

the function err was not too complicated and there was only one minimum.

6-6

err oerl 4- 2 4 6 8 1
2 2

B_SnCa B_CaSn B_CaSn BSnCa

Figure 5-2: err for Ca-Sn liquid alloys at 800 C (min for Beasn = 1.4587 and Bsnca =

5.9444)

The algorithms for both methods are available in the Appendix B in the case of

Ca-Sn. The same algorithms were used for the other alloys of interest.

5.2 Results

5.2.1 Experimental data

Experimental data for most of the alloys (Ca-Ag, Ca-Bi, Ca-In, Ca-Pb, Ca-Sn, Ca-Ti,

and Ca-Zn), were available from the extensive studies done at 800 *C by Delcet et al.

[24, 23, 25] at Brookhaven National Laboratory. Delcet et al. obtained all these data

by coulometric titration vs. a Ca-Bi (1) reference electrode through a single crystal

CaF2 electrolyte, as mentioned for Ca-Sb in Chapter 3. In the case of Ca-Bi and Ca-

Sb, these data were consistent with the emf measurements vs. Ca(s) through sintered

CaF 2 electrolyte, by H. Kim et al. [39] in the case of Ca-Bi, and from this work in

the case of Ca-Sb. This gives confidence that the other data obtained by Delcet at

al. are reliable. Additionally, the study by Kim et al. and the study presented in

this thesis in the case of Ca-Sb provide data for an array of temperatures between
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600 and 800 C.

In the case of Ca-Mg, J. Newhouse et al. [48] measured at 1010 K the emf of

Ca-Mg liquid alloys vs. a Ca-Bi(s + 1) reference electrode using a similar set-up to

the one presented in the case of Ca-Sb in this thesis.

In the case of Ca-Pb, additional experimental data at 900 'C were collected by

Fray et al. [27] by coulometric titration vs. a Ca(l) reference electrode through solid

calcium magnetoplumbite (CaCO 3 , MgCO 3, and a-Al20 3 with compositions varying

from 1:0:6 to 1:0.6:6 molar proportions).

5.2.2 Interaction parameters

The values found for the interaction parameters and their corresponding temperatures

are listed in Table 5.2, with the number of datapoints that were used for the fit.

To evaluate the goodness of the fit, the average error in absolute value between the

experimental emf and the modeled emf (since all the experimental data were obtained

via emf measurements) is indicated. The error is low enough to be within experimental

error (within less than 1 % of experimental values). The error in the partial Gibbs

free energy of Ca, which is related to the emf by AGCa =-zFE, is also indicated.

A plot of the modeled data vs. experimental data is available in Figure 5-3, data

in Table 5.6 at the end of the chapter, with AE the corresponding error for each

composition.

As in the last chapter, the emf error AE is defined for a cell of the type Ca(s)

Ca 2+ conductor I Ca-X (1), in which the electrolyte is stable vs. the electrodes, and

the transference number is one (the electrolyte is a pure ionic conductor), by:

AE = EMlvm - Ee = In acaTv1 - RTn aca,ex - RT In aa,MIvM>
P 2F2F P 2F a~aex

(5.4)

All the Ca-X liquid alloys that had emf measurements at only one temperature

(Ca-Ag, Ca-In, Ca-Mg, Ca-Sn, Ca-Ti, and Ca-Zn) were included in Tables 5.6 and 5.2.
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The results for Ca-Pb, Ca-Bi and Ca-Sb, for which experimental data were available

at several temperatures, will be presented separately in the next subsection.

1
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XCa
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Figure 5-3: Ca activity in diverse Ca-X liquid alloys, experimental data represented
by the empty symbols (Ca-Mg from [48], Ca-Zn from [25], Ca-Ag and Ca-In from
[24], Ca-Tl from [23]), data modeled by the MIVM represented by the solid lines

X T (K) Bcax BxCa number of average emf average AGoa
datapoints error (mV) error (kJ/mol)

Ag 1073 1.8864 1.8698 7 ± 7.9 ± 1.5
In 1073 1.3861 3.6510 4 ± 2.9 i 0.6

Mg 1010 1.5315 0.7197 11 ± 2.6 ± 0.5
Sn 1073 1.4587 5.9444 7 ± 2.3 t 0.4
TI 1073 1.1720 4.8600 6 i 5.7 ± 1.1
Zn 1073 1.7269 1.2542 9 i 3.8 i 0.7

Table 5.2: Interaction parameters of Ca-X liquid alloys
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5.2.3 Temperature dependence

The interaction coefficients depend on the temperature according to according to

Bji = exp (- k"), with Egi the energy of a central i atom next to a j atom [73]. The

temperature dependence for Bij is defined similarly. Assuming a constant Eji -Cii, one

can predict the values of the interaction coefficients of Ca-X liquid alloys at different

temperatures. The accuracy of this expression (in particular of the assumption that

the energy does not change over the range of temperature of interest), was tested in

the case of Ca-Pb, Ca-Bi and Ca-Sb, for which experimental data were available at

different temperatures.

In the case of Ca-Bi and Ca-Sb, the activity of Ca was modeled simultaneously

at different temperatures:

- at 600 and 800 'C in the case of Ca-Bi;

- at 650 and 800 'C in the case of Ca-Sb.

These temperatures represent the boundaries of the temperature range for which

the emf of the liquid alloys were measured. As seen on Figure 5-6, the temperature

dependence of the activity is well represented by the MIVM when taking into account

the temperature variation of the input parameters and of the interaction coefficients,

keeping the Eji - Eii constant. The activity of Ca, experimental and modeled values,

are available in Table 5.7 at the end of the chapter, with AE the corresponding error

for each composition.

In the case of Ca-Pb however, the activity of Ca could not be modeled simulta-

neously at 800 and 900 'C using the MIVM. This inconsistence between the 2 sets

of data was already reported in the literature though, both by Fray et al. [27] and

Cartigny et al. [21], who modeled the Ca-Pb system using a regular associated model

with a Ca 2Pb associate. Cartigny et al. noted that, based on the results from his

thermodynamic simulation, the results from Fray et al. were also not consistent with

the data from Bouirden [13], who measured the liquidus temperature of Ca-Pb alloy

for compositions close to CaPb3 , and chose to ignore the data from Fray to model

the Ca-Pb system accurately. Based on the facts that the data measured by Delcet

99



1E-4

Ca-Pb 800 *C

1E-6 r

1E-7

E-8 - Ca-Bi 800 *C

aCC1E-8

1E9 Ca-Sb 800 *C

IE-10 -CaBi 600 *C1E-10

1E-11 Ca-Sb 650 C

1E-12

i * I * I

0.0 0.1 0.2 0.3 0.4
XCa

Figure 5-4: Ca activity in diverse Ca-X liquid alloys at different temperatures, ex-
perimental data represented by the empty symbols (Ca-Bi from [23] (stars) and [39]
(squares), Ca-Sb from [57], Ca-Pb from [23] (squares) and [27] (diamond)), data
modeled by the MIVM represented by the solid lines

et al. have been confirmed in the case of similar alloys such as Ca-Bi [39] and Ca-Sb

[57], and also that the Al 2 03 used by Fray et al. in the magnetoplumbite could have

reacted with Ca(l), since CaO is much more stable that A12 0 3 at 900 *C, the data

from Delcet were used here. Figure 5-6, the data from Fray are plotted with the

prediction from the MIVM at that temperature, based on the data from Delcet et al.

at 800 "C and the temperature dependence of the MIVM.

The values found for the interaction parameters in the Ca-Sb, Ca-Bi and Ca-Pb

systems, and the corresponding temperature, are listed in Table 5.3, together the

number of datapoints that were used for the fit and the average error in absolute

value between the experimental emf and the modeled emf to evaluate the goodness
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of the fit. The error in the partial Gibbs free energy of Ca is also indicated. The

interaction coefficients that correspond to the same system but at different temper-

atures are interdependent. The fit at each individual temperature is as good as in

the cases in Table 5.2, while the experimental data for each Ca-X system, at different

temperatures, are still fitted with only two unknowns: (ExCa - ECaCa) and (ECaX - EXX)-

In the case of the liquid alloys of similar elements considered by Tao [75], the

interaction coefficients have a value close to 1, and therefore do not vary much with

temperature. In contrast, for the Ca-Sb and Ca-Bi alloys of the present study, the

values of BSbCa and BBiCa exhibited significant variation with temperature and yet

the MIVM accurately represents the quantitative nature of this variation. The tem-

perature dependence of Tao's formulas could therefore be verified with confidence for

the first time here.

X T (K) BCax Bxca number of average emf average AGCa
datapoints error (mV) error (kJ/mol)

Bi 1073 1.1173 14.3925 10 ± 4.5 ± 0.9
873 1.1461 26.5130 6 ± 6.3 ± 1.2

Sb 1073 1.1617 23.8839 9 ± 5.7 ± 1.1
923 1.1903 40.0006 7 ± 5.9 ± 1.1

Pb 1073 1.1481 6.3354 9 t 5.6 t 1.1
1173 1.1347 5.4128 7 t 147 t 28

Table 5.3: Temperature dependence of the interaction parameters in Ca-X liquid
alloys

5.3 Definition of a mixing potential for liquid

alloys

Based on the previous results, the MIVM is suitable to model the activity of Ca in

all the Ca-X alloys of interest, that correspond to systems with high-melting inter-

metallics. Also, the temperature dependence of the MIVM is verified in the case of

Ca-Bi and Ca-Sb, the only two systems that had reliable data at different temper-

atures. This suggests that (ExCa - ECaCa), the difference in energy for a Ca atom
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surrounded by an X atom vs. a Ca atom, and (ECaX - EXX), the difference in energy

for an X atom surrounded by a Ca atom vs. an X atom are indeed independent of

temperature, and can be compared from one system to another.

To compare more easily the strength of interaction in the different Ca-X liquid

alloys, a new parameter of mixing is proposed: a potential of mixing for liquid al-

loys, VCax, that uses the energy parameters derived from the MIVM, Ejg, that are

independent of temperature.

1 1 1
VCaX = I (EXCa - ECaCa + CCaX - Exx) jExCa + ECaX) - (ECaCa + Exx) (5.5)2 2 2

This expression is similar to the definition of the energy parameter in a regular

solution model: W x (WAD - (WAA + WBB)/2), that represents the difference in

interaction energy between like and unlike neighbors. However, the formulation in-

troduced here allows for an asymmetrical energy of interaction between Ca and X by

introducing 2 potentially different values for the cross-energy terms ExCa and ECaX,

depending on the central atom the energy corresponds to. The values for potential of

mixing in liquid alloys in the Ca-X alloys of interest are reported in Table 5.4, and the

ranking is represented in Figure 5-5. It should be noted that the order is exactly the

same as the ranking of the OCV in Ca-X liquid metal batteries, for the same fraction

of Ca in the positive electrode, as reported in Chapter 2 at 800 'C. The stronger the

interaction, the larger the OCV.

All the values for the potential of mixing of the liquid Ca-X alloys considered

here are negative, which corresponds to alloys that favor mixing. This is consistent

with the fact that, in the liquid state, the activity of calcium shows a strong negative

deviation from ideality (down to 10-1" for Ca-Sb at 600 *C), indicating that Ca lowers

greatly its energy when alloyed. The order of magnitude observed for the potential of

mixing of ordered Ca-X liquid alloys is around 0.1 eV, which is an order of magnitude

smaller than what is expected for W = AHf(ABalloy)/(XA X XB) for an ordering

system in the solid state, according to the regular solution model. This is consistent

with the fact that interactions in the solid state are stronger than in the liquid state.
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X Vcax (eV)
Sb -0.1537
Bi -0.1285
Sn -0.0999
Pb -0.0918
TI -0.0805
In -0.0750
Ag -0.0583
Zn -0.0357
Mg -0.0042

Table 5.4: Potential of mixing of liquid Ca-X alloys

Sb Bi Sn Pb TI In Ag Zn Mg

VCaX
(eV)

-0.15 -0.10 -0.05 0
Stronger interaction.

Figure 5-5: Ranking of the strength of interaction in liquid Ca-X alloys

In the case of Ca-Mg, which represents a system of very similar elements, the

potential of mixing is very close to 0 (almost two orders of magnitude smaller than

for Ca-Sb). For the alloys considered by Tao [75], the interaction coefficients Bij were

both close to 1, as in the case of Ca-Mg, and therefore the potential of mixing of the

different binary alloys would all be close to zero. Here, the potentials of mixing are

very different from one another, and follow a trend, that is visible in Table 5.4.

5.4 Analysis of the trend in VCaX

5.4.1 Identification of the Ca-X systems of interest

The metals X of interest, that form Ca-X systems with high-melting intermetallics,

do not lie on a row or column in the periodic table, as seen in Figure 5-6. There is no

visible trend in the structural properties of X that correspond to the trend observed

for the Ca-X systems of interest. However, the properties of liquid Ca-X alloys can
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be compared to the interaction in the solid state of Ca-X systems.

