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Abstract

The existence of momentum and winding modes of closed string on a torus leads to a

natural idea that the field theoretical approach of string theory should involve wind-

ing type coordinates as well as the usual space-time coordinates. Recently developed

double field theory is motivated from this idea and it implements T-duality mani-

festly by doubling the coordinates. In this thesis we will mainly focus on the double

field theory formulation of different string theories in its low energy limit: bosonic,

heterotic, type II and its massive extensions, and M = 1 supergravity theory.

In chapter 2 of the thesis we study the equivalence of different formulations of

double field theory. There are three different formulations of double field theory:

background field E formulation, generalized metric 'H formulation, and frame field

EAM formulation. Starting from the frame field formalism and choosing an appropri-

ate gauge, the equivalence of the three formulations of bosonic theory are explicitly

verified. In chapter 3 we construct the double field theory formulation of heterotic

strings. The global symmetry enlarges to O(D, D + n) for heterotic strings and the

enlarged generalized metric features this symmetry. The structural form of bosonic

theory can directly be applied to the heterotic theory with the enlarged generalized

metric. In chapter 4 we develop a unified framework of double field theory for type

II theories. The Ramond-Ramond potentials fit into spinor representations of the

duality group 0(D, D) and the theory displays Spin+(D, D) symmetry with its self-

duality relation. For a specific form of RR 1-form the theory reduces to the massive

deformation of type IIA theory due to Romans. In chapter 5 we formulate the K = 1

supersymmetric extension of double field theory including the coupling to n abelian

vector multiplets. This theory features a local 0(1, 9 + n) x 0(1, 9) tangent space

symmetry under which the fermions transform.
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Chapter 1

Introduction

String theory is one of the most exciting fields in theoretical physics [1]. In this theory

all elementary particles are treated as one dimensional objects, strings, rather than

points as in quantum field theory [2]. String theory is best suited for physics of very

short distances since it does not display the short-distance divergences of quantum

field theory. This fact makes it possible for string theory to be a consistent theory

of quantum gravity, something that quantum field theory failed to achieve. Most of

all, string theory is an excellent candidate for a unified theory of all forces in nature

and it is believed by many physicists to be the strongest candidate available. Hence,

understanding string theory would improve our knowledge about the principles of

nature that go beyond the Standard Model of particle physics.

The term duality is often used in physics quite generally. It is used when seemingly

different physical systems are in fact equivalent [2]. One of the most famous examples

is particle-wave duality in quantum mechanics. Another example is a duality in the

Ising model that the physics of a spin system at temperature T is identical to that

at inverse temperature 1/T. In string theory the term duality is used for a class

of symmetries in physics that link different string theories. There are a few different

types of dualities in string theory: T-duality, S-duality, U-duality, etc. These dualities

relate different types of string theory (e.g. type I and SO(32) heterotic theory under

S-duality) or theories in different backgrounds.

T-duality [3] is an old but still very intriguing duality in string theory. The 'T'

11



in T-duality stands for 'toroidal' as it comes from the toroidal compactification of

closed string theory. The most well known example of this duality is 'one-circle

inversion' in bosonic string theory, which relates toroidal backgrounds Td with radius

R to backgrounds with radius a'/R in one of the compact directions. The physics

of closed string theory for a compactification with two different radii R and a'/R

are in fact indistinguishable. This implies that a compactification with extremely

large radius is equivalent to a compactification with extremely small radius in closed

string theory, which is quite striking. The idea of T-duality can be extended to 10-

dimensional superstring theories. It is another famous example that T-duality relates

type IIA and IIB theories when compactified on a circle. The one-circle inversion

maps the type IIA theory on the background R'-1 x S' of radius R to the type IIB

theory on the same background but with radius a'/R.

T-duality arises from the existence of momentum and winding modes of closed

string in toroidal compactification. If we consider the physics of a particle with

one of the spatial dimensions compactified, then the momentum of the particle gets

quantized. In closed string theory additional winding states arise from the compactifi-

cation of a spatial dimension as strings can wrap around the compactified dimension.

Hence, T-duality is the symmetry of closed string that mixes momentum and winding

modes in such a way that the physics stays invariant. In the example given above,
'one circle inversion', two different backgrounds define an equivalent theory with the

exchange of momentum and winding excitations. In general, T-duality acts linearly

on momentum and winding modes of closed string via the non-compact duality group

O(d, d; Z). Compared to this linear action of T-duality on momentum and winding

modes, the transformation of backgrounds takes a complicated nonlinear form known

as 'Buscher rules'.

It is interesting that T-duality leads to deviations from our usual intuition about

geometry. As winding excitations are dual modes of momentum excitations under T-

duality, it is a quite natural idea that the geometrical understanding of string theory

should involve not only the usual space-time coordinates xa but also winding-type

coordinates z Such a scenario is already realized in closed string field theory and

12



consequently a space-time action can be determined in a way implementing this idea,

at least perturbatively. This motivation is the starting point of the recently developed

'double field theory', where the fields depend both on space-time coordinates xa and

winding coordinates za. In double field theory T-duality is implemented as an explicit

O(d, d; Z) symmetry acting linearly on the torus coordinates x" and z-. In terms of

action this can be written as

S = Jdxdzadx1 L(x",za,x/), (1.1)

where Xa are compact coordinates, zr are their dual coordinates, and x ' are non-

compact coordinates. The action is explicitly invariant under the O(d, d; Z) symmetry.

In fact if the coordinates are non-compact, then the symmetry of double field theory

enlarges to 0 (d, d; R).

The work of Tseytlin [4] is an early paper which takes this idea seriously, where a

first-quantized approach is used with non-covariant actions for left and right-moving

string coordinates on the torus. A few years later, Siegel [5] introduced a duality-

covariant geometrical formalism using a frame-field with a local GL(D) x GL(D)

symmetry. Recently Hull and Zwiebach [6] constructed double field theory from the

closed string field theory, up to a cubic order in fields. Afterwards, background inde-

pendent action of double field theory was introduced by Hohm, Hull, and Zwiebach [7]

and the same authors also developed the generalized metric formulation of the the-

ory [8]. There are many papers following these original works, including [9-15].

In the rest of the introduction chapter I will sketch briefly the background material

needed to understand some basic features of double field theory, including T-duality.

Then I review the work of Hull and Zwiebach [6,16] and Hohm, Hull, and Zwiebach

[7,8]. Most of my works are based on these papers and it is fruitful to summarize

important results of them before introducing the main results of [10-15]. Finally, I

will summarize [10-15] and then finish with some concluding remarks.

13



1.1 Background material

Below we start with the world-sheet action to clarify the idea of T-duality. It should

be emphasized that the T-duality is not an actual symmetry of the world-sheet theory,

but rather an equivalence of conformal field theories. It is a duality as the O(d, d; Z)

duality transformation changes the background structure rather than the physical

fields in the world-sheet theory. However, as a part of the gauge group in string theory,

T-duality is the symmetry of string theory under which the physics is invariant. The

space-time theory should not be confused with the world-sheet theory.

The world-sheet action from the first-quantized string theory is given by

S =- da j dT (9*089X'8oXjGjj + eQnaXiopXjBg), (1.2)
0 -xo

where

7" = diag(-1, 1), eo = -1, & = (,& a), (1.3)

Xi = (X", X,), X, ~ X + 27r, i = 0, , D - 1 . (1.4)

The Xa are coordinates for compact dimensions and D is the total number of dimen-

sions. The closed string background fields G and B are

Si al 0 hi ab 0G = (b ), Bij =( ), (1.5)
0 7AV) 0 0)

where these backgrounds are constant D x D matrices. The choice of flat world-sheet

metric %0 is possible since the theory has no Weyl anomaly. We define the matrix

E = G + B to arrange the data of G and B in a single matrix.

As the action is given, the usual procedures lead us to the canonical momentum

Pi associated with X':

2,rPi = GX + Bi X'j, (1.6)
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and the Hamiltonian is

H = -I 27r da (X' 2-rP) 1(E) X , (1.7)
47r 0 ' 21rP)

where the dot is used for i9, and the prime is used for o%. The 2D x 2D symmetric

matrix R(E) is called the 'generalized metric' and takes the form

G - BG-'B BG-'
7-(E) = (G G.B B .)(1.8)

-G-1B G-1)

This object transforms linearly under T-duality transformation, or O(d, d; Z) trans-

formation, and it is an element of the O(d, d; R) group.

Along with the Hamiltonian and its spectrum, there is a constraint in closed string

theory which is called 'level-matching condition'. This constraint matches the levels

of the right and the left moving excitations in any physical state. In bosonic string

theory it can be written in terms of Virasoro operators as

LO = 0. (1.9)

To further analyze the spectrum of the Hamiltonian and the level-matching con-

dition, it is convenient to take a mode expansion of string coordinate X' and the

canonical momentum P in terms of momenta, winding, and oscillators. The explicit

steps are not presented here and we refer [3] for details. After integration and normal

ordering the Hamiltonian and the level-matching condition reads, respectively,

1
H = -Zl-(E)Z±N±N, (1.10)

2

N - I -ZqZ, (.12

where N and N are number operators counting the excitations. The 2D column

15



vector Z is

wi
Z = , (1.12)

(Pi)

which consists of integer winding and momentum quantum numbers. The metric 7

is an off-diagonal 2D x 2D matrix of the form

0 1

7 = D (1.13)

Consider a linear transformation of the vector Z with some 2D x 2D invertible matrix

h

Z = h'Z' , Z'= (h- 1)Z. (1.14)

For this transformation to define the equivalent theory, the Hamiltonian should re-

main the same and the level-matching condition should hold under the transforma-

tion. Under this transformation the number operators N and N are invariant. Then

the level-matching condition leads to

Zt'Z = Z'th7htZ' = Z't7Z' , (1.15)

and this requires the matrix h to be an element of O(d, d; Z) group, which is defined

by

hqht = j,7 h ) E O(d, d; Z), (1.16)
=(c d)

where the element of the matrix h are constrained to be integers. If the entries are

taken to be real numbers, the group becomes O(d, d; R). The level-matching condition

requires the vector of winding and momentum numbers to transform under O(d, d; Z).

It is worth noting that the generalized metric (1.8) satisfies an identity

77- = 1- , (1.17)

since R is a symmetric element of 0(d, d; R).
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The invariance of the Hamiltonian under the transformation h requires h E

O(d, d; Z). There are well known Buscher rules that apprear often in string the-

ory. According to these rules, under h E O(d, d; Z) transformation a background field

E transforms to E' as

E - E' = h(E) = (aE + b)(cE + d)- 1 . (1.18)

The generalized metric R we introduced above is written in terms of background fields

G and B, which are symmetric and antisymmetric part of E. Hence, the transforma-

tion of a background field E also leads to the transformation of the generalized metric.

Extracting the transformation of the generalized metric from the transformation of

background fields is not straightforward, but the result is quite simple,

R(E) - 1(E') = hl(E)ht . (1.19)

Then it is straightforward that the Hamiltonian is invariant under the O(d, d; Z)

transformation.

Thus far we briefly skimmed how T-duality, or an O(d, d; Z) group duality, emerges

from the closed string world-sheet action. We also introduced many useful objects

that are used later in the thesis, for example, a background field E and generalized

metric H. In double field theory these fields depend on both spacetime coordinates

zi and winding coordinates zi. The O(d, d; Z) transformation acts linearly on these

coordinates as it acts linearly on momentum and winding quantum numbers. In

matrix form this transformation is written as

X X' = hX X (1.20)

where X is a 2D column vector as Z.

The O(d, d; Z) group has three types of generators: GL(d; Z), b-shifts, and factor-

ized dualities (or one circle inversions). Each of the generators has the matrix form,

17



respectively,

hr r 0 ho 1 0 1i - ei ei
h= () , h = () , h = (i ,) (1.21)

0 (rt)-1 )0 1 ei 1 - ei

where 0 is an antisymmetric matrix and ei is the matrix with zeros except on the

(i,i) entry. The first two generators have determinant 1 while the determinant of

one circle inversion is -1. Finally, if the inversion acts on all directions in compact

dimensions, then it generates

0 1
h ( = . (1.22)

(1 0)

From (1.20) this duality transformation exchanges all winding coordinates with all

spacetime coordinates and hence exchanges the conjugate winding numbers and mo-

mentum. This duality generates a Z2 transformation and will be often used later.

Before proceeding it would be helpful to introduce some useful conventions and

notations. Firstly, the double field theory notation covers both the non-compactified

and compactified cases. If the double field theory is formulated in fully non-compact

R 2D spacetime, the symmetry of the theory is O(D, D) (or O(D, D; R) to be exact).

For spacetime R"-' 1 x Td, where R"-1,1 is n-dimensional Minkowski space and Td

is a torus, the O(D, D) symmetry breaks to O(n - 1, 1) x O(d, d; Z). For notational

convenience I will refer to the symmetry of either case as O(D, D) henceforth.

Secondly, indices are put on matrices and vectors introduced above. The general-

ized metric we defined in (1.8) is identified as

'H +-- HMN -H1 +- 'MN- (1-23

Then the identity (1.17) can be written as

=MP77NQ =1PQ (1.24)

The O(D, D) group element h is identified as h"N and the transformation of coordi-

18



nates (1.20) under this transformation can be written as

X'M = hMNXN. (1.25)

The indices M, N, ... runs from 1 to 2D and can be though of as an O(D, D) group

indices. Thus if an action is only written in terms of contraction of objects with

O(D, D) indices, then the action is manifestly O(D, D) invariant. This is the strength

of generalized metric formulation of double field theory. If the double field theory

is written with respect to the background fields E then O(D, D) invariance is less

manifest.

As a final remark, I would like to make a comment on constraints that double field

theory has. The level-matching condition (1.9) is a well known constraint in string

theory that a physical state is required to satisfy. For our particular truncation of

fields where N = N = 1 this condition leads to a constraint

8&MA = 7 MNMaN A = 0, 7lMN 0 ( (1.26)
1 0

for all fields and gauge parameters A. This constraint, which is a direct consequence

of level-matching condition, is referred to as 'weak constraint' throughout the thesis.

There is a more restrictive constraint so called 'strong constraint' used in many places.

This constraint includes the weak constraint (1.26) and an additional condition

&MA DMB = 0, (1.27)

for all fields and gauge parameters A and B. It can be proved that all products of fields

and parameters are annihilated by 9ME9M under the strong constraint. Geometrically,

this constraint has a deeper implication that locally all fields depend only on half of the

coordinates , e.g., only on the xi or the i. The strong constraint can be interpreted

as a stronger form of the level-matching condition. After solving the strong constraint

by choosing some T-duality frame, double field theory can be related to generalized
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geometry, which involves doubling the tangent space by replacing the tangent bundle

T with T D T*.

The weak constraint should be satisfied in all double field theory since this con-

straint has its root in the level-matching condition. However, the strong constraint

does not have a direct interpretation in string theory as the weak constraint. Thus,

the relaxation of this constraint is one of the goals of constructing 'true' double field

theory. As these two constraints appear quite often, it would be helpful to keep track

of what constraints are imposed on each paper.

1.2 Double Field Theory

In this section let us start by briefly introducing Hull and Zwiebach [6]. This paper

initiated recent active research on double field theory along with the relevant work

of generalized geometry. Hull and Zwiebach computed an O(D, D) duality invariant

action to cubic order in fluctuation, directly from closed string field theory. The field

contents of the action are gravity field hij, antisymmetric tensor field bij, and dilaton

d, which is a truncation of string theory to a massless subsector with N = N = 1.

These fields depend both on spacetime coordinates x' and winding coordinates i.

The action is gauge invariant under (an incomplete version of) double diffeomor-

phisms, which nonlinearly embed usual diffeomorphisms and antisymmetric tensor

gauge transformations. When there is no z dependence of fields, the action reduces

to the linearised version of the standard Einstein-Kalb-Ramond-dilaton action

S = dx ge-2 [R ±+4(&$) 2 - H] . (1.28)

The weak constraint is imposed for the gauge invariance of the action to cubic order

and the closure of the gauge algebra.

In Hull and Zwiebach [16], they imposed the strong constraint. Then they derived

the full gauge transformation of background field e, which is h + b in its leading order.

If fields are restricted to the null space, i.e. the space where the strong constraint is
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satisfied, then the gauge algebra defines C-bracket which takes the form

(V1, 2c)TM  
- -N ± (1.29)([1 2C)" =1 O2 ~~ 2 aN1M _ NM6N + 2 M61N -9

21 2

where

=(M , X - , B9 - (1.30)

(i xi )4

In (1.29) the indices are O(D, D) group indices and the gauge parameters ( transform

as vectors under T-duality. This ensures that the C-bracket is O(D, D) covariant.

