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ABSTRACT

This dissertation focuses on the capabilities of a novel public health data system - the Sentinel
System - to supplement existing postmarket surveillance systems of the U.S. Food and Drug
Administration (FDA). The Sentinel System is designed to identify and assess safety risks
associated with drugs, therapeutic biologics, vaccines, and medical devices that emerge
postlicensure. Per the initiating legislation, the FDA must complete a priori evaluations of the
Sentinel System's technical capabilities to support regulatory decision-making.

This research develops qualitative and quantitative tools to aid the FDA in such evaluations,
particularly with regard to the Sentinel System's novel sequential database surveillance
capabilities. Sequential database surveillance is a "near real-time" sequential statistical method to

evaluate pre-specified exposure-outcome pairs. A "signal" is detected when the data suggest an
excess risk that is statistically significant. The qualitative tool - the Sentinel System Pre-
Screening Checklist - is designed to determine whether the Sentinel System is well suited, on its

face, to evaluate a pre-specified exposure-outcome pair. The quantitative tool - the Sequential
Database Surveillance Simulator - allows the user to explore virtually whether sequential
database surveillance of a particular exposure-outcome pair is likely to generate evidence to

identify and assess safety risks in a timely manner to support regulatory decision-making.
Particular attention is paid to accounting for uncertainties including medical product adoption and
utilization, misclassification error, and the unknown true excess risk in the environment.

Using vaccine examples and the simulator to illustrate, this dissertation first demonstrates the
tradeoffs associated with sample size calculations in sequential statistical analysis, particularly the
tradeoff between statistical power and median sample size. Second, it demonstrates differences in

performance between various surveillance configurations when using distributed database
systems. Third, it demonstrates the effects of misclassification error on sequential database

surveillance, and specifically how such errors may be accounted for in the design of surveillance.
Fourth, it considers the complexities of modeling new medical product adoption, and specifically,
the existence of a "dual market" phenomenon for these new medical products. This finding raises
non-trivial generalizability concerns regarding evidence generated via sequential database

surveillance when performed immediately post-licensure.

Thesis Co-Chairman: Deborah J. Nightingale
Title: Professor of the Practice of Aeronautics and Astronautics and Engineering Systems

Thesis Co-Chairman: Roy Welsch
Title: Professor of Statistics and Management Science and Engineering Systems
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1 MOTIVATION AND OUTLINE OF THE DISSERTATION

In the mid 2000s, the U.S. Food and Drug Administration (FDA) came under heavy

criticism after several high-profile regulatory failures to act on postmarket' drug safety

risks in a timely manner that minimized public harm.2 These failures prompted a

landmark Institute of Medicine (IOM) study on the FDA's postmarket drug safety

systems and authorities, including "the sum of all activities conducted by FDA and other

stakeholders to monitor, evaluate, improve, and ensure drug safety." 3 This dissertation

focuses on one of the IOM's recommendations that became a legislative mandate - the

creation and use of a novel public health data system to supplement existing postmarket

systems. Specifically, the IOM found the "[FDA's] ability to test drug safety hypotheses

is limited," and consequently recommended:

"that in order to facilitate the formulation and testing of drug safety hypotheses, [the FDA]
(a) increase their intramural and extramural programs that access and study data from
large automated healthcare databases and (b) include in these programs studies on drug
utilization patterns and background incidence rates for adverse events of interest, and (c)
develop and implement active surveillance of specific drugs and diseases as needed in a

variety of settings." 4

Congress responded by directing the FDA to establish a novel public health data system5

to supplement existing systems to identify and assess safety risks6 associated with drugs,

' The "postmarket" period is the period after licensure of a product by the U.S. Food and Drug
Administration. Once licensed, the product is approved to be marketed to the general public, albeit perhaps
with restrictions on access that will be discussed herein. Throughout this dissertation, the descriptors
"postmarket," "postlicensure," and "postapproval" are used interchangeably to refer to this period,
consistent with source material.
2 See U.S. House Committee on Energy and Commerce and Subcommittee on Oversight and
Investigations, FDA 's Role in Protecting the Public Health: Examining FDA 's Review of Safety and

Efficacy Concerns in Anti-depressant Use by Children (U.S. G.P.O., 2005).; U.S. Senate Committee on

Finance and U.S. Senate Committee on Finance, FDA, Merck, and Vioxx: Putting Patient Safety First?

(U.S. G.P.O., 2005).
3 Institute of Medicine (IOM), The Future ofDrug Safety: Promoting and Protecting the Health of the

Public (Washington, DC: National Academies Press, 2007), 2, http://www.nap.edu/catalog/11750.html.
4 Ibid., 7.
5 § 905 in Food and Drug Administration Amendments Act of 2007, Public Law 110-85, 2007, codified at

21 U.S.C. § 355(k)(3).
6 § 901 in Food and Drug Administration Amendments Act of 2007, Public Law 110-85, 2007, codified at

21 U.S.C. § 355-1(b) defines the scope of safety risks of concern as follows: "The term 'serious risk' means

a risk of a serious adverse drug experience" and "The term 'serious adverse drug experience' is an adverse

drug experience that (A) results in-(i) death; (ii) an adverse drug experience that places the patient at

immediate risk of death[... ];(iii) inpatient hospitalization or prolongation of existing hospitalization; (iv) a

persistent or significant incapacity or substantial disruption of the ability to conduct normal life functions;

or (v) a congenital anomaly or birth defect; or (B) based on appropriate medical judgment, may jeopardize
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therapeutic biologics, and vaccines 7 that emerge after licensure when the product is more

widely used in the general population (i.e., as opposed to a carefully controlled clinical

trial)8 . Specifically, the FDA was to:

"(i) develop methods to obtain access to disparate data sources including the data sources
specified in subparagraph (C);

[Subparagraph C specifies:
(aa) federal health-related electronic data (such as data from the Medicare program

and the health systems of the Department of Veterans Affairs);
(bb) private sector health-related electronic data (such as pharmaceutical purchase

data and health insurance claims data); and
(cc) other data as the Secretary deems necessary to create a robust system to identify

adverse events and potential drug safety signals;]

(ii) develop validated methods for the establishment of a postmarket risk identification
and analysis system to link and analyze safety data from multiple sources with the goals
of including, in aggregate.. .at least 100,000,000 patients by July 1, 2012."9 (emphasis
added)

The FDA's implementation of this legislation - the Sentinel Initiative'0 - will enable

users to systematically query distinct databases of patient-level data and return

aggregated query results to gain knowledge on the postmarket risks and benefits of

the patient and may require a medical or surgical intervention to prevent an outcome described under
subparagraph (A)."
7 § 905(a)(3) in Food and Drug Administration Amendments Act of 2007, Public Law 110-85, 2007,
codified at 21 U.S.C. § 355(k)(3)(A) clarifies that the system contains "information with respect to a drug
approved under this section [section 355] or under section 351 of the Public Health Service Act." This
scope technically covers blood/blood products and tissue/tissue products, but I limit this dissertation to
drugs, therapeutic biologics (i.e., those regulated within the FDA's Center for Drug Evaluation and
Research) and vaccines. As of July 9, 2012, the scope of the system was expanded to include medical
devices, although I do not address this use in this dissertation. See § 615 in Food and Drug Administration
Safety and Innovation Act, Public Law 112-144, 2012.
8 Institute of Medicine (IOM), The Future ofDrug Safety: Promoting and Protecting the Health of the
Public, 38., The IOM noted that medical product approval systems are characterized by an inherent
"delayed availability of important safety data until a drug is used in larger and more diverse populations."
Most, but not all, postmarket safety data arises from postmarket clinical experiences (as opposed to a
clinical trial setting), and prior to the widespread availability of electronic healthcare data, was contained in
individual case reports. See T. Brewer and G. A. Colditz, "Postmarketing Surveillance and Adverse Drug
Reactions: Current Perspectives and Future Needs," Journal of the American Medical Association 281, no.
9 (1999): 824-829.
9 § 905 in Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355(k)(3)(B)(i-ii) and 21 U.S.C. § 355(k)(3)(C)(i)(III).
10 M. A. Robb et al., "The US Food and Drug Administration's Sentinel Initiative: Expanding the Horizons
of Medical Product Safety," Pharmacoepidemiology and Drug Safety 21 Suppl 1 (2012): 9-11; R. E.
Behrman et al., "Developing the Sentinel System - A National Resource for Evidence Development," The
New England Journal of Medicine (2011); Food and Drug Administration U.S. Department of Health and
Human Services, "The Sentinel Initiative" (FDA, 2010),
http://www.fda.gov/downloads/Safety/FDAsSentinellnitiative/UCM233360.pdf.
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medical products". The FDA created a five-year pilot program - the Mini-Sentinel

System - to build initial infrastructure, develop capabilities, test methods, and conduct

pilot assessments.' 2 It is important to understand that as of this writing, the Mini-Sentinel

System is considered a "laboratory"' 3 and its capabilities are at various stages of

development. As a system, it is not yet routinely employed in postmarket safety

assessments being conducted at the FDA.

First, a key feature of the Mini-Sentinel System is the secondary use, or repurposing,

of electronic healthcare data in order to identify and/or assess postmarket safety signals.

These data are currently administrative/claims data with some clinical data such as

laboratory tests.' 4 Second, the sizable scale and distributed architecture of this effort is

another unique feature, with data that comprise nearly one-third of the privately insured

U.S. population.' 5 Third, the system's reusable data infrastructure facilitates the

execution of conventional multi-site pharmacoepidemiologic studies16

Specifically, the Mini-Sentinel System eliminates the need to constitute a study

database de novo to assess hypotheses with respect to postmarket safety signal(s) of

interest. Instead, these data are continually maintained in a common, interoperable

format' 7 across multiple sites resulting in less time spent harmonizing data sources for

each postmarket safety activity. Also, the use of these data has been designated as a

" Congress did not specify medical devices for inclusion in the active postmarket risk identification and
analysis system until just recently. See § 615 of Food and Drug Administration Safety and Innovation Act,
Public Law 112-144.
12 R. Platt et al., "The U.S. Food and Drug Administration's Mini-Sentinel Program: Status and Direction,"

Pharmacoepidemiology and Drug Safety 21 Suppl 1 (2012): 1--8; Robb et al., "The US Food and Drug
Administration's Sentinel Initiative: Expanding the Horizons of Medical Product Safety."
13 Platt et al., "The U.S. Food and Drug Administration's Mini-Sentinel Program: Status and Direction."
14 Ibid. Healthcare providers use administrative/claims data to charge health insurance companies for their

services.
1s See infra at note 113-114 for more details.
16 Multi-site studies typically combine patient data, which requires data use agreements among the multiple

sites as well as privacy and human subjects reviews at each site. For a general description of the conduct of

pharmacoepidemiologic studies using databases, see U.S. Department of Health and Human Services et al.,
"Guidance for Industry and FDA Staff: Best Practices for Conducting and Reporting
Pharmacoepidemiologic Safety Studies Using Electronic Healthcare Data Sets (Draft)", February 16, 2011,
http://www.fda.gov/downoads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM

2 4 35 3

7.pdf.
"7 L. H. Curtis et al., "Design Considerations, Architecture, and Use of the Mini-Sentinel Distributed Data

System," Pharmacoepidemiology and Drug Safety 21 Suppl 1 (2012): 23-31.
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public health activity as opposed to "research," which means that the Common Rule' 8

does not apply to these activities and review by Institutional Review Boards is not

required.19 Practically, many front-end time delays and administrative requirements

associated with testing drug safety hypotheses have been eliminated or reduced.

Consequently, the system provides an efficient environment for the conduct of

conventional pharmacoepidemiologic studies using administrative data.

More importantly, and perhaps Congress's principal intent, this data infrastructure

also allows for new routine postmarket monitoring capabilities including 1) the retrieval

of population-wide descriptive statistics on medical product usage2 0 , diagnoses, and

outcomes; 2) the performance of statistical surveillance methods for the automated

generation of new safety signals (e.g., data-mining and syndromic surveillance); and 3)

the performance of sequential statistical analyses on pre-specified postmarket drug safety

hypotheses (i.e., safety signals). As of this writing, some of these capabilities are in

embryonic stages of development. However, I include them here to give the reader a

broad understanding of the potential of the system. These capabilities are novel

supplements to the FDA's existing systems because the data infrastructure makes data

available in "near real-time,"2' allowing for more timely evidence generation to support

regulatory decision-making.

It is important to understand that "near real-time" is a relative concept. That is,

relative to a conventional observational study with a singular end-of-study analysis,

18 The Common Rule refers to federal regulations that protect the rights of human subjects involved in
biomedical and behavioral research. It can be found in numerous instances within the entire Code of
Federal Regulations but is classically located at 45 CFR § 46 in its entirety. Department of Health and
Human Services, "Code of Federal Regulations Title 45 Part 46, Protection of Human Subjects", July 14,
2009, http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.html.
19 D. McGraw, K. Rosati, and B. Evans, "A Policy Framework for Public Health Uses of Electronic Health
Data," Pharmacoepidemiology and Drug Safety 21 Suppl 1 (2012): 18-22.
2 For many years, the FDA has had access to proprietary, nationally projected medical product utilization
data. See Institute of Medicine (IOM), The Future ofDrug Safety: Promoting and Protecting the Health of
the Public, 112. This capability is new because it will be possible to link data on medical product
utilization to diagnoses and outcomes. For example, one might be able to assess "channeling" behavior, or
the tendencies for certain types of patients to be prescribed particular products.
21 "Near real-time" data refer to data on clinical experiences that arrive with a variable delay from when the
experience occurred. There are two sources of delay. First, there is a processing delay, which is the time
that elapses between when the experience occurs, and when it is recorded and available for analysis.
Second, there is a refresh delay, which is associated with the frequency with which an originating data
source renews their dataset and makes it available for analysis. These concepts will be explained in greater
detail in subsection 6.2.2.
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which might analyze data years after the outcomes occurred in time2 2, "near real-time"

data make analyses possible on the order of months2 3. This "near real-time" data stream

allows regulators and public health investigators to analyze data as they accumulate,

thereby generating population-wide incidence rates and risk estimates sooner than

conventional observational studies. Yet, these gains in speed in a surveillance setting

come with a price. They are offset by data that may be "unsettled" and later corrected,

analyses performed with limited confounding control25, analyses performed without full
26

adjudication of exposures and outcomes , or analyses that rely on previous validation

studies. Implementing more refined confounding control and/or adjudicating data

increase time-to-results and cost because these activities move further away from

automated analyses. However, these activities increase the quality of analyses by

reducing the biases associated with the results2 7 , and may substantially affect regulatory

decision-making. It remains to be seen whether regulators will favor speed over quality

and how they will trade such quantities off for particular safety questions.

Still, if reasonable but imperfect information is available sooner, and it leads to

regulatory action(s) that prevent adverse events, improve clinical care decisions, and

conserve surveillance or research resources for other public health needs, then these gains

22 For example, in a FDA-funded large retrospective observational study, the study period ended in 2005, a
full five years prior to preliminary analyses. See L. A. Habel et al., "ADHD Medications and Risk of
Serious Cardiovascular Events in Young and Middle-aged Adults," JAMA : the Journal of the American
Medical Association 306, no. 24 (2011): 2673-2683; W. 0. Cooper et al., "ADHD Drugs and Serious
Cardiovascular Events in Children and Young Adults," The New England Journal of Medicine 365, no. 20
(2011): 1896-1904.
23 While the Mini-Sentinel System's current data structure involves monthly data refreshes, older and
similar distributed database networks like the Vaccine Safety Datalink collect and analyze data in weekly
increments. See generally W. K. Yih et al., "Active Surveillance for Adverse Events: The Experience of the
Vaccine Safety Datalink Project," Pediatrics 127 Suppl 1 (2011): S54-64.
24 Recall that these data have a primary purpose - reimbursement of medical services - that may subject
them to adjustments, rejections, corrections, re-submissions, and other changes for some period of time
after their chronological occurrence.
25 The degree of confounding control associated with the new capabilities of the Mini-Sentinel System will
be discussed in greater detail in 4.2.1.1.
26 Adjudication refers to procedures that are performed to validate the data, i.e. to ensure that the electronic
record actually reflects patient experiences. It often involves medical chart abstraction and confirmation of
the exposures, outcomes, and covariates of interest.
27 For example, sequential database surveillance performed for HINI influenza vaccination-Guillain-Barre
Syndrome (GBS) found that electronic identification of GBS had a positive predictive value of 53.3%. The
resultant differences between risk estimates with chart-confirmed GBS vs. electronically identified GBS are

substantial. See Appendix B in Grace M. Lee et al., "H IN1 and Seasonal Influenza Vaccine Safety in the

Vaccine Safety Datalink Project," American Journal of Preventive Medicine 41, no. 2 (August 2011): 121-
128. Biases will be described in greater detail in section 4.2.
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must be weighed against the cost of operating and maintaining the Sentinel System at the

scale specified by Congress28 . Quantifying the value of this system first requires mapping

the needs of the FDA in the postmarket to an analysis of the optimal use(s) of this system

for each of its capabilities, and then determining the appropriate demand for such use(s).

Examining the proper, efficient, and routine incorporation of some of these novel

capabilities into the existing postmarket surveillance systems of the FDA is the

subject of this dissertation. This research develops qualitative and quantitative tools to

aid the FDA in evaluating the Mini-Sentinel System's capabilities with regard to

generating postmarket evidence to support regulatory decision-making. I consider drugs,

therapeutic biologics, and vaccines as the exposures 29 of interest. The unit of analysis that
30I examine, and take as an input to my models, is a pre-specified exposure-outcome pair .

Thus, this dissertation does not address the optimal use of the Mini-Sentinel System for

signal detection activities, which involve searching the data for new safety signals

without pre-specified hypotheses of interest.

Like any technical system, the Mini-Sentinel System has design-based limitations and

cannot fulfill all of the FDA's postmarket needs. These design-based limitations are

summarized in a qualitative tool that the FDA can employ to determine whether the Mini-

Sentinel System is well suited, on its face, to evaluate a pre-specified exposure-outcome

pair. I call this qualitative tool the Mini-Sentinel System Pre-Screening Checklist and

describe it herein in Section 4. Once an initial qualitative assessment is complete,

quantitative tools may further be used to determine the Mini-Sentinel System's likelihood

of meeting the FDA's needs for assessment. The quantitative tool I describe herein in

Section 6 is the Sequential Database Surveillance Simulator. The simulator allows the

FDA to explore the surveillance possibilities for a particular pre-specified exposure-

28 Congress specified coverage of 100,000,000 persons by 2012 in Food and Drug Administration
Amendments Act of 2007, Public Law 110-85. It is unclear if a needs assessment was performed to justify
this particular size.
29 Rothman et al. define exposure as follows: "In epidemiology, it is customary to refer to potential causal
characteristics as exposures. Thus, exposure can refer to a behavior (e.g., needle sharing), a treatment or
other intervention (e.g., an educational program about hazards of needle sharing), a trait (e.g., a genotype),
an exposure in the ordinary sense (e.g., an injection of contaminated blood), or even a disease (e.g.,
diabetes as the cause of death)." Kenneth J. Rothman, Sander Greenland, and Timothy L. Lash, Modern
Epidemiology, Third. (Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008), 52.
3 Outcomes are health outcomes of interest, and safety surveillance particularly focuses on adverse events
as health outcomes of interest. An exposure-outcome pair is a hypothesized relationship between the
exposure and outcome of interest, e.g., oral anti-diabetic medications and acute myocardial infarctions.
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outcome pair under a variety of potential real-world circumstances in a virtual, low-cost

way. Using this tool, the FDA may begin to make assessments of the Mini-Sentinel

System's sequential database surveillance capabilities for individual pairs. As the FDA

considers the larger scope of exposure-outcome pairs that it needs to evaluate and uses

the tool repeatedly, the FDA can begin to draw conclusions with regard to overall

demand for this capability. I comment on, but do not fully examine questions of overall

demand, which requires consideration of the entire scope of exposure-outcome pairs that

might exist, an n-dimensional space.

A primary motivation to examine this topic is the public investment required to

maintain the infrastructure in the long term. First, although the infrastructure is not

explicitly funded beyond the pilot Mini-Sentinel System, the incorporation of this system

into routine postmarket surveillance activities requires non-trivial annual maintenance

and operation costs. These costs simply keep the data up-to-date and capable of being

accessed. Second, each request to access these data has some processing costs that clearly

vary with the number and size of the data requests in addition to how efficiently the

requests can be coded, tested, and distributed to the individual sites who access their

proprietary databases. Third, as the system is used for more protocol-oriented (i.e., ad

hoc) analyses, senior scientific support (e.g., epidemiologists, clinicians, and

biostatisticians) will be necessary for each of these assessments. Fourth, the FDA must

scale its regulatory efforts (i.e., full-time trained staff) to process the output assessments

of this system. Taken together, continued funding of this resource requires budgeting for

both fixed and variable costs that are not yet well-defined.

Another motivation is the public health effects of the legal coupling3 I of the Mini-

Sentinel System's capabilities to the FDA's ability to require industry-funded postmarket

studies or clinical trials, known as postmarket requirements (PMRs) 3 2 . Specifically, when

identifying or assessing a particular postmarket safety signal, the FDA must make a

3 § 901 in Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at U.S.C.
§ 355(o)(3)(D).
32 A postmarketing requirement is a mandate from the FDA to the manufacturer/sponsor of a particular

product to perform a study of various types. See Department of Health and Human Services et al.,
"Guidance for Industry: Postmarketing Studies and Clinical Trials - Implementation of Section 505(o)(3) of

the Federal Food, Drug, and Cosmetic Act (Final)", March 31, 2011,
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatorylnformation/Guidances/UCM 17200
1.pdf.
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determination on whether its publicly-funded postmarket safety systems (including the

Mini-Sentinel System) generate sufficient knowledge on postmarket safety risks to make

a regulatory decision, or whether additional privately-funded (i.e. manufacturer-funded)

studies are necessary. These decisions clearly hold significant implications for the FDA,

manufacturers/sponsors, healthcare providers, and patients. Such decisions are likely to

be scrutinized and perhaps contested, and depend on a clear scientific demonstration of

suitable use of the system. The ethical implications of this decision were the subject of a

recent IOM committee report, which noted,

"When the FDA imposes a postmarketing requirement, it is expressing... a judgment that
the public health interests served by requiring additional research outweigh the burdens
placed on pharmaceutical manufacturers and - more important from an ethical standpoint
-any risk of harm or burdens on research participants." 33

In this dissertation, Section 2 reviews the FDA's routinely operating postmarket

systems (i.e., the existing postmarket systems), and the addition of the "pilot" Mini-

Sentinel System. Specifically, the Mini-Sentinel System's data infrastructure, and risk

identification and analysis capabilities are reviewed. Section 3 establishes the legal/policy

context in which the FDA's postmarket systems are now embedded and more thoroughly

explains the aforementioned legal coupling of the Mini-Sentinel System's technical

capabilities to the FDA's regulatory ability to require privately-funded postmarket

studies. That is, it examines the legal requirements with regard to the scientific quality of

the evidence needed to support various regulatory actions. Additionally, Section 3

outlines the FDA's postmarket regulatory decision-making process and potential

regulatory actions that may result following identification and analysis of new safety

information. Section 4 presents the Mini-Sentinel System Pre-Screening Checklist, a

qualitative tool designed to aid the decision-maker in evaluating whether the Mini-

Sentinel System is likely to be suited, on itsface, to evaluate particular exposure-outcome

pairs. Specifically, Section 4 addresses situations when the Mini-Sentinel System may be

ill-suited as an evidence generation system of interest due to its inability to overcome

various biases in an observational setting, issues of sample size, or issues of

generalizability to broader populations.

3 Institute of Medicine (1OM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs
(Washington, D.C.: National Academies Press, 2012), 4, http://books.nap.edu/catalog/13219.html.
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Section 5 reviews the scientific and technical state-of-the-art with respect to

prospective sequential database surveillance. Section 6 describes the Sequential Database

Surveillance Simulator in detail. Section 7 illustrates the use of the Sequential Database

Surveillance Simulator with a vaccine-based example. Particularly, Section 7 establishes

the important tradeoffs associated with sample size calculations in sequential statistical

analyses, particularly the tradeoff between statistical power and median sample size. It

draws attention to the performance characteristics of various surveillance configurations

with respect to timeliness and accuracy of signal detection. Section 8 adds complexity to

the vaccine example by examining the effects of misclassification on sequential database

surveillance performance. It also establishes a way to use the simulator to investigate the

performance of different algorithms for detecting outcomes of interest. This simulated

example is particularly important because it addresses inherent differences in the Mini-

Sentinel System's component databases, particularly the existence of a small subset of

databases with access to richer laboratory data. Sequential database surveillance

performance is compared between this small subset with high quality data to the larger

database configuration with claims-only data.

Section 9 addresses complications related to modeling medical product adoption and

utilization, specifically the uptake of new molecular entities. A cohort of 40 new

molecular entities is examined. A subset of this cohort is then investigated by fitting

Mini-Sentinel System data to classical diffusion models. An important finding that results

is that many new molecular entities are better described by "dual market" adoption

patterns. In other words, the market for these medical products consists of two distinct

sets of adopters. This finding raises a non-trivial generalizability concern when sequential

database surveillance is performed immediately post-licensure. Section 10 is a summary

of the findings of the dissertation and a discussion on future work. Appendices A-C

contain supporting data and Appendix D is a glossary of terms to assist the reader.
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2 The FDA'S POSTMARKET SYSTEMS

2.1 The FDA's Routinely Operating Postmarket Systems

The Institute of Medicine (IOM)'s overview of the U.S. Food and Drug

Administration (FDA)'s postmarket systems and their contribution to identifying and

assessing medical product-associated risks is briefly reviewed herein. As stated earlier,

because the FDA has not yet deployed the Mini-Sentinel System in routine postmarket

assessment, the overview presented in this subsection still reflects the current state at the

FDA.

Findings of a
Potential
Association

Findings of an
Association

_J t
Findings of
Association OR
Causality

-AERS/VAERS analyses
-Case Reports
-Prelicensure Data
*Postlicensure Study Results

-Epidemiologic Studies with
Administrative Databases
*Active Surveillance

-Postlicensure Clinical Trials
-Postlicensure "Full-Scale"
Observational Studies

Figure 1. Identification and Adjudication of a Signal of Serious Risk in the U.S. Food and Drug
Administration's Postmarket Surveillance Systems

Adapted from the Institute of Medicine. 34

*In the original Institute of Medicine report, this stage was referred to as "signal strengthening or testing."
The wording was changed to reflect a more neutral stance.
**In the original Institute of Medicine report, this stage was referred to as "signal confirmation." The
wording was changed to reflect a more neutral stance.
Abbreviations: AERS, Adverse Event Reporting System; VAERS, Vaccine Adverse Event Reporting
System.

Figure 1 shows the three-stage process for identification and adjudication of medical

product-associated postmarket safety risks, often referred to as safety signals3 5 .

34 This figure is generated from descriptions contained in Institute of Medicine (IOM), The Future of Drug
Saftty: Promoting and Protecting the Health of the Public, 105-119.
3 Two well-accepted definitions of "signal" are as follows: 1) "Information that arises from one or multiple
sources (including observations and experiments) which suggests a new potentially causal association, or a

new aspect of a known association, between an intervention and an event or set of related events, either

adverse or beneficial, that is judged to be of sufficient likelihood to justify verificatory action." Council for

International Organizations of Medical Sciences. Working Group VIII, Practical aspects ofsignal
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2.1.1 Signal Detection

Signal detection 36 is the generation of a hypothesis with respect to a signal of serious

risk3 7 associated with a medical product. It is usually based on the discovery of new data

and subsequent analyses of those data. In this first stage in the lifecycle of a safety signal,

the FDA's spontaneous reporting systems - the Adverse Event Reporting System 38 and

Vaccine Adverse Event Reporting System 39 - generate the bulk of hypotheses regarding

potential associations 0 between medical products (i.e., exposures) and adverse events

(i.e., outcomes). 4 1 Disproportionality analyses are used to identify exposure-outcome

pairs that are reported in excess of what would be expected if these pairs were

detection in pharmacovigilance : report of CIOMS Working Group VIII. (Geneva: CIOMS, 2010). 2)
"Reported information on a possible causal relationship between an adverse event and a drug, the
relationship being unknown or incompletely documented previously. Usually more than a single report is
required to generate a signal, depending upon the seriousness of the event and the quality of the
information." World Health Organization, The Importance of Pharmacovigilance - Safety Monitoring of
Medicinal Products (Geneva, Switzerland: World Health Organization, 2002), 42,
http://apps.who.int/medicinedocs/en/d/Js4893e/. See also Manfred Hauben and Jeffrey K Aronson,
"Defining 'Signal' and Its Subtypes in Pharmacovigilance Based on a Systematic Review of Previous
Definitions," Drug Safety 32, no. 2 (2009): 99-110.
36 The FDA has also used the following definition of signal generation (which is generally an
interchangeable term with signal detection): "an approach that uses statistical methods to identify medical
product-adverse outcome associations that may be safety signals; no particular medical product exposure
or adverse outcome is pre-specified." See Robb et al., "The US Food and Drug Administration's Sentinel
Initiative: Expanding the Horizons of Medical Product Safety," 10.

§7 901 in Food and Drug Administration Amendments Act of 2007, Public Law 110-85,.codified at 21
U.S.C. § 355-1(b)(6), gives the legislative definition: "The term 'signal of a serious risk' means
information related to a serious adverse drug experience associated with use of a drug."
38 See generally, Gerald J. Dal Pan, Marie Lindquist, and Kate Gelperin, "Postmarketing Spontaneous
Pharmacovigilance Reporting Systems," in Pharmacoepidemiology, ed. Brian L. Strom, Stephen E.
Kimmel, and Sean Hennessy, Fifth. (John Wiley & Sons, 2011), 137-157; S. R. Ahmad, "Adverse Drug
Event Monitoring at the Food and Drug Administration," Journal of General Internal Medicine 18, no. 1
(2003): 57-60.
39 See generally, R. Ball et al., "Statistical, Epidemiological, and Risk-assessment Approaches to
Evaluating Safety of Vaccines Throughout the Life Cycle at the Food and Drug Administration," Pediatrics
127 Suppl 1 (2011): S31-8.
44 Associations in epidemiology are referred to as correlations in other fields of study. Strom defines an
association as a statistically significant inference regarding a population. He further defines types of
associations, one of which is causal when a biological inference establishes causation and all confounding
is eliminated. See Brian L. Strom, "Basic Principles of Clinical Epidemiology Relevant to
Pharmacoepidemiologic Studies," in Pharmacoepidemiology, ed. Brian L. Strom, Stephen E. Kimmel, and
Sean Hennessy, Fifth. (John Wiley & Sons, 2011), 38-43; C. H. Hennekens and D. DeMets, "Statistical
Association and Causation: Contributions of Different Types of Evidence," JAMA : the Journal of the
American Medical Association 305, no. 11 (2011): 1134-1135.
4' Thomas J Moore, Sonal Singh, and Curt D Furberg, "The FDA and New Safety Warnings," Archives of
Internal Medicine 172, no. 1 (January 9, 2012): 78-80; D. K. Wysowski and L. Swartz, "Adverse Drug
Event Surveillance and Drug Withdrawals in the United States, 1969-2002: The Importance of Reporting
Suspected Reactions," Archives of Internal Medicine 165, no. 12 (2005): 1363-1369.
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independently distributed in the database. 4 2 Under certain conditions, it is also possible to

identify a signal based on a single case report. For example, the FDA recently identified a

single potentially medical product-associated death as a signal4 3, and other outcomes may

require only a few cases to generate a signal.4 4

Spontaneous reporting systems provide effective and inexpensive signal detection,

particularly for rare or very rare4 5 outcomes that are not detectable in clinical trials and

that are unlikely to be related to the disease being treated. These types of signals are

sometimes categorized as "Type B" adverse events, meaning they are considered to be

idiosyncratic events that occur in patients with some (typically) unknown hypersensitivity

46
or predisposing condition. However, spontaneous reporting systems are a) known to

have data quality problems; b) be subject to significant underreporting with regard to

common outcomes (e.g., acute myocardial infarctions); c) be subject to significant

underreporting when the outcomes are unlikely to trigger suspicion of being medical

product-related; and d) be ineffective at calculating incidence or prevalence of an event in

the population.4 7 In summary, these systems provide a useful but limited function (i.e.,

they perform well for Type B signal detection).

42 J S Almenoff et al., "Novel Statistical Tools for Monitoring the Safety of Marketed Drugs," Clinical

Pharmacology and Therapeutics 82, no. 2 (August 2007): 157-166.
43 In this case, there was a labeled, known risk regarding fingolimod-associated bradycardia, which may
lead to death. To manage the risk, the label recommended increased monitoring for the first six hours

following the initial dose. This death occurred in a 24-hour period following the initial dose despite
compliance with the prescribed 6-hour monitoring period, suggesting an unexpected increase in the severity
of risk. This increased severity was the important factor in identifying a new signal. See Center for Drug
Evaluation and Research, "Drug Safety and Availability - FDA Drug Safety Communication: Safety

Review of a Reported Death After the First Dose of Multiple Sclerosis Drug Gilenya (fingolimod),"
WebContent, December 20, 2011, http://www.fda.gov/Drugs/DrugSafety/ucm284240.htm.
44 Institute of Medicine (IOM), The Future of Drug Saftty: Promoting and Protecting the Health of the

Public, 108-109. "Even a small number of reports of events that are commonly caused by drug exposure,
such as liver or kidney failure, aplastic anemia, anaphylaxis, Stevens-Johnson syndrome, and so on, can
constitute an important safety signal."
45 The Council for International Organizations of Medical Sciences (CIOMS) Working Group III,
Guidelines fbr Preparing Core Clinical Safety Information on Drugs. (Geneva: World Health Organization
(WHO), 1995)."Rare" outcomes refer to those that occur with a frequency of greater than 1 event per

10,000 person-years, but less than I event per 1,000 person years. "Very Rare" outcomes occur with a

frequency less than 1 event per 10,000 person-years but greater than I event per 100,000 person-years.
46 R H Meyboom, M Lindquist, and A C Egberts, "An ABC of Drug-related Problems," Drug Safety: An

International Journal of Medical Toxicology and Drug Experience 22, no. 6 (June 2000): 415-423.
47 B. L. Strom, "Potential for Conflict of Interest in the Evaluation of Suspected Adverse Drug Reactions: a

Counterpoint," Journal of the American Medical Association 292, no. 21 (2004): 2643-2646; U.S. General

Accounting Office, Adverse Events: The Magnitude of Health Risk Is Uncertain Because ofLimited

Incidence Data, vol. GAO/HEHS-00-21 (Washington, DC: GPO, 2000); T. J. Moore, B. M. Psaty, and C.

D. Furberg, "Time to Act on Drug Safety," Journal of the American Medical Association 279, no. 19
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Signal detection with regard to more common outcomes, or those that may be related

to the natural history of the disease, are typically detected from safety data in a

prelicensure or postlicensure clinical trial 48, or meta-analyses of randomized clinical trial

data49. These data may be underpowered statistically to suggest an association, but be

biologically plausible and concerning enough to generate a signal. These types of signals

have been referred to as "Type C" adverse effects or "statistical effects."50 In the absence

of large sample sizes, they are difficult to detect because of the high background

frequency of the adverse event in the unexposed population. Notably, the Mini-Sentinel

System enables such large sample sizes, implying a potential improvement to the FDA's

signal detection capabilities for Type C signals once the Mini-Sentinel System is

incorporated into routine operations. Signal detection in the Mini-Sentinel System is an

active area of ongoing research that will be described briefly in section 2.2.2.2.

Once a safety signal has been detected, the FDA must determine whether the

available evidence requires it to take immediate regulatory action, to gather more

information (e.g., conduct postmarket studies51), or to do both simultaneously.52

2.1.2 Signal Refinement

The IOM identified two follow-on stages for signal adjudication after a signal has

been detected. It differentiated these stages based on the type of postmarket study that

was used to test the hypothesis of a medical product-associated risk. The IOM identified

the second stage as a "signal strengthening and testing" stage, which is now known as

(1998): 1571-1573; Brewer and Colditz, "Postmarketing Surveillance and Adverse Drug Reactions:
Current Perspectives and Future Needs."
48 For example, cardiovascular safety signals for Vioxx@ (rofecoxib) were identified by the FDA's Medical
Officer in prelicensure clinical trials. See B. M. Psaty and C. D. Furberg, "COX-2 Inhibitors--lessons in
Drug Safety," The New England Journal of Medicine 352, no. 11 (2005): 1133-1135.
49 For example, a published meta-analysis of Avandia@ (rosiglitazone) prompted unplanned interim
analyses of trial data. See D. M. Nathan, "Rosiglitazone and Cardiotoxicity--weighing the Evidence," The
New England Journal of Medicine 357, no. 1 (2007): 64-66; B. M. Psaty and C. D. Furberg, "The Record
on Rosiglitazone and the Risk of Myocardial Infarction," The New England Journal ofMedicine 357, no. 1
(2007): 67-69; S. E. Nissen and K. Wolski, "Effect of Rosiglitazone on the Risk of Myocardial Infarction
and Death from Cardiovascular Causes," The New England Journal of Medicine 356, no. 24 (2007): 2457-
2471.
so Meyboom, Lindquist, and Egberts, "An ABC of Drug-related Problems."
5 Postmarket studies may include laboratory studies, animal studies, or clinical investigations. For
examples, see Department of Health and Human Services et al., "Guidance for Industry: Postmarketing
Studies and Clinical Trials - Implementation of Section 505(o)(3) of the Federal Food, Drug, and Cosmetic
Act (Final)."
5 The FDA's decision algorithm is discussed more thoroughly herein in section 3.
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signal refinement5 3 . The postmarket studies used to support evidence development in this

stage include conventional pharmacoepidemiologic research using administrative

databases and active surveillance of emergency rooms for adverse drug events.

Generally, pharmacoepidemiologic research using administrative databases can refer

to descriptive studies that report drug utilization54 or physician prescribing behavior55 , or

to analytical studies designed to produce information on comparative drug safety56 or

effectiveness 57. Administrative database studies can also evaluate the changes in health

outcomes produced by changes in health policy such as the effect of changing insurance

copayment requirements.58 These studies sample electronic healthcare data, which can be

either administrative/claims data or electronic health records. Within the drug safety

realm, much has been written on the strengths and limitations of these studies. 9

Advantages include the ability to study large sample sizes inexpensively and the potential

for greater generalizability than results from more exclusive randomized experiments.

Disadvantages include the potential for biased results from poor quality and missing

53 The FDA has used the following definition of signal refinement: "a process by which an identified
potential safety signal is further investigated to determine whether evidence exists to support a relationship
between the medical product exposure and the outcome." See Robb et al., "The US Food and Drug
Administration's Sentinel Initiative: Expanding the Horizons of Medical Product Safety," 10.
54 See, for example, Paul N Pfeiffer et al., "Depression Care Following Psychiatric Hospitalization in the

Veterans Health Administration," The American Journal of Managed Care 17, no. 9 (September 2011):
e358-364.
55 See for example, Paul N Pfeiffer et al., "Trends in Antidepressant Prescribing for New Episodes of

Depression and Implications for Health System Quality Measures," Medical Care 50, no. 1 (January 2012):
86-90.
56 See, for example, Habel et al., "ADHD Medications and Risk of Serious Cardiovascular Events in Young
and Middle-aged Adults"; Cooper et al., "ADHD Drugs and Serious Cardiovascular Events in Children and

Young Adults."
" See, for example, Seo Young Kim and Daniel H Solomon, "Use of Administrative Claims Data for

Comparative Effectiveness Research of Rheumatoid Arthritis Treatments," Arthritis Research & Therapy

13, no. 5 (2011): 129.
5 See, for example, Sujha Subramanian, "Impact of Medicaid Copayments on Patients with Cancer:

Lessons for Medicaid Expansion Under Health Reform," Medical Care 49, no. 9 (September 2011): 842-

847.
59 W. A. Ray, "Improving Automated Database Studies," Epidemiology (Cambridge, Mass.) 22, no. 3
(2011): 302-304; B. L. Strom, "Methodologic Challenges to Studying Patient Safety and Comparative
Effectiveness," Medical Care 45, no. 10 Supl 2 (2007): S 13-5; S. Schneeweiss and J. Avorn, "A Review of

Uses of Health Care Utilization Databases for Epidemiologic Research on Therapeutics," Journal of

Clinical Epidemiology 58, no. 4 (2005): 323-337; R. Temple, "Meta-analysis and Epidemiologic Studies in

Drug Development and Postmarketing Surveillance," JAMA : the Journal of the American Medical

Association 281, no. 9 (1999): 841-844.
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data.60 As the IOM states, "precise but biased estimates of risk are not generally

useful."6 '

Consequently, it is not unusual for independently conducted pharmacoepidemiologic

studies to produce variation in their estimates of risk62, and although the same possibility

exists with randomized studies 63, there is more skepticism of pharmacoepidemiologic

studies.64 Some attribute these problems to growing pains of the discipline.65 On that

note, there have been efforts to increase the internal validity and repeatability of these

studies.66 Despite these potential shortcomings, the FDA funds a limited number of
67pharmacoepidemiologic studies via contract. Manufacturers also conduct these studies

60 Biases associated with observational data are discussed extensively herein in section 4.2.
61 Institute of Medicine (IOM), The Future of Drug Safety: Promoting and Protecting the Health of the
Public, 114.
62 See, for example, the FDA's struggle to interpret the results of seven observational studies studying the
risks of venous thromboembolism associated with drospirenone-containing contraceptives. See Center for
Drug Evaluation and Research, "Drug Safety and Availability - FDA Drug Safety Communication:
Updated Information About the Risk of Blood Clots in Women Taking Birth Control Pills Containing
Drospirenone," WebContent, April 10, 2012, http://www.fda.gov/Drugs/DrugSafety/ucm299305.htm;
Center for Drug Evaluation and Research, "Reproductive Health Drugs Advisory Committee - Briefing
Information for the December 9, 2011 Joint Meeting of the Advisory Committee for Reproductive Health
Drugs and the Drug Safety and Risk Management Advisory Committee," WebContent, December 9, 2011,
http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ReproductiveHealthDrugsA
dvisoryCommittee/ucm28263 .htm.
63 D. Jane-wit, R. I. Horwitz, and J. Concato, "Variation in Results from Randomized, Controlled Trials:
Stochastic or Systematic?," Journal of Clinical Epidemiology 63, no. 1 (2010): 56-63.
64 D. A. Lawlor et al., "Those Confounded Vitamins: What Can We Learn from the Differences Between
Observational Versus Randomised Trial Evidence?," Lancet 363, no. 9422 (2004): 1724-1727; S. J.
Pocock and D. R. Elbourne, "Randomized Trials or Observational Tribulations?," The New England
Journal of Medicine 342, no. 25 (2000): 1907-1909.
65 J. Avorn, "In Defense of Pharmacoepidemiology--embracing the Yin and Yang of Drug Research," The
New England Journal of Medicine 357, no. 22 (2007): 2219-2221; E. von Elm and M. Egger, "The Scandal
of Poor Epidemiological Research," BMJ (Clinical Research Ed.) 329, no. 7471 (2004): 868-869.
66 E. von Elm et al., "The Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) Statement: Guidelines for Reporting Observational Studies," Annals of Internal Medicine 147,
no. 8 (2007): 573-577; G. C. Hall et al., "Guidelines for Good Database Selection and Use in
Pharmacoepidemiology Research," Pharmacoepidemiology and Drug Safety 21, no. 1 (2012): 1-10; U.S.
Department of Health and Human Services et al., "Guidance for Industry and FDA Staff: Best Practices for
Conducting and Reporting Pharmacoepidemiologic Safety Studies Using Electronic Healthcare Data Sets
(Draft)."
67 U.S. Government Accountability Office, FDA Has Begun Efforts to Enhance Postmarket Saftty, but
Additional Actions Are Needed, vol. GAO-1 0-68 (Washington, DC: GPO, 2009), 28-30,
http://www.gao.gov/products/GAO-10-68."Since FDA initially awarded about $5.4 million in total to these
companies in fiscal year 2005, these contracts have yielded five completed epidemiologic studies on drug
safety, including a study on how antidepressant use in pregnancy affects the health of newborns. In fiscal
year 2008, FDA added about $9 million in total to the four contracts."
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to fulfill postmarket study commitments or requirements to assess particular safety

signals.68

Active surveillance of emergency rooms via the National Electronic Injury

Surveillance System Cooperative Adverse Drug Event Surveillance program is another

means of generating descriptive statistics with respect to physician-identified adverse

drug experiences. Implemented as a joint venture of the FDA, the Centers for Disease

Control and Prevention and the Consumer Products Safety Commission, this program

employs trained personnel to routinely review patient records to document physician-

identified adverse drug experiences in a nationally representative sample of emergency

departments. 69 This type of active surveillance establishes incidence and prevalence data,

particularly among medical products with a "narrow therapeutic range" that cause easily-

recognized serious adverse events when used at improperly high dosages (i.e.,

overdoses). 70 These medical product-associated adverse events - also designated

commonly as "Type A" adverse effects 71 - are predictable, and normally resolve or do not

recur when the dose is reduced. Generally, there is no question of causality, and these

statistics may contribute to the FDA's efforts to manage known risks associated with

supratherapeutic effects.

Overall, the IOM described the output of the signal refinement stage as:

"provid[ing] guidance for the development of further studies or provid[ing] sufficient
information to narrow the uncertainty about drug-related risks and benefits and guide

regulatory actions and the decisions of patients and providers."72

68 For example, see D. D. Dore et al., "A Cohort Study of Acute Pancreatitis in Relation to Exenatide Use,"

Diabetes, Obesity & Metabolism 13, no. 6 (2011): 559-566; D. D. Dore, J. D. Seeger, and K. Arnold Chan,
"Use of a Claims-based Active Drug Safety Surveillance System to Assess the Risk of Acute Pancreatitis
with Exenatide or Sitagliptin Compared to Metformin or Glyburide," Current Medical Research and
Opinion 25, no. 4 (2009): 1019-1027. These studies were used to fulfill postmarket commitments. See
commitment IDs 221528-221541 in Center for Drug Evaluation and Research, "Postmarket Requirements
and Commitments Database", n.d., http://www.accessdata.fda.gov/scripts/cder/pmc/index.cfm.
69 D. S. Budnitz et al., "National Surveillance of Emergency Department Visits for Outpatient Adverse
Drug Events," Journal of the American Medical Association 296, no. 15 (2006): 1858-1866.
70 For example, "insulin or warfarin was implicated in more than one quarter of all estimated
hospitalizations." In Ibid., 1863. The denominator refers to all emergency department visits with
identifiable adverse drug events that then resulted in hospitalizations.
7' Meyboom, Lindquist, and Egberts, "An ABC of Drug-related Problems."
72 Institute of Medicine (IOM), The Future ofDrug Safety: Promoting and Protecting the Health of the

Public, 115.
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In other words, the outputs of the signal refinement stage can simply precede further

investigation or can terminate in regulatory action.

2.1.3 Signal Evaluation

The IOM identified "signal confirmation" as the third stage, which is now termed

signal evaluation73. During signal evaluation, evidence development is generated with the

conduct of "full-scale observational studies and clinical trials." 74 The intent of such

studies is to establish causal relationships as opposed to statistical associations.7 5 It is

unclear exactly what the IOM meant when describing "full-scale" observational studies.76

Moreover, the committee then references two randomized comparative safety and

effectiveness studies as exemplars of this stage. These two National Institutes of Health-

funded studies77 are noteworthy for their comparison of multiple therapeutic options,

their wide exploration of both safety/effectiveness endpoints78, and their cost, at $125

million and $725 million. In general, the costs and operational feasibility of these

7 The FDA has used the following definition: "Signal evaluation consists of the implementation of a full
epidemiological analysis to more thoroughly evaluate the causal relationship between exposure to the
medical product and the adverse outcome of interest." Robb et al., "The US Food and Drug
Administration's Sentinel Initiative: Expanding the Horizons of Medical Product Safety," 10.
7 Institute of Medicine (IOM), The Future ofDrug Safety: Promoting and Protecting the Health of the
Public, 115.
7 For a definition of association, see supra at note 40.
76 While the IOM is not clear on these distinctions, they did segregate "full-scale" observational studies
from retrospective studies in administrative databases. This designation is unsettled and the subject of
consternation among many epidemiologists who believe that properly executed database studies with
significant validation and confounding control can be used for causal inference. See supra at note 73,
implying that database studies can support causal inference. I hypothesize that the IOM's idea of full-scale
observational studies likely involved primary data collection, but there is little supporting evidence to
confirm or refute this conjecture.
77 ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The
Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial, "Major Outcomes in High-
risk Hypertensive Patients Randomized to Angiotensin-converting Enzyme Inhibitor or Calcium Channel
Blocker Vs Diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial
(ALLHAT)," Journal of the American Medical Association 288, no. 23 (2002): 2981-2997; J. E. Rossouw
et al., "Risks and Benefits of Estrogen Plus Progestin in Healthy Postmenopausal Women: Principal
Results From the Women's Health Initiative Randomized Controlled Trial," Journal of the American
Medical Association 288, no. 3 (2002): 321-333.
7' Dual safety/effectiveness endpoints occur when considering therapeutics that are licensed to lower
cardiovascular risk. These study endpoints are, by nature, both related to safety and effectiveness. In
comparison, Vioxx@ (rofecoxib) was licensed to treat osteoarthritis and so cardiovascular risk associated
with it is a more strictly safety-related endpoint.
79 Institute of Medicine (IOM), The Future ofDrug Safety: Promoting and Protecting the Health of the
Public, 115.
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studies result in their undersupply. 80 However, therapeutics approved with surrogate

endpoints8 1 under the FDA's accelerated approval process require such trials, which are

primarily focused on demonstrating efficacy as opposed to safety.