1
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CsBa Hf Ta W Re Os Ir Pt Au Hg Po At Rn

Figure 5-6: Periodic chart, with the elements of interest in this chapter in purple (Ca)
and blue (X)

5.4.2 Enthalpy of formation of Ca-X intermetallics

The standard enthalpy of formation AHf of Ca-X intermetallics is an indication of

the strength of interaction between Ca and X in the solid state. An estimate of the

enthalpy of formation for most Ca-X intermetallics can be found in the literature.

Most of the experimental data were measured at high temperature with a calorimeter

[2, 43], by drop calorimetry [10] or by emf measurements [57]. Some of the enthalpies

of formation were obtained from optimization of Ca-X phase diagrams [22, 21, 26, 37,

47, 54]. In some cases, the heat capacity coefficients have been optimized, allowing for

a determination of the enthalpy of formation of the intermetallics at room temperature

(Factsage data [4, 5]). When it wasn't the case, the Kopp-Newmann law was used.

This law states that the molecular heat capacity of a solid compound is the sum of the

atomic heat capacities of the elements composing it. Therefore, only the portion in

the enthalpy of formation corresponding to a phase transformation of the pure metals

had to be taken into account to estimate the enthalpy of formation of a compound

at room temperature from data at high temperature.

The data collected from the literature are presented in Table 5.5. The method

of determination (model or experiment) is in particular specified. In the case of
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experimental data (indicated by exp), the experimental temperature is indicated.

The values for the enthalpy of formation determined using different models (Ca 2Sn),

different experiment (Ca 5Sb 3), or one model and one experiment (Ca 3Sb 2), do not

always agree, but are usually close enough to not affect the trend from one system to

another.

experimental - Kopp-Newmann law used
. optimized with model
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mixing potential in Ca-X liquid alloys (eV)

Figure 5-7: Interaction in the solid vs. liquid state for Ca-X systems
intermetallics

with high-melting

As seen on Figure 5-7, the systems with strong interaction in the solid state

(ie. very stable intermetallics with very low enthalpy of formation) also have strong

interaction in the liquid state, according to the definition of the potential of mixing

in Ca-X liquid alloys.
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intermetallic AHO (at 298K, kJ/mol of atom) method source
Caj1 Sbio -99 exp (1100 K) [10]
Caj1 SbiO -100 exp (1073 K) [57]
Ca 5 Sb 3  -78 exp (1100 K) [10]
Ca 5 Sb 3  -117 exp (1073 K) [57]
Ca 3 Sb 2  -125 exp (933 K) [43]
Ca3 Sb 2  -146 model [4]
Ca 1 Bio -83 exp (1079 K) [10]
Ca 5 Bi3  -68 exp (1079 K) [10]
Ca 3 Bi2  -89 exp (903 K) [43]
Ca 3 Bi2  -105 model [4]
Ca 2Sn -83 model [22]
Ca 2Sn -105 model [4]
Ca5 Sn 3  -87 model [22]
CaSn -79 model [4]
Ca 2Pb -63 exp (873 K) [43]
Ca 2Pb -70 model [21]
Ca 2Pb -72 model [4]
CaPb 3  -32 model [21]
CaPb -56 model [21]
CaPb -60 model [4]
Ca 5Pb3  -69 model [21]
CaT1 -71 exp (903 K) [43]
Ca 3In -58 model [54]
CaIn -65 model [54]
CaIn 2  -60 model [54]
Ca 2Ag. -16 model [26]
Ca 2Ag7  -20 model [26]
CaAg2  -23 model [26]
Ca 3Ag -36 model [26]
Ca 3Zn -14 model [37]
Ca5 Zn 3  -21 model [37]
CaZn -23 model [37]
CaZn -18 model [4]
CaZn 2  -27 model [37]
CaZn 2  -22 model [4]
CaZn 3  -19 model [37]
CaZn5  -19 model [37]
CaZn 1  -19 model [37]
CaZn 13  -18 model [37]
CaMg 2  -13 model [2]

Table 5.5: Standard enthalpy of formation of intermetallics in Ca-X ordered systems
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5.5 Conclusions of the chapter

The MIVM was used to model the activity of Ca in Ca-X liquid alloys, namely Ca-Ag,

Ca-Bi, Ca-In, Ca-Pb, Ca-Sb, Ca-Sn, Ca-T1, and Ca-Zn, and Ca-Mg. The agreement

between the modeled data and the experimental data was within less than 1 % across

the whole range of compositions. In the case of Ca-X systems with a high-melting

intermetallic, data were available only for a limited range of compositions: the high X

side of the intermetallic. This corresponds to the side of interest in this work since the

application of this work is to use X as a positive electrode in a liquid metal battery,

the composition of the liquid positive electrode would always be in the high X side

of the Ca-X system.

The MIVM was also able to fit the activity of calcium over a large temperature

range, as in the case of Ca-Sb and Ca-Bi, which confirms that the temperature de-

pendence derived by Tao in the case of alloys of similar metals is also valid for alloys

of very different metals. This allows one to predict the activity of Ca at several

temperatures using data only obtained at one temperature, which is what is usually

available for Ca-X alloys.

Using the energy coefficients of interaction derived by applying the MIVM to

many Ca-X alloys with high-melting intermetallics, a new potential of mixing for

liquid alloys was defined. This potential of mixing has a physical sense, and is in the

right order of magnitude (Vax ~ - 0.1 eV) to represent the interaction in strongly

interacting liquid alloys. This property could be related to the interaction in the

intermetallics of the Ca-X systems. Indeed, systems with a stronger interaction in a

solid state (i.e. which form stable intermetallics) have a stronger interaction in the

liquid state (more negative Vcax).

This confirms that systems with high-melting intermetallics have more chances of

corresponding to systems with low Ca activity in Ca-X liquid alloys, which in turn are

attractive in LMBs. Indeed, high-melting intermetallics usually have very negative

enthalpies of formation, corresponding to very stable intermetallics. And systems

with a strong interaction in the solid state have a strong interaction in the liquid
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state, as it was demonstrated in this chapter. Systems with very strong interaction in

the liquid state (i.e. with very low Vax), usually have lower Ca activities, as found

through the MIVM.

After modeling the Ca-X systems in the liquid state, and having explained how

strong candidates for X as a positive electrode in a LMB could be identified by looking

at the interaction in the solid state, next chapter will be tackling the case of a binary

positive electrode, and therefore looking at a Ca-X-Y alloy, chosen as Ca-Sb-Pb.
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X T (K) xca aca (exp) source aca (MIVM) AE (mV) A7ca error
(kJ/mol)

Ag 1073 0.10 1.87 x 10-5 [24] 0.95 x 10-5 10 -2
0.20 1.72 x 10-4 [24] 2.51 x 10-4 -17 3
0.30 2.05 x 10-3 [24] 2.37 x 10-3 -7 1
0.40 1.33 x 10-2 [24] 1.25 x 10-2 3 -0.6
0.50 5.53 x 10-2 [24] 4.51 x 10-2 9 -2
0.60 1.37 x 10-1 [24] 1.24 x 10-1 5 -0.9
0.70 2.98 x 10-1 [24] 2.76 x 10-1 4 -0.7

In 1073 0.02 3.36 x 10-7 [24] 3.49 x 10-7 -2 0.3
0.05 1.53 x 10-6 [24] 1.38 x 10-6 5 -0.9
0.10 5.20 x 10-6 [24] 5.69 x 10-6 -4 0.8
0.20 4.37 x 10-5 [24] 4.26 x 10-5 1 -0.2

Mg 1010 0.01 8.78 x 10-4 [48] 8.44 x 10-4 -2 0.3
0.05 5.56 x 10-3 [48] 5.96 x 10-3 3 -0.6
0.10 1.76 x 10-2 [48] 1.72 x 10-2 -1 0.2
0.19 5.43 x 10-2 [48] 5.46 x 10-2 0.3 -0.05
0.28 1.19 x 10-1 [48] 1.17 x 10-1 -1 0.1
0.40 2.23 x 10 -1 [48] 2.38 x 10-1 3 -0.5
0.48 3.28 x 10-1 [48] 3.37 x 10-1 1 -0.3
0.49 3.62 x 10-1 [48] 3.50 x 10-1 -1 0.3
0.60 5.52 x 10-1 [48] 5.00 x 10-1 -4 0.8
0.69 7.42 x 10-1 [48] 6.25 x 10-1 -8 1
0.80 8.62 x 10-1 [48] 7.71 x 10-1 -5 0.9

Sn 1073 0.02 1.33 x 10-" [23] 1.37 x 10-8 -1 0.2
0.05 6.06 x 10-8 [23] 5.55 x 10-8 4 -0.8
0.10 2.32 x 10-7 [23] 2.36 x 10- 7  -1 0.2
0.15 6.83 x 10-7 [23] 7.18 x 10~7 -2 0.4
0.20 1.73 x 10-6 [23] 1.86 x 10-6 -3 0.7
0.25 4.58 x 10-6 [23] 4.40 x 10-6 2 -0.4
0.30 1.02 x 10-5 [23] 9.77 x 10-6 2 -0.4

TI 1073 0.02 3.42 x 10-1 [23] 3.57 x 10-7 -2 0.4
0.05 1.39 x 10-6 [23] 1.18 x 10-6 8 -2
0.10 3.69 x 10-6 [23] 3.71 x 10-6 -0.3 0.06
0.20 1.51 x 10-5 [23] 1.83 x 10-5 -9 2
0.30 6.01 x 10-5 [23] 6.80 x 10-5 -6 1
0.40 2.85 x 10-4 [23] 2.33 x 10-4 9 -2

Zn 1073 0.10 2.22 x 10-4 [25] 2.00 x 10- 4  5 -0.9
0.20 2.25 x 10-3 [25] 2.84 x 10-3 -11 2
0.30 1.60 x 10-2 [25] 1.65 x 10-2 -1 0.3
0.40 7.44 x 10-2 [25] 5.77 x 10-2 12 -2
0.50 1.39 x 10-1 [25] 1.45 x 101 -2 0.3
0.60 2.82 x 10-1 [25] 2.86 x 10-1 -1 0.1
0.70 4.55 x 10-1 [25] 4.72 x 10-1 -2 0.3
0.80 6.80 x 10-1 [25] 6.76 x 10-1 0.3 -0.05
0.90 8.92 x 10-1 [25] 8.64 x 10-1 1 -0.3
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X T (K) xca aca (exp) source aca (MIVM) AE (mV) Aca error
(kJ/mol)

Bi 1073 0.05 1.51 x I0-q [39] 2.26 x 10-9 -19 4
0.10 6.43 x 10-9 [39] 6.20 x 10-9 2 -0.3
0.10 6.76 x 10-9 [23] 6.20 x 10-9 4 -0.8
0.15 1.26 x 10-8 [39] 1.28 x 10-8 -1 0.2
0.15 1.23 x 10-8 [39] 1.28 x 10-' -2 0.4
0.20 1.98 x 10-" [39] 2.37 x 10-8 -8 2
0.20 2.28 x 10-8 [23] 2.37 x 10-8 -2 0.3
0.25 3.96 x 10-8 [39] 4.15 x 10-8 -2 0.4
0.30 6.37 x 10-8 [39] 7.07 x 10~8 -5 0.9
0.30 7.01 x 10-8 [23] 7.07 x 10-8 -0.4 0.08

Bi 873 0.05 3.75 x 10-" [39] 4.28 x 10-" -6 1
0.10 1.53 x 10-10 [39] 1.17 x 10-10 13 -2
0.15 2.68 x 1010 [39] 2.38 x 10-10 5 -1
0.15 2.61 x 10-10 [39] 2.38 x 10-10 4 -0.8
0.20 3.78 x 10-10 [39] 4.34 x 10-10 -6 1
0.25 7.97 x 10-10 [39] 7.43 x 10-10 3 -0.6

Sb 1073 0.01 8.15 x 10-12 [57] 1.14 x 10-1 -15 3
0.03 3.65 x 10-" [57] 3.94 x 10-" -3 0.7
0.05 8.97 x 10-" [57] 7.55 x 10-1 8 -2
0.10 2.46 x 10-10 [57] 2.13 x 10-10 7 -1
0.14 3.90 x 1010 [57] 3.92 x 10-10 -0.2 0.04
0.19 7.41 x 10-10 [57] 7.46 x 10-10 -0.3 0.06
0.20 8.16 x 10-10 [57] 8.41 x 10-10 -1 0.3
0.25 1.35 x 10- 9  [57] 1.48 x 10-9 -4 0.8
0.30 1.93 x 10-9 [57] 2.50 x 10-9 -12 2