When there is no zfj dependence, this C-bracket reduces to the Courant bracket,

which is a central construction in generalized geometry defined on smooth sections of

T D T*. Neither the C-bracket nor the Courant bracket satisfies the Jacobi identity.

The previous two papers have a limitation that the theory has an explicit de-

pendence on background fields E = G + B. The background independent action for

double field theory was first introduced by Hohm, Hull, and Zwiebach [7]. The field

content includes gij, the antisymmetric tensor big, and a dilaton field d. The action

is neatly written in terms of Ej = gij + big and a dilaton d as

S dxdi L(E, d) , (1.31)

where

{{ E , d ) =e-2a 9 ik gi xtDkE + 1 gki (psikDik E+ ± -| 'DEi Eig)
-4 4 ±(1.32)

+ (Dld fEi + bd Dig3 ) + 4Dd Did]

The calligraphic derivatives are defined by

D i8 - Einkk , 9= + Eki&k. (1.33)

These two derivatives originate from right/left factorization of closed string theory. In

terms of constant background fields these are analogue of independent derivatives with
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respect to right- and left-moving coordinates i - Eijxj and ze + E J, respectively.

The action is invariant under the gauge transformation

EM = Dig -M~i ±DifkEkj ± tS(Eik,

6d 1 (1.34)
2

where ( is the gauge parameter of standard diffeomorphism and i is the parameter of

Kalb-Ramond gauge transformation. The gauge parameters form an O(D, D) vector

= hmN N M = , h E O(D,D). (1.35)

Spacetime coordinates and winding coordinates form an O(D, D) vector XM and

the derivatives 9 M with respect to doubled coordinates transform as a contravariant

vector

XM - hM NXN , am m- NON , XM = ( am = ( ,: (1.36)

where hMN is the inverse of hMN- Using matrix notation,

X -+ hX, 9 -+ (h-')t O. (1.37)

These O(D, D) indices are lowered and raised with the O(D, D) invariant metric

r/MN and its inverse r/MN, where the matrix forms are the same for both. Under an

O(D, D) transformation E field transform as

E(X) -* (aE(X) + b)(cE(X) + d), h E O(D, D), (1.38)

where a, b, c, and d are block matrices of h defined in (1.16). The dilaton stays

invariant

d(X) -> d(X), (1.39)
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which is an O(D, D) scalar.

The gauge transformation of dilaton in the second equation of (1.34) is invariant

under an O(D, D) transformation with the postulation of (1.39). It is straightforward

from the contractions of O(D, D) indices since T-duality or an O(D, D) is a global

transformation. However, the gauge transformation of E field and the action is not

written in a manifestly O(D, D) covariant way. It needs complicated computations

to see the O(D, D) covariance of the action and the O(D, D) covariance of the gauge

transformation of E fields. To see the O(D, D) covariance of the theory it is useful to

introduce

M(X) =_ dt - E(X)ct R(X) =_ dt + Et(X)ct (1.40)

where matrices c and d are from (1.16). The field E£j does not transform as a tensor

under an O(D, D) transformation as the Buscher rules have the fractional linear form

(1.38). However, the calligraphic derivatives defined in (1.33) and the variation of the

S field transform as O(D, D) tensors

ETh = M.Lk14 11k = = MkMfL4 , (1.41

and the inverse metric transforms in two equivalent forms under the O(D, D) trans-

formation

g = , gk( = (-l )kl (1.42)

From DE = DJE and DE = NoE, all the objects in the action (1.31) indeed transform

as tensors under the O(D, D) transformation. Since there are two types of tensors

for each index i, j, ... (one transforms with M and the other transforms with M),

the only remaining step is to check the contractions between indices are made with

the same type. This leads to the O(D, D) invariance of the action (1.31).

To show that the gauge transformation of E field is O(D, D) covariant, [7] made the

redefinition of gauge parameters such that the new parameters transform as O(D, D)

tensors. Also some O(D, D) covariant derivatives are defined to verify that the gauge
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transformation is O(D, D) covariant. These steps can be neatly organized using the

frame field formalism developed by Siegel [5] and it will be presented in chapter

2. Remarkably, the action (1.31) reproduces the cubic action in [6] when expanded

around constant backgrounds. Also the action reduces to the standard Einstein-Kalb-

Ramond-dilaton action (1.28) nonperturbatively when there is no zi dependence. It is

worth pointing out that the action is gauge invariant only with the strong constraint

thus the theory is restricted to the null space.

We investigated in [9] this background independent action of double field theory

further. The equation of motion of the action with respect to dilaton d is given in [7]

and it is simply 1Z(E, d) = 0. The field equation for E is K2q = 0 where K4q is a

Ricci-like tensor which takes a complicated form. Kp is O(D, D) covariant as the

first index transforms with M and the second index transforms with I under an

O(D, D) transformation

K, = ''i .(1.43)

In the limit of no z dependence this tensor reduces to

Cpq = R q -HprsHq,, - 2VpVq] ± V*Hspq - HspqVso , (1.44)

where terms in the first square bracket are symmetric and terms in the second square

bracket are antisymmetric in p and q. In this limit of no z dependence these field equa-

tions are the linear combination of field equations of Einstein-Kalb-Ramond-dilaton

action (1.28). Also in the paper a generalized version of Bianchi identity is obtained

from the gauge invariance of the action, which again reduces to the standard Bianchi

identity in general relativity in the same limit. The action, gauge transformation of

fields, and the field equations are all 0 (D, D) covariant in double field theory. A

detailed examination of double field theory in [9] gives an impression that the theory

can be formulated more geometrically as double field theory reduces to the standard

general relativity (with additional Kalb-Ramond field and dilaton) in a certain limit.

This is indeed the case in the work of Siegel [5], which formulated a Riemann-like

curvature tensor, a Ricci-like tensor, and a Ricci-like scalar in terms of frame fields
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and spin connections. Siegel [5] will be covered in the next chapter in detail.

In (1.35) and (1.36) gauge parameters and coordinates neatly form O(D, D) vec-

tors in double field theory. Therefore, it is natural to expect that the action can be

written in terms of more natural objects in terms of an O(D, D) symmetry. As men-

tioned above, we already have an O(D, D) covariant object which include the gravity

field gij and the antisymmetric tensor field biy: generalized metric 1 MN. Hohm, Hull,

and Zwiebach [8] developed the generalized metric formulation of double field theory,

which has an advantage that the O(D, D) symmetry is manifest.

The double field theory action written in terms of XMN and d is

S = dxdz L(Hd), (1.45)

where

L(7, d) = e-M F!XMNaMHKL aN 1HKL - 1HMNN KL OL 1 MK
2 (1.46)

- 2 0Md N 7 MN + 4 H MN 9Md aNd]-

In the paper it is verified that the action (1.45) is equivalent to that of [7]. The

action with respect to E and d has an advantage that the theory can be easily shown

to reduce to the cubic action in [6], which is derived from closed string field theory

and not constructed from the symmetries imposed by hand. However, proving the

O(D, D) invariance and the gauge invariance of the action need elaborate and lengthy

calculations. This is because the background field E is not an O(D, D) covariant

object and the gauge transformation of this field is rather complicated. In this sense

the action (1.45) is written in such a way that the O(D, D) symmetry is manifest since

all the fields are O(D, D) covariant objects. These objects form an O(D, D) scalar

R(X, d) by contracting all O(D, D) indices. Furthermore, the gauge transformation

of generalized metric JMN is quite simple in terms of 'generalized Lie derivative'. For
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a tensor AMN the generalized Lie derivative is defined to be

L AMN =PPAN ± (dM( - apM) APN N N)Am (1.47)

and the gauge transformation of 1 MN is

MN MN(1.48)

The indices of these objects are lowered and raised with the O(D, D) invariant metric

'qMN and its inverse T/MN as before. The commutator of the generalized Lie derivatives

define the gauge algebra to close according to the C-bracket

26, f6 = ~C[,]c , (1.49)

where the C-bracket is defined in (1.29). This is in accordance with the results of [16]

as they show that the complete gauge algebra on fields E and d (to be precise, the

fluctuation of E field) of double field theory closes with the C-bracket. The strong

constraint is required for the gauge algebra to close as in [16].

The O(D, D) covariance of this formulation of double field theory is quite straight-

forward as mentioned above. The gauge invariance of the action is not as direct as the

O(D, D) invariance of the action but this formulation has computational strengths

compared to the background independent action introduced in [7]. To prove the

gauge invariance of the action it is convenient to define the curvature scalar R(X, d)

in terms of XH and d

R(H, d) = e2 d1(H, d) + e2dam (e[ &NHMN _ MN Nd]) . (1.50)

Then the action (1.45) is equivalent to, up to a boundary term,

S' = dxdz e-2R(X, d) . (1.51)

The dilaton transforms as density under the gauge transformation, which can be seen
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from (1.34). Hence it is sufficient to show that the Ricci-like scalar Z(X, d) transforms

as a scalar under the generalized Lie derivative

og1Z(H, d) = C IZ(W, d) = (M&MZ(X, d). (1.52)

This indeed shows that the action (1.51) is gauge invariant.

I would like to examine the moduli space for toroidal backgrounds as a final remark

related to this paper. We first construct the parameterization of background fields

I'e b(e t)-1
he = , g = eet , (1.53)

(0 (et)-1

where e is not the fluctuation of the constant background field E but a vielbein for

the metric g. This parameterization he is an element of O(d, d; R). Any specific

background E can be created by the action of he on the identity background I

he(I) = (e -I+ b(e t)-1 )(0 -E(X) + (e t)~1)-1 = E . (1.54)

The generalized metric H corresponding to the background E can also be constructed

from he as

-H(E = hh't g - bg-lb bg-1 (-57i(E) = h6 h4 = (g ). (1.55)
-9-1b 9-1)

Thus he parameterizes both the background fields E and the corresponding general-

ized metric H (E). Since H is also an element of O(d, d; R), the map i : he - = heht.

defines a map from O(d, d; R) to O(d, d; R). Then the image of this map i is the moduli

space of R and, hence, the moduli space of backgrounds E.

Let h' and he be two different O(d, d; R) elements that map to the same R. One

can always write h' = he - h with h E 0 (d, d; R) and therefore

XH = hehhtht = heht ==> hht = I =- h E 0(2d; R) . (1.56)

Then the group of elements h is the maximal compact subgroup 0(d; R) x 0(d; R) of
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O(d, d; R). Thus the moduli space for toroidal compactification is O(d, d; R)/O(d; R) x

O(d; R), i.e. the inequivalent backgrounds take the values of this coset space. This

analysis of the moduli space implies that the O(D, D) covariant double field theory

has a local O(d; R) x O(d; R) symmetry. For notational convenience I will use a

notation O(D) x O(D) for this symmetry.

Siegel is the first to analyze the theory of massless fields (gravity g, Kalb-Ramond

field b, and dilaton d) starting from a particular local symmetry with the strong

constraint. The work of Siegel [5] implements a frame field EA" with a local GL (D) x

GL(D) symmetry. This is a larger group than the actual local symmetry O(D) x O(D)

of double field theory. This choice of local symmetry allows an additional gauge-fixing

of a local GL(D) x GL(D) symmetry to O(D) x O(D) group, which identifies the

Siegel's formalism to the generalized metric formulation. By making some specific

gauge choice the work of Siegel also reduces to the background independent double

field theory of [7].

In this paper [5] Siegel takes a starting point from the GL(D) x GL(D) covariance

of the gauge algebra. The torsion is modified due to this constraint and is different

from the standard torsion of general relativity, which is defined via the commutator of

covariant derivatives. Due to this modification the standard Riemann tensor, which is

also defined via the commutator of covariant derivatives, is no longer GL(D) x GL(D)

covariant. Siegel found a GL(D) x GL(D) covariant Riemann-like tensor by adding

terms compensating these non-covariant terms. The GL(D) x GL(D) covariant Ricci-

like tensor and Ricci-like scalar are also determined in a similar way. Siegel also

extends his argument to supersymmetric fields.

In the standard theory of gravity, the torsion constraint (defined via the commu-

tator of covariant derivatives') fully fixes spin connections in terms of vielbein. Then

the theory is formulated in the second order formalism, where the spin connections are

not independent fields. However, in Siegel's formalism the spin connections are not

fully determined by the 'modified' torsion constraint: Some particular components of

'The tangent space symmetry covariance of the gauge algebra also yields the same torsion in the
usual theory of general relativity.
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the spin connections are fixed and the rest parts remain undetermined. Interestingly,

only determined components of spin connections appear in the action and the field

equations. The Ricci-like tensor and the Ricci-like scalar are written soley in terms

of frame fields EAM but the Riemann-like tensor stays undetermined. As we will

see later the Ricci-like scalar is equivalent to 7Z(E, d) and R (H, d) when the local

GL(D) x GL(D) symmetry is appropriately fixed.

Summarizing the materials covered in this section, there are three different formu-

lations of double field theory: background field E formulation, generalized metric H

formulation, and frame field EA" formulation. The dilaton field d plays the same role

in each of the formulations. The action in S formulation is the most easily identified

as the cubic action in [6] when treated perturbatively. The cubic action is derived

from the closed string field theory and the physical relevance is the most clear in this

formulation. On the other hand the generalized metric formulation treats the theory

in a more 0(D, D) covariant way. The 0(D, D) invariant metric q/MN plays a crucial

role in this formulation and the gauge transformation of fields is written in terms of

generalized Lie derivatives. Lastly, Siegel's formalism or frame field EAM formula-

tion assumes that the tangent symmetry of the theory be GL(D) x GL(D) group,

which is larger than the actual local symmetry of double field theory O(D) x O(D).

This formulation treats the double field theory more geometrically. All these three

formulations impose the strong constraint and the gauge algebra with a parameter

(M defines C-bracket.

1.3 Summary of Results

In this section I will summarize the results of [10-15]. The results of [9] are briefly

presented in the previous section and will not be presented in detail in the thesis. Let

us first start from the brief introduction of [10]. The main results of the paper are

that the equivalence of three different formulations (E formulation, H formulation,

and EAM formulation) are proved explicitly and the previous results of [7, 8] are

understood in a more geometrical framework.
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A frame field EA" takes the form

EAM aj Ea. (1.57)
Eai Ea'

where a flat index A corresponds to a local GL(D) x GL(D) symmetry. Here I use

the splitting M = (i, 7 ) of the O(D, D) index and A = (a, d) is the GL(D) x GL(D)

index. As explained in the previous section Siegel constructed a Ricci-like scalar

and a Ricci-like tensor in terms of a frame field EAM and dilaton field d. He added

terms 'by hand' to a Riemann-like tensor and Ricci-like scalar to make them local

GL(D) x GL(D) covariant.

The relation to formulation with E is easily identified with the gauge choice

MEaz Ea' -Eai 6a'
EAM = = (1.58)

(Eaj Eaz Ein ja*1

In this gauge the spacetime indices are identified with either of GL(D) indices. Among

the elements of a frame field EAM, only Ei and Eai carry the degrees of freedom,

which are encoded in E. It is straightforward from this gauge-fixing that the action

and the field equations are equivalent to those constructed in [7,9]. Siegel derived the

Bianchi identities

VaZ + VRaL = 0, VaR - VZa = 0 (1.59)

from the gauge invariance of the action. The Bianchi identities in [9] are equivalent

to those of Siegel with the choice of gauge (1.58).

The relation to the generalized metric formulation is rather intricate. Since the

local symmetry of 'R formulation is O(D) x O(D) group, we have to choose an ap-

propriate gauge, one of which is

GAB = -ab ) (1.60)
0 A;
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With this choice of the tangent space metric gAB the generalized metric 1H MN is

simplified in terms of frame fields as

HMN = ABEMEN(N)

Then the action in Siegel [5] written in terms of frame fields EAM can be interpreted

in terms of 7 MN. This results in the action (1.45) and proves, up to a boundary

term,

J dxdz e-2dRsiegel = dxdz L N, d) = dxdz L(S, d). (1.62)

The frame field formalism developed by Siegel displays a geometrical understanding

of double field theory by adopting the local GL(D) x GL(D) symmetry, which is

analogous to the local Lorentz symmetry of Riemannian geometry in Einstein's theory.

I would like to make a comment on the different formulations of double field theory.

The E field formulation has computational complexity since the O(D, D) symmetry

is less manifest in the formulation. It makes the E formulation less popular but this

formulation is quite useful for some applications. In the thesis generalized metric

formulation and frame field formulation are mainly used for most of the results. Each

of the two formulations has its own strength and either formulation is used depending

on a topic.