Absent the accelerated approval mechanism or other special program, prior to the

2007 Food and Drug Administration Amendments Act (FDAAA), the FDA had no legal

authority to mandate postmarket studies - either database studies, "full-scale"

observational studies or randomized clinical trials - and relied on voluntary commitments

from sponsors.82 For example, if a therapeutic was approved with a surrogate endpoint

under the traditional approval process, then the FDA secured a non-enforceable

postmarket commitment to complete follow-up studies.83 Many of these studies were

never initiated or completed. 84 The IOM attributed this low completion rate to

inadequately and hastily designed studies that were not practical. 85 The FDAAA

broadened the FDA's authority to mandate these studies8 6 and required the FDA to

investigate the backlog of postmarket commitments annually.87 Since then, the FDA has

80 R. F. Reynolds et al., "Is the Large Simple Trial Design Used for Comparative, Post-approval Safety
Research? A Review of a Clinical Trials Registry and the Published Literature," Drug Safety: an
International Journal of Medical Toxicology and Drug Experience 34, no. 10 (2011): 799-820; D.
Carpenter, "A Proposal for Financing Postmarketing Drug Safety Studies by Augmenting FDA User Fees,"
Health Affairs (Project Hope) Suppl Web Exclusives (2005): W5-469-80; S. R. Tunis, D. B. Stryer, and C.
M. Clancy, "Practical Clinical Trials: Increasing the Value of Clinical Research for Decision Making in
Clinical and Health Policy," Journal of the American Medical Association 290, no. 12 (2003): 1624-1632.
8 A surrogate endpoint is hypothesized to be a proxy measure of a clinical endpoint that defines the
therapeutic's benefit. For example, progression-free survival is an oft used surrogate endpoint for
morbidity/mortality associated with cancer. See U.S. Government Accountability Office, FDA Needs to
Enhance Its Oversight of Drugs Approved the Basis of Surrogate Endpoints, GAO-09-866 (Washington,
DC: GPO, 2009), http://www.gao.gov/products/GAO-09-866.
82 Institute of Medicine (IOM), The Future ofDrug Safety: Promoting and Protecting the Health of the
Public, 155-157; Department of Health and Human Services et al., "Guidance for Industry: Postmarketing
Studies and Clinical Trials - Implementation of Section 505(o)(3) of the Federal Food, Drug, and Cosmetic
Act (Final)."
83 U.S. Government Accountability Office, FDA Needs to Enhance Its Oversight of Drugs Approved the

Basis of Surrogate Endpoints.
84 Department of Health and Human Services Office of the Inspector General, FDA 's Monitoring of
Postmarket Study Commitments, vol. OEI-01-04-00390 (Washington, DC: OIG, 2006).
85 Institute of Medicine (IOM), The Future of Drug Safety: Promoting and Protecting the Health of the

Public, 111 116.
86 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21

U.S.C. § 355(o)(3).
87 § 921 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21

U.S.C. § 355(k)(5)(C).
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substantially changed their tracking system for these studies88 and many commitments

have been fulfilled or cancelled after further review.89

In general, signal evaluation studies designed explicitly for safety endpoints, as

opposed to following up surrogate endpoints, are rare. 90 There is active debate about

whether randomized controlled trials are the most appropriate ethical and scientific

approach to address safety issues in the postmarket.9 ' Concerns include the equipoise

among participants when the purpose of the study is to establish proof of harm, the

deviations from the ideal randomized controlled trial design that change statistical

inferences, and the appropriateness of particular analyses (e.g., intention-to-treat 92).

While randomized controlled trials are commonly accepted as the gold standard for proof

of efficacy, internal disagreements at the FDA regarding the type of evidence required to

adjudicate the rosiglitazone-cardiovascular outcomes safety signal prompted the FDA to

reach out to the IOM for guidance on the matter.93 Essentially, the IOM found legitimate

ethical and scientific arguments on both sides, and stressed the needs both to reach out to

advisory committees and the public for guidance and to act transparently regarding these

more contentious decisions on a case-by-case basis.

The FDA has taken this case-by-case approach. With respect to rosiglitazone, the

FDA canceled an ongoing randomized controlled trial and issued a risk evaluation and

88 See Center for Drug Evaluation and Research, "Postmarket Requirements and Commitments Database."
89 See Center for Drug Evaluation and Research, "Postmarketing Requirements and Commitments:
Reports," WebContent, n.d., http://www.fda.gov/Drugs/GuidanceComplianceRegulatorylnformation/Post-
marketingPhaselVCommitments/ucm064436.htm; U.S. Government Accountability Office, FDA Needs to
Enhance Its Oversight of Drugs Approved the Basis of Surrogate Endpoints.
90 Reynolds et al., "Is the Large Simple Trial Design Used for Comparative, Post-approval Safety
Research? A Review of a Clinical Trials Registry and the Published Literature." Many phase IV
randomized controlled trials or large simple trials are designed with the primary purpose of the study being
to assess an efficacy or effectiveness endpoint but where data on the general safety profile were also
collected.
91 See Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs;
J. P. Vandenbroucke, "Why Do the Results of Randomised and Observational Studies Differ?," BMJ
(Clinical Research Ed.) 343 (2011): d7020; P. N. Papanikolaou, G. D. Christidi, and J. P. loannidis,
"Comparison of Evidence on Harms of Medical Interventions in Randomized and Nonrandomized
Studies," CMAJ: Canadian Medical Association Journal 174, no. 5 (2006): 635-641; J. P.
Vandenbroucke, "What Is the Best Evidence for Determining Harms of Medical Treatment?," CMAJ:
Canadian Medical Association Journal 174, no. 5 (2006): 645-646.;
92 See Miguel A Hemin and Sonia Hernnndez-Diaz, "Beyond the Intention-to-treat in Comparative
Effectiveness Research," Clinical Trials (London, England) 9, no. 1 (February 2012): 48-55.
93 See Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,
xvii.
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mitigation strategy, which significantly limits utilization of rosiglitazone. 94 More

recently, the FDA held several advisory committee meetings to address the type of signal

evaluation study that would be required to evaluate a long-acting beta agonist-death

signal in children.95 In this case, the FDA required four manufacturers to conduct

randomized controlled trials, and to collect data in a way that makes the results amenable

to future meta-analysis. 96 In general, both Congress and the IOM have placed a heavy

justification burden on the FDA regarding engaging in signal evaluation studies.

2.1.4 Other Studies

Notably, the IOM does not describe how the results of meta-analyses 97 should be

regarded in its three-phase structure. Attention to meta-analyses has increased following

publication of results that identified the rosiglitazone-cardiovascular outcomes safety

signal. 98 Concerns about meta-analyses relate to the heterogeneity of contributing studies

and specifically, how exposures, outcomes, and covariates are classified; and what types

of patients are included/excluded. 99 Essentially, combining potentially dissimilar data

requires many judgments from investigators with little established guidance regarding

how to pool data. In a recent study, Golder et al. found no comparable difference in risk

estimates derived from meta-analyses of randomized controlled trials as opposed to meta-

94 Center for Drug Evaluation and Research, "Postmarket Drug Safety Information for Patients and
Providers - HHS FDA: Briefing on Avandia," WebContent, September 23, 2010,
http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetylnformationforPatientsandProviders/ucm227
934.htm.
95 Center for Drug Evaluation and Research, "Pulmonary-Allergy Drugs Advisory Committee - Briefing
Information for the March 10-11, 2010 Joint Meeting of the Pulmonary-Allergy Drugs Advisory
Committee and Drug Safety and Risk Management Committee," WebContent, March 10, 2010,
http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Pulmonary-
AllergyDrugsAdvisoryCommittee/ucm202692.htm.
96 Food and Drug Administration and Center for Drug Evaluation and Research, "FDA Drug Safety
Communication: FDA Requires Post-market Safety Trials for Long-Acting Beta-Agonists (LABAs),"
WebContent, April 15, 2011, http://www.fda.gov/Drugs/DrugSafety/ucm251512.htm.
9' Berlin et al. define meta-analysis as "the statistical analysis of a collection of analytic results for the

purpose of integrating the findings." Jesse A. Berlin, M. Soledad Cepeda, and Carin J. Kim, "The Use of
Meta-analysis in Pharmacoepidemiology," in Pharmacoepidemiology, ed. Brian L. Strom, Stephen E.

Kimmel, and Sean Hennessy, Fifth. (John Wiley & Sons, 2011), 723.
9 Nissen and Wolski, "Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from

Cardiovascular Causes."
99 Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,

128-131.
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analyses of observational studies.100 However, the FDA published findings particularly

noting the difficulties in using meta-analyses of randomized controlled trials to study

drug safety questions. 10' As part of performance goals in the Prescription Drug and User

Fee Amendments of 2012 (PDUFA V), the FDA has agreed to develop guidance on the

role of meta-analyses in regulatory decision-making. 102

2.2 Mini-Sentinel System: Active Postmarket Risk Identification and Analysis

In general, Congress chose to focus its public health resources in the signal detection

and refinement stages. Recall that the legislatively mandated addition of the Mini-

Sentinel System to the FDA's armamentarium of postmarket safety systems is a direct

response to the IOM's recommendation regarding strengthening the FDA's ability to test

drug safety hypotheses. Essentially, the data structure of the Mini-Sentinel System both

facilitates, and significantly scales, the FDA's existing capacity to perform

pharmacoepidemiologic studies using administrative databases. Figure 2 shows a

hypothesized placement of the Mini-Sentinel System and its potential capabilities within

the safety signal adjudication framework. In comparison to Figure 1, the Mini-Sentinel

System now enlarges the FDA's signal refinement capabilities and, in the future, may add

to the FDA's signal detection capabilities. This next subsection describes the Mini-

Sentinel System's data infrastructure and proposed capabilities that will supplement the

FDA's existing postmarket safety systems.

100 Su Golder, Yoon K Loke, and Martin Bland, "Meta-analyses of Adverse Effects Data Derived from
Randomised Controlled Trials as Compared to Observational Studies: Methodological Overview," PLoS
Medicine 8, no. 5 (May 2011): e1001026. See also Jan P Vandenbroucke and Bruce M Psaty, "Benefits and
Risks of Drug Treatments: How to Combine the Best Evidence on Benefits with the Best Data About
Adverse Effects," JAMA: The Journal of the American Medical Association 300, no. 20 (November 26,
2008): 2417-2419.
101 Tarek A Hammad, Simone P Pinheiro, and George A Neyarapally, "Secondary Use of Randomized
Controlled Trials to Evaluate Drug Safety: a Review of Methodological Considerations," Clinical Trials
(London, England) 8, no. 5 (October 2011): 559-570.
102 Food and Drug Administration and Center for Drug Evaluation and Research, "Prescription Drug User
Fee Act (PDUFA) V: Reauthorization Performance Goals and Procedures; Fiscal Years 2013 Through
2017," WebContent, July 19, 2012,
http://www.fda.gov/downloads/Forlndustry/UserFees/PrescriptionDrugUserFee/UCM270412.pdf.
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Figure 2. Hypothesized Identification and Adjudication of a Signal of Serious Risk in the U.S. Food
and Drug Administration's Postmarket Surveillance Systems Including the Mini-Sentinel System

Adapted from Figure 1 based on material elsewhere. 103

Abbreviations: AERS, Adverse Event Reporting System; VAERS, Vaccine Adverse Event Reporting
System.

2.2.1 Mini-Sentinel System Data Infrastructure

At the outset, Congress's mandate - "to link and analyze safety data from multiple

sources with the goals of including, in aggregate.. .at least 100,000,000 patients by July 1,

2012"v104 - necessitated the cooperation of multiple data partners with access to sensitive

and legally protected health data. To facilitate their participation, the Mini-Sentinel

System was envisioned as a distributed data environment as opposed to a centralized data

repository.105 The advantages of a distributed data environment are discussed

elsewhere' 06 , but the main advantage is that it allows data partners to maintain control

over their data and its uses. It also mitigates many legal, proprietary, privacy, and security

concerns with respect to dealing with privately held, protected, and identifiable patient

data.

103 Platt et al., "The U.S. Food and Drug Administration's Mini-Sentinel Program: Status and Direction."
104 Food and Drug Administration Amendments Act of 2007, Public Law 110-85.
1o R. Platt et al., "The New Sentinel Network--improving the Evidence of Medical-product Safety," The

New England Journal of Medicine 361, no. 7 (2009): 645-647.
106 J. C. Maro et al., "Design of a National Distributed Health Data Network," Annals ofInternal Medicine
151, no. 5 (2009): 341-344.
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There were few existing distributed data models to rely on to guide development of

the proposed infrastructure. The most prominent was the Centers for Disease Control and

Prevention's Vaccine Safety Datalink (VSD), which performs vaccine safety research and

surveillance, using administrative and claims data from participating health plans

covering approximately 8.8 millions persons.'0 7 Other health data infrastructures that had

utilized a distributed data environment included the HMO Research Network

(HMORN)' 08, the Meningococcal Vaccine Study'0 9, and the concurrently developed

Post-licensure Immunization Safety Monitoring (PRISM) project'10 . All of these projects

employ similar data architectures that are generically depicted in Figure 3 below.
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Common Data C
Model __

---- I --
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Firewall/ Policies Fi

ocal Datasets ; Local Datasets Local Datasets

ommon Data Common Data Common Data
Model _ Model Model

Institutional Institutional Institutional
rewall/ Policies Firewall/ Policies Firewall/ Policies

Data Coordinating and
Analysis Center

Figure 3. Generic Depiction of a Distributed Data Network Architecture

In a distributed data environment, participating data partners/sites periodically use an

extract, transfer, and load procedure to generate copies of data and store them in a

separate, firewalled location onsite. The frequency of dataset refreshes varies by data

107 J. Baggs et al., "The Vaccine Safety Datalink: a Model for Monitoring Immunization Safety," Pediatrics
127 Suppi 1 (2011): S45-53.
108 R. Platt et al., "Multicenter Epidemiologic and Health Services Research on Therapeutics in the HMO
Research Network Center for Education and Research on Therapeutics," Pharmacoepidemiology and Drug
Safety 10, no. 5 (2001): 373-377.
10 P. Velentgas et al., "A Distributed Research Network Model for Post-marketing Safety Studies: The
Meningococcal Vaccine Study," Pharmacoepidemiology and Drug Safety 17, no. 12 (2008): 1226-1234.
"1o M. Nguyen et al., "The Food and Drug Administration's Post-Licensure Rapid Immunization Safety
Monitoring Program: Strengthening the Federal Vaccine Safety Enterprise," Pharmacoepidemiology and
Drug Safety 21 Suppl 1 (2012): 291-297.
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partner, but is generally quarterly and may be annual."' These datasets have been

transformed in order to adhere to a common data model, thereby ensuring identical file

structures, data fields, and coding systems. Important elements of the common data

model include demographic data, enrollment data, outpatient pharmacy dispensing data,

and healthcare encounter information including diagnoses and medical procedures (e.g.,

results from inpatient, outpatient, and emergency department visits). The Mini-Sentinel

System's common data model is described in detail elsewhere.12 As of July 2011, it

contains data from 17 partners covering over 300 million person-years of observation

time, 2.4 billion unique encounters including 38 million acute inpatient stays, and 2.9

billion dispensings of prescriptions.11 3 Further, the FDA reported that it met the 100

million persons requirement in the initiating legislation in December 2011.114

For the most part, the Mini-Sentinel System and the antecedent distributed data

networks primarily rely on administrative claims data as opposed to clinical data obtained

via electronic health records (EHRs). Others 1 5 have noted the relative strengths and

weaknesses associated with each type of data and I review them here. Administrative

claims data are advantageous because their primary purpose - billing for the utilization of

health services - ensures that common coding conventions and interoperable systems are

available for large sample sizes. Additionally, healthcare providers have strong incentives

to submit claims for all care provided and health insurers record nearly all medical

activities associated with their enrollees. Consequently, such records may provide more

complete capture than data contained in stand-alone EHRs originating in individual

physician practices or hospitals.

" Curtis et al., "Design Considerations, Architecture, and Use of the Mini-Sentinel Distributed Data
System."
112 Ibid.

" Platt et al., "The U.S. Food and Drug Administration's Mini-Sentinel Program: Status and Direction."
114 Melissa Robb, "FDA's Mini-Sentinel Exceeds 100 Million Lives (and Counting)... A Major Milestone

in Developing a Nationwide Rapid-response Electronic Medical Product Safety Surveillance Program,"

FDA Voice, June 29, 2012, http://blogs.fda.gov/fdavoice/index.php/201 2/06/fdas-mini-sentinel-exceeds-
100-million-lives-and-counting-a-major-milestone-in-developing-a-nationwide-rapid-response-electronic-
medical-product-safety-surveillance-program/.

15 Brian L. Strom, "Overview of Automated Databases in Pharmacoepidemiology," in

Pharmacoepidemiology, ed. Brian L. Strom, Stephen E. Kimmel, and Sean Hennessy, Fifth. (John Wiley &
Sons, 2011), 158-162; John Seeger and Gregory W. Daniel, "Commercial Insurance Databases," in

Pharmacoepidemiology, ed. Brian L. Strom, Stephen E. Kimmel, and Sean Hennessy, Fifth. (John Wiley &
Sons, 2011), 189-208; Schneeweiss and Avorn, "A Review of Uses of Health Care Utilization Databases

for Epidemiologic Research on Therapeutics."
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Some principal disadvantages of administrative claims data are the lack of clinical

richness (e.g., clinical notes) that may be found in EHRs and the potential lack of

generalizability since uninsured populations simply are not captured. Given the slow

adoption of EHRs in the United States" 6 (particularly ones that are interoperable) and the

need for additional technologies to effectively capture data in EHRs (e.g., natural

language processing), the routine inclusion of these data is still far off. H However, some

participating data partners that act as integrated delivery systems - i.e., those that both

insure patients and deliver their care - have supplemental data arising from laboratory

results and EHRs. Additionally, claims data may suffer from data quality issues due to

attempts to manipulate the payment system to secure more favorable reimbursement,

known as "upcoding." 8

Finally, the PRISM project within the Mini-Sentinel System linked data from

Immunization Information Systems (e.g., registries) that cover 14 million persons in eight

states.' This linkage was designed to capture immunizations received outside the

medical home (e.g., in a retail setting). In the future, attempts to link disease-based

registries, birth indices, death indices, and other sources of data are planned. 2 0

2.2.2 Mini-Sentinel System Capabilities

As shown in Figure 2, there are five capabilities of the Mini-Sentinel System, some

currently unrealized, which will be discussed in turn: 1) the development of population-

wide descriptive statistics with regard to treatments, medical conditions, and outcomes

via use of rapid retrieval queries; 2) the retrospective identification of new potential

signals of serious risk via data-mining; 3) the prospective identification of new potential

signals of serious risk via syndromic surveillance; 4) the retrospective assessment of pre-

specified safety signals using a singular analysis, or "one-time protocol-based

116 A. K. Jha et al., "Use of Electronic Health Records in U.S. Hospitals," The New England Journal of
Medicine 360, no. 16 (2009): 1628-1638.
117 However, new "meaningful use" regulations may hasten adoption. See Chun-Ju Hsiao et al., "Electronic
Health Record Systems and Intent to Apply for Meaningful Use Incentives Among Office-based Physician
Practices: United States, 2001-2011," NCHS Data Brief, no. 79 (November 2011): 1-8.
"1 Christopher S Brunt, "CPT Fee Differentials and Visit Upcoding Under Medicare Part B," Health
Economics 20, no. 7 (July 2011): 831-841.
119 D. A. Salmon et al., "Immunization-safety Monitoring Systems for the 2009 HINI Monovalent
Influenza Vaccination Program," Pediatrics 127 Suppl 1 (2011): S78-86.
120 Platt et al., "The U.S. Food and Drug Administration's Mini-Sentinel Program: Status and Direction."
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assessment"; and 5) the prospective assessment of pre-specified safety signals using

sequential database surveillance.

2.2.2.1 Rapid Retrieval Queries (Summary Tables and Modular Programs)

Rapid retrieval queries are standardized executable computer programs that are

distributed to Mini-Sentinel System data partners via the Mini-Sentinel Operations Center

(MSOC). These queries generate descriptive statistics regarding medical product usage,

diagnoses, and procedures. The data partners may execute these programs onsite and send

results back (via the MSOC) to the initiator for analysis, or may opt out of particular

queries. Only authorized users with appropriate credentials may distribute queries.

The simplest of these queries run against "summary tables" that are annual prevalence

counts of enrollment, diagnoses, procedures, and drug utilization.12 ' The prevalence

counts are stratified by year, sex, and age group. These queries are broad and describe

simple phenomena, e.g., how many females had acute myocardial infarctions in the years

2005-2008.122 They can be used for rapid feasibility checks12 3 and as part of sample size

calculations. They typically can be completed within a week of the initiating request from

the FDA. The MSOC reported that over 50 summary table queries were performed in

June and July 2011.124 The MSOC has posted the results'2 5 of some of these summary

tables including hip implant procedures, diagnoses of progressive multifocal

leukoencephalopathy, and asthma.

More complex queries are referred to as "modular programs" and these queries

operate in the same fashion but run against patient-level data as opposed to summary

tables. A key feature of modular programs is the parameterized nature of the code,

121 Mini-Sentinel Operations Center, "Distributed Query Tool - Summary Tables", August 10, 2011,
http://mini-sentinel.org/dataactivities/details.aspx?ID=117.
122 Mini-Sentinel Operations Center, "Assessments of Diagnoses and Medical Procedures I Acute

Myocardial Infarctions", April 27, 2012, http://mini-
sentinel.org/assessments/diagnosesand_ medical_procedures/details.aspx?ID=132.
123 A feasibility check generally considers whether a database contains sufficient exposures or outcomes in

appropriate populations to answer the study question.
124 Curtis et al., "Design Considerations, Architecture, and Use of the Mini-Sentinel Distributed Data

System."
125 Mini-Sentinel Operations Center, "Assessments of Diagnoses and Medical Procedures", n.d.,

http://mini-sentinel.org/assessments/diagnosesandmedical_procedures/default.aspx.
126 For a brief summary, see Table 3, in Curtis et al., "Design Considerations, Architecture, and Use of the

Mini-Sentinel Distributed Data System."
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meaning it can be used repeatedly with modifications to the input information. They

allow for more complicated questions, e.g., how many females prescribed new/incident

oral anti-diabetic medications had acute myocardial infarctions? There are four

established modular programs: 1) describes incident/prevalent medication use or

procedures; 2 7 2) describes incident/prevalent medication use or procedures among

individuals with particular diagnoses; 2 8 3) describes outcomes among incident users of

medications with/without particular diagnoses; 2 9 4) describes concomitant medication

use among incident/prevalent users of another medication with/without particular

diagnoses.13 0 The current capacity for modular program requests is one per week as part
'3'of a service agreement with data partners and the FDA. Modular program requests can

typically be completed within a few weeks of the initiating request from the FDA.

Modular programs 1, 2, and 4 most closely mirror previous studies of medical

product utilization. They can be useful for understanding prescribing patterns or

"channeling" behaviors, or for observing usage patterns related to specific subgroups.

Modular program 3 (MP3) is a more unique and powerful program for safety signal

assessment because it describes crude (i.e., mostly unadjusted) potentially medical

product-associated adverse event rates. The results of modular program 3 could be used

to develop crude risk estimates. The MSOC has posted the results of two MP3 queries

evaluating smoking cessation drugs and cardiovascular outcomes 3 2 , and angiotensin-II

receptor blockers and celiac disease'm. Several new modular programs are actively being

developed as well as enhancements to MP3.

127 Mini-Sentinel Operations Center, "Module 1: Drug Use - General Characterization", August 17, 2011,
1, http://www.mini-sentinel.org/workproducts/DataActivities/Mini-SentinelModular-Program-

_v1 .0.pdf.
128 Mini-Sentinel Operations Center, "Module 2: Drug Use - By Medical Condition", August 17, 2011, 2,
http://www.mini-sentinel.org/workproducts/Data _Activities/Mini-SentinelModular-Program-2 vI .0.pdf.
129Mini-Sentinel Operations Center, "Module 3: Drug Use - Incident Outcomes", August 17, 2011, 3,
http://www.mini-sentinel.org/workproducts/DataActivities/Mini-Sentinel Modular-Program-3_v1.0.pdf.
130 Mini-Sentinel Operations Center, "Module 4: Drug Use - Concomitant Use", August 17, 2011, 4,
http://www.mini-sentinel.org/work_products/Data Activities/Mini-Sentinel Modular-Program-4_vi .0.pdf.
131 Brown, J.S., Personal communication, March 5, 2012.
132 Mini-Sentinel Operations Center, "Smoking Cessation Drugs & Cardiovascular Outcomes", January 17,
2012, http://www.mini-sentinel.org/work_products/Assessments/Mini-Sentine Smoking-Cessation-Drugs-
and-Selected-Cardiovascular-Outcomes.pdf.
33 Mini-Sentinel Operations Center, "Angiotensin II Receptor Blockers & Celiac Disease", January 17,

2012, http://www.mini-sentinel.org/work_products/Assessments/Mini-Sentinel _Angiotensin-II-Receptor-
Blockers-and-Celiac-Disease.pdf.
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2.2.2.2 Data-mining and Syndromic Surveillance

Data-mining and syndromic surveillance are both signal detection methods, which are

performed without a priori specification of a hypothesized medical product-associated

risk. Table 1 is a convenient way to classify these activities based on 1) their temporal

perspective (i.e., when the data are sampled relative to when the sampling design is

specified) and 2) the existence of a pre-specified hypothesis of medical product-

associated risk, implying the existence of supporting data that suggest a potential risk.

Temporal Perspective
Retrospective Prospective

Exposure- Pre-Specified Protocol based one-time Sequential Database
Outcome assmnsSurveillance

IPair of Non pre-specified Data-mining ydro

Table 1. Types of Active Postmarket Risk Identification and Analysis 3 4

Data-mining is a retrospective assessment of an existing database, and might likely

employ disproportionality analyses similar to techniques currently used to analyze data in

the spontaneous reporting system.135 Syndromic surveillance is prospective monitoring

for certain outcomes, irrespective of medication usage, that are present beyond some

baseline level. In the past, the Centers for Disease Control and Prevention and other local

public health agencies have monitored less serious outcomes, e.g., fever and influenza-

like symptoms, to track infectious disease outbreaks.136 Regulatory authorities might

adapt this technique, by generating a list of known medical product-associated outcomes

such as aplastic anemia or Stevens Johnson Syndrome, and create an alerting system

triggered by the arrival of new data, i.e. a data refresh.

134 Sebastian Schneeweiss and Jennifer Nelson, "Mini-Sentinel Methods Core: Accomplishments and
Lessons Learned" (presented at the International Society of Pharmacoepidemiology (ISPE), Chicago, IL,
August 17, 2011).
135 Almenoff et al., "Novel Statistical Tools for Monitoring the Safety of Marketed Drugs."
136 W Katherine Yih et al., "Evaluating Real-time Syndromic Surveillance Signals from Ambulatory Care
Data in Four States," Public Health Reports (Washington, D.C.: 1974) 125, no. 1 (February 2010): 111-
120; Jian Xing, Howard Burkom, and Jerome Tokars, "Method Selection and Adaptation for Distributed
Monitoring of Infectious Diseases for Syndromic Surveillance," Journal ofBiomedical Informatics 44, no.
6 (December 2011): 1093-1101.
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Both data-mining and syndromic surveillance are in the very earliest stages of

development in Mini-Sentinel System, and have not been piloted. 7 They are shown

grayed in Figure 2 and Table 1 to reflect their embryonic development. However, once

these capabilities are developed, they could serve as a technical solution to another of the

IOM's recommendations: "systematically implement statistical-surveillance methods on

a regular and routine basis for the automated generation of new safety signals."138 For the

purpose of analyzing the optimal use of the Mini-Sentinel System, this dissertation

presumes safety signals have been detected and thus, will not further address these

capabilities. However, when considering questions regarding the appropriate size of the

future Sentinel System and the value of this system in fulfilling the FDA's

responsibilities, the speed and thoroughness of safety signal detection beyond the existing

passive spontaneous reporting systems merits more research.

2.2.2.3 Protocol-Based One-Time Assessments

Protocol-based one-time assessments refer to retrospective studies to assess particular

exposure-outcome pairs using a singular end-of-study analysis. These assessments use

customized protocols that adjust for confounding beyond age and sex using more

advanced techniques' 39; use a variety of epidemiologic study designs'4 0 ; and generate

analytic results. These assessments may include medical chart adjudication of exposure,

137 Davis, R. and Kulldorff, M., "Statistical Methods Development Details I Vaccine Safety Monitoring -
Adverse Events", November 16, 2010, http://mini-
sentinel.org/methods/methodsdevelopment/details.aspx?ID=1028.
138 Institute of Medicine (IOM), The Future of Drug Safety: Promoting and Protecting the Health of the
Public, 7.
139 J. A. Rassen and S. Schneeweiss, "Using High-dimensional Propensity Scores to Automate
Confounding Control in a Distributed Medical Product Safety Surveillance System,"
Pharmacoepidemiology and Drug Saftty 21 Suppl 1 (2012): 41-49; J. A. Rassen, J. Avorn, and S.
Schneeweiss, "Multivariate-adjusted Pharmacoepidemiologic Analyses of Confidential Information Pooled
from Multiple Health Care Utilization Databases," Pharmacoepidemiology and Drug Safety 19, no. 8
(2010): 848-857; R. J. Glynn, J. J. Gagne, and S. Schneeweiss, "Role of Disease Risk Scores in
Comparative Effectiveness Research with Emerging Therapies," Pharmacoepidemiology andDrug Safety
21 Suppl 2 (2012): 138-147; J. A. Rassen et al., "Privacy-maintaining Propensity Score-based Pooling of
Multiple Databases Applied to a Study of Biologics," Medical Care 48, no. 6 Suppl (2010): S83-9.
140 J. J. Gagne et al., "Design Considerations in an Active Medical Product Safety Monitoring System,"
Pharmacoepidemiology and Drug Safety 21 Suppl 1 (2012): 32-40.
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outcomes, or covariates.14' In short, these assessments have much in common with

traditional multi-site pharmacoepidemiologic studies using administrative databases. One

difference is that the distributed database model may limit typical multi-variate

regression-based analyses on patient-level data, which would require pooling of patient-

level data across data partners.14 2 However, development of distributed regression

techniques, i.e., regression that can be performed on non-pooled data, is on the

horizon1 4 3, and some Mini-Sentinel System investigators are actively researching more

sophisticated distributed approaches. In the interim, propensity scores and other summary

statistics are used to allow for a greater inclusion of potential confounding variables.14 4

Three protocol-based one-time assessments have been initiated as pilots: 1) venous

thromboembolism following quadrivalent human papilloma virus vaccine;' 4 5 and 2)

angioedemia following administration of particular anti-hypertensives;14 6 and 3)

intussusception following rotavirus vaccine.'47

2.2.2.4 Sequential Database Surveillance

Sequential database surveillance is another means of assessing evidence regarding a

statistical association with respect to a pre-specified exposure-outcome pair. It differs

from protocol-based one-time assessments in that it is performed prospectively with

multiple, repeated assessments or hypothesis tests. Generally, to conduct a sequential

database surveillance evaluation, one prospectively gathers data from multiple databases

(e.g., population-based health data) to monitor the incidence rate of a medical product-

141 See, for example, Michael D. Nguyen et al., "Monitoring for Venous Thromboembolism After Gardasil

Vaccination," Mini-Sentinel, March 6, 2012, http://www.mini-sentinel.org/workproducts/PRISM/Mini-
Sentinel PRISMGardasil-and-Venous-Thromboembolism-Protocol.pdf.
142 See Darren Toh et al., "Protocol for Signal Refinement of Angioedema Events in Association with Use

of Drugs That Act on the Renin-Angiotensin-Aldosterone System," Mini-Sentinel, July 18, 2011,
http://www.mini-sentinel.org/workproducts/Assessments/Mini-Sentinel Angioedema-and-
RAASProtocol.pdf.... "Performing a centralized, conventional multivariable-adjusted analysis to obtain
[Mini-Sentinel System]-wide estimates [of risk] may not be the preferred approach because it requires

transferring of potentially identifiable individual-level information."
143 Alan F. Karr et al., "Privacy-Preserving Analysis of Vertically Partitioned Data Using Secure Matrix

Products," Journal of Official Statistics 25, no. 1 (2009): 125-138.
144 M. A. Brookhart et al., "Confounding Control in Healthcare Database Research: Challenges and

Potential Approaches," Medical Care 48, no. 6 Suppl (2010): S 114-20.
"5 Nguyen et al., "Monitoring for Venous Thromboembolism After Gardasil Vaccination."
146 Toh et al., "Protocol for Signal Refinement of Angioedema Events in Association with Use of Drugs

That Act on the Renin-Angiotensin-Aldosterone System."
147 Greene, Sharon K. Personal communication. June 14, 2012.
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adverse event pair under surveillance. One then compares the observed incidence rate to

an expected rate, which is calculated based on either a concurrent-, historical-, or self-

controlled group. Comparisons are made at regular intervals as data accrue using

sequential statistical tests with pre-specified signaling thresholds. If the test statistic

exceeds the threshold, then a statistical signal of excess risk is identified, the

hypothesized exposure-outcome association is strengthened, and the null hypothesis of no

excess risk is rejected. This signal is ordinarily followed by confirmatory assessments

and review to validate or refute the finding.

Sequential database surveillance is not a new technique in medical product

surveillance although it has largely been performed to study vaccines14 that are

administered to healthy people and where there is less potential confounding. One

sequential database surveillance protocol is being tested in the Mini-Sentinel System: the

risk of acute myocardial infarction associated with oral anti-diabetic agents. 49 Another

protocol is in development for sequential analyses related to influenza vaccine safety. 50

The literature on prospective sequential database surveillance is reviewed herein in

Section 5.

This dissertation is focused on developing qualitative and quantitative tools to aid

regulators in utilizing the sequential database surveillance capabilities in the Mini-

Sentinel System. However, prior to engaging in the specifics of using the Mini-Sentinel

System for these purposes, it is necessary to first examine how the FDA uses postmarket

evidence to support regulatory decision-making. I turn to that topic next.

141 Yih et al., "Active Surveillance for Adverse Events: The Experience of the Vaccine Safety Datalink
Project."
149 B. Fireman et al., "A Protocol for Active Surveillance of Acute Myocardial Infarction in Association
with the Use of a New Antidiabetic Pharmaceutical Agent," Pharmacoepidemiology and Drug Safety 21
Suppl 1 (2012): 282-290.
50)Greene, Sharon K. Personal communication, June 14, 2012.
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3 FDA REGULATORY DECISION-MAKING

This section connects the U.S. Food and Drug Administration (FDA)'s evidence-

generation activities 15 via its postmarket systems (as generally discussed in the previous

section) to regulatory decision-making while embedding both of these activities in the

new legal framework enacted in the Food and Drug Administration Amendments Act. As

will be explained next, the emergence of new safety information 5 2 in the postmarket

compels the FDA to re-evaluate a medical product's benefit-risk profile and make a

regulatory decision. Such a decision may involve a) taking regulatory actions to influence

medical product utilization or a deliberate decision to forego such actions, or b) taking

regulatory actions to generate new knowledge on a product's benefits and risks. It can

also pursue these two courses simultaneously (and often does) when a safety signal

cannot be fully resolved based on the existing evidence, but interim regulatory actions are

taken while awaiting additional analyses.

It is important to distinguish the pursuit of evidence generation for the sake of science

and the pursuit of evidence generation for the sake of regulatory decision-making. With

regard to the former, the Institute of Medicine has said that:

"The science of drug safety concerns questions of causal, not just statistical, relationships.
That is, the important drug-safety question is whether drug exposure actually causes an
adverse outcome, not simply whether such an outcome occurs more frequently in people

who choose to take the drug." 153

Yet, safety signals of pressing public health importance may necessitate regulatory

action, and time and ethical constraints may rule out research more conducive to strict

causal inference. 54 This mismatch between the need for action and the lack of ideal

evidence to support it has led many public health policymaking entities - e.g., the

Environmental Protection Agency, the Agency for Healthcare Research and Quality - to

151 There are additional evidence generation activities that have not been explicitly discussed herein such as

clinical pharmacology activities, pharmacogenomic activities, and other animal and laboratory studies.
These studies also support regulatory decision-making, but are beyond the scope of this dissertation.
152 "New safety information" is a regulatory term which is explained infra at note 216.
s5 Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,

115.
154 Causal inference is discussed in greater detail herein in subsection 3.4.
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establish frameworks15 5 designed to systematically grade the strength of a body of

evidence and make determinations about causal inference. 15 6 The FDA, as of yet, has not

systematically adopted one of these frameworks for postmarket evidence. 5 7 Interestingly,

these frameworks are used to assess evidence that has already been developed and draw

conclusions regarding its strength. Congress has directed the FDA to proceed in the

reverse order: to set a goal or standard of sufficient evidence, and then assess the ability

of evidence-generating systems to attain that goal.

155 For example, see U.S. EPA, Guidelinesfor Carcinogen Risk Assessment (Washington, D. C.: U.S.
Environmental Protection Agency, 2005), http://www.epa.gov/cancerguidelines/; D. K. Owens et al.,
Methods Guide for Effectiveness and Comparative Effectiveness Reviews, AHRQ Methods for Effective
Health Care (Rockville (MD): Agency for Healthcare Research and Quality (US), 2008),
http://www.ncbi.nlm.nih.gov/pubmed/21433399.
156 Complete coverage of this literature is beyond the scope of this dissertation. What is important is that
the reader understands the potential outcomes that result after this grading exercise. For example, the
Institute of Medicine has proposed "the following categorization of the strength of the overall evidence for
or against a causal relationship from exposure to disease:

1. Sufficient: The evidence is sufficient to conclude that a causal relationship exists.
2. Equipoise andAbove: The evidence is sufficient to conclude that a causal relationship is at least as

likely as not, but not sufficient to conclude that a causal relationship exists.
3. Below Equipoise: The evidence is not sufficient to conclude that a causal relationship is at least as

likely as not, or is not sufficient to make a scientifically informed judgment.
4. Against: The evidence suggests the lack of a causal relationship."

For more, see Institute of Medicine (IOM), Improving the Presumptive Disability Decision-Making Process
for Veterans, ed. Catherine C. Bodurow and Jonathan M. Samet (The National Academies Press, 2008),
189, http://www.nap.edu/openbook.php?recordid=l 1908; Institute of Medicine (IOM), Adverse Efftcts of
Vaccines: Evidence and Causality (Washington, D.C.: The National Academies Press, 2012); Neal A
Halsey et al., "Algorithm to Assess Causality After Individual Adverse Events Following Immunizations,"
Vaccine 30, no. 39 (August 24, 2012): 5791-5798.
m For initial (and continued) licensure of products, the FDA does set the minimum standard to be

"substantial evidence." Substantial evidence is defined as "evidence consisting of adequate and well-
controlled investigations, including clinical investigations, by experts qualified by scientific training and
experience to evaluate the effectiveness of the drug involved, on the basis of which it could fairly and
responsibly be concluded by such experts that the drug will have the effect it purports or is represented to
have under the conditions of use prescribed, recommended, or suggested in the labeling or proposed
labeling thereof. If the Secretary determines, based on relevant science, that data from one adequate and
well-controlled clinical investigation and confirmatory evidence (obtained prior to or after such
investigation) are sufficient to establish effectiveness, the Secretary may consider such data and evidence to
constitute substantial evidence for purposes of the preceding sentence." Codified at 21 U.S.C. § 355(d).
Additionally, with regard to therapies for diabetes mellitus and cardiovascular events, the FDA is quite
specific: "If the premarketing application contains clinical data that show that the upper bound of the two-
sided 95 percent confidence interval for the estimated increased risk (i.e., risk ratio) is between 1.3 and 1.8,
and the overall risk-benefit analysis supports approval, a postmarketing trial generally will be necessary to
definitively show that the upper bound of the two-sided 95 percent confidence interval for the estimated
risk ratio is less than 1.3." See U.S. Department of Health and Human Services, Food and Drug
Administration, and Center for Drug Evaluation and Research, "Guidance for Industry: Diabetes Mellitus:
Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes (Final)",
December 17, 2008,
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatorylnformation/Guidances/UCM07162
7.pdf.
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Recall that per the Food and Drug Administration Amendments Act, when the FDA is

confronted with new safety information in the postmarket, it must make a determination

on whether its publicly-funded postmarket safety systems (including the Mini-Sentinel

System) will generate sufficient knowledge to make a regulatory decision, or whether

additional privately-funded (i.e. manufacturer-funded) studies are necessary. 5 8 As of this

writing, the FDA has not yet stated the basis on which determinations of sufficiency will

be made. Presumably, the Mini-Sentinel System's "laboratory" status has allowed the

FDA to defer construction of a sufficiency standard on the grounds that the capabilities of

the Mini-Sentinel System as an evidence-generating system are unknown at this time.

Still, the legislation directs the FDA to anticipate the strength of evidence needed to

support particular regulatory actions (or deliberate choices not to take such actions), and

then to choose appropriate systems to generate that evidence. The Mini-Sentinel System

is just one of such systems.

In this section, I draw the reader's attention to the statutes, regulations, and guidance

that inform and govern the FDA's options for regulatory action, and specifically, what

these texts require with respect to findings of causality and the strength of the evidence.

As the reader will discover, with the exception of one particular regulatory action, the law

is unclear on this issue, leaving much to the judgment of the FDA. 159 In general, as will

be discussed more thoroughly in subsection 3.4, the ability to infer causal relationships

from observational data - e.g., the data available in the Mini-Sentinel System - is

challenging at best.' 60 However, if the FDA determines that robust findings on causality

(either affirmation or rejection) are necessary precedents to particular regulatory actions,

then the FDA's postmarket systems (including the Mini-Sentinel System) must be

158 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355(o)(3)(B).
159 This ambiguity leads to scientific and policy disagreements within the FDA. See, for example, a
summary of discordant views with respect to the rosiglitazone-cardiovascular outcomes safety signal in
Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs, 131-
133. Incidentally, the Agency for Healthcare Research and Quality found similar disagreements among
their experts even when using a common framework. See Nancy D N D Berkman et al., Reliability Testing
of the AHRQ EPC Approach to Grading the Strength of Evidence in Comparative Effectiveness Reviews,
AHRQ Methods for Effective Health Care (Rockville (MD): Agency for Healthcare Research and Quality
(US), 2012), http://www.ncbi.nlm.nih.gov/pubmed/22764383.
160 See generally Miguel Hern6n and Jamie Robins, Causal Inference, v1. 10.17 ed. (Chapman & Hall/CRC,
2012), 25-40, http://www.hsph.harvard.edu/faculty/miguel-hernan/causal-inference-book/; Institute of
Medicine (IOM), Improving the Presumptive Disability Decision-Making Process for Veterans, Chapter 7
and Appendix J.
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evaluated with respect to their ability to generate evidence to support such findings. In

other words, the legal standards to support particular regulatory decision-making factor

into whether the Mini-Sentinel System will be deemed a sufficient evidence-generation

system.

3.1 Pre-requisites to Sufficiency: New Safety Information and Purpose

Per the Food and Drug Administration Amendments Act, two necessary precursors

to the FDA's sufficiency decision are the establishment of new safety information' and

the designation of a purpose (i.e., a goal) for evidence generation:

"(i) To assess a known serious risk related to the use of the drug involved.
(ii) To assess signals of serious risk related to the use of the drug.
(iii) To identify an unexpected serious risk when available data indicates the potential for
a serious risk."162

The determination of sufficiency will logically be different for the three

aforementioned purposes in the legislation. These three purposes each imply a differing

"maturity" to the existing evidence regarding the pre-specified exposure-outcome pair.

The first purpose, assessing known serious risks, implies a causal relationship is

known and the risk is likely included in the FDA-approved product labeling. Examples of

known serious risks that might still require regulatory action include an increased

incidence of supratherapeutic effects, e.g., insulins-hypoglycemia, that change the

benefit-risk profile of the product.

The second purpose - to assess signals of serious risk - implies that a signal has been

detected, but has not yet been adequately quantified and a determination of causality, if

attempted, has not been conclusive. Examples of potential signals of serious risk are

161 New safety information is defined as "information derived from a clinical trial, an adverse event report,
a postapproval study (including a study under section 505(o)(3)), or peer-reviewed biomedical literature;
data derived from the postmarket risk identification and analysis system under section 505(k); or other
scientific data deemed appropriate by the Secretary about- (A) a serious risk or an unexpected serious risk
associated with use of the drug that the Secretary has become aware of (that may be based on a new
analysis of existing information) since the drug was approved, since the risk evaluation and mitigation
strategy was required, or since the last assessment of the approved risk evaluation and mitigation strategy
for the drug; or (B) the effectiveness of the approved risk evaluation and mitigation strategy for the drug
obtained since the last assessment of such strategy." Codified at 21 U.S.C. § 355-1(b)(3).
162 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355(o)(3)(B).
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published quarterly by the FDA on its website.'63 These signals may or may not be

included in the product's label, but often result in regulatory action in the form of safety-

related label changes.1 64

The third purpose - identifying an unexpected serious risk' 65 when available data

indicates the potential for a serious risk - implies that some pre-specification of an

exposure-outcome pair has occurred, that this outcome is not (fully) indicated in the

labeling166 , and that signal detection (i.e., identification) is ongoing. A good example is

referenced herein167 regarding a fingolimod-bradycardia signal, which was more severe

than first anticipated. Other examples might be medical products presumed to cause

teratogenic effects that were not directly observed (e.g., perhaps based on evidence from

animal studies), or medical products that are part of a class when class-wide risks have

been detected.

Typically, these three purposes are associated with traditional safety issues, i.e., the

emergence of adverse events. Also, a manufacturing quality issue in which the active

pharmaceutical ingredient is omitted or undersupplied might be generally regarded as a

safety issue. However, Evans168 goes further and concludes that the FDA may require a

postmarket requirement in accordance with the three purposes above based on data

suggesting a lack of benefit (i.e., what she refers to as "non-response" or "efficacy

failure"' 69). She grounds her argument in the legislation's definition of adverse drug

163 Center for Drug Evaluation and Research, "Adverse Events Reporting System (AERS) - Potential
Signals of Serious Risks/New Safety Information Identified from the Adverse Event Reporting System
(AERS)," WebContent, n.d.,
http://www.fda.gov/drugs/guidanceComplianceRegulatorylnformation/Surveillance/AdverseDrugEffects/u
cm082196.htm.

64 Abbey Powers and G Elliott Cook, "Potential Safety Signals and Their Significance," Archives of
Internal Medicine 172, no. 1 (January 9, 2012): 72-73.
165 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85. "The term
'unexpected serious risk' means a serious adverse drug experience that is not listed in the labeling of a
drug, or that may be symptomatically and pathophysiologically related to an adverse drug experience
identified in the labeling, but differs from such adverse drug experience because of greater severity,
specificity, or prevalence." Codified at 21 U.S.C. § 355-1(b)(8).
166 The legislative language on this point is difficult to parse since it allows for the outcome to be unlabeled

or perhaps "under-labeled" in a sense that the severity, specificity or prevalence is not well-defined.
167 See supra at note 43. This example might also legitimately be an example of the first purpose: assessing
a known serious risk.
168 B. J. Evans, "Seven Pillars of a New Evidentiary Paradigm: The Food, Drug, and Cosmetic Act Enters
the Genomic Era," Notre Dame Law Review 85, no. 2 (2010): 480,498-500.
169 To be clear, non-response or efficacy failure referenced in Evans is not associated with manufacturing

problems. Rather, efficacy failure varies by the individual and is likely attributable to unknown scientific
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experience"7 , which includes, in part, "any failure of expected pharmacological action of

the drug." She argues that a lack of benefit would meet the requirements of one of the

three purposes above if the lack of benefit resulted in serious harm 1 . The IOM has

endorsed this interpretation172 and is particularly concerned with therapeutics approved

based on surrogate endpoints in this regard.

Herein, I do not explicitly consider the use of the FDA's postmarket safety systems

(including the Mini-Sentinel System) as an evidence generation system to support

regulatory decision-making when the precipitating issue is a lack of benefit. Others have

suggested that systems like the Mini-Sentinel System - large-scale administrative

database networks - could support such evidence generation. 7 3

3.2 FDA Guidance: Tracked Safety Issues

Given new safety information, the FDA can generate a tracked safety issue, which is

a management tool that is a convenient operational unit of analysis for this dissertation. 7 4

The FDA has stated that a tracked safety issue will be established if the identified safety

issue has the potential to lead to any of the following actions:

* "Withdrawal of FDA approval of a drug
- Withdrawal of an approved indication
* Limitations on a use in a specific population or subpopulation

factors involving an individual's genetic makeup. The serious harm that may result is not the harm caused
by the drug itself, but the harm caused because the patient has foregone other therapeutic options. Evans
refers to this as a "lost-chance" injury, based on "lost-chance" doctrine, which, in some states, allows
lawsuits from patients who have suffered irreversible disease progression as a result of a delay in treating or
diagnosing their disease. Evans, "Seven Pillars of a New Evidentiary Paradigm," 499.
"0 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85. "The term
'adverse drug experience' means any adverse event associated with the use of a drug in humans, whether or
not considered drug related, including-(A) an adverse event occurring in the course of the use of the drug
in professional practice; (B) an adverse event occurring from an overdose of the drug, whether accidental or
intentional;(C) an adverse event occurring from abuse of the drug; (D) an adverse event occurring from
withdrawal of the drug; and (E) any failure of expected pharmacological action of the drug." Codified at 21
U.S.C. § 355-1(b)(1).
171 See supra at note 6.

Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs, 31.
"The present committee considers providing FDA with that authority [to investigate any failure of the
expected pharmacological action of the drug] to be in the interest of the public's health. When questions
arise about the health benefits of a drug, studies to document a drug's effectiveness may be as critical for
ensuring that the benefit-risk profile of a drug remains favorable as studies that investigate its risks."
173 S. Toh et al., "Comparative-effectiveness Research in Distributed Health Data Networks," Clinical
Pharmacology and Therapeutics 90, no. 6 (2011): 883-887.
174 A tracked safety issue implies that some degree of signal detection is complete, which is important in
this dissertation since I am primarily concerned with FDA decision-making after signal detection has
suggested an exposure-outcome pair to monitor.
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- Additions or modifications to the Warnings and Precautions, or Contraindications sections of
the labeling, or the Medication Guide or other required Patient Package Insert, including
safety labeling changes required under the Food and Drug Administration Amendments Act
(FDAAA)

- Establishment of or changes to the proprietary name/container label/labeling/packaging to
reduce the likelihood of medication errors

- Establishment or modification of a risk evaluation and mitigation strategy (REMS)
- A requirement that a sponsor conduct a safety-related postmarketing trial or study
- The conduct of a safety-related observational epidemiological study by FDA."' 75

A tracked safety issue relates to a particular exposure-outcome pair and is classified as

emergency, priority, or standard based on a number of characteristics that define the

safety issue.76 Once classified, the FDA examines the existing evidence, re-evaluates the

risk-benefit profile for the drug, and determines whether regulatory action is necessary.