Sb 923 0.01 3.00 x 10-13 [57] 4.02 x 10-13 -14 3
0.03 1.44 x 10-12 [57] 1.39 x 10-12 2 -0.3
0.05 3.55 x 10-12 [57] 2.68 x 10-12 13 -3
0.10 9.19 x 10 -12 [57] 7.59 x 10-1 9 -2
0.14 1.46 x 10-" [57] 1.39 x 10-" 2 -0.4
0.19 2.75 x 10-" [57] 2.64 x 10~" 2 -0.4
0.20 2.96 x 10-1 [57] 2.96 x 10-11 -0.1 0.01

Pb 1073 0.02 1.04 x 10- 7  [23] 8.92 x 10-8 7 -1
0.05 3.13 x 10-7 [23] 2.84 x 10-7 4 -0.9
0.10 8.04 x 10-7 [23] 8.53 x 10-7 -3 0.5
0.15 1.66 x 10-6 [23] 1.92 x 10-6 _7 1
0.20 3.24 x 10-6 [23] 3.87 x 10-6 -8 2
0.25 6.21 x 10-6 [23] 7.34 x 10-6 -8 1
0.30 1.35 x 10- 5  [23] 1.35 x 10~' -0.1 0.02
0.35 2.70 x 10-5 [23] 2.46 x 10-5 4 -0.8
0.40 5.51 x 10-5 [23] 4.48 x 10-5 10 -2

Table 5.7: Experimental vs. modeled by the MIVM aca
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Chapter 6

Application to Ca-Sb-Pb liquid

alloys

Based on the comparison between the interaction of Ca with Sb vs. other metals, Sb

is the most attractive metal for a positive electrode in a Ca-based LMB: Ca-Sb liquid

alloys have the lowest mixing potential in the liquid state, and the lowest Ca activity

at a given temperature for a fixed Ca concentration, therefore Ca| Sb LMB have the

highest OCV among the different Ca-based LMB.

Pb is a natural impurity of Sb. Indeed, primary Sb tends to concentrate in sulfide

ores along with copper, lead, and silver, and secondary Sb is produced from lead-based

alloys, and in particular from lead-acid batteries [18]. Hence the price of a Cal Sb

liquid metal battery could potentially be decreased by using a Sb-Pb positive electrode

instead of a Sb positive electrode. This would particularly be interesting if the OCV

could remain high. Therefore, the impact of Pb contamination on the activity of

Ca is important to quantify. This chapter will focus on using the MIVM to predict

the activity of Ca in Ca-Sb-Pb alloys. Emf measurements on select compositions of

Ca-Sb-Pb alloys will allow the assessment of the prediction, and the difference will

be interpreted.

Additionally, even though the operating temperature of a Ca| Sb battery is limited

by the melting point of Ca, questions remain on whether the liquidus temperature of

the positive electrode would be lowered or not in the case of a Pb-Sb alloy. Indeed,
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the liquidus temperature of Pb-Sb alloys is lower than the melting temperature of

pure Sb, as shown on the phase diagram in Figure 6-1, but the impact of Ca on

this temperature is unknown. This impact will be assessed for select compositions of

Ca-Sb-Pb alloys.

700-
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(c ASM International 2009. Diagram No. 100246

Figure 6-1: Phase diagram of Pb-Sb alloys determined by Ohtani [51] from ASM
International
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6.1 Prediction of aca in Ca-Sb-Pb alloys

6.1.1 Application of the MIVM to ternary alloys

Tao derived a formula for the activity of each one of the components of a ternary alloy

[73]. This formula is based on the assumption that the energy of a j atom next to a

central i atom is the same in the presence or not of a k atom next to the i atom, taking

only into account primary interactions. This allows Tao to use the coefficients derived

from the studies of the binary systems to predict activity coefficients in ternary,

quaternary, quinary... systems. Extending his new expression of the excess Gibbs

energy of an i - j mixture to a multicomponent mixture (Equation 6.1), the activity

coefficient of each species in a multicomponent mixture can be derived.

n

n n Vm ij Bjj ln Bjj

= Rxi n - Y Zix' ' (6.1)
i=1 E xjVmjBji j=1 E XkBki

j=1 k=1

local volume fraction of i energy interaction term

In our case, the activity of Ca in Ca-Sb-Pb liquid alloys is the quantity of interest,

since this is the activity that will matter to determine the OCV of a Cal Sb-Pb liquid

metal battery. Therefore, in the rest of this chapter, only the activity of Ca will be

modeled and compared to experimental data. However, the MIVM has the capability

to model the activities of Sb and Pb as well.

6.1.2 Input parameters

To predict the properties of Ca-Sb-Pb alloys, the properties of Ca-Sb, Ca-Pb and

Pb-Sb need to be optimized. Since the properties of Ca-Sb and Ca-Pb have been

optimized in the previous chapter, only the properties of Pb-Sb need to be optimized

here.

The experimental data used to optimize the Pb-Sb system was obtained by Seb-

kova et al. [66] by emf measurements using a molten salt electrolyte PbCl2 + (KC1
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+ NaCl)(eutectic composition), where the emf signal of the Pb-Sb alloy vs. Pb(l)

was recorded. Sebkova reported the emf of Pb-Sb alloys in the 0.216 < xP < 0.914

range at 700, 750, and 800 C. The properties both at 700 and 800 *C were used here

to check the accuracy of the modeling regarding the temperature dependence. The

results of the optimization are available in Figure 6-2 and Table 6.1, with the error

for each datapoint. The average error obtain between the emf measured and the emf

modeled was 0.8 mV. This corresponds to an error in the partial Gibbs free energy of

Pb of + 0.1 kJ/mol.The emf error is defined the same way as the previous chapter,

but for a Pb(l) | Pb 2+ conductor I Pb-Sb (1) cell according to:

RT RT RT1 (aPb,MVMAE = EMIVM - Eexp = 2F In aPb,MIVM -2 In aPb,exp = 2 Fn ()aPMxp
2F ~2F 2 ~~x

(6.2)

The interactions coefficients were found using the algorithm presented in Appendix

B in the case of Ca-Sn. At 800 'C, Bpbsb = 0.8660 and BsbPb -1.1916.

T (K) XPb aPb [66] aPb (MIVM) AE (mV) AGPb error (kJ/mol)
973 0.216 0.164 0.157 2 -0.3

0.322 0.254 0.251 0.5 -0.1
0.436 0.364 0.364 0.06 -0.01
0.549 0.473 0.486 -1 0.2
0.639 0.569 0.589 -1 0.3
0.724 0.687 0.689 0.1 0.03
0.807 0.795 0.787 0.4 -0.08
0.914 0.902 0.909 0.3 0.07

1073 0.216 0.168 0.165 0.7 -0.1
0.322 0.257 0.261 -0.7 0.1
0.436 0.368 0.375 -0.9 0.2
0.549 0.475 0.496 -2 0.4
0.639 0.571 0.597 -2 0.4
0.724 0.691 0.695 0.3 0.05
0.807 0.796 0.790 0.3 -0.07
0.914 0.905 0.910 0.3 0.05

Table 6.1: Experimental vs. modeled by the MIVM aPb in Pb-Sb liquid alloys

The energy parameters for Sb-Pb alloys are available in Table 6.2 along with the

114



1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pb

Figure 6-2: apb in Sb-Pb liquid alloys at 700 and 800 'C, modeled by the MIVM and
measured by Sebkova [66]

other energy parameters calculated for Ca-Sb and Ca-Pb. All are independent of

temperature. These parameters, along with the properties of the pure metals from

Table 5.1 are all the input parameters used to predict the activity of Ca in Ca-Sb-Pb

liquid alloys.

Ca Sb Pb

Ca 0 -0.2935 -0.1708
Sb -0.0139 0 -0.0162
Pb -0.0128 0.0133 0

6.2: eij - ejj = -kT In Bi (eV)
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6.1.3 Results

Based on the formula from Tao, the activity of Ca in Ca-Sb-Pb liquid alloys can be

derived:

In7C =I + In YmCa
CamCa + IXSbVmSbBsbCa - XPbVmPbBPbCa

XCaVmCa XSbVmCaBCaSb

XCaVmCa + XSbVmSbBSbCa + XPbVmPbBPbCa XCaVmCaBCaSb + XsbVmsb + XPbVmPbBPbSb

XPbVmCa

XCaVmCaBCaPb + XsbVmSbBSbPb + XPbVmPb

-0.5 (Xi bBsbCa + XPbBPbCa) (XsbBSbCa In BSbCa + XPbBPbCa In BPbCa)

y a (XCa + XSbBsbCa + XPbBPbCa)
2

ZSbXsbBCasb ((XSb + XPbBPbSb) in BCaSb - XPbBPbSb in BPbSb)

(XCaBCaSb + XSb + XPbBPbSb)
2

ZPbXPbBCaPb ((XSbBSbPb - XPb) in BCaPb - XSbBSbPb in BSbPb (

(XCaBCaPb + XSbBSbPb + XPb) 2

Figure 6-3 represents the evolution of aCa with Ca increase in a Pb-Sb alloy of fixed

ratio at 800 C. This corresponds to the activity change that would be observed in the

positive electrode of a Ca| Sb-Pb liquid metal battery during a discharge. The activity

of Ca at other temperatures and compositions can be derived using the formula from

Tao. If the alloy is in fact below its liquidus temperature in a solid + liquid phase,

the predicted Ca activity will correspond to the metastable all-liquid Ca-Sb-Pb alloy,

and not to the measured activity of Ca.

6.1.4 Interpretation of the results

The results show that the OCV of a Ca||Sb-Pb liquid metal battery would remain

high because the interaction between Ca and Sb is stronger than the interaction

between Ca and Pb. From the MIVM, the proportions of Ca, Sb, and Pb first

neighbors of a central Ca atom can be determined. The proportions of Pb and

Sb are equal for XPbl(Xsb + XPb) = 0.79. This corresponds approximately to the

116



0.05 0.10 0.15
XCa

0.20 0.25 0.30 0.35

Figure 6-3: Prediction of aca in Ca-Sb-Pb liquid alloys for fixed r = XPb/(XSb + XPb)

ratios at 800 'C

0.10 0.30 0.50 0.70 0.90

0.01 1.55 x 10~" 3.21 x 10-11 8.52 x 10-" 3.61 x 10-10 4.49 x 10-9
0.03 5.35 x 10-" 1.11 x 1010 2.96 x 10-10 1.26 x 10-9 1.58 x 10-8
0.05 1.03 x 10-10 2.14 x 10-10 5.71 x 10-10 2.45 x 10-9 3.09 x 10-8

0.07 1.65 x 10-10 3.45 x 1010 9.25 x 1010 3.99 x 10-9 5.08 x 10-8

0.10 2.90 x 10-10 6.08 x 10-10 1.64 x 10- 9  7.16 x 10-9 9.23 x 10-8

0.15 6.13 x 10-10 1.29 x 10-9 3.53 x 10-9 1.57 x 10-8 2.07 x 10-7

0.20 1.15 x 10-9 2.45 x 10- 9  6.78 x 10- 9  3.07 x 10- 8  4.16 x 10-7

0.25 2.03 x 10-9 4.35 x 10-9 1.23 x 10-" 5.69 x 10-8 7.89 x 10-7

Table 6.3: Prediction of aca at 800 *C in Ca-Sb-Pb liquid alloys using the MIVM

eutectic point in the Pb-Sb phase diagram (at XPb = 0.82). When a Pb-Sb alloy

with Xpb/(XSb + Xpb) < 0.79 is used, the local environment of Ca is dominated by Sb

atoms. The composition of the first nearest neighbors of Ca is plotted in Figure 6-4
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for two different ratios of XPb/(XSb + XPb).

1.0 . . . . .1.0 . .
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Ca Ca

(a) Xpb/(xSb + Xpb) 0.50 (b) XPb/(XSb + XPb) 0.79

Figure 6-4: xica: fraction of first nearest neighbors of Ca of type i

6.2 Comparison with experimental data

6.2.1 Selection of Ca-Sb-Pb compositions of interest

Based on the results, a substantial amount of Pb could be incorporated to Sb without

lowering the emf too much. For XPb/(XSb + Xpb) = 0.30, aca is one order of magnitude

bigger than in pure Sb. This was chosen as a ratio of interest. Three concentrations

of XCa were chosen: 0.05, 0.07 and 0.10. The concentration of Ca was chosen to be

low enough to measure the emf of a fully liquid alloy, since the model can predict the

activity of Ca only in this case.