Generalized metric formulation is manifestly O(D, D) invariant and the gauge

transformation of an O(D, D) tensor is simply given by the generalized Lie derivatives

in the formulation. This enables us to identify an element of O(D, D) group in a more

intuitive way and makes computations easy in many cases. In [12,13] we constructed

O(D, D) spinor fields and the generalized metric formulation is turned out to be

useful, especially for constructing the action in a concrete manner.

On the other hand, the frame field formalism is useful when the geometrical struc-

ture becomes important. For example, when constructing supergravity theories, the

spinor fields and Clifford algebra are generally defined on tangent space. In such

theories the spacetime dependence of fields is usually absorbed in a vielbein. In this

case a frame field should be introduced since the generalized metric formulation does
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not capture this type of geometrical aspects very well.

Now let us move on to the double field theory formulation of heterotic strings [11].

The low-energy effective action of the heterotic string including n abelian gauge fields

Ai' is given by

S = dx /je 2 * R + 4(a4)2 - 1 s f ijk - ,FFia (1.63)

where Fj = BiAj" - ByAi' with an internal symmetry index a = 1,--- , n and Hijk =

&[ibjk] - a[iAjaAkja, where square parenthesis on indices means antisymmetrization.

In heterotic string theory the T-duality group enlarges to O(D, D+ n) and the double

field theory construction of heterotic strings should implement this enhanced duality.

It turns out that the bosonic action (1.45) can be applied to the heterotic theory with

an enlarged generalized metric of (2D + n) x (2D + n) size

(1.64)

(gij + c gklcj + AiAj, -gkc k ckigk lA 3 + AiO

=9 -ikca gk ii -g ik AkO ,

ck gkl Al" + Aj" -gjikAka 6*a + Akcsgk lAj)

where cij = bij + !Ai"Aja. The gauge transformation of g, b, and an abelian vector

field A can be derived from the gauge transformation oXMN = MN of generalized

metric and this indeed yields the correct gauge transformations in the limit of no z
dependence. The coordinates, the derivatives, and the gauge parameters should also

be enlarged to

XM = (ai xi ya) , M = (0,9i, aa) , M __ a) (1.65)

The gauge transformation closes with an enlarged parameter (M, where the gauge
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algebra is determined by C-bracket as before

[66 42] = -6[,421C . (1.66)

The O(D, D) covariant constraints, either in its weak form or strong form, hold with

the enlarged coordinates and take the same form as in (1.26) and (1.27). This comes

from the modification of level-matching condition for the heterotic string theory. The

level-matching condition in terms of coordinate-conjugate quantities is

2pimw + qaq = 0 , (1.67)

where q, is the internal quantum number conjugate to coordinates ya and is a vector in

the root lattice of E8 x E8 or SO(32). This condition amounts to the weak constraint

(1.26) and it is totally analogous to that of the bosonic theory.

In this paper we also thoroughly investigated the non-abelian extension of O(D, D+

n) covariant double field theory. However, in the aspects of string theory there is no

such valid interpretations of the constraint (1.26) for non-abelian theory. Also the

non-abelian theory requires the number of internal coordinates to be the number of

dimensions of the gauge group, which is generally very large. For example, in het-

erotic string theory n = 16 and there are 16 abelian gauge fields in the theory. If we

apply this to the non-abelian extension, the number of internal coordinates is n = 496.

Since there is little justification about this non-abelian O(D, D + n) covariant double

field theory in terms of string theory, I will not introduce those results in this section.

However, the theory is still interesting in terms of classical supergravity theory and

it will be covered in the corresponding chapter.

So far, the double field theory formulation of bosonic and heterotic theories involve

fields that transform as bosons under O(D, D). Interestingly, we need an introduction

of spinor fields to construct the double field theory [12,131 of the Ramond-Ramond

(RR henceforth) sector of 10-dimensional type II theory. The RR potentials are

bosonic fields but the corresponding fields in double field theory transform as spinors

under O(D, D). This O(D, D) spinor field x encodes all the RR potentials, either even
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or odd forms depending on the chirality of the theory. In the limit of no 7 dependence

the theory reduces to type II theory written in the democratic formulation. The

double field theory construction of type II theory provides a unified description of the

low energy limit of type IIA and type IIB superstring theory.

The understanding of the results in [12,13] requires a lot of detailed preliminary

work. The construction of an O(D, D) spinor field accompanies the definition of

Pin(D, D) or Spin(D, D) Clifford algebra and group homomorphism in a specific

basis. These steps are rather technical but necessary to understand how the RR-

sector of type II string theory beautifully fits into the O(D, D) covariant double field

theory. I will not present details but only significant results in this section but they

will be thoroughly examined in a relevant chapter.

The action we constructed in bosonic string theory is still valid as an NS-NS sector

action and the full bosonic action of type II theory is

S = dxdz (e-2d R(N,d) + I(x)t ) (168
4 (1.68)

'= p(S), S E Spin-(D, D), St = S.

It should be emphasized here that the Spin- (D, D) element S is viewed as the dy-

namical field, rather than a spin representative of the generalized metric H. The gen-

eralized metric is uniquely determined by the group homomorphism p : Pin(D, D) --

O(D, D). H takes a symmetric form from the hermitian property of S.

This action is invariant under the Spin(D, D) duality transformations. In fact,

the action is originally Pin(D, D) duality invariant, but the Weyl condition on spinor

fields reduce the duality group to Spin(D, D). Imposing the self-duality constraint

Ox = -C-S $x, (1.69)

the duality group finally reduces to Spin+(D, D). The self-duality relation is needed

for the democratic formulation of the standard action of type II theory. The action is

also gauge invariant under both the usual abelian gauge symmetries of the RR poten-
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tials parameterized by A and the generalized diffeomorphism symmetry parameterized

by (M.

There is the massive extension of type IIA supergravity theory by Romans [28].

The deformation of type II theory introduces a 9-form RR potential, which carries no

propagating degrees of freedom due to its field equation. Such a massive extension

does not exist for type IIB theory. The work in [14] constructed the massive type IIA

theory and its dual type II theory in the language of the double field theory of type

II strings. In the paper a specific form of RR 1-form is assumed

C( (x,:z) = Ci(x)dxz + mzidxl , (1.70)

and all other RR potentials are assumed to only depend on the spacetime coordinates

x. With these RR potentials the double field theory precisely reduces to the massive

type IIA theory.

The interesting point of this paper is that the strong constraint is relaxed, but

not quite to the weak constraint. In fact the RR 1-from (1.70) explicitly violates the

strong constraint but the theory (at least of RR sector) is still consistent without

the constraint. For example the gauge invariance of the RR action does not require

the strong constraint. This relaxation of constraints is indeed necessary to construct

the true double field theory. When the strong constraint is imposed, the results of

double field theory are closely related to those of generalized geometry. However,

fields can have nontrivial dependence on both x and z coordinates without imposing

the strong constraint. In this sense relaxing the strong constraint is very important

to understand the full double field theory beyond the scope of generalized geometry.

Double field theory has an explicit O(D, D) symmetry, which is manifest in the

generalized metric formulation. This enables the original theory in a specific frame

to be readily interpreted in terms of its dual theory. In this paper [14] we take an

one-circle inversion along the 10th direction (which can be chosen to be any other

direction from 2 to 9). This choice of duality transformation exchanges type IIA and

type IIB theory. The resulting type IIB theory, which is the dual of massive type IIA
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theory, is just the standard type IIB theory with some peculiar field redefinition. It

is again confirmed that the dual theory of the massive type IIA is not a massive type

IIB theory. This is consistent with the fact that there is no massive type IIB theory.

The final paper I would like to discuss in this section is [15]. In this paper the

K = 1 supersymmetric extension of double field theory is constructed in the frame

field formalism. The field contents of the theory are the usual NS-NS fields plus a

gravitino Ia and a dilatino p. In generalized geometry the supersymmetric type II

theory was already formulated by [27] and K = 1 theory can be constructed from

the straightforward truncation from K = 2 to K = 1. Therefore, the results of [15]

are largely contained in [27] but they are written in terms of double field theory, not

generalized geometry. The action is greatly simplified as

Sg= 1 = J d'o d10 e- 2 d (-R(E, d) - /a,6Vq4! + fiyVap + 2jp"aVap) , (1.71)

where EAM is a frame field. The standard minimal K = 1 supergravity action is

generally quite complicated and hence it needs laborious computations to check the

supersymmetry invariance of the action. However, the action and the supersymmetric

transformation of fields take simple forms in double field theory and the supersym-

metry invariance of the action is rather straightforward.

The introduced fermions xPa and p transform under the two copies of local Lorentz

group 0(1, 9 )L x 0(1, 9 )R. As mentioned before, the frame formalism of double

field theory can be used to incorporate the tangent space symmetry. The tangent

space symmetry group here is 0(1, 9 )L x 0(1, 9 )R, which is different from the local

GL(D) x GL(D) symmetry in Siegel's formalism. Under the generalized diffeomor-

phisms and T-duality, the fermions transform as scalars. Consequently, the supersym-

metry algebra of double field theory shows that the supersymmetry transformations

close into generalized diffeomorphisms plus the two copies of local Lorentz transfor-

mation.

In the paper [15] we also construct the double field theory extension of 10-

dimensional K = 1 supergravity coupled to an arbitrary number of vector multiplets.
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These are new and novel results. As already seen in double field theory formula-

tion of heterotic strings, the coupling of gauge vectors Ai 0 can be neatly described

by enlarging the generalized metric (or the frame field). Then the T-duality group

also enlarges to 0(10 + n, 10). In frame formalism we can also enlarge the tangent

space symmetry to 0(1, 9 + n) x 0(1, 9) group. This leads to a remarkable result

that the action (5.2) written with respect to the enlarged fields reproduces exactly

K = 1 supergravity coupled to abelian vector multiplets. The gauginos are naturally

embedded as components of the enlarged gravitino a.

1.4 Conclusions and Remarks

Double field theory is a field theoretical approach to implement T-duality manifestly

by doubling the coordinates: the usual space-time coordinates xi are supplemented

by winding coordinates zi. T-duality is an intriguing feature of string theory but

the supergravity limits of string theory do not capture manifestly this property. By

doubling the coordinates double field theory captures certain features of string theory,

especially those related to T-duality. In addition, the low energy effective theory of

string theory is repackaged into simple and nice structures.

In double field theory coordinates, derivatives, and gauge parameters form O(D, D)

vectors such that T-duality is naturally incorporated. The information of gravity field

gij and the antisymmetric tensor bij are encoded in an O(D, D) covariant object: back-

ground independent E&j, generalized metric 'HMN, or frame field EA", depending on

the formulation we use. The background independent formulation (E formulation),

the generalized metric formulation, and the Siegel's frame formalism are shown to be

equivalent in [10] under the strong constraint. The gauge algebra closes according to

the C-bracket, which locally reduces to the Courant bracket in generalized geometry.

In this thesis we mainly constructed the double field theory formulation of different

string theories in its low energy limit: heterotic, type II, massive type IIA, and N = 1

supersymmetric theory. In particular, we focused on the massless subsector of string

theory. In heterotic theory T-duality group enlarges to 0(D, D + n) and the enlarged
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generalized metric along with enlarged coordinates, derivatives, and gauge parame-

ters features this symmetry. For type II theory, we developed a unified framework of

double field theory which features Spin+(D, D) symmetry with its self-duality rela-

tion. The massive extension of type IIA theory can be constructed in the double field

theory formulation with a specific form of RR 1-form, which requires some relaxation

of the strong constraint. The K = 1 supersymmetric extension of double field theory

in frame formalism features a local 0(1, 9 )4 x 0(1, 9 )R symmetry under which the

gravitino qfa and the dilatino p transform. When the theory is extended to include

n vector multiplets, the gauginos are naturally encoded as additional components of

the gravitino with a local 0(1, 9 + n) x 0(1, 9) symmetry.

I would like to make a few comments about the double field theory formulation of

type II theories. When we take a T-duality transformation in type II theory, there are

two types: spacelike T-duality and timelike T-duality. The spacelike T-duality links

type IIA and type IIB theories as we expect from the T-duality transformations. In

particular, starting from type IIA theory, odd number of spacelike T-duality inversions

leads to type IIB theory and even number of spacelike T-duality inversions keeps the

theory to be the same. However, when odd number of timelike T-duality inversions

is applied, type IIB* is obtained from type IIA theory and type IIA* from type IIB

theory, as proposed by Hull [63].

It is worth mentioning that the minimal K = 1 supersymmetric extension of

double field theory does not have direct interpretation in terms of string theory. It

is rather a truncation of type II theory, where the generalized geometry formulation

is constructed in [27]. The extension of the minimal K = 1 supersymmetric theory

to include n = 16 vector multiplets can be thought of as the double field theory

formulation of either type I theory or heterotic theory, as they are related by the

field redefinition of the dilaton or S-duality. When the number of vector multiplets

is different from 16, the theory also does not have a direct interpretation in string

theory.

I hope that our contributions inspire ones who are interested in double field theory.

The topics discussed in this thesis are basic extensions of double field theory and
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there are a lot of topics remaining to be investigated. However, there are also some

obstructions that double field theory has: the relaxation of the strong constraint, the

issue of consistent truncation, other global issues, etc. For double field theory to be

used for interesting applications, these obstructions must be overcome. I believe that

future research in double field theory will provide the answers for these obstructions.

Furthermore I wish that the active research in this research area improves the general

understanding of string theory, which is the goal of double theory, especially the

aspects of string theory related to T-duality and possibly larger duality group.

Although I only introduced papers that are crucial to understand the results

in [10-15], there are other interesting works in this field. The work of [25] introduced

the manifestly O(D, D) covariant formulation of double field theory compatible with

projections. Recently they used their own formulation to construct the double field

theory formulation of RR sector of type II theories and AN = 1 supersymmetric

theories [26]. In [18] the perturbative expansion of the low-energy gravity action

of closed string theory around a flat background is discussed in double field theory

formulation. In this expansion the left-right factorization is exhibited at the level of

Lagrangian to all orders. In the previous section we briefly discussed the existence

of Riemann-like tensor in Siegel's formalism of double field theory. The work of [19]

gives a quite detailed discussion about this object and the related higher-order action.

According to this work, it is challenging to construct the a' corrected action in double

field theory.

Still there are many attractive topics in double field theory that need to be inves-

tigated. We could relax the strong constraint for the RR-sector in the formulation

of massive type IIA theory but it is not possible for general double field theory. The

strong constraint is still needed in most cases, especially for the gauge symmetry of

NS-NS sector and the closure of gauge algebra. The strong constraint is so strong that

locally all fields depend only on half of the coordinates. However, the full relaxation

of the strong constraint to the weak constraint is presumabley not possible for double

field theory to be a consistent truncation of string theory. If possible, the relaxation

of the strong constraint in double field theory would be a huge improvement. Rel-
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evant works [23] implement the compactification of 'Scherk-Schwarz' type in double

field theory. In Scherk-Schwarz reduction, the dependence on internal coordinates

enters through the group element of symmetry transformations but the dependence

does not appear in the compactified theory. In their works the internal coordinates

include both the usual space coordinates and the winding type coordinates. The use

of the strong constraint is relaxed there. Very recent work [21] investigates large, or

finite, gauge transformations in double field theory. This study of 'doubled manifold'

may help our understanding of the geometrical role of the strong constraint in double

field theory.

Double field theory can be extended to implement dualities other than T-duality.

The motivation of double field theory originates from the toroidal compactification of

string theory but it is completely natural to extend the double field theory to other

theories with a duality group different from O(D, D). For example double field theory

can be formulated to describe the low energy limit of M-theory by implementing

U-duality group. The M-theory extension of double field theory is studied mostly

in generalized geometry context. [24] gives a unified description of bosonic eleven-

dimensional supergravity, which is the low energy limit of M-theory, restricted to

a d-dimensional manifold for d < 7. The theory is constructed using generalized

geometry and the tangent space features Ed(d) x R+ symmetry. Berman et al. [74]

also studies the M theory extension of double field theory in terms of generalized

geometry, for different duality groups that appear on the reduction of 11-dimensional

supergravity.

Non-geometric compactification is also a very interesting application of double

field theory. There are configurations of non-geometric compactification that are T-

dual to the configurations of well-known geometric compactification. As T-duality

transformations are naturally incorporated in double field theory, it can be a useful

tool to study non-geometric compactification. Recent work [20] used double field

theory to study non-geometric Q and R fluxes in 4 dimensional (gauged) supergravity

theory. They started from well-known NSNS H-flux, which can be obtained from the

geometric compactification of 10 dimensional (ungauged) supergravity theory. They
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also suggested some relaxation of the strong constraint to explain more configurations

of non-geometric compactification in terms of double field theory.