Figure 4 illustrates the series of decisions the FDA must make once a tracked safety issue

is evaluated.

The FDA's first decision (marked in Figure 4 as Decision 1) concerns initial

regulatory actions. To be clear, a regulatory action can encompass a) actions intended to

inform/influence patient and prescriber behavior (e.g., labeling changes, restriction of

access to particular therapies), b) deliberate choices to maintain the status quo, which is

routine monitoring, or c) actions that generate additional evidence (e.g., issuance of a

postmarket requirement). Additionally, the FDA can pursue the first and third courses

simultaneously. Should Decision 1 involve an evidence-generating regulatory action and

there is a desire to pursue privately-funded postmarket requirements, the FDA is required

to make a sufficiency finding as discussed previously (shown in Figure 4 as Decision 2).

175 U.S. Department of Health and Human Services, Food and Drug Administration, and Center for Drug

Evaluation and Research, "Guidance: Classifying Significant Postmarketing Drug Safety Issues (Draft)",
March 8, 2012, 3,
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM29521
1.pdf.
176 U.S. Department of Health and Human Services, Food and Drug Administration, and Center for Drug

Evaluation and Research, "Guidance: Classifying Significant Postmarketing Drug Safety Issues (Draft)."
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Regulatory Actions to Influence Utilization
Outcomes

Figure 4. FDA Decision Process Following Identification and Evaluation of a Tracked Safety Issue
Abbreviations: TSI, tracked safety issue; FDA, Food and Drug Administration; PMR, postmarket
requirement; CDER, Center for Drug Evaluation and Research; AERS, Adverse Event Reporting System;
SDS, sequential database surveillance.

3.3 Plausible Regulatory Actions

Of the potential regulatory actions described in the tracked safety issue guidance, I do

not consider issues related to medication error management. For the remaining actions, I

review the legal and regulatory standards for evidence to support such actions. To be

clear, I review these standards because a statutorily required sufficiency determination on

the evidence generation capabilities of the FDA's postmarket systems depends on

consideration of the strength of evidence necessary to support particular regulatory

actions. For example, if regulators determine that a strong finding (either affirmation or

rejection) of causality is needed to support a particular regulatory action, then the FDA's

postmarket systems (including the Mini-Sentinel System) must be evaluated with respect

to their likelihood of generating that finding.
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3.3.1 Safety-Related Labeling Changes

The most common regulatory action performed by the FDA is to make changes to the

product's FDA-approved labeling. This labeling is the FDA's principal means of

communicating benefits and risks associated with a medical product. In general, changes

to a product's label are normal and expected. These changes reflect the evolving nature of

the benefit-risk profile of a medication as it is used in larger and more diverse

populations. However, because a label is intended to influence a medication's adoption

and use, historically, its contents have been a source of conflict between the FDA and

manufacturers. 7 7 In 2007, Congress eliminated many potential conflicts by expanding

the FDA's authority to mandate safety-related labeling changes given emergent safety

information.17 8 The FDA has issued guidance with respect to how it will use this new

authority' 79, but the evidence bar for certain safety-related label changes was already

established in FDA regulations.

Specifically, the Warnings and Precautions section of the label is intended to

document serious, or otherwise clinically significant, adverse drug reactions'8 0 , and:

"the labeling must be revised to include a warning about a clinically significant hazard as
soon as there is reasonable evidence of a causal association with a drug; a causal

relationship need not have been definitely established."' 8 '

The reader should note that this regulatory action is the only regulatory action with

explicit statements with regard to causality. The FDA's guidance on this section also

directs the manufacturer to include "anticipated" adverse drug reactions that have not yet

been observed but might be reasonably suspected to occur based on a) known

pharmacologic effects, chemical effects, or class-based effects; or b) animal studies (e.g.,

177 See, for example, a summary of the FDA's negotiations with Merck regarding the Vioxx@ (rofecoxib)
label in David A. Kessler and David C. Vladeck, "A Critical Examination of the FDA's Efforts To Preempt
Failure-To-Warn Claims," Georgetown Law Journal 96 (2008): n82.
178 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355(o)(4).
179 Department of Health and Human Services et al., "Guidance for Industry: Safety Labeling Changes -
Implementation of Section 505(o)(4) of the Federal Food, Drug, and Cosmetic Act (Draft)", April 12, 2011,
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatorylnformation/Guidances/UCM25078
3.pdf.
180 U.S. Department of Health and Human Services et al., "Guidance for Industry: Warnings and
Precautions, Contraindications, and Boxed Warning Sections of Labeling for Human Prescription Drug and
Biological Products - Content and Format (Final)", October 11, 2011,
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatorylnformation/Guidances/UCM07509
6.pdf.
18 21 CFR § 201.57(c)(6) and 21 CFR § 201.80(e), April 1, 2012 edition.
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studies that might indicate teratogenicity).s 2 The "anticipated" language bears a

similarity to the definition of "unexpected serious risk" in the FDAAA. Both imply that

prior knowledge makes the outcome likely even if it is not yet observed. Also, the FDA

directs the manufacturer to include adverse drug reactions that may be associated with

unapproved (i.e., off-label) uses.'s3

In contrast, the Contraindications section of the label requires that "known hazards

and not theoretical possibilities must be listed" and is intended to describe situations

when "the drug should not be used because the risk of use (e.g., certain potentially fatal

adverse reactions) clearly outweighs any possible therapeutic benefit."1 84 The FDA

guidance contains similar language regarding "anticipated adverse drug reactions" in the

Contraindications section.' 85 To distinguish the Warnings and Precautions section from

the Contraindications section, information in the former is intended to qualify/moderate

use of a medical product (e.g., certain subpopulations may be at higher risk for certain

adverse events) whereas information in the latter is intended to eliminate particular uses

(e.g., certain subpopulations should never use this product). The Boxed Warnings section

of the label is a subset of information already included in the either the Warnings and

Precautions or the Contraindications section.

For completeness, the Adverse Reactions section of the label is required to list the

adverse reactions that occur with the drug and with drugs in the same pharmacologically

active and chemically related class.'8 6 This list is limited to "adverse events for which

there is some basis to believe there is a causal relationship between the drug and the

occurrence of the adverse event."' 87 Despite FDA's guidance to the contrary8 8 , this

182 U.S. Department of Health and Human Services et al., "Guidance for Industry: Warnings and
Precautions, Contraindications, and Boxed Warning Sections of Labeling for Human Prescription Drug and
Biological Products - Content and Format (Final)."
183 Ibid.
184

"8 21 CFR § 201.57(c)(5) and 21 CFR § 201.80(d), April 1, 2012 edition.
185 U.S. Department of Health and Human Services et al., "Guidance for Industry: Warnings and
Precautions, Contraindications, and Boxed Warning Sections of Labeling for Human Prescription Drug and
Biological Products - Content and Format (Final)."
18 21 CFR 201.57(c)(7)(i), April 1, 2012 edition.
187 21 CFR §201.57(c)(7), April 1, 2012 edition.
188 U.S. Department of Health and Human Services et al., "Guidance for Industry: Adverse Reactions
Section of Labeling for Human Prescription Drug and Biological Products-Content and Format (Final)",
January 18, 2006,
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatorylnformation/Guidances/UCM07505
7.pdf.
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section is more a laundry list of documented adverse reactions. The FDA also indicates in

guidance that it does not believe that changes to the Adverse Reactions section alone

would normally trigger a "safety-related label change" action per the 2007 legislation.' 89

Powers et al. documented the percentage of potential signals of serious risk identified

by the Adverse Event Reporting System (AERS) that resulted in safety-related labeling

changes, and a majority of these changes were in the Warnings and Precautions

section. In her study of AERS-identified signals, only two resulted in changes to the

Contraindications section: Exjade@ (deferasirox) and Saphris@ (asenapine). It is unclear

whether evidence beyond the AERS signal was required to generate changes to the

Contraindications section. Others' 9' have taken a different approach by examining safety-

related labeling changes and working backward to identify the evidence used to initiate

them. Both confirm changes to the Warnings and Precautions section to be a more

prevalent regulatory action than to the Contraindications section.

In general, while the medication's label is a comprehensive summary of a

medication's risks and benefits, it includes technical language that may seem confusing

to patients. "Patient labeling" - in the form of Medication Guides and Patient Package

Inserts - are benefit-risk communications written explicitly for patients (as opposed to

healthcare providers or pharmacists). Medication Guides are required in one or more of

the following circumstances:

"(1) The drug product is one for which patient labeling could help prevent serious adverse
effects. (2) The drug product is one that has serious risk(s) (relative to benefits) of which
patients should be made aware because information concerning the risk(s) could affect
patients' decision to use, or to continue to use, the product. (3) The drug product is
important to health and patient adherence to directions for use is crucial to the drug's

effectiveness." 19 2

Patient Package Inserts are required for all oral contraceptives' 93 and estrogen-containing

189 Department of Health and Human Services et al., "Guidance for Industry: Safety Labeling Changes -
Implementation of Section 505(o)(4) of the Federal Food, Drug, and Cosmetic Act (Draft)," 4. "FDA
expects that information that results in changes made only to the ADVERSE REACTIONS section, but
does not warrant inclusion in other sections of labeling (such as WARNINGS AND PRECAUTIONS),
would not normally trigger required safety labeling changes under section 505(o)(4)."
190 Powers and Cook, "Potential Safety Signals and Their Significance."
191 Moore, Singh, and Furberg, "The FDA and New Safety Warnings"; Jean Lester et al., "Evaluation of

FDA Safety-Related Drug Label Changes in 2010", unpublished manuscript, May 5, 2012.
192 21 CFR § 208.1(c), April 1, 2012 edition.
193 21 CFR § 310.501, April 1, 2012 edition.
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therapeutics.194 Patient Package Inserts can also be voluntary components of labeling.

Both Medication Guides and mandatory Patient Package Inserts have distribution

requirements.1 95 The FDA maintains a list of active products that require a Medication

Guide.' 96 Whether Medication Guides can be required on the basis of causal associations

(i.e., as Warning and Precautions changes are) as opposed to known risks (i.e., as

Contraindications changes are) seems an open question, but it appears that either could

form the evidence base for a Medication Guide.

The FDA has begun tracking its safety-related label changes (including Medication

Guides/Patient Package Inserts) in a monthly database, and these changes are delineated

by section.' 97 More significant interrogation of this dataset could be used to more closely

link evidentiary standards with resultant safety-related label changes.

3.3.2 Changes to Risk Evaluation and Mitigation Strategies

Another type of regulatory action available to the FDA is the issuance or revision of a

risk evaluation and mitigation strategy (REMS). A REMS may consist of up to five

related elements that contain individual requirements. Those elements are: a Medication

Guide/Patient Package Insert; a communication plan; elements to assure safe use

(ETASU) provisions; an implementation system; and a timetable for assessments.198 I

focus on the first three elements because an implementation system is not independent of

ETASU provisions. REMS assessments are designed to evaluate the degree to which the

strategy is meeting its goals.199

The evidentiary standard for issuance of REMS in the postapproval period is broad:

194 21 CFR § 310.515, April 1, 2012 edition.
195 21 CFR § 208.24, April 1, 2012 edition.
1 Center for Drug Evaluation and Research, "Medication Guides," WebContent, n.d.,
http://www.fda.gov/Drugs/DrugSafety/ucm085729.htm.
197 Center for Drug Evaluation and Research, "Drug Safety Labeling Changes," WebContent, n.d.,
http://www.fda.gov/Safety/MedWatch/Safetylnformation/Safety-
RelatedDrugLabelingChanges/default.htm.
198 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355-1(e).
199 Department of Health and Human Services et al., "Guidance for Industry: Format and Content of
Proposed Risk Evaluation and Mitigation Strategies (REMS), REMS Assessments, and REMS
Modifications (Draft)", October 1, 2009,
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatorylnformation/Guidances/UCM 18412
8.pdf.
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"if the Secretary becomes aware of new safety information and makes a determination that
such a [risk evaluation and mitigation] strategy is necessary to ensure that the benefits of

the drug outweigh the risks of the drug." 200

In general, the statute provides flexibility to the FDA, but makes it difficult to

interpret what type of data or analyses would be required to make a showing that the

REMS (and its subsequent assessments) assures that a drug's benefit outweighs its risk.

First, Medication Guide/Patient Package Inserts are described above. While

Medication Guides can be entirely managed via the existing regulatory structure, a

Medication Guide mandated as a part of a REMS ensures that an assessment of the

strategy will be performed. The FDA has stated in guidance that it does not intend to

issue Medication Guide-only REMS unless a "Medication Guide without a REMS will

not be sufficient to ensure that the benefits of the drug outweigh the risks." 2 0 1 Further, it

has stated its intention to include a Medication Guide as part of a REMS when the REMS

202
already includes an ETASU provision. As of March 2012, 125 REMS were issued as

Medication Guide-only REMS, and 105 of these were later released (i.e., the REMS

requirement was fulfilled/canceled).2 03 To be clear, these Medication Guides still exist;

they are just no longer governed by the REMS regulatory structure, which requires

mandatory assessments.

Second, while Medication Guides mandate particular manufacturer-patient

communications, a communication plan refers to communications between manufacturers

and healthcare providers or pharmacists. Historically, these communications have been

"Dear Healthcare Provider" letters sent for one or more of the following three purposes:

1) new medical product information related to a significant hazard to health; 2) new

medical product information related to important changes to the product's labeling; and

200 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21

U.S.C. § 355-1(a)(2).
201 U.S. Department of Health and Human Services et at., "Guidance: Medication Guides - Distribution

Requirements and Inclusion in Risk Evaluation and Mitigation Strategies (REMS) (Final)", November 17,
2011,8,
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryinformation/Guidances/UCM24457

0.pdf.
202 U.S. Department of Health and Human Services et al., "Guidance: Medication Guides - Distribution

Requirements and Inclusion in Risk Evaluation and Mitigation Strategies (REMS) (Final)."
203 Center for Drug Evaluation and Research, "News & Events - Slides for the June 7, 2012 Risk Evaluation

and Mitigation Strategy (REMS) Assessments Public Workshop," WebContent, n.d.,

http://www.fda.gov/Drugs/NewsEvents/ucm307675.htm.
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3) correction of advertising or labeling information related to the medical product. 20 4

However, the FDAAA also references communications related to explaining REMS

provisions20s (i.e., specifically ETASU and implementation plans), and "disseminating

information to health care providers through professional societies about any serious risks

of the drug and any protocol to assure safe use." 206 As of March 2012, 40 REMS have

been established with communication plans as the primary element and 7 of those have

been released.207

The ETASU provisions and accompanying implementation systems are regulatory

actions that serve to restrict access to particular medications, and thus might include the

separately noted regulatory action in the tracked safety issue guidance related to

"limitations on a use in a specific population or subpopulation." 208 To be clear, safety-

related changes to the labeling - particularly the Contraindications section - may also

accomplish this goal in a less burdensome fashion. The FDA has implemented restricted

distribution programs in a variety of circumstances in the past 209, albeit with uncertain

legal authority to do so except under certain conditions. Specifically, these ETASU

provisions pertain to known serious risks and restrict utilization in one of the following

ways:

"(A) health care providers who prescribe the drug have particular training or experience,
or are specially certified (the opportunity to obtain such training or certification with
respect to the drug shall be available to any willing provider from a frontier area in a
widely available training or certification method (including an on-line course or via mail)
as approved by the Secretary at reasonable cost to the provider); (B) pharmacies,
practitioners, or health care settings that dispense the drug are specially certified (the
opportunity to obtain such certification shall be available to any willing provider from a
frontier area); (C) the drug be dispensed to patients only in certain health care settings,
such as hospitals; (D) the drug be dispensed to patients with evidence or other

204 21 CFR § 200.5 See also K Uhl and P Honig, "Risk Management of Marketed Drugs: FDA and the
Interface with the Practice of Medicine," Pharmacoepidemiology and Drug Safety 10, no. 3 (May 2001):
205-208.
2 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355-1(e)(2)... "disseminating information about the elements of the risk evaluation and mitigation
strategy to encourage implementation by health care providers of components that apply to such health care
providers, or to explain certain safety protocols (such as medical monitoring by periodic laboratory tests);"
206 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355-1(e)(3).
207 Center for Drug Evaluation and Research, "News & Events - Slides for the June 7, 2012 Risk Evaluation
and Mitigation Strategy (REMS) Assessments Public Workshop."
208 U.S. Department of Health and Human Services, Food and Drug Administration, and Center for Drug
Evaluation and Research, "Guidance: Classifying Significant Postmarketing Drug Safety Issues (Draft)."
209 Judith C. Maro, "Development of a public health information infrastructure for postmarket evidence"
(Thesis, Massachusetts Institute of Technology, 2009), 58-61, http://dspace.mit.edu/handle/1721.1/53058.
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documentation of safe-use conditions, such as laboratory test results; (E) each patient
using the drug be subject to certain monitoring; or (F) each patient using the drug be

enrolled in a registry." 2 10

The evidentiary standard to issue a REMS with an ETASU provision specifically states

that:

"(A) the drug, which has been shown to be effective, but is associated with a serious
adverse drug experience, can be approved only if, or would be withdrawn unless, such
elements are required as part of such strategy to mitigate a specific serious risk listed in
the labeling of the drug; and (B) for a drug initially approved without elements to assure
safe use, other elements under subsections (c), (d), and (e) are not sufficient to mitigate

such serious risk." 21I

As of April 2012, the FDA reports that 64 medical products are subject to ETASU

provisions.m Among these, rosiglitazone-containing medications, long acting/extended

release opioids, and transmucosal immediate-release fentanyl products are examples of

products for which REMS were created postapproval to manage risks.2 13 The latter two

are class-wide REMS for opioid-containing medications, in which the known risks to be

mitigated are supratherapeutic or "Type A" effects: addiction, abuse, misuse, overdose,

and death. The REMS for rosiglitazone is notable in that continually refers to the

"potential increased risk of myocardial infarction,"2 14 (emphasis added) despite the

legislative language requiring known serious risks.

3.3.3 Issuance of a Postmarket Requirement and the conduct of a study by FDA

In the Food and Drug Administration Amendments Act, Congress also granted the

FDA new legal authorities to require manufacturers to conduct postmarket studies.

210 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355-1(f)(3).
211 § 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355-1(f)(1).
212 Center for Drug Evaluation and Research, Food and Drug Administration, and U.S. Department of

Health and Human Services, "Advances in FDA's Safety Program for Marketed Drugs" (FDA, April

2012), 10, http://www.fda.gov/downloads/Drugs/DrugSafety/UCM300946.pdf.
213 See Center for Drug Evaluation and Research, "Postmarket Drug Safety Information for Patients and

Providers - Approved Risk Evaluation and Mitigation Strategies (REMS)," WebContent, n.d.,
http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetylnformationforPatientsandProviders/ucm 111

350.htm.
214 point to this example to demonstrate the difficulty in reaching consensus on causality. Center for Drug

Evaluation and Research, "Approved Risk Evaluation and Mitigation Strategies (REMS): Avandia

(rosiglitazone)," WebContent, n.d.,
http://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetylnformationforPatientsandProvide
rs/UCM255624.pdf.
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However, it did not do so unconditionally. First, the FDA can exercise these new legal

authorities either at the time of approval (i.e., licensure)21 , or in the postmarket period. In

the latter case, the legal authority can be exercised "only if the Secretary [of Health and

Human Services] becomes aware of new safety information." 216 Second, the FDA is not

permitted to require a manufacturer to perform new postmarket requirements in the form

of postapproval studies or postapproval clinical trials:

"unless the Secretary [of Health and Human Services] makes a determination that the
reports under subsection (k)(1) [i.e., spontaneous reporting systems] and the active
postmarket risk identification and analysis system as available under subsection (k)(3)
will not be sufficient to meet the purposes set forth in subparagraph (B)" 217

(emphasis added)

To summarize, the FDA has three supporting assertions to make prior to generating a

postmarket requirement: a) the data (either the scientific data available pre-licensure or

new safety information) support the postmarket requirement's generation; b) the purpose

of the postmarket requirement satisfies one of the three purposes discussed in subsection

3.1 and c) the findings of sufficiency regarding the spontaneous reporting systems and

active postmarket risk identification and analysis system. 2 18 For postmarket requirements

generated at the time of approval, sufficiency determinations have been made

independent of actual use of the system.219 Letters informing manufacturers of

postmarket requirements generated postapproval are not public, and therefore it is unclear

how these sufficiency determinations have been made.

§ 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355(o)(3)(A). At the time of licensure, the FDA can require a postmarket requirement "on the
basis of scientific data deemed appropriate by the Secretary, including information regarding chemically-
related or pharmacologically-related drugs."
2 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355(o)(3)(C). For the definition of new safety information, see supra at note 152.
2 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355(o)(3)(D). For the language with respect to the purposes, see supra at note 162.
218 For example of these three assertions, see the "Postmarketing Requirements under 505(o) section of the
FDA's recent approval letter for Myrbetriq (mirabegron). Search the FDA's approved drugs database at
"Drugs@FDA: FDA Approved Drug Products", n.d.,
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm.
219 The FDA has stated the results of such determinations in letters to manufacturers at the time of approval.
The language in these letters has generally stated, "The new pharmacovigilance system that FDA is
required to establish under section 505(k)(3) of the FDCA will not be sufficient to assess this serious risk."
To find these letters, one must search the FDA database for newly approved drugs:
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm.
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There are no known legal standards indicating what might trigger "the conduct of a

safety-related observational epidemiological study by FDA."220 Further, it is unclear

whether a safety-related observational epidemiological study by FDA would be

performed within the Mini-Sentinel System as either a protocol-based one-time

assessment or a sequential database surveillance assessment, or whether it would be
221

performed under the existing pharmacoepidemiology contract.

3.3.4 Withdrawal

The most stringent regulatory action is withdrawal of a medical product, or removal

of its licensure for use. The legal standard for withdrawal of a medical product or a

particular indication uses similar broad language to the REMS provisions. Specifically,

withdrawal is permitted if new data:

"show that such drug is unsafe for use under the conditions of use upon the basis of which
the application was approved... [or] that there is a lack of substantial evidence that the
drug will have the effect it purports or is represented to have under the conditions of use

prescribed, recommended, or suggested in the labeling thereof."2 2 2

The first part of the above rationale addresses safety issues whereas the latter addresses

efficacy. In the past, varying sources of evidence have supported safety-related

withdrawals. Some drugs, e.g., levomethadyl acetate and oral bromfenac sodium, were

withdrawn on the basis of risks identified in the spontaneous reporting systems and

assessed by creating a case-series analysis (i.e., an in-depth study of particular cases)

whereas others, e.g., rofecoxib, were withdrawn on the basis of postmarket clinical trial

data.2 23

3.4 Causal Inference - How Necessary for Regulatory Action?

In summary, with the exception of changes to the Warnings and Precautions section

of a product's label, the law is ambiguous on the strength of causal inference needed to

220 U.S. Department of Health and Human Services, Food and Drug Administration, and Center for Drug
Evaluation and Research, "Guidance: Classifying Significant Postmarketing Drug Safety Issues (Draft)."
221 See supra at note 67.
222 21 U.S.C. § 355(e). To be clear, this is not a full quotation of the legislative language. Although they are
valid grounds for withdrawal, I am excluding issues related to fraud or falsification, or a sponsor's lack of
compliance with regard to required reports, inspections, and other assessments.
223 See Zaina P Qureshi et al., "Market Withdrawal of New Molecular Entities Approved in the United

States from 1980 to 2009," Pharmacoepidemiology and Drug Safety 20, no. 7 (July 2011): 772-777; Dal

Pan, Lindquist, and Gelperin, "Postmarketing Spontaneous Pharmacovigilance Reporting Systems."
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support various regulatory actions, leaving much to the discretion of the FDA. While the

FDA might prefer to regulate with robust causal evidence to support its action(s), time

and ethical constraints may rule out study designs that are likely to generate such

evidence (let us assume said designs are well-executed). To that end, Hernin and Robins

describe a study design that guarantees robust causal inference: the ideal randomized

experiment. It is characterized by "no loss to follow-up, full adherence to the assigned

treatment over the duration of the study, a single version of treatment, and double blind

assignment."224 Such conditions are improbable even in a double blind randomized

controlled trial.22 s Generally, choosing a study design likely to draw the most robust

conclusions of causality comes at a price: longer timeframes and higher costs to generate

the evidence.2 26

To that end, randomized controlled trials may be reasonably ruled out as evidence-

generating systems from the outset when the outcome is so rare that the costs of such a

trial would be prohibitive. 2 2 7 Second, they may be ethically questionable when morbidity

or mortality associated with the outcome is high and a premium is placed on earlier rather

than later regulatory decision-making. Third, the existence of safe substitute products

may also favor earlier rather than later regulatory decision-making. 228 Finally,

randomized controlled trials may start too late since the Food and Drug Administration

Amendments Act stages them as a study design of last resort.2 29 At that point, it is

difficult to maintain clinical equipoise, which is an ethical requirement for investigator-
230assigned treatments.

224 Hernin and Robins, Causal Inference, 14-15.
m Hernin and Hemandez-Diaz, "Beyond the Intention-to-treat in Comparative Effectiveness Research."

226 Randomized controlled trials were discussed earlier in subsection 2.1.3.
m See, for example, FDA advisory committee discussion on potential new studies that may clarify
conflicting observational studies showing an association between venous thromboembolism and
drospirenone-containing contraceptives. The advisory committee discusses the infeasibility of randomized
clinical trials because of the rareness of the outcome. See Center for Drug Evaluation and Research,
"Reproductive Health Drugs Advisory Committee - Briefing Information for the December 9, 2011 Joint
Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk
Management Advisory Committee."
228 See for example, arguments that the availability of Actos@ (pioglitazone) favored regulatory action on
Avandia@ (rosiglitazone) without necessitating completion of a randomized controlled trial. Institute of
Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs, 62.
22 901 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85, codified at 21
U.S.C. § 355(o)(3)(D)(ii).
230 Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety ofApproved Drugs,
187.

66



In general, the circumstances of the particular exposure-outcome pair, as Hemn and

Robins point out, require one to assess whether conclusions of causation are really

necessary, or whether prediction (i.e., associational measures) will suffice? 23 ' Similarly,

the IOM has stated:

"Passive surveillance, epidemiologic research with administrative databases, and
active surveillance can be used to answer many drug safety questions. When they do
not provide definitive answers, they can sometimes provide guidance for the development
of further studies or provide sufficient information to narrow the uncertainty about drug-
related risks and benefits and guide regulatory actions and the decisions of patients
and providers. In some instances, full-scale observational studies or clinical trials will be
required to answer key questions, particularly if the outcome of interest is common in the

patients taking a drug."232 (emphasis added)

When a randomized controlled trial is ruled out for time or ethical reasons as

discussed above and when robust findings of causality are still desired, it is possible that

observational data may still support such findings. Essentially, the observational data

must be transformed to emulate a randomized trial.233 Specifically, observational studies

may support causal inference when three criteria are met that allow investigators to

conclude that association is equivalent to causation. These three criteria are:

"1. the values of treatment under comparison correspond to well-defined interventions
2. the conditional probability of receiving every value of treatment, though not decided
by the investigators, depends only on the measured covariates
3. the conditional probability of receiving every value of treatment is greater than zero,

234
i.e., positive."

In general, most pharmacoepidemiologic studies easily can satisfy conditions 1 and 3.

Condition 2 essentially requires the elimination of bias - selection bias, measurement

bias, or confounding bias - that may be responsible for explaining the relationship

between the exposure and outcome. Specific discussions of these biases and the ability to

eliminate them using data in the Mini-Sentinel System are described next.

23! Hernan and Robins, Causal Inference, 38.
232 Institute of Medicine (IOM), The Future ofDrug Safety: Promoting and Protecting the Health of the
Public, 115.
233 Hernan and Robins, Causal Inference, 26. "For each causal question that we intend to answer using
observational data, we will need to carefully describe (i) the randomized experiment that we would like to,
but cannot, conduct, and (ii) how the observational study emulates that randomized experiment." See also
Miguel A Hernin et al., "Observational Studies Analyzed Like Randomized Experiments: An Application
to Postmenopausal Hormone Therapy and Coronary Heart Disease," Epidemiology (Cambridge, Mass.) 19,
no. 6 (November 2008): 766-779.
234 Hernan and Robins, Causal Inference, 26.
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It is sometimes possible to make causal inferences even in the presence of bias when

the effect size and direction together are of such a magnitude that the impact of the bias is

inconsequential.2 3 ' For example, some drugs are withdrawn on the basis of a case-series

analysis 236 and these data do not emulate a randomized experiment. In short, for these

circumstances, no amount of bias could explain the effect size 237 observed. Thus, it may

be possible to conclude causality with the following criteria:

"the suspected [adverse event]: i) is rare in the population when the medication is not used,
ii) is not a manifestation of the underlying disease, iii) has a strong temporal association
with drug administration, and iv) is biologically plausible as a drug reaction or is
generally the result of a drug reaction based on other clinical experience."238

In the next section, I address potential circumstances that limit causal inference in the

Mini-Sentinel System, and develop a qualitative tool by which the FDA might make an

initial sufficiency decision: The Mini-Sentinel System Pre-screening Checklist.

23s Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,
150.
236 See supra at note 223.
237 The effect size is the quantitative strength of an association, which is usually a point estimate of the
effect. See Strom, "Basic Principles of Clinical Epidemiology Relevant to Pharmacoepidemiologic
Studies." Some epidemiologist use the phrase "effect" only to denote casual relationships as opposed to
associations. That is not how I use it here. Typically, epidemiologic effect sizes are given in absolute terms
as risk differences or rate differences, or are given in relative terms as risk ratios, rate ratios, or odds ratios.
See Rothman, Greenland, and Lash, Modern Epidemiology, 51-70.
238 Dal Pan, Lindquist, and Gelperin, "Postmarketing Spontaneous Pharmacovigilance Reporting Systems,"
148.
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4 MINI-SENTINEL SYSTEM PRE-SCREENING CHECKLIST

As I described in the last section, evidence developed in the Mini-Sentinel System

may not be assumed to produce causal inferences. However, causal inference may still be

possible with sufficient covariate data and elimination of systematic biases. Alternatively,

causal inferences may still be possible even in the presence of known but unmeasured

bias when the effect size and direction 2 39 are of such a magnitude that the impact of the

bias is inconsequential.2 40 In these circumstances, it may be unnecessary (and an

inefficient use of public dollars) to more precisely quantify the biases.

This section first summarizes sources of bias using a framework from the

epidemiologic literature 2 4 1 that was adopted by the Institute of Medicine (IOM). 2 4 2 Using

this framework, I then address the potential for elimination of these biases in the Mini-

Sentinel System. Finally, I address the precision243 and transportability244 of statistical

inference that can reasonably be supported by Mini-Sentinel System.

The section introduces a qualitative tool - what I call the Mini-Sentinel System Pre-

screening Checklist - to address whether the Mini-Sentinel System is likely to be

sufficient (or insufficient) on its face to generate evidence to resolve a tracked safety

issue. If the pre-screening checklist suggests that the Mini-Sentinel System is insufficient,

239 For a definition of effect size, see supra at note 237.
240 Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,
150. "Very large relative increases in the background rate, such as the almost 1,000-fold increase in
progressive multifocal leukoencephalopathy with natalizumab treatment in patients with multiple sclerosis
or Crohn's Disease ... , or the greater than ten-fold increase in intussusception seen with rotavirus vaccine,
are likely beyond the bounds of anything that can be explained through imbalances on other risk factors for
those outcomes, that is confounders. In the setting of large relative risks for an adverse event, designs with
quite weak control of confounding, ... , might be sufficient for public policy purposes."
241 Hernin and Robins, Causal Inference; Kenneth J Rothman, Sander Greenland, and Timothy L. Lash,
"Validity in Epidemiologic Studies," in Modern Epidemiology, ed. Kenneth J. Rothman, Sander Greenland,
and Timothy L. Lash, Third. (Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins,
2008), 128-147.
242 Institute of Medicine (1OM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,
103-144.
243 "The statistical precision of a measurement or process is often taken to be the inverse of the variance of
the measurements or estimates that the process produces.. .Precision of estimation can be improved (which
is to say, variance can be reduced) by increasing the size of the study." Rothman, Greenland, and Lash,
Modern Epidemiology, 149.
244 In epidemiology, transportability has been suggested as a more appropriate term for what is commonly
referred to as external validity or generalizability. The IOM has endorsed this term in their most recent
report, explaining "the committee thinks that [the term transportability] reflects a nonbinary characteristic
better. Different effects can occur in a variety of settings, and study results may be transportable to some
populations or settings but not others, so transportability may not be a simple binary property." See
Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of*Approved Drugs, 118.
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then no further analytics are necessary and regulators may have justification to pursue

alternative evidence generation mechanisms. If the pre-screening checklist suggests that

the Mini-Sentinel System is sufficient for evidence generation to support resolution of a

tracked safety issue, then quantitative tools may be used to refine the estimation of the

Mini-Sentinel System's evidence generation capability, which will be presented in

section 6.

Necessary inputs to the Mini-Sentinel System Pre-screening Checklist are: 1) a

tracked safety issue that identifies a particular exposure-outcome pair of interest; and 2) a

regulator's goal with respect to the strength of causal inference necessary to support

regulatory decision-making as was outlined in the previous section.

4.1 Importance of Effect Sizes

Most epidemiologists presume the presence of bias in any observational study, and

are particularly sensitive to effect sizes that are marginally different than the null

hypothesis. 24 5 Likewise, several regulators have expressed reluctance to rely on

observational studies that demonstrate modest elevated risk (e.g., relative risks less than
246two-fold). However, even small relative risks can be quite important with high

prevalence medications, and in these circumstances, the IOM suggests that "a well-

designed and well-conducted postmarketing randomized clinical trial is the best approach

for characterizing the risk-benefit profile."247 An example of such a scenario is the long-

acting beta agonists-death tracked safety issue that is currently being investigated via

245 Strom notes "A quantitatively small association may still be causal but it could be created by a subtle
error, which would not be apparent in evaluating the study." Strom, "Basic Principles of Clinical
Epidemiology Relevant to Pharmacoepidemiologic Studies," 42. See also Institute of Medicine (IOM),
Ethical and Scientific Issues in Studying the Safety of Approved Drugs, 120-121, 205..."If the estimated
relative risks are small, selection bias, confounding, and measurement error may be alternative explanations
for associations found in an observational study."
246 Temple, "Meta-analysis and Epidemiologic Studies in Drug Development and Postmarketing
Surveillance"; J Woodcock, "Evidence Vs. Access: Can Twenty-first-century Drug Regulation Refine the
Tradeoffs?," Clinical Pharmacology and Therapeutics 91, no. 3 (March 2012): 378-380. See also
comments of Dr. John Jenkins in Food and Drug Administration and Center for Drug Evaluation and
Research, "Transcript of the Joint Meeting of Pulmonary-Allergy Drugs Advisory Committee and the Drug
Safety and Risk Management Advisory Committee", March 11, 2010,
http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Pulmonary-
AllergyDrugsAdvisoryCommittee/UCM209124.pdf.
2 Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,
205.
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FDA-required randomized trials.248 In general, a pre-screen criterion for use of the Mini-

Sentinel System should consider the overall effect size that investigators seek to

detect/rule out, and small effect sizes may be a reason for regulators to eliminate

consideration of the Mini-Sentinel System as an evidence generation system.

4.2 Sources of Bias

The IOM defines bias as the "difference between the average effect of many

hypothetical repetitions of a given study and the true effect in the population being

studied." 24 ' Alternatively, Hernin and Robins define bias as instances "whenever the

effect measure (e.g., causal risk ratio or difference) and the corresponding association

measure (e.g., associational risk ratio or difference) are not equal."25 o Systematic biases

are problematic because they are not represented by confidence intervals surrounding risk

estimates. Rather, they shift the mean of confidence intervals in ways that may not be

immediately apparent to investigators. Bias may be controlled for in design or analysis,

and much of the epidemiology literature is devoted to these controls. Bias can be

segregated into three types based on its structure: confounding, selection, and

measurement bias, which are each reviewed in turn.

4.2.1 Confounding Bias

Rothman et al. require a confounding variable to meet three conditions:

"a) the exposure is associated with the confounder,
b) the outcome is independently associated with the confounder,
c) temporally, the confounder is NOT affected by either the exposure or the outcome." 25 1

In other words, confounding occurs "when the populations compared in a study differ in

important predictors of the outcome being studied other than an exposure of interest

248 See transcripts discussing the difficulty in detecting/ruling out a relative risk of <2.0 in observational
studies. Food and Drug Administration and Center for Drug Evaluation and Research, "Transcript of the
Joint Meeting of Pulmonary-Allergy Drugs Advisory Committee and the Drug Safety and Risk
Management Advisory Committee." See also the FDA's announcement on its requirement for randomized
controlled trials, including the decision to pursue a composite endpoint because of the rareness of death as
an outcome. Food and Drug Administration and Center for Drug Evaluation and Research, "FDA Requires
Post-market Safety Trials for Long-Acting Beta Agonists."
249 Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,
116.2 5 0 Hernan and Robins, Causal Inference, 77.
251 Rothman, Greenland, and Lash, Modern Epidemiology, 758.
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(such as exposure to a drug)."25 2 In short, the presence of an uncontrolled confounder

potentially offers an alternative explanation for the cause of the outcome of interest (e.g.,

adverse events). The presence of confounders in an observational study is virtually

guaranteed because treatment assignment is not random. Confounding is more likely to

occur when the disease process itself (independent of the therapy assigned) is a risk factor

for the outcome of interest. Oft-cited examples include diabetes-cardiovascular risk, and

asthma-sudden death. These situations are sometimes referred to as "confounding by

indication."m This same concept can also be called "confounding by contraindication" or

channeling bias, and occurs when a predisposing condition/status of a patient may steer

them away from a particular therapy (e.g., perhaps the patient has a known reaction to a

competing therapy).

In general, pharmacoepidemiologists are accustomed to inevitable confounding in

observational datasets built on secondary data, and consequently, have developed several

adjustment techniques. Schneeweiss 25 and others255 summarize these techniques

depending on whether the covariates are measured, unmeasured, or unmeasureable.25 6

Measured covariates can be adjusted for with design-based mechanisms (e.g.,

matching , restriction 25 8 ) or analysis-based mechanisms (e.g., stratification 2 9 , inverse

2s2 Institute of Medicine (IOM), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,
117.
2s3 Much has been written on confounding by indication. See Ibid., 122; Vandenbroucke and Psaty,
"Benefits and Risks of Drug Treatments"; Strom, "Methodologic Challenges to Studying Patient Safety and
Comparative Effectiveness"; Schneeweiss and Avorn, "A Review of Uses of Health Care Utilization
Databases for Epidemiologic Research on Therapeutics."
254 Sebastian Schneeweiss, "Sensitivity Analysis and External Adjustment for Unmeasured Confounders in
Epidemiologic Database Studies of Therapeutics," Pharmacoepidemiology and Drug Safety 15, no. 5 (May
2006): 291-303.
255 Brookhart et al., "Confounding Control in Healthcare Database Research: Challenges and Potential
Approaches"; Alex D McMahon, "Approaches to Combat with Confounding by Indication in
Observational Studies of Intended Drug Effects," Pharmacoepidemiology and Drug Safety 12, no. 7
(November 2003): 551-558.
256 Unmeasured data are existing data that are missing or unavailable to the investigator whereas
unmeasureable data simply do not exist. In an unrelated policy arena, Donald Rumsfeld famously referred

to the former as known unknowns and the latter as unknown unknowns.
2K7 enneth J Rothman, Sander Greenland, and Timothy L. Lash, "Design Strategies to Improve Study

Accuracy," in Modern Epidemiology, ed. Kenneth J. Rothman, Sander Greenland, and Timothy L. Lash,
Third. (Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008), 168-182.
258 Bruce M Psaty and David S Siscovick, "Minimizing Bias Due to Confounding by Indication in

Comparative Effectiveness Research: The Importance of Restriction," JAMA: The Journal of the American

Medical Association 304, no. 8 (August 25, 2010): 897-898; S. Schneeweiss et al., "Increasing Levels of
Restriction in Pharmacoepidemiologic Database Studies of Elderly and Comparison with Randomized Trial

Results," Medical Care 45, no. 10 Supl 2 (2007): S131-42.
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probability weighting 260, g-estimation methods261). Unmeasured covariates may be

adjusted for with a subset of internal data2 6 2 , external data2 63 , high-dimensional

propensity scores , or disease risk scores.26s Unmeasurable (i.e., unknown) covariates

may be dealt with via sensitivity analysis (also known as bias analysis) 266, instrumental

variables analysis2 67 or self-controlled study designs2 68 . The key issue for regulators is to

assess the potential for confounding bias with regard to the particular tracked safety issue

259 Sander Greenland and Kenneth J Rothman, "Introduction to Stratified Analysis," in Modern
Epidemiology, ed. Kenneth J. Rothman, Sander Greenland, and Timothy L. Lash, Third. (Philadelphia, PA:
Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008), 258-302.
260 Stephen R Cole and Miguel A Hernin, "Constructing Inverse Probability Weights for Marginal
Structural Models," American Journal ofEpidemiology 168, no. 6 (September 15, 2008): 656-664; Miguel
A Hernin and James M Robins, "Estimating Causal Effects from Epidemiological Data," Journal of
Epidemiology and Community Health 60, no. 7 (July 2006): 578-586.
261 Sarah L Taubman et al., "Intervening on Risk Factors for Coronary Heart Disease: An Application of
the Parametric G-formula," International Journal ofEpidemiology 38, no. 6 (December 2009): 1599-1611.
262 Sengwee Toh, Luis A Garcia Rodriguez, and Miguel A HernAn, "Analyzing Partially Missing
Confounder Information in Comparative Effectiveness and Safety Research of Therapeutics,"
Pharmacoepidemiology and Drug Safety 21 Suppl 2 (May 2012): 13-20.
263 Til Stormer et al., "Adjustments for Unmeasured Confounders in Pharmacoepidemiologic Database
Studies Using External Information," Medical Care 45, no. 10 Supl 2 (October 2007): S158-165; Sebastian
Schneeweiss et al., "Adjusting for Unmeasured Confounders in Pharmacoepidemiologic Claims Data Using
External Information: The Example of COX2 Inhibitors and Myocardial Infarction," Epidemiology
(Cambridge, Mass.) 16, no. 1 (January 2005): 17-24.
264 Rassen and Schneeweiss, "Using High-dimensional Propensity Scores to Automate Confounding
Control in a Distributed Medical Product Safety Surveillance System"; Rassen et al., "Privacy-maintaining
Propensity Score-based Pooling of Multiple Databases Applied to a Study of Biologics"; S. Schneeweiss et
al., "High-dimensional Propensity Score Adjustment in Studies of Treatment Effects Using Health Care
Claims Data," Epidemiology (Cambridge, Mass.) 20, no. 4 (2009): 512-522.
265 Glynn, Gagne, and Schneeweiss, "Role of Disease Risk Scores in Comparative Effectiveness Research
with Emerging Therapies."
266 Timothy L Lash et al., "Methods to Apply Probabilistic Bias Analysis to Summary Estimates of
Association," Pharmacoepidemiology and Drug Safety 19, no. 6 (June 2010): 638-644; Onyebuchi A Arah,
Yasutaka Chiba, and Sander Greenland, "Bias Formulas for External Adjustment and Sensitivity Analysis
of Unmeasured Confounders," Annals of Epidemiology 18, no. 8 (August 2008): 637-646; Lawrence C
McCandless, Paul Gustafson, and Adrian R Levy, "A Sensitivity Analysis Using Information About
Measured Confounders Yielded Improved Uncertainty Assessments for Unmeasured Confounding,"
Journal of Clinical Epidemiology 61, no. 3 (March 2008): 247-255; Sander Greenland, "Multiple-bias
Modelling for Analysis of Observational Data," Journal of the Royal Statistical Society: Series A (Statistics
in Society) 168, no. 2 (2005): 267-306; Timothy L Lash and Aliza K Fink, "Semi-automated Sensitivity
Analysis to Assess Systematic Errors in Observational Data," Epidemiology (Cambridge, Mass.) 14, no. 4
(July 2003): 451-458.
267 M Alan Brookhart, Jeremy A Rassen, and Sebastian Schneeweiss, "Instrumental Variable Methods in
Comparative Safety and Effectiveness Research," Pharmacoepidemiology and Drug Safety 19, no. 6 (June
2010): 537-554; Jeremy A Rassen et al., "Instrumental Variables 1: Instrumental Variables Exploit Natural
Variation in Nonexperimental Data to Estimate Causal Relationships," Journal of Clinical Epidemiology
62, no. 12 (December 2009): 1226-1232; M Alan Brookhart et al., "Evaluating Short-term Drug Effects
Using a Physician-specific Prescribing Preference as an Instrumental Variable," Epidemiology (Cambridge,
Mass.) 17, no. 3 (May 2006): 268-275; S Greenland, "An Introduction to Instrumental Variables for
Epidemiologists," International Journal ofEpidemiology 29, no. 4 (August 2000): 722-729.
268 Self-controlled study designs will be explained in more detail in section 5.1
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of interest in the Mini-Sentinel System, and particularly to identify whether important

confounding covariates are measured, unmeasured, or unmeasurable.

4.2.1.1 Limited Covariate Data in the Mini-Sentinel System

As a primarily claims-based system with some laboratory results, many commonly

sought confounding covariates 269 - e.g., smoking status, alcohol use, body mass index,

socio-economic status - are simply uncoded in the Mini-Sentinel System. Some of these

uncoded covariates may be measured via medical chart confirmation, but these data are

occasionally missing in medical charts as well. 7 When singular covariates of importance

are not identified, high-dimensional propensity scores and disease risk scores can

potentially account for these covariates. These scores aggregate many covariates into a

single summary measure. A high-dimensional propensity score is a summary measure of

a patient's "propensity" or likelihood of being exposed to the medical product of interest

and a disease risk score is a summary of the patient's likelihood of experiencing the

disease when they are unexposed to the medical product of interest. Theoretically, these

scores can be used to match similar patients and thus eliminate the bias created by

confounding covariates. Also, creation of these summary scores limits sharing of patient-

level data among data partners. For these reasons, the automated use of such techniques

in the Mini-Sentinel System is growing.27 1

In general, absent a self-controlled design or other technique to mimic randomization

(e.g., instrumental variables), observational studies performed in the Mini-Sentinel

System will retain some degree of residual confounding. As of yet, there has been little

routine implementation of sensitivity/bias analyses in the Mini-Sentinel System to

estimate the strength of bias necessary to eliminate findings of an effect size. These

sensitivity analyses would propose the existence of a bias at some level (e.g., the

prevalence of a confounder in both the treatment group and the comparison group) and

then test how the presence of this bias affects the risk estimate. In the future, regulators

269 For more examples of such covariates, see Schneeweiss et al., "Adjusting for Unmeasured Confounders
in Pharmacoepidemiologic Claims Data Using External Information."
270 See, for example, discussion on the difficulty in covariate capture in Dore et al., "A Cohort Study of
Acute Pancreatitis in Relation to Exenatide Use."
2 Rassen and Schneeweiss, "Using High-dimensional Propensity Scores to Automate Confounding
Control in a Distributed Medical Product Safety Surveillance System."
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may make use of these sensitivity/bias analyses to determine whether potential

confounding bias in the Mini-Sentinel System is tolerable. Such determinations would

also require the regulator to estimate the effect sizes of interest.

4.2.2 Selection Bias

Selection bias refers to how people were selected into the analysis, and results when

"the exposure affects selection in the study or analysis and selection is associated with the

outcome of interest."272 Hernin and Robins emphasize that both the exposure and

outcome must be associated with a common effect, or something that follows the

exposure and outcome.2 73 The common effect is typically a censoring condition, or a

condition that causes people to be excluded from a study. Examples of selection bias

include differential loss to follow-up, censoring due to missing data, healthy user bias,

self-selection/volunteer bias, and prevalent user bias. Evidence generation in the Mini-

Sentinel System is more vulnerable to the first two forms of selection bias noted above.

Differential loss to follow-up occurs when persons in the two groups being compared

stop contributing information (i.e., drop out) at different rates. This is problematic

because no one knows what would have occurred had they kept contributing information.

Censoring due to missing data can just be seen as another form of dropout, i.e. the

investigator censors or omits data because it is incomplete. If this missing data is not

random (i.e., presumably distributed in the two groups proportional to their size), this is a

form of selection bias. Unlike confounding bias, which is presumed eliminated via

randomization, any statistical inference can suffer from selection biases. Additionally,

issues such as differential loss-to-follow-up are difficult to predict in prospective designs.