6.2.2 Experimental set-up

The same emf set-up was used as in the case of Ca-Sb alloys. The emf of Ca-Sb-Pb

alloys in a Ca(s)|CaF 2 Ca-Sb-Pb (1) cell is measured, at fixed concentrations, over

a temperature range. The advantage of such a set-up over emf measurements via

coulometric titration is that slope changes in the emf allow the identification of first

order phase transitions (i.e. from 1 to s+l phase), while the coulometric titration
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would not show such a transition. Indeed, in a ternary alloy, because the additional

degree of freedom, the chemical potential of a s+1 phase is not constant. It is only

constant in the case of 3 phases at equilibrium. Therefore, in a coulometric titration,

with a fixed /rpbzSb + XPb), aca would be expected to vary with 1 Ca in a s+I phase,

making it indistinguishable from a pure liquid phase.

To prepare the alloys and ensure that the Pb/Sb ratio was the same as prepared,

the Pb-Sb alloy was arc melted first, and then Ca was added. Indeed, Pb and Sb do

not react heavily (they do not form intermetallics), and the ratio is kept constant.

The weight of the samples before and after arc melting was also recorded, to ensure

again that the evaporation of the Pb-Sb alloy (higher volatility) was minimal (less

than 1 at% change).

6.2.3 Results

The emf results are shown in Figure 6-5. Apart from the activity of Ca that can be

derived from these data, the liquidus temperature of these 3 alloys can be estimated

by looking at the slope changes in the emf signal, following the same methodology as

in Chapter 3. In this case, the measurements below the liquidus temperature are not

as reproducible as in the liquid state. However, even with a ± 100C error, the results

for the liquidus Ca-Sb-Pb alloys for a fixed XPb/(sb -+ XPb) = 0.30 can provide

interesting insight on the interaction in Ca-Sb-Pb alloys. Indeed, the increase in

liquidus temperature in the 0 < Xca < 0.10 range suggests that the first eutectic point

(for increasing % of Ca) in the Ca-(30Pb7OSb) phase diagram is below zCa = 0.05,

while it was found around zca = 0.14 in the case of the Ca-Sb system. This shows

that the Ca-Sb-Pb alloy enters a s+l phase at a lower Ca concentration than the

Ca-Sb alloys, when adding Ca to Sb-Pb alloy, which is consistent with the fact that

Ca interacts more with Sb than Pb.
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Figure 6-5: Emf vs. temperature data for Ca(s)|CaF 2|Ca-Sb-Pb cells, for XPb/(Xsb +

XPb) = 0.30, between 500 *C and 830 'C

Xa Tuiq (*C) in Ca-Sb system Tiq (*C) in Ca-(30Pb7OSb) system
0 631 530 [51]
0.05 601 550
0.07 595 580
0.10 588 675

Table 6.4: Liquidus temperatures of Ca-Sb and Ca-(30Pb7OSb) alloys found by in-
tersecting emf fitting lines
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6.2.4 Comparison with predicted values

The comparison of the predicted emf vs. the measured emf is available in Table 6.5,

for Ca-Sb-Pb liquid alloys between 650 and 800 C. The temperature dependence of

the emf is well reproduced. The predicted emf is on average 24 mV higher than

the measured emf, which represents only a 2 % error. This corresponds an average

error of 5 kJ/mol on the partial Gibbs free energy of Ca, while the error was 1

kJ/mol on average in the case of Ca-Pb and Ca-Sb. It suggests that as a first order

approximation, the interaction is indeed dominated by first order interactions, and

the MIVM predicts the activity of Ca in a Ca-Sb-Pb alloy rather well. However

second order interactions are not completely negligible.

XCa T (C) emf predicted (V) emf measured (V) AE (mV) AGca error
(kJ/mol)

0.05 650 1.018 0.995 23 -4
700 1.022 1.000 22 -4
750 1.026 1.005 20 -4
800 1.029 1.009 20 -4

0.07 650 0.999 0.975 25 -5
700 1.002 0.974 27 -5
750 1.005 0.978 26 -5
800 1.007 0.981 26 -5

0.10 700 0.978 0.955 23 -4
750 0.980 0.957 23 -4
800 0.981 0.958 23 -4

Table 6.5: Emf in Ca(s)|CaF2 Ca-(3OPb7OSb)(1) predicted by the MIVM, and mea-
sured by emf

6.3 Refinement of the modeling

6.3.1 Interpretation of the results at the atomistic level

When considering the different energy coefficients, and sorting them by type of central

atom, as visualized in Figure 6-6, it appears that the difference of energy for a Sb or

Pb atom next to a central Ca is much more important than in the case of a central Sb
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surrounded by Ca and Pb or a central Pb surrounded by Ca and Sb. When considering

a Sb or Pb central atom, the surrounding atoms have similar energy levels, as it is the

case for alloys of similar elements, considered by Tao [74]. Tao showed that in that

case, he could assume no effect from the presence of a ternary mixture on the energy

levels obtained from binaries, and model accurately the ternary system. However, in

the case of the environment of Ca, the energy level that corresponds to Sb is much

lower than the energy level that corresponds to Pb, which is very different from what

happened in the cases considered by Tao. A secondary type of interaction between Sb

and Pb atoms that surround Ca atoms is therefore probable, that forces the energy

levels of Sb and Pb to converge, making Sb less stable (less negative energy level),

while Pb would gain stability from this interaction (more negative energy level). To

test this hypothesis, the energy levels that correspond to the Ca environment will be

allowed to vary to fit the experimental data, while the energy levels that correspond

to the Sb and Pb environments will remain constant.

Pb-Ca-Pb Ca-Pb-Ca
Ca-Sb-Ca Sb-Pb-Sb

Pb-Sb-Pb

(eV)
-0.3 -0.2 -0.1 0

Stronger interaction

Figure 6-6: ej - ejj, with j central atom (in orange) and i first nearest neighbor (in
green)

6.3.2 Correction of the interaction coefficients around Ca

The activity of Ca at 700 and 800 C was fitted successfully for the Ca-Sb-Pb alloys,

whose properties were presented in the last section. The values for the energy levels

found through this optimization are in Table 6.6.

Only (esbCa - Ecaca) and (ePbca - ECaca) were changed, the other energy coefficients
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Ca Sb Pb

Ca 0 . j.)Nj

Sb -0.0139 0 -0.0162
Pb -0.0128 0.0133 0

Table 6.6: cij - ejj = -kT In Bj (eV). The parameters in black were derived from
modeling of the binary systems, while the parameters in green were optimized in the
ternary system

were kept constant. As the analysis was suggesting, the energy levels of Sb and Pb

next to Ca are leveled in a Ca-Sb-Pb alloy. When correcting only these 2 energy

levels, the difference was ± 2 mV between the modeled emf and the experimental

emf, or t 0.4 kJ/mol for AGca.

zCa T ('C) emf modeled (V) emf measured (V) AE (mV) AGCa error
(kJ/mol)

0.05 650 0.993 0.995 -2 0.4
700 0.998 1.000 -2 0.4
750 1.002 1.005 -3 0.6
800 1.007 1.009 -2 0.5

0.07 650 0.974 0.975 -1 0.08
700 0.978 0.974 3 -0.6
750 0.981 0.978 3 -0.6
800 0.984 0.981 3 -0.7

0.10 700 0.954 0.955 -1 0.2
750 0.956 0.957 -1 0.2
800 0.958 0.958 0 0.03

Table 6.7: Emf in Ca(s) CaF2 Ca-(30Pb7OSb) (1) measured by emf, and modeled after
optimization of the energy levels of the first nearest neighbors of Ca

6.3.3 Interpretation of the new values for the energy

parameters

To make sure that the difference in energy level was induced by the presence of a

ternary mixture, and that it was not due to the fitting of the Ca-Sb and Ca-Pb data,

the Ca-Sb and Ca-Pb data were reexamined with the new energy coefficients. Indeed,

it was reported in Chapter 5 that the minimum of the err(Bcax, Bxca) function, that
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assessed the difference the emf measured and the emf modeled for the Ca-X liquid

alloys of interest, was rather flat, allowing slightly different (BCax,Bxca) solution

couples to have almost the same err value. However, there was a substantial difference

between the data modeled by the new coefficients, and the experimental data:

- for Ca-Pb at 800 *C, the modeled data overestimate the emf of Ca-Pb liquid alloys

measured by Delcet [23] by 80 mV (or 13%), which corresponds to an underestimation

of AGCa by 16 kJ/mol.

- for Ca-Sb at 800 'C, the modeled data underestimate the emf of Ca-Sb liquid al-

loys measured in this work by 27 mV (or 3 %), which corresponds to an overestimation

of AGCa by 5 kJ/mol.

From the MIVM, the proportions of Ca, Sb, and Pb first neighbors of a central

Ca atom can be determined using the updated coefficients. The proportions of Pb

and Sb around Ca are equal for XPb/(XSb -+ £Pb) = 0.72, which is close to the value

that was observed using the coefficients from the binary alloys.

6.4 Prediction of the activity of calcium for other

Ca-Sb-Pb alloys

6.4.1 Emf measurements

Additional emf measurements for other Ca-Sb-Pb alloys were made in Ca(s) I CaF 2

Ca-Sb-Pb cells. The Ca-Sb-Pb alloys were chosen outside the range of compositions

used in the previous experiment. One sample had the same XPb/(Xsb - Xpb) = 0.3

ratio, but at a higher Ca concentration: XCa = 0.15. The two others had different

XPb/(Xsb + Xpb) ratios (0.1 and 0.5), with a low Xca = 0.07.

The emf measurements are presented in Figure 6-7. The liquidus temperatures of

the alloys can be derived from the slope changes, and are reported in Table 6.8. The

liquidus temperature of the sample with £pb/(Xsb + Xpb) = 0.3, is higher than the

liquidus temperatures of the previous samples that had a smaller Xca. Comparing

the liquidus temperatures of the different samples with fixed XCa = 0.07 shows again
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Figure 6-7: Emf vs. temperature data for Ca(s)fCaF 2 |Ca-Sb-Pb cells, between 500 *C
and 830 *C, r = XPb/(XSb + Xpb)

that adding Pb to Sb, does not necessarily decrease the liquidus temperature of the

Ca-Sb alloy, even though the liquidus temperature of Sb-Pb alloys is lower than the

melting point of Sb. This is consistent with the fact that Ca interacts more with Sb

than Pb.

Figure 6-8 represents the evolution of the liquidus temperature with the Ca, Sb and

Pb concentrations based on the datapoints obtained from the 2 previous experiments.

6.4.2 Assessment of the prediction with corrected coefficients

Using the new energy coefficients derived from the fitting of emf data for 3 liquid

Ca-Sb-Pb alloys, reported in Table 6.6, the emf in the Ca(s)|CaF 2|Ca-Sb-Pb (1)

cells was predicted and the values were compared to the measured emf in Table

125



XCa XPb/(XSb + XPb) Tijq ('C)
0.07 0 595 [57]

0.10 560
0.30 580 (previous experiment)
0.50 730

0.15 0.3 710

Table 6.8: Liquidus temperatures of Ca-Sb-Pb alloys found by intersecting emf fitting
lines

Sb
0.0 )- 1.0

0.2.

0.4

0.641

0.0
Pb

0.2
XCa

0.8

Liquidus temperature / OC

435
473
510
548
586
623
661
698

I~d 736

0.6

0.4 Ca
0.4 0.6

Figure 6-8: Liquidus temperature of
through this work represented by the

Ca-Sb-Pb alloys. Experimental data obtained
black points

6.9. Because the liquidus temperatures of these alloys were on average higher than

in the last experiment, some of the alloys have more datapoints to compare between

predicted and measured values. On average, the emf error for these 3 alloys is ± 6 mV,

or 0.6 % of the emf measured. This corresponds to an average error of 1 kJ/mol on

AGca.
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XCa (xx) T (C) emf predicted emf measured AE (mV) A~ca error
(V) (V) (kJ/mol)

0.15 0.30 750 0.923 0.936 -13 -3
800 0.923 0.930 -7 -1

0.07 0.10 650 1.003 1.008 -5 -1
700 1.007 1.007 0 -0.002
750 1.012 1.012 0 -0.07
800 1.016 1.017 -1 -0.2

0.07 0.50 750 0.942 0.932 10 -2
800 0.945 0.934 11 -2

Table 6.9: Emf in Ca(s)|CaF 2 Ca-Pb-Sb(l) measured by emf, and predicted by the
MIVM, using the updated interaction coefficients

6.4.3 Results interpretation

With the new parameters, the Ca activity of Ca-Sb-Pb alloys of various compositions

was corrected.