I believe that there are many unknown but promising research topics in double

field theory that I am missing in this thesis. I would like to leave those questions and

topics to readers.
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Chapter 2

Frame-like Geometry of Double

Field Theory

A bulk of this chapter appeared in"Frame-like geometry of double field theory" with

Olaf Hohm [10] and is reprinted with the permission of Journal of Physics A.

Summary : We relate two formulations of the recently constructed double field

theory to a frame-like geometrical formalism developed by Siegel. A self-contained

presentation of this formalism is given, including a discussion of the constraints and

its solutions, and of the resulting Riemann tensor, Ricci tensor and curvature scalar.

This curvature scalar can be used to define an action, and it is shown that this action

is equivalent to that of double field theory.

2.1 Introduction

We briefly reviewed the results of [7] and [8] in the introduction chapter. These two

papers introduce two different formulations of double field theory: E field formula-

tion and generalized metric H formulation. It was mentioned in the introduction

chapter that.the frame formalism introduced by Siegel [5] is equivalent to these two

formulations in a certain gauge and, therefore, the three different formulations are

equivalent. The equivalence of E formulation and H formulation is already shown

in [8]. The work [10] fills the remaining gap of this proof.
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The understanding of Siegel's formalism requires quite a lot of preliminary knowl-

edge. This will be provided in the next two sections and these two sections are mainly

a review of [5]. In section 4 and 5 the main results of the paper [10] are presented,

where we relate explicitly the frame formalism to the formulations in terms of E and

H. Specifically, in section 4 we show the equivalence of the scalar curvature and the

corresponding scalar found in [7], and relate in particular 'O(D, D) covariant deriva-

tives' introduced there to the GL(D) x GL(D) connections. In section 5 we give an

independent proof of the equivalence of the curvature scalars in the formulation with

XHMN given in [8].

2.2 Geometrical frame formalism

In this section we first review a few properties of gauge transformations parametrized

by (M and the associated C-bracket. Next we introduce frame fields which are subject

to the tangent space symmetry GL(D) x GL(D) together with connections for this

symmetry. Finally, a covariant curvature tensor is discussed. One important note

here is that we use a different notation EAM from that of [10] for a frame field to keep

consistent and unified notations throughout the thesis.

2.2.1 Generalized Lie derivatives, Courant bracket and frame

fields

The generalized Lie derivative is defined for tensors with an arbitrary number of upper

and lower O(D, D) indices by the straightforward extension of

Z AMN POPAN (aMOp - apM) APN NA (2.1)

which is given in the equation (1.47) in the introduction chapter. With this definition

the gauge transformation of generalized metric is simply ogHMN = LCHMN. In gen-

eral we will refer to O(D, D) tensors that transform according to the generalized Lie

derivative under gauge transformations parameterized by (M as 'generalized tensors'
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or as transforming covariantly under (M.

An important consistency property of this formalism is that the O(D, D) invariant

metric that is used in (2.1) to raise and lower indices has vanishing generalized Lie

derivative,

MN P M=N _ NM _ aMN ± aN M + = 0. (2.2)

Accordingly, in this formalism it is consistent to have a constant tensor with two

upper or two lower 'curved' or 'world' indices.

The closure of the gauge transformations spanned by (" or, equivalently, the

algebra of generalized Lie derivatives can be straightforwardly determined in this

formulation by (1.49). It is governed by the 'C-bracket'

61, 62 - 1ON2M _ PM 2P -(- 2) (2.3)

This bracket is the O(D, D) covariant double field theory extension of the Courant

bracket of generalized geometry [29-31], as has been shown in [161. An important

property that will be used later is that the C-bracket of two generalized vectors is

again a generalized vector. Let XM and YM be transforming as 6XM = EXM and

ogYM - L YM, respectively, then we find

og(XY] = Lg[X,Y] . (2.4)

This establishes the covariance of the C-bracket.

In general, partial derivatives of generalized tensors are not generalized tensors.

An exception is a generalized scalar S which according to (2.1) simply transforms as

ogS = IgS = PaPS. (2.5)
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Therefore, its partial derivative transforms as

oOMS) = &M(CapS) = C'P(OMS) +(&M - & aM)OPS = -2 (OMS),(2-6)

where in the second equality we were allowed to add the third term because it is zero

by the strong constraint. Thus, BMS transforms covariantly, i.e., as a generalized

covariant tensor. This covariant transformation behavior does not hold for partial

derivatives of higher tensors, not even for antisymmetrized combinations like 9 [MVN]

- in contrast to conventional diffeomorphisms.

In the following we will introduce a frame field which allows to convert arbitrary

tensors from 'world'-tensors into 'tangent space'-tensors and thereby into scalars un-

der (M. Specifically, following Siegel [5] we introduce a frame field EAM, which is a

generalized vector and has a flat index A corresponding to a local GL(D) x GL(D)

symmetry, i.e.,

M(Eai Eam'
EAM = i (2.7)

Eaj Ea'

We assume this vielbein to be invertible and denote the inverse by EMA. In (2.7) we

used the splitting M = (i, i) of the O(D, D) index and A = (a, a) is the GL(D) x

GL(D) index. Given the O(D, D) invariant metric 77MN we can build an X-dependent

'tangent space' metric of signature (D, D),

GAB = EAMEBN 77MN, (2.8)

with inverse gAB = 7MNEMAENB, which will be used to raise and lower flat indices.

The raising and lowering of world indices with 7 and of flat indices with g is consistent

with inverting the frame field (2.7) in that

EM A = MN ABEBN EMAEAN = MN (29)

as follows from the definition (2.8). In order for EAM to describe only the physi-

cal degrees of freedom it turns out to be necessary to impose the GL(D) x GL(D)
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covariant constraint

ga3 = 0 > E(a E;)i = 0, (2.10)

which is related to the left-right factorization of closed string theory [5].'

Using the frame field one can introduce a 'flattened' derivative eA, defined by

EA = EA MM . (2.11)

We note that the strong constraint takes the following form in terms of flat indices,

EAX EAY = ABEAMEBNaMX qN = MNOMXONy = 0, (2.12)

for arbitrary functions X and Y. Due to the covariance of the partial derivative of

a generalized scalar discussed above, the action of EA on an arbitrary tensor with

only flat indices, EAXBC..., is covariant under (M transformations. Of course, it will

not be covariant under the local frame rotations, and so covariant derivatives have

to be introduced. Thereby, the problem of defining derivative operations that are

covariant under generalized diffeomorphisms parameterized by (M has been converted

to the problem of introducing appropriate covariant derivatives and connections for

the GL(D) x GL(D) tangent space symmetry, to which we turn now.

2.2.2 GL(D) x GL(D) connections and constraints

We define the infinitesimal local GL(D) x GL(D) transformations to be

JAVA = AABVB, 6AV = -ABAVB (2.13)

and analogously for tensors with an arbitrary number of upper and lower indices.

Since we are dealing with GL(D) x GL(D), the non-vanishing parameters are Aab

'An alternative motivation of this constraint starting from generalized geometry and the gener-

alized metric 'W has been given in [8], c.f. the discussion after eq. (3.101) below.
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and Aab. Covariant derivatives with flattened indices are given by

VAVB = EAVB + WABCVC , VAVB = EAVB - WACBV

where we have introduced connections WABC. Again, since we are dealing with gauge

group GL(D) x GL(D) the only non-vanishing components of the connections are

C c ,.
WJAB W)Ab ,WAL (2.15)

Moreover, the constraint (2.10) implies that the same holds for connections with all

indices lowered. We will frequently make use of the fact that components like Waba

and Wabe vanish. We require that the connections transform under (M as scalars and

therefore, as discussed above, the covariant derivatives (5.31) transform as scalars,

too. They transform also covariantly under GL(D) x GL(D) if we require that the

WABC transform as connections, i.e.,

6 WAa ~= VAAa ± AAB WBa b, VAAab = EA ab + WAaCAcb - WAcbAac , (2.16)

and analogously for barred indices. We note that the additional term in 6 wAa b as

compared to the familiar transformation rule for a Yang-Mills gauge potential is due

to the conversion of the 1-form index into a flat one.

Next we have to impose covariant constraints that allow us to solve for (part of)

the connections in terms of the physical fields. There are three covariant constraints

in total:

1. The torsion constraints

TABC = 0, (2.17)

48

(2.14)



where the torsion TABC is defined by2

TABC = QABC ±2 W[AB|C ± C [AB) (2.18)

and QABC is the generalized coefficient of anholonomy, which is given by

AB 2 ([AB|C ± C[AB| , ABC (EAEBM )ECM (2.19)

2. The metricity condition that the metric gAB is covariantly constant [5],

VAgBC = 0 < EAgBC + 2 WA(BC) = 0 (2.20)

3. The partial integration constraint

J e-2 VVA VA = _- e 2 VA VAV= -Je-2d VAEAV (2.21)

for arbitrary V and VA. This constraint enables the integration by parts in an

action using the covariant derivatives [5].

The consistency of this and the previous constraints will be confirmed in the next

subsection by providing the explicit solutions.

The torsion tensor defined here is different from that of Rimannian geometry. In

ordinary Riemannian geometry the torsion constraint of the Levi-Civita connection

implies that in the Lie bracket of two vector fields the partial derivatives can be

replaced by covariant derivatives. In the double field theory context the Lie bracket

is replaced by the C-bracket in that only the latter transforms covariantly under

generalized diffeomorphisms. Since we are dealing here with flattened derivatives it

is thus natural to define a torsion tensor in such a way that it vanishes if and only if

in the C-bracket with flattened parameter 12 = [1,2] 0 e^ the partial derivatives

2In this paper we employ the convention that symmetrization and anti-symmetrization involves

the combinatorial factor, e.g., X[ab] = (X.ab - Xia). In some formulas this leads to numerical factors

that are different from those in [5].
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are replaced by GL(D) x GL(D) covariant derivatives, i.e.,

12= 1BB 2 1 2 - (1 +-+ 2) 2 BCA (2.22)

and the torsion tensor is defined from this equation. We note here that the torsion

tensor defined like this does not coincide with the usual definition via the commutator

of covariant derivatives.

2.2.3 Solving the constraints

We solve now the above constraints and show

straint given in the previous subsection leads

connections, respectively:

their mutual consistency. Each con-

to the following conditions for spin

1. The torsion constraint (2.17) leads to the conditions

W[ABC] = -[ABC] = -f[ABC], Wa~M =~~0abe , W(bc = -

(2.23)

2. The metricity condition (2.20) can be trivially solved,

1
WA(BC) = - EgBC = -fA(BC) ,2 (2.24)

and determines the part symmetric in the 'group indices' of WABC completely.

3. Finally, we solve the constraint (5.23) and obtain

(2.25)

where we introduced nA for notational convenience.

We conclude this section by summarizing which connections are determined by the

above constraints (2.17), (2.20) and (5.23). First, the 'off-diagonal' components Wabc

and wg are completely determined according to the last two conditions in (5.21). For
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the 'diagonal' components wabc and w the parts symmetric in the last two indices are

fully determined by (2.24). Therefore, it is sufficient for the remaining components

to focus on the part antisymmetric in the last two indices, whose irreducible parts,

say for wabc, are given by the following tensor product

Walkc] L1 =(2.26)

where the Young tableaux refer to the left GL(D) group. In here, the completely an-

tisymmetric part W[abeI is determined by the first condition in (5.21). For the 'mixed-

Young tableaux' representation on the right-hand side of (2.26) the trace parts are

determined by (5.24) in terms of the dilaton, leaving precisely the trace-free part of

this (2, 1) representation as the undetermined connections. Its dimension is given by

jD(D + 2)(D - 2) and therefore, taking the right GL(D) into account, the number

of undetermined components is twice this value. That not all components are deter-

mined by the above constraints limits the extent to which invariant curvatures can be

constructed out of the physical fields, which will be discussed in the next subsection.

2.2.4 Covariant cuvature tensor

Let us now turn to the construction of invariant curvature tensors for the GL(D) x

GL(D) connections. In general, given covariant derivatives one can define curvatures

through their commutator, say, acting on YC,

[VA, VB] VC = TABDVDVC ± RABCD (2.27)

This leads to the standard expressions

TABC = QABC + 2 W[AB] C (2.28)
D E D E D

RABCD = EAWBCD - EBW ACD EWBE _LBCEWAE

-A WEC (2.29)
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We note that the torsion tensor TABC defined like this does not coincide with the

torsion TABC defined earlier in (2.18). Given the modification of the (M gauge trans-

formations as compared to the standard diffeomorphisms it was, however, only con-

sistent to set TABC = 0. We conclude that the conventional torsion is necessarily

non-zero when imposing (2.17), after which the commutator of covariant derivatives

reads

[VA, VB] VC = -WD[ABIVDVC ± RABCDVD- (2.30)

An immediate consequence is that RABCD as defined in (2.29) cannot be fully covari-

ant with respect to GL(D) x GL(D), because the left-hand side of (2.30) is manifestly

covariant but the right-hand side contains a bare gauge field.

At this stage a comment is in order regarding the non-covariance of the curva-

ture tensor R, because formally it coincides with a conventional field strength (with

flattened indices) that would be covariant with respect to (frame-)transformations of

an arbitrary gauge group. The subtlety here is that the generalized coefficients of

anholonomy QABC defined in (5.15) rather than the conventional ones appear in the

last term of (2.29). Actually, eq. (2.27) does not determine whether (2.28) should con-

tain the generalized coefficients of anholonomy or the conventional ones. The choice

made here is covariant under (M gauge transformations, at the cost of violating the

GL(D) x GL(D) covariance.

This violation of the covariance is fixed in Siegel [5] by hand. The GL(D) x GL(D)

covariant curvature tensor takes a form

CABCD B ± 4 CDAB ± ECD WEBA ± WEAB WEDC]- (2-31)

Since the proof of covariance requires the use of the metricity condition, V' trans-

forms only covariantly after imposing this constraint. This can, however, be relaxed

by adding further terms that are zero upon imposing the constraints. Specifically,

defining
1 1

1 ZABCD = )ZIABCD ~ WECD -E AB WEAB VE CD , (2-32)
4 4
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we obtain a tensor that is fully covariant independently of the constraints. In the

remainder of this chapter we will assume that all constraints are satisfied, for which

R = R', unless stated differently. Since these are further analysis of Riemann-like

tensor in Siegel [5], we omitted a lot of detailed steps, which can be found in the

paper [10].

In the rest of this section we examine the symmetry properties and identities

of RABCD- We start with the original curvature RABCD, which has the following

symmetries

RABCD = -RBACD = -RABDC (2.33)

Moreover, since the gauge group is GL(D) x GL(D) the 'off-diagonal' components in

the group indices of RABCD, i.e., in the last two indices, are zero,

RABCj = RABa = 0, (2.34)

corresponding to the fact that the only non-zero connections are (2.15).

Next, we turn to the symmetry properties of R. In general, the correction terms

proportional to the connections in (2.31) have no specific symmetry. If we focus on

off-diagonal GL(D) x GL(D) components, however, these extra terms vanish, see

(2.15), and so the antisymmetry properties of R elevate to R. For instance,

1 1 1r 1
RabMd = [ Rabrd + REdab = REdab = 2 R a= - acd. (2.35)

The same conclusion applies to all other components that have precisely three un-

barred or three barred indices.

We close this section with a brief discussion of a curvature scalar that will be used

in the next section to define an action. The scalar that is obtained by tracing R

turns out to be zero by virtue of the constraints. Specifically, prior to imposing any
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constraints, one can prove that 3

AB 2 A A + VA VBgAB [ABC|2 - V(AgBC)2. (2.36)

Each term vanishes separately after imposing the constraints, and therefore

0 = RABAB = lbab +Rib (2.37)

Thus, there is a unique way to define a (non-vanishing) scalar,

1 1 -

R : -lRab - Ra , (2.38)2 2

which by construction is a scalar under (M transformations and GL(D) x GL(D).

An expression for R that makes the invariance under O(D, D) and frame trans-

formations manifest is the following,

R = -(VaVad - VaVad) - (Va(EaVEM) EbM)) (2.39)
2

- (EaMVb EM EaN VbEEN - EamV&Ecm E aN V&EcN)

+ (EcMVaEbE ENVbEaN - EcMVaEbm EcN VbEaN)

- (Vad (EamVbEM) - Vad (EaMVbEbM)) - (Vad Vad - Vad Vad).

It is not manifest either from the definition (2.38) or the explicit form (2.39) that

the scalar curvature depends only on the connection components that have been

determined by the constraints. A somewhat lengthy calculation shows, however, that

R can be written as4

1Z = Eaf~a ± 2± 1 1 1 2g1 ag-c jba cc
=a2 + 1EaEb2ab - + ag!c Eb2a _. (2.40)

3We note that this expression differs from that in sec. VIII of [5] because of different conventions
regarding symmetrization. Moreover, it differs by an overall factor and a relative factor in the last
term.