However, these biases may be corrected in data analysis using inverse probability

weighting and g-estimation methods.2 74

With regard to other forms of selection bias, the healthy user bias generally occurs

with therapeutics that are considered "preventative" such as statins, and the concern is

that users of such therapies would also engage in other forms of health-seeking behavior

272 Institute of Medicine (10M), Ethical and Scientific Issues in Studying the Safety of Approved Drugs,
117.
273 Hernin and Robins, Causal Inference, 95-108.

m See supra at notes 260-261.
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and thus, be markedly different than non-users.27 This concern is generally mitigated in

the design by choice of comparator group, and specifically, avoiding comparisons

between users and non-users. 2 7 6 Second, self-selection/volunteer bias will not apply in

database studies because individual consent is not required. Finally, it is now routine for

investigators to adopt "incident user" designs277 to correct for biases created by prevalent

users.278

4.2.2.1 Churn/Database Turnover in the Mini-Sentinel System

Differential loss-to-follow-up in the Mini-Sentinel System is typically related to

changes in insurance coverage and death. For example, inclusion criteria typically

requires a subject of study (i.e., a patient) to have continuous insurance coverage during

the time the subject is "at risk" of developing the adverse event. If some aspect of being

exposed to a particular medical product causes a loss/change in insurance coverage and

the outcome of interest is also associated with a loss/change in insurance coverage, then

selection bias may have occurred. These types of insurance coverage changes may be less

likely due to the "guaranteed issue" and "community rating" provisions of the Patient

Protection and Affordable Care Act of 2010.279 These provisions prevent denial of

coverage as a result of pre-existing conditions. However, increased competition among

insurers may still generate significant churn in health plans, which could lead to

differential loss-to-follow-up. Similarly, if patients die during the at-risk period at notably

different rates, these deaths create differential loss-to-follow-up problems. Unfortunately,

it may be difficult to anticipate the degree to which selection bias may affect evidence

generation for particular tracked safety issues in the Mini-Sentinel System. However,

long follow-up times (i.e., long "at risk" windows following exposure for outcomes such

m William H. Shrank, Amanda R. Patrick, and M. Alan Brookhart, "Healthy User and Related Biases in
Observational Studies of Preventive Interventions: A Primer for Physicians," Journal of General Internal
Medicine 26, no. 5 (May 2011): 546-550.
276 Choice of comparison groups will be discussed at greater length herein in section 5.1.
277 Wayne A Ray, "Evaluating Medication Effects Outside of Clinical Trials: New-user Designs,"
American Journal of Epidemiology 158, no. 9 (November 1, 2003): 915-920.
278 Goodarz Danaei, Mohammad Tavakkoli, and Miguel A Hernin, "Bias in Observational Studies of
Prevalent Users: Lessons for Comparative Effectiveness Research from a Meta-analysis of Statins,"
American Journal of Epidemiology 175, no. 4 (February 15, 2012): 250-262.
279 Patient Protection and Affordable Care Act, P.L. 111-148, 2010.
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as cancer) are likely to be difficult to achieve. Gagne et al. also refer to these concepts as

the onset and duration of the risk window. 2 80

4.2.3 Measurement Bias

Measurement bias (also known as information bias) occurs when "the association

between treatment and outcome is weakened or strengthened as a result of the process by

which the study data are measured." 2 81 Measurement bias with respect to discrete

variables is often referred to as misclassification. Misclassification can occur when

measuring exposures, outcomes, and covariates, and can occur for a variety of reasons in

database systems.282 I focus on misclassification rather than measurement bias because

the Mini-Sentinel System is built around count-based data2 83 , which require discrete

categorizations. Covariate measurement may be discrete or continuous, but generally

continuous covariates require regression models, which are not easily achieved without

pooling data.2 84 However, as mentioned in the section 4.2.1.1, high-dimensional

propensity scores or disease risk scores may circumvent this limitation.

Misclassification is further described as independent or dependent, and as non-

differential or differential. Independent misclassification typically refers to situations

when misclassification of one variable (e.g., exposures) is independent of

misclassification in other variables (e.g., outcomes). Non-differential misclassification

refers to situations when the treatment and comparator groups have identical patterns of

measurement error (i.e., the sensitivity and specificity of the classification are the same)

with respect to a particular variable (e.g., exposure). There are many corrective

techniques to deal with misclassification that is independent and non-differential in

observational data.2 85 For the purposes of the Mini-Sentinel System Pre-screening

280 Gagne et al., "Design Considerations in an Active Medical Product Safety Monitoring System."
281 Hernin and Robins, Causal Inference, 109.
282 For a comprehensive summary, see Jessica Chubak, Gaia Pocobelli, and Noel S Weiss, "Tradeoffs

Between Accuracy Measures for Electronic Health Care Data Algorithms," Journal of Clinical
Epidemiology 65, no. 3 (March 2012): 343-349.e2; Schneeweiss and Avorn, "A Review of Uses of Health
Care Utilization Databases for Epidemiologic Research on Therapeutics."
283 Curtis et al., "Design Considerations, Architecture, and Use of the Mini-Sentinel Distributed Data
System."
284 The Mini-Sentinel System is designed to limit pooling data. See supra at 142.
285 j. P. Mullooly, "Misclassification Model for Person-time Analysis of Automated Medical Care

Databases," American Journal of Epidemiology 144, no. 8 (1996): 782-792; H. Brenner and 0. Gefeller,
"Use of the Positive Predictive Value to Correct for Disease Misclassification in Epidemiologic Studies,"
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Checklist, it is more important to assess whether particular tracked safety issues are more

vulnerable to misclassification, and the ability of the Mini-Sentinel System to adjust for

these biases. Quantitative methods to adjust for misclassification bias are discussed at

length in Section 8.

4.2.3.1 Exposure Misclassification in the Mini-Sentinel System

Exposure to a therapeutic is not often measured, but assumed via proxy variables.

When using claims data, there is an assumption that a medical product that has been

dispensed is a medical product that has been used therapeutically in accordance with the

dispensing instructions. For self-administered therapeutics, these assumptions may be

quite strong as they assume strict adherence to the prescribing regimen. Absent additional

primary data collection mechanisms such as body-based sensors or mobile phone-based

applications for self-reporting, there are few ways to collect validation data to estimate

the potential degree of exposure misclassification. The Mini-Sentinel System is not

designed to enable such primary data collection from patients due to its status as public

health activity.286 Generally, there are fewer adherence concerns for infusions or

injections that are administered in a healthcare setting (i.e., sometimes termed medically-

attended exposures).

Assuming adherence when it is not present creates false positive exposures, but false

negative exposures are also possible. This type of exposure misclassification may arise

when patients obtain therapeutics outside of their insurance coverage. Recent studies

have documented this type of exposure misclassification due to restrictive formularies 287

and due to therapeutics that are available in both prescription and over-the-counter

status.28 8

American Journal of Epidemiology 138, no. 11 (1993): 1007-1015; M. S. Green, "Use of Predictive Value
to Adjust Relative Risk Estimates Biased by Misclassification of Outcome Status," American Journal of
Epidemiology 117, no. 1 (1983): 98-105.
286 See supra at note 19.
287 John-Michael Gamble et al., "Restrictive Drug Coverage Policies Can Induce Substantial Drug
Exposure Misclassification in Pharmacoepidemiologic Studies," Clinical Therapeutics 34, no. 6 (June
2012): 1379-1386.e3.
288 Joseph A C Delaney et al., "Demographic, Medical, and Behavioral Characteristics Associated with
over the Counter Non-steroidal Anti-inflammatory Drug Use in a Population-based Cohort: Results from
the Multi-Ethnic Study of Atherosclerosis," Pharmacoepidemiology and Drug Safety 20, no. 1 (January
2011): 83-89.
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In summary, in terms of the Mini-Sentinel System Pre-screening Checklist, there may

be exposure misclassification when investigating 1) therapeutics with predicted or known

poor adherence patterns (e.g. anti-epileptic medications 289), 2) therapeutics that are

prescribed "as needed" such as migraine medications, 3) therapeutics that are not

routinely included in commercial insurance formularies, and 4) therapeutics that have

both prescription and over-the counter status (e.g., omeprazole).

4.2.3.2 Outcome Misclassification in the Mini-Sentinel System

Outcome misclassification is a major concern in the Mini-Sentinel System, and a

focus of research.2 90 Systematic validation of algorithms to detect particular outcomes has

just begun.29 ' Generally, these validation studies are estimating positive predictive

values, which are only informative with respect to false positives. Estimation of false

negatives, or missed outcomes, is difficult in database systems, although Chubak et al.

suggest that use of narrow identification algorithms are likely to increase false

negatives.292

Outcome misclassification is more likely to occur when diagnostic definitions of

particular outcomes are ambiguous, uncertain, or evolving (e.g., psychiatric disorders)

and diagnoses are made in the absence of laboratory values or other objective criteria.

Error-prone diagnostic tests also contribute to outcome misclassification. Additionally,

outcome misclassification may occur for diseases with slow disease progression because

the "onset" date is unclear (e.g., cancer may be detected at a late stage so the precise

"onset" date of the cancer may be impossible to know). Outcome misclassification may

create problems for identifying the targeted outcome (i.e., the adverse event), but also for

defining the initial cohort. Often, cohorts are defined with respect to the presence/absence

289 Avani C Modi, Joseph R Rausch, and Tracy A Glauser, "Patterns of Nonadherence to Antiepileptic
Drug Therapy in Children with Newly Diagnosed Epilepsy," JAMA: The Journal of the American Medical
Association 305, no. 16 (April 27, 2011): 1669-1676.
290 R. M. Carnahan, "Mini-Sentinel's Systematic Reviews of Validated Methods for Identifying Health

Outcomes Using Administrative Data: Summary of Findings and Suggestions for Future Research,"
Pharmacoepidemiology and Drug Safety 21 Suppl 1 (2012): 90-99.
291 Sarah L Cutrona et al., "Validation of Acute Myocardial Infarction in the Food and Drug
Administration's Mini-Sentinel Program," Pharmacoepidemiology and Drug Safety (June 29, 2012),
http://www.ncbi.nlm.nih.gov/pubmed/227450 3 8 .
292 Chubak, Pocobelli, and Weiss, "Tradeoffs Between Accuracy Measures for Electronic Health Care Data

Algorithms."
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of pre-existing diagnoses. If these baseline outcomes are mismeasured, then the cohort

itself is misclassified.

In general, use of post hoc corrective procedures to deal with misclassification

requires it to be non-differential, which is a strong and untestable assumption in the Mini-

Sentinel System. In fact, therapeutics other than vaccines are given to people with active

disease processes, and additional follow-up medical visits and/or diagnostics tests are

likely to follow from exposure to new therapeutics as part of the normal course of care.

These follow-up visits and tests create differential opportunities to detect adverse events

among the exposed, thereby creating differential misclassification. The use of active

comparators as opposed to non-users may mitigate this possibility of differential

misclassification. Complete medical chart confirmation is the only sure way to correct

outcome misclassification, but these procedures may be very costly and time-consuming.

For the purposes of the Mini-Sentinel System Pre-Screening Checklist, there is a

higher likelihood of outcome misclassification when investigating outcomes that are do

not have clear onsets, or stable and repeatable diagnostic criteria over a variety of

medical settings (e.g., specialty practices as compared to general practitioners, as well as

emergency departments as compared to outpatient clinical settings).

4.2.3.3 Covariate Misclassification in the Mini-Sentinel System

As was discussed earlier, concerns regarding covariates tend to focus on whether they

are measured at all, rather than on how accurately they are measured. If important

covariates include concomitant exposures or co-morbidities, then these types of

covariates are subject to the same misclassification problems described above. Other

covariates tend to be related to demographics, or current health status. Measures of

general health status often are at greater risk for misclassification. For example, although

obesity has a medically specific definition, it is difficult to ascertain when body mass

index is not explicitly coded or annotated in a medical record. Also, discretization of

continuous covariates to enable count-based analyses results in loss of information (e.g.,

a smoker/non-smoker classification may lump together very heavy smokers with

occasional smokers). Validation procedures may solve covariate misclassification issues,
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but these biases may be subsumed by concerns about unmeasured or unmeasurable

covariates that were discussed in subsection 4.2.1.

For the purposes of the Mini-Sentinel System Pre-screening Checklist, regulators

should strongly consider which covariates are relevant to the tracked safety issue, and

what is known about their classification in database systems.

4.3 Issues of Precision or Sample Size

Precision 2 9 3 - or the inverse of the variance - is a function of sample size, and an

advantage of administrative datasets is the capacity for very large sample sizes. To

establish greater precision, one may extend the study period or take other measures to

increase the sample size. In section 6, I will use mathematical models to more finely

address planning for sample size considerations in the Mini-Sentinel System, particularly

with respect to sequential database surveillance. However, without engaging in more

complex analyses, it is useful to simply consider whether exposures in the Mini-Sentinel

System are likely to generate sample sizes that would meet a regulator's requirement for

precision (i.e., the statistical power) when trying to establish postmarket evidence. Thus, I

review circumstances in which sample size is difficult to achieve in the Mini-Sentinel

System.

4.3.1 Route of Administration and Healthcare Setting of Exposure

To start, one should consider both the primary route of administration and healthcare

setting in which the therapeutic is administered, and then determine if it is well captured

in the Mini-Sentinel System. The Mini-Sentinel System is more efficient at capturing

outpatient/"clinic" exposures and less efficient in capturing inpatient or emergency

department exposures. That is, exposures in the latter two settings may not be recorded as

individual line items, but aggregated as part of a diagnosis-related group code. It can be

difficult to identify dates of exposure based on these data.

The Mini-Sentinel System is also more efficient at capturing self-administered

exposures (e.g., oral medication or self-injectables) than at capturing infusions and

injections primarily administered in the "clinic"/outpatient or inpatient setting. Infusions

293 For a definition of precision, see supra at note 243.
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and injections in these settings are treated as procedures, and may be recorded with

Current Procedural Terminology (CPT) or Healthcare Common Procedure Coding

System (HCPCS) codes. There are significant time lags associated with producing new

codes to capture newly-approved infusions or injections, which are often the exposures of
294interest. For reimbursement purposes, temporary codes are relied on but these

temporary codes can create significant instability in data repurposed for secondary use.

In section 9, I analyzed data from the Mini-Sentinel System with respect to new

molecular entities approved in the years 2004-2006. 1 eliminated certain new molecular

entities from the dataset because they were typically delivered in an inpatient setting, and

thus, generally less reliably captured in the Mini-Sentinel System. Of the 78 new

molecular entities approved in those years, 37 were eliminated (i.e., 47%).

4.3.2 Low Exposure Prevalence Therapeutics

Also, by drawing on data held by commercial insurers, the Mini-Sentinel System is

designed to be nationally representative and capture broad patterns in medical care. Even

in a large system, orphan/rare diseases and their accompanying therapeutics will have

low exposure prevalence that may be challenging to study. For example, in Mini-Sentinel

System data accessed in support of this dissertation, orphan-designated drugs had less

than 1500 new users over a 5-year period. One should consider whether exposure-based

registries would be required to generate appropriate sample sizes for certain tracked

safety issues.

Additionally, low exposure prevalence can result from a crowded market or

availability of many substitute products, poor (i.e., high-tiered) placement in formularies

resulting in high co-payments, or non-preferred status in clinical guidelines. In the Mini-

Sentinel System data accessed for this dissertation, two drugs in the same class (i.e.,

competitors) - one with preferred status in clinical guidelines and one without such a

status - had more than a tenfold difference in new users over a five year period.

294 See generally American Medical Association, "CPT@ Process - How a Code Becomes a Code", n.d.,
http://www.ama-assn.org/ama/pub/physician-resources/solutions-managing-your-practice/coding-billing-
insurance/cpt/cpt-process-faq/code-becomes-cpt.page; Centers for Medicare and Medicaid Services,
"Healthcare Common Procedural Coding System (HCPCS) Public Meetings", August 3, 2012,
http://www.cms.gov/Medicare/Coding/MedHCPCSGenInfo/HCPCSPublicMeetings.html.
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4.3.3 Medicare Populations

Medicare - the publicly-funded national insurance system for adults over 65, those

with end-stage renal disease, and the permanently disabled - fundamentally changed on

January 1, 2006. Effective that date, the Medicare Modernization Act of 2003 created

Medicare Part D drug coverage plans, which allowed private insurers to offer prescription

drug coverage benefits. 2 95 Eligible persons could obtain stand-alone prescription drug

coverage or could be enrolled in Medicare Advantage plans with prescription drug

benefits. Although many of the details of this transition are beyond the scope of this

dissertation, the net result is that the Mini-Sentinel System is a less than ideal setting to

evaluate exposure-outcome pairs that primarily affect Medicare populations because they

may not have complete coverage (i.e., drug and medical benefits coverage) in a single
296 rsacdata source. New research shows this same potential in the elderly who are also

veterans.297 In general, it is likely that individuals without complete coverage would be

excluded from pharmacoepidemiologic studies.

Additionally, the elderly that do have complete coverage under one insurer may be

unique and not representative of the elderly population generally, leading to

transportability issues, which will be discussed in subsection 4.4. The FDA's

collaboration with other federal partners like the Centers for Medicare and Medicaid

Services may alleviate some of these concerns. However, if an elderly person's coverage

is scattered among several insurers, then complete capture is undoubtedly problematic.

4.3.4 Long Follow-up Times

If the tracked safety issue requires a long follow-up time (i.e., there is a long latency

period before the event is biologically expected to occur following exposure), then the

Mini-Sentinel System may have too much "churn" to allow for these long follow-up

times, which contributes to small sample size and selection bias as discussed previously

295 Medicare Prescription Drug, Improvement, and Modernization Act of 2003, Public Law 108-173, 2003.
296 For more details on Medicare Part D coverage patterns, see Gerald F. Riley, Jesse M. Levy, and Melissa

A. Montgomery, "Adverse Selection In The Medicare Prescription Drug Program," Health Affairs 28, no. 6
(December 2009): 1826-37; Amy J. Davidoff et al., "Lessons Learned: Who Didn't Enroll In Medicare
Drug Coverage In 2006, And Why?," Health Affairs 29, no. 6 (June 2010): 1255-63.
297 See Amal N Trivedi et al., "Duplicate Federal Payments for Dual Enrollees in Medicare Advantage

Plans and the Veterans Affairs Health Care System," JA MA: The Journal of the American Medical

Association 308, no. 1 (July 4, 2012): 67-72.
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in section 4.2.2.1. This problem may become exacerbated by the implementation of the

Patient Protection and Affordable Care Act 2 98, which intends to increase competition

among health insurers for enrollees. For surveillance purposes, increases in churn

effectively reduce sample sizes.

4.4 Issues related to Transportability

Transportability describes how well the inference can be applied (i.e., transported) to

other populations. 2 99 Recall that the Mini-Sentinel System is comprised of databases of

commercially-insured persons. If a tracked safety issue affects an uninsured population,

then an alternative evidence generation system may be necessary. The Mini-Sentinel

System is generally composed of commercially insured individuals with medical and

drug benefits coverage under the age of 65. Therefore, the transportability of results to

other populations is uncertain.

4.5 Mini-Sentinel System Pre-Screening Checklist

In summary, every evidence generation system has strengths and weaknesses, and

the particular circumstances of some tracked safety issues may favor some systems over

others. Herein, I have sought to review circumstances that may be unfavorable to using

the Mini-Sentinel System as an evidence generation system and compress these

weaknesses into the Mini-Sentinel System Pre-screening Checklist in Table 2. This

checklist is intended as a qualitative aid to prompt thoughtful analysis on whether the

Mini-Sentinel System is likely insufficient on its face to evaluate a particular tracked

safety issue. Key inputs include the tracked safety issue being investigated and the

regulators' estimation of the strength of causal inference necessary to support regulatory

decision-making.

If regulators proceed through this checklist without eliminating the Mini-Sentinel

System as an evidence generation system, then I presume they have found it likely to be

sufficient, per the statute 300, to resolve the tracked safety issue. The FDA may also wish

to establish some similar procedures to decide whether its other postmarket evidence

298 Patient Protection and Affordable Care Act, P.L. 111-148.
299 For a definition of transportability, see supra at note 244.
300 See supra at note 217.
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generation systems - e.g., the spontaneous reporting systems - are also deemed sufficient,

but I leave that to others.

MINI-SENTINEL SYSTEM PRE-SCREENING CHECKLIST

Bias Issues (General)

- Is there a need to detect/rule out small effect sizes (i.e., relative risks less than 2)?

To mitigate:

- Is a self-controlled design possible?

Bias Issues (Confounding Bias)

- Is there likely to be confounding by indication/confounding by contraindication/channeling bias?

- Are known important confounders unmeasured or unmeasurable?

To mitigate:

- Is a self-controlled design possible?

- Do instrumental variables (e.g., required formularies) exist?

- Is medical chart confirmation in a subset of the study population feasible?

Bias Issues (Selection Bias)

- Are changes in insurance coverage potentially associated with the exposure AND outcome of
interest?

- Are there other censoring conditions (e.g., death) that are associated with the exposure and
outcome of interest?

To mitigate:

- Is post hoc analysis likely to account for selection biases? How sensitive are the results to such
biases?

Bias Issues (Measurement Bias)

- Do the exposures have predicted or known poor adherence patterns?

- Are the exposures prescribed "as needed"?

- Are the exposures not consistently included in commercial insurance formularies, or are there
other conditions that would cause patients to purchase out-of-pocket?

- Are the exposures ones for which prescription and over-the-counter equivalents exist?

- Are the outcomes related to diagnoses that are evolving, ambiguous or uncertain?

- Do the outcomes have an unclear onset?

- What is the existing validation data regarding sensitivity and specificity of the algorithm in the
Mini-Sentinel System?

- Are the outcomes likely to be diagnosed in a variety of practice settings or by a variety of
practitioners?

- Are important covariates continuous variables? Are measures of these variables unsettled?

To mitigate:

- Is medical chart confirmation in a subset of the study population feasible?
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Precision/Sample Size Issues

- Is the exposure primarily expected to occur in an inpatient or emergency department setting?

* Is the exposure via intravenous infusion or medically attended injection?

To mitigate:

- Has the intravenous infusion or medically attended injection been available for 18 months-2 years
(i.e., has enough time elapsed that procedure codes should be stable)?

- Is low exposure prevalence likely due to either the rareness of the disease being treated, the
availability of substitute therapies, suboptimal insurance coverage (e.g., tiering), or non-preferred
status with respect to clinical guidelines?

* Is the population affected likely to have different insurers for medical benefits and drugs? Is the
exposure in question likely covered under Medicare Part D?

- Is a long follow-up time required (i.e., is there an induction period of several months or years)?

Generalizability/Transportability/External Validity

- Is the tracked safety issue likely to substantially affect an uninsured or underinsured population?

Table 2. The Mini-Sentinel System Pre-Screening Checklist

If the Mini-Sentinel System is likely to be sufficient on itsface to resolve the tracked

safety issue, then I presume the FDA's next decision (shown as Decision 5 in Figure 5)

regards whether to perform retrospective or prospective sequential analysis in the Mini-

Sentinel System. This calculation is often a function of sample size at the time of

initiation of the analysis, and that approximate sample size can be ascertained via

modular programs as described in subsection 2.2.2.1. I focus the rest of this dissertation

on prospective sequential methods because the conduct of protocol-based one-time

assessments (described in subsection 2.2.2.3) is very similar to traditional retrospective

pharmacoepidemiologic studies, which have been well-studied. However, the desire to

avoid pooling data in the Mini-Sentinel System when performing these types of studies

does pose some new challenges in this area.
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Regulatory Actions to Influence Utilization
Outcomes

Figure 5. FDA Decision Process AFTER the Mini-Sentinel System is Deemed Sufficient
Abbreviations: TSI, tracked safety issue; FDA, Food and Drug Administration; PMR, postmarket
requirement; CDER, Center for Drug Evaluation and Research; AERS, Adverse Event Reporting System;
SDS, sequential database surveillance.

87



THIS PAGE INTENTIONALLY LEFT BLANK

88



5 PROSPECTIVE SEQUENTIAL DATABASE SURVEILLANCE

At this point in regulatory decision-making process, I assume that: 1) a tracked safety

issue has been initially evaluated, 2) the Mini-Sentinel System has been deemed

sufficient for regulatory decision-making using qualitative tools such as the Mini-Sentinel

System Pre-screening Checklist, and 3) regulators are pursuing sequential prospective

methods for the tracked safety issue (i.e., a pre-specified exposure-outcome pair) using

the Mini-Sentinel System.

Briefly, I review the conduct of a prospective sequential database surveillance (SDS)

evaluation. First, one prospectively gathers data from multiple databases (e.g.,

population-based health data) to monitor the incidence rate of an exposure-outcome pair

under surveillance. One then compares the observed incidence rate to an expected rate,

which is calculated based on either a concurrent-, historical-, or self-controlled group.

Comparisons are made at regular intervals as data accrue using sequential statistical tests

with pre-specified signaling thresholds. If the test statistic exceeds the threshold, then a

statistical signal of excess risk is identified, the hypothesized exposure-outcome

association is strengthened, and the null hypothesis of no excess risk is rejected. This

signal is ordinarily followed by confirmatory assessments and review to validate or refute

the finding. SDS analyses depend on amassing sufficient exposed person-time (i.e.,

sample size) to reach a stopping point, either by rejecting the null (i.e., detecting a safety

signal) or ending surveillance (i.e., failing to signal).

Beyond feasibility, another important consideration is the context of safety

surveillance, and specifically, what is known, if anything, about the tracked safety issue.

SDS may be undertaken in circumstances when there is little expectation that a safety

problem exists, but surveillance is performed for reassurance. It may also be undertaken

when data from spontaneous reporting systems or underpowered pre-licensure data

suggest the possibility of a safety signal. These considerations are unique to the post-

licensure environment when individuals outside of the observed population are affected

by the speed and confidence (i.e., statistical power) with which a safety signal is detected

or ruled out.

302 J. C. Maro and J. S. Brown, "Impact of Exposure Accrual on Sequential Postmarket Evaluations: a

Simulation Study," Pharmacoepidemiology and Drug Safety 20, no. 11 (2011): 1184-1191.
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Of prospective sequential surveillance methods, the Food and Drug Administration

(FDA) either can perform formal prospective SDS methods as described above or

repeatedly execute modular programs3 03 at set time intervals. Recall that Modular

Program 3 is a computer program for safety signal assessment that can be used to

calculate crude (i.e., mostly unadjusted) associational measures of medical product-

associated adverse event rates. Data in Modular Program 3 can be subjected to post hoc

statistical testing, but there is no ability to automatically control for multiple hypothesis

tests and there are no "stopping boundaries." There is also no identified comparator group

and very limited confounding control (i.e., stratification by age, sex, site only). I will

return to a consideration of these two options after reviewing the state of the science with

regard to prospective sequential surveillance methods next.

5.1 Epidemiological Design Considerations

Often, epidemiologists approach new research/surveillance questions by considering

various epidemiologic designs along scientific, public health, ethical, and practical axes.

With systems like the Mini-Sentinel System in mind, Gagne et al. 304 and.others3 05 have

written extensively on considerations that should inform the epidemiologic design in an

"active monitoring" context. Important factors include the exposure persistence (e.g., is it

a continuing exposure like a statin or a brief one like an antibiotic), the onset and duration

of the risk window period (e.g., is it biologically plausible that the exposure caused the

outcome 1-10 days post-exposure or 30-365 days post-exposure), the strength of

confounding, and the timing of the onset of the outcome of interest (e.g., short for allergic

reactions, quite long for cancers and other chronic diseases that include undiagnosed

subclinical activity).306 All told, consideration of these factors leads epidemiologists to

choose either between-person study designs or within-person study designs, and

sometimes both are employed for reassurance. 307

303 Modular Programs are explained herein in 2.2.2.1.
304 Gagne et al., "Design Considerations in an Active Medical Product Safety Monitoring System."
30s D. L. McClure et al., "Comparison of Epidemiologic Methods for Active Surveillance of Vaccine
Safety," Vaccine 26, no. 26 (2008): 3341-3345.
306 Gagne et al., "Design Considerations in an Active Medical Product Safety Monitoring System."
347 See, for example, a summary of vaccine safety studies in Yih et al., "Active Surveillance for Adverse
Events: The Experience of the Vaccine Safety Datalink Project." Nearly all employ both designs and
designate one as the primary.
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Between-person study designs compare information contributed by different persons

whereas within-person study designs compare information contributed by the same

person during periods of exposure and non-exposure. Functionally, these designs dictate

the choice of comparator group. In a between-person design, the comparator group can be

a historical cohort of similarly situated individuals, or a concurrent cohort matched on

either exposure (i.e., presence or absence of medical product use) or outcome status (i.e.,

presence or absence of adverse event of concern). Typically, these designs may sample

data from the entire cohort of individuals (e.g., a full cohort study) or a smaller subset of

the cohort (e.g., a case-control study). 30 8 Gagne et al. argue that case-control studies

provide no meaningful gains in an administrative database setting when a pre-specified

exposure-outcome pair exists.309

In a within-person design or self-controlled design, the comparator group is the

treatment group, except the individuals are sampled during a different time period. In a

self-controlled design, the individuals may be sampled based on their exposure status

(e.g., a self-controlled risk interval design3 10 ) or outcome status (e.g., a self-controlled

case seriesm3 1 ). Self-controlled designs are a useful technique to mitigate unmeasured and

unmeasureable confoundingm3 ", but there are limited opportunities to employ such

designs because of their many assumptions. As Gagne et al. point out:

"When the key assumptions of self-controlled designs are fulfilled (i.e., lack of within-
person, time-varying confounding; abrupt HOI [health outcome of interest] onset; and
transient exposure), within-person comparisons are preferred because they inherently

avoid confounding by fixed factors."3 13

5.2 Sequential Statistical Methods

It is important to note that the choice of epidemiologic design and comparator group

limit the selection of available sequential statistical methods to analyze the data collected.

308 For more on case-control studies and cohort studies in epidemiology, see Rothman, Greenland, and
Lash, Modern Epidemiology, Chapter 7 and 8.
309 Gagne et al., "Design Considerations in an Active Medical Product Safety Monitoring System."
310 For examples of a self-controlled risk interval designs, see Alison Tse et al., "Signal Identification and
Evaluation for Risk of Febrile Seizures in Children Following Trivalent Inactivated Influenza Vaccine in
the Vaccine Safety Datalink Project, 2010-2011," Vaccine 30, no. 11 (March 2, 2012): 2024-2031; Lee et
al., "HIN I and Seasonal Influenza Vaccine Safety in the Vaccine Safety Datalink Project."
31 For an example of a self-controlled case series design, see S. K. Greene et al., "Near Real-Time
Surveillance for Influenza Vaccine Safety: Proof-of-Concept in the Vaccine Safety Datalink Project,"
American Journal of Epidemiology (2009).
m For more on confounding, see section 4.2.1.

313 Gagne et al., "Design Considerations in an Active Medical Product Safety Monitoring System."
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Epidemiologic Designs

Within-Person Comparisons

Self Controls

Self-
Controlled
Case Series
(matched on

outcome)

Self-
Controlled

Risk Interval
(matched on

exposure)

Poisson MaxSPRT

Conditional Poisson
MaxSPRT

Binomial MaxSPRT** X X

Exact Sequential
Analysis**

Group Sequential
Likelihood Ratio Test** X X

Conditional Sequential
Sampling Procedure

(CSSP)

Propensity Score-
Enabled CSSP

Group Sequential
Estimating Equations***

Group Sequential Lan
Demets***

Between-Person
Com arisons

Historical Concurrent
Controls Controls

Cohort Design
(matched on exposure)*

X

X

X

X

X

X

X X

X X

Table 3. Compatibility of Epidemiologic Designs and Sequential Statistical Methods
*It is possible to use between-person comparisons and match on outcome. This would be a case-control
design, which generally is not used in this context.314

**It is not applicable to a continuous exposure setting for which the number of exposed days will vary by
each patient (e.g., most drugs). This is a quite limiting feature.
***It is generally not feasible when the outcome is rare or very rare.315
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test; CSSP, Conditional Sequential
Sampling Procedure

While the choice of epidemiologic design and comparator group affect data collection

(i.e., how we sample the database of individuals), the choice of sequential statistical

m Ibid.
315 For definitions of rare or very rare outcomes, see The Council for International Organizations of
Medical Sciences (CIOMS) Working Group III, Guidelines for Preparing Core Clinical Safety Information
on Drugs.
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method largely affects data analysis. Table 3 presents the compatibility of epidemiologic

designs with sequential statistical methods, which are explained in detail in this section.

Generally, different methods can be compared with respect to their treatment of type I

error and its distribution over multiple hypothesis tests, type II error/statistical power, the

time to detect a signal (i.e., what I will later describe as the median sample size), and the

maximum sample size. Sequential statistical methods also require that investigators set a

stopping boundary, or a way to interrupt and end surveillance through signaling. The

shape of this boundary dictates the likelihood of signaling at various interim hypothesis

tests and determines some of the tradeoffs between power (i.e., sample size) and the

timeliness of signal detection. Others3 16 have reviewed sequential statistical methods that

can be employed to perform SDS, which will be briefly summarized here.

A broad and important classification of the methods regards the frequency of multiple

hypothesis testing. Continuous hypothesis testing methods perform hypothesis tests with

the arrival of each observation. Group sequential testing methods specify the number of

interim hypothesis tests based either on how information accrues in exposed-time or

calendar-time increments. There are generally fewer interim tests than under a continuous

hypothesis testing regimen. Group sequential clinical trials, which employ the same

statistical models, commonly only allow 1-3 interim tests. In general, more frequent

testing (i.e., continuous) performs better on timeliness by minimizing sample size, but

does less well with regard to type I and type II errors.

Often, the choice of a continuous or group sequential statistical method is defined by

logistic feasibility rather than epidemiologic choices. First, the frequency of testing

should be conducive to the way in which data arrive. Specifically, hypothesis tests only

need to be performed as often as new data are expected to arrive. Second, in order to keep

with the assumptions of the underlying statistical models, one must understand how much

316 A. J. Cook et al., "Statistical Approaches to Group Sequential Monitoring of Postmarket Safety
Surveillance Data: Current State of the Art for Use in the Mini-Sentinel Pilot," Pharmacoepideniology and
Drug Safety 21 Suppl 1 (2012): 72-81; J. C. Nelson et al., "Challenges in the Design and Analysis of
Sequentially Monitored Postmarket Safety Surveillance Evaluations Using Electronic Observational Health
Care Data," Pharmacoepidemiology and Drug Safety 21 Suppl 1 (2012): 62-71; Jennifer C Nelson et al.,
"Methods for Observational Post-licensure Medical Product Safety Surveillance," Statistical Methods in
Medical Research (December 2, 2011), http://www.ncbi.nlm.nih.gov/pubmed/22138688; Martin Kulldorff,
"Sequential Statistical Methods for Prospective Postmarketing Safety Surveillance," in
Pharmacoepidemiology, ed. Brian L. Strom, Stephen E. Kimmel, and Sean Hennessy, Fifth. (John Wiley &
Sons, 2011), 852-867.
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new information arrives in each download of new data. For continuous sequential

methods that perform a new hypothesis test on each new observation, if several

observations were to arrive simultaneously, then there would be a mismatch between the

statistical model assumptions and real-world surveillance. Consequently, as Cook et al.

describe: "[the] use of continuously-designed [statistical] thresholds when testing is

actually performed [less frequently] means that higher-than-necessary thresholds are

used. This yields a type I error rate that is lower than desired and suboptimal statistical

power."317 Thus, the overall type I error threshold is set too conservatively. Further, "the

magnitude of the conservatism increases with the amount of new data received between

discrete testing points." 318

5.2.1 Continuous Sequential Testing Methods - SPRT Adaptations

In the initial proof-of-principle analysis within the Vaccine Safety Datalink319 ,

statistical analysis was performed using Wald's Sequential Probability Ratio Test

(SPRT)320 to analyze vaccinated cohorts and compare them to historical data on a weekly

basis.3 2 ' The SPRT is a continuous hypothesis testing method as described above.

Acceptance or rejection of the null hypothesis of no excess risk is dependent on the value

of a test statistic, which is posed as a log likelihood ratio. The SPRT's stopping

boundaries use a "flat threshold," meaning that the critical value for the test statistic is

constant across all hypothesis tests. Although this threshold is mathematically simple and

easy-to-understand, others have noted that a flat threshold may yield more false positives

early in monitoring when there is less data, and lower power (i.e., higher type II error) at

later points.3 22 One way to overcome this limitation of a flat spending boundary while

317 Cook et al., "Statistical Approaches to Group Sequential Monitoring of Postmarket Safety Surveillance
Data: Current State of the Art for Use in the Mini-Sentinel Pilot."
318 Nelson et al., "Methods for Observational Post-licensure Medical Product Safety Surveillance."
319 The Vaccine Safety Datalink is a precursor to the Mini-Sentinel System and is described by Baggs et al.,
"The Vaccine Safety Datalink: a Model for Monitoring Immunization Safety."
320 A. Wald, "Sequential Tests of Statistical Hypotheses," The Annals of Mathematical Statistics 16, no. 2
(1945): pp. 117-186.
m R. L. Davis et al., "Active Surveillance of Vaccine Safety: a System to Detect Early Signs of Adverse
Events," Epidemiology (Cambridge, Mass.) 16, no. 3 (2005): 336-341.
322 Nelson et al., "Challenges in the Design and Analysis of Sequentially Monitored Postmarket Safety
Surveillance Evaluations Using Electronic Observational Health Care Data."
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still performing continuous testing is to delay hypothesis testing until a certain number of

events or exposures have accrued.m Such a delay prevents early signaling on little data.

Adjustment for confounding is done by stratifying the historical count data according

to a limited set of covariates (e.g., age, sex, site), and then performing a logistic

regression to calculate a risk-adjusted probability of the outcome in question.324 The log

likelihood ratio is the product of the likelihoods in the various strata. This approach limits

the total number of confounders that can be considered to prevent multiple strata that are

uninformative or too small.

Wald's SPRT requires a simple alternative hypothesis (e.g., a specific risk estimate

such as an incidence rate ratio of 5). Kulldorff et al. have shown that the method is highly

dependent on the selecting the correct alternative hypothesis (i.e., if an excess risk exists,

then this presumption implies knowing the approximate value of that elevated risk, which

is improbable).3 2 5 Subsequent analyses in the Vaccine Safety Datalink utilized an

adaptation of that method, Kulldorffs maximized sequential probability ratio test

(MaxSPRT).32 6 The MaxSPRT uses a composite alternative hypothesis as opposed to

Wald's simple alternative. Initially, two variants of the MaxSPRT were posed: a binomial

and a Poisson variant.

5.2.1.1 Binomial Variants

The binomial variant has been used for concurrent-327 and self-controlled 328 analyses.

Like Wald's SPRT, the binomial MaxSPRT model typically uses a flat threshold

although Kulldorff indicates that it can support other types of sequential statistical

323 Martin Kulldorff and Ivair Silva, "Continuous Sequential Analysis with Delayed Start", Unpublished

Manuscript, 2012.
324 S H Steiner, R J Cook, and V T Farewell, "Risk-adjusted Monitoring of Binary Surgical Outcomes,"

Medical Decision Making: An International Journal of the Society for Medical Decision Making 21, no. 3
(June 2001): 163-169.
325 M. Kulldorff et al., "A Maximized Sequential Probability Ratio Test for Drug and Vaccine Safety

Surveillance," Seq Anal 30, no. 1 (2011): 58-78.
326 ibid.
327 T. A. Lieu et al., "Real-time Vaccine Safety Surveillance for the Early Detection of Adverse Events,"

Medical Care 45, no. 10 Supl 2 (2007): S89-95.
328 Tse et al., "Signal Identification and Evaluation for Risk of Febrile Seizures in Children Following

Trivalent Inactivated Influenza Vaccine in the Vaccine Safety Datalink Project, 2010-2011"; Lee et al.,
"HINI and Seasonal Influenza Vaccine Safety in the Vaccine Safety Datalink Project"; Greene et al.,
"Near Real-Time Surveillance for Influenza Vaccine Safety: Proof-of-Concept in the Vaccine Safety
Datalink Project."
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boundaries. 32 9 Confounding is controlled through matching. Early implementations of the

binomial variant required a fixed matching ratio of the treatment group to the comparator
330

group, which became difficult to implement in practice . Specifically, investigators had

to tradeoff more stringent matching criteria (i.e., better confounding control) against loss

of information that resulted from the inability to find a match.

Subsequent improvements to the method relaxed this restriction and allowed the

number of matched controls to vary by making use of an exact binomial test. The Exact

Sequential Analysis 331 , as it is now known, also can accommodate multiple sequential

stopping boundaries. It is important to note that neither the binomial MaxSPRT model

nor the Exact Sequential Analysis can be utilized with continuous exposures because of

the inability to control the ratio of exposed/unexposed persons at each hypothesis test.

Practically, it means that these tests cannot be used with most drugs and therapeutic

biologics. As noted before, this is a major limitation in the Mini-Sentinel System.

5.2.1.2 Poisson Variants

The Poisson MaxSPRT variant is used with historical control groups, assumes a flat

threshold, and assumes that the historical comparison rate is known (i.e., calculated from

a large sample of the historical cohort). Confounding control is via stratification and then

regression modeling as described above. The Poisson MaxSPRT model has been used in

extensively in vaccine safety surveillance 3 32 and has been piloted for use in drug

surveillance3 33 . This sequential statistical test was later adapted into the conditional

329 Kulldorff, "Sequential Statistical Methods for Prospective Postmarketing Safety Surveillance."
330 Lieu et al., "Real-time Vaccine Safety Surveillance for the Early Detection of Adverse Events."
331 J. Gee et al., "Monitoring the Safety of Quadrivalent Human Papillomavirus Vaccine: Findings from the
Vaccine Safety Datalink," Vaccine 29, no. 46 (2011): 8279-8284.
332 Lieu et al., "Real-time Vaccine Safety Surveillance for the Early Detection of Adverse Events"; E. A.
Belongia et al., "Real-Time Surveillance to Assess Risk of Intussusception and Other Adverse Events After
Pentavalent, Bovine-Derived Rotavirus Vaccine," The Pediatric Infectious Disease Journal 29, no. 1
(2010): 1-5; N. P. Klein et al., "Measles-mumps-rubella-varicella Combination Vaccine and the Risk of
Febrile Seizures," Pediatrics 126, no. 1 (2010): el-8; W. K. Yih et al., "An Assessment of the Safety of
Adolescent and Adult Tetanus-diphtheria-acellular Pertussis (Tdap) Vaccine, Using Active Surveillance for
Adverse Events in the Vaccine Safety Datalink," Vaccine 27, no. 32 (2009): 4257-4262; Gee et al.,
"Monitoring the Safety of Quadrivalent Human Papillomavirus Vaccine: Findings from the Vaccine Safety
Datalink."
m J. S. Brown et al., "Early Adverse Drug Event Signal Detection Within Population-based Health
Networks Using Sequential Methods: Key Methodologic Considerations," Pharmacoepidemiology and
Drug Safety 18, no. 3 (2009): 226-234; J. S. Brown et al., "Early Detection of Adverse Drug Events Within
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MaxSPRT (CMaxSPRT) 334 model to account for uncertainty in expected event rate in the

historical comparison group. The CMaxSPRT model has been used for influenza vaccine

surveillance.3 35

5.2.2 Group Sequential Testing Methods

Group sequential methods have a well-established statistical literature that was

developed primarily in a randomized controlled trial setting. 336 Like continuous testing

methods, these methods also allow a statistically valid way to stop a clinical trial early as

a result of evidence of excess harm or demonstrated benefit. That is, it would be unethical

to continue to allow the unexposed group to remain unexposed if the harmful or

beneficial effect were proven statistically at an interim test. Typically, only a limited

number of interim tests are performed in a clinical trial because of concerns related to

loss of power. Additionally, group sequential clinical trials often were based on efficacy

endpoints, and so approaches to deal with rare safety endpoints (e.g., Type B adverse

reactions) are underdeveloped. Very recently, these techniques have been proposed and

simulated in an observational safety surveillance context 337, although no actual

surveillance activities have yet been completed with these methods.

5.2.2.1 Lan-Demets Group Sequential Approach

The Lan and Demets statistical model is widely used in clinical trials.338 Lan and

Demets developed a general statistical sequential boundary function for any

Population-based Health Networks: Application of Sequential Testing Methods," Pharmacoepidemiology
and Drug Safety 16, no. 12 (2007): 1275-1284.
334 L. Li and M. Kulldorff, "A Conditional Maximized Sequential Probability Ratio Test for
Pharmacovigilance," Statistics in Medicine 29, no. 2 (2010): 284-295.
m3 Tse et al., "Signal Identification and Evaluation for Risk of Febrile Seizures in Children Following
Trivalent Inactivated Influenza Vaccine in the Vaccine Safety Datalink Project, 2010-2011"; Lee et al.,
"HINI and Seasonal Influenza Vaccine Safety in the Vaccine Safety Datalink Project."
336 For summaries, see John Whitehead, The Design and Analysis of'Sequential Clinical Trials (Wiley,
1997); Christopher Jennison and Bruce W. Turnbull, Group Sequential Methods with Applications to
Clinical Trials (Boca Raton: Chapman & Hall/CRC, 2000).
337 Cook et al., "Statistical Approaches to Group Sequential Monitoring of Postmarket Safety Surveillance
Data: Current State of the Art for Use in the Mini-Sentinel Pilot"; Nelson et al., "Methods for
Observational Post-licensure Medical Product Safety Surveillance."
338 D L DeMets and K K Lan, "Interim Analysis: The Alpha Spending Function Approach," Statistics in
Medicine 13, no. 13-14 (July 15, 1994): 1341-1352; discussion 1353-1356; D L Demets, "Group
Sequential Procedures: Calendar Versus Information Time," Statistics in Medicine 8, no. 10 (October
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asymptotically normal test statistic, which means it performs well with frequent

observations. However, in practice, for sequential surveillance with rare events, the

asymptotic properties of the boundary fail to hold.339 Consequently, such an approach has

limited applicability in safety surveillance for Type B adverse events, but may still prove

quite worthwhile for Type A or Type C adverse events. 340

5.2.2.2 Group Sequential Likelihood Ratio Test

Cook et al. extended the binomial MaxSPRT model as described in subsection 5.2.1.1

and adapted it to accommodate situations in which multiple observations are likely with

each arrival of new data. 34 ' Like the Lan-Demets method, this approach - the group

sequential likelihood ratio test (GS LRT) - is potentially well adapted to Type A or Type

C adverse events. As in other group sequential methods, a hypothesis test is not

performed at the arrival of each new observation of an outcome, but rather based on the

total exposure time accrued between hypothesis tests. Similar to the binomial MaxSPRT

model, the GS LRT employs a fixed matching ratio, but accommodates multiple

sequential stopping boundaries. However, its matching requirements create problems for

use of the approach with continuous exposures because of the inability to keep the same

ratio of person time contributed (i.e., exposed person-time/unexposed person-time) at

each hypothesis test.

5.2.2.3 Conditional Sequential Sampling Procedure

The conditional sequential sampling procedure (CSSP) 34 2 is a group sequential

method created to accommodate continuous exposures and concurrent comparison groups

with active comparators as opposed to non-users. The choice of the sequential stopping

boundary is flexible, and confounding control is performed via stratification on

1989): 1191-1198; K. K. Gordon Lan and David L. Demets, "Discrete Sequential Boundaries for Clinical
Trials," Biometrika 70, no. 3 (December 1, 1983): 659-663.
339 Cook et al., "Statistical Approaches to Group Sequential Monitoring of Postmarket Safety Surveillance

Data: Current State of the Art for Use in the Mini-Sentinel Pilot."
340 For more on Types A, B and C adverse reactions, see Meyboom, Lindquist, and Egberts, "An ABC of
Drug-related Problems."
341 Cook et al., "Statistical Approaches to Group Sequential Monitoring of Postmarket Safety Surveillance

Data: Current State of the Art for Use in the Mini-Sentinel Pilot."
34 2 L. Li, "A Conditional Sequential Sampling Procedure for Drug Safety Surveillance," Statistics in

Medicine 28, no. 25 (2009): 3124-3138.
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categorical confounders. The CSSP is efficient for evaluating rare events, but becomes

less useful with very frequent testing or stratification on many confounders. 34 3

Subsequent improvements to the procedure include enabling it to handle propensity

scores to enhance confounding control. 34 4

5.2.2.4 Group Sequential Estimating Equations

Cook et al. developed the group sequential estimating equation approach, which is a

regression-based group sequential test analyzed with a score test statistic. 34 5 It can handle

continuous exposures and multiple continuous confounders, but it relies on significant

information at the first analysis to estimate the parameters of the regression model. As

noted by Nelson et al., approaches that delay hypothesis testing until a sufficient amount

of information has accrued may solve these problems. 34 6

Fireman et al. are using a regression-based approach with a Cox proportional hazards

model in the pilot sequential database surveillance activity of the Mini-Sentinel

System. 34 7 Confounding is being controlled through propensity-score matching.

5.3 Formal Sequential Database Surveillance Methods Compared to Modular
Programs

Sequential database surveillance methods as discussed herein require specification of

epidemiologic designs, comparator groups, and sequential statistical models, whereas

repeated execution of modular programs does not require such specification. Modular

program outputs are stratified incidence rates, which when compared, can produce mostly

unadjusted associational measures. If desired, these measures can be subject to

hypothesis testing although there are no formal means to control for multiple hypothesis

343 Cook et al., "Statistical Approaches to Group Sequential Monitoring of Postmarket Safety Surveillance
Data: Current State of the Art for Use in the Mini-Sentinel Pilot."
344 Lingling Li et al., "A Propensity Score-Enhanced Sequential Analytic Method for Comparative Drug
Safety Surveillance," Statistics in Biosciences 3, no. 1 (2011): 45-62.
345 Cook et al., "Statistical Approaches to Group Sequential Monitoring of Postmarket Safety Surveillance
Data: Current State of the Art for Use in the Mini-Sentinel Pilot."
346 Nelson et al., "Challenges in the Design and Analysis of Sequentially Monitored Postmarket Safety
Surveillance Evaluations Using Electronic Observational Health Care Data."
347 Fireman et al., "A Protocol for Active Surveillance of Acute Myocardial Infarction in Association with
the Use of a New Antidiabetic Pharmaceutical Agent."
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tests. When might one prefer repeated execution of modular programs to a formal

sequential statistical method?

A key determination for each tracked safety issue being considered is twofold:

whether there is enough information to suggest a clinically relevant control group and

whether more precise quantification of the safety signal relative to that control group is

necessary. The first point speaks to the case when little is known about what patients

might use as a substitute product, or if a suitable substitute product even exists. This

situation may present itself for medical products with potentially diverse patient

populations, or medical products that are monitored soon after the time of approval. In

these circumstances, undertaking prospective sequential database surveillance may be

premature.

Second, circumstances in which further quantification may be unnecessary include 1)

when the background rate of the outcome occurring spontaneously in the clinical

population of concern is very rare or near zero, 2) when the outcome of concern is

biologically and temporally clearly drug-induced. In such cases, little is likely to be

gained from quantification using formal sequential prospective surveillance methods. In

the past, these tracked safety issues were resolved with evidence from case series

analyses. 34 8

5.4 Lessons Learned

I now turn to lessons learned in prospective sequential database surveillance. An early

concern regarding these studies was the potential for false positive signals that might

overwhelm regulators and manufacturers performing post-signal investigations. Yih et

al.349 report on the early Vaccine Safety Datalink experience investigating thirty

designated vaccine-outcome combinations, which resulted in ten statistical signals of

excess risk while performing SDS analyses. However, following further investigation,

only one of the initial statistical signals was confirmed to be a true association, and thus a

true signal of a serious risk. I have already discussed the sources of bias in observational

studies that may lead to false positive conclusions. In general, nearly all of the false

348 Dal Pan, Lindquist, and Gelperin, "Postmarketing Spontaneous Pharmacovigilance Reporting Systems."
349 W. K. Yih et al., "Active Surveillance for Adverse Events: The Experience of the Vaccine Safety

Datalink Project," Pediatrics 127 Suppl I (May, 2011), S54.
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signals were due to confounding bias or measurement bias, while a few appeared to be

transient early signaling which has since been corrected with improved statistical designs.