Figure 6-9 shows the values for aca in different Ca-Sb-Pb alloys, comparing the

measured activity and the modeled activity. The new coefficients, obtained after

correction using only 3 compositions of Ca-Sb-Pb alloys, represent well the activity

of Ca in the 6 Ca-Sb-Pb liquid alloys that have been considered. However, as it can

be seen on Figure 6-9, the activity of Ca in the binary alloys Ca-Sb and Ca-Pb is not

well represented with these coefficients. Therefore, this suggests that the difference

for the energy coefficients is due to a secondary type of interaction between Sb and

Pb, that are very similar (almost ideal solution), and can be exchanged easily around

Ca. This type of interaction can only exist in the ternary alloy. It can be taken

into account by looking at its impact on the primary type of interaction between

the Ca and its first nearest neighbors, and correcting the corresponding coefficients

accordingly.
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Figure 6-9: aca in Ca-Sb-Pb liquid alloys at 800 C for fixed r = XPb/(XSb+XPb) ratios.
The lines represent the data predicted by the MIVM after correction of the coefficients
corresponding to the first nearest neighbors of Ca, and the squares represent the
experimental data measured by emf. The data for Ca-Pb is from Delcet [23], the
other datapoints were obtained from this work.

6.5 Conclusions of the chapter

The activity of Ca in Ca-Sb-Pb liquid alloys was modeled successfully using the

MIVM. Assuming that the first nearest neighbors of Ca interact only with the cen-

ter atom, not with each other, led to an overestimation of the emf measured in a

Ca(s)|CaF 2 |Ca-Sb-Pb (1) cell. This overestimation was quantified as much as 2 %

in the case of Ca-Sb-Pb liquid alloys with XPb/(Xsb + XPb) = 0.3, which corresponds

to an underestimation of Aca by 5 kJ/mol. When taking into account the interac-

tion between the first nearest neighbors of Ca by estimating its impact on the energy

interaction between a Ca center atom and its nearest neighbors using the data ob-
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tained for 3 alloys, the activity of Ca could be assessed more precisely. Using these

updated coefficients, the activity of Ca for other compositions outside the range used

for the fitting was evaluated with less than 0.6 % error in the corresponding emf,

which corresponds to an average error of AGCa by 1 kJ/mol.

The modeling showed that Pb is an interesting candidate to alloy Sb with in

a Ca||Sb-Pb liquid metal battery. Indeed, it would lower the cost of the positive

electrode, while keeping a high voltage. This is due to the fact that the interaction

between Ca and Sb stays much stronger than the interaction between Ca and Pb

(and Ca and Ca), which leads to a non-random distribution of first nearest neighbors

around Ca. This short-range order is characterized by a higher concentration of Sb

than Pb, for the same nominal fraction in the alloy, while almost no Ca is located

next to a Ca atom. Therefore, the properties of Ca, such as its activity are mainly

governed by the Sb entourage, even though the impact of Pb cannot be neglected,

keeping low aca values, which translates into a high voltage Ca||Sb-Pb LMB. For

instance, in the case of a Ca| Sb-Pb liquid metal battery with Xpb/(Xsb - XPb) = 0.3,

the voltage drop would be less than 100 mV, which corresponds to only 10 % of the

emf value.

The emf measurements revealed, however, that alloying Sb with Pb would not

necessarily be interesting in the case of a liquid metal battery if the goal is to reduce

the operating temperature, since the cycling range at a given temperature is expected

to be smaller in the case of a Sb-Pb positive electrode than pure Sb electrode. For a

Ca||Sb liquid metal battery at 710 C, the maximal amount of calcium in the liquid

positive electrode is close to Xca = 0.28, while a Ca| Sb-Pb liquid metal battery with

Xpb/XSb -+ XPb)= 0.3, it would be XCa < 0.15, or half.
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Chapter 7

Conclusion

7.1 Summary

7.1.1 Main results

A thorough study of the thermodynamic properties of liquid Ca-Sb alloys was con-

ducted, involving both emf measurements using a solid CaF 2 electrolyte and thermo-

dynamic modeling using the regular association model and the MIVM. The experi-

mental results were consistent with the previous measurements by Delcet et al. [23].

The models applied to Ca-Sb liquid alloys were chosen for their capability to reveal

the local structure of the Ca-Sb liquid alloys. The different approaches were recon-

ciled in the case of Ca-Sb liquid alloys, showing that the low Ca activities (around

10-0 for the temperature and compositions of interest), are related to the short-range

order in liquid Ca-Sb alloys: Ca atoms are stabilized when surrounded by only Sb

atoms.

For the first time, the MIVM was used in this work for compound-forming alloys,

leading to experimental A~ca modeled with a 1 kJ/mol (0.6 %) precision. This

model has the advantage of using only 2 physical parameters that need to be fitted,

whereas the regular association model, the classical model for systems such as Ca-

Sb with high-melting intermetallics, uses 5 parameters, and needs the input of the

composition of the associate formed.

131



Based on the excellent modeling results for the Ca-Sb liquid alloys via the MIVM,

the model was tested for other Ca-X systems that form high-melting intermetallics,

namely Ca-Ag, Ca-Bi, Ca-In, Ca-Pb, Ca-Sb, Ca-Sn, Ca-T1, and Ca-Zn, as well as a

system with a low melting intermetallic Ca-Mg. The results were again excellent, with

an error of 1kJ/mol on AT7ca. Based on the definition of the interaction parameters

in the MIVM, a new mixing potential in Ca-X liquid alloys was proposed. Comparing

the trend observed for the mixing potential for Ca-X liquid alloys with the standard

enthalpy of formation of the alloys in the corresponding systems, it was found that

the systems that have the most stable intermetallics at room temperature are the

systems with stronger short-range order in the liquid state.

The knowledge of binary Ca-Sb and Ca-Pb systems was then used in combination

with the modeling of the Pb-Sb system to predict with a precision of 2 % the OCV of a

Ca| Sb-Pb liquid metal battery using the MIVM. This corresponds to a precision of 5

kJ/mol on the partial Gibbs free energy of Ca in Ca-Sb-Pb alloys. The precision could

be increased by a factor of 3 after running one test with select Ca-Sb-Pb compositions

and refitting the interaction coefficients that corresponded to the interactions with

Ca centered atom. To explain this need, the involvement of a secondary type of

interaction between Sb and Pb first neighbors of Ca was evoked, since Sb and Pb are

very similar atoms, as the modeling of the Sb-Pb system suggests. Therefore the large

difference in energy for a Sb or a Pb atom next to a Ca atom is effectively decreased

in the ternary mixture, as the modeling confirmed.

7.1.2 Application to Ca-based liquid metal batteries

This work on thermodynamic properties of Ca-based alloys was motivated by its

application to Ca| X liquid metal batteries. Indeed, the OCV of a Ca-based liquid

metal battery is directly related to AZGca and aca, the activity of Ca and partial

Gibbs free energy of Ca in Ca-X alloys, by the Nernst equation:
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AGCa _RT

OCV = - = T -- naca (7.1)
2F 2F

The experimental results for Ca-Sb liquid alloys showed that Sb was a particularly

interesting candidate for a positive electrode, since it would provide an OCV > 0.95V.

This value is particularly high compared to what can be expected for liquid metal

batteries. By comparing the Ca-Sb system to other Ca-X systems with high-melting

intermetallics, it was found that Ca-Sb was the system that would yield the highest

OCV in a Ca-X liquid metal battery, due the strong short-range order in its liquid

structure, which corresponds to the high stability of its intermetallics in the solid

state.

Therefore, the experimental data obtained on Ca-Sb are particularly valuable,

both experimental and in modeling, since they will provide the thermodynamic basis

needed to assess the potential limitations of such a battery. Results were indeed

obtained for an array of temperatures (all liquid for T > 800 'C), over the entire

range of compositions, expanding the small database available in the literature for

this system.

Even though Sb is a cheap metal ($1.8 /mol), with an estimated cost of energy

for a Ca| Sb liquid metal battery of $69 /kWh [40], alloying could decrease this price

if the value of the OCV could be kept high. The element considered for alloying the

Sb electrode was Pb. Indeed, Pb is substantially cheaper than Sb, and is expected

to lower the price of the positive electrode even as an impurity, since Sb is usually

produced with Pb impurity, especially when recycling the Sb from Pb-acid batteries.

The MIVM predicted that the OCV would be kept high, which was confirmed by

experimental analysis. Indeed, Ca is more stable when surrounded by Sb than Pb

and in the presence of Sb and Pb atoms, the attraction between Ca and Sb dominates.

This explains why the thermodynamic properties keep values close to what would be

observed in the presence of Sb only.

An additional interest in Pb was motivated by the possibility of lowering the
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melting point of the positive electrode. The few melting temperatures obtained for

Ca-Sb-Pb alloys from emf experiments show that this would not necessarily be the

case. In particular, adding Pb to Sb would decrease the all-liquid cycling range of the

battery. Therefore, to work with an all-liquid positive electrode, the addition of Pb

would be interesting if it stays only at an impurity level, which would probably not

affect the voltage and the cycling range, but would still allow the use of a cheaper

positive electrode.

7.2 Contributions

Beyond the field of liquid metal batteries, the present work has an appreciable impact

for a wider scientific community.

7.2.1 Application of the MIVM for liquid alloys exhibiting

short-range order

Beyond the case of Ca-X alloys, the MIVM was used for the first time for compound-

forming alloys. This model constitutes a viable alternative to the regular association

model with fewer parameters and assumptions than the regular association model.

This makes the MIVM a model of choice to model compound-forming alloys. It

has also the advantage of modeling directly the partial properties of mixing, which

are often the properties measured, rather than the integral properties of mixing.

Therefore, the additional errors due to the derivation of the integral properties of

mixing can be avoided when modeling directly the data measured.

7.2.2 Definition of a new potential of mixing for liquid alloys

For systems that can be modeled by the MIVM, a new parameter of comparison was

defined in this thesis, based on the interaction parameters obtained from the MIVM:

1 1 1
Vuj -(i - Eja + 6ji-Ei Ej+Eji2 -2 (Ejj + i)(7.2)
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This potential of mixing for liquid alloys allows the comparison of the strength of

short-range ordering.

7.2.3 Short-range order and stable intermetallics

The trend in the potential of mixing of the liquid alloys vs. the enthalpy of formation

of the intermetallics in Ca-based systems demonstrated that a strong interaction

in the solid state usually correlates with a strong interaction in the liquid state. By

assessing the enthalpy of formation of the intermetallics of a system, one can therefore

estimate the strength of interaction in the liquid state. This gives a physical basis to

the selection of system for an application in the liquid state by looking at the solid

state.

This work also identified which property should be considered in the solid state

to predict the strength of the mixing in the liquid state. The standard enthalpy of

formation of the intermetallics was found to be of value.

Stable intermetallics are usually associated with high-melting compounds. While

this is true in some cases, and looking at a phase diagram will already give an idea

of the strength of the intermetallics, it should be pointed out that the melting tem-

perature depends also largely on the structure, and there is only correlation between

enthalpy of formation and melting point if the alloys of interest share the same struc-

ture. An example is given in Figure 7-1 from [64].
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Figure 7-1: Melting temperature as a function of enthalpy of formation for the B2
phases CuZn (+), FeAl (#), CoAl (x), NiAl (*), and for the Li phase TiAl (o) [64]
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7.3 Future work

7.3.1 Ternary systems

Phase diagrams

The work in this thesis revealed that the use of binary alloys for the liquid positive

electrode could be interesting to lower the cost of the electrode without lowering the

OCV of the liquid metal battery by much. However, a side result was that the cycling

window of the battery would potentially be much smaller, reducing the quantity of

positive electrode that would be utilized, and therefore increasing the price of the

battery.

Based on the results, it seems that the limitation of the use of binary positive

electrodes will be governed by the phase diagrams of the ternary Ca-based alloys of

interest. It would indeed be crucial to assess the cycling window of the Ca-based

liquid metal battery to be able to judge the feasibility of positive electrodes made of

binary alloys. The phase diagrams of Ca-Sb-based ternary systems are expected to

be challenging to obtain because of the difficulty to design a container that would not

react with the alloy. Indeed, only very few ceramics, such as yttria, are barely more

stable than calcia. Looking at nitrides, boron and aluminum nitride are supposedly

more stable than calcium nitride. However, these materials are very hard to machine,

without the addition of binders, which will react with calcium. Looking at metals,

tungsten would be an option, but once again, small crucibles are quite difficult to

obtain.

An alternative to solve the problem of the container could be the use of a container-

free method, such as electrostatic levitation [33, 62]. Recent results have shown that

it was an accurate method to determine phase diagrams by examining the cooling

curves of a set of compositions of interest. This method has been used for instance

in the case of the Ti-Zr-Ni ternary system [33]. Additional thermophysical properties

can be obtained by this method, such as surface tension, viscosity, density, thermal

expansion, vapor pressure, and specific heat, which could certainly be helpful to model

136



the battery.