4Again, this expression differs from that given in sec. VIII of [5] because of different conventions
regarding antisymmetrization, but it also corrects a typo in the fourth term.
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This proves that R is a well-defined function of the physical fields.

2.3 General action principle

In this section we briefly introduce an Einstein-Hilbert like action principle based on

the invariant curvature scalar discussed above, and derive Bianchi identities from its

gauge invariance.

2.3.1 Gauge invariant action

Having the scalar R at our disposal we can define the following action principle

S = Jdxdz e-2 1, (2.1)

which, by virtue of e-2d transforming as a density, is manifestly invariant under all

symmetries.

There are a number of conclusions that can be derived from this invariance. First,

the variation with respect to d has to be a GL(D) x GL(D) invariant scalar and

therefore it must be proportional to R defined in (2.38) [5], which conclusion agrees

with the results of [7,8], as we will show below. Second, the general variation with

respect to EAM is non-trivial only in its off-diagonal component, in the following

sense. Introducing a variation with both indices flat,

AEAB := EBM6EAM, (2.2)

we infer that the GL(D) x GL(D) transformations (2.13) read

AEAB = EBMAACEcM = AACgBC AAB (23)

By the constraint (2.10) this implies

ALEab = Aab , AEa; = Ad; , AE = -AEga = 0. (2.4)
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Consequently, the local GL(D) x GL(D) symmetry of the action implies the 'Bianchi

identity' that the diagonal parts of the field equations obtained by variation with

respect to AEab and AE, vanish identically. Thus, the only non-trivial part of

the field equation is obtained by variation with respect to, say, AEb. In total, the

variation of (2.1) can be written as

6S = J dxdz e-2d (-26d 1k + AE "Zab , (2.5)

giving rise to the field equations

7Z = 0, zab = 0. (2.6)

Next we discuss some general properties of these tensors. As indicated by the

suggestive notation it is natural to assume that the 'Ricci tensor' Rab derived from

(2.1) indeed follows from contracting the covariant curvature tensor introduced above.

There are two candidates, 1ZRa and c The explicit expression for the first is

IZab = 21ZZ3a3 = Ragf (2.7)

= EcWa 6 EaWi _ ± W~ Wad - _aZ -Q

= EZ!UaL6 _ EaWZ~j ± WdbEUWiad - Wa~jWi~dC

where the torsion constraint (2.17) has been used in the first line. The second ex-

pression is given by

RZa = Rcba' = Ecwgac - E&Wca" + WcadU_ a e _ QEWEac (2.8)

= EcWU--ac - Ebwca ± wj' , - LIjy. d UCd

and we will confirm that this is equivalent to (2.7). Writing out all connection com-

ponents explicitly, the Ricci tensor can thus be written as

Rga = )Za = Egna - EcQ2ac + QJ4d c - g_ c (2.9)
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Below we will prove that the curvature scalar, upon gauge fixing, reduces to the one

of double field theory given in [71, and that the corresponding field equations for

Eg as determined in [91 give rise to the tensors in (2.7) or (2.8), thus showing their

equivalence. This proves that the tensors defined by the general variation (5.28) are

indeed the curvature scalar and Ricci tensor.

2.3.2 Covariant gauge variation and Bianchi identity

In this subsection we derive a Bianchi identity from the invariance of (2.1) under

(" gauge transformations. To this end it is convenient to first rewrite the gauge

transformations in terms of the GL(D) x GL(D) covariant derivatives. For this we

use the following form of the gauge transformation in terms of the C-bracket (c.f. eqs.

(3.29) and (3.30) in [8])

5gEEA = [ +, E 2 +(9 (E ANN) , (2.10)

and the fact that in the C bracket we can replace curved by flat indices if we use the

GL(D) x GL(D) covariant derivatives, i.e.,

[(, EA] B = CCEAB - EACVC B - (C$BEAC ± EACVc (2.11)
C ~2 CVEC+2 ECBC (.1

= -WCA B - VAB 4+ CWB AC ± 1AC BC2 2

Here we have to stress that the covariant derivatives in the first line do not act

on the index A, which we indicated by the notation V, because A is in (2.10) and

(2.11) only a 'spectator' index. Consequently, using EAB = EAMEMB = 6AB and

EAC = EAME M = gAC, we have 9cEA -WCA, from which the second equality

follows. Using (2.11) in (2.10) we obtain

ogEAM = EBM(,E]B (2.12)

= - CWcAB EBM - EBMVA B + IEBMWBAcC + IEBMV B + M
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The third and last term combine into a covariant derivative, which in turn combines

with the fourth term. Moreover, the first term can be viewed as a field-dependent

GL(D) x GL(D) transformation with parameter AAB = -(CWCAB and can thus be

discarded. Therefore, the final form reads

oCEAM = -EBM (VA B _ vBA) , (2.13)

or, in terms of the variation (5.27),

AEAB = VB A - VA B- (2.14)

For the dilaton one finds

Jgd = Md - aM M = R EAd - aM EM)2 2

2 - + 2^ (-aMEAM +2EAd) = (EAA -wB B A) (2.15)
1

where we used (5.24) in the second line.

We can now read off the Bianchi identity following from the gauge invariance of

(2.1). Using (2.14) and (2.15) in (5.28) we infer

0 = JS = dxdz e-2d ((Va(a + Vasa) 7? + (Va - Va)Ia) (2.16)
= -dx , 2 d ( a (V+ ± b7a) (ValZ -VbR.a))

which implies the Bianchi identities [5]

VaR + V Zb = 0, Va7Z - Vb7Z?6 = 0. (2.17)

These are equivalent to similar Bianchi identities derived from the double field theory,

as we will show in the next section, and reduce to the usual Bianchi identities for Ry

and Hig, when 5 = 0 [9].
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2.4 Relation to formulation with Egg

Here we start the detailed 're-derivation' of the original double field theory formu-

lations introduced in [7] from Siegel's geometrical formalism. We identify the 'non-

symmetric' metric Egj as components of eAM after a particular gauge fixing. This

allows us to study the non-linear realization of the O(D, D) symmetry and to find a

rather direct relation between the action (1.31) and the geometrical Einstein-Hilbert

like action.

2.4.1 Gauge choice

One way to identify jj in the frame-like formalism is to gauge-fix the local GL(D) x

GL(D) symmetry by setting the components Ea, and Ea' in (2.7) equal to the unit

matrix (assuming certain invertibility properties). Taking the constraint (2.10) into

account, the remaining components are then parametrized by a general D x D matrix

which we identify with Eij,

Ea i (EVai 6a
EAM = = . (2.1)

(Eaj Ea' Era ja')

In this gauge, the 'space-time' indices i, j,... can be identified with the frame indices

of either GL(D) factor via the trivial vielbeins Ja' or 63a. The calligraphic derivatives

then coincide with the 'flattened' partial derivatives (2.11),

Ea = EaM9M = 0a-Eaj 6' Da, Ea = E Mam = aa--+ E 5 . (2.2)

Moreover, the metric gij = E(ij) can be identified with either of the two 'tangent

space' metrics

1

9ab = -. EaMbN7MN, a - Ea ENMN (2.3)
2 Ea~'9b 2a 'M
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as one may verify directly from (2.1). From this it follows that (2.8) is given by

9AB =(-2gab 0 (2.4)

0 2 ggCb

The relative factors of ±2 appearing here lead, after the gauge fixing (2.1) and the

corresponding identification of indices, to an ambiguity regarding the contraction of

indices. We will follow the convention that contractions are done with respect to the

tangent space metric GAB when the indices are letters from the beginning of the latin

alphabet (i.e., either a, b... or a, b,.. .), and that contractions are only done with

respect to gij if the indices are letters from the middle of the latin alphabet (i, j ... ).

For the comparison with the action (1.31) it is instructive to re-interpret deriva-

tives like DiEjk in a more covariant way. Specifically, in analogy to the modified

variation (5.27), we can write this as

Da'Fb = EbmEaEzm = -EmE.EbM. (2.5)

This follows from the gauge-fixed forms (2.1) and (2.2), and is manifestly O(D, D)

invariant. Remarkably, it can also be made manifestly GL(D) x GL(D) invariant by

observing that in

EbMVaEZM = EbM(EaEM ± Wa-|wdEjM) (2.6)

the connection term is zero by the constraint (2.10). The same conclusion applies to

the barred derivative Ea = 53, and so we find in total the following identifications

DaEZ EbMVaEEM = -EZMVaEbM,
(2.7)

NAE EbMVaEcm = -EmVaEbM

which are manifestly covariant with respect to O(D, D) and tangent space transfor-

mations.

In the following we will examine how the O(D, D) duality symmetry is realized af-

ter this gauge fixing. Acting with a general O(D, D) transformation on (2.1) violates
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the gauge condition and thus requires a compensating GL(D) x GL(D) transforma-

tion. In order to determine the transformation that restores the form of the vielbein

(2.1), we consider a finite O(D, D) and GL(D) transformation,

Eam'(X') = hMN (M-(X))ab EbN(X). (2.8)

Here we denoted the GL(D) matrix by M-1 for later convenience, and h is the

O(D, D) matrix, whose components read

hMN = ~ ~
hij hiJ

(ai3 bi

c'ei d'i)

Applied to the gauge-fixed component we find

Ea1' = (M- 1 )a (hjEb +h Ebj) = (M-l(d' - ECt))a = 6a,

(2.9)

(2.10)

where we used matrix notation and suppressed the X-dependence. The last equation

expresses the condition that the gauge fixing condition be preserved. Analogously,

one finds for the other component

Eai = ( 1 )b (h'jEgj +h E3 ) = (M (d+Etct))a2 = Ja, (2.11)

where we denoted the matrix corresponding to the second GL(D) factor by R- 1. The

two conditions (2.10) and (2.11) thus determine the compensating GL(D) x GL(D)

transformations uniquely in terms of c and d,

M(X) = dt+SE(X)ct, (2.12)

which are both X-dependent through their dependence on Eij. Finally, using this

form of the compensating gauge transformations it is straightforward to verify that

Egg transforms under O(D, D) in the required non-linear representation according to
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the Buscher rules, which we repeat here for the reader's convenience

E'(X') = (aE(X) + b)(cE (X) + d) 1 , d'(X') = d(X) , X' = hX. (2.13)

With the above analysis of the non-linear realization of O(D, D) we have in fact re-

covered the formalism that has been used in [7] (extending the background-dependent

formalism in [6, 32]) in order to prove the O(D, D) invariance of the action (1.31).

More precisely, in this formalism every index is thought of either as an unbarred or

barred index and to transform, accordingly, either under M or M in (2.12). For in-

stance, we have just verified that the calligraphic derivatives (2.2) transform with M

or R, respectively. Moreover, due to the manifestly O(D, D) and GL(D) x GL(D)

covariant rewriting of the calligraphic derivatives of E in (2.7), it follows that after

gauge fixing

DsaC = Mad Mbe p E'y , = fad Mbe A7 g'-C . (2.14)

Thus, we can think of the first index on E (under D or D) as unbarred and the second

index as barred. From the definition (2.3) we conclude that the indices on g can

be thought of either as both barred or both unbarred, because g can be viewed as

a tensor either of the left GL(D) or the right GL(D) such that it transforms after

gauge fixing as

9d&= " 9;M , gab = Mac Mbd gd (2.15)

and similarly for the inverse. The O(D, D) invariance of the action is then a conse-

quence of the fact, which one may easily confirm by inspection of the action (1.31),

that only like-wise indices are contracted [7].

2.4.2 O(D, D) covariant derivatives and gauge variation

In the previous subsection we have seen that in the formulation using Ej the O(D, D)

transformations are governed by the matrices M and R in (2.12). Since these matri-

ces are X-dependent, it follows that derivatives of objects that transform 'covariantly'
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with M and R according to their index structure are in general not covariant in the

same sense. This led ref. [7] to introduce 'O(D, D) covariant derivatives' - despite

O(D, D) being a global symmetry with constant parameters. There are two types of

covariant derivatives, Vi(F) and Vi(F), i.e., unbarred and barred, and various con-

nections F depending on the index structure of the object on which the derivative

acts. Here we indicate the dependence on the connections explicitly, in order to dis-

tinguish these 'covariant' derivatives from the GL(D) x GL(D) covariant derivatives

introduced before.

Since we have here realized the global non-linear O(D, D) transformations ac-

cording to M and R through compensating GL(D) x GL(D) transformations, it is

natural to assume that, after gauge fixing, the GL(D) x GL(D) covariant derivatives

are related to the 'O(D, D) covariant derivatives' of [7]. This indeed turns out to

be the case, and so we are able to give a more conventional interpretation of these

covariant derivatives.

As a first test of this relation we reproduce a manifestly O(D, D) covariant form

of the (M gauge transformations that has been found in [7]. Specifically, introducing

the following change of basis for the gauge parameters (which is suggested by the

gauge structure in string field theory [6]),

77i = -ii + ei 4V , i = i ±+~i (2.16)

the gauge transformations of Egg take the remarkable form

JEi = Vi(F)% + Vj(F)7i . (2.17)

The corresponding result using the GL(D) x GL(D) connections follows almost im-

mediately. First, the flattened gauge parameters

7. := - =_ -EaMOM , ia := a =_ EaMOM , (2.18)

coincide with (2.16) upon using (2.1). Moreover, after the gauge fixing (2.1), any
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variation of E coincides with the A variation in (5.27),

6E = AEga = EaMJEgg = E2oER + Eai E; (2.19)

This follows because the last term is zero by the gauge fixing condition. More pre-

cisely, for the (m gauge variation this term will vanish by a compensating frame

rotation that restores the chosen gauge. The advantage of using the A variation is

that this compensating transformation need not to be determined explicitly. Applying

now (2.14) one finds in the basis (2.18)

g = Vaib + Vgr7a, (2.20)

which agrees with (2.17), using that after gauge fixing the indices i, j,... can be

identified with the flat indices.

We note in passing that the original form of the gauge transformations of Egg field

also follows easily by use of the A variation as in (2.19),

SEga = AEga = EaM6E;M EaM ( NONE + (oMN _ gNOM)EN)

= ±NONEa; +OaNEN ~~~ D0MEaM
(2.21)

_ N ±Na+ j E+' ± Deg1Eg - Thj Ea' - bh&Ea(

= ±NN Eab Da + Da Egj& - bEa + fVtCaj.

Here we used (2.2) in the second line and the gauge fixed form (2.1) in the last line,

where we again identified indices. Thus we have derived the gauge transformation of

E&5 from the fundamental gauge transformation of the vielbein, as in [8], but without

invoking the compensating frame rotation explicitly.

The previous results show that the 'O(D, D) covariant derivatives' coincide with

the GL(D) x GL(D) covariant derivatives after gauge fixing, at least when acting on

'r and as in (4.207). The complete set of connections ' is not fixed by O(D, D)

covariance and therefore have been given in [7] only provisionally. Here we display
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for completeness their relation after gauge fixing,

W =k ~!k1Q(D~j + i'j& - te 32) =
- 1j

. 1 1-.Wji ~ ~ ~ ji = -( 3 1Ypk±.h
2 '9

wy? = (3 - -D)Ei +2Did = -Vi + b E 2(Did,

2 2

We see that they are equivalent in the 'off-diagonal' parts but differ in the trace

parts. In fact, it has already been noted, c.f. the discussion around eq. (4.13) in [7],

that modifying the definition as suggested by (2.22) would have the advantage of

simplifying the gauge transformation of d in that

1 .1-

3d = - -7 ; . (2.23)
4 4

Here we see that this is a direct consequence of (2.15), where we recall that according

to our index conventions g rather than g is used to raise indices in (2.23), and that

there is a relative sign in the definition (2.18) of 77. In [7], however, there was

no justification from symmetry arguments for this modification, but here we see it

emerging naturally from Siegel's frame formalism.

Given the precise correspondence between the O(D, D) and GL(D) x GL(D)

connections, we have verified that the curvature scalar and Ricci tensor of Siegel's

formalism agree with the corresponding expressions obtained in [7] and [9]. More

precisely, the scalar curvature constructed from Siegel's frame formalism is .1 times

1Z(E, d) as given in [7]. Taking this factor as well as the relative factors of ij in (2.3)

into account, the Bianchi identities (2.17) reduce to

11
VRZ + D-1Z(E, d) = 0 , V3R 1g + 1iR(, d) = 0 , (2.24)

which agree with [9].