Another concern that has emerged is the potential for prolonged surveillance

activities resulting from a lack of adoption of the medical product. In these instances,

there is literally an inability to reach a stopping point resulting from the slow arrival of

new information. An analogous concern in prospective postmarket clinical trials is under-

enrollment, which results in underpowered trials. Generally, sequential analyses require

managing two time-scales: calendar time and information time. Attention to calendar

time is important because of potential excess harms to the population that may result

from delayed detection of a safety problem. Attention to information time - how sample

size is accrued - is important for statistical considerations. In that sense, the balance

between timeliness and sample size is more challenging in prospective sequential

database surveillance than in sequential clinical trials because the need to minimize

calendar time while resolving a tracked safety issue has a greater priority.

For these reasons, decisions to proceed with prospective sequential database

surveillance will, in part, hinge on whether accrual of information (i.e., sample size)

occurs within a calendar time frame appropriate for regulatory decision-making. To wit,

the advantage of such surveillance occurs when information accumulates rapidly enough

to provide regulators an earlier opportunity for regulatory intervention than would be

possible via another evidence generation system.

Next, I develop a tool - the Sequential Database Surveillance Simulator - to allow

regulators or public health investigators to explore quantitative assessments of sufficiency

of the Mini-Sentinel System under varying conditions of uncertainty. The simulator is

intended to be a learning tool and quantitative aid to decision-makers that must

simultaneously manage information time and calendar time while performing prospective

sequential database studies. The simulator allows regulators/investigators to explore the

many potential surveillance scenarios they could face. With such modeling and

simulation tools, regulators may more precisely deploy evidence generation systems like

the Mini-Sentinel System, and further refine their assessments of its sufficiency for

evidence generation.
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6 SEQUENTIAL DATABASE SURVEILLANCE SIMULATOR

At this point in the Food and Drug Administration (FDA)'s decision algorithm, I

assume that the FDA is proceeding with sequential database surveillance and is seeking

to refine its understanding of the potential surveillance scenarios that it may encounter for

a particular tracked safety issue of interest. In systems like the Mini-Sentinel System,

sequential database surveillance is performed in an observational setting where the

regulator/public health investigator has no control over information accrual. However, in

light of new safety information suggesting medical product-associated harm, the efficient

use of the Mini-Sentinel System requires a more refined understanding of whether

accrual of information (i.e., sample size) occurs within a calendar time frame appropriate

for regulatory decision-making. In other words, evaluating the Mini-Sentinel System's

evidence generation capabilities necessitates the translation of information time into

calendar time.

In this section and the following two sections, I perform this translation by modeling

and then simulating sequential database surveillance scenarios in the Mini-Sentinel

System via the Sequential Database Surveillance Simulator. I developed this quantitative

tool with the intention to aid the regulator/public health investigator in the initial planning

stages of surveillance when pursuing a tracked safety issue of interest. By demonstrating

how surveillance may unfold given various sets of initial circumstances, the tool is

designed to allow the regulator/public health investigator to explore the performance

limitations and capabilities of sequential database surveillance virtually and in a low-cost

way. That is, in this planning stage, there is no need to "learn-by-doing" while expending

public health resources. In general, this tool is not intended to be strictly predictive or to

forecast exactly how sequential database surveillance of a particular tracked safety issue

will occur. Rather, it more akin to a "management flight simulator,"35 0 which allows the

regulator/public health investigator to explore different potential paths to manage

sequential database surveillance activities.

350 Sterman has pioneered the development of management flight simulators for business operations and
described them thusly, "Virtual worlds for learning and training are commonplace in the military, in pilot
training, in power plant operations, and in many other real time tasks where human operators interact with
complex technical systems." See John Sterman, Business Dynamics: Systems Thinking and Modelingfor a
Complex World (Boston: Irwin/McGraw-Hill, 2000), 35.
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The Sequential Database Surveillance Simulator is compromised of three interlinked

sub-models: the information time sub-model, the calendar time sub-model, and the

analysis sub-model. I walk through an explanation of these sub-models in this section. I

presume the user of the Sequential Database Surveillance Simulator is a regulator or

public health investigator, but I forthwith refer to the "user" to be more general.

As a note, the current version of the Sequential Database Surveillance Simulator

accommodates two specific sequential statistical models that have been frequently used

in prior vaccine safety surveillance.35' I began this process using these models because

they are well-established in this still developing field. However, this simulator could be

built out to accommodate other models, such as the group sequential models reviewed in

subsection 5.2.2. An important aspect of future work will be to increase representation of

group sequential models to better under their comparative performance characteristics.

6.1 Information Time Sub-Model: Sample Size Calculations

6.1.1 Information Time Sub-Model Inputs

The user begins with the following inputs to support the information time sub-model:

1) the sequential statistical model to be used for analysis; and 2) the expected incidence

rate of the outcome of interest in the comparison population, i.e., the background rate.

First, the sequential statistical model specifies the type of hypothesis testing that will be

performed (e.g., continuous or group sequential), and what types of sequential statistical

boundaries can be accommodated. Additionally, each sequential statistical model has its

own set of parameters that need specification. That is, each model uses particular test

statistics, assigns some quantities as known and others as random, etc. Second, the

background rate is the incidence rate of the outcome expected under the null hypothesis,

i.e. that there is no excess risk in the treatment group.

The information time sub-model helps the user to perform sample size calculations

considering a range of effect sizes35 2, and to get a general idea of how much information

is required to make a particular finding. Typical sample size calculations for non-

"' Yih et al., "Active Surveillance for Adverse Events: The Experience of the Vaccine Safety Datalink
Project."
m For a definition of effect size, refer to supra at note 237.
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sequential statistical methods require investigators to calculate the relationship between

the pre-specified upper limit for accepting false positive results (i.e., type I error), the

statistical power to detect a particular effect size (i.e., type II error), and the sample size.

Sample size calculations for sequential statistical models are similar except they

incorporate the ability to interrupt surveillance by rejecting the null hypothesis at a point

earlier than the prescribed end of surveillance. Thus, in sequential database surveillance,

there are two sample sizes to consider: one is the sample size needed to reject the null

hypothesis (i.e., the time to detect a signal) and the other is the maximum sample size

(i.e., the maximum length of surveillance). More modest (i.e., numerically smaller) true

effect sizes require larger samples. Additionally, sequential statistical models require

specification of the sequential stopping boundary3 5 3 , which relates to how type I error is

apportioned among multiple hypothesis tests and also limits the statistical power that can

be achieved at any interim testing point. Therefore, one must consider six variables in the

sample size calculation: (a) the sequential stopping boundary; (b) the overall type I error

across all hypothesis tests; (c) the true effect size; (d) the statistical power; (e) the

maximum sample size; and (f) the time to detect a safety signal. These last three

quantities are random variables that are easiest to understand with a brief example that

will also allow the reader to observe sequential database surveillance scenarios.

Let us use the Mini-Sentinel System pilot project as our tracked safety issue of

interest. In the pilot project, investigators wished to detect a 1.33 incidence rate ratio of

acute myocardial infarctions among new users of saxagliptin as compared with new users

of other oral anti-diabetic agents with 80% power and 5% overall type I error.3 54 The

investigators specified the background incidence rate in the comparator group to be nine

acute myocardial infarctions per 1000 person years among diabetics. While the

investigators ultimately chose a Cox proportional hazards model with 10 interim tests

(i.e., a group sequential statistical model), let us explore how those same parameters

would play out in the two continuous sequential statistical models supported in the

simulator: the Poisson Maximized Sequential Probability Ratio Test (MaxSPRT) and

binomial MaxSPRT models.

m For a discussion on sequential statistical boundary types, see subsection 5.2
m Fireman et al., "A Protocol for Active Surveillance of Acute Myocardial Infarction in Association with

the Use of a New Antidiabetic Pharmaceutical Agent."
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6.1.2 Poisson MaxSPRT Model

Recall that a Poisson MaxSPRT model supports a cohort design with a historical

comparator group, and that the historical comparator group is defined by the incidence

rate of the outcome of interest expected in that group (i.e., the background rate). I

simulate data on treatment and comparator populations in accordance with an assigned

true effect size, and then analyze these data with the assigned sequential statistical model

(i.e., the Poisson MaxSPRT).

Simulated Data for Surveillance using the Poisson MaxSPRT Model
IRR=1.33, Type I Error=0.05, Type II Error=0.20
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Expected Outcomes in the Comparator Group under the Null Hypothesis

-U-Treatment Group Outcomes -++-Comparator Group Outcomes -- Test Statistic -+-Threshold

Figure 6. Example Sequential Database Surveillance Scenario Analyzed using the Poisson MaxSPRT
Model
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test. IRR, incidence rate ratio.

First, I simulate an effect size equivalent to a 1.33 incidence rate ratio, and power my

surveillance to limit overall type I error to 0.05, and type II error to 0.20 (i.e., statistical

power is 0.80).3 I use a flat sequential stopping boundary consistent with the default for

3 In the Poisson MaxSPRT model, one must specify the upper limit on the number of outcomes expected
in the comparator group under the null hypothesis. This value represents the maximum sample size, which
will be explained in greater detail in this section. Practically, it is more sensical to set this upper limit based
on the statistical power that is desired, which in this case is 0.80, and then calculate the upper limit from
that threshold. The upper limit that satisfies the condition of at least 80% statistical power to detect a 1.33
incidence rate ratio is 111.75 outcomes.
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the MaxSPRT models, and similar to the sequential stopping boundary chosen for the

Cox proportional hazards model in the Mini-Sentinel System pilot.356 In other words, the

null hypothesis is rejected when the test statistic exceeds a set threshold that does not

change over the course of surveillance (i.e., the "flat" characterization, which is easy to

see by observing the shape of the "Threshold" line in Figure 6).

One instantiation of this simulation produces the scenario depicted in Figure 6. In this

particular instantiation, the number of outcomes in the treatment group separates enough

from the comparator group when the test statistic crosses the threshold value at 65

outcomes, and the sequential statistical model correctly detects a signal of excess risk.

Using simple algebra and the background rate of 9 acute myocardial infarctions per 1000

person-years, 65 outcomes are equivalent to 7,222 person-years. Then, I repeat this

analysis 100,000 times, and display the results as a distribution in Figure 7.
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Figure 7. Distribution of the Information Time to End Surveillance for 100,000 Simulations Analyzed
using the Poisson MaxSPRT Model
Parameters: Incidence Rate Ratio=1.33, overall type I error=0.05, statistical power=0.80. The left panel
represents the overall (i.e., unconditional) distribution. The right upper panel represents the conditional
distribution when a signal was (correctly) detected. The lower right panel represents the conditional
distribution when a signal (incorrectly) failed to be detected.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test.

356 Fireman et al., "A Protocol for Active Surveillance of Acute Myocardial Infarction in Association with
the Use of a New Antidiabetic Pharmaceutical Agent."
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In Figure 7, the left panel is a distribution of the information time required to end

surveillance, and includes the full 100,000 instances of simulation. On the right panel, I

break this histogram into two circumstances: the upper portion represents the instances

when a signal was detected correctly (i.e., the null hypothesis was rejected) and the lower

portion represents the instances when a signal was missed (i.e., the null hypothesis

incorrectly failed to be rejected). These distributions provide us with three important

values.

First, the statistical power is simply the percentage of time that the statistical model

correctly rejects the null hypothesis of no excess risk (i.e., the total frequency counts in

the upper right panel of Figure 7). In this case, the surveillance was powered to limit type

II error to <0.20 when the effect size was equal to an incidence rate ratio of 1.33. Second,

the maximum sample size, which represents the stopping boundary when one fails to

reject the null, takes on one value when using the Poisson MaxSPRT model (i.e., shown

in the lower right panel of Figure 7) and is a consequence of having reached the

maximum expected number of outcomes under the null hypothesis. In this case, the

maximum number of outcomes is 111.75, which means that the maximum sample size is

12,416.67 person-years. Last, the information time required to detect a safety signal (i.e.,

the other stopping boundary) is represented by the median of the information time until

surveillance ends (i.e., the median of the left panel of Figure 7), irrespective of whether a

signal is detected. In this case, the median is 56.4 outcomes, which translates into 6,269

person-years.

I choose the unconditional median as a summary statistic to represent the distribution

in the left panel of Figure 7 for several reasons. First, the unconditional median assures

an accurate comparison of the time-to-signal for different systems with different

statistical power. I only use this statistic when the statistical power is at least 50%,

ensuring the median reflects a time when a signal was detected. If I had used the median

conditioned on when a signal was detected (i.e., the median of the upper portion of the

right panel of Figure 7), then the amount of information that contributes to the

distribution varies based on the statistical power, which generates misleading

comparisons. Second, the unconditional mean is clearly influenced by outliers that

become more prominent as statistical power decreases. Henceforth, I refer to this
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summary statistic as the median sample size, which is analogous to the average or

expected sample size in the group sequential trials literature. 357 Generally, smaller

median sample sizes are preferred because less information is needed to detect a safety

problem.
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Figure 8. Relationship between Statistical Power, Median Sample Size, Maximum Sample Size, and
True Effect Size Analyzed using the Poisson MaxSPRT Model
Statistical power isolines travel from northwest to southeast. Median sample size isolines travel from
southwest to northeast. Overall type I error set to 0.05.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test; Pr, power.

Let us return to the relationships among the six variables in the sample size

calculation: (a) the sequential stopping boundary; (b) the overall type I error across all

hypothesis tests; (c) the true effect size; (d) the statistical power; (e) the maximum sample

size; and (f) the median sample size. To evaluate the relationships among the six

quantities described above, I perform the same simulations that allowed the creation of

m5 Demets, "Group Sequential Procedures"; Scott S Emerson, John M Kittelson, and Daniel L Gillen,
"Frequentist Evaluation of Group Sequential Clinical Trial Designs," Statistics in Medicine 26, no. 28
(December 10, 2007): 5047-5080; J M Kittelson and S S Emerson, "A Unifying Family of Group
Sequential Test Designs," Biometrics 55, no. 3 (September 1999): 874-882.
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Figure 7 and I repeat this process for a range of effect sizes of interest (e.g., incidence

rate ratios of 1.2 to 10). For each effect size, I use the same number of simulations:

100,000. I display an abbreviated version of my results compactly in Figure 8.

In Figure 8, the independent variables - in the mathematical, not the statistical sense -

are the sequential stopping boundary, the overall type I error, the true effect size, and the

maximum sample size. The flat sequential stopping boundary and the overall pre-

specified type I error (0.05) are constant throughout Figure 8. The other two independent

variables - the true effect sizes and the maximum sample sizes - do vary over the figure.

The true effect sizes, illustrated along the x-axis, are given in two scales. The upper scale

is an absolute risk measure. The lower scale is defined using the equivalent relative risk

measure. The y-axis is the maximum sample size, i.e., the stopping boundary for

surveillance when one fails to reject the null. The maximum sample size is shown in

person-years (as opposed to expected outcomes in the comparator group under the null

hypothesis) to be more descriptive and explanatory to the user. 358 In summary, these four

independent variables are fixed to evaluate their effect on statistical power and median

sample size.

The dependent variables - in the mathematical, not the statistical sense - are the

statistical power and the median sample size. In Figure 8, the effects of the independent

variables on the dependent variables are depicted in two sets of isolines. Statistical power

is depicted in the first set of isolines that travels from northwest to southeast. These

isolines are downward sloping because the same statistical power can be attained with

smaller sample sizes when greater true effect sizes exist. Statistical power is higher as the

maximum sample size increases because there are more opportunities to detect a signal.

Median sample size is depicted in the second set of isolines that travels from southwest to

northeast. For a given effect size, there are minimal increases in the median sample size

by increasing the maximum sample size. Vertically asymptotic behavior dominates as

statistical power approaches unity. The values of the median sample size isolines become

smaller as the true effect size increases because smaller sample sizes will signal under

conditions of greater risk.

358 Note that this formulation necessitates specification of the incidence rate expected under the null
hypothesis. However, both expected outcomes in the comparator group under the null hypothesis and their
equivalent person-years are information time measures.
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These figures are shown with an arbitrarily chosen reference outcome of interest of

1/10,000 person-years. Therefore, to use the same figures universally, the user must

calculate an appropriate "k" scaling constant to account for differences between the

problem-specific outcome frequency and the reference outcome frequency (i.e., when

k--1, the problem-specific outcome occurs in the control group at 1 outcome/10,000

person-years). A user simply should divide the reference outcome by the user-specified

outcome to generate the k value.

Briefly, I walk through how to read Figure 8 and again employ the example used in

the Mini-Sentinel pilot project. Recall that the intent was to detect an incidence rate ratio

of 1.33 with 80% power. Figure 8 is marked with a star at this point. However, to

interpret the maximum and median sample sizes, it is necessary to first calculate the k

scaling constant by dividing the reference outcome (i.e., 1 outcome/i 0,000 person-years)

by the problem-specific outcome of interest (i.e., 9 outcomes/1000 person-years),

yielding a k scaling constant of 0.0111. As the reader would expect from the previously

simulated distributions shown in Figure 7, the maximum sample size is 12,416.67 person-

years (~1.1M*k=.0111) and the median sample size is 6,269 person-years

(~600,000*k=.01 11).

The objective of Figure 8 is to show the user the realm of other possibilities for

surveillance, and to allow them to draw comparisons. Depending on whether the

maximum sample size and median sample size are believed to be feasible given the data

available, the user can employ this figure to gain an understanding of the tradeoffs that

occur by moving away from the baseline scenario (i.e., the starred point). For example, if

the user believes that these baseline sample sizes are easily attainable, then one might

consider detecting a 1.33 incidence rate ratio with higher power (e.g., 90%). That

northward jump in the statistical power isoline would increase maximum sample size but

might only modestly increase median sample size because of the verticalness of the

median sample size isolines. Practically, that means there may be a small price to pay

regarding losses in the timeliness of signal detection when seeking higher statistical

power. On the other hand, if the user believes these baseline sample sizes are not

attainable, then the user can consider reducing power, or detecting a numerically larger

effect size (e.g., an incidence rate ratio of 2). Numerically larger effect sizes tend to
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accompany less vertical portions of the median sample size isolines indicating real

tradeoffs start to occur between statistical power and the timeliness of signal detection.

Now, let us investigate the same scenario with the other supported model in the

simulator: the binomial MaxSPRT model. "9

6.1.3 Binomial MaxSPRT Model

Recall that the binomial MaxSPRT model supports concurrent and self-controlled

comparator groups, but requires the user to specify the matching ratio between the

treatment group and comparator group. Using a 1:1 matching ratio, I simulate data on the

treatment and comparator populations in accordance with an assigned true effect size, and

then analyze these data with the binomial MaxSPRT model using a flat sequential

stopping boundary. Again, I first simulate an effect size equivalent to a 1.33 incidence

rate ratio, and power my surveillance to limit overall type I error to 0.05, and type II error

to 0.20 (i.e., statistical power is 0.80).

Simulated Data for Surveillance using the Binomial MaxSPRT Model
IRR=1.33, Type I Error=0.05, Type 11 Error=0.20
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Figure 9. Example Sequential Database Surveillance Scenario Analyzed using the Binomial
MaxSPRT Model
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test; IRR, incidence rate ratio.

359 I show the binomial MaxSPRT model to familiarize the reader with this model since I will use it
extensively and the simulator supports it. However, the binomial MaxSPRT model would most likely have
been ruled out for use in the Mini-Sentinel System pilot project because it does not accommodate
continuous exposures. See subsection 5.2.1.1.
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As before in Figure 9, I show one instantiation of the sequential database surveillance

scenario. In this particular instantiation, the number of outcomes in the treatment group

separates enough from the comparator group when the test statistic crosses the flat

threshold value at 89 outcomes (or 9,888 person-years), detecting a signal of excess risk.

Then, I repeat this analysis 100,000 times, and display the results as a distribution in

Figure 10.
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Figure 10. Distribution of the Information Time to End Surveillance for 100,000 Simulations
Analyzed Using the Binomial MaxSPRT Model
Parameters: Incidence Rate Ratio=1.33, overall type I error=0.05, statistical power=0.80, matching
ratio= 1:1. The left panel represents the overall (i.e., unconditional) distribution. The right upper panel
represents the conditional distribution when a signal was (correctly) detected. The lower right panel
represents the conditional distribution when a signal was (incorrectly) not detected.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test.

Again, as in Figure 7 and here in Figure 10, the left panel is a distribution of the

information time required to end surveillance, and includes the full 100,000 instances of

simulation. On the right panel, I break this histogram into two circumstances: the upper

portion represents the instances when a signal was correctly detected (i.e., the null

hypothesis was rejected) and the lower portion represents the instances when a signal was

missed (i.e., the null hypothesis incorrectly failed to be rejected). As before, I use the

unconditional median of the left panel to describe the median sample size: 114 outcomes

or 12,666 person-years. However, note that in the lower right panel of Figure 10, the
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maximum sample size is now a distribution as opposed to a singular value as it was in the

Poisson MaxSPRT model. If I chose the median of this distribution, which is conditioned

on failing to detect a signal, then I will be inappropriately comparing systems with

different power. Therefore, to appropriately represent the maximum sample size, I re-

perform the simulations again, except that I set the effect size to be equal to the effect

size assumed in the null hypothesis (i.e., in other words, I create a situation when the null

hypothesis is true). These results are shown in Figure 11.

In Figure 11, the unconditional median of the leftmost panel is 265 outcomes or

29,444.4 person-years. 360 In the upper right panel of this figure, one sees instances in

which the null hypothesis is rejected inappropriately (i.e., false positives occur in

accordance with the set type I error margin).
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Figure 11. Distribution of the Information Time to End Surveillance for 100,000 Simulations
Analyzed Using the Binomial MaxSPRT Model
Parameters: Incidence Rate Ratio=1, overall type I error=0.05, statistical power=0.80, matching ratio=1:1.
The left panel represents the overall (i.e., unconditional) distribution. The right upper panel represents the
conditional distribution when a signal was (incorrectly) detected. The lower right panel represents the
conditional distribution when a signal was (correctly) not detected.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test.

360 In Figure 11, 1 could also use the mean or median conditioned on the times when a signal is not
detected. The amount of contributing information would be the same as long as the number of simulations
and the overall type I error was kept the same. However, for consistency, I use the unconditional median.
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Again, I repeat this process for a range of effect sizes of interest, holding the number

of simulations constant at 100,000. I display an abbreviated version of my results

compactly in Figure 12, which again contains a starred mark for the intersection of an

incidence rate ratio=1.33 and statistical power=0.80, the intended effect size to be

detected in the Mini-Sentinel System pilot project. As was evident from Figure 10, and

again is shown here in Figure 12, the median sample size is 12,666 person-years

(~ 1.14M*k=0.01 11). Similarly, as was shown in Figure 11 and again here in Figure 12,

the maximum sample size is 29,444.4 person-years (~2.65M* k=0.01 11).

2O,000,OOO*k

C

U1 1,OOO,OOO*k

E

E
ZU

E OO~

0 1 2 3 4

Incidence Rate Difference Detectable in Excess Events per 10,000*k Person-Years
S

6

Incidence Rate Ratio

Figure 12. Relationship between Statistical Power, Median Sample Size, Maximum Sample Size, and
True Effect Size Analyzed using the Binomial MaxSPRT Model
Statistical power isolines travel from northwest to southeast. Median sample size isolines travel from
southwest to northeast. Overall type I error set to 0.05.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test; Pr, power.

6.1.4 Importance of Comparison

Why is it important for the user to take into account the comparisons available in

Figure 8 and Figure 12? The most important point to consider is that moderate decreases

in statistical power (i.e., jumps in the isolines traveling from northwest to southeast) may

or may not decrease the median sample size depending on whether one is operating in the
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nearly vertical portions of the median sample size isolines. That is, some of the time,

decreasing power (i.e., increasing type II error and the chance of a missed signal) results

in faster detection of a signal (i.e., smaller median sample sizes). Is this tradeoff worth it?

Should a user take on the bigger risk of missing the signal if it means they can find it

faster?

These tradeoffs have more concrete meaning by translating the information time

concepts into calendar time. A user may value the decrease in median sample size (i.e.,

the quicker detection time) differently depending on whether the quicker detection occurs

in 1 month or 12 months. These considerations are also influenced by the user's prior

perceptions of whether an excess risk is likely or not. The user's prior perception is

sometimes referred to as a Bayesian prior belief, so named for the statistician Thomas

Bayes who is responsible for the subfield of Bayesian statistics and inference that allows

one to incorporate existing knowledge or belief into analysis.361

For example, if a user believes there is a significant possibility of excess risk to be

detected, then waiting an additional 11 months to detect such a risk may be unacceptable

because real harm occurs in the greater population (i.e. external to the one under

observation) during that additional detection time. In summary, information time is an

important first step to understanding sequential database surveillance scenarios, but

public health policymakers must consider how information time translates into calendar

time to meaningfully assess sample size considerations. In the simulator, this step is

performed with the Calendar Time Sub-Model, explained next.

6.2 Calendar Time Sub-Model

The calendar time sub-model estimates adoption and utilization of the medical

product under surveillance using the databases proposed for inclusion in sequential

database surveillance. This sub-model generates estimates of information time as a

function of calendar time.

361 An overview of the differences between Bayesian and frequentist statistical inference is beyond the
scope of this dissertation. Generally, the FDA informally operates in a "Bayesian" framework as it
continually updates and incorporates new knowledge regarding particular tracked safety issues. For
information on formal use of Bayesian methods in healthcare decision-making and and policy, see David J.
Spiegelhalter, "Incorporating Bayesian Ideas into Health-care Evaluation," Statistical Science 19, no. 1
(2004): 156-174.
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6.2.1 Inputs to the Calendar Time Sub-Model: Surveillance-specifics

The user begins with the following surveillance-specific inputs to the calendar time

sub-model: the exposure-outcome pair to be evaluated, an epidemiologic design, and the

corresponding sequential statistical model to be used for analysis. The sequential

statistical models should be the same ones investigated in the information time sub-

model.

6.2.1.1 Exposure-Outcome Pair / Tracked Safety Issue

First, the exposure-outcome pair is presumably the tracked safety issue of interest.

The description of the exposure-outcome pair must include specific details about when an

exposed person is considered "at risk" to develop the outcome of interest. These details

include: 1) specification of the onset of the "at risk" period; and 2) specification of the

duration of the "at risk" period. The onset and duration are driven by pharmacokinetic

and biological parameters related to the medical product, i.e., when could the medical

product reasonably cause the outcome in question. For example, anaphylaxis (i.e., a

severe allergic reaction) may reasonably be plausible immediately after administration of

a medical product whereas an acute myocardial infarction might require more time to

elapse before a medical product could have plausibly caused it. The period before the

onset of the "at risk" period is also referred to as the induction period or the latency

period. Once the onset of the "at risk" period begins, the user will also have to specify the

duration of the "at risk" period, which is referred to as the risk window. This period

typically extends some time after the last administration of the particular medical product

because the medical product is still believed to be "active" in a person's body.

6.2.1.2 Epidemiologic Design

An epidemiologic design indicates the way the population of interest and the

comparison population will be sampled for statistical inference. Epidemiologic designs

are discussed herein in subsection 5.1. For planning purposes, the important point is that

historical and self-controlled designs are one-group study designs 36 2 (i.e., they require

362 Rothman, Greenland, and Lash, Modern Epidemiology, 758
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continuous observations of only one population) and the user is only concerned with

modeling one subpopulation. Concurrent-controlled designs are two-group study designs,

necessitating additional modeling. When the user specifies the epidemiologic design to be

modeled (and most specifically, the comparison population), it is also necessary to

specify the expected incidence rate of the outcome in the comparison population, which

is also referred to as the background rate. The background rate is the incidence rate of the

outcome expected under the null hypothesis (i.e., that there is no excess risk in the

treatment group).

For self-controlled designs363, two additional quantities must be specified: the

"washout" period and the comparison window. The former is a period of time when the

person is neither exposed nor unexposed and during that time, the person contributes no

information to the surveillance. The latter is a period when a person contributes

"unexposed" time. Unexposed time refers to time when the person is presumed to be

unexposed to the medical product and either occurs prior to the administration of a

medical product or after a medical product has cleared their system. Typically, there are

concerns related to confounding by indication/contraindication364 if a "pre-exposure"

comparison period is used, and so "post-exposure" comparison periods are preferred.365

Figure 13 shows an example diagram of these time periods, and the index event is the

time of initial exposure. To be clear, it is possible to have a washout period equal to zero.

If a "pre-exposure" comparison window is planned, then no washout period is necessary.

Days after 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index eventII

Induction Risk Washout Comparison
Period Window Period Window

Figure 13. Example Diagram of Time Periods in Self-Controlled Epidemiologic Designs
The index event is typically the date of exposure.

363 For more on self-controlled designs, see section 5.1.
364 For more on confounding by indication/contraindication, see section 4.2.1.

3 Specifically, if a person experiences the outcome of interest (i.e., adverse event) during a "pre-exposure"
comparison window, then that person may be more or less likely to then be subsequently exposed to the
medical product of interest. This change in their likelihood of being exposed introduces a bias.
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6.2.1.3 Sequential Statistical Model

The sequential statistical model specifies the type of hypothesis testing that will be

performed (e.g., continuous or group sequential), and what types of sequential statistical

boundaries can be accommodated. The sequential statistical model in the information

time sub-model should correspond to the sequential statistical model used here. Table 3

in section 5.2 indicates the compatibility between epidemiologic designs and sequential

statistical models.

6.2.2 Inputs to the Calendar Time Sub-Model: Database-specifics

The following inputs are necessary for each database that may contribute to

sequential database surveillance: a) the size of the subpopulation of interest; b) an

estimated mathematical function that describes the adoption/uptake pattern; c) the refresh

delay time; d) the processing delay time; and e) any exposure and outcome

misclassification estimates. The first two inputs allow the user to model how medical

product adoption evolves in calendar time. The remaining three inputs - the refresh delay

time, the processing delay time, and exposure and outcome misclassification estimates -

allow the user to model how exposures and outcomes appear to the user conducting

sequential database surveillance. Recall that validated exposure and outcome data are

unavailable to the user at the time of surveillance. Instead, the user must rely primarily on

electronic claims data that arrives with some lag time. Modeling these database delays

mimics the near-real time366 aspects of surveillance.

6.2.2.1 Subpopulation Size

The size of the subpopulation of interest (e.g., persons over 18 with a diagnosis of

diabetes) can be ascertained in the Mini-Sentinel System using modular programs (i.e.,

database queries) while planning surveillance. In particular, summary tables or modular
367programs 1, 2, and 4 can be used for this purpose.367 This subpopulation is the pool of

potential adopters of the medical product.

366 For discussion of near-real time surveillance, see supra at note 21.
367 See explanation of summary tables and modular programs in subsection 2.2.2.1.
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6.2.2.2 Estimated Adoption Functions

The estimated adoption function for the medical product is perhaps the most

substantial uncertainty in the sub-model, and is the subject of more analysis in section 9.

Certain products, like vaccines, which are routinely administered for enrollment in

school, childcare, etc., may be less complicated to model. However, adoption of new

drugs is influenced by many more factors (e.g., formulary policy, co-payments, the

availability of substitute therapies, treatment guidelines, etc.), and is considerably more

complex. An adoption function may be based on historical data on similar products, early

adoption data on the product in question, or no data at all.

6.2.2.3 Refresh Delay Time

The refresh delay time is the frequency with which a participating data partner in the

Mini-Sentinel System renews their dataset and makes it available for analysis.

Essentially, as a participant in the Mini-Sentinel System, data partners agree to update

their data on some periodic basis. For most partners, this is monthly or quarterly, but can

be as long as annually. In a similar, precursor system - the Vaccine Safety Datalink -

refreshes are performed weekly.368

6.2.2.4 Processing Delay Time

The processing delay time, or the claims lag time, is the time that elapses between

when an exposure or outcome occurs, and when it is recorded and available for analysis

in the Mini-Sentinel System. Different data streams have different processing delay times

even if they originate from the same data partner. Generally, exposure data (specifically,

pharmacy dispensing data) are available sooner than outcome data. Also, outcome data

may have differing lag times based on their origin (e.g., ambulatory encounter data may

become available more quickly than inpatient data). 369 These incoming datastreams may

be modeled explicitly, and the additional modeling efforts are likely worthwhile when

calendar time for surveillance is very short (e.g., influenza vaccination surveillance).

368 Baggs et al., "The Vaccine Safety Datalink: a Model for Monitoring Immunization Safety."
369 S. K. Greene et al., "Near Real-time Vaccine Safety Surveillance with Partially Accrued Data,"
Pharmacoepidemiology and Drug Safety 20, no. 6 (2011): 583-590.
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Else, one can use the maximal processing delay across all incoming datastreams as the

input parameter. Allowing this "data settling" period also may mitigate issues associated

with latent data correction, and potential instability in sequential database surveillance.

6.2.2.5 Misclassification Parameters

The misclassification estimates - data on the sensitivity and specificity 3 7 1 of the

exposure and outcome classifications - allow the investigator to model noisy data. For the

calendar time sub-model, I focus on the sensitivity and positive predictive value 37 2 of

outcomes only. As was discussed earlier in subsection 4.2.3.1, validation data for

exposures is essentially unavailable because of the secondary data collection mechanism.

One could do a sensitivity analysis and speculate on exposure sensitivity and specificity. I

focus on the positive predictive value of the outcomes (as opposed to specificity) because

it would be implausible with this data collection mechanism to validate "true negative"

cases of the outcomes. That is, it is unlikely that resources would be expended to perform

medical chart validation on exposed individuals who are not electronically identified as

having experienced the outcome.

6.2.3 Modeling Database-Specific Inputs to Surveillance

6.2.3.1 Modeling Exposures

Together, the inputs above parameterize a customizable delay differential equation

model (sometimes referred to as a "compartment model") to estimate adoption and

utilization of the medical product under surveillance. Figure 14 shows the general model

that can be adapted for the particular circumstances of the exposure-outcome pair being

monitored.37 3

370 Sensitivity is equal to the number of true positive cases/(true positive cases + false negative cases).
371 Specificity is equal to the number of true negative cases/(false positive cases + true negative cases).
372 Positive predictive value is the number of true positive cases/(true positive cases + false positive cases).
373 Note, in Figure 14, I do not show the general compartmental model to include a pre-exposure control
period, which is possible but not preferred in self-controlled designs. See supra at note 365.
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Figure 14. General Compartmental Model of Adoption and Utilization of Medical Products

It begins with the subpopulation identified as the pool of adopters. From there, they

may adopt according to some adoption function or exit the system as non-adopters. Once

a person has adopted, an induction period/latency period elapses and the exposed person

may become "at risk" for the medical-product associated health outcome of interest (i.e.,

in the risk window for the purposes of surveillance). Once an exposed person becomes

"at risk", that person may leave the category for three reasons: 1) that person is censored

(i.e., removed from the data analysis); 2) the risk window elapses without being censored;

or 3) the surveillance ends.

For point/discrete exposures such as vaccinations, the time spent in the risk window is

fixed and entirely defined by the time of initial exposure. However, for continuous

exposures (e.g., most drugs and therapeutic biologics), the time spent in the risk window

will vary based on patterns of patient adherence, tolerance of side effects, etc. Thus, in

addition to modeling adoption, one must also monitor continued utilization of the medical

product. Future versions of the simulator will be able to incorporate data on utilization

patterns derived from the Mini-Sentinel System. Modular programs to create those

datasets are still being tested.

As a note, compartmental models are only designed to handle population averages. If

there is significant variation anticipated in continued medical product utilization, an

agent-based model that can accommodate more heterogeneity may be more appropriate.

For concurrently-controlled epidemiologic designs when the concurrent control is

defined with an active comparator (i.e., two separate populations exposed to two separate

medical products need to be monitored), a compartmental model needs to be estimated

for both groups, and then additional assumptions are necessary with respect to matching.
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When the design is self-controlled and the comparison period of "unexposed time"

occurs post-exposure to the medical product, it is necessary to track time after the "at

risk" period. In some instances, a "washout" period occurs between the "at risk" window

and the comparison window. Following the washout period, or directly following the "at

risk" period if the "washout" period does not exist, a person contributes time to the

comparison window.

For any sequential database surveillance problem, a person can be censored for a

variety of reasons, but one common issue is the loss of insurance coverage benefits,

which is regarded as a loss-to-follow-up. Other censoring criteria are likely specific to the

exposure-outcome pair being evaluated.

Once the general delay differential equation model has been customized to the

particulars of the exposure-outcome pair (i.e., programmed to account for surveillance-

specific inputs listed in 6.2.1), each database will make unique contributions to adoption

and utilization. That is, the same set of general delay differential equations will be solved

with the database-specific inputs listed in 6.2.2, making it a linear system of delay

differential equations with one stratum for each database contributing information.

Solving the system of delay differential equations produces a pattern of exposure (i.e.,

information time or sample size contributions) in calendar time.

6.2.3.2 Modeling Outcomes

Given a pattern of exposures as a function of person-time, then the calendar-time

sub-model generates outcomes for each database based on the incidence rate under the

null hypothesis, input effect sizes, and misclassification estimates. The first two variables

are the same across databases but the misclassification estimates are particular to the

database being considered.

An example of the output of the calendar time sub-model is shown as a table shell in

Table 4 for one particular effect size. This table is repeatedly populated for the range of

effect sizes of interest. It is also populated for each database being evaluated for use in

surveillance.
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Database i

Incidence Rate Ratio=Y

Cumulative True Positive False Negative False Positive
Time Exposure Outcomes Outcomes Outcomes

(months) (person-
months) 1 ... Nsim I ... Nsim 1 ... Nsim

0 0 0 0 0 ... 0 0 ... 0

1. . . . . . ... ... ... ... ... ... ...
.. . ... . . . . . .

T-End XXX XX XX XX ... XX XX ... XX

Table 4. Example Blank Output of the Calendar Time Sub-Model for an Effect Size of Interest
Abbreviations: Nsim, number of simulations; T-end, Time at the end of surveillance.

6.3 Analysis Sub-Model

The analysis sub-model allows the user to perform sequential database surveillance

on simulated data, produce tabular or graphical results, and account for prior knowledge

regarding the tracked safety issue when exploring sequential database surveillance.

6.3.1.1 Decision Analysis with Uncertainty

There are many parameters that a user can vary in sequential database surveillance

that may lead to substantial changes in the statistical power, median sample size, or

maximum sample size. Each set of parameters can be thought of as a unique

configuration for surveillance. In this version of the simulator, there is some basic

decision support to choose the optimal configuration among the remaining candidates.

For these scenarios, a user needs to indicate the outcomes or measures on which a

particular configuration is deemed to be "best." When there are multiple measures, these

decisions can be performed with a multi-attribute utility function. 74 These decisions are

examined under conditions of uncertainty, particularly related to the uncertainty of the

true effect size. In general, one should consider at least two scenarios in all

configurations: when an elevated risk exists and when it does not. Figure 15 is a basic

schematic of decision tree that can be used to choose an optimal configuration.

3 Ralph L. Keeney, "Utility Functions for Multiattributed Consequences," Management Science 18, no. 5,
Theory Series, Part 1 (1972): 276-287.
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Surveillance Costs
True IRD = 0- < Health Outcomes

Configuration 1
True IRD > 0- <

True IRD = 0- <
Configuration X a"

True IRD > 0- <

Figure 15. Basic Schematic of Decision Analysis under Uncertainty

6.4 Intention of the Simulator

In short, the Sequential Database Surveillance Simulator uses, in sequence, the

information time sub-model, the calendar time sub-model, and the analysis sub-model to

allow the user to experiment virtually with various sequential database surveillance

scenarios. The goal of such a simulator is to be a learning tool for the user so they may

gain intuition about the range of potential scenarios that could occur given certain

problem-specific input parameters. The simulator is not meant to be a forecasting tool.

Rather, it is meant to be a quantitative decision tool that sheds light on the evidence-

generation capabilities of the Mini-Sentinel System when using the system to perform

sequential database surveillance.

Next I show how to use the Sequential Database Surveillance Simulator with a fully

worked example.
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7 VACCINE EXAMPLE

I plan surveillance for a single-dose, newly available live attenuated childhood

vaccine that is being evaluated for an elevated risk of idiopathic thrombocytopenic

purpura (ITP). ITP is bleeding disorder in which the immune system impairs the body's

ability to perform normal blood clotting. Intracranial and gastrointestinal bleeding are

severe complications. ITP is known to occur after many types of infections, including

numerous vaccine-preventable diseases.3 75 Biologically, vaccines induce an immune

response, and it is theoretically possible that abnormal responses could trigger ITP.

I chose this example because exposure is discrete, the risk window is finite, and the

adoption pattern is simple (i.e., children receive routine vaccinations during well visits).

Throughout this example, I will make choices to tailor this example and simulated

surveillance to mirror previously completed vaccine surveillance activities.376

Accordingly, I will plan for two concurrently performed epidemiologic designs and

accompanying analyses, which has been common practice.

7.1 Model Inputs

7.1.1 Information Time Sub-Model

I will use both the Poisson and binomial MaxSPRT sequential statistical models. I

assume ITP in infants is expected to occur at a rate of 2 outcomes per 100,000 person-

years in a clinically relevant comparison group (i.e., the background rate).37 7

7.1.2 Calendar Time Sub-Model

7.1.2.1 Surveillance-Specific Parameters

Table 5 lists relevant user-specified surveillance parameters and database-specific

parameters. The primary design will be a cohort design with a historical comparison

cohort of infants exposed to other vaccines. The secondary design will be a self-

3s Sean T O'Leary et al., "The Risk of Immune Thrombocytopenic Purpura After Vaccination in Children
and Adolescents," Pediatrics 129, no. 2 (February 2012): 248-255.
376 See summary in Yih et al., "Active Surveillance for Adverse Events: The Experience of the Vaccine
Safety Datalink Project."
37 Deirdra R Terrell et al., "Determining a Definite Diagnosis of Primary Immune Thrombocytopenia by
Medical Record Review," American Journal of Hematology 87, no. 9 (September 2012): 843-847.
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controlled risk interval design. The primary design will be analyzed using the Poisson

MaxSPRT model and the secondary design will be analyzed using the binomial

MaxSPRT model. Based on the incubation period of the live virus, I assume that it is only

biologically plausible that ITP could be vaccine-associated if it occurs between 1-42 days

post-vaccination, which is the risk window. Therefore, both the primary and secondary

designs employ a 1-day induction period (i.e., 0-1 days post-vaccination) and then a 41-

day risk window (i.e., 1-42 days post-vaccination). The secondary design requires two

additional values: a washout period of 1 day (i.e., 42-43 days post-vaccination) and a 41-

day comparison window (i.e., 43-84 days post-vaccination). Each dose of vaccination

contributes 41 person-days to the analysis, resulting in a background rate of -1 case of

ITP for every 445,427 doses.

This event is very rare and therefore, it is possible to signal on very little accrued

data.378 Therefore, I require a minimum of four outcomes to signal using the Poisson

MaxSPRT. 379 I use a flat sequential statistical boundary, which is conventional for the

MaxSPRT analyses and set overall type I error to 0.05. I chose this particular

combination of epidemiological designs and supporting sequential statistical analyses to

mimic prior analyses.

7.1.2.2 Database-Specific Parameters

To familiarize the reader with the planning process, I begin by modeling just one

database: the aggregate Mini-Sentinel System Distributed Database. Using a dataset

current through 2010, 1 used the mean enrollment data across the years 2008-2009 to

generate a cohort of ~564,000 0-1 year olds, which I use as the size of my subpopulation

of interest. I used these years because all data partners contributed data in the dataset

available to me. Assuming approximately 4 million children are born in the US

annually 380 , this represents -14% of the US population of this age group.

I model the adoption function linearly (i.e., adoption is coincident with one-year well-

visits and children are assumed to be equally likely to be born on any day of the year),

378 For evidence of this phenomenon, refer back to Figure 7 and note the higher frequency of earlier
signaling in the leftmost panel.
379 See supra at note 323.
380 Centers for Disease Control and Prevention, "National Vital Statistics System", n.d.,
http://www.cdc.gov/nchs/nvss.htm.
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and allow for a 5% probability of non-adoption (i.e., vaccine refusers). I assume a one-

month refresh delay (i.e., I receive new data monthly in the Mini-Sentinel System 38 8) and

a two-month processing delay. In the base case, I assume no known or estimated

misclassification.

Surveillance Parameters
Primary Design Secondary Design

8 excess outcomes/ 8 excess outcomes/
Effect Size of Interest 100,000 person-years 100,000 person-years
Comparator 2 outcomes/ 2 outcomes/
Outcome Rate (p) 100,000 person-years 100,000 person-years

Induction Period (62) 0-1 days post-vaccination

Risk Window (62) 1-42 days post-vaccination

Washout Period (83) N/A 42-43 days post-vaccination

Comparison Window (64) N/A 43-84 days post-vaccination

Statistical Model Poisson MaxSPRT with Binomial MaxSPRT
Statistical_____Model__ minimum of 4 outcomes

Matching Ratio N/A 1:1

Type I Error 0.05
Database Parameters

Subpopulation Size (M) 564,000 0-1 year olds

Probability of Adoption (p) 0.95

Database Delay 2 months

Refresh Delay 1 month

Table 5. User-Specified Surveillance and Database Parameters in the Simulated Vaccine Example

Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test

7.2 Performing Sample Size Calculations

7.2.1 Primary Design: Cohort Design with the Poisson MaxSPRT Model

The initial surveillance goal will be to detect an incidence rate ratio of 5 (i.e., an

incidence rate difference of 8 excess outcomes/100,000 person-years) with 90% power.

Using the information sub-model, I produce a compact display of my sample size choices

381 Here, I am treating the entire Mini-Sentinel System as though it were one giant database to illustrate

how the simulator works. In reality, each participating component database would have a different refresh

time.
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using the Poisson MaxSPRT model with a minimum of 4 outcomes, shown as Figure 16.

To properly read Figure 16, I calculate my k scaling constant as 5 (i.e., [(1 outcome

/10,000 person-years) / (2 outcomes / 100,000 person-years)]). I find the intersection of

an incidence rate ratio of 5 and 90% power, marked with a star in Figure 16. The

maximum sample size required is 75,000 person-years (1 5,000*(k=5) person-years on the

y-axis), or 668,140 doses. The median sample size is just to the left of the 7000*k person-

years isoline (i.e., 35,000 person-years when scaling by k). To generate a more precise

median sample size, I perform a simulation as described in the previous section and find

the unconditional median of the information time until the end of surveillance. The

median sample size is 36,658 person-years (i.e., 326,567 doses).38 2
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incidence Rate Ratio

Figure 16. Relationship between Statistical Power, Median Sample Size, Maximum Sample Size, and
True Effect Size Analyzed using the Poisson MaxSPRT Model with a minimum of four events
Statistical power isolines travel from northwest to southeast. Median sample size isolines travel from
southwest to northeast. Overall type I error set to 0.05. The star represents the starting point of the
example.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test; P-Y, person-years; Pr, power.

382 Every dose contributes 41 person-days to the analysis, allowing for a conversion from events/person-

year to events/dose.
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7.2.2 Secondary Design: Self-Controlled Design with the Binomial MaxSPRT

Model

Similarly, I produce Figure 17 for use with the binomial MaxSPRT model. The k

scaling constant remains 5 and the effect size of interest remains 8 excess outcomes per

100,000 person-years or a fivefold incidence rate ratio. Using Figure 17, the maximum

sample size required is 625,000 person-years (125,000*(k=5) person-years), and the

median sample size is between 10,000*k and 20,000*k person-years. Because

information time is based on the number of outcomes and only integer-valued outcomes

can occur, this estimation is as precise as I can be using the binomial MaxSPRT model

and information time.3 83
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Figure 17. Relationship between Statistical Power, Median Sample Size, Maximum Sample Size, and
True Effect Size Analyzed using the Binomial MaxSPRT Model
Statistical power isolines travel from northwest to southeast. Median sample size isolines travel from
southwest to northeast. Overall type I error set to 0.05. The star represents the starting point of the
example.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test; P-Y, person-years; Pr, power.

383 The reference outcome of interest is I outcome / 10,000 person-years. Because the binomial model
requires the end of surveillance to occur coincident with the arrival of an outcome, the median sample size
can only occur at discrete values of exposed person-years.
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7.3 Estimating Database-specific Contributions to Surveillance

Using the calendar time sub-model, I model sets of delay differential equations to

describe potential adoption patterns. The adoption function must be specified for each

epidemiologic design. Once the set of delay differential equations are solved to generate

adoption patterns, I use these patterns to simulate a range of potential effect sizes. For

these simulations, I perform 10,000 repetitions per effect size, which is recommended

when analysis is exploratory. It is always possible to perform more repetitions later with

a narrower set of surveillance configurations that are most important to the user.

As mentioned previously, I chose a linear adoption pattern to model adoption of new

routine childhood vaccinations that will be explained in detail next. Later, I obtained data

from the Mini-Sentinel System to validate this choice and that data is described in

Appendix A.

7.3.1 Primary Design: Cohort Design with the Poisson MaxSPRT Model

For the cohort design, the general model as shown in Figure 14 can be simplified into

one compartment: "exposed persons at risk," Ei, for databases i=1, 2, ... m, specified by

equation (1):

dE = s16pIM(t - 61) - pEi(t) - s2 s1 6p M (t - 61 - 62) (1)
dt

Mi is the subpopulation size in database i. This formulation assumes a linear adoption

function coincident with annual well visits and is reflective of the rate at which data

arrive (0 = 12 months-'). It also allows for a proportion of these children to be non-

adopters (9t=0.95). The input flow to Ei, (i.e., "exposed persons at risk" category) is

proportional to the input flow to the "adoption category" and is delayed by the induction

period (62). The proportionality constant is the survival probability si = exp(-p62) when

an adopter "survives" the induction period (61) without being censored for experiencing

the outcome of interest (i.e., ITP) at the background rate (p). This formulation results

from treating the occurrence of ITP as a Poisson process that occurs over the induction

period (62). The outflow from Ei occurs by either 1) being censored if one experiences the

outcome according to the background rate (-pEi); or 2) completing the time in the risk
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window (62) according to the proportionality constant S2 = exp(-p62). The reader can

compare the first term of equation 1 with the third term and note they are only different

based on the survivability constant and the added delay. I assume that exit and entry from

the system (e.g., perhaps due to a change in health coverage or other loss to follow-up) is

constant and equal, which is reasonable given the very short period of follow-up. The

equation can also be written in vector form, as shown in equation (2) although all

multiplication is element-wise.