Utilization of partially solid positive electrodes

A fully liquid metal battery Ca||Sb-Pb would be of limited interest, because the

battery would operate only at elevated temperatures, over a narrow range of compo-

sitions. However, this battery would be much more interesting if it could still operate

with a partially liquid positive electrode, i.e., with some solid phase present.

Many challenges would need to be overcome for this to work, involving a complete

understanding of the dynamics of the solid phase. Would it form a layer or pieces?

Would it float, sink to the bottom, or form a mushy phase with the liquid? Would

the calcium diffuse through the solid phase or only through the liquid phase? Would

the solid phase be electrochemically inert or active?

7.3.2 Investigation of the Ca-based liquid metal batteries

The work in this thesis aimed at selecting candidates candidates for a Ca-based liquid

metal battery based on its OCV. Sb was the best candidate in that regard. Bi was

second, but is a very expensive material, and Pb and Sn as a positive electrode would

provide an OCV 40 % lower than Sb in a Ca| X liquid metal battery.

The OCV is a crucial parameter for the selection of candidates, in particular since

for the same voltage losses, a system with a higher OCV will have a better efficiency,

and store more energy. However, the inefficiencies will need to be quantified to assess

if a Ca-based liquid metal battery is a good storage device.

Electronic conduction of the electrolyte - leakage current

In an ideal battery, the electrolyte is a pure ionic conductor. However, in some cases,

the molten salt serving as electrolyte is also an electronic conductor, and the leakage

current is unacceptably high. The leakage current is due to the solubility of the metal

in the electrolyte, and corresponds to the amount of current that passes between the

electrodes without passing through an external circuit, resulting in the self-discharge,
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and inefficiency of the battery.

For the emf study of the Ca-Sb liquid alloys, a solid and thick electrolyte was

chosen, to prevent metal solubility. However, in a liquid metal battery, this is not an

option, since the electrolyte would be a molten salt. A few solutions would reduce

the amount of leakage current, i.e., the solubility of calcium in the electrolyte, such

as:

- reducing the operating temperature, invoking Le Chitelier's principle;

- reducing the activity of calcium, by alloying it with an other metal, like Mg [48],

invoking Le Chatelier's principle as well;

- tuning the composition of the electrolyte. Depending on the type of electrolyte,

the solubility of calcium is more or less of an issue. For instance, Shaw et al. [67]

measured that the solubility of calcium in CaCl 2 at 800 'C was 2.7 at%, while it was

reduced to 0.4 at% in a CaCl 2-CaO mixture with xcao = 0.09.

Determination of the passive components

Other than the electrolyte, the materials such as the current collectors and an electri-

cally insulating layer to prevent shorts between the electrodes, as present on Figure

2-3, will also need to be determined. In particular, sheaths may not be necessarily the

most cost-effective solution to electrically insulate the electrodes for scale-up. Maybe

a coating layer would be easier to scale-up.

The positive current collector will also need to be designed, keeping in mind that

Sb alloys with most metals. Using tungsten as a material for the positive current

collector would probably be too costly, which opens the question of the corrosion

of other materials. Would the corrosion of other metals necessarily reduce service

lifetime? Indeed, some materials may work long enough to be considered resistant to

corrosion.
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Other inefficiencies

The efficiency of a liquid metal battery is also limited by other phenomena [61:
- ohmic drop: it depends on the resistance of the electrolyte more than the resis-

tance of the metals. By choosing a more or less resistant electrolyte, this parameter

can be tuned.

- mass-transport in the electrodes: it depends on how fast the species can move

from the bulk to the interface at which the reactions happen.

- charge-transfer at each molten salt I metal interface: it depends on how fast the

charge transfer reaction happens. If the electrochemical reaction at the interfaces is

charge transfer-limited, it means that the reaction is limited by at least one of the

electron transfer steps (since in the case of Ca, 2 electrons need to be transferred).

All these rate processes depend also on the current density used. A complete study

would have to be conducted to identify the highest inefficiencies, and to eventually

optimize the Ca-based liquid metal batteries.

7.4 Perspectives

With emphasis on the Ca-based systems, and a particularly thorough study of the

thermodynamic properties of Ca-Sb liquid alloys, the work in this thesis presents a

simple criteria to select the electrodes to use in liquid metal batteries. The systems

that have the most stable intermetallics in the solid state, which can be determined

by looking at the enthalpy of formation per mole of alloy of the compounds of the

system, will indeed provide the highest theoretical voltage when assembled as positive

and negative electrodes of a liquid metal battery.

This criteria will allow rapid advances of liquid metal batteries, focusing on the

systems that can potentially store the most energy. Other challenges remain, in par-

ticular designing the whole battery system around the most promising metal couples,

keeping in mind that the application targeted for this system, grid-scale storage, is

highly cost-sensitive.

Liquid metal batteries have the potential to change our energy future, allowing our
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energy consumption to be disconnected from the energy production from intermittent

sources, such as wind and solar. This work, by its direct application to the design of

these batteries, will help select the best materials to fulfill this mission.
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Appendix A

Standard operating procedure for

the emf Ca-Sb cell preparation

The preparation of the different parts of the electrochemical cells, the CaF2 electrolyte

and the Ca-Sb alloys, can be conducted simultaneously, and are necessary to be

completed for the final assembly.

A.1 Preparation of the CaF2 electrolyte and caps

A.1.1 Safety precautions and personal protective equipment

Latex gloves, lab coat and safety glasses should be worn for all the stages of the

preparation. When working with powder, a disposable mask should be worn as well.

A.1.2 Equipment and materials

For the electrolyte + binder mixture preparation:

* 500 g CaF2 99% Fisher Scientific

* 20 g polyvinyl alcohol (PVA) 99+%, hydrolyzed Sigma Aldrich

* 150 mL+ distilled water

* blender
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* 30 cm x 19 cm pyrex dish

* spatula

For the grinding steps:

" spatula

e small mortar

" sieve (850 pm mesh size)

e recipient for the powder (plastic bottle)

For the preparation of the pellets:

* hydraulic press

* 2 sets of dies: large set for electrolyte pellet (75 mm diameter), small set for

caps (19 mm diameter).

* isopropanol

* isopropanol + 2wt% stearic acid

* dry electrolyte + binder mixture

* 0.4375 " (11 mm) diameter stainless steel drill bit for the electrolyte pellet

* 0.0635 " (1.6 mm) diameter carbide drill bit for the caps

A.1.3 Operating procedure

For the electrolyte + binder mixture preparation:

1. mix the PVA with as little distilled water as possible.

2. add CaF2 in the blender 50 g by 50 g with the spatula, mixing with the blender

and adding as little distilled water as possible to form a homogeneous mixture

(goal: use only 150 mL distilled water).

3. pour the liquid mixture in the dish, forming a uniform layer.

4. let the mixture dry for 36-48 h in the fume hood to accelerate the drying process.
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For the grinding steps:

1. transfer some of the dry electrolyte mixture from the dish to the mortar with

the help of the spatula.

2. grind the electrolyte until it is fine enough to go through the sieve.

3. repeat step 1 and 2 with all the electrolyte mixture.

4. store the ground electrolyte mixture in a plastic bottle.

For the preparation of the pellets:

1. clean the die set with isopropanol, then lubricate the set with the isopropanol

+ stearic acid mixture.

2. for the electrolyte pellets (1 per experiment)

(a) weigh 150 g of dry electrolyte mixture.

(b) press the powder into a pellet using the large die set using 30,000 lb uniaxial

pressure for 10 min.

(c) drill manually 7 wells 1 cm deep in the electrolyte pellet: 6 in an hexagon

pattern and one in the center with the large drill bit.

3. for the caps (6 per experiment)

(a) weigh 6 g of dry electrolyte mixture.

(b) press the powder into a pellet using the small die set using 6,000 lb uniaxial

pressure for 1.5 min.

(c) drill manually one hole all the way through the pellet, with the small drill

bit, making sure that the drill bit goes through the pellets perpendicularly

to the faces

4. fire the pellets

(a) place the green pellets on alumina plates in the furnace, separating the

layers using alumina rings, with the caps on the top layers.

(b) heat the pellets at 120 C for 12 h, 550 'C for 8 h and 1000 'C for 4 h.
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A.2 Preparation of the Ca-Sb samples

A.2.1 Safety precautions and personal protective equipment

For the steps that are carried outside the Ar-filled glovebox (< 1 ppm 02, < 0.1 ppm

H2 0), latex gloves, a lab coat and safety glasses should be worn. Every step involving

antimony outside of the glovebox requires the use of a respirator, because of the acute

toxicity of the metal.

A.2.2 Equipment and materials

Alloy preparation

" 6 glass vials, thread covered with PTFE tape

" calcium, distilled, dendritic pieces, 99.99% metals basis

* antimony shot, 6 mm and under, 99.999% metals basis

" electrical tape

" zirconium

" acetone

Sample machining

* mini-lathe

* hand drill

* 0.052 " (1.3 mm) diameter carbide drill bit

A.2.3 Operating procedure

Alloy preparation

1. weigh 1 cm 3 of metals in the proportion of interest in the glovebox.

2. record the weight of each metal.

3. store each sample in a glass vial in the glovebox, cover the cap of the glass vial

with electrical tape.
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4. arc melt the samples:

clean the arc melter with acetone.

put the sample in one hole of the copper plate, and zirconium in another

hole.

purge the chamber three times with argon.

arc melt under slightly negative pressure, starting with the zirconium that

acts as an oxygen getter.

bring the sample back to the glovebox.

weight the sample.

repeat the procedure for all 6 samples.

Figure A-1: Mini-lathe configuration for ductile sample machining

1. for ductile samples

(a) prepare the mini-lathe in the configuration in Figure A-1.

(b) mark the center of the sample with a drill bit or tweezers.

(c) place the sample on the aluminium shaft, holding it firmly with the tip of

the cone in the center of the sample.

(d) use the lathe to remove the sides of the sample to get a cylinder of a bit

less than 9 mm in diameter.
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(e) remove the aluminium shaft, flip the sample and place it in the spindle of

the lathe.

(f) use the cone to mark the center of the cylinder.

(g) replace the cone by the drill bit holder.

(h) drill a hole all the way in the cylinder.

(i) remove the face of the sample with the lathe.

(j) flip the sample and remove the other side similarly.

2. for brittle samples

(a) drill a hole all the way through the sample with the hand drill.

(b) cut the sides with a plier to get a sample less than 9 mm in diameter.

(c) grind the sample slightly to remove the oxidation layer.

3. sonicate each sample for 4 min in acetone.

A.3 Assembly

A.3.1 Safety precautions and personal protective equipment

For the steps that are carried outside the glovebox, latex gloves, a lab coat and safety

glasses should be worn.

A.3.2 Equipment and materials

* 7 alumina tubes (20 to 30 cm long) (check with multimeter that they are elec-

trically insulated) 2/16 " ID, 4/16 " OD

* 7 ultra-torr Swagelok

* 7 viton o-rings (1/4" ID, 3/8 " OD)

* 1 thermocouple type K

* 6 straightened tungsten wires (1 mm diameter) 99.95% Alfa Aesar 48 cm long

* insulation

* 1 alumina crucible 75 mm diameter, 26 mm high
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* titanium sponge (02 getter)

* stainless steel crucible and carrier

* sandpaper 600 grid

* Devcon 5 min epoxy

* electrolyte pellet

* 6 caps

* 6 samples

* CaF 2 powder 99% Fisher Scientific

A.3.3 Operating procedure

Carrier preparation outside the glovebox

1. grind the thermocouple and W wires with the sandpaper.

2. clean with acetone the alumina tubes, crucible, as well as the thermocouple and

W wires.

3. vacuum the powder that comes out of the insulation, and place it at the top of

the carrier.

4. place the alumina crucible at the bottom of the carrier.

5. assemble the small o-ring and Swagelok at the top of the holes of the carrier.

6. pass the alumina tubes through the holes, then the W wires though the periph-

eral alumina tubes and the thermocouple through the center tube, so that the

tip of the wires form a regular hexagon at the bottom of the alumina crucible.

7. seal the top of the alumina tubes with the epoxy.

8. place the titanium sponge at the bottom of the crucible.

9. place the large o-ring on the top of the crucible, then the carrier in the crucible

and close the crucible.

10. check that the crucible is hermetically closed by pulling a vacuum down to 8

mtor.

11. transport to the glovebox.
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(b) Step 4

(d) Step 7 (e) Step 8 (f) Step 9

Figure A-2: Carrier preparation in open air

Final assembly inside the Ar-filled glovebox (< 1 ppm 02, < 0.1 ppm H2 0)

1. place the electrolyte pellet in the alumina crucible.

2. place the electrodes in the electrolyte peripheral wells and label the cap of the

crucible accordingly.

3. slip the caps on each tungsten wire and lower the wires in the holes of the

electrodes.