Starting from the expression (2.39) for the scalar curvature we can actually im-
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mediately compare with the double field theory action (1.31) in terms of E. Using

that the covariant derivatives allow for partial integration in presence of the dilaton

density, we infer that the first line in (2.39) contributes only total derivatives under

an integral, and thus the resulting Lagrangian is equivalent to

L' = e~ 2d( - EaMVbEM EaNVbEEN + IEMVaMEbME EN VbEaN

- I EcMVoEEM EcN VbEaN - VadEaMVbEbM (2.25)
2

+ VadEaMVbEbM - 2Vad Vad).

Taking into account the relation (2.3) between g and the tangent space metric, and

using that the latter is covariantly constant, it then immediately follows by virtue

of the identifications (2.7) that (2.25) agrees with the action (1.31) up to the global

factor of 4.

2.5 Relation to formulation with 'HMN

In this section we introduce the formulation in terms of the generalized metric XHMN

from the point of view of the frame formalism and discuss Christoffel-type connections

that are introduced via a vielbein postulate.

2.5.1 Gauge choice and generalized coset formulation

We next identify the generalized metric and the corresponding formulation in the

geometrical frame formalism. In general, one can define XMN in terms of the frame

field through [8]

XMN =2 EME;N - 7MN = ab Ea ME N 7MN (2.1)
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where the second equation is a consequence of the definition (2.8) and the constraint

(2.10). The generalized metric is a constrained field in that

XMKHKN = EMN (2.2)

where the indices are lowered, as usual, with r/MN. In the standard parametrization

NMN gij bikgkLbjj bikgk) (2.3)
-gik bkj g U

this can be checked by a direct computation. Here, it can be verified with either one

of the definitions in (3.101). We note, however, that if we use for the first 'H in (2.2),

say, the first expression in (3.101) and for the second H the second expression, then

the constraint (2.10) is required in order to verify this.

For later use we note that (3.101) implies for the flattened components of the

generalized metric

,HAB _gab 0
S_ MNE EB _ N (2.4)

where again (2.10) has been used.

In the following, we find it convenient to fix the GL(D) x GL(D) symmetry by

setting the tangent space metric (2.8) to

AB Jab 0 . (2.5)
0 63;

This implies gab = 2 6ab and gag = 26a, from the definition (2.3) and also RAB = 6
AB

from (2.4). This leaves a residual local O(D) x O(D) symmetry. Therefore, the result-

ing formulation can be viewed as a generalized coset model based on 0(D, D)/(0(D) x

O(D)) [8]. In fact, from (2.5) we conclude with (2.8) that EAM is an O(D, D) el-

ement (up to a similarity transformation) in that it transforms the O(D, D) metric
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77 into the O(D, D) metric, but written in the form (2.5). Thus, e can be viewed as

a group-valued coset representative with a local O(D) x O(D) action from the left.

Moreover, (2.4) implies

-HMN = 6ABEMEN (2.6)

and so XH can be viewed as the O(D) x O(D) invariant combination E'E. For com-

pleteness we record that the form of the coset representative that leads to the standard

parametrization (2.3) for XMN according to (3.102) is given by

EAM _ 1 ( ea; + bijea' ea (2.7)
N/ -eaj + bigensi eat

where eia is the conventional vielbein for the metric gij, i.e., gij = eiaeja, with inverse

ea*. We recall that an explicit parametrization like this requires a further gauge fixing

of the local O(D) x O(D) symmetry.

2.5.2 Scalar curvature

Next, we prove that the Ricci scalar (2.40) reduces upon the gauge fixing (2.5) to

the function 1Z(H, d) given in [8], and thus that the actions in (2.1) and (1.45) are

equivalent. The scalar curvature (2.40) reduces to

1a~ 1 1

1Zz~~2 2  4 Z2 2c
a = -Qab - [aeI. (2.8)

We first evaluate the dilaton-dependent terms, which originate only from the first

two terms. Using (5.24) we find

EaQa+ n = -2EaN&N (EaM&Md) -28MEam EaN&Nd+2EaMmd EaNtNd (2.9)2 ad

With the expression for HMN from (3.101) this reduces to

Ea a 2 HMN ±MNd + aNHMN aMd - HMNO Md ONd, (2.10)
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where we used the strong constraint.

We turn next to the pure EAM-dependent terms which are more involved. The

first two terms in (2.8) yield

11 1
Eaua ± _ _&NMHMN ~NEaMMEaN.

2 ae 4 2

In order to compute the third term in (2.8) we obtain

2 1 b
-ab2 = KL(MN - qMN)OKEb LE

4 (2.12)

+ (7,NK _ 71NK)(RML + ML) 9KEb DLEN.

For the final term in (2.8) we compute

Q[abc2 = 3 [JKL (MN~77MN) 2(HML-7ML) (NK-7NK)] aKEbM LEbN (2.13)

In total, the third and the fourth term of R in (2.8) combine as follows:

- QabZ2 _ 2 KLc 2MN - 77MN)KEbLEbN (2.14)
4 12 8

1
- M -- MN)EbEa E"EbN

8 (7 -NK - NK) (ML ± 377ML)OKEbMaLEbN -

Adding (2.11) and (2.15) one obtains after some work

-R = -aMaNMN ± 1___KL K M LRMN
4 32

_ _HML KHMNaL HNK.
8

In combination with (2.10) we obtain in total

cMNO~N ± DNHMN OMd - aMNMd ONd (2.15)

-OMaNMN ± IHKLaKHMNOLMN - 0gMLaLNKOK HMN-
4 32 8
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This coincides with the curvature scalar R('H, d) constructed in [8], up to the same

irrelevant overall factor of 4 encountered above, and thus we have established inde-

pendently the equivalence of the two action principles. Many detailed computations

are omitted in this section of the thesis and can be found in the main text and the

appendix of [10].

2.6 Conclusions and Discussions

In this chapter we have shown that the duality-covariant formalism developed by

Siegel already some time ago in [51 provides a geometrical framework of double field

theory in terms of frame fields, connections and curvatures for the gauge group

GL(D) x GL(D). For the convenience of the reader we summarize here the main

differences to ordinary Riemannian geometry.

First of all, a central object is the O(D, D) invariant metric q which is a constant

'world tensor' with two upper or two lower indices. In Riemannian geometry such an

object would not be well-defined, but here the constancy of q has a gauge invariant

meaning due to the modified form of the gauge transformations, governed by the

'generalized Lie derivatives' (2.1). In contrast to the 'world' metric qMN, the 'tangent

space metric' gAB is space-time dependent, and thus we have the opposite of the

usual situation. It is instructive to compare this with a reformulation of conventional

Riemannian geometry that resembles the formalism presented here in that there is

an enlarged group of frame transformations, the general linear group GL(D) rather

than the Lorentz group, and a space-time dependent tangent space metric gab that

enters together with the vielbein ea' as an independent field (see sec. IX.A.2 in [33]).

Imposing a metricity condition and the usual torsion constraint,

Vagac = 0 , Tb' = -2eamebnV[men]c = 0, (2.1)

allows one to solve for the connections Wabc in terms of derivatives of earn and gab.

The local GL(D) symmetry can then be fixed by setting either e,' = 6a', in which
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case gab can be identified with the usual metric and the wac reduce to the Christoffel

symbols l'a1c, or one can set gab = Jab, in which case ear' carries the physical degrees

of freedom and Wabc reduces to the usual spin connection. This formalism differs,

however, from the present frame formalism, at least in the form discussed in this

paper, in several respects. For instance, here it is not the tangent space metric QAB

that is introduced as an independent object but rather the constant O(D, D) invariant

metric r/MN, while 9AB is defined in terms of 'qMN by use of the frame fields. Moreover,

the torsion constraint is modified as compared to (2.1).

Perhaps the most important difference to Riemannian geometry is the novel gauge

symmetry parametrized by (", whose algebra is governed by the C-bracket rather

than the Lie bracket of the usual diffeomorphisms. This has a number of consequences.

Most importantly, due to the modified torsion constraint, the Riemann-like tensor

defined through the commutator of covariant derivatives is generally not covariant

under frame rotations. Following [33] this can be repaired 'by hand', but is should

be stressed that the resulting curvature tensor, which is fully covariant, is not in all

components independent on the undetermined connections. The resulting Ricci-like

tensor and scalar curvature are, however, fully expressible in terms of the physical

fields, and are equivalent to the field equations and Lagrangian of double field theory,

respectively.
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Chapter 3

Double Field Theory Formulation

of Heterotic Strings

A bulk of this chapter appeared in "Double Field Theory Formulation of Heterotic

Strings" with Olaf Hohm [11] and is reprinted with the permission of JHEP.

Summary : We extend the recently constructed double field theory formulation

of the low-energy theory of the closed bosonic string to the heterotic string. The

action can be written in terms of a generalized metric that is a covariant tensor un-

der O(D, D + n), where n denotes the number of gauge vectors, and n additional

coordinates are introduced together with a covariant constraint that locally removes

these new coordinates. For the abelian subsector, the action takes the same struc-

tural form as for the bosonic string, but based on the enlarged generalized metric,

thereby featuring a global O(D, D + n) symmetry. After turning on non-abelian

gauge couplings, this global symmetry is broken, but the action can still be written

in a fully O(D, D+ n) covariant fashion, in analogy to similar constructions in gauged

supergravities.

3.1 Introduction and Overview

In this chapter we extend the double field theory formulation of [8] to the low-energy

action of the heterotic string [34], which features extra non-abelian gauge fields. In its
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low-energy limit, this theory is described by an effective two-derivative action which

extends the standard Einstein-Kalb-Ramond-dilaton action by n non-abelian gauge

fields Aj", a = 1,..., n, [35],

S dx/fie-24 R + 4(aq) 2 - fijkfig -f F FFia, (3.1)

where

Fi" = Aj" - o8jAia + go [Ai, Aj] (3.2)

is the non-abelian field strength of the gauge vectors, and the field strength of the

b-field gets modified by a Chern-Simons 3-form,

Hijk = 3 ([igbjk] - nap A[j' (a3 Ak]| ± {go Al, A . (33)

Here go denotes the gauge coupling constant and seg is the invariant Cartan-Killing

form. With the gauge field transforming as

JAA = jA"+ go [Ai, A], (3.4)

the b-field transforms under A' as

1
JA bij = B.Ay" - B& Ai") AC, (3.5)

such that (3.3) is invariant. At the level of the classical supergravity action the gauge

group is arbitrary, but in heterotic string theory it is either SO(32) or E8 x E8 .

For the abelian subsector the double field theory extension of the heterotic string

is straightforward. To this end, the coordinates are further extended by n extra

coordinates y' and, correspondingly, the generalized metric 'HMN is enlarged to a

(2D + n) x (2D + n) matrix that naturally incorporates the additional fields Ai"

in precise analogy to the coset structure appearing in dimensional reductions. This

suggests an enhancement of the global symmetry to O(D, D + n). Indeed, if we
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formally keep the action

S = dxdz e-2d 7(, d) , (3.6)

and the form of the gauge transformations ogXMN MN, but with respect to the

enlarged 1 MN, we obtain precisely the (abelian subsector of the) required action (3.1)

and the correct gauge transformations in the limit that the new coordinates are set

to zero. In this construction, the number n of new coordinates is not constrained, but

the case relevant for heterotic string theory is n = 16, where the ya can be thought

of as the coordinates of the internal torus corresponding to the Cartan subalgebra of

SO(32) or E8 x E8 .

The double field formulation of heterotic strings can be extended to the non-

abelian gauge fields. In this case the group O(D, D + n) is broken. More precisely,

the reduction of the low-energy effective action (i.e., of heterotic supergravity) on

a torus TD gives rise to a theory with a global O(D, D + n) symmetry only in the

abelian limit go --+ 0 [36]. Remarkably, however, we find that the action can be

extended to incorporate the non-abelian gauge couplings in a way that formally pre-

serves O(D, D + n), where n equals the dimension of the full gauge group. More

precisely, we write the extended action in terms of a tensor fMNK, which encodes the

structure constants of the gauge group, and the generalized metric XH MN. The con-

sistency of this construction requires a number of O(D, D + n)-covariant constraints

on fMNK, which reads

f=NKaM 0. (3.7)

Moreover, the gauge variations parametrized by (M get deformed by fMNK in that,

say, a 'vector' VM transforms as

j VM -I M _ K MKLvL

Thus, the (m gauge transformations represent a curious mix between diffeomorphism-

like symmetries (which simultaneously treat each index as upper and lower index) and
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the adjoint rotations with respect to some Lie group. The invariance of the action

under these deformed gauge transformations then requires new couplings to be added

to (3.6), whose Lagrangian reads (without the e-2d prefactor)

Lf 1 f MNK HNPHKQapHQM (3.9)
2
- fMKPfNLQMN KLHPQ _ MNKfNMLHKL _ MNKfMNK

12 4 6

Despite the O(D, D+n) covariant form of the action, any non-vanishing choice for

the fMNK will actually break the symmetry to the subgroup that leaves this tensor

invariant, because fMNK is not a dynamical field and therefore does not transform

under the T-duality group. For instance, if we choose fMNK to be non-vanishing only

for the components f', that are the structure constants of a semi-simple Lie group

G, the remaining symmetry will be O(D, D) x G, where G is the rigid subgroup of

the gauge group. In this case, the new couplings (3.9) precisely constitute the non-

abelian gauge couplings required by (3.1), while the gauge variations (3.8) evaluated

for R MN reduce to the non-abelian Yang-Mills transformations.

It should be stressed that the abelian and non-abelian cases are conceptually

quite different. The abelian case is closely related to the original construction in [6].

Specifically, if we choose n = 16, the O(D, D) covariant constraint in its strong form

can be interpreted as a stronger form of the level-matching condition. Moreover,

the winding coordinates 1i and the y' have a direct interpretation in the full string

theory. In contrast, the non-abelian case requires the new constraint (3.7), which has

no obvious interpretation in string theory, and formally we introduce as many new

coordinates as the dimension of the gauge group, i.e., n = 496 for the case relevant to

heterotic string theory. However, the number n is a free parameter at the level of the

double field theory constructions discussed here, and therefore we will not introduce

different notations for n in the two cases.

The original construction of double field theory is closely related to a frame-like

geometrical formalism developed by Siegel in important independent work [5]. The

precise relation to the formulation in terms of a generalized metric is by now well-
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understood both at the level of the symmetry transformations [8] and the action

[10]. Siegel's formalism as presented in [5] is already adapted to include the abelian

subsector of the heterotic theory. Using the recent results of [10], it is straightforward

to verify the equivalence of this formalism with the generalized metric formulation in

the abelian limit.

This chapter is organized as follows. In sec. 2 we extend the double field theory

construction to the heterotic string for the abelian subsector. In sec. 3 we discuss

the non-abelian extension of this formulation. The physical implication of O(D, D)

covariant constraints in heterotic string context is investigated in sec. 4. We show

that Siegel's frame formalism naturally encodes the double field theory formulation

of heterotic strings, either abelian or non-abelian extensions, in sec. 5.

3.2 Double field theory with abelian gauge fields

In this section we introduce the double field theory formulation for the abelian sub-

sector of the low-energy theory of the heterotic string. We first define the enlarged

generalized metric and then show that the action (3.6) and the gauge transformations

of 'HMN reduce to the required form when the dependence on the new coordinates is

dropped.

3.2.1 Conventions and generalized metric

The coordinates are grouped according to

XM = ( zi,y , (3.10)

which transforms as a fundamental O(D, D + n) vector,

X'M = hMN XN, h e O(D,D +n). (3.11)
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Here, O(D, D + n) is the group leaving the metric of signature (D, D + n) invariant,

77MN = hMp hN PQ (3.12)

where

77i f 7 pig 0 1 0

U7MN = i 7 ij i 1 0 J . (3.13)

Un7a 77aj no 0 0 K)

Here, we introduced r, to denote the matrix corresponding to the Cartan-Killing

metric of the gauge group. In the present abelian case, this is simply given by the

unit matrix, ie = Sa, but we kept the notation more general for the later extension

to the non-abelian case.

According to these index conventions, the derivatives and gauge parameters are

am = ,iaM) (" = ( i, A"), (3.14)

which combines the gauge parameters of diffeomorphism, Kalb-Ramond and abelian

gauge transformations into an O(D, D + n) vector. The strong constraint reads

explicitly

BMamA = 2 &1aA + 88"A = 0, (3.15)

aMA OMB = 6'A ajB + A6iB±+ A 6"B = 0, (3.16)

for arbitrary fields and gauge parameters A and B. As for the bosonic theory, this

constraint is a stronger version of the level-matching condition and it implies that

locally there is always an O(D, D + n) transformation that rotates into a frame in

which the fields depend only on the x.