= s1pM(t - 81) - pE(t) - ss<OpM(t - 61 - 2))

dt

7.3.2 Secondary Design: Self-Controlled Design with the Binomial MaxSPRT

Model

The self-controlled design requires a slightly different adaptation of the general

model as shown in equation (3).

dSC = s 3s1OpMi(t - (61 + 62 + 63 + 64)) (3)
dt

In addition to the induction period (6 2) and risk window (62), the self-controlled

design contains a washout period (63) and a comparison window (64). While the adoption

function is the same (i.e., 0cpiMi), persons that contribute to the analysis are not censored

for experiencing the outcome of interest (i.e., ITP) during the risk window or comparison

window. However, they may still be censored for experiencing the outcome during the

induction period or the washout period. Consequently, survivability constants are used to

account for loss-to-follow-up that occurs during these respective periods (i.e., si = exp(-

p6 ) and s3 = exp(-p63) ). Essentially, to contribute to the analysis, the person must have

completed both the risk window and the comparison window, and these persons can be

simplified into a single compartment, the study completions (SCi) for databases i=1, 2, ...

m. Therefore, the input to the SC; is the adoption inflow modified by survivability

constants and delayed by the various time constants that each person must complete in
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order to complete the study. Equation (3) can also be written compactly in vector notation

as shown in equation (4) although element-wise multiplication operations are required.

d SC
d - s3 s1 <pM(t - (i1 + 62 + 63 + 64))

(4)

7.3.3 Modification by Database-Specific Delay and Misclassification Parameters

Once a pattern of information accrual in calendar time is estimated, the pattern must

be altered to reflect when the data become accessible for analysis by incorporating the

refresh delay time, processing delay time and outcome misclassification parameters.

Additionally, it is at this point when the information accrual (i.e., the pattern of exposures

in calendar time) is used to simulate outcomes for a pre-specified set of effect sizes. A

sample of the dataset is shown in Table 6. This table is repeatedly populated for the range

of effect sizes of interest. The reader should note that neither exposures nor outcomes

occur until Month 3, reflecting the two-month processing delay assumption. Also, the

data are only updated monthly, reflecting the one-month refresh delay.

Database 1 (Mini-Sentinel Distributed Database)

Incidence Rate Ratio=5

Cumulative True Positive False Negative False PositiveTime Exposure Outcomes Outcomes Outcomes(months) (person-
months) 1 ... Nsim I ... Nsim I ... Nsim

0 0 0 ... 0 0 ... 0 0 ... 0

1 0 0 ... 0 0 ... 0 0 ... 0
2 0 0 ... 0 0 0 0 ... 0

3 20,562 0 ... 0 0 ... 0 0 ... 0

100 5,851,056 46 ... 44 0 ... 0 0 ... 0

101 5,911,201 48 ... 44 0 ... 0 0 ... 0

149 8,798,136 63 65 0 0 0 ... 0

150 8,858,281 63 65 0 ... 0 0 ... 0

Table 6. Partial Dataset for the Simulated
No Misclassification
Abbreviations: Nsim, number of simulations

Vaccine Example with a Fivefold Incidence Rate Ratio and
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7.4 Analysis Sub-Model

7.4.1 Performance Measure: Calendar Time to End Surveillance

I take the simulated data produced by the calendar time sub-model and perform

sequential database surveillance on these data, thereby syncing my information time sub-

model and calendar-time sub-model. Recall that I have specified what the true effect sizes

are, and therefore, I am simply exploring the ability of my surveillance configuration

(i.e., composed of particular databases) to detect these pre-specified effect sizes. Now, I

observe the distributions of the calendar time to end surveillance under both my

primary and secondary designs, which may be more meaningful to users who are

managing the surveillance process. In other words, while information time is useful and

necessary to understand statistical performance, it is the calendar time that helps the user

estimate the impact on public health that the potential excess risk could have.

Initially, I look at how surveillance occurs when the true effect size is equal to the

effect size I wish to detect (i.e., incidence rate ratio of 5). These results are in Figure 18.

In this figure, the primary design/analysis (i.e., cohort design with a Poisson MaxSPRT

model) is shown in the left panel and the secondary design/analysis (i.e., self-controlled

design with a Binomial MaxSPRT model) is shown in the right panel. The reader will

note that the statistical power is a bit higher in secondary design/analysis. This occurs

because of the desire to achieve >0.90 statistical power while requiring integer-valued

outcomes.

Also, the median sample size is higher in the secondary design/analysis. This occurs

for two reasons. The primary reason is that only individuals who experience the outcome

contribute information to the binomial model. That is, the binomial model is indifferent

to individuals exposed to the medical product who do not experience the outcome of

interest - these individuals are non-informative. In contrast, the Poisson model

incorporates information from individuals who experience the outcome and individuals

who do not. Because the Poisson model makes greater use of the information available, it

is able to detect the differences between the treatment group and the comparison group

more quickly. The secondary reason that the binomial model has a higher median sample

size is that individuals have to contribute 84 days before their information is available to

the user as compared with 42 days in the primary design.
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Poisson MaxSPRT Model with Minimum of Four Events Binomial MaxSPRT Model
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Incidence Rate Ratio:5 Incidence Rate Ratio:5
Type I Error:0.05 Type I Error:0.05
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Calendar Time to End Surveillance in Months Calendar Time to End Surveillance in Months

Figure 18. Distribution of Calendar Time to End Surveillance in Months in the Vaccine Example
The left panel is the primary design and analysis (i.e., cohort design with the Poisson MaxSPRT model
with a minimum of four events) and the right panel is the secondary analysis (i.e., self-controlled design
with the binomial MaxSPRT model). Nsim=1 0,000. All other parameters are as shown in Table 5.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test.

Recall that these distributions are the unconditional distributions that show the

calendar time until surveillance ends, irrespective of whether a signal was detected.

However, particularly with the primary design/analysis in the left panel of Figure 18, the

user can also observe the rightmost bar of the distribution (i.e., the 18 month bar), which

represents the instances when the surveillance configuration has incorrectly failed to

reject the null hypothesis. The frequency count of this bar is the type II error. This is

harder to observe in the- secondary design/analysis when the instances of the failure to

signal are a distribution rather than a singular value.

Figures like these can be produced for every true effect size that a user wishes to

evaluate, and the shape of these distributions is similar when the surveillance

configuration is powered correctly to detect the effect size. These figures start to look

quite different when the null hypothesis is true (i.e., the pre-specified true effect size is an

incidence rate ratio of 1), or when the surveillance configuration is underpowered. Refer

back to Figure 11 in the previous section for an example of this circumstance.
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Next, to evaluate how surveillance performs over a range of effect sizes, I extract key

points in these distributions and present them in Table 7. In a simpler version of this

table, I could show only the two sample sizes of interest: median sample size and

maximum sample size. Recall that the median sample size is the summary statistic that I

chose to represent the time-to-detect-a-signal. A user might wish to use a more

conservative measure for planning, e.g., the 8 0 th percentile of the distribution. Such a

measure would be more conservative because it would plan the end of surveillance with

an 80% probability rather than a 50% probability (i.e., the median). In any case, these

tables are customizable to the user's desires and can include a number of user-specified

summary statistics to describe these distributions.

True Risks Signal Mean Median 80th 95th

(%) (months) (months) (months) (months)
IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin

0 1.0 0.05 0.05 17.8 69.3 18 70 18 81.5 .18 94
1 1.5 0.14 0.16 17.3 52.9 18 55 18 65 18 75
2 2.0 0.28 0.32 16.5 41.5 18 44 18 54 18 62
4 3.0 0.56 0.64 14.7 27.2 16 28 18 38 18 45
8 5.0 0.90 0.91 11.2 15.4 11 14 14 21 18 27

18 10.0 0.999 0.993 7.3 9.2 7 8 9 11 11 14

Table 7. Descriptive Statistics of the Calendar Time to End Surveillance for the Primary and
Secondary Design/Analyses over a Range of True Risks
Nsim= 10,000. Shading indicates when the maximum sample size is reached and the null hypothesis is not
rejected. Signal is the percent of time the null hypothesis is rejected. Incidence Rate Difference (IRD) is
given in events per 100,000 person-years.
Abbreviations: IRD, incidence rate difference; IRR, incidence rate ratio; Poi, Poisson MaxSPRT Model;
Bin, Binomial MaxSPRT Model.

The user can learn much about the performance of sequential database surveillance

from Table 7. First, as expected, when the true effect size is numerically smaller than an

incidence rate ratio of 5, the surveillance is underpowered. Similarly, when the true effect

size is greater than the effect size that I set out to detect, power is greater. The gray

shading indicates places in the distribution when the signal was not detected, which only

correctly occurs when the incidence rate ratio is equal to 1 (i.e., the null hypothesis is

true).

Second, the user should note that while the primary and secondary designs have

similar median sample sizes when surveillance is powered appropriately (i.e., when the
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incidence rate ratio > 5), these sample sizes start to diverge quickly when surveillance is

underpowered and the secondary design/analysis (i.e., the binomial MaxSPRT model)

has notably higher median sample sizes. This higher median sample size in the binomial

MaxSPRT model occurs because the maximum sample size is a random variable in this

model, and the median is pulled increasingly rightward in the distribution with decreasing

statistical power. By contrast, with the Poisson MaxSPRT model, because the maximum

sample size is a fixed value, the median sample size has a more limited range (i.e., it will

be capped at the maximum sample size of 18 months).

Third, the maximum sample sizes - equivalent to the median sample sizes when the

incidence rate ratio is 1 - diverge significantly between the two designs (i.e., compare 18

months to 70 months). Practically, this divergence means that if there were no excess risk

in the environment, the cohort design reaches the maximum sample size (i.e., the

stopping point when one fails to reject the null hypothesis) at 18 months whereas the self-

controlled design reaches the maximum sample size at 70 months. To a planner

concerned with generating findings within a particular calendar period of time, these

calendar time differences are substantial, particularly if there is strong prior assumption

that there is no excess risk in the environment.

Fourth, the much larger maximum sample size required when using the secondary

design/analysis is particularly an issue when a signal is missed but a true risk exists (i.e.,

type II error) because surveillance will have ended by failing to reject the null and

avoidable excess events will continue to occur until some other evidence generation

mechanism uncovers the true risk. That is, suppose the true effect size in the environment

is equivalent to an incidence rate ratio of 2. The primary design/analysis with the current

surveillance configuration will miss this result 72% percent of the time and the secondary

design/analysis only performs slightly better by missing it 68% of the time. However, the

primary design/analysis would have (incorrectly) declared surveillance over at a median

of 18 months while failing to detect the risk whereas the secondary design/analysis would

require a median of 44 months to reach the same (incorrect) result.
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7.4.2 Performance Measures: Nationally Projected Excess Events

Calendar time is important for planning (i.e., when will surveillance end), but it is

also important to get a sense of the avoidable excess events that might occur while

surveillance is ongoing. To do this, it is important to project nationally because the

population affected by a true excess risk in the environment extends beyond the observed

population for the purposes of surveillance. If I assume that the rough overall size of the

0-1 year old cohort in the United States is 4 million children 384 and 95% of them receive

their routine vaccinations, then I can assume 316,667 are vaccinated monthly. Given a

vaccination rate in doses/month, a true effect size in excess events/doses, and the

distribution of months to end surveillance, I can perform an algebraic transformation on

Figure 18 to reflect the distribution of excess events that may occur if the effect size is

equal to an incidence rate ratio of 5, shown in Figure 19.

Poisson MaxSPRT Model with Minimum of Four Events Binomial MaxSPRT Model

Histogram Histogram

1000 Mean 800 - Mean
1000 a a Median

* 80th * 80th
700

800-
600 oe

500
600-

400 * Power:0.9126
Incidence Rate Ratio:5

400 Type I Error:0.05
300

200
200 -

Power:0.8993 fl
Incidence Rate Ratio1:5
Type I Error:0.05

0 51 0 152025335)40 0 15 30 45 60 75 90 105
Excess Events During Surveillance Excess Events During Surveillance

Figure 19. Distribution of Excess Events that Occur During Surveillance in the Vaccine Example
The left panel is the primary design/analysis (i.e., cohort design with the Poisson MaxSPRT model with a
minimum of four events) and the right panel is the secondary design/analysis (i.e., self-controlled design
with the binomial MaxSPRT model). Nsim=10,000. All parameters are as stated in Table 5.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test.

34 Centers for Disease Control and Prevention, "National Vital Statistics System."
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It is important to note that when the surveillance incorrectly fails to reject the null, the

excess events calculated are the minimum that might occur. The actual number of excess

events that will occur is dependent on how quickly the true effect size can be detected via

other mechanisms. Likewise, I can produce a transformation of Table 7 to be in excess

events, shown as Table 8. Again, the excess events when the null hypothesis fails to be

rejected are shown as being the minimum possible.

Tru Riks Signal Mean MedianTrue Risks ignal Men (een 80th (events) 95th (events)(%) (events) (events)
IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin

0 1.0 0.05 0.05 0 0 0 0 0 0 0 0
1 1.5 0.14 0.16 >6.1 >18.4 >6.3 >19.3 >6.3 >22.8 >6.3 >26.3
2 2.0 0.28 0.32 >11.6 >29.1 >12.6 >30.8 >12.6 >37.8 >12.6 >43.4
4 3.0 0.56 0.64 20.5 37.6 22.4 37.8 >25.2 >53.3 >25.2 >63.1
8 5.0 0.90 0.91 31.2 43.0 30.8 39.2 39.2 58.9 >50.5 >75.7

18 10.0 0.999 0.993 45.8 57.5 44.1 50.5 56.8 69.4 69.4 88.3

Table 8. Descriptive Statistics of the Excess Events During Surveillance for the Primary and
Secondary Analyses over a Range of True Risks
Nsim=10,000. Shading indicates when the maximum sample size is reached and the null hypothesis is not
rejected. Signal is the percent of time the null hypothesis is rejected. Incidence Rate Difference (IRD) is
given in events per 100,000 person-years.
Abbreviations: IRD, incidence rate difference; IRR, incidence rate ratio; Poi, Poisson MaxSPRT Model;
Bin, Binomial MaxSPRT Model.

7.4.3 Incorporating the User's Prior Assumptions Regarding Excess Risk

As the reader may have guessed, the interpretation of tables such as Table 7 and

Table 8 may be different depending on the user's prior assumptions/beliefs (i.e.,

hypotheses) regarding the likelihood of the true effect size in the environment. That is,

when planning surveillance and anticipating both its calendar time until completion and

potential excess harm in the environment that occurs while an excess risk is being

detected, the user may be influenced by the strength and quantity of the existing

supporting data that suggested the potential for a true excess risk in the first place (i.e.,

the culmination of the signal detection phase discussed in section 2.1.1). While most

users may be hesitant to numerically quantify their prior assumptions, this simulator

provides a way to do so. It weights the outcomes shown in Table 7 and Table 8 according

to the user-specified likelihood of those true effect sizes actually occurring.
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Here, a user specifies the probability distribution of the true effect sizes they believe

to be possible by assigning a likelihood over the range of true effect sizes being

considered, known as a Bayesian prior probability. There are many different ways to

create such a distribution and there is a significant literature about how to choose a prior

that is beyond the scope of this research 385, but I prefer the "lump-and-smear" and I will

use that with this example. The "lump" is a lump of probability on the null hypothesis,

and the "smear" spreads the remaining probability over the range of alternative effect

sizes. Some authors have constructed the smear with a truncated normal distribution

whereas others use a uniform distribution over an appropriate range. Of course, in all

cases, the final probability distribution function must sum to one.

Lump-and-Smear Prior Assumption 1 Lump-and-Smear Prior Assumption 2

0.7- 0.7-

0.6- 0.6-

0.5- 0.5-

0.4- 0.4-

0.3- 0.3-

0.2- 0.2-

0.1 - 0.1

C- 01 23 45 67 89 10 1 23 45 67 8 910
Incidence Rate Ratios of Interest Incidence Rate Ratios of Interest

Figure 20. Two Example Prior Distributions regarding Likelihood of True Effect Size

I begin with two lump-and-smear prior assumptions of the true effect size with the

following values: 1) the lump is equal to 0.75 and the smear is a truncated normal with a

mean equivalent to the incidence rate ratio that I have powered the surveillance to detect

(i.e., 5), a sigma of 1.0, and truncation bounds of 1 and 10; and 2) the lump is equal to

3 See D J Spiegelhalter et al., "Bayesian Methods in Health Technology Assessment: a Review," Health
Technology Assessment (Winchester, England) 4, no. 38 (2000): 1-130.
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0.25 and all else the same. These two prior assumptions are shown respectively in Figure

20. The leftmost panel represents the prior assumption when the user has a strong feeling

that there is little likelihood of a true excess risk. This circumstance might occur if the

user had an obligation to monitor a set of adverse events for each new vaccination, but

lacked any data to support a potential association. The rightmost panel represents the

prior assumption when the user has a strong feeling that there is an excess risk in the

environment. This circumstance might occur if data from spontaneous reporting systems

prompted the creation of the tracked safety issue. Again, the user can create many

potential prior distributions to explore, but I assume the user is, in part, relying on

whatever existing data suggested a tracked safety issue was worth evaluating in the first

place.

To make use of these prior distributions, I sample them using an importance

sampling scheme 386 and then, using the sampled effect size, I run the simulator. I do this

with 10,000 samples. From these numbers, I can produce a new weighted distribution of

the time to end surveillance and the excess events to end surveillance for both the

primary and secondary analyses with the weighting reflecting the prior assumptions

regarding the likelihood of a true excess risk.

7.4.3.1 Prior Assumption with a Lower Likelihood Assigned to a True Excess

Risk

Figure 21 shows the distribution of the time to end surveillance in the circumstance

that the prior assumption that assigned a lower likelihood to a true excess risk existing

was true (i.e., lump-and-smear prior 1 or the leftmost graph of Figure 20). The user

should note the significant differences in the time to end surveillance for the primary v.

secondary design are consistent with instances of no excess risk shown in Table 7 on

page 137 (i.e., when the incidence rate ratio is equivalent to 1).

386 See Reuven Y. Rubinstein and Dirk P. Kroese, Simulation and the Monte Carlo Method, vol. 2
(Hoboken, N.J.: John Wiley & Sons, 2008), 131-140.
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Figure 21. Distribution of the Calendar Time to End Surveillance in Months when Applying Lump-
and-Smear Prior Assumption 1 in the Vaccine Example
The left panel is the primary design/analysis (i.e., cohort design with the Poisson MaxSPRT model with a
minimum of four events) and the right panel is the secondary design/analysis (i.e., self-controlled design
with the binomial MaxSPRT model). Nsim=10,000. All parameters are as stated in Table 5.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test

Figure 22 shows the distribution of excess events that occur during surveillance in the

circumstance when the prior assumption that assigned a lower likelihood to a true excess

risk existing was true (i.e., lump-and-smear prior assumption 1). As should be expected,

when no excess risk exists, there are no excess events that occur during surveillance.

Since the user expects this situation 75% of the time in lump-and-smear prior assumption

1, the user would really be looking to understand the distribution of excess events that

could occur based on their smaller assigned probability that a true excess risk exists.

Optimization for surveillance criteria could take a form that relates to minimizing these

potential excess events below a particular ceiling with a particular probability.
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Figure 22. Distribution of Excess Events that Occur During Surveillance when Applying Lump-and-
Smear Prior Assumption 1 in the Vaccine Example
The left panel is the primary design/analysis (i.e., cohort design with the Poisson MaxSPRT model with a
minimum of four events) and the right panel is the secondary design/analysis (i.e., self-controlled design
with the binomial MaxSPRT model). Nsim=10,000. All parameters are as stated in Table 5.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test.

7.4.3.2 Prior Assumption with a Higher Likelihood Assigned to a True Excess

Risk

Figure 23 and Figure 24 show the same distributions with the second lump-and-smear

prior assumption that places considerable likelihood on the existence of an excess risk.

As expected, in Figure 23, the time to end surveillance is faster than in Figure 21

reflecting the increased likelihood of a true excess risk. Figure 24 also reflects the greater

probability of excess events that occur during surveillance as a result of the belief that a

true excess risk exists.
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Figure 23. Distribution of the Calendar Time to End Surveillance in Months Applying Lump-and-
Smear Prior Assumption 2 in the Vaccine Example
The left panel is the primary design/analysis (i.e., cohort design with Poisson MaxSPRT model with a
minimum of four events) and the right panel is the secondary design/analysis (i.e., self-controlled design
with binomial MaxSPRT model). Nsim=10,000. All parameters are as stated in Table 5.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test
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Figure 24. Distribution of Excess Events that Occur During Surveillance Applying Lump-and-Smear
Prior Assumption 2 in the Vaccine Example
The left panel is the primary design/analysis (i.e., cohort design with the Poisson MaxSPRT model with a
minimum of four events) and the right panel is the secondary design/analysis (i.e., self-controlled design
with the binomial MaxSPRT model). Nsim=10,000. All parameters are as stated in Table 5.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test
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7.5 Summary

In this example, I have not delved into a choice among surveillance configurations in

the interest of showing the user how the simulator operates with a simple example.

Clearly, the user could initiate surveillance configuration choices by varying the detection

criteria, the choice of primary design, and the many epidemiologic choices related to how

exposures and outcomes are counted and compared. Next, I turn to an example with a

surveillance configuration choice to illustrate how the user might draw comparisons and

learn about potential scenarios. I do this by relaxing the assumptions relating to zero

misclassification, which are quite unrealistic, but have thus far allowed the reader to

explore the simulator without additional levels of complication.
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8 VACCINE EXAMPLE WITH MISCLASSIFICATION

8.1 Modeling Misclassification

Let us take our existing example, and examine the effects of outcome

misclassification on statistical power, and the two sample sizes of interest, maximum and

median sample size. For these purposes, I will always assume non-differential

misclassification although in certain circumstances, this assumption may be quite

strong.387 Many statisticians and epidemiologists have studied non-differential

misclassification in traditional retrospective epidemiologic studies 388 and several have

published post hoc correction techniques. 389 However, very little has been written about

misclassification with respect to sequential analysis. This absence is likely because it was

a problem not previously encountered. Most sequential analysis has been done in support

of clinical trials that analyze primary data. Because these data are gathered explicitly,

there is a much lower likelihood of misclassification. To wit, misclassification might

occur in these circumstances because of scientific differences in interpretation of data.

Sequential statistical analysis of secondary data is expected to contain some degree of

misclassification but these effects have not been evaluated. I extend the same

mathematical proofs of prior authors who examined non-sequential misclassification to a

sequential setting.

For each database i=1,2,...,m under consideration, I now assign a positive predictive

value (PPV) in the comparator group (PPVi") and a sensitivity ($i). I assign the PPV to

the comparator group only because Green has shown that the PPV in the treatment group

(PPVil) is always higher than in the comparator group when an excess risk exists while

assuming non-differential misclassification. 3 90 The reason is that the treatment group is

actually composed of two different sub-groups that are impossible for the user to

differentiate. The sub-groups are 1) those that experience the outcome for reasons

387 See section 4.2.3.2 for a discussion on differential and non-differential outcome misclassification.
388 S Greenland, "Basic Methods for Sensitivity Analysis of Biases," International Journal ofEpidemiology

25, no. 6 (December 1996): 1107-1116.
389 Mullooly, "Misclassification Model for Person-time Analysis of Automated Medical Care Databases";

Brenner and Gefeller, "Use of the Positive Predictive Value to Correct for Disease Misclassification in
Epidemiologic Studies"; Green, "Use of Predictive Value to Adjust Relative Risk Estimates Biased by
Misclassification of Outcome Status."
390 Green, "Use of Predictive Value to Adjust Relative Risk Estimates Biased by Misclassification of
Outcome Status."
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independent of their exposure at the background incidence rate of the outcome and 2)

those that experience the outcome because of their exposure. The first sub-group

resembles the comparator group and would have the same PPV. The second sub-group is

responsible for the numerically higher PPV (i.e., PPVvx or PPV due to vaccination) in the

treatment group, which is modeled using the incidence rate ratio (IRR). Equation (5)

describes this circumstance with the first half of the equation describing the first sub-

group and the second half of the equation describing the second sub-group:

PPVi= (PPVo)*(1/IRR) + (PPVvx)*((IRR-1)/IRR) (5)

As the reader can see, when the IRR=1 (i.e., there is no excess risk), the second part of

equation 5 is zeroed out and PPVi=PPVo.

For these purposes, PPVi can be derived from PPVo, which depends on additional

information about the relative size of the comparator population to the treatment

population and the true effect size. Equation (6) is that algebraic derivation under the

assumption of non-differential disease misclassification.

PPVi=(IRR*z)/(IRR*z -1 + (1/PPVo)) (6)

z=ratio of person-time contributed in the comparator population to person-time
contributed in the treatment population.

Given an incidence rate in the comparator group (p) that is assumed true, the

database-specific sensitivity and PPV in the comparator group as described above, it is

possible to calculate true positive cases, false positive cases, and false negative cases of

the outcome of interest in both the treatment and comparator populations. A compact

explanation of these rates is shown in Table 9 below. However, these rates will produce

deterministic totals of cases in calendar time according to these average values, and

create non-integer valued case totals. Such an approach is inconsistent with how these

data actually arrive and so I treat each of these rates as an input to a Poisson process and

simulate actual case arrivals.
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Exposed Coded Had Case Type Modeled Rate of Occurrence
with Outcome
Outcome

Treatment Population
1 0 0 TN N/A
1 0 1 FN [(IRR-1)* p + p]*(1-#)
1 1 0 FP IRR*p*(#/PPV1)
1 1 1 TP [(IRR-1)* p + p]*#
Comparator Population
0 0 0 TN N/A
0 0 1 FN p*(1-#)
0 1 0 FP p* (0) [(1/PPVo) -1)]
0 1 1 TP p*#

Table 9. Rates of Occurrence of Outcomes of Interest when Modeling Misclassification
Abbreviations: TN, true negative; FN, false negative; FP, false positive; TP, true positive; IRR, incidence
rate ratio.

8.1.1 Primary Design: Cohort Design with the Poisson MaxSPRT Model

Prior to assuming any misclassification, in the vaccine example in the previous

section, I set surveillance to detect a fivefold incidence rate ratio with 90% power.

Keeping those same detection criteria, I run my simulation again and set the true effect

size to the effect size I wish to detect, i.e., a fivefold incidence rate ratio. Now, to

illustrate the negative effects of misclassification on sequential database surveillance, I

vary sensitivity from 0 to 1 and PPV in the comparator group from 0 to 1 and explore the

changes to my surveillance scenario in Figure 25. Aside from these new changes to

misclassification, all other parameters remain as they were in Table 5. That is, all

exposure accruals occur as they did before in section 7 with the assumption of no

exposure misclassification. However, now outcomes are simulated as explained in the

previous subsection and sequential database surveillance is performed on these new data.

Figure 25 addresses the primary design and analysis only (i.e., cohort design analyzed

with the Poisson MaxSPRT model).

10,000 simulations were performed for each combination of sensitivity and PPVo

listed in Figure 25. In this set of three panels, the boxed upper righthand cell reflects what

happens with zero misclassification and is identical to analyses shown previously. The

top, middle and bottom panels respectively show the changes in statistical power, median
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sample size, and maximum sample size that occur as a result of the presence of

misclassification. As one moves away from zero misclassification (i.e., the upper

righthand cell), some combination of the following effects happen: statistical power

deteriorates, and sample sizes to detect the true effect size increase.
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Figure 25. Misclassification Matrix for the Vaccine Example using the Primary Design/Analysis
Nsim =10,000. All parameters, with the exception of misclassification estimates, are as stated in Table 5.
Abbreviations: PPV, positive predictive value.
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First, the reader should note that declines in sensitivity (i.e., increases in the number

of missed cases) do not change the surveillance's statistical power to detect the signal

since it will still require the same number of outcomes to reach one of the two stopping

points. Missed cases simply cause surveillance to take longer to complete, which is

evidenced by the higher median and maximum sample sizes in the middle and lower

panels of Figure 25.

Second, as PPV in the comparator group declines, false positive cases (i.e., noise)

begin to dilute the true signal and the surveillance is less frequently able to correctly

detect the excess risk (i.e., statistical power decreases). This result is consistent with what

would be expected for non-differential disease misclassification in a non-sequential

analysis. Both median and maximum sample sizes decrease, which would seem like an

improvement over a zero misclassification case because now both stopping points to

surveillance occur earlier. However, this interpretation would be mistaken. Recall that in

the Poisson MaxSPRT model, the comparison group outcomes are deterministically

calculated by incrementing the background rate (i.e., the expected incidence rate of the

outcome of interest in that population). With non-differential disease misclassification,

noise (in the form of false positive cases) is systematically added to this rate, meaning

that one arrives at the maximum sample size uniformly earlier than would otherwise have

occurred. Therefore, the entire distribution is shifted leftward or earlier in terms of

calendar months, including the median. So, while it is tempting to think that the earlier

median sample size is an improvement, it simply reflects how the Poisson MaxSPRT

model is systematically more affected by noise.

To be clear, in the less frequent scenarios when a signal is detected, surveillance is

still correctly detecting it (i.e., it would be considered a true positive signal when

defining a classification matrix based on the signal). However, it is detecting it using

some mixture of true cases and noise. If one were to perform medical chart validation on

all the electronic cases (i.e., true positive and false positive cases) that led to signal

detection, then one would likely still see evidence of an excess risk but the precision of

that estimate would be worse than anticipated in the presence of misclassification.
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Third, the median sample size when the statistical power is less than 0.50 represents

surveillance that (incorrectly) fails to reject the null hypothesis (i.e., detect a signal) a

majority of the time. These numbers are shown, but do not get the same highlighting

treatment as the others because they are less meaningful.

8.1.2 Secondary Design: Self-Controlled Design with the Binomial MaxSPRT

Model

I produce the same figure for the secondary design/analysis (i.e., self-controlled

design with the binomial MaxSPRT model) in Figure 26. Again, all parameters with the

exception of the outcome misclassification estimates are the same as those listed in Table

5. Also, as before, I set the true effect size to be equivalent to an incidence rate ratio of 5.

Overall, the patterns are similar in the secondary design/analysis as they are in the

primary, however there are some important and notable differences that really allow the

user to compare the Poisson MaxSPRT model to the binomial MaxSPRT model.

First, the binomial MaxSPRT model retains statistical power better in the face of

misclassification. This result is because the binomial MaxSPRT model is not

systematically adding noise in the same way the Poisson MaxSPRT model is. In the

binomial MaxSPRT model, the occurrence of false positive cases is stochastic for both

the treatment and comparison groups as compared to the Poisson MaxSPRT model,

which is stochastic for the treatment group alone. Therefore, the binomial MaxSPRT

model is less sensitive to the presence of noise in the form of false positive cases. In that

way, the deterministic component of the Poisson MaxSPRT model works as a double-

edged sword. One is able to build statistical power faster and reach a stopping point to

surveillance uniformly faster in the Poisson MaxSPRT model as compared to the

binomial MaxSPRT model under zero misclassification conditions. However, for the

same reasons, misclassification erodes statistical power faster in the Poisson MaxSPRT

model as compared to the binomial MaxSPRT model.

Second, the median sample size in the binomial MaxSPRT model slightly increases

with lower PPV as opposed to decreasing as it does in the Poisson MaxSPRT model.

Again, this result is because the overall distribution of the binomial MaxSPRT model is

less affected by the presence of false positives. Intuitively, this result is expected and
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consistent with non-sequential analysis. That is, in the presence of noise, the surveillance

is less able to distinguish differences between the treatment and comparison groups and

takes longer to detect a signal.
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Figure 26. Misclassification Matrix for the Simulated Vaccine Example using the Secondary
Design/Analysis
Nsim =10,000. All parameters, with the exception of misclassification estimates, are as stated in Table 5.
Abbreviations: PPV, positive predictive value.
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Finally, recall that the maximum sample size in calendar months for the binomial

MaxSPRT model is calculated by taking the median of the time to end surveillance when

the incidence rate ratio is 1. For significant decreases in sensitivity, the maximum sample

size is likely unacceptable to any user (i.e., ranges in excess of 120 calendar months).

8.2 Likely Misclassification in the Simulated Vaccine Example

Continuing with the vaccine example I have been using throughout, let us examine

what kind of misclassification might be expected in this example based on previous

validation studies. Outcome misclassification depends on the electronic algorithm used to

detect the outcome of interest. As Chubak et al. point out, when an electronic algorithm is

very inclusive (i.e., casts a wide net), there are likely to be more false positive cases that

occur and fewer missed cases (i.e., PPV is low and sensitivity is high).39' Conversely,

when an electronic algorithm is fairly narrow, there are likely to be more missed cases

that occur but there is a higher probability of correct identification when a case is

identified (i.e., sensitivity is low and PPV is high). The user will likely choose the

algorithm based on the priorities for the study, i.e. whether false positives or false

negatives are more costly. Again, the user's sense of the likelihood that a true excess risk

exists is likely a large determinant of their preferences. Let us examine three algorithms

that have been studied that could be used to detect the outcome of interest, idiopathic

thrombocytopenic purpura (ITP).

The first algorithm detects the occurrence of ICD-9 392 code 287.3. Terrell et al.

performed a validation study using this algorithm in both children and adults, but I limit

the application of these results to the studies in children, which is reflective of the

example. 393 She finds a combined PPV of 0.54 (225/323 records in the outpatient setting

and 12/118 records in the inpatient setting) for a definitive diagnosis of ITP. There were

no data reported on sensitivity. The reader should note the significant differences in

391 Chubak, Pocobelli, and Weiss, "Tradeoffs Between Accuracy Measures for Electronic Health Care Data
Algorithms."
392 An ICD-9 code is used in medical billing and coding to describe diseases, injuries, symptoms and
conditions.
393 Terrell et al., "Determining a Definite Diagnosis of Primary Immune Thrombocytopenia by Medical
Record Review."
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misclassification depending on the healthcare delivery setting as this report reinforces

previous findings. 394

The second algorithm (hereafter Algorithm 2 in subsequent figures) requires the

occurrence of any of the following ICD-9 codes (287, 287.0, 287.1, 287.2, 287.3 287.31,

287.39, 287.4, 287.5, 287.8, 287.9) plus a laboratory value of <50,000 platelets. This

study was done in five databases that are now a part of the Mini-Sentinel System. 395 The

use of additional laboratory data is because these five databases originate from integrated

delivery systems where laboratory data are available. I will use the published results from

the years 2005-2008. The PPV for this algorithm is 0.53 and the sensitivity for this

algorithm is 0.99.396

The third algorithm (hereafter Algorithm 3 in subsequent figures) comes from the

same study and requires the occurrence of ICD-9 code 287.31 plus a lab value of <50,000

platelets. The PPV for this code is 0.79 and the sensitivity is 0.59.397 As expected, this

narrower algorithm has a higher PPV and lower sensitivity when compared with the

broader Algorithm 2.

To illustrate the impact of these different algorithms on the analysis, I reperform the

baseline analyses from the previous section while relaxing my assumption regarding

perfect outcome classification. As before, I first create figures showing what happens

when the true effect size happens to be equivalent to the effect size specified as the effect

size of interest (i.e., a fivefold incidence rate ratio). Again, I do this for both the primary

and secondary designs/analyses. Figure 27 shows the results when using Algorithm 2. As

discussed earlier, low positive predictive values degrade statistical power in the Poisson

MaxSPRT model (shown on the left) to a greater degree than the binomial MaxSPRT

model (shown on the right). Compare a statistical power of 0.6045 in the former to

0.7351 in the latter. In comparison to the zero misclassification results shown in Figure

18 on page 136, statistical power is lower and the median sample sizes are lower since

false positive cases are contributing to signal detection. For the Poisson MaxSPRT

394 Greene et al., "Near Real-time Vaccine Safety Surveillance with Partially Accrued Data."
395 O'Leary et al., "The Risk of Immune Thrombocytopenic Purpura After Vaccination in Children and

Adolescents."
396 I calculate the sensitivity for this algorithm by counting the number of confirmed missed cases with
respect to other algorithms.
397 See supra at note 396.

155



model, the zero misclassification baseline has a statistical power of 0.8993 and a median

sample size of 11 calendar months whereas Algorithm 2 has a statistical power of 0.6045

and a median sample size of 10 calendar months. For the binomial MaxSPRT model, the

zero misclassification baseline has a statistical power of 0.9126 and a median sample size

of 14 calendar months whereas Algorithm 2 applied to this model has a statistical power

of 0.7351 and a median sample size of 16 calendar months.

Algorithm 2 with Poisson MaxSPRT Model with Minimum of Four Events Algorithm 2 with Binomial MaxSPRT Model

iHistogram 700 MHistogram
- Mean - Mean

3500- o Median o Median
* 80th 600+ 80th
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Power:0.6045 Power:0.7351
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500 Type I Error:0.05 100 Type I Error:0.05
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PPVO:0.53 PPVO:0.53
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Calendar Time to End Surveillance in Months Calendar Time to End Surveillance in Months

Figure 27. Distribution of Calendar Time to End Surveillance in Vaccine Example with
Misclassification per Algorithm 2
The left panel is the primary design/analysis (i.e., cohort design with the Poisson MaxSPRT model with a
minimum of four events) and the right panel is the secondary design/analysis (i.e., self-controlled design
with the binomial MaxSPRT model). Misclassification parameters are given by Algorithm 2 and shown on
the graph. Nsim=10,000. All other parameters are as stated in Table 5.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test, PPV, positive predictive value.

Figure 28 shows the results when using Algorithm 3, which creates a different

misclassification pattern. Again, the left panel shows the primary design/analysis whereas

the right panel shows the secondary design/analysis. Statistical power is not nearly so low

as it is when using Algorithm 2. However, the reduced sensitivity has increased sample

sizes relative to both the zero misclassification results shown in Figure 18 on page 136

and to the Algorithm 2 results. As explained earlier, statistical power in the secondary
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design/analysis (i.e., binomial MaxSPRT Model) is less responsive to changes in PPV

when compared to the primary design/analysis.

Algorithm 3 with Poisson MaxSPRT Model with Minimum of Four Events Algorithm 3 with Binomial MaxSPRT Model
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Figure 28. Distribution of Calendar Time to End Surveillance in Vaccine Example with
Misclassification per Algorithm 3
The left panel is the primary design/analysis (i.e., cohort design with the Poisson MaxSPRT model with a
minimum of four events) and the right panel is the secondary design/analysis (i.e., self-controlled design
with the binomial MaxSPRT model). Misclassification parameters are given by Algorithm 3 and shown on
the graph. Nsim=10,000. All other parameters are as stated in Table 5.
Abbreviations: MaxSPRT, Maximized Sequential Probability Ratio Test, PPV, positive predictive value.

As before, to evaluate how surveillance performs over a range of effect sizes, I extract

key points in these distributions and present them in Table 10. The patterns observed in

the figures above play out over the range of true effect sizes. In the middle panel of Table

10, with respect to Algorithm 2, statistical power falls below 0.5 for all effect sizes

numerically less than the fivefold incidence rate ratio that the surveillance was powered

to detect.

In general, these results allow the user to consider how different algorithms will shift

the statistical power and sample size requirements of surveillance. The problem specifics

will likely influence whether the user favors maintaining a robust statistical power or

minimizing median sample size.
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Zero Misclassification Case

Signal Mean Median 80th 95th
True Risks ()(months) (months) (months) (months)
IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin

0 1.0 0.05 0.05 17.8 69.3 18 70 18 81.5 18 94
1 1.5 0.14 0.16 17.3 52.9 18 55 18 65 18 75
2 2.0 0.28 0.32 16.5 41.5 18 44 18 54 18 62
4 3.0 0.56 0.64 14.7 27.2 16 28 18 38 18 45
8 5.0 0.90 0.91 11.2 15.4 11 14 14 21 18 27

18 10.0 0.999 0.993 7.3 9.2 7 8 9 11 11 14

Algorithm 2: Sensitivity=0.99 and PPV=0.53

Signal Mean Median 80th 95th
True Risks (%)o (months) (months) (months) (months)
IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin

0 1.0 0.05 0.06 10.9 50.0 11 50 11 58 11 67
1 1.5 0.06 0.12 10.8 41.7 11 43 11 50 11 57
2 2.0 0.11 0.24 10.7 35.3 11 37 11 44 11 50
4 3.0 0.31 0.48 10.2 26.0 11 28 11 34 11 40
8 5.0 0.60 0.74 9.1 16.3 10 16 11 22 11 27

18 10.0 0.95 0.97 6.9 9.5 7 9 8 12 11 15

Algorithm 3: Sensitivity=0.59, PPV=0.79

True Risks Signal Mean Median 80th 95th
T eis (months) (months) (months) (months)

IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin
0 1.0 0.05 0.05 23.7 100.4 24 101 24 119 24 137
1 1.5 0.13 0.16 23.1 78.7 24 82 24 96 24 111
2 2.0 0.21 0.30 22.3 62.5 24 67 24 81 24 94
4 3.0 0.47 0.59 20.2 41.5 24 44 24 59 24 70
8 5.0 0.83 0.86 15.8 22.7 15 21 21 33 24 43

18 10.0 0.995 0.992 9.9 11.9 9 11 12 15 16 21

Table 10. Descriptive Statistics of the Calendar Time to End Surveillance in Months for the Primary
and Secondary Analyses over a Range of True Risks with Misclassification
Nsim=10,000 Simulations, Overall Type I Error: 0.05, Shading indicates when the maximum sample size is
reached and the null hypothesis is not rejected. Signal is the percent of time the null hypothesis is rejected.
Incidence Rate Difference is given in events per 100,000 person-years.
Abbreviations: IRD, incidence rate difference; IRR, incidence rate ratio; Poi, Poisson MaxSPRT Model;
Bin, Binomial MaxSPRT Model; PPV, positive predictive value.

In these figures, I have shown the user what might occur if the user has set their

detection criteria and assumed perfect misclassification and then actually performed
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surveillance in the presence of the misclassification. However, if the user has obtained

estimates of misclassification, then an obvious solution is to adjust the way that the

surveillance detection criteria is set a priori based on these misclassification estimates.

That adjustment entails artificially increasing the maximum sample size. By performing

this adjustment, one can try to isolate the variations related to statistical power above (at

least for one particular effect size), and examine performance in terms of sample size

only. I do that next when I show a partitioning of the Mini-Sentinel System. Adjustments

were performed by varying the adjustment factor until the appropriate statistical power

was obtained. Adjustment factors differed for the two models. The primary

design/analysis (i.e., cohort design analyzed using the Poisson MaxSPRT model)

required a larger adjustment factor than the secondary design/analysis (i.e., self-

controlled design analyzed using the binomial MaxSPRT model). This difference in

factors is unsurprising when considering the statistical power of the primary design is

more affected by changes in positive predictive value when compared to the secondary

design.

8.3 Partitioning the Mini-Sentinel System

Up until now, I have treated the Mini-Sentinel System as one aggregate database and

obscured the differences among its components in order to show the capabilities of the

Sequential Database Surveillance Simulator. However, these component databases are

qualitatively different, and this variation across these databases provides opportunities for

a user to tailor the performance of sequential database surveillance to the specific

circumstances of the public health question being evaluated. For example, of the three

algorithms discussed above, only Algorithm 1 (claims only) can be executed across the

Mini-Sentinel System. Algorithms 2 and 3 both require laboratory data that is only

available in a subset of component databases. These qualitative differences merit further

investigation.

There are three important sources of variation across the Mini-Sentinel System that

affect the timeliness and accuracy with which signals of excess risk are detected. First,

uptake/adoption of medical products is highly dependent on formulary status, clinical

guidelines, and the practice of medicine within particular healthcare systems. Second,
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misclassification error or noise in component databases varies across algorithms and the

databases themselves. Third, the costs, in time and money, associated with the correction

of misclassification bias via medical chart validation procedures are highly variable

across the databases that comprise the Mini-Sentinel System.

In general, component databases of the Mini-Sentinel System fall into two categories:

1) databases from large, national health insurers that are aggregations of hundreds of

regional healthcare plans, and 2) databases from smaller integrated delivery systems.

Databases in the first category are typically claims-only data with open (i.e., less

restrictive) formularies. These databases also account for the bulk of data in the Mini-

Sentinel System. Databases in the second category have richer clinical data (e.g.,

laboratory data) to supplement claims data, but have more controlled formularies.

Medical chart validation procedures are significantly less time-consuming and costly in

the integrated delivery system databases.

Why is this important? A subset of the Mini-Sentinel System data is high quality with

minimal noise. Does this high quality data contribute unique value that should be

considered when estimating the demand for the Mini-Sentinel System? What are the

tradeoffs between the quantity and the quality of the sample size? Let us re-examine the

problem and disaggregate the Mini-Sentinel System. If we take the cohort of 0-1 year

olds available in the Mini-Sentinel System and partition it according to the capability to

get laboratory data, then we can expect 40% of the original cohort to have laboratory data

available. As a note, this is not necessarily the typical breakdown of the Mini-Sentinel

System today. This example reflects circumstances that occurred for this cohort of

interest at the time the dataset was created. The Mini-Sentinel System is a dynamic data

system and circumstances may be quite different for other tracked safety issues evaluated

at other timepoints. However, for the user planning on conducting surveillance, they will

have be able to execute modular programs to find out this exact information.

In this portion of the example, I imagine the user is either choosing to apply

Algorithm I broadly across the Mini-Sentinel System or to apply Algorithm 3 to the

subset of the data that also has laboratory data (i.e., 40%). I assume sensitivity is 0.99

with Algorithm 1. 1 will rerun the analyses with these database sizes but also by applying

an adjustment factor to the maximum sample size (i.e., the upper limit on the length of
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surveillance). I perform this step to try to force these analyses to have comparable

statistical power. Results are shown in Table 11.

Algorithm 1 (PPV=0.52, Sensitivity=0.99), Database Size=564,000

True Risks Signal Mean Median 80th 95th
(%) (months) (months) (months) (months)

IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin
8 5.0 0.90 0.91 13.7 18.0 12 16 21 26

Algorithm 3 (PPV=0.79, Sensitivity=0.59), Database Size=.4*564,000

True Risks Signal Mean Median 80th 95th
(%) (months) (months) (months) (months)

IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin
8 5.0 0.91 0.92 38.0 50.1 33 43 55 77 ''fo

Table 11. Descriptive Statistics of the Calendar Time to End Surveillance in Months for the Primary
and Secondary Analyses with A Priori Adjustments for Anticipated Misclassification
Nsim=1 0,000 Simulations, Overall Type I Error: 0.05, Shading indicates when the maximum sample size is
reached and the null hypothesis is not rejected. Signal is the percent of time the null hypothesis is rejected.
Incidence Rate Difference is given in events per 100,000 person-years.
Abbreviations: IRD, incidence rate difference; IRR, incidence rate ratio; Poi, Poisson MaxSPRT; Bin,
Binomial MaxSPRT Model, PPV, positive predictive value.

The important finding is that when one adjusts the analysis to preserve statistical

power in the face of noise created from false positives, there appears to be no time

advantage to using the more accurate (i.e., higher PPV) algorithm on a smaller subset of

higher quality data. That is, if the true risk existed at the level that we have powered

surveillance to detect (i.e., fivefold incidence rate ratio), then the size advantage

outweighs the data quality because lower median sample sizes still imply quicker

detection. Also, by artificially inflating statistical power, theoretically there still would be

enough true positive cases to signal if the signal were based on true positive cases alone.

As a sensitivity analysis, I tested how low the PPV of Algorithm I would have to be

before the size advantage was negated. In this case, it turned out to be a PPV of 0.06 for

the binomial MaxSPRT model, and closer to a PPV of 0.13 for the Poisson MaxSPRT

model. Those results are shown in Table 12. The reader should note that this might not

always be the case and is entirely dependent on the numbers that pertain to this tracked

safety issue. In this example, I have assumed that the user would cope with poor PPV by

adjusting the analysis with a correction factor. However, it is possible that a user may
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have a threshold below which they would not consider using a particular detection

algorithm even if a correction factor were applied because they would be unsure about

the validity of the final results.

If the user decided that chart validation were required for the more poorly performing

algorithm, then the decision calculus would change considerably. First, recall that the

largest data holders in the Mini-Sentinel System have the most expensive and least timely

chart validation procedures. The time to end surveillance considered in Table 12 does not

consider additional time for chart validation. If these time and cost considerations are

accounted for, then - depending on the specific values attributed to the time and cost of

chart validation - it is possible that the size advantage is negated and the user might

prefer the slower uptake and more accurate electronic algorithm without chart validation.

The frequency of the outcome also plays a considerable role in this decision. When

detecting very rare outcomes, such as ITP, it may be plausible to perform chart validation

on every outcome. However, more frequent outcomes like acute myocardial infarctions

may require some subset or sampling of outcomes.