4. with the spatula, add loose CaF 2 powder on top of the caps to cover all the

electrolyte.

5. close the crucible.

(a) Step 2 (b) Step 3 (c) Step 4

Figure A-3: Final assembly inside the Ar-filled glovebox, <1 ppm 02, < 0.1 ppm H20
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Appendix B

Algorithms for the determination

of the MIVM coefficients of Ca-Sn

alloys at 800 C

B.1 Coefficients determination via error minimiza-

tion algorithm

definition of the constants: close packed coordination number, Avogadro's number, gas constant and
temperature (in K)
reseto:
Zc:-12:
Na:=6.022E23:
R:-8.314472:
cal:-4.184:

_T:-1073:

definition of a function that outputs the error between ln(aCa, exp) - ln(aCa, modeled)-n((aCa,
exp)/(aCa, modeled)),
given x-(a,_Ca, exp) and y-(aCa, modeled) as Inputs:

division_vector-line _n:-proc(x,y)
begin
divi:-matrix(1,linag::matdim(x)(2]):
If linalg::matdim(x)(2]-linag::matdim(y)[2]
then for I from 1 to Iinalg::matdm(x)[2]
do dM[i1]:-In((xi]/yij)):
end for
endif;
divi;

Figure B-1: MuPAD algorithm 1
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Lend-proc:

properties of pure metals, Ca and Sn
rm: first peak value of the radial distance near Tm, in m
rO: beginning value of the radial distance near Tm, in m
deltaHm: enthalpy of melting, In J/mol
Tm: melting temperature, in K
Vm: molar volume of the liquid in m3/mol - T in K
rho: molecular number density (in moi-1)-Na/Vm
Z_Tao: first coordination number in liquid metal, according to Tao's definition
i: Ca
J: Sn

rm_Ca:-3.95e-10:
rmSn:-3.16E-10:
rOCa:-3.19e-10:
rOSn:-2.59E-10:
deltaHm_Ca:-8.40e3:
deltaHm_Sn:=7.07e3:
TmCa:= 1115:
TmSn:-505:
VmCa:-29.54e-6:
VmSn:- 17.0e-6*(1+0.87E-4*(T-TmSn)):
rhoCa:=Na/VmCa:
rho_.Sn:-Na/VmSn:
ZTao_Sn:-float(4*sqrt(2*P)/3*((rmSn3-r_SnA3)/(rmSn-rOSn))
*rho_Sn*rmSn*exp(-deltaHmSn*(TmSn-T)/(Zc*R*T*TmSn))):
Z_TaoCa_Tm:-10.32882247:
Vmi:-VmCa:
Vmj:-Vm_Sn:
Zi:=Z_Tao_CaTm:
Zj:-ZTao_Sn:

experimental data used for the fitting: activity measurements at SOOC (Delcet's paper 1979)
reference is Ca(s) for calculation of the activity coefficients.

xCa:-[0.02,0.05,0.10,0.15,0.20,0.25,0.301:
activityCa:-(1.3326E-08,6.0589E-08,2.3 155E-07,6.8301E-07,1.7318E-06,4.5821E-06,1.0201E-051:
aCavsx:=transpose(matrix([xCa,activity_Cal)):

The activities of Ca and Sn will be calculated from the MIVM model every 0.01 from xCa-0.01 to xCa-0.30.

1:-2:
xl.Ca:-0.01:
while i<31
do xi:-i/100:
x1_Ca:-x1_Ca,xi:
1:-1+1:
end-while:
x_Ca_2:-[xlCal:

Through this program, the total error: tot-error- 1/7*(sum(from I-Ito 7, (In(aCaexp) -
ln(aCa,MIVM)]A2)A1/2
will be determined, as well as the activity of Ca and Sn in the Ca-Sn alloys based on the interaction
coefficients input.
The activities of Ca and Sn are calculated based on the MIVM model, for xCa-0.01 to 0.30 by step of 0.01.
The output are:
actMty of Ca: actIvty-calcCa_matrlx
actMty of Sn: actMty-calcSn-matrix
toterror: totalerror

erroroptimization:-proc(BCaSn,8_SnCa)
begin
x1:-xCa_2;
Mat := Dom::Matrixo;
activity-i:-Mat(1,30):

Figure B-1: MuPAD algorithm 1 (cont.)
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activityj:=Mat(1,30):
activityJ[1:=1;
B_ij:=BCaSn:
BJi:=B_SnCa:

for I from 1 to 30
do J:=1-xl[i];
gamma_:=exp(in(Vmi/(xl[i]*Vm+j*Vmj*BJi))

+J*(Vmj*BJi/(x1[i]*Vmi+J*Vmj*BJi)-Vmi*Bij/*Vmj+x1[i]*Vmi*B-Ij))
-QA2)/2*(Zi*(B-JiA2)*ln(BJI)/(x1[i]+j*BJi)A2+ZJ*B-ii*ln(BU)/U+x1[i]*B_iJ)A2));

activity.i[I:=gamma_*x1iI;
endfor:

for I from 1 to 30
do J:=1-x1[i];
gamma_:-exp(in(Vmj/(j*Vmj+xl[i]*Vmi*Bkj))

+x1[i]*(Vmi*Bij/Q*Vmj+x[i]*Vmi*Bjj)-Vmj*B.Ji/(x1[i]*Vm+J*Vmj*BJi))
-(x1[i)A2)/2*(Zj*(BIjA2)*ln(Bkj)/Q+x1li]*B-ij)A2+Zi*Bji*ln(BJI)/(x1[]+*Bji)A2));

actIvityJ[i]:=gamma_*J;
endfor:

calc.aCa:-[activityi[2),activity_i[5],activity_i[10),activity_i[15],actvity_i[20,activity_i[25],act

activitycaicCamatrix:-Mat(30,2):
for I from 1 to 30
do activityc.alcCamatrix[i,1]:=xCa_2[i:
actiMtycalcCa matrix[i,21:=activity_i [i]:
end jor;

activity_calcSnmatrix:-Mat(30,2):
for I from 1 to 30
do actIvitycalc_Sn_matrixi,1]:-xCa_2[I]:
actiMtycalcSnmatrix[i,21:-activity.Jl:
endfor;

erroraCa:-norm(divisionyvectorlineIn(matrix([calc-aCa]),matrix([activityCa])),2)/7:

total-error:-float(erroraCa);

return(activity_caic_Camatrix,activitycalc_Sn_matrixtotal_error):

_end-proc:

This programs finds the Bij that minimizes toterror(BiJ, Bji), for a given Bji by step of stepBij

optim_Bij:=proc(Bij,BJi,stepBij)
begin
error_calc:=float(erroroptimization(BiJ,BJi)(31):

Bij_2:-Bij+step_Bij:
errorBij:-float(erroroptimization(Bij_2,BJi)[3]);

if errorBij<errorcalc
then while (errori_Bj<errorcalc)
do error_calc:-errorBiJ:
Bij:-BIJ_2:
BiJ_2:-Bij+stepBij:
error_BlJ:-float(erroroptimization(BiL2,Bji)3]):
end_while

else Bij_2:-Bij-stepBij:
error_Bij: -float(error optimization(Bij_2,BJi)[3J):

If errorBij<errorcaIc
then while error_- BIJ<errorcalc
do errorcalc:-errorBij:
Bij:-Bi._2:
Bij_2:-BIj-stepBij:

Figure B-1: MuPAD algorithm 1 (cont.)
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error_Bij:-float(error_optimization(Bij_2,Ji)[3):
endwhile

end-if

endif:
return(Bij);

_endproc:

This programs finds the BJi that minimizes toterror(Bij, Bji), for a given Bij by step of step_Bji

optimBJi:-proc(Bij,Bi,stepBJi)
begin
errorcac:-fioat(error-optimization(B,Bi)(31):

Bji_2:-BJi+step Bji:
errorBji:-float(error optimization(Bij,BJi_2){31):

if error_Bji<error calc
then while errorBJi<errorcalc
do error calc:-errorBJi:
Bji:-BJi_2:
BJI_2:-BJi+stepBJi:
errorBJi:-float(erroroptimization(BIJ,BJL2)[3):
endwhile

else BJi_2:=Bji-stepBi:
error_.Bji:-float(errorpoptimization(Bij,Bi_2){3]):

if errorBJi<errorcalc
then while errorBi<errorcalc
do error-calc:-errorBJi:
BJi:-BJi_2:
BJI_2:-Bji-stepBJi:
error BJi:-float(erroroptimization(BJ,BJi_2)(3]):
end while

endif

endjlf:
return(Bi);

_endproc:

Through this program, both Bij (-B.CaSn) and BjI (-BSnCa) are optimized at the same time.

The value of B_CaSn is changed by steps of step_1 (positive or negative value),
and the value of BSnCa is changed by steps of step_2 (positive or negative value).
Using the 2 programs above, the initial value of BCaSn is changed by stepi to SCaSn_2.
Then BSnCa is optimized for the new BCaSn by step2, to BSnCa_2

If the new error tot-error(BCaSn_2,BSnCa_2) is smaller than the Initial error, then the Bij values are
reinitialized to the new values, and the same scheme is repeated.

In case the values for BCaSn_2 and BSnCa_2, calculated after the first step,
give an error on tot error superior to the initial values for B.CaSn and BSnCa,
the program should be repeated using -stepi instead of stepi.

Tao-optim:-proc(B.CaSn,BSnCa,stepl,step2)

begin
error1:-error_optimization(BCaSn,B.SnCa)(31;
B_CaSn_2:-BCaSn+step1:

BSnCa2:-optimBJi(BCaSn_2,BSnCa,step2):
error2:=erroroptimization(BCaSn_2,SnCa_2)(3):

while error1>error2
do

Figure B-1: MuPAD algorithm 1 (cont.)
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B_CaSn:-B_CaSn_2:
B_SnCa:-B_SnCa_2:

error1:=error-optimization(BCan,._SnCa){3]:
B_CaSn_2:-BCaSn+step1:

B_SnCa_2:=optimBJi(B_-CaSn_2,BSnCa,step2):
error2:-erroroptimization(BCaSn_2,B_SnCa_2)3):

end_while:

print(BLCaSn,BSnCa,error1):
end jroc:

A first value is tried, with large steps to get closer to the minimum faster.
Tao optim(1,3,0.5,1)

1.5, 6, 0.1027960694

With the newer values, smaller steps are tried.
Tao.optim(1.5,6,0.1,0.2)

1.5. 6, 0.1027960694

Tao-optim(1.5,6,-0.1,0.2)

1.4, 6.2, 0.04564826621

Tao-optim(1.4,6.2,0.01,0.02)

1.46, 5.94, 0.02042495162

Tao.optim(1.46,5.94,0.01,0.01)

1.46, 5.94, 0.02042495162

Taooptim(1.46,5.94,-0.01,0.01)

1.46, 5.94, 0.02042495162

The values for BCaSn and BSnCa found are therefore:
BaSn-1.46*0.01
BSnCa-5.94*0.01

To check that this makes sense, the activity of Ca from Descet and the modeled values are plotted below:
[activity_.calcCa:=error-optimization(1.46,5.94)[1]:

plot(plot::Ustplot(aCayvsx,UnesVisible - FALSE),
plot::Ustplot(activitycalc_Ca,PointsVisible =FALSE, UneStyle = Dashed,
Color - RGB::Purple, interpolationStyle - Cubic), CoordinateType - InLog,
AxesTitles - ["xCa", "aCa"]):

1..os
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Figure B-i: MuPAD algorithm 1 (cont.)
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B.2 Coefficients determination using partial dif-

ferentials

definition of the constants: close packed coordination number, Avogadro's number, gas constant and
temperature (n K)
reset0:
Zc:-12:
Na:-6.022E23:
R:-8.314472:
T:-1073:

properties of pure metals, Ca and Sn
rm: first peak value of the radial distance near Tm, in m
rO: beginning value of the radial distance near Tm, in m
deltaHm: enthalpy of melting, in J/mol
Tm: melting temperature, in K
Vm: molar volume of the liquid in m3/mol - T in K
rho: molecular number density (in mot-1)-Na/Vm
ZTao: first coordination number in liquid metal, according to Tao's definition
I: Ca

Sn
rmCa:=3.95e-10:
rmSn:=3.16E-10:
rOCa:=3.19e-10:
rOSn:=2.59E-10:
deltaHm_Ca:-8.40e3:
deltaHmSn:-7.07e3:
TmCa:-1115:
TmSn:-505:
Vm_Ca:-29.54e-6:
Vm_.Sn:= 17.0e-6*(1 +0.87E-4*(T-TmSn)):
rhoCa:-Na/VmCa:
rhoSn:-Na/VmSn:
Z_Tao_Sn:-float(4*sqrt(2*PI)/3*((rm_Sn^3-rOSn^3)/(rmSn-r0_5n))
*rho_Sn*rmSn*exp(-deltaHm_Sn*(TmSn-T)/(Zc*R*T*TmSn))):
Zjao_-Ca_Tm: =10.32882247:
Vmi:-VmCa:
Vmj:-VmSn:
Zi:-ZjaoCa_Tm:
ZJ:-ZTaoSn:

experimental data used for the fitting: activity measurements at 800C (Delcet's paper 1979)
reference is Ca(s) for calculation of the activity coefficients.