Next, we introduce the extended form of the generalized metric XMN and require

that it transforms covariantly under O(D, D + n) ,

X /MN(XI) = hMp hN Q1RPQ(X) , d'(X') = d(X) . (3.17)
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In analogy to the structure encountered in dimensionally reduced theories [36], we

make the ansatz

7 - (MN =Hi 7 -4 j

1Hip

-/3

g gikCkJ

-gikcki gji ±-| c ljgklcj; + AiA 3y
-gjk Aka Ckjg gk A1a + Aja

(3.18)

-gik Akg

ckigkl A/ + Aid

nap + AkagkLAjda

where gauge group indices a,3, ... are raised and lowered with sao, and

cij = big + Ai"Aj. (3.19)

The generalized metric defined like this is still symmetric, HMN = HNM. Raising all

indices with qMN, we obtain

gij + cki gklci + Ai- Aj,

-gik ck

ckj gki Ai" + Aj"

-gikckia

gu i

-gik Ak"

(3.20)
ckigk'Aj3 + Aid

gik Akd

Ka + Ax"gklAj'Al

This is the inverse of (3.18), and so the generalized metric satisfies the constraint

7-MK7-KN = SMN. This implies that, viewed as a matrix, it is an element of O(D, D+

n) in that it satisfies

XH-1 = 7H7. (3.21)

The O(D, D + n) action (3.17) defines the generalized Buscher rules for the abelian

subsector of heterotic string theory.
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3.2.2 Gauge symmetries

We turn now to the gauge transformations of the component fields that follow from the

extended form of the generalized metric (3.20) and the generalized Lie derivatives with

respect to the extended parameter (3.14). Specifically, we verify that for 5' = a, = 0

the gauge transformations of the component fields take the required form.

For the gauge variation of VO we find

6-i = jggij = kokHi -- OP i --pj - aP'i We (3.22)

= kakgij - gi gki - akgj gik - Lgij ,

i.e., the metric gij transforms as expected with the Lie derivative under diffeomor-

phisms parametrized by (i and is inert under the other gauge symmetries. For the

component R-O we infer

64$H = 6 ( - gikAO) = okka- F h - &IrJe _ O (3.23)

= kkO- akgi HO - akO Hik

= Bkak ( - gilA/J) - '9 ki ( - gklAi/J) - akAAngik

= cc(- gik Ak) - gik k A .

Together with the form of og 3 determined above, this implies for the gauge vectors

ogAk 0 = f Aka + kAO , (3.24)

which represents the expected diffeomorphism and abelian gauge transformation. Fi-

nally, for the component HWy we derive

oCk; = 6j(- giksk) = kokki-- ±iHp+ (o+tP - a%)H'HpN (3.25)

= - ki - gk~ink + aW + ± &,Hik ±Ag Ri'3 . -k k

= C'H'j ± (a.4k - 9, ik + ai '

= - gikCkj) ± (aj&A~ -gkA~

80



Using again the known form of the gauge transformation Jeg3, this implies for the

tensor defined in (3.19)

Jgcij = £_cij + (i9iE - ajgi) + Aioa5AO . (3.26)

In order to derive the gauge transformation of bij, we project this onto the symmetric

and antisymmetric part,

o C(ig) = ({AiOAj} = ± (AioAj+{(Ai5Aj + Apoa&AO), (3.27)

6cgi] =6obi = I2gbig + (asj - ±jli) + (AipajA 3 - A poi Al') . (3.28)

The first equation is consistent with the gauge transformation of the gauge field as

obtained above, while the second equation yields the gauge transformation of bij.

To summarize, the gauge transformations in the limit 5' = = 0 read

Jgij = Eggij , (3.29)

6Ai = EAi"+Ma, (3.30)

6big = Lgbij +(8 - ai) + 1(AijA" - Ajc9iA"). (3.31)

For metric and gauge vector, these give the expected result, but for big a parameter

redefinition is required in order to obtain (3.5). If we redefine the one-form parameter

(j according to

2Ai"A, (3.32)2

the gauge variation of bij becomes

1
6bij = Oil - gi' + 2Fig"A, (3.33)

with the abelian field strength Figo, in accordance with (3.5).

We close this section with a brief discussion of the closure of the gauge transfor-

mations. The gauge algebra of bosonic double field theory immediately generalizes
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to the present case:

[[2] = ~ (3.34)

where

C 1N8a2M2 p - (1 +-+ 2). (3.35)

Let us see how this generalizes after adding the n additional components for (M.

Setting now also i% = 0, we obtain for the various components of (3.35)

( 6, 2C) = di - ( ay(i _ [61, 2] , (3.36)

which is unmodified and given by the usual Lie bracket,

([,6]Ce= £62+ - E21i 2 2 + 2 1j')
1 (3.37)

2 (A1aojA 2' - A2aoiA14) ,

which receives a new contribution involving A, and finally

( 61,(2]c)a = (jajA 2" - ( 5A1"A, (3.38)

which is the (antisymmetrized) Lie derivative of A. The Courant bracket is defined

as a structure on the direct sum of tangent and cotangent bundle over the space-time

base manifold M, (T D T*)M, whose sections are formal sums ( + f of vectors and

one-forms. Thus, for the given generalization it is natural to consider a bundle that

is further extended to T E T* D V, where we identify the sections of V with the A'.

The sections of the total bundle are then written as ( + + A, and in this language,

the results (3.36), (3.37) and (3.38) can be summarized by

[6 + 1+ Ai, 2+ 2 + A2] = ,2] +LC,12 - CC21

- - i 251 ) - ((A1, dA 2) - (A2 , dA1 )) (3.39)

+ ,C1A2 - L 2A1 ,
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where (A1 , A2) = ,AcAA denotes the inner product, and i is the canonical product

between vectors and one-forms. Here, the term on the right-hand side in the first line

represents the vector part, the terms in the second line represent the one-form part,

and finally the terms in the last line represent the V-valued part. For A = 0 this

reduces to the Courant bracket.

The bracket (3.39) implies in particular that the abelian gauge transformations

parametrized by A' close into the gauge transformations of the 2-form. This can also

be confirmed directly from (3.30) and (3.31),

[J,, 6A2]bij = 6 bij , = 2 (A1 oi~A2? - A2cd9jA 1 ) . (3.40)

We stress, however, that this result depends on a choice of basis for the gauge param-

eters. In fact, after the parameter redefinition (3.32), the 2-form varies into the gauge

invariant field strength according to (3.33) and thus the commutator trivializes.

3.2.3 The action

Let us now turn to the action (3.6) applied to the extended form (3.20) of the gener-

alized metric. We show that for 5 = = 0 it reduces to the (abelian) low-energy

action (3.1) of the heterotic string.

The relevant terms in the action, setting 5 = a = 0, are given by

S = dx e2d( 1 Hija 1 KL ajHKL _ &MigiKj ajHMK
8 2 (3.41)
- 2 8id oajii + 47-'iid ogjd.

The last two terms are unchanged as compared to the original case without gauge

vectors since the component V(i = g*J is unmodified. Thus, we only need to examine
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the first two terms. The first term reads

~~ ia KL Oj1 *KL
8

= i& kl aikI + 1ik kkI +
4 4

1 1
= 0igi Si ( gi, ± ckpg kcqL + Ai" APc) +± 1 'ck %*Q

1' Oika + 1 a &H,3
2 8

(3.42)

- IOi(gPApa) 0i (cqggk Aka + Ala) + I 0i (Ap"gPlA3) Oi(Akgi ( A,3)

After some work, this can be simplified to

I Hij /KL 8jHKL 9 igkIjgk -~ 9 9kli AkajAl - Iijkijk
8 4 2 4

where Sijk = O9bj-- Si A j" Ak]a.

Next we consider the second term in (3.41), which yields

1HiaHj 1Hm
- ajMi&JKj OHMK mi (gikj ij nk + Oi ikj jR mk ±

~~ ( k k - 0 i k Oj mk _ pa0OHj m

-- p(0 k k ± Oiik + k k O ±p +0Ma 0 .a)

pgWo ajlma)

(3.44)

To simplify the evaluation of these terms, it is convenient to work out the following

structures separately,

- 2 Mi Kj OJj(MK I(g)2

!2MiapHKj Oj'HMK !(a)O

- 2 0aKj aj MK g 00

= -- 9gkl 9ik,

= 0A

1 ik 9i&Al' &9jAka -

Combining these three structures, we obtain

1 Mi 0 Kj OJiMK - 9ojgkl 0gik + 9 ik 0a ojAka - -ijk i ki3
2( 2 3 .4

(3.48)
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Finally, using (4.209) and (3.48), the reduced action (3.41) can be written as

S = dx e- 4 2 k- a9gik - 2 ad ogg' +49 id .d
/ 1 1

-
1 ft - ~(3.49)

- $t2 _ -FijaFU"
12 4

Up to boundary terms, the terms in the first line are equivalent to the Einstein-

Hilbert term coupled to the dilaton, compare eq. (3.18) in [7]. Thus, the reduced

action coincides precisely with (3.1).

3.3 Non-abelian generalization

In this section we generalize the previous results to non-abelian gauge groups. This

will be achieved by introducing a 'duality-covariant' form of the structure constants

of the gauge group. While this object is not an invariant tensor under O(D, D + n)

and so the T-duality group is no longer a proper symmetry, remarkably the action

and gauge transformations can still be written in an O(D, D + n) invariant fashion.

3.3.1 Duality-covariant structure constants

We encode the structure constant in an object fMNK that formally can be regarded

as a tensor under O(D, D + n), even though it is ultimately fixed to be constant and

thus not to transform according to its index structure. To be specific, let us fix an

n-dimensional semi-simple Lie group G whose Lie algebra has the structure constants

f'py. Then we can define

fM fa if (M, N, K) = (a, ,3, ()

0 else

This is not an invariant tensor under 0 (D, D + n), rather it will break this symmetry

to O(D, D) x G. The advantage of this formulation is, however, that the explicit

form of the prototypical example (4.241) is not required for the general analysis: it is

sufficient to impose duality-covariant constraints, which in general may have different
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solutions.

Let us now turn to the constraints. First, we require that qMN is an invariant

tensor under the adjoint action with fMNK,

f(MPK 7N)K = 0. (3.51)

This is satisfied for (4.241) with q1MN defined by (3.13), and we recall that the com-

ponent p is identified with the invariant Cartan-Killing form of G. Together with

the antisymmetry of fMNK in its lower indices, the constraint (3.51) implies that f
with all indices raised or lowered with y is totally antisymmetric,

fMNK = f[MNK], fMNK = f[MNK) (3.52)

Next, we require that fMNK satisfies the Jacobi identity

fMNlK INLP| = 0, (3.53)

which is satisfied for (4.241) by virtue of the Jacobi identity for f'pY.

Apart from these algebraic constraints, we have to impose one new condition in

addition to the strong constraint : we require the differential constraint

fMNK M = 0, (3.54)

when acting on fields or parameters. By (3.52) this implies that all derivatives act

trivially that are contracted with any index of fMNK. For the choice (4.241) this

implies 0, = 0, as we will prove below.

To summarize, we impose the O(D, D+n) covariant constraints (3.51), (3.53) and

(3.54). Any fMNK satisfying these conditions will lead to a consistent, that is, gauge

invariant deformation of the abelian theory discussed above. A particular solution of

these constraints is given by (4.241) with 0, = 0 where, as we shall see below, the

theory reduces to the non-abelian low-energy action of the heterotic string. We stress,
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however, that any solution obtained from this one by an O(D, D + n) transformation

also satisfies the constraints. We will return to this point in sec. 4.

We close this section by introducing the modified or deformed gauge transforma-

tions. Each O(D, D + n) index will give rise to a adjoint rotation with the structure

constants fMNK. In (3.8) we displayed this transformation for a tensor with an upper

index,

gVM = cgVM _ MNKvK, (3.55)

and the transformation for a tensor with a lower index is given by

ogVM = I VM +KN KMVN (3.56)

This extends in a straightforward way to tensors with an arbitrary number of upper

and lower indices, such that the generalized metric transforms as

ogHM = -MN 2 Pf (MPK N)K (3.57)

By virtue of the constraints (3.51), the O(D, D + n) invariant metric il is invariant

under these transformations, JoMN = 0, which is a generalization of the analogous

property in the abelian case. Moreover, the constraint (3.54) has two immediate

consequences for these deformed gauge transformations. First, the partial derivative

of a scalar transforms covariantly,

og(&MS) = Z6&MS) = C (OMS) + KLM9KS (3.58)

Second, any gauge transformation with a parameter that is a gradient acts trivially,

(m = amx j oHMN = 0, (3.59)

i.e., as for the abelian case there is a 'gauge symmetry for gauge symmetries'.
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3.3.2 The non-abelian gauge transformations

Let us now verify that the deformed gauge transformations (3.57) indeed lead to the

required non-abelian gauge transformations if we choose (4.241) and set " = = 0.

The Yang-Mills gauge field transforms as'

JAAj" = &iA" + fiOgAAY (3.60)

The b-field transforms according to (3.5) and thus its transformation rule is not mod-

ified as compared to the abelian case.

We apply (3.57) to particular components of MN, where we focus on the new

terms proportional to fMNK, which we denote by 6'. The variation of Hi- does not

receive any modification since by (4.241) the f-dependent term in (3.57) is zero for

external indices i, j. Thus, the metric gij is still inert under A transformations, as

expected. For components with external index a, however, we find, e.g.,

-9 2iJ =a = -Af, ->. okA = fapAkOA1 (3.61)

which amounts to the required transformation rule (3.60). Next, from Xij = -gikckj

we infer that ociy does not get corrected. In (3.19) the symmetric combination

quadratic in A is invariant under the non-abelian part of (3.60), as one may easily

confirm, and therefore we conclude that also 6bij does not get modified as compared

to the abelian case, in agreement with (3.5). Thus, (3.57) yields precisely the required

gauge transformations.

In the remainder of this subsection, we discuss the closure of the deformed gauge

transformations. It is sufficient (and simplifies the analysis) to compute the closure

on a vector VM whose gauge variation is given in (3.55). The commutator of two

lIn order to simplify the notation, we assume from now on that the gauge coupling constant go
has been absorbed into the structure constants f py, such that it does not appear explicitly in the
formulas below.
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such gauge transformations is then given by

[61, 42] VM 1 2 ( NVM ( N - 2NO2 VMKN 2)

= 4,2]VTM _ 'NlqN ( fWK V) (3.62)[1,Z2 V"-2 1 fM KP -6)

(_M2N 2 1 KPV - 2 M KN (1OPVN

+W&- -PvP _ (P1P Q-2

Using the constraints (3.54) and (3.53) it is now relatively straightforward to check

that this can be rewritten as

,] = I VNM - GNfMK (3.63)

where
1

12 = 2 1 - 01 - (1 +-+ 2) - f M NK2 (3.64)
2

Thus, we have verified the closure of the gauge algebra and thereby arrived at a

generalization of the C-bracket that is deformed by the structure constants fMNK,

[X, Y] M = [X, Y] - fMNKYXNK (3.65)

The C-bracket does not satisfy the Jacobi identities, but the resulting non-trivial

Jacobiator gives rise to a trivial gauge transformation that leaves the fields invariant.

The deformed bracket (3.65) has a similar property, which we investigate now. First,

we evaluate the Jacobiator,

Jf(X,Y,Z) = [[X,Y],z], + [[YZ]f,X]f+ [[Z,X]f,Y],. (3.66)
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We compute from (3.65)

[[X,Y], Z], = [[XY] c, Z] + fMNxK N XPyQZK

+ fMNK (ZPp(XNyK) -- (XPPYN - YP PXN)ZK) (3.67)

+ If KL (XKYLaMZN - ZN (XKyL))2

where we used the constraint (3.54). Using the Jacobi identity (3.53) we obtain after

a brief computation

J5(X,Y,Z)M = JC(X,Y,Z)M - lam(fNKLXNKZL) (3.68)

Here, JC is the Jacobiator of the C-bracket, which has been proved in [16] to be a

gradient. Thus, we infer from (3.68)

J5(X, Y, Z)M = m (Xc(X, Y, Z) - fNKL XNYKZL, (3.69)

where Xc is given in eq. (8.29) of [16]. We have seen in (3.59) that a gauge parameter

that takes the form of a pure gradient gives rise to a trivial gauge transformation on

the fields. Thus, in precise analogy to [16], the non-vanishing Jacobiator is consistent

with the fact that the infinitesimal gauge transformations og automatically satisfy the

Jacobi identity.