Algorithm 1, (PPV of P01=0.13, PPV of BIN= 0.06, Sensitivity=0.99), Database
Size=564,000

True Risks Signal Mean Median 80th 95th
(%) (months) (months) (months) (months)

IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin
8 5.0 0.89 0.91 37.3 53.9 33 49 61 85 78 1-10

Algorithm 3 (PPV=0.79, Sensitivity=0.59), Database Size=.4*564,000

True Risks Signal Mean Median 80th 95th
(%) (months) (months) (months) (months)

IRD IRR Poi Bin Poi Bin Poi Bin Poi Bin Poi Bin
8 5.0 0.91 0.92 38.0 50.1 33 43 55 77 1 77

Table 12. Sensitivity Analysis on Calendar Time to End Surveillance in Months for the Primary and
Secondary Analyses with A Priori Adjustments for Anticipated Misclassification
Nsim=10,000 Simulations, Overall Type I Error: 0.05, Shading indicates when the maximum sample size is
reached and the null hypothesis is not rejected. Signal is the percent of time the null hypothesis is rejected.
Incidence Rate Difference is given in events per 100,000 person-years.
Abbreviations: IRD, incidence rate difference; IRR, incidence rate ratio; Poi, Poisson MaxSPRT Model;
Bin, Binomial MaxSPRT Model; PPV, positive predictive value.
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8.4 Summary

When performing sequential database surveillance for a particular exposure-outcome

pair, the user has many choices. A more realistic rendering of a database's capabilities

will account for misclassification. Strategies to cope with misclassification are still

emerging in the sequential database surveillance setting when the goal is take advantage

of available electronic data in a timely fashion to provide early warning of medical

product-associated risks in the environment. However, there is a real balance to be struck

between generating both accurate and timely estimates of those risks. As the reader will

see in the next section, many aspects of sequential database surveillance are beyond the

user's control. When misclassification itself is one of those aspects, the user can

experiment with different misclassification control policies in the Sequential Database

Surveillance Simulator to learn more about the effects of various policies on both the

timeliness and accuracy of signal detection.
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9 MODELING ADOPTION OF MEDICAL PRODUCTS

Recall that sequential database surveillance requires the simultaneous management of

information time and calendar time. That is, for sequential database surveillance within

the Mini-Sentinel System to be a useful evidence generation capability,

information/sample size accrual (i.e., the adoption and utilization of the medical product

being evaluated) has to occur within a calendar timeframe appropriate to regulatory

decision-making. The ability to reach a stopping point (i.e., either rejection or acceptance

of the null hypothesis of no excess risk) in sequential database surveillance requires a

threshold level of information (i.e., sample size) that clearly varies with the statistical

power desired to detect a true effect size and the frequency of the outcome being

detected, among other things. In short, the advantage of using a simulator such as the one

presented herein is the ability to sort tracked safety issues into instances when sequential

database surveillance might be more or less useful than other research approaches (e.g.,

randomized controlled trials) to evaluate safety.

However, the Sequential Database Surveillance Simulator requires the user to begin

with assumptions regarding parameters that describe medical product adoption and

utilization, and these parameters are among the most uncertain to be modeled. Not only

are they unknown, but, as stated earlier, they are also beyond the user's control. These

parameters include the identification of the potential pool of adopters of a medical

product, the anticipated percentage of non-adopters of a medical product, and the

function describing adoption itself. For vaccines and other "point"/discrete exposures,

adoption parameters alone are sufficient to describe exposure. However, for continuous

exposures (e.g., most drugs and therapeutic biologics), additional information is needed

to describe medical product utilization, or the behavior of patients after initial adoption.

For example, it is important to estimate how long adopters of new medical products

continue to use such products, i.e., adherence. For antibiotics and other short course

medical products, this task is less challenging than for products administered over the

course of a lifetime (e.g., beta blockers).

While sequential database surveillance can occur at any time during a product's

lifecycle, it is anticipated that such surveillance will occur early, typically in the near-

term following approval and/or commercial launch of a new medical product. If
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surveillance is not immediately postapproval, then it may be possible to gather

preliminary data on adoption and utilization patterns. These data may be obtained

through execution of modular programs, and may form the basis for further adoption and

utilization projections. However, if surveillance is planned immediately postapproval,

then it is left to the user to speculate about possible adoption and utilization patterns.

In the routine childhood vaccination example that I have used throughout this

dissertation, an adoption function coincident with a one-year old well visit is not

unreasonable because of public policy requirements that demand immunizations for entry

to school or daycare. Appendix A describes validation data to support linear adoption

patterns for routine childhood vaccinations. However, adoption of new drugs is

influenced by more factors (e.g., formulary policy, co-payments, the availability of

substitute therapies, treatment guidelines, the practice of medicine, advertising, etc.), and

is considerably more complex.

In this section, I evaluate adoption data from previously approved new molecular

entities in an attempt to provide a rational basis for assuming potential adoption functions

in future surveillance. To be clear, manufacturers perform extensive market research and

modeling prior to the launch of a new medical product. They have a unique and detailed

understanding of the pool of potential adopters and their likely adoption patterns. My

purpose is not to try to recreate these models. Rather, public health planners need some

general functional forms to describe medical product adoption that can be used alongside

a sensitivity analysis in sequential database surveillance models employed in the

simulator.

9.1 New Molecular Entity Cohort

To establish these functional forms, I looked to previously approved new molecular

entities398 in the years 2004-2006. 1 selected these years so I could observe enough data to

be comparable to time frames associated with completed sequential database surveillance

398 "Certain drugs are classified as new molecular entities (NMEs) for purposes of FDA review. Many of
these products contain active moieties that have not been approved by FDA previously, either as a single
ingredient drug or as part of a combination product; these products frequently provide important new
therapies for patients." See U.S. Food and Drug Administration and Center for Drug Evaluation and
Research, "Innovation in Development of Drugs and Biological Products," WebContent, n.d.,
http://www.fda.gov/Drugs/DevelopmentApprovalProcess/Druglnnovation/default.htm.
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analyses. 399 The new molecular entities selected for evaluation were limited to outpatient

medications, which are commonly captured in pharmacy dispensing files based on

national drug codes. Recall that medical products such as medically-attended infusions

and injections, particularly newly available ones, are not well captured in the Mini-

Sentinel System. 40 0 Of the 78 new molecular entities approved between 2004-2006, 40

were included in the "cohort," and are listed in Table 13. The national drug codes

associated with each product in the cohort were identified using the FDA's public

database 40, and checked against a third-party commercial database. Additionally, once I

began working with these data, it became apparent that particular new molecular entities

experienced significant delays between when the product was approved and when it was

commercially available/launched. For example, see Apidra@ (insulin glulisine injection)

and Omacor@/Lovaza@ (omega-3 acid ethyl esters) in Table 13 below. This mismatch

created a problem for trend analysis. Therefore, I had to obtain "launch dates" for the

products in the cohort from the manufacturer's press releases.

Trade Name Generic Name Days Approval Launch
(n=40) (n=40) Supplied Date Date

Amitiza lubiprostone 30 01-31-2006 04-01-2006

Apidra insulin glulisine injection 30 04-16-2004 03-08-2006

Aptivus tipranavir 30 06-22-2005 06-22-2005

Azilect rasagiline mesylate 30 05-16-2006 08-01-2006

Baraclude entecavir 30 03-29-2005 04-01-2005

Byetta exenatide 30 04-28-2005 06-01-2005

Campral acamprosate 30 07-29-2004 01-01-2005

Chantix varenicline 30 05-10-2006 08-02-2006

Cymbalta duloxetine 30 08-03-2004 08-03-2004

Enablex darifenacin 30 12-22-2004 02-09-2005

Exjade deferasirox 30 11-02-2005 01-16-2006

Fosrenol lanthanum 30 10-26-2004 01-01-2005

Invega paliperidone 30 12-19-2006 01-07-2007

Januvia sitagliptin phosphate 30 10-16-2006 10-16-2006

Levemir insulin detemir 30 06-16-2005 03-01-2006

Lunesta eszopiclone 30 12-16-2004 04-03-2005

399 Yih et al., "Active Surveillance for Adverse Events: The Experience of the Vaccine Safety Datalink
Project."
400 See supra at note 294.
401 Center for Drug Evaluation and Research and Food and Drug Administration, "National Drug Code

Directory", n.d., http://www.accessdata.fda.gov/scripts/cder/ndc/default.cfm.
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Trade Name Generic Name Days Approval Launch
(n=40) (n=40) Supplied Date Date

Lyrica pregabalin 30 12-31-2004 09-22-2005
Nevanac nepafenac 15 08-19-2005 09-01-2005
Nexavar sorafenib toylate 30 12-20-2005 12-20-2005
Noxafil posaconazole 14 09-15-2006 09-15-2006
Omacor/Lovaza omega-3 acid ethyl esters 30 11-10-2004 10-05-2005
Omnaris ciclesonide 30 10-20-2006 05-09-2008
Prezista darunavir 30 06-23-2006 07-01-2006

biskalcitrate potassium,
Pylera metronidazole and tetracycline 10 09-28-2006 05-07-2007

hydrochloride
Ranexa ranolazine 30 01-27-2006 03-24-2006
Revlimid lenalidomide 28 12-27-2005 01-01-2006
Rozerem ramelteon 30 07-22-2005 09-01-2005
Sanctura trospium 30 05-28-2004 08-23-2004
Sensipar cinacalcet 30 03-08-2004 04-01-2004
Spiriva tiotropium oral inhalation 30 01-30-2004 05-25-2004
Sprycel dasatinib 30 06-28-2006 07-01-2006
Sutent sunitinib malate 28 01-26-2006 04-01-2006
Symlin pramlintide acetate 30 03-16-2005 04-01-2005
Tarceva erlotinib 30 11-18-2004 11-27-2004
Tindamax tinidazole 5 05-17-2004 07-01-2004
Tyzeka telbivudine 30 10-25-2006 03-16-2007
Veregen sinecatechins 30 10-31-2006 12-14-2008
Vesicare solifenacin 30 11-19-2004 01-21-2005
Xifaxan rifaximin 15 05-25-2004 07-01-2004
Zolinza vorinostat 30 10-06-2006 10-06-2006

Table 13. Cohort of New Molecular Entities Evaluated for Adoption Patterns
Days Supplied indicates average days supplied per prescription.

9.2 Medicaid Data Explorations

Prior to the availability of data from the Mini-Sentinel System, I used U.S. Medicaid

dispensing data40 2 to evaluate the adoption and utilization patterns (i.e., sample size

accrual) of medical products in the cohort. These data are reported quarterly by state to

the Centers for Medicare and Medicaid Services and are available for outpatient drugs

paid for by state Medicaid agencies per the Medicaid Drug Rebate Program. I calculated

exposure profiles from these quarterly Medicaid dispensing data from the time of a

4 Centers for Medicare and Medicaid Services, "Medicaid Drug Programs Data & Resources", n.d.,
http://www.medicaid.gov/Medicaid-CHIP-Program-Information/By-Topics/Benefits/Prescription-
Drugs/Medicaid-Drug-Programs-Data-and-Resources.html.
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product's commercial launch date until the end of the third calendar quarter of 2010.

These publicly available dispensing summaries are based on administrative claims data
403and represent utilization for approximately 60 million covered lives.

Several adjustments were made to account for extreme values and limited granularity

in the Medicaid data. I removed extreme values 40 4 and replaced them with linearly

interpolated data points based on the nearest neighbors. I generally assumed 30 exposed

days (i.e., days supplied) per dispensing because states limit Medicaid prescription drug

utilization accordingly;405 exceptions are noted in Table 13. Because these data were not

quality-controlled, I assumed exposure could range from half to double the calculated

value. These exposure accrual estimates were likely high because I assumed that every

dispensing contributed exposed person-time to surveillance. In actual surveillance

activities, many exposed days would be excluded because of incident user criteria,

disqualifying prior events, and lapses in drug or medical benefit coverage.

Using Medicaid claims data as a temporary "substitute" for data in the Mini-Sentinel

System had advantages and disadvantages. The primary advantages were its free, public

availability and similarity in structure to Mini-Sentinel Systems claims data. However,

the lack of quality control in these data was a significant disadvantage. Also, these raw

dispensing totals did not provide much insight into "incident user" utilization, which is

typically the design for sequential database surveillance studies. Finally, Medicaid

populations underwent substantial upheaval before and after January 1, 2006 due to

changes in eligibility as a result of the 2003 Medicare Modernization Act.4 06 At the time

of design and subsequent analysis, I chose the cohort so that at least 15 quarters of data

were available. If I were to re-perform this analysis using Medicaid data in the future, I

would limit my cohort to new molecular entities approved after January 1, 2006.

403 U.S. Congressional Budget Office, The Budget and Economic Outlook: Fiscal Years 2011 to 2021
(Washington, DC: Congress of the United States, Congressional Budget Office, 2011),
http://cbo.gov/doc.cfm?index= 12039; U. S. Congressional Budget Office, The Long-term Outlookfor
Health Care Spending (Washington, DC: Congress of the U.S., Congressional Budget Office, 2007),
http://www.cbo.gov/doc.cfm?index=8758; Jean Hearne and Congressional Research Service, Prescription
Drug Coverage Under Medicaid: CRS Report RL30726 (Washington, D.C.: Congressional Research
Service, Library of Congress, February 6, 2008), http://opencrs.com/document/RL30726.
404 I defined extreme values as greater than 3 times the median absolute deviation from the median.
405 Hearne and Congressional Research Service, Prescription Drug Coverage Under Medicaid: CRS Report
RL30726.
406 For more, see section 4.3.3.
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Nonetheless, my intention is using these data with few constraints was to provide

rough estimates of detectable effect sizes based on actual utilization. To do this, I used

the calculated exposure pattern and varied the frequency of the outcome of interest to

evaluate whether simulated true effect sizes were detectable given the sample size. In

other words, if the simulated effect size were the true effect size, then that effect size was

detectable if sequential database surveillance using the Poisson Maximized Sequential

Probability Ratio Test (MaxSPRT) model could detect the risk with a certain success rate

or reach an end to surveillance without signaling (i.e., type II error was constrained to be

<0.20). Several tables in Appendix B show these results that I summarize next. I perform

this analysis with common event rates of 1 event/100 person-years, infrequent event rates

of 1 event/1000 person-years, rare event rates of 1 event/10,000 person-years, and very

rare event rates of 1 event/100,000 person-years.407 Others have performed similar

studies on a potential European equivalent of the Mini-Sentinel System and found similar

results.4 08

9.2.1 Common Event Rates

Table 22 in Appendix B reports the simulated effect sizes that were achievable when

trying to detect an event rate of 1/100 person-years under the Poisson MaxSPRT model

with detection criteria that sets type I error to 0.05 and type II error to 0.20. An example

of a common event rate is the event rate of interest in the Mini-Sentinel System pilot

project: 9 acute myocardial infarctions/1000 person-years among users of oral

hypoglycemics. 409 Of the 40 products listed in Table 13, 1 found that sequential database

surveillance on 8 quarters of data could identify a simulated incidence rate ratio of >2.5

for 30 products with the most generous estimates of exposures and for 23 products with

the most conservative estimates. Expanding surveillance to 15 quarters would have

identified a simulated incidence rate ratio of >2.5 for 34 products with generous estimates

and 24 products with conservative estimates.

407 The use of the terms common, infrequent, rare and very rare are defined per The Council for
International Organizations of Medical Sciences (CIOMS) Working Group III, Guidelinesfor Preparing
Core Clinical Safety Information on Drugs.
408 Preciosa M Coloma et al., "Electronic Healthcare Databases for Active Drug Safety Surveillance: Is
There Enough Leverage?," Pharmacoepidemiology and Drug Safety 21, no. 6 (June 2012): 611-621.
409 Fireman et al., "A Protocol for Active Surveillance of Acute Myocardial Infarction in Association with
the Use of a New Antidiabetic Pharmaceutical Agent."
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9.2.2 Infrequent Event Rates

Table 23 in Appendix B shows results with a different event rate assumption: 1

event/1000 person-years. A comparable event rate was found in a recent study of bipolar

and depressed adults using anti-epileptics, which estimated 1.2-4.4 suicide-related

410events/ 1000 person-years. Under this event rate assumption, I found that sequential

database surveillance on 8 quarters of data could identify a simulated incidence rate ratio

of >2.5 for 16 products with the most generous estimates of exposures and for 7 products

with the most conservative estimates. Using 15 quarters of data, sequential database

surveillance would have identified a simulated incidence rate ratio of >2.5 for 21

products with generous estimates and 15 products with conservative estimates.

9.2.3 Rare Event Rates

Table 24 in Appendix B repeats the analysis with a rare event rate: 1 event/10,000

person-years. Sequential database surveillance could identify a simulated IRR of >2.5 for

5 products within 8 quarters and 8 products within 15 quarters under generous exposure

estimate assumptions. For reference, the rate of acute renal failures among statin users

has been estimated at 4 events/10,000 person-years ; and the rate of upper

gastrointestinal bleeding episodes among users of non-steroidal anti-inflammatory drugs
412

has been estimated at ranges from 3.9 to 11 events/10,000 person-years.

9.2.4 Very Rare Event Rates

I performed the analysis with very rare event rates - 1 event/100,000 person-years -

and the results are shown in Table 25 in Appendix B. Comparable rates are 1-2 cases of

Guillain-Barr6 Syndrome among 100,000 person-years contributed by adolescents

410 A. Arana et al., "Suicide-related Events in Patients Treated with Antiepileptic Drugs," The New England

Journal of Medicine 363, no. 6 (2010): 542-55 1.
411 L. A. Garcia Rodriguez, R. Herings, and S. Johansson, "Use of Multiple International Healthcare

Databases for the Detection of Rare Drug-associated Outcomes: a Pharmacoepiderniological Programme
Comparing Rosuvastatin with Other Marketed Statins," Pharmacoepidemiology and Drug Safety 19, no. 12
(2010): 1218-1224.
412 P. M. Coloma et al., "Combining Electronic Healthcare Databases in Europe to Allow for Large-scale
Drug Safety Monitoring: The EU-ADR Project," Pharmacoepidemiology and Drug Safety 20, no. 1 (2011):
1-11.
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eligible for vaccination against meningococcal disease.4 " A simulated incidence rate

ratio of 2.5 is not achievable for any products after 15 quarters of data have accrued even

under the most generous exposure assumptions.

9.3 Utilization Comparison Among Three Data Sources

To understand the greater context of these results and also how they compared to data

actually in the Mini-Sentinel System, I obtained comparable data from a proprietary drug

use database licensed by the FDA and summary tables414 from the Mini-Sentinel System.

9.3.1 SDI Vector One@: National (VONA)

The VONA database measures retail dispensing of prescriptions. Prescriptions are

captured from a sample of approximately 59,000 retail pharmacies throughout the U.S.

These data are then presented as nationally projected monthly dispensing summaries.

Dispensings from mail order pharmacies and non-retail settings are not represented in

these data. Prior to the availability of the Mini-Sentinel System, these data were the

primary source of utilization data for the FDA. Generally, these data are considered

reliable for outpatient pharmacy dispensings that are not dispensed in specialty

pharmacies or via restricted distribution programs. For medical products with

limited/restricted dispensing patterns, these projections are less reliable because it is

unclear how representative the sample is or how well this sample can be nationally

projected in these circumstances.

9.3.2 Mini-Sentinel System Summary Table Data

Once it became available, I obtained Mini-Sentinel System Summary Table data on

the cohort. These data were also quarterly dispensings for prevalent users. At that time,

enrollment in the Mini-Sentinel System was estimated to cover 38.8 million persons.

However, some data partners were not able to contribute data until after 2007, and

because I was concerned with exposure trends immediately post-approval, I censored any

413 Priscilla Velentgas et al., "Risk of Guillain-Barr6 Syndrome After Meningococcal Conjugate
Vaccination," Pharmacoepidemiology and Drug Safety (July 16, 2012),
http://www.ncbi.nlm.nih.gov/pubmed/22807266.
4 See section 2.2.2.1 for a description of summary tables.
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data partners that did not contribute to the system for the entire evaluation period (2004-

2010). After censoring, my reduced version of the data was estimated to cover 10 million

persons.

9.3.3 Correlation

Unfortunately, these three datasources (i.e., Medicaid, SDI Vector One@, and the

Mini-Sentinel System) uniformly do not support calculation of dispensings per capita,

and the estimated persons covered by the three diverge greatly. Therefore, to compare the

systems and evaluate their correlation, I standardized them so that each quarter's

utilization (U,) is equal to the percent of utilization out of the total utilization over four

years using equation (7) where R, is raw dispensings per quarter.

U Rt
U = 16t (7)

R,
t-1

I chose this formula because it is easy to understand and it prioritizes utilization

patterns early in a medical product's lifecycle, which would presumably be most

important to understand for support of sequential database surveillance. This reduced the

total cohort to 37 new molecular entities because not all of the medical products had

sixteen quarters of data across the three sources. Figure 29 shows these 37 results, each

medical product is a different color. Individual medical products are not identified to due

to limitations on public sharing of these data.
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Mini-Sentinel Standardized Utilization

.0 .2 CIS
C 0 W.1 CL 0.15 - 0.15

E E E

0.05 -0.05- 0.05 -

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 1 2 14 16
Time since Approval In Quarters Time since Approval in Quarters Time since Approval In Quarters

Figure 29. Standardized Utilization Patterns for 37 New Molecular Entities Over Four Years.

To calculate the correlation, I treated each utilization pattern as a sequence of values

and calculated the pairwise Pearson correlation distance.415 Table 14 shows these results,

roughly ordered by products with the best correlation among the three data sources to

products with the least correlation. Lower numbers indicate a better correlation and are

color scaled such that green indicates a better correlation than red.

First, Medicaid dispensing data is more dissimilar from the other two data sources.

This dissimilarity tends to be worse in new molecular entities with dispensings that

spanned the significant changes in Medicaid that occurred after January 1, 2006. New

molecular entities that do not cover this span (i.e., were approved after January 1, 2006)

are noted with an asterisk in Table 14. Second, the mean is greater than the median for all

cases, indicating the presence of outliers associated with lower levels of correlation.

Third, the areas of dissimilarity between SDI Vector One@ and Mini-Sentinel System

data mostly involve medical products with restricted distribution programs (e.g.,

Revlimid@, Sutent@, Exjade@, Nexavar@, Zolinza@) where it is assumed that SDI

Vector One@ data will undercount actual utilization. Fourth, correlation tends to be

worse among products with low exposure prevalence due to small total numbers of

dispensings.

415 For formula, see http://www.mathworks.com/help/stats/pdist.html "correlation distance."
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rade Name eneric Name SDI-MS MS-MC SDI-MC
indamax tinidazole

anexa* ranolazine

yetta exenatide

ymlin pramlintide

pidra insulin glulisine 0.0630 0.0745

ptivus tipranavir 0.0787
mitiza* lubiprostone 0.0943
rezista* darunavir 0.0725 0.0820
araclude entecavir 0.0929 0.0702
evlimid lenalidomide 0.0724
prycel* dasatinib 0.0768 0.0787
evemir insulin detemir 0.0892 0.1038
macor/Lovaza omega-3 acid ethyl ester 0.0738 0.1253
ozerem ramelteon 0.0774 0.1222

utent* sunitinib malate 0.1023 0.0758 0.0868
Vesicare solifenacin 0.1277 0.1374

zilect* rasagiline mesylate 0.1324 0.1145
hantix* varenicline 0.1371 0.1297

anuvia* sitagliptin phosphate 0.1655 0.1714

oxafil* posaconazole 0.0653 0.1067 0.1952
nvega* paliperidone 0.1417 0.0575 0.1713

Campral acamprosate 0.1814T 0.1846

xade deferasirox 0.2277 0.1584

Tyzeka* telbivudine 0.2499 0.1591
exavar sorafenib 0.2099 0.1540 0.1126

Xifaxan rifaximin 0.2107 0.2678

ymbalta duloxetine 0.36 0.3274

nablex darifenacin itace A e cs C
Aunesta eszopiclone S d M i9d
Tarceva erlotinib

Lyrica pregabalin

Zolinza* vorinostat0.52,61

Nevanac nepafenac

Sanctura trospium

Siriva tiotropiumn

Fosrenol lanthanum

Sensipar cinacalcet

Mean 0.0429 0.2611 0.2755

Median 0.0178 0.1324 0.1297

Standard Deviation 0.0689 0.3046 0.3274

Table 14. Pearson Correlation Distances Among New Molecular Entities in the Cohort
Abbreviations: MS: Mini-Sentinel System data; MC: Medicaid data.
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However, these data suggest that FDA may be able to use SDI data and/or Mini-

Sentinel System data to support adoption and utilization models. However, fitting these

data to a few functional forms proved quite challenging and essentially non-productive.

Consequently, I moved away from use of these data for this reason and two others

explained below.

First, raw dispensings are a less than ideal measure of adoption and utilization

patterns because of the inability to distinguish "incident users" or new adopters from

continuing users. Sequential database surveillance activities are generally planned with

incident user criteria such that a person typically only contributes information to the

surveillance based on their initial adoption and use of the product, i.e. during their "initial

treatment episode." 416 Incident user designs are an important technique for mitigation of

selection bias. Second, I utilize theoretical insights and functional forms from the

diffusion of innovations literature, which is briefly described next. Generally, this

literature focuses on initial adoption of new products, although there has been some work

on repeat purchases. 4 17 Thus, incident user data are a better fit with these theoretical

constructs.

9.4 Mini-Sentinel System Incident User Data

I obtained Mini-Sentinel System incident user data on the cohort described above.

Again, because some data partners did not have complete data for the entire evaluation

period (2004-2010), I removed these data partners from formal analysis although I still

observed their trend data visually. The remaining subset of the dataset is dominated by

one data partner that accounts for 80-90% of the data, depending on the medical product.

Had I been looking at a different evaluation period (i.e., after January 1, 2010), this

would not be the case.

416 For more on treatment episodes, see Mini-Sentinel Operations Center, "Module 3: Drug Use - Incident
Outcomes."
4" Minhi Hahn et al., "Analysis of New Product Diffusion Using a Four-Segment Trial-Repeat Model,"
Marketing Science 13, no. 3 (July 1, 1994): 224-247.
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9.4.1 Diffusion of Innovations Literature - Bass Models

418There is an extensive literature in the diffusion of innovations , and complete

coverage of that literature is beyond the scope of this research. However, modeling the

adoption (and subsequent) utilization patterns of new medical products begins as a

diffusion-related problem, and so it is logical to begin with this literature to find

functional forms to describe new medical product adoption. The most prevalent model in

this literature is the Bass model, which was introduced in 1969419 and has been extended

by numerous authors.42 Bass formulates cumulative adoptions as an S-shaped, or

sigmoid curve, characterized by adoption rates that rise and then fall over time, with the

slowest rates occurring at the beginning and end of the adoption period. Other sigmoid

curves that may be familiar to the reader include the symmetric logistic function and the

asymmetric Gompertz function 4 2 1, which have been used widely in ecology and biology

to describe biological processes such as predator-prey relations and tumor growth.

The Bass model's original premise was to describe the adoption of new durable goods

(e.g., televisions, cars) among a stable, homogenous adopter population that was unlikely

to exhibit repeat purchase behavior. Equation (8) is Bass's cumulative density function

for adoption (i.e., the cumulative probability of adoption up to time t). Equation (9) is the

hazard function, and is the ratio of the probability density function to the survival

function. The hazard function represents the instantaneous probability of adoption at time

t given that one has not already adopted. Note that all potential adopters will adopt in

Bass's formulation so it is important to exclude known non-adopters (e.g., perhaps those

with a contraindication) at the outset. Bass hypothesizes the existence of two types of

adopters that contribute to the overall adoption pattern for a particular product although

he does not establish a priori which adopters belong to which groups. This is easiest to

see in the hazard equation (9) and these two groups are the innovators and imitators.

418 See generally Renana Peres, Eitan Muller, and Vijay Mahajan, "Innovation Diffusion and New Product

Growth Models: A Critical Review and Research Directions," International Journal of Research in
Marketing 27, no. 2 (June 2010): 91-106; Nigel Meade and Towhidul Islam, "Modelling and Forecasting
the Diffusion of Innovation - A 25-year Review," International Journal of Forecasting 22, no. 3 (2006):
519-545; Everett M. Rogers, Diffusion of innovations, 5th ed. (New York: Free Press, 2003).
419 Frank M. Bass, "A New Product Growth for Model Consumer Durables," Management Science 15, no.
5 (January 1, 1969): 215-227.
420 Peres, Muller, and Mahajan, "Innovation Diffusion and New Product Growth Models."
421 Charles P. Winsor, "The Gompertz Curve as a Growth Curve," Proceedings of the National Academy of

Sciences of the United States ofAmerica 18, no. 1 (January 15, 1932): 1-8.
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1 - e- (p+q&
F(t) = 1-

1+I[e-(p+q)t] (8)

h(t) =p+-N(t) (9)1 -F(t) M

The innovators (also called influentials), are accounted for in the first part of the

hazard function, and their adoption is described by the coefficient of innovation known as

p. Essentially, they adopt independently. Imitators, on the other hand, described by

coefficient of imitation, q, adopt based on the decisions of others, as operationalized by

the ratio of the number of adopters at a particular time (N(t)) to the total market size (M).

This effect is alternatively referred to as the social contagion effect, word-of-mouth

effect, etc. The Bass model also has been described as the Mixed Influence Model with

much scholarship devoted to time-dependent marketing efforts aimed at either the

innovators or imitators.4 22

Many extensions of the Bass Model employ a component function that accounts for

"marketing mix" variables (e.g., amount of money spent on promotions) that might drive

overall adoption patterns, and this is known as the Generalized Bass Model.4 3 I do not

make use of that model here because I do not have the data to support it, nor is such data

likely to be available to the FDA at the time of launch of a new medical product. Other

relevant extensions of the Bass Model include those that more formally segment the

aforementioned two populations and describe their behaviors.4 24 These models have been

generically categorized as "two segment mixture models." Some authors describe these

two segments (i.e., the early and late markets) as belonging to a single market and model

one pooled market size. Others have posited two separate markets with two separate

42 Vijay Mahajan and Robert A. Peterson, Modelsfor Innovation Diffusion, Sage University Papers Series.
Quantitative Applications in the Social Sciences no. 07-048 (Beverly Hills: Sage Publications, 1985).
43 Frank M. Bass, Trichy V. Krishnan, and Dipak C. Jain, "Why the Bass Model Fits Without Decision
Variables," Marketing Science 13, no. 3 (July 1, 1994): 203-223.
424 See Demetrios Vakratsas and Ceren Kolsarici, "A Dual-market Diffusion Model for a New Prescription
Pharmaceutical," International Journal ofResearch in Marketing 25, no. 4 (December 2008): 282-293;
Christophe Van den Bulte and Yogesh V. Joshi, "New Product Diffusion with Influentials and Imitators,"
Marketing Science 26, no. 3 (May 1, 2007): 400-421; Jacob Goldenberg, Barak Libai, and Eitan Muller,
"Riding the Saddle: How Cross-Market Communications Can Create a Major Slump in Sales," Journal of
Marketing 66, no. 2 (April 1, 2002): 1-16.
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market potentials. Complete separation of the adoption populations may be more

appropriate to describe situations when manufacturers receive approval for new

indications for their existing product. The approval occurs discretely in time although off-

label use of the product in non-labeled indications may have preceded formal approval.

There have been multiple theories to describe why a segmentation might exist4 2 5 , and

most of these theories focus on the innovators as risk takers, technology enthusiasts, or

those that seek to send a signal of high social status by adopting new innovations very

early in a product's lifecycle. Many of these theories are appropriate in the context of a

new product that is a durable good, e.g., a new smartphone. However, there are other

theories more appropriate to the context of new medical product adoption.

One theory referred to as information transfer describes the social contagion effect as

being the result of information transfer from influentials who are described as "opinion

leaders." Essentially, the opinion leaders/influentials adopt and develop experience by

prescribing and monitoring the effects of the new medical product, thereby reducing

uncertainties associated with its unknown risks and benefits in a non-clinical trial

population. These opinion leaders/influentials then exhibit contagion behavior among

themselves, and to the "imitator" physician adopters who become more willing to adopt

the product once a body of evidence begins to develop with respect to the medical

product's risks and benefits. Appropriate empirical testing of this theory would require

modeling physician adopter networks, which I do not intend to do here, and others have

done ably.4 2 6 However, it is reasonable to assume that patient populations may be divided

similarly. That is, some patients may be less risk-averse and more willing to try a new

medical product based on its clinical trial profile.

42 See summary in Bulte and Joshi, "New Product Diffusion with Influentials and Imitators."
426 For example models, see Raghuram Iyengar, Christophe Van den Bulte, and Thomas W. Valente,
"Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science 30, no. 2
(March 1, 2011): 195-212; Mark Paich, Corey Peck, and Jason Valant, "Pharmaceutical Market Dynamics
and Strategic Planning: a System Dynamics Perspective," System Dynamics Review (Wiley) 27, no. I
(March 2011): 47-63; Mary A. Burke, Gary M. Fournier, and Kislaya Prasad, "The Diffusion of a Medical
Innovation: Is Success in the Stars?," Southern Economic Journal 73, no. 3 (January 1, 2007): 588-603;
Christophe Van den Bulte and Gary L. Lilien, "Medical Innovation Revisited: Social Contagion Versus
Marketing Effort," American Journal of Sociology 106, no. 5 (March 1, 2001): 1409-1435; James Samuel
Coleman and University Columbia, Medical Innovation; a Diffision Study (Indianapolis: Bobbs-Merrill
Co, 1966).
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Vakratsas et al. follow up this idea and postulate that this phenomenon may be

particularly true for diseases that encompass varying levels of severity, e.g., diabetes,

obesity, cardiovascular disease.42 They postulate that the early market segment consists

of individuals who are performing poorly on all existing therapies and so are willing to

try new products as soon as they become available due to unmet medical needs. The late

market segment of adopters consists of patients who may be satisfied with their current

therapy, but may be more convinced to switch therapies as more information develops

about the new product's risks and benefits. They completely separate these populations,

i.e. their primary model is not pooled.

9.4.2 Model Fitting

In general, I adopt the functional forms first described by Bass and others cited in this

section and attempt to fit the Mini-Sentinel System incident user data to these forms

using the LSQCURVEFIT and non-linear model fitting functions available in

MATLAB@ (R2012a). The goal is to assess whether these functional forms appropriately

describe the data, and how planners might use these forms to speculate as to the adoption

and utilization patterns for new medical products being evaluated via sequential database

surveillance. Throughout, I do not make use of the "marketing mix" components that

could be present in any of these functional forms since the FDA typically does not have

these data prior to the launch of the product.

As a note, I do not treat the adopter population as a "dynamic adopter population" as

described by others.428 These authors require additional modeling to describe the adopter

population's growth as a natural outgrowth of population, i.e. as a continuous expansion.

For example, as the population ages, there will likely be dynamic adoption of medical

products that treat disease associated with older age like cardiovascular disease. Because

the adoption timeframe that I am considering is relatively short, I omit these dynamics for

simplicity.

Last, I narrowed my original cohort only to those medical products that had enough

exposure that they might be reasonable candidates for sequential database surveillance.

427 Vakratsas and Kolsarici, "A Dual-market Diffusion Model for a New Prescription Pharmaceutical."
428 Vijay Mahajan and Robert A. Peterson, "Innovation Diffusion in a Dynamic Potential Adopter
Population," Management Science 24, no. 15 (November 1, 1978): 1589-1597.
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Therefore, I eliminated new molecular entities in the original cohort that did not have at

least 10,000 incident users over the entire evaluation period. I chose 10,000 users because

it mirrors a setpoint established by Congress in the 2007 Food and Drug Amendments

Act, which requires the FDA to post a safety summary regarding the new product to its

website.42 9 This narrowed my cohort to 22 medical products, and the data that I fit was

the monthly cumulative adopters who I required to be incident users. Incident users were

defined as not having used the medical product in the 120 days preceding the first use,

and only users with continuous drug coverage during that time were included.43

9.4.2.1 Single Market Model Forms

Model Form 1 (MF1) is shown as equation (10). The cumulative adopters (N(t)) is

the market size (M) multiplied by the cumulative density function for the Bass Model, as

shown in equation (8).

N(t) = M * F(t) (10)

9.4.2.2 Dual Market Model Forms: Dual Bass

Model Form 2 (MF2) is a pooled dual-Bass market model. It consists of two Bass

models coupled together with a simple, constant probability (7n) to describe the likelihood

of belonging to the first or second market, and is shown in equation (11). Again the

cumulative density functions (F2 and F2) are shown in equation (8).

N(t) = [inF1 (t) + (1 - 7)F 2 (t)]* M
(11)

Model Form 3 (MF3) is also a pooled dual-Bass market model as shown in equation

(11). However, it uses a different formulation for the probability, a time-dynamic one that

requires the early market to precede the later market and requires the highest probability

429 § 915 of Food and Drug Administration Amendments Act of 2007, Public Law 110-85..."[The Secretary
via the FDA shall provide drug safety information to patients and prescribers by] preparing, by 18 months
after approval of a drug or after use of the drug by 10,000 individuals, whichever is later, a summary
analysis of the adverse drug reaction reports received for the drug, including identification of any new risks
not previously identified, potential new risks, or known risks reported in unusual number;". Codified at 21
U.S.C. § 355(r)(2)(D).
430 A 45-day enrollment gap was allowed.
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of being part of the early market to occur earliest and then fade to zero. This formulation

was first used in Vakratsas et al.'s paper4

e-ot
w(t) = (

(1 + e-t) (12)

Model Form 4 (MF4) is a non-pooled version (i.e., note the two M variables) of MF2,

a dual-Bass market model, with a static probability. It is shown in equation (13).

N(t) = [ rM1 F1 (t) + (1 - w)M2 F2 (t)] (13)

Model Form 5 (MF5) is a non-pooled version of MF3 using the dynamic probability.

It is represented as equation (13) with the probability equivalent to equation (12).

9.4.2.3 Dual Market Model Forms: Exponential-Bass Model

Vakratsas et al.'s main dual market models begin by linking together two Bass

models.4 32 However, they hypothesize that the early market is made up only of the

innovator sub-group with no contribution from imitators. Thus, they set q in equation (8)

equal to zero for the early market. The result is an early market described by an

exponential cumulative density function and a later market described by the Bass

cumulative density function. They also reason that the delay in the availability of the new

medical product during the process of licensure creates a pent-up demand for the product

that is well-modeled by an exponential adoption function.

They examine this dual-market combination as both a pooled and non-pooled market

and with both a static and dynamic probability using the same sort of iterations discussed

above. However, to ensure that the early market precedes the later market, their static

probability formulation is slightly more complex. Essentially, they take the dynamic

formulation listed in equation (12) and set time equal to 1. Thus, by constraining 0 to be

positive, the early market must be smaller than the later market.

Model Form 6 (MF6) is a pooled dual market model with static probability as

described above where the first market is exponential and the second market is a Bass

431 Vakratsas and Kolsarici, "A Dual-market Diffusion Model for a New Prescription Pharmaceutical."
43 Ibid.
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model. Model Form 7 (MF7) is a pooled version of this model with a dynamic probability

as formulated in equation (12). Model Form 8 (MF8) is a non-pooled version of MF6.

Model Form 9 (MF9) is a non-pooled version of MF7. Table 15 is a brief summary of

these model forms.

Model Form Description Pooled? Probability? Parameters
MFI Single Bass N/A N/A M, p, q
MF2 Dual Bass Yes Static M, p1, gl, in, p2, q2
MF3 Dual Bass Yes Dynamic M, pl, gl, p2, q2, 0
MF4 Dual Bass No Static M1, M2, p1, g , 7, p2, q2
MF5 Dual Bass No Dynamic M1, M2, pl, gl, p2 , q2, 0
MF6 Exponential-Bass Yes Static M, pI, a, p2, q2
MF7 Exponential-Bass Yes Dynamic M, p1, p2, q2, 0
MF8 Exponential-Bass No Static M1, M2, p1, nr, p2, q2
MF9 Exponential-Bass No Dynamic M1, M2, p1, p2, q2, 0

Table 15. Summary of Model Functional Forms used with Mini-Sentinel System Incident User Data
Abbreviations: MF; Model Form.

9.4.3 Findings

9.4.3.1 Single Market Bass Model (MF1)

First, all uptake patterns could be fit to a Single Market Bass Model. With the

exception of one medical product in the cohort, all parameter estimates were significant

at the 0.05 level and all signs were in the correct direction. As measures of the goodness

of model fit, I list mean squared error (MSE), median absolute deviation from the median

(MAD), and the Bayesian Information Criterion (BIC) in Table 16. These metrics are

consistent with what others have previously reported.m R2 and adjusted R2 are usually

quite high and generally not informative (i.e., nearly all are greater than .995 and some

are 1.)
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Amitiza 1.55E+06 867.98 983.27
Byetta 8.40E+05 707.491136
Campral
Chantix

Cymbalta 70E0
Enablex 3.36E+05 443.57 1021.9
invega
Januvia 3.02E+061 14.9
Levemir
Lunesta* L2+

Lyrica 1.9E+061 ct h.05 level
Nevanac 4.08E+051 435.17 1018.00
Omacor/Lovaza 7.01E+05 582.82 1036.8
Ranexa
Rozerem 4.34E+05 59425 1021.94
Sanctura1048
Sensipar 9749
Spiriva 5.67E+06 121
Tarceva
Tindlamax 935
Vesicare 4.13E+05 380.56141
Xiaxan 6.14E+05 514.99
*one parameter not significant at the 0.05 level

Table 16. Measures of Model Fit for New Molecular Entity Cohort with Single Market Bass Model

Abbreviations: MSE, Mean Squared Error; MAD, Median Absolute Deviation from the Median; BIC,

Bayesian Information Criterion.

9.4.3.2 Dual Market Bass Models (MF2-MF5)

Generally, the MSE, MAD, and BIC were lower for the dual market Bass models

than for the single market bass models and the results of the dual market Bass models are

shown in Table 17. However, many of the parameters in the various model fits were not

significant at the 0.05 level. Models in which all the parameters were significant are

marked with an asterisk. MF3 (i.e., the pooled, dynamic market model) had a particularly

hard time fitting the 0 parameter (i.e., the dynamic probability of belonging to one market

or the other) and MF4 (the non-pooled static market model) could fit neither of the

market sizes nor the a parameter at a significant level. The signs of all the parameters

were in the right direction but I had to relax the constraint requiring 0 to be positive,

meaning that some models fit better when the early market was larger than the latter

market.
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MSE DvMAD BIC
MF2 | MFS | MF4 I MF5 MF2 I MF3 | MF4 I MF5 MF2 MFS MF4 MF5

A tia2.00E+05 I2.60E+05 I2.04E+05|I 2.04E+05 26.3 2.2 6.1 6.4 875.71 890.65 879.88 879.88
Byet IL.2+5 .2+5I20E01114E+051 249.951T 0.31 20 1027.71 1020.98 1032.02 992.61
Campa 857.70 853.82 862.08. 796.05
Chatx 14[+6 14E0 .2 921,58 920.68 925.69 9247
Cymbalta
Enalx 56. 46 689 64885.14 893.191 889.501 877
invega 4919 49 
Januvia 6 1+57.56E+05| 6.77E+ =.8+5845.84 852.66 849.91 800
Levmr 52.03 51-91 5.0

Lyrica 11E 6|9.32E+05| 1.391E+061 1 6E+06]
Nevanac 11E 5|1.01E+05 1,117E+051 6,07E+04 1 682 143.07T 165.5T 4 5 963 937.77 950.56 984
Omacor/Lovaza 2 o1.21E+05| 2.71E+05 1.22Ea dual-arke model 9a4.64 934.78 9tg90 o

Rozerem 858E+04 4sE+05 8 f73E+04 70E4 109.28 927c.6 10Sut.60 931.90 918.41
sureilance is.161 e s 990.70 961.4 997.81
produc. T45A45 45si 94 8 968.73 917.51 f

Tindamax 49.74 92.782.4.3355999
Vesicare* I3.29E+041 SA9E+04[ 3.34E+04 &*011 1531 9,91 1 1.2 92072.851 977.131 977.22 901

Xiaa*6.W 987.601 982.091 1015.88 951
*At least one of the Dual Bass Model Forms had all significant parametars

Table 17. Measures of Model Fit for New Molecular Entity Cohort with Dual Market Bass Model
Forms
Abbreviations: MSE, Mean Squared Error; MAD, Median Absolute Deviation from the Median; BIC,
Bayesian Information Criterion.

The implication that a dual-market model is a better fit than the single market model,

particularly for models in which all parameters are significant, is an important finding

epidemiologically-speaking for sequential database surveillance. Sequential database

surveillance is envisioned as a technique to be used soon after licensure of a new medical

product. Thus, surveillance conclusions would likely be based on an "early market" for

the new medical product. If this early market of users were substantially different than

the later market of users, then there may be less "transportability "a of sequential

database surveillance findings to these later users. Additionally, the dual market model

may indicate the presence of channeling bias. Regulatory action resulting from these

findings likely needs to be more tailored than perhaps originally envisioned. Finally,

because sequential database surveillance may be performed with less covariate control

than a traditional retrospective epidemniologic study, it may be more difficult to identify

characteristics that tend to place a user in the "early" v. "late" markets.

434 Recall that transportability is a preferred term in pharmacoepidemiology but is generally equivalent to
the more familiar, external validity or general izability.
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9.4.3.3 Dual Market Exponential-Bass Models (MF6-MF9)

In general, most of these data visually do not support an early market exponential

model. Consequently, there were significant sign problems associated with fitting the

dual market exponential-Bass model in many fits. Most commonly, p1 was negative,

which essentially creates a single market Bass model. Again, many of the parameters in

the various model fits were not significant at the 0.05 level. In MF8 and MF9, there was

not a single new molecular entity with parameters that were all significant. The results

are shown in Table 18. I show results as "NA" if the model did not have correct signs

since those fits did not really reflect an exponential-Bass model.

MSE MAD BIC

MF6 MF7 MF8 MF9 MF6 MF7 MF8 MF9 MF6 MF7 MF8 MF9

Amitiza 211E406 #N/A 1.20E406 #N/A MN/A 602.25 #N 974.58 #N/A 977.97 #N/A

Byetta 3.06E+05 #N/A 3.10E+05 3.05E+05 #N/A 251.88 1052.51 #N/A 1056.56 1055.38

Campral #N/A #N$A 9 #N/A 6039; 880A9

Chantix #N/A #N996.54 #N/A 1000.63 990.03

Enable .74 #N/A . 2.29E+05 .N/A 1 305.68N 36.867 1N/A 7 1

Invega #N/A #N/A

Januvia 9.69E+05 #N/A 9.82E+05 9.48E+05 47AN/A 1 483,7 . 1

Levemir #N/A #N/A 255#N/A #N/A

Lunesta* #N/A #N/A
Lyrica* 1.29E+06 1.66E406 1.914006 7.99E+05 1 .

Nevanac #N/A #N/A 4.30E+05 3.15E+05 6 34 #N/A #N/A 1080.70 1010.85

Omacor/Lovaza #N/A #N/A #N/A 2.3605 N/A A N/A #N/A N/A #N/A 976.99

Ranexa #N/A #N/A MN/A MN/A

Rozerem* 9$A3 905.62 902.681 900A5

Sanctura 990.101 1006.27 994.521 994.51

Sensiper 909.03 978.07 913.49 913.49

Spiriva*
Tarceva #N/A #N/A #N

Tindamax MN/A MN/A N/A MN/AN/A 921.90 #N/A 926.33

Vesicare #N/A #N/A 4.32E+05 MN/A #N/A 380.56 221.19 #N/A N/A 167

XIfaxan 5.09E+05 #N/A 642E+05 4.69E+05 514.99 #N/A 510.30 450.23 #N/A

*lndicates at least one Exponential-Bass Dual Market Model had all significant parameters

Table 18. Measures of Model Fit for New Molecular Entity Cohort with Dual Market Exponential-

Bass Model Forms
Abbreviations: MSE, Mean Squared Error; MAD, Median Absolute Deviation from the Median; BIC,
Bayesian Information Criterion.

In general, regardless of model form, each uptake pattern can be described with one

of the models described above. However, in this retrospective analysis, I have the benefit

of fitting the regression on four years worth of uptake data. In modeling and simulating

future sequential database surveillance on a completely new product, the user may have

little or no data to rely on to speculate about uptake. Thus, it is important to use a model

form that may be fit on very little data. Future work should more thoroughly examine

these model fits in the presence of little data and assess how well they forecast future

utilization.
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Appendix C contains individual figures with the best model fits displayed. The

pattern and the model fits are observable but the cumulative adoption numbers are

deliberately removed because they are not authorized to be shared publicly.

9.5 Summary

In general, there is much work to be done with respect to modeling adoption/uptake

functions, particularly when challenged with a new molecular entity. The main idea of

modeling adoption and utilization is to support the simulation of sequential database

surveillance scenarios, and sensitivity analyses on adoption and utilization functions are

appropriate in these circumstances.
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10 SUMMARY OF FINDINGS AND FUTURE DIRECTIONS

10.1 Summary

This research develops qualitative and quantitative tools to aid the U.S. Food and

Drug Administration (FDA) in evaluating the Mini-Sentinel System's sequential database

surveillance capabilities to support regulatory decision-making. The qualitative tool - the

Mini-Sentinel System Pre-Screening Checklist - is designed to help determine whether

the Mini-Sentinel System is well suited, on itsface, to evaluate a pre-specified exposure-

outcome pair. This checklist does not provide definitive answers but rather is intended to

prompt thoughtful analysis as a first step. Necessary inputs to the Mini-Sentinel System

Pre-screening Checklist are: 1) a tracked safety issue that identifies a particular exposure-

outcome pair of interest; and 2) a regulator's goal with respect to the strength of causal

inference necessary to support regulatory decision-making.

The quantitative tool is a Sequential Database Surveillance Simulator that allows the

user to explore virtually whether sequential database surveillance of a particular

exposure-outcome pair is likely to generate evidence to identify and assess safety risks in

a timely manner to support regulatory decision-making. The simulator is intended to be a

learning tool that allows regulators/investigators to explore the many potential

surveillance scenarios they could face. Specifically, the tool is designed to allow the

regulator/public health investigator to explore the performance limitations and

capabilities of sequential database surveillance virtually and in a low-cost way. That is, in

this planning stage, there is no need to "learn-by-doing" while expending public health

resources. In general, this tool is not intended to be strictly predictive or to forecast

exactly how sequential database surveillance of a particular tracked safety issue will

occur. It is intended to allow regulators to explore possible scenarios they may face in the

hopes that they may learn through experimentation how to more precisely deploy the

evidence generation capabilities of the Mini-Sentinel System, and further refine their

assessments of its sufficiency for evidence generation.

By using a simple vaccine example to illustrate the use of the simulator, this

dissertation also demonstrates the tradeoffs associated with sample size calculations in

sequential statistical analysis, particularly the tradeoff between statistical power and

median sample size. In some circumstances, decreasing statistical power (i.e., increasing
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type II error and the chance of a missed signal) results in faster detection of a signal (i.e.,

smaller median sample sizes). Is this tradeoff worth it? Should a user take on the bigger

risk of missing the signal if it means they can find it faster? These tradeoffs have more

concrete meaning by translating the information time concepts into calendar time. With

an understanding of the time to takes to detect a signal of excess risk in calendar time, it

is possible for the user to estimate the potential public health harm that may occur

depending on the speed and confidence with which a safety signal is detected or ruled

out.

Second, the dissertation demonstrates differences in performance between various

surveillance configurations that are possible when using distributed database systems.