[ x_Ca:-[0.02,0.05,0. 
10,0.15,0.20,0.25,0.30):actityCa:=[1.3326E-08,6.0589E-08,2.3 155E-07,6.8301E-07,1.73 18E-06,4.5821E-06,1.0201E-05]:

calculation of In(aCa):

In_activity_Ca:-(0,0,0,0,0,0,0):
for I from 1 to 7
do ln-activityCa[):-In(activty_Ca[i]):

Figure B-2: MuPAD algorithm 2
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end-for:
aCa_vsx:-transpose(matrix([xCa,activityCa])):

MIVM: Ina is the expression of ln(a,_Ca) as a function of the metal properties and the interaction coefficients
Bj and BJi
dInajj is the partial derivative of d(lna)/d(BJIJ)
dinaji is the partial derivative of d(Ina)/d(BJi)

xi:-x_Ca:
xj:=1-xi:
Ina:-0B ,J)> ln(xifi])+ In(Vmi/(xI[i]*VmI +xj~i]*Vmj *B~JI)) +xj[1]
*(Vmj*Bji/(xiJi]*Vmi+xjfl]*Vmj*BJi)-Vmi*Bij/(xji]*Vmj+x1]*Vmi"BJJ))
-(xj[l]A2)/2*(Zi*(B.JIA2)*ln(BJi)/(xii+xji]*BJi)A2+Zj*Bij*ln(BiJ)/(xji)+xii]*Bij)A2):

dinaiJ:=(i,8jJ,BJi)->- xjil*(VmI/(VmJ*xji] + BJJ*Vmi*xl]) - (BJJ*VmiA2*xi[i))/(Vmj*xj[) + Bij*Vmixi[i])A2
- (xj(iIA2*(ZJ/(xj(il + B-ij*xl[i])A2 + (ZJ*in(Bj))/(xj[lJ + jJ*xi[iJ])A2
- C2*BJJ*Zj*xi(i]*ln(B_ij))/(xj[i] + B6ij*xI(iI)A3))/2:

dinaJi:-(i,BIj,Bji)->xji)*(Vmj/(Vmi*xiI] + Bji*Vmj*xji]) - (BJi*VmJA2*xj[i))/(Vmi*xi[i] + BJI*Vmj*xJ[i])A2)
- (xji)A2*((BJI*Zi)/(x[i] + BJi*xlI)A2 + (2*BJi*Zi*ln(Bji))/(xi[i] + Bji*xj[i))A2
- (2*BJIA2*Zi*xj[i]*n(BJI))/(xlflJ + BJi*xj[i])A3))/2

_- (Vmj*xj1])/(Vmi*xi[i + BJI*Vmj*xj0i]):

in this case, the properties of Ca in Ca-Sn liquid alloys were only measured for 7 compositions. For each
composition, the activity from the model, as a function of Interaction coefficients, and the experimental
activity from Delcet's measurement can be compared.
Each group of functions (1 to 7) concerns one specific composition.
The goal is to minimize the difference between the ln(a_Ca) measured and modeled, by minimizing the
quantity:
tot_error=1/7*(sum(from i-ito 7, [ln(aCaexp) - ln(aCa,MIVM))A2)A1/2
This quantity corresponds to the norm 2 of the error.

For each one of these compositions, lnaCa from the MIVM is solely a function of the interaction coefficients.
Therefore, the error is also a function of the interaction coefficients.

At the minimum of err, the err partial derivatives with respect to the intereaction coefficients are equal to
zero. The partial derivatives of err are:
d(toterror)/d(Bij)--1/7*(sum(from i-1 to 7, (ln(aCa,exp) - ln(aCa,MIVM)) x donaCa, MiVM)/d(Bij)))...
.../(sum(from i-1to 7, [ln(aCaexp) - In(aCaMIVM))A2)A/2

d(totL.error)/d(BJ)=-1/7*(sum(from i-1 to 7, (ln(aCa,exp) - In(aCaMNM) x d~naCa, MIVM)/d(Bji)))...
.../(sum(from I-Ito 7, [In(aCaexp) - ln(aCa,MVM))A2)A1/2
since we are interested in the values of Bij and Bji for which the partial derivatives are equal to 0, only the
numerator of these functions matter for this determination:
derrorjJ-(sum(from i-i to 7, Dn(aCa,exp) - ln(aCaMIVM)] x d(InaCa, MIVM)/d(Bij)))
derrorji=(sum(from i-1 to 7, in(aCa,exp) - ln(aCaMIVM)] x d(lnaCa, MIVM)/d(Bji)))

Below, the quantities necessary for this determination are defined for each composition as follow:
Ina' natural logarithm of the activity of Ca modeled by the MIVM
dinaJJ-d(InaCa, MIVM)/d(Bij)
dinaJi-d(InaCa, MIVM)/d(jI)
derrorjj-Dn(Caexp) - ln(aCa,MIVM)] x d(lnaCa, MIVM)/d(BiJ)
derrorji-Dn(aCa,exp) - ln(aCa,MIVM) x dgnaCa, MIVM)/d(Bji)

Ina_1:=(B_CaSn,BSnCa)->na(,BCaSn,BSnCa):
dina_Jj:-(BCaSn,BSnCa)->dnajj(1,BCaSn,B._SnCa):
dina_1Ji:-(BCaSn,_SnCa)->dnaJi(1,BCan,SnCa):
derrorij: -(BCaSn,BSnCa)->(OlnactivityCa[1]-ina_1(BCaSn,SnCa))*dina_iJ(B_CaSn,8SnCa)):
derror_1Ji: =(BCaSn,BSnCa)->(lnractivitya(1]-lna_1(BCaSn,BSnCa))*dnaJi(BCaSn,SnCa)):

Ina_2:-(CaSn,SnCa)->na(2,BCaSn,BSnCa):
dina_2jj:-(B_CaSn,BSnCa)->dnajj(2,BCaSn,BSnCa):
dina_2ji:=(BCaSn,BSnCa)->dnaJi(2,.CaSn,B.SnCa):
derror_2_ij:-(B.CaSn,8_SnCa)->((ln_activityCa[2]-lna_2(BCaSn,BSnCa))*dlna_2_ij(B_CaSn,SnCa)):
derror._2ji: =(BCaSn,_SnCa)->((n_activity_Ca(2-ina_2(B_Can,SnCa))*dina_2Ji(BCan,SnCa)):

Ina_3:=(B.CaSn,SnCa)->na(3,BCaSn,BSnCa):
dlna-3 il:-(BCaSn,BSnCa)->dlnaij(3,B CaSn,BSnCa):

Figure B-2: MuPAD algorithm 2 (cont.)
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dina-3ji:-(BSaSnB-SnCa)->dlnaji(3,B-CaSnB-SnCa):
derror-3-IJ: -(BLCaSnELSnCa)->(On-activitv-Ca[31-Ina,.-3(BSaSnkSnCa))*dlnaL3_ij(kCaSnkSnCa)):
derror-3ji: -(BLCaSnB-SnCa)->(OnActivitVCa(31-lna-3(BSaSnkSnCa))*dlna-3ji(BCaSnB-SnCa)):

Ina-4: -(ELCaSnELSnCa)->Ina(4,kCaSnB_$nCa):
dlna_4_ij:-(BSaSnBSnCa)->dlnaLlj(4,kCaSnkSnCa):
dina,_4ji:-(B _CaSnkSnCa)->dlnajl(4,ILCaSnkSnCa):
derror-4-11 -(ELCaSnkSnCa)->(OnactivityCa[41-lna-4(kCaSnB-SnCa))*dlna-4-ij(BLCaSnB-SnCa)):
derror-4-li: -(BLCaSnkSnCa)->(OnActivityCa(41-lna-4(BCaSnkSnCa))*dlna-4ji(BCaSnkSnCa)):

Ina.S:-(ILCaSnBLSnCa)->Ina(SkCaSnBSnCa):
dinkSij:-(kCaSnBSnCa)->dlmij(5,kCaSnELSnCa):
dlna-Sji: -(BSaSnB-SnCa)->dlnajl(SkCaSn,[LSrvCa):
derror-Sij:-(kCaSnkSnCa)->(OnActiv"_ Ca[51-lnk5(kCaSnkSnCa))IdlnkSij(BCaSnB SnCa)):
derror-Sji: =(kCaSnILSnC&)->(Or _activity_ Ca[SI-ina-5(B-CaSnkSnCa))*dlna-SJI(BCaSnB7SnCa)):

Ink6:-($_CaSnELSnCa)->Ina(6,BCaSnB_$nCa):
dina-6_1]:-(ELCaSnB-SnCa)->dlnaij(6,ELCaSnkSnCa):
dink6ji:-(RCaSnkSnCa)->dlnajl(6,ILCaSnELSnCa):
derror-6_ij: =(BLCaSnELSnCa)->(OnActivity_ Ca(61-iniL6(BCaSnkSnCa))*dlnk6 _ij(BSaSnB-SnCa)):
derror-6ji: =(BCaSnB-SnCa)->(On-activitV_!Ca(61-ina-6(BCaSnB-SnCa))*dlna,_6jl(BCaSnB-SnCa)):

Ina -7:-(BLCaSnB-SnCa)->Ina(7,B-CaSnB-SnCa):
dina-7jj:=(BLCaSnBLSnCa)->dlnaij(7,B CaSnkSnCa):
dlna,_7ji:=(BSaSnkSnCa)->dlnajl(7,CCaSnB-SnCa):
derror-7_1j: -(ELCaSnB-SnCa)->(OnActivitVCa[7]-Ina-7(kCaSnELSnCa))*dlna,_Llj(BCaSnB-SnCa)):
derror jji: -(BLCaSnB _SnCa)->(OnActivitVCa[71-lna-7(BCaSnB-SnCa))ldlna-7ji(BCaSnkSnCa)):

tot-error:=(BCaSnkSnCa)-> 1/7*sqrt((IngtivitySa(l)-InaLl(BLCaSnB-SnCa))A2
+Un-activitv-Ca(21-lna-2(kCaSnB-SnCa))A2+0nactivityCa[31-lna,_3(i _CaSn,$_SnCa))A2
+Or _actlvo_ Ca(4)-ina-4(kCaSnkSnCa))A2+(In-activitVCa[SI-ina_5(BLCa5nBLSnCa))A2
+OrLactivitVjCa[6)-ink6(kCaSnkSnCa))A2+onactivitVCa[7]-Irw_7(ILCaSnILSnCa))A2):

derrorjj:-(ELC&SnB-SnCa)->derror 1_lj(kCaSnBSnCa)+derror -2-ij(kCaSnB-SnCa)
+derror-3-lj(kCaSnk5riCa)+derroF 4_ij(BLCaSnB-SnCa)+derror-Sjj(kCaSnkSnCa)
+deffor _kij(BLCaSn.kSnCa)+derror _LIJ(BCaSnBSnCa):

derrorji:=(kCaSnB._SnCa)->derror lji(ILCaSnB SnCa)+derror _2jI(8LCaSnB SnCa)
+derror 3Ji(ELCaSn,"nCa)+derroE.4ji(BLCaSnCSnCa)+derror-5ji(kCaSnif SnCa)

L-+derror:6_]i(BCaSnB-SrvCa)+derror_7ji(BLCaSn.B-SnCa):

the total error as a function of Bij and BjI is plotted to Identify the window to look for the minimum.

h :- plot:: Function 3d(tot-error, x - 0.1 5, y - O.S.10):
plot(h,
AxesTitles = [*BCaSn", *OLSnCe,"err"),
AxesTitleFont- rGaramond", 151,

TicksLabelFont rGaramond', 121)

err 4

4 3
BSnCm 2 - 2

L 0 0 BCaSn

Figure B-2: MuPAD algorithm 2 (cont.)
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The values for which the partial derivatives of tot error(Bij,BjI) are equal to zero are then found:
x=BCaSn
y=B_SnCa

numeric::solve([derror-lj(x,y)=0,derrorJI(x,y)=0], [x = 1 .. 3, y = 0.4 .. 10), MultiSolutions)

([x- 1.458661252, y- 5.944394784]}

Figure B-2: MuPAD algorithm 2 (cont.)

B.3 Conclusion

The second method gives more precision on the interaction coefficients, but the first

method is faster and gives the same values for the coefficients ±0.01.
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