Specifically, I look at the performance of two continuous sequential testing methods in

the Mini-Sentinel System. However, I also address the ability to reconfigure the Mini-

Sentinel System into component configurations, particularly segregating the component

databases by their data types.

Third, the dissertation demonstrates the effects of misclassification error on

sequential database surveillance, and specifically how such errors may be accounted for

in the design of surveillance. I find that imperfect positive predictive value has more

strongly deleterious effects on statistical power whereas imperfect sensitivity can

significantly increase the median and maximum sample sizes required to end

surveillance.

Fourth, this dissertation considers the complexities of modeling new medical product

adoption, and specifically, the existence of a "dual market" phenomenon for these new

medical products. This finding raises a non-trivial generalizability concern regarding

evidence generated via sequential database surveillance when performed immediately

post-licensure.

10.2 Future Work

The current version of the Sequential Database Surveillance Simulator accommodates

two specific sequential statistical models that have been frequently used in prior vaccine

safety surveillance. I began this process using these models because they were well-

established in this still developing field. However, this simulator could be built out to
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accommodate other models, such as the group sequential models reviewed in subsection

5.2.2. An important aspect of future work will be to increase representation of group

sequential models to better under their comparative performance characteristics.

The Mini-Sentinel System is still developing modular programs aimed at better

understanding drug utilization patterns after a drug has been adopted. These data will be

important for modeling continuous exposures. In this dissertation, I have focused on point

exposures as a proof-of-concept. However, the simulator will remain a quite limited tool

without expansion into continuous exposures. Once these modular programs detailing

utilization patterns are complete, the simulator can be extended to support tracked safety

issues with continuous exposures.

Research on modeling adoption patterns has just begun. Important future steps will be

to show the predictive power of various functional forms of adoption that are based on

little or no data. That is, it will be important to segregate adoption patterns into general

categories and then try to understand a priori the contributing factors that led to that

adoption pattern.

Finally, as the FDA considers the larger scope of exposure-outcome pairs that it needs

to evaluate and uses the Sequential Database Surveillance Simulator repeatedly, it will be

possible to establish overall demand for this capability. Understanding the level of

demand for this capability and the others associated with the Mini-Sentinel System is an

important determinant in public policy with respect to its ongoing public funding. That is,

a more reasoned annual budget can be devoted to this piece of infrastructure when it

becomes clear how often and for what purposes it is used.
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12 APPENDIX A - Vaccine Validation Data

12.1 Mini-Sentinel System Vaccine Incident User Data

In sections 7 and 8, I used a simulated vaccine example to illustrate use of the

Sequential Database Surveillance Simulator. To model adoption of a new routine

childhood vaccination, I proposed a linear adoption function coincident with one-year

well-visits for a cohort of 0-1 year olds. Later, data became available with respect to

adoption of new vaccinations in the Mini-Sentinel System and I obtained these data via

execution of a modular program to validate the example that I presented. I requested data

for new childhood vaccinations approved since 2005 as shown in Table 19 below. Data

partners that did not have complete data for the entire evaluation period (i.e., date of

approval-2010) were censored from the analysis. I fit monthly cumulative adopters who I

required to be incident users. Incident users were defined as not having used the medical

product in the 30 days preceding the first use, and only users with continuous drug and

medical coverage during that time were included.43

Trade Name (n=4) Generic Name (n=4) Approval Date
Pentacel Diphtheria and Tetanus Toxoids and

Acellular Pertussis Adsorbed, Inactivated 06-20-2008
Poliovirus and Haemophilus b Conjugate
(Tetanus Toxoid Conjugate) Vaccine

Prevnar- 13 Pneumococcal 13-valent Conjugate Vaccine 02-24-2010
[Diphtheria CRM 197 Protein]

Rotateg Rotavirus Vaccine, Live, Oral, Pentavalent 02-03-2006
ProQuad Measles, Mumps, Rubella and Varicella

Virus Vaccine Live Lyophilized preparation 09-06-2005
for subcutaneous injection

Table 19. Vaccine Validation Cohort

In early 2007, Merck, the manufacturer of ProQuad@, reported shortages of the

varicella-zoster virus and its subsequent prioritization of other varicella-containing

vaccinations over ProQuad@.43 6 Therefore, I censored ProQuad® data at the end of 2006.

Later, based on safety risk data developed during sequential database surveillance in the

435 A 45-day enrollment gap was allowed.
436 "Notice to Readers: Update on Supply of Vaccines Containing Varicella-Zoster Virus," JAMA: The
Journal of the American Medical Association 298, no. 7 (August 15, 2007): 736.
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Vaccine Safety Datalink, the Advisory Committee on Immunization Practices changed its

recommendations on the use of ProQuad@, specifically eliminating language that

indicated a preference for the combined vaccine over its separately available components

(i.e., measles, mumps, and rubella vaccination AND varicella vaccination).4 37 In

subsequent years, ProQuad@ has only been intermittently available, reflecting its low

prioritization.

12.2 Model Fits

I used the generalized linear model fitting functions of MATLAB@ (R2012a). I

report the model fits below. Table 20 shows the linear fits when using data from the date

of approval until the end of 2010. Both the intercept and coefficient terms were

significant at the 0.005 level for all four models. Table 21 shows the linear fits when the

first three months of adoption data are excluded, which accounts for uneven uptake

among the different data partners that comprise the Mini-Sentinel System. With this

adjustment, the intercept and coefficient terms were significant at the 0.0005 level for all

four models. The R2 and adjusted R2 values are uniformly higher with these initial

datapoints excluded because the adoption pattern begins to reflect the steady state of new

vaccinations. In conclusion, a linear adoption function is appropriate to model adoption

of new childhood vaccinations.

Trade Name Approval Date RMSE R Adjusted R2

(n=4)

Pentacel 06-20-2008 1.50E4 0.991 0.991

Prevnar-13 02-24-2010 2.88E4 0.983 0.982

Rotateq 02-03-2006 3.43E4 0.983 0.982

ProQuad* 09-06-2005 8.67E3 0.827 0.815

Table 20. Linear Regression Model for the Vaccine Cohort
*ProQuad@ data censored from 2007-2010.
Abbreviations: RMSE, root mean square error.

4 "Update: Recommendations from the Advisory Committee on Immunization Practices (ACIP)
Regarding Administration of Combination MMRV Vaccine," MMWR. Morbidity and Mortality Weekly
Report 57, no. 10 (March 14, 2008): 258-260.
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Table 21. Linear Regression Model for the Vaccine Cohort with

*ProQuad@ data censored from 2007-2010.
Abbreviations: RMSE, root mean square error.

the First Three Months Excluded

215

Trade Name Approval Date RMSE R2 Adjusted R2

Pentacel 06-20-2008 6.48E3 0.998 0.998

Prevnar-13 02-24-2010 1.46E4 0.994 0.993

Rotateq 02-03-2006 2.65E4 0.989 0.989

ProQuad* 09-06-2005 6.93E3 0.896 0.886
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13 APPENDIX B - Medicaid Dispensing Data Simulations

13.1 Common Event Rates

Generic Name Total Exposed Range of Total Exposed Range of

(n=40) Days detectable IRRs Days detectable IRRs
after 8 quarters after 8 quarters after 15 quarters after 15 quarters

New Molecular Entities Approved in 2004
tinidazolea 36,110 5-10 101,133 2.75-10
rifaximinb 206,795 2.25-5 485,250 1.75-2.75
erlotinib 434,685 1.75-2.25 762,915 1.75-2.75
insulin glulisine 446,310 1.75-2.75 1,179,420 1.5-2
injection
lanthanum 1,024,095 1.5-2 1,634,145 1.5-2

trospium 993,940 1.5-2.25 1,758,405 1.5-2.75
acamprosate 1,727,108 1.5-1.75 3,529,605 1.33-1.75
cinacalcet 3,052,635 1.33-1.75 5,006,580 1.33-1.5
omega-3 acid 2,223,360 1.33-1.75 7,896,930 1.2-1.5
ethyl esters
darifenacin 4,007,340 1.33-1.5 8,366,490 1.2-1.33
solifenacin 3,566,535 1.33-1.75 8,982,105 1.2-1.33
eszopiclone 19,705,410 1.2-1.33 33,866,880 1.2
tiotropium 33,532,470 1.2 58,154,685 1.2

pregabalin 39,717,375 1.2 79,711,665 1.2
duloxetine 45,217,020 1.2 92,261,400 1.2

New Molecular Entities Approved in 2005
lenalidomide 73,164 3-10 233,996 2.25-5
sorafenib toylate 78,345 3-10 237,585 2.25-5
tipranavir 300,900 2-3 437,745 1.75-2.75
nepafenacb 393,570 2-2.75 762,075 1.75-2.25
pramlintide 371,190 2-3 903,300 1.75-2.25
acetate
entecavir 272,370 2-5 1,129,140 1.5-2
deferasirox 725,865 1.75-2.25 1,592,055 1.5-2
exenatide 3,341,895 1.33-1.75 8,517,255 1.2-1.33
ramelteon 4,816,590 1.33-1.5 10,779,270 1.2-1.33
insulin detemir 2,437,695 1.33-1.75 12,483,555 1.2-1.33

Table 22. Detectable Incidence Rate Ratios for Common Events using the Poisson MaxSPRT Model
Estimates based on power=.80, alpha=.05. One prescription is assumed to be a 30-day supply unless
otherwise specified. Range is based on sensitivity analyses of doubling and halving the days exposed.
aindicates one prescription was equivalent to a 5-day supply.
bindicates one prescription was equivalent to a 15-day supply.
cindicates one prescription was equivalent to a 28-day supply.
dindicates that 10 quarters of data were available.
'indicates one prescription was equivalent to a 14-day supply.
indicates one prescription was equivalent to a 10-day supply.

Abbreviations: IRR, incidence rate ratio; MaxSPRT, Maximized Sequential Probability Ratio Test.

217



Total Exposed Range of Total Exposed Range of
Generic Name Days detectable IRRs Days detectable IRRs
(n=40) after 8 quarters after 8 quarters after 15 quarters after 15 quarters

New Molecular Entities Approved in 2006
vorinostat 6,180 100 11,910 10-100
kunecatechinsd 6,630 100 ** **

biskalcitrate
potassium,
metronidazole 30,100 5-10 59,480 5-10
and tetracycline
hydrochloride'
posaconazolef 32,508 5-10 63,672 5-10
dasatinib 59,820 5-10 143,880 2.5-5
rasagiline 69,060 5-10 170,520 2.25-5
mesylate

sunitinib malate' 80,668 3-10 175,672 2.25-5
telbivudine 164,580 2.5-5 381,330 2-2.75
ranolazine 553,215 1.75-2.5 1,784,115 1.5-1.75
ciclesonided 821,835 1.75-2.25 ** **

darunavir 966,000 1.5-2.25 3,346,500 1.33-1.75
lubiprostone 2,066,100 1.33-1.75 5,995,890 1.2-1.5

sitagliptin 7,960,500 1.2-1.5 20,810,620 1.2-1.33
phosphate
paliperidone 9,789,630 1.2-1.33 23,213,280 1.2
varenicline 17,177,985 1.2-1.33 30,531,405 1.2

Table 22 (Continued). Detectable Incidence
MaxSPRT Model

Rate Ratios for Common Events using the Poisson

Estimates based on power-.80, alpha=.05. One prescription is assumed to be a 30-day supply unless
otherwise specified. Range is based on sensitivity analyses of doubling and halving the days exposed.
aindicates one prescription was equivalent to a 5-day supply.
bindicates one prescription was equivalent to a 15-day supply.

cindicates one prescription was equivalent to a 28-day supply.
dindicates that 10 quarters of data were available.
eindicates one prescription was equivalent to a 14-day supply.
indicates one prescription was equivalent to a 10-day supply.
Abbreviations: IRR, incidence rate ratio; MaxSPRT, Maximized Sequential Probability Ratio Test.
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13.2 Infrequent Event Rates

Generic Name Total Exposed Range of Total Exposed Range of
Gneric Days detectable IRRs Days detectable IRRs
(n=40) after 8 quarters after 8 quarters after 15 quarters after 15 quarters

New Molecular Entities Approved in 2004
tinidazolea 36,110 100 101,133 10-100

rifaximinb 206,795 10-100 485,250 5-10

erlotinib 434,685 5-10 762,915 3-10

insulin glulisine 446,310 5-10 1,179,420 2.75-5
injection
lanthanum 1,024,095 2.75-5 1,634,145 2.5-5

trospium 993,940 2.75-10 1,758,405 2.25-5

acamprosate 1,727,108 2.25-5 3,529,605 2-3

cinacalcet 3,052,635 2-3 5,006,580 1.75-2.5

omega-3 acid 2,223,360 2.25-5 7,896,930 1.75-2.25
ethyl esters '
darifenacin 4,007,340 2-2.75 8,366,490 1.75-2.25

solifenacin 3,566,535 2-3 8,982,105 1.75-2.25

eszopiclone 19,705,410 1.5-1.75 33,866,880 1.33-1.75

tiotropium 33,532,470 1.33-1.75 58,154,685 1.2-1.5
pregabalin 39,717,375 1.33-1.5 79,711,665 1.2-1.5

duloxetine 45,217,020 1.33-1.5 92,261,400 1.2-1.33
New Molecular Entities Approved in 2005

lenalidomidec 73,164 10-100 233,996 10-100

sorafenib toylate 78,345 10-100 237,585 10-100

tipranavir 300,900 5-10 437,745 5-10

nepafenacb 393,570 5-10 762,075 3-10

pramlintide 371,190 5-10 903,300 3-10
acetate
entecavir 272,370 5-100 1,129,140 2.75-5

deferasirox 725,865 5-10 1,592,055 2.5-5

exenatide 3,341,895 2-3 8,517,255 1.75-2.25

ramelteon 4,816,590 1.75-2.75 10,779,270 1.5-2

insulin detemir 2,437,695 2.25-5 12,483,555 1.5-2

Table 23. Detectable Incidence Rate Ratios for Infrequent Events using the Poisson MaxSPRT Model
Estimates based on power-.80, alpha=.05. One prescription is assumed to be a 30-day supply unless
otherwise specified. Range is based on sensitivity analyses of doubling and halving the days exposed.
aindicates one prescription was equivalent to a 5-day supply.
bindicates one prescription was equivalent to a 15-day supply.
indicates one prescription was equivalent to a 28-day supply.

dindicates that 10 quarters of data were available.
'indicates one prescription was equivalent to a 14-day supply.
rindicates one prescription was equivalent to a 10-day supply.
Abbreviations: IRR, incidence rate ratio; MaxSPRT, Maximized Sequential Probability Ratio Test.
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Table 23 (Continued). Detectable Incidence Rate Ratios
MaxSPRT Model

for Infrequent Events using the Poisson

Estimates based on power=.80, alpha=.05. One prescription is assumed to be a 30-day supply unless
otherwise specified. Range is based on sensitivity analyses of doubling and halving the days exposed.
aindicates one prescription was equivalent to a 5-day supply.
bindicates one prescription was equivalent to a 15-day supply.
'indicates one prescription was equivalent to a 28-day supply.
dindicates that 10 quarters of data were available.
eindicates one prescription was equivalent to a 14-day supply.
findicates one prescription was equivalent to a 10-day supply.
Abbreviations: IRR, incidence rate ratio; MaxSPRT, Maximized Sequential Probability Ratio Test.
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Generic Name Total Exposed Range of Total Exposed Range of

(n=40) Days detectable IRRs Days detectable IRRs
after 8 quarters after 8 quarters after 15 quarters after 15 quarters

New Molecular Entities Approved in 2006
vorinostat 6,180 100-1000 11,910 100-1000
kunecatechinsd 6,630 100-1000 ** **

biskalcitrate
potassium,
metronidazole 30,100 100 59,480 100
and tetracycline
hydrochloridee
posaconazole' 32,508 100 63,672 100
dasatinib 59,820 100 143,880 10-100
rasagiline 69,060 100 170,520 10-100
mesylate__________

sunitinib malatec 80,668 10-100 175,672 10-100
telbivudine 164,580 10-100 381,330 5-10
ranolazine 553,215 5-10 1,784,115 2.25-5
ciclesonided 821,835 3-10 ** **

darunavir 966,000 2.75-10 3,346,500 2-3
lubiprostone 2,066,100 2.25-5 5,995,890 1.75-2.5
sitagliptin
phosphate 7,960,500 1.75-2.25 20,810,620 1.33-1.75
paliperidone 9,789,630 1.5-2.25 23,213,280 1.33-1.75
varenicline 17,177,985 1.5-1.75 30,531,405 1.33-1.75



13.3 Rare Event Rates

Generic Name Total Exposed Range of Total Exposed Range of
Gneric Days detectable IRRs Days detectable IRRs
(n=40) after 8 quarters after 8 quarters after 15 quarters after 15 quarters

New Molecular Entities Approved in 2004

tinidazolea 36,110 1000 101,133 100-1000

rifaximinb 206,795 100 485,250 100

erlotinib 434,685 100 762,915 10-100

insulin glulisine 446,310 100 1,179,420 10-100
injection
lanthanum 1,024,095 10-100 1,634,145 10-100

trospium 993,940 10-100 1,758,405 10-100

acamprosate 1,727,108 10-100 3,529,605 5-10

cinacalcet 3,052,635 5-10 5,006,580 5-10

omega-3 acid 2,223,360 10-100 7,896,930 3-10
ethyl esters
darifenacin 4,007,340 5-10 8,366,490 3-10

solifenacin 3,566,535 5-10 8,982,105 3-10

eszopiclone 19,705,410 2.25-5 33,866,880 2-3

tiotropium 33,532,470 2-3 58,154,685 1.75-2.5

pregabalin 39,717,375 2-2.75 79,711,665 1.75-2.25

duloxetine 45,217,020 1.75-2.75 92,261,400 1.5-2.25
New Molecular Entities Approved in 2005

lenalidomidec 73,164 100-1000 233,996 100

sorafenib toylate 78,345 100-1000 237,585 100

tipranavir 300,900 100 437,745 100

nepafenacb 393,570 100 762,075 10-100

pramlintide 371,190 100 903,300 10-100
acetate
entecavir 272,370 100 1,129,140 10-100

deferasirox 725,865 100 1,592,055 10-100

exenatide 3,341,895 5-10 8,517,255 3-10

ramelteon 4,816,590 5-10 10,779,270 2.75-5

insulin detemir 2,437,695 10-100 12,483,555 2.5-5

Table 24. Detectable Incidence Rate Ratios for Rare Events using the Poisson MaxSPRT Model
Estimates based on power=.80, alpha=.05. One prescription is assumed to be a 30-day supply unless
otherwise specified. Range is based on sensitivity analyses of doubling and halving the days exposed.
"indicates one prescription was equivalent to a 5-day supply.
bindicates one prescription was equivalent to a 15-day supply.
cindicates one prescription was equivalent to a 28-day supply.
dindicates that 10 quarters of data were available.
"indicates one prescription was equivalent to a 14-day supply.
findicates one prescription was equivalent to a 10-day supply.
Abbreviations: IRR, incidence rate ratio; MaxSPRT, Maximized Sequential Probability Ratio Test.
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Total Exposed Range of Total Exposed Range ofGeneric Name Days detectable IRRs Days detectable IRRs(n=40) after 8 quarters after 8 quarters after 15 quarters after 15 quarters
New Molecular Entities Approved in 2006

vorinostat 6,180 >=1000 11,910 >=1000
kunecatechinsd 6,630 >=1000 ** **

biskalcitrate 1000 100-1000
potassium,
metronidazole 30,100 59,480
and tetracycline
hydrochloridee
posaconazolef 32,508 1000 63,672 100-1000
dasatinib 59,820 100-1000 143,880 100-1000
rasagiline 69,060 100-1000 170,520 100
mesylate__________

sunitinib 80,668 100-1000 175,672 100
malatec
telbivudine 164,580 100 381,330 100
ranolazine 553,215 100 1,784,115 10-100
ciclesonided 821,835 10-100 ** **

darunavir 966,000 10-100 3,346,500 5-10
lubiprostone 2,066,100 10-100 5,995,890 5-10
sitagliptin7,960,500 3-10 20,810,620 2.25-5
phosphate 7,6,0 -102,1,2
paliperidone 9,789,630 2.75-10 23,213,280 2.25-5
varenicline 17,177,985 2.25-5 30,531,405 2-3

Table 24 (Continued). Detectable Incidence
Model

Rate Ratios for Rare Events using the Poisson MaxSPRT

Estimates based on power-.80, alpha=.05. One prescription is assumed to be a 30-day supply unless
otherwise specified. Range is based on sensitivity analyses of doubling and halving the days exposed.aindicates one prescription was equivalent to a 5-day supply.
bindicates one prescription was equivalent to a 15-day supply.
eindicates one prescription was equivalent to a 28-day supply.
dindicates that 10 quarters of data were available.
eindicates one prescription was equivalent to a 14-day supply.
indicates one prescription was equivalent to a 10-day supply.
Abbreviations: IRR, incidence rate ratio; MaxSPRT, Maximized Sequential Probability Ratio Test.
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13.4 Very Rare Event Rates

Generic Name Total Exposed Range of Total Exposed Range of

(n=40) Days detectable IRRs Days detectable IRRs
after 8 quarters after 8 quarters after 15 quarters after 15 quarters

New Molecular Entities Approved in 2004
tinidazolea 36,110 >1000 101,133 >=1000
rifaximinb 206,795 1000 485,250 100-1000
erlotinib 434,685 100-1000 762,915 100-1000
insulin
glulisine 446,310 100-1000 1,179,420 100-1000
injection

lanthanum 1,024,095 100-1000 1,634,145 100
trospium 993,940 100-1000 1,758,405 100
acamprosate 1,727,108 100 3,529,605 100
cinacalcet 3,052,635 100 5,006,580 100
omega-3 acid 2,223,360 100 7,896,930 10-100
ethyl esters
darifenacin 4,007,340 100 8,366,490 10-100
solifenacin 3,566,535 100 8,982,105 10-100
eszopiclone 19,705,410 10-100 33,866,880 5-10
tiotropium 33,532,470 5-10 58,154,685 5-10
pregabalin 39,717,375 5-10 79,711,665 3-10
duloxetine 45,217,020 5-10 92,261,400 3-10

New Molecular Entities Approved in 2005

lenalidomide' 73,164 >=1000 233,996 1000
sorafenib 78,345 >=1000 237,585 1000
toylate

tipranavir 300,900 1000 437,745 100-1000
b

nepafenac 393,570 100-1000 762,075 100-1000
pramlintide 371,190 100-1000 903,300 100-1000
acetate

entecavir 272,370 1000 1,129,140 100-1000
deferasirox 725,865 100-1000 1,592,055 100
exenatide 3,341,895 100 8,517,255 10-100
ramelteon 4,816,590 100 10,779,270 10-100
insulin detemir 2,437,695 100 12,483,555 10-100

Table 25. Detectable Incidence Rate Ratios for Very Rare Events using the Poisson MaxSPRT Model
Estimates based on power-.80, alpha=.05. One prescription is assumed to be a 30-day supply unless
otherwise specified. Range is based on sensitivity analyses of doubling and halving the days exposed.
aindicates one prescription was equivalent to a 5-day supply.
bindicates one prescription was equivalent to a 15-day supply.
cindicates one prescription was equivalent to a 28-day supply.
dindicates that 10 quarters of data were available.
eindicates one prescription was equivalent to a 14-day supply.
indicates one prescription was equivalent to a 10-day supply.

Abbreviations: IRR, incidence rate ratio; MaxSPRT, Maximized Sequential Probability Ratio Test.
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New Molecular Entities Approved in 2006
vorinostat 6,180 >1000 11,910 >=1000
kunecatechinsd 6,630 >1000 ** **

biskalcitrate >1000 >=1000
potassium,
metronidazole 30,100 59,480
and tetracycline
hydrochloride*
posaconazolef 32,508 >1000 63,672 >=1000
dasatinib 59,820 >=1000 143,880 >=1000
rasagiline 69,060 >=1000 170,520 1000
mesylate

sunitinib malatec 80,668 >=1000 175,672 1000
telbivudine 164,580 1000 381,330 100-1000
ranolazine 553,215 100-1000 1,784,115 100
ciclesonided 821,835 100-1000 ** **

darunavir 966,000 100-1000 3,346,500 100
lubiprostone 2,066,100 100 5,995,890 100
sitagliptin 7,960,500 10-100 20,810,620 10-100
phosphate
paliperidone 9,789,630 10-100 23,213,280 10-100
varenicline 17,177,985 10-100 30,531,405 5-10

Table 25 (Continued). Detectable Incidence Rate Ratios for Very Rare Events using the Poisson
MaxSPRT Model
Estimates based on power--.80, alpha=.05. One prescription is assumed to be a 30-day supply unless
otherwise specified. Range is based on sensitivity analyses of doubling and halving the days exposed.
aindicates one prescription was equivalent to a 5-day supply.
bindicates one prescription was equivalent to a 15-day supply.
cindicates one prescription was equivalent to a 28-day supply.
dindicates that 10 quarters of data were available.
eindicates one prescription was equivalent to a 14-day supply.
findicates one prescription was equivalent to a 10-day supply.
Abbreviations: IRR, incidence rate ratio; MaxSPRT, Maximized Sequential Probability Ratio Test.

224



14 APPENDIX C - New Molecular Entity Cohort Model Fits

This appendix contains individual figures with respect to the subset of new molecular

entities that were examined for uptake patterns in the Mini-Sentinel System. A select

group of the model functional forms are displayed. The pattern and the model fits are

observable, but the cumulative adoptions are deliberately removed because they are not

authorized to be shared publicly. Also, I have a included a brief summary of each drug's

indications, approval dates, and other pieces of information that may have impacted

adoption. These summaries are based on data contained in the Drugs@FDA database and

are not meant to be an exhaustive discussion of the therapeutic in question. Launch dates

were verified with press releases from manufacturers.
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14.1 Amitiza@ (lubiprostone)

Amitiza@ (lubiprostone) was approved January 31, 2006 and became commercially

available in the United States in April 2006. It was a first-in-class chloride channel

activator approved for chronic idiopathic constipation. A competitor, Zelnorm@

(tegaserod) was voluntarily withdrawn from the market on March 30, 2007 due to

cardiovascular risks, and a large increase in utilization of Amitiza@ is observable at that

time. Zelnorm@ was returned to limited use as a treatment investigational new drug, but

was then withdrawn completely on April 2, 2008. Additionally, in April 2008, Amitiza@

received a supplemental approval for the treatment of irritable bowel syndrome with

constipation in women over 18 years old.

Visually, the dual market models are superior to the single market model. In this case,

the existence of two markets may be well-explained by the indication expansion although

there was presumably some level of off-label use for this indication prior to the new

indication approval date. Both the indications that Amitiza@ is approved for are diseases

that exist on a spectrum in severity, which is one theoretical construct hypothesized to

explain the dual market phenomena. All parameters of the single market Bass model were

significant at the 0.05 level.

Cumulative Adoptions AMITIZA/lubiprostone New Adoptions
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Figure 30. Amitiza@ (lubiprostone) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.2 Byetta@ (exenatide)

Byetta@ (exenatide) was approved April 28, 2005 and became commercially available

in the United States in June 2005. It was approved as a first-in-class glucagon-like

peptide-1 agonist to be used an adjunct therapy for type 2 diabetics in conjunction with

other diabetes medications (i.e., metformin and sulfonylurea). On October 16, 2006, a

competitor product - Januvia@ (sitagliptin) - was approved as a monotherapy for type 2

diabetics and as an adjunct therapy. Januvia@ was also a first-in-class therapeutic in a

competing class (i.e., a dipeptidyl peptidase-4 inhibitor). Warnings regarding an

increased risk of acute pancreatitis were added to Byetta@'s label in October 2007. In

November of 2009, Byetta@ was approved as a first-line monotherapy. On January 26,

2010, the second therapeutic glucagon-like peptide-1 agonist was approved, Victoza@

(liraglutide), although as an add-on therapy and with a black box warning for pancreatitis

and thyroid cancer.

Visually, there are not notable differences between the single market model and most

of the dual market models. The only dual market model that fits the first large spike in

adoption is the non-pooled dual Bass model with a dynamic probability. All parameters

of the single market Bass model were significant at the 0.05 level.

Cumulative Adoptions BYETTA/exenatide New Adoptions
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Figure 31. Byetta@ (exenatide) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-

S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.3 Campral@ (acamprosate)

Campral@ (acamprosate) was approved July 29, 2004 and became commercially

available in the United States in 2005. It was approved as a first-in-class gamma-

aminobutyric acid- type A receptors for the supportive treatment for alcoholism recovery.

A competitor in another pharmacologic class, Vivitrol@ (naltrexone injection), was

approved in April 2006.

Visually, all the models are fairly similar although the pooled dual Bass model with a

dynamic probability is predicting a rather large secondary market for this therapeutic. In

general, there seems to be less evidence of a distinction or clear superiority of a dual

market model over a single market model. All parameters of the single market Bass

model were significant at the 0.05 level.

Cumulative Adoptions
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Figure 32. Campral@ (acamprosate) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.4 Chantix@ (varenicline)

Chantix@ (varenicline) was approved May 10, 2006 and became commercially

available in the United States in August 2, 2006. It was approved as a treatment for

smoking cessation and was a first-in-class therapeutic. In November 2007, the FDA

began reviewing a potential risk of suicidal thoughts and aggressive or erratic behavior

associated with Chantix@.

Visually, the dual market Bass models are better fits than the single market Bass

model. The dynamic non-pooled dual Bass model reduces to the single market Bass

model. All parameters of the single market Bass model were significant at the 0.05 level.

Cumulative Adoptions CHA

0 20 40 60
Time from Launch In Months

NTIX/varenicline

30 0

New Adoptions

- Data
- -- Bass/1-O B-D

- - PDB-S
PDB-D

--- PEB-S

Figure 33. Chantix@ (varenicline) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit.
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14.5 Cymbalta@ (duloxetine)

Cymbalta@ (duloxetine) was approved August 3, 2004 and became commercially

available in the United States immediately post-approval. It is a selective serotonin and

norepinephrine reuptake inhibitor approved as a treatment for depression among adults. It

was not a first-in-class therapeutic. On November 8, 2004, it received a subsequent

approval for use in the management of diabetic peripheral neuropathic pain. In February

2007, it received another approval for generalized anxiety disorder. In December 2007, it

received another approved as a maintenance therapy for major depressive disorder in

adult patients. On March 3, 2008, a competitor drug in the same pharmacologic class,

Pristiq@ (desvenlafaxine), was approved. On June 13, 2008, Cymbalta@ received another

supplemental approval for the treatment of fibromyalgia. This approval happened to

coincide with the generic entry of the first-in-class drug for this class. On November 4,

2010, Cymbalta@ received another supplemental indication approval for the treatment of

chronic musculoskeletal pain.

Visually, only the pooled dual Bass market model with a static probability correctly

identifies the early market. The dynamic dual Bass market model reduces to the single

Bass market model. All parameters of the single market Bass model and the static pooled

exponential-Bass model were significant at the 0.05 level.

Cumulative Adoptions CYMBALTA/duloxetine New Adoptions
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Figure 34. Cymbalta@ (duloxetine) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.6 Enablex@ (darifenacin)

Enablex@ (darifenacin) was approved December 22, 2004 and became commercially

available in the United States after February 9, 2005. It was an

antispasmodic/anticholinergic approved as a treatment for overactive bladder and was the

sixth-in-class. Two other drugs in this class - Sanctura@ (trospium) and Vesicare@

(solifenacin) - were also approved in the same year and are a part of this cohort.

Visually, the dual Bass models perform similarly. The dual market models are a

better fit than the single market Bass model. All parameters of the single market Bass

model and the static pooled dual Bass market model were significant at the 0.05 level.

Cumulative Adoptions ENABLEX/darifenacin

20 40 60 80
Time from Launch In Months

100 0 20 40 60 8
Time from Launch in Months

Figure 35. Enablex@ (darifenacin) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.7 Invega@ (paliperidone)

Invega@ (paliperidone) was approved December 19, 2006 and became commercially

available in the United States after January 7, 2007. It was approved for acute treatment

of schizophrenia and was not a first-in-class therapeutic. As of April 30, 2007, it was

approved for the maintenance (long-term) treatment of schizophrenia. On August 3,

2009, Invega@ was approved for schizoaffective disorder treatment as either a

monotherapy or adjunctive therapy. At the same time,, an extended-release (i.e., once

monthly) injectable suspension version of the drug was approved. For the purposes of

incident users, I considered the injectable version to be a different drug.

Visually, the dual Bass market models are similar and clearly better than the single

Bass market model. All parameters of the single market Bass model were significant at

the 0.05 level.
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Figure 36. Invega@ (paliperidone) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.8 Januvia@ (sitagliptin phosphate)

Januvia@ (sitagliptin phosphate) was approved October 16, 2006 and became

commercially available in the United States immediately postapproval. It was the first-in-

class dipeptidyl peptidase-4 inhibitor approved as a monotherapy or adjunct therapy for

type 2 diabetics. On October 18, 2007, Januvia received additional approvals as an

adjunct therapy. In August 2009, a competitor in the same class, Onglyza@ (saxagliptin)

was approved. Shortly thereafter, Januvia@'s label was amended to include reports of

acute pancreatitis.

Visually, all the dual market models outperform the single market model. All

parameters of the single market Bass model were significant at the 0.05 level.

Cumulative Adoptions JANUVIA/sitagliptin
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Figure 37. Januvia@ (sitagliptin) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.9 Levemir@ (insulin detemir)

Levemir@ (insulin detemir) was approved June 16, 2005 and became commercially

available in the United States in March 2006. It was approved for the treatment of adult

patients with Type 1 or Type 2 diabetes mellitus who require basal (long-acting) insulin

for the control of hyperglycemia. It was not a first-in-class therapeutic.

Visually, the dual market models outperform the single market models with the

dynamic non-pooled dual Bass market model getting the slight edge. All parameters of

the single market Bass model and the static pooled dual Bass market model were

significant at the 0.05 level.
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Figure 38. Levemir@ (insulin detemir) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.10 Lunesta@ (eszopiclone)

Lunesta@ (eszopiclone) was approved December 16, 2004 and became commercially

available in the United States after April 3, 2005. It was a non-benzodiazepine hypnotic

agent approved for the treatment of insomnia and is a scheduled drug. A non-scheduled

competitor drug, Rozerem@ (ramelteon), was approved later that year.

Visually, this is one of the instances when the dual market models all outperform the

single market model, but also one when the exponential-Bass dual market model does

well. All parameters in the dynamic non-pooled dual Bass model and in the static pooled

exponential-Bass were significant.

Cumulative Adoptions LUNESTA/eszopiclone
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Figure 39. Lunesta@ (eszopiclone) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.11 Lyrica@ (pregabalin)

Lyrica@ (pregabalin) was approved December 31, 2004 and became commercially

available in the United States after September 22, 2005. It was approved for the

management of neuropathic pain associated with diabetic peripheral neuropathy and post-

herpetic neuralgia. It is not a first-in-class therapeutic. On June 14, 2005, it received an

additional approval as an adjunct treatment for partial seizures. It was also designated as

a controlled substance. As of June 22, 2007, Lyrica@ was additionally approved for the

management of fibromyalgia.

Visually, only the dynamic non-pooled dual Bass market model identifies the early

market closely whereas the static pooled dual Bass market model performs better on the

latter market peak. All parameters of the single market Bass model and the pooled static

exponential-Bass dual market model are significant at the 0.05 level.
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Figure 40. Lyrica® (pregabalin) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.12 Nevanac@ (nepafanac)

Nevanac@ (nepafanac) was approved August 19, 2005 and became commercially

available in the United States in September 2005. It was approved for the treatment of

pain and inflammation associated with cataract surgery and is the first-in-class

ophthalmic non-steroidal anti-inflammatory drug.

All the models I fit had trouble with this therapeutic because the market appears to be

continually strongly growing whereas all these models are expecting saturation effects to

begin to takeover. This therapeutic is perhaps better modeled with a dynamic adopter

population that accounts for age dynamics and the trends in cataract surgery.

All parameters of the single market Bass model are significant at the 0.05 level.
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Figure 41. Nevanac@ (nepafanac) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit.
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14.13 Omacor@/Lovaza@ (omega-3 acid ethyl ester)

Omacor@ (omega-3 acid ethyl ester) was approved November 10, 2004 and became

commercially available in the United States after October 5, 2005. It was approved as an

adjunct to diet to reduce very high triglyceride levels (greater than or equal to 500

mg/dL) in adult patients. As of October 22, 2007, at the FDA's request, the therapeutic's

name was changed from Omacor@ to Lovaza@ as a result of reports of prescribing errors

between Omacor@ and Amicar@.

Visually, it is difficult to distinguish whether a true dual market exists or a single

market Bass model adequately explains the adoption pattern. All parameters of the single

market Bass model are significant at the 0.05 level.
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Data
--- Bass

DB-D
--- PDB-S
- PDB-D
--- PEB-S

Data
--- Bass

-DB-D
- PDB-S
PDB-D

--- PEB-S
0 20 40 60 80 100 0 20 40 60 80 100

Time from Launch In Months Time from Launch In Months

Figure 42. Omacor@ /Lovaza@ (omega-3 acid ethyl ester) Adoption Patterns and Nonlinear
Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.14 Ranexa@ (ranolazine)

Ranexa@ (ranolazine) was approved January 27, 2006 and became commercially

available in the United States after March 24, 2006. It was approved for the reduction of

chest pain (i.e., angina) in patients who have failed to respond adequately to older anti-

angina drugs and was a first-in-class therapeutic. As of November 5, 2008, an extended

release version of Ranexa@ was approved and it also received a new indication as a first-

line treatment for chronic angina.

Visually, it appears a dual market model is superior to a single market model that may

line up well with the additional indication Ranexa@ received. Additionally, chronic

angina is a disease with a spectrum in severity, which is one theoretical construct

hypothesized to explain the dual market phenomena. All parameters of the single market

Bass model and pooled static dual Bass market model were significant at the 0.05 level.
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Figure 43. Ranexa@ (ranolazine) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.15 Rozerem@ (ramelteon)

Rozerem@ (ramelteon) was approved July 22, 2005 and became commercially

available in the United States in September 2005. It was approved as a non-scheduled

treatment for insomnia and was a first-in-class therapeutic. The market leader for

insomnia treatments became available generically around the same time Rozerem@ was

approved.

Visually, there does not seem to be clear evidence of a dual market, and there are not

supplemental indications for this product. All parameters of the single market Bass model

and pooled static exponential-Bass dual market model were significant at the 0.05 level.
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Figure 44. Rozerem@ (ramelteon) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.16 Sanctura@ (trospium)

Sanctura@ (trospium) was approved May 28, 2004 and became commercially available

in the United States after August 23, 2004. Sanctura@ was approved for the treatment of

overactive bladder and was the fourth-in-class. Two competitor drugs in class were

approved later in 2004: Vesicare@ (solifenacin) and Enablex@ (darifenacin). As of

August 7, 2007, an extended release version of Sanctura@ was approved.

Despite a singular indication, there are clearly multiple markets. All parameters of the

pooled static dual market model, the pooled dynamic dual market model, and the non-

pooled dynamic dual market model were significant at the 0.05 level.
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Figure 45. Sanctura@ (trospium) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.17 Sensipar@ (cinacalcet)

Sensipar@ (cinacalcet) was approved March 8, 2004 and became commercially

available in the United States in April 2004. It was approved as a first-in-class oral

calcimimetic, and was indicated for the treatment of secondary hyperparathyroidism in

chronic kidney disease patients on dialysis, and the treatment of elevated calcium levels

in patients with parathyroid carcinoma. It was approved with an orphan drug designation.

Sensipar@ appears to have at least two markets which were best identified by the

pooled static dual Bass market model and the non-pooled dynamic dual Bass market

model. All parameters of the single market Bass model were significant at the 0.05 level.
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Figure 46. Sensipar@ (cinacalcet) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.18 Spiriva@ (tiotropium oral inhalation)

Spiriva@ (tiotropium oral inhalation) was approved June 30, 2004 and became

commercially available in the United States after May 25, 2004. It was approved for the

treatment of chronic obstructive pulmonary disease. In October 2006, a competitor was

approved for the maintenance therapy of chronic obstructive pulmonary disease,

Brovana@ (arformoterol inhalation). Another competitor was approved in March 2009.

Despite a single indication, there are clearly two markets for this product. All

parameters of the pooled dynamic dual Bass market model, the pooled static exponential-

Bass model, and the single market Bass model were significant at the 0.05 level.
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Figure 47. Spiriva@ (tiotropium oral inhalation) Adoption Patterns and Nonlinear Regression Model
Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.19 Tarceva@ (erlotinib)

Tarceva@ (erlotinib) was approved November 18, 2004 and became commercially

available in the United States later that month. It was approved for the treatment of non-

small cell lung cancer for patients that have already failed one treatment. In May 2005, a

competitor drug, Iressa@ (gefitinib) was voluntarily withdrawn from the market. On

November 3, 2005, Tarceva@ received an a supplemental indication for first-line

treatment of pancreatic cancer.

Visually, only the non-pooled dynamic dual Bass model seemed to identify a small

second market. It is unclear why a dual market model would be superior to the single

market model in this case. All parameters of the single market Bass model were

significant at the 0.05 level.
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Figure 48. Tarceva@ (erlotinib) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.20 Tindamax@ (tinidazole)

Tindamax@ (tinidazole) was approved May 17, 2004 and became commercially

available in the United States in July 2004. It was approved for the treatment of

trichomoniasis, a sexually-transmitted disease. On May 27, 2007, Tindamax@ received a

supplemental approval for the treatment of bacterial vaginosis.

In terms of model fit, all the models are very similar. There is not strong evidence to

suggest the superiority of a dual market model over a single market model despite the

two indications. All parameters of the single market Bass model were significant at the

0.05 level.

Cumulative Adoptions

0

TINDAMAX/tinidazole

Figure 49. Tindamax® (tinidazole) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit.
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14.21 Vesicare@ (solifenacin)

Vesicare@ (solifenacin) was approved November 19, 2004 and became commercially

available in the United States after January 21, 2005. It was approved for the treatment of

overactive bladder and was the fifth-in-class. It was preceded by the approval of the

fourth-in-class, Sanctura@ (trospium), and followed shortly by approval of the sixth-in-

class, Enablex@ (darifenacin).

With regard to model fits, both the single market model and the dual market models

are similar. Compared to the patterns of the two other overactive bladder drugs that both

suggest a dual market phenomena, this therapeutic is unusual. Notably, it also emerged as

the market leader among the three. All parameters of the single market Bass model and

the pooled static dual Bass market model were significant at the 0.05 level.
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Figure 50. Vesicare@ (solifenacin) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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14.22 Xifaxan@ (rifaximin)

Xifaxan@ (rifaximin) was approved May 25, 2004 and became commercially

available in the United States in July 2005. It was approved as a treatment for traveller's

diarrhea for patients 12 and older. On March 3, 2010, the FDA approved a supplemental

indication for Xifaxan@ for the reduction in risk of overt hepatic encephalopathy

recurrence in patients aged 18 years or older. The dosage for the two indications is quite

different.

The presence of two markets is pronounced and explainable due to the indication

expansion. All the dual Bass models tend to perform similarly. The pooled exponential-

Bass model with a static probability reduced to the single market Bass model. All

parameters of the single market Bass model, the pooled dynamic dual market Bass

model, the static pooled dual market Bass model, and the dynamic non-pooled dual

market Bass model were significant at the 0.05 level.
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Figure 51. Xifaxan@ (rifaximin) Adoption Patterns and Nonlinear Regression Model Fits
Abbreviations: Bass, Single Bass Model Fit; DB-D, Non-pooled Dual Bass-Dynamic Probability Fit; PDB-
S, Pooled Dual Bass-Static Probability Fit; PDB-D, Pooled Dual Bass-Dynamic Probability Fit; PEB-S;
Pooled Exponential-Bass-Static Probability Fit
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15 APPENDIX D - Glossary of Terms

This is a glossary of terms to aid the reader. All these terms are explained in the footnotes
when they are referenced in the text and are repeated here. Quotations indicate that the
definition is from another source, which is cited in the text. Italics indicate that the
definition is a legal one, derived from the 2007 Food and Drug Administration
Amendments Act.

Adjudication - Procedures that are performed to validate the data, i.e. to ensure that the
electronic record actually reflects patient experiences. It often involves medical chart
abstraction and confirmation of the exposures, outcomes, and covariates of interest.

Adverse drug experience - "Any adverse event associated with the use of a drug in
humans, whether or not considered drug related, including-(A) an adverse event
occurring in the course of the use of the drug in professional practice; (B) an adverse
event occurring from an overdose of the drug, whether accidental or intentional;(C)
an adverse event occurring from abuse of the drug; (D) an adverse event occurring
from withdrawal of the drug; and (E) any failure of expected pharmacological action
of the drug."

Association - "A statistically significant inference regarding a population."

Comparison window - In self-controlled designs, a time period when a person
contributes "unexposed" time to surveillance.

Effect size - The quantitative strength of an association, which is usually a point estimate
of the effect.

Epidemiologic design - The way the population of interest and the comparison
population are sampled for statistical inference.

Exposure - "In epidemiology, it is customary to refer to potential causal characteristics as
exposures. Thus, exposure can refer to a behavior (e.g., needle sharing), a treatment
or other intervention (e.g., an educational program about hazards of needle sharing), a
trait (e.g., a genotype), an exposure in the ordinary sense (e.g., an injection of
contaminated blood), or even a disease (e.g., diabetes as the cause of death)."

Exposure-outcome pair - A hypothesized relationship between the exposure and outcome
of interest, e.g., oral anti-diabetic medications and acute myocardial infarctions.

Induction period /latency period- The time period after a person has been exposed to a
medical product but before the person is "at risk" for experiencing the outcome of
interest.

Meta-analysis - "The statistical analysis of a collection of analytic results for the purpose
of integrating the findings."

Near real-time data - Data on clinical experiences that arrive with a variable delay from
when the experience occurred. There are two sources of delay. First, there is a
processing delay, which is the time that elapses between when the experience occurs,
and when it is recorded and available for analysis. Second, there is a refresh delay,
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which is associated with the frequency with which an originating data source renews
their dataset and makes it available for analysis.

New safety information - "Information derived from a clinical trial, an adverse event
report, a postapproval study (including a study under section 505(o)(3)), or peer-
reviewed biomedical literature; data derived from the postmarket risk identification
and analysis system under section 505(k); or other scientific data deemed appropriate
by the Secretary about- (A) a serious risk or an unexpected serious risk associated
with use of the drug that the Secretary has become aware of (that may be based on a
new analysis of existing information) since the drug was approved, since the risk
evaluation and mitigation strategy was required, or since the last assessment of the
approved risk evaluation and mitigation strategy for the drug; or (B) the effectiveness
of the approved risk evaluation and mitigation strategy for the drug obtained since the
last assessment of such strategy."

Outcomes - Health outcomes of interest.

Positive predictive value - The number of true positive cases/(true positive cases + false
positive cases).

Postmarket - The period after licensure of a product by the U.S. Food and Drug
Administration.

Postmarketing requirement - A mandate from the U.S. Food and Drug Administration to
the manufacturer/sponsor of a particular product to perform a study.

Precision - The inverse of the variance of the measurements or estimates that a statistical
process produces.

Processing delay time - Also known as the claims lag time, is the time that elapses
between when an exposure or outcome occurs, and when it is recorded and available
for analysis.

Rare event rate - Events that occur with a frequency greater than 1 event per 10,000
person-years , but less than 1 event per 1,000 person years.

Refresh delay time - The frequency with which a participating data partner renews their
dataset and makes it available for analysis.

Risk window - The time period when a person is "at risk" of experiencing an outcome of
interest following some exposure of interest.

Sensitivity - The number of true positive cases/(true positive cases + false negative
cases).

Serious adverse drug experience - "An adverse drug experience that (A) results in-(i)
death; (ii) an adverse drug experience that places the patient at immediate risk of
death[.. .];(iii) inpatient hospitalization or prolongation of existing hospitalization;
(iv) a persistent or significant incapacity or substantial disruption of the ability to
conduct normal life functions; or (v) a congenital anomaly or birth defect; or (B)
based on appropriate medical judgment, may jeopardize the patient and may require a
medical or surgical intervention to prevent an outcome described under subparagraph
(A)."
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Serious risk - "The risk of a serious adverse drug experience."

Signal - 1) "Information that arises from one or multiple sources (including observations
and experiments) which suggests a new potentially causal association, or a new
aspect of a known association, between an intervention and an event or set of related
events, either adverse or beneficial, that is judged to be of sufficient likelihood to
justify verificatory action." 2) "Reported information on a possible causal relationship
between an adverse event and a drug, the relationship being unknown or incompletely
documented previously. Usually more than a single report is required to generate a

signal, depending upon the seriousness of the event and the quality of the
information."

Signal evaluation - "Consists of the implementation of a full epidemiological analysis to
more thoroughly evaluate the causal relationship between exposure to the medical
product and the adverse outcome of interest."

Signal generation/detection - "An approach that uses statistical methods to identify
medical product-adverse outcome associations that may be safety signals; no
particular medical product exposure or adverse outcome is pre-specified."

Signal of a serious risk - "Information related to a serious adverse drug experience
associated with use of a drug."

Signal refinement - "A process by which an identified potential safety signal is further
investigated to determine whether evidence exists to support a relationship between
the medical product exposure and the outcome."

Specificity - The number of true negative cases/(false positive cases + true negative

cases).

Tracked safety issue - An operational term that formalizes the evaluation of a medical
product safety signal because it has the potential to lead to regulatory action.

Transportability - An alternative term for what is commonly referred to as external

validity or generalizability.

Type I error - The false positive rate or the incorrect rejection of the null hypothesis
when it should have failed to be rejected.

Type II error - The false negative rate or the failure to reject the null hypothesis when it
should have been rejected.

Unexpected Serious Risk - "A serious adverse drug experience that is not listed in the
labeling of a drug, or that may be symptomatically and pathophysiologically related
to an adverse drug experience identified in the labeling, but differs from such adverse

drug experience because of greater severity, specificity, or prevalence."

Very Rare event rate - Events that occur with a frequency greater than 1 event per

100,000 person-years, but less than 1 event per 10,000 person years.

Washout period - In self-controlled designs, a time period when a person contributes no

information to surveillance as they are considered neither exposed nor unexposed.
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