We finally note that, in analogy to the discussion at the end of sec. 2.2, the

modified form of the gauge algebra is consistent with the closure property

[JA6A2 fbij = (og + SA) bij , Ao = foa AOA, (3.70)

where j is given by (3.40). In the mathematical terminology of sec. 2.2, the closure

property (3.64) or (3.70) amounts to a further generalization of the Courant bracket,

involving the structure of a non-abelian Lie algebra, in that the term [A1 , A2] has to

be added in the last line of (3.39).
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3.3.3 The non-abelian action

Next, we construct a deformation of the double field theory action parametrized by the

f MNK in such a way that it is gauge invariant under (3.57) and leads to the required

low-energy action. For this we will start from the action written in Einstein-Hilbert

like form [8],

S = d dz e~2dR (H, d), (3.71)

where R(-, d) is given by

R - 4 HMNOaMNd - aMONHMN

-4 WMN Md &Nd + 4aMHMN ONd (3.72)

+-1NMNaMHKLN KL~~MNaMHKLOK -± i-O1- NH1KL - 2~j a(~ KHNL.
8 2

It is defined such that it is a scalar under generalized Lie derivatives,

oz = (aPR , (3.73)

which, together with the gauge variation of the dilaton

oM(e-2a (e-2dM) (3.74)

implies gauge invariance of the action. Here we modify the form of R such that (3.73)

be preserved under the deformed gauge transformations (3.57).

The result for the deformed scalar curvature is given by

1 f
1 2H

1 .NPHKQaPHC)Rf = R -- MNK N KQP M

fMKPfNLQHMNHKLHPQ __ MNKfNML HKL - IfMNKfMNK
1 2 fKJ Q M~ 4 6

(3.75)

and reduces for the abelian case f = 0 to the previous expression. Remarkably, the

structure in the second line is precisely analogous to the scalar potential appearing for
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Kaluza-Klein reduction on group manifolds [42] and, for instance, in A/ = 4 gauged

supergravity in D = 4 [43].2 We next verify that this action evaluated for (4.241) and

51 = a, = 0 gives rise to the required non-abelian form of the low-energy action of

the heterotic string.

The non-abelian field strength with structure constants fog, is given by

Fi" = 0jAj" - &jAi" + f" aAiA j? , (3.76)

while the field strength of the b-field is modified by the Chern-Simons 3-form and

thus reads explicitly

Hijk = 3 a[ibjkj - ±aoAgj"( O -f y,5AjAk6)) (3.77)

We recall that here we do not indicate the gauge coupling constant explicitly, but

rather absorb it into the structures constants. Using (3.76) and (3.77), the f-

dependent non-abelian couplings in the low-energy Lagrangian in (3.1) are found

to be

1 f = -fao, gik g" i 8AjaAkOAy - If Pfa gik gil AIjAj-yAk6Aj6 (3.78)

+ faO~g, gj glq g ibjp Ak" A/O Aq- - -fCqy gik gfl gP A 6 (9 A" Aka AI 3 Aqf

12 fagfec gik gil gm Aj"A 3Ap1 AAC

where the first line originates from the Yang-Mills terms and the second and third

line from the non-abelian parts of the Chern-Simons 3-form.

Evaluating the new terms in (3.75) yields precisely these terms for (4.241) and

0% = ac, = 0. We omit detailed steps for this verification, which can be found in [11].

21n fact, the scalar potential in A = 4 gauged supergravity for so-called electric gaugings is, up
to an overall prefactor, precisely given by the second line of (3.75), see eq. (2.2) in [44].
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3.3.4 Proof of gauge invariance

We turn now to the proof that the deformed action defined by (3.75) is invariant

under the deformed gauge transformations (3.57). The unmodified R transforms as

a scalar under the unmodified gauge transformations. We have to prove that its

variation under the modified part of the gauge transformation, which is proportional

to f, cancels against the variation of the new terms involving f.

Since all O(D, D+n) indices are properly contracted it is sufficient to focus on the

subset of variations that are non-covariant and which we will denote by Ag. Specif-

ically, in R the new non-covariant contributions originate from partial derivatives

only. For instance, for the following structure the f-dependent terms in the gauge

variation, denoted by 6, read

6N(MX KL) PQPMQKL _ 2Pf (K P Q OMHL)Q - 2&M Pf(KpQ7L)Q, (379)

where the first term has been added by hand, which is allowed since it is zero by the

constraint (3.54). The first two terms represent the covariant contributions, while the

last term is non-covariant. We thus find

AL (aM KL) = -2aM f PQ7-&Q (3.80)

Since we saw that 7rMN can be viewed as an invariant tensor under the modified gauge

transformations (3.57), we can derive from this result, by lowering indices with r/, the

following form

AE(aMX KL) = 2aMpf QP(K7-L)Q- (3.81)

Moreover, from (3.58) we infer

Ag(aMd) = 0 . (3.82)

Using this and (3.80), it is straightforward to see that all dilaton-dependent terms in

(3.72) are separately invariant under the deformed part of the gauge transformations.
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For instance

A (40MHMNaNd) = -8OM f(M RN)Q &Nd = 0 (3-83)

easily follows with (3.54). All other d-dependent terms can also be seen to be gauge

invariant by virtue of (3.54). Similarly, the term involving a second derivative of 'H

is gauge invariant,

j (aMaNHMN) = _2M f(MPN Q 9NKN) ± aNPfQ(M 'H N)Q = 0 (3.84)

where (3.79) has been used. Thus, we have to focus only on the terms in the last line

of (3.72), whose variation with a little work can be brought to the form

I N L MLKHNPHQKaPHMQ - UMLLNK NPHKQaPHQM- (3-85)2

These terms have to be cancelled by the variations of the new terms in R1.

There are various contributions to the gauge transformations of the f-dependent

terms in (3.75). First, the partial derivative of H in the first line transforms non-

covariantly already under the unmodified part of the gauge transformations, but it

can be easily checked, using eq. (4.36) from [8], that this contribution is zero by

(3.54). Next, we have to keep in mind that fMNP is constant and thus does not

transform with a generalized Lie derivative with respect to OM. The resulting non-

covariant terms can be accounted for by assigning a fictitious non-covariant variation

to f (with the opposite sign),

AJfMNK = ~~ffMNK = -M& PNK -
0 N fMPK -

9K'fMNP, (3-86)

where the constancy of f and (3.54) has been used in the final step. Using this, the

variation of the f-dependent term in the first line of (3.75) can be seen to precisely

cancel (3.85), which in turn fixes the coefficient of this term in Rf uniquely.

Next, using (3.81), the term in the first line of (3.75) gives a variation proportional
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to f 2,

- A (fM NKNPHKQOP )QM) - fMNKfLRQ iPR ML HNPKQ

2 2 (3.87)
- fMNKfK RM PgRNP

Thus, we get two contributions: one cubic in R and one linear in H. The cubic term

is cancelled by the variation of the first term in the second line of (3.75) according

to (3.86), which in turn fixes the coefficient of this term. The term linear in R is

cancelled by the variation (3.86) of the second term in the second line of (3.75), which

finally fixes the coefficient of this term. The last term in (3.75) is constant and thus

trivially gauge invariant. In total, we have proved that the modified scalar curvature

7tf transforms as in (3.73), i.e., as a scalar, under the deformed gauge transformations

(3.57), and thus that the Einstein-Hilbert like action (3.71) is gauge invariant.

3.4 The covariant constraints and their solutions

In this section we discuss the O(D, D + n) covariant differential constraints and (3.7)

and their solutions. Before that, we explain the relation of the O(D, D +n) covariant

constraints to the level-matching condition in string theory.

3.4.1 Relation to level-matching condition

In the abelian case, for which (3.7) trivializes, the remaining constraint has a rather

direct relation to the level-matching condition of closed string theory. In the original

double field theory construction for the bosonic string, the level-matching requires for

the massless sector [6]

LO - Io = -piwi = 0, (3.88)

where pi and w' are the momenta and winding modes on the torus, respectively. Upon

Fourier transformation, this implies that in string field theory all fields and parameters

need to be annihilated by the differential operator 5'aZ. Here, we require the stronger

form that also all products of fields and parameters are annihilated. Similarly, the
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extended form (3.15) and (3.16) of the constraint is the stronger version of the level-

matching condition in heterotic string theory, which will be discussed next.

We start by recalling the (bosonic part of) the world-sheet action for heterotic

string theory, which is given by [45]

S = d-rda Gij&aaXTX) ± EaBjX'XiaXj ± 8aXa"X" + eaA&aXioaX .

(3.89)

Here, Xi ~ XI + 27rk', k2 E Z, denotes the periodic coordinates of the torus, and we

have not displayed the non-compact coordinates. The X' are 16 internal left-moving

coordinates, i.e., satisfying the constraint (&Dr - &a)X a = 0. In this subsection, the in-

dices a, b label the world-sheet coordinates r, o, and G, B and A are the backgrounds.

We split the world-sheet scalars into left- and right-moving parts, X = Xi + X ,

whose zero-modes are

XL -F + ) 2P 4±p(Tr + 0

X (r - a) = { + }p'(r - o), (3.90)

X"(r + a) =X + p'(T + 0) .

Following the canonical quantization of [45] (see also the discussion around eqs. (11.6.17)

in [2]), the left- and right-moving momenta can in turn be written as

PLi = {pi + (Gij - Bij) wi - {Aic, (q" ± {Ajawi,

PRi = {pi - (Gij + Bij) wi - {A (q" + {A 3 wi) , (3.91)

pa = qa + Aiawi,

where the momentum and winding quantum numbers pi and wi, respectively, are

integers as a consequence of the periodicity of the X', while the q' take values in the

root lattice of E8 x E8 or SO(32).

Let us now turn to the level-matching condition, where for definiteness we work

in the Green-Schwarz formalism. We truncate to the massless subsector of the het-

erotic string spectrum with 16 abelian gauge fields, i.e., taking values in the Cartan
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subalgebra. In other words, we restrict to the massless spectrum with N = 0 and

N = 1 and thereby truncate out the 480 remaining gauge fields, which appear for

N = 0 and R = 0, were N and R are the number operators. The level-matching

condition for this subsector is given by

Lo-Lo+aL-aR = Lo-Lo-1 = (pi) 2 _ (Pi 2 (a) 2 = 0, (3.92)

where the normal ordering constants are aL = 1 and aR = 0. Inserting (3.91) into

(3.92), we obtain

2piw + q'q = 0. (3.93)

If we interpret the qa, like pi and wm, as the Fourier numbers corresponding to a torus,

this condition translates in coordinate space precisely into the differential constraint

(3.15). More precisely, the q' are vectors in the root lattice of E8 x E8 or SO(32)

rather than T", but these are topologically equivalent, and so we conclude that, in

precise analogy to the case of bosonic string theory originally analyzed in [6], the

level-matching condition amounts to the differential constraint (3.15) (and, corre-

spondingly, (3.16) represents the stronger form of this constraint). We stress that the

non-abelian case to be discussed in the next subsection is conceptually very different

because it requires formally the introduction of 496 extra coordinates together with

the novel constraint (3.7), which have no direct interpretation in the full string theory.

3.4.2 Solutions of the constraints

Next, we turn to the discussion of the solutions of the strong constraint. As in the

bosonic string, we will show that all solutions of this constraint are locally related

via an O(D, D + n) rotation to solutions for which fields and parameters depend only

on the x'. To see this, consider the Fourier expansion of all fields and parameters,

denoted generically by A, which take the form

A(x, z, y) = A e'(Pxi +Wij+q2+ a) , (3.94)
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where we indicated for simplicity only a single Fourier mode. The quantum numbers

combine into a vector of O(D, D + n),

PM = ( i, qa) - (3.95)

The strong constraint now implies that

MN

,q N~J~ = 0, (3.96)

for all a, b (which label the Fourier modes of all fields and parameters). Thus, all

momenta are null and mutually orthogonal. In other words, they lie in a totally null

or isotropic subspace of R2D+n. The canonical example of such a subspace is given by

a space with wi = q, = 0, corresponding to a situation where all fields and parameters

depend only on the x. Since the flat metric on R 2 D+n has signature (D, D + n), the

maximal dimension of any isotropic subspace is D. It is a rather general result,

related to Witt's theorem (see the discussion and references in [7]), that all isotropic

subspaces of the same dimension are related by isometries of the full space, i.e., here

they are related by O(D, D + n) transformations. In particular, one can always find

an 0 (D, D + n) transformation to a T-duality frame where Wm = q, = 0 and therefore

one can always rotate into a frame where fields and parameters depend only on xi,

as we wanted to show.

Next, we discuss the general non-abelian theory. In this case, the global O(D, D+

n) symmetry is broken by a choice of non-vanishing structure constants fMNK and,

therefore, we have no longer all T-duality transformations to our disposal in order

to rotate into a frame in which the fields depend only on x. This is, however,

compensated by the additional constraint (3.54) which eliminates further coordinates

for non-vanishing structure constants.

To illustrate this point, suppose that we choose fMNK as in (4.241), i.e., the only

non-vanishing components fgO are given by the structure constants of a semi-simple

Lie group G. We can view G as the subgroup of SO(n) that leaves the tensor fogy
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invariant, 3 and so the global symmetry group is then broken to O(D, D) x G, where

we view G as the global subgroup of the gauge group. The constraint (3.54) can now

be multiplied with the structure constants, which implies

0 = f-,e f"a 8 = -2 s%/ Y , (3.97)

where se is the Cartan-Killing form. As s is invertible for a semi-simple Lie al-

gebra, we conclude a,, = 0, i.e., the constraint implies that all fields are independent

of yc. The unbroken O(D, D) transformations can then be used as above in order to

rotate into a T-duality frame in which the fields are independent of z. In total, the

constraints are still sufficient in order to guarantee that the dependence on the 'un-

physical' coordinates z and y is either eliminated directly or removable by a surviving

T-duality transformation.

Let us now turn to a more general situation where fMNK is of the form (4.241),

but with the gauge group G having some U(1) factors. Suppose, the gauge group is

of the form

G = U(1)P x Go, (3.98)

where Go is semi-simple and embedded into O(n - p). If we split the indices ac-

cordingly, a = (a7a), with o = 1,...,p and a = 1,...,n - p, the non-vanishing

components of fMNK are given by the structure constants f of Go. The con-

straint (3.54) implies in this case only Oa = 0, i.e., that the fields are independent

of the n - p coordinates ya. The unbroken T-duality group is, however, given by

O(D, D +p) and thus larger than in the previous example. Therefore, as in the above

discussion of the abelian case, these transformations can be used in order to rotate

into a T-duality frame in which the fields are both independent of ij but also of the

remaining p coordinates y2L. Thus, the constraints and residual T-duality transfor-

mations are again sufficient in order to remove the dependence on z and y.

We finally note that by virtue of the O(D, D+n) covariance of the constraints any

3Any compact n-dimensional Lie group G can be canonically embedded into SO(n). If we denote
the generators of so(n) by KO' = -KO", the generators tP of G are embedded as t = }faJ,6KO7.
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f MNK obtained from (4.241) by a duality transformation also solves the constraints.

Presumably, these have to be regarded as physically equivalent to (4.241) and thereby

to the conventional low-energy action of heterotic string theory. It remains to be

investigated, however, whether there are different solutions to the constraints. This is

particularly interesting in the context of (generalized) Kaluza-Klein compactifications,

where the fields are independent of some of the xi and for which the differential

constraints may allow for more general solutions. We leave this to future work.

3.5 Frame formulation

Here, we reformulate the above results in a frame-like language in order to make

contact with the formalism developed by Siegel [5], as has been done in [10] for the

double field theory extension of the bosonic string. We first discuss the abelian case,

which is straightforward, and then turn to the non-abelian case which requires an

extension of the formalism.

3.5.1 Frame fields and coset formulation

The basic field in the formalism of Siegel is a vielbein or frame field eAM that is

a vector under gauge transformations parameterized by (m and which is subject to

local tangent space transformations indicated by the flat index A. In the present case,

the tangent space group is GL(D) x GL(D + n) and the index splits as A = (a, a).

Using the frame field and 1MN, one can define a tangent-space metric of signature

(D, D + n),

gAB = eAM eBN 7MN , (3.99)

and the frame field is constrained to satisfy

ga = 0. (3.100)

Starting from this frame field and the local tangent space symmetry, one may intro-

duce connections for this gauge symmetry, impose covariant constraints and construct
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invariant generalizations of the Ricci tensor and scalar curvature. Rather than re-

peating this construction here, we will just mention in the following the new aspects

in the case of the heterotic string theory and refer to [5] and [101 for more details.

The generalized metric can be defined as follows

XMN = 2 gb eaMe;N _ nMN = 2 gab eaMeb ± + , (3.101)

where the equivalence of the two definitions is a consequence of the constraint (3.100).

Next, it is convenient to gauge-fix the tangent space symmetry by setting 9 AB equal

to 'rMN (up to a similarity transformation, c.f. the discussion after eq. (5.22) in [8]),

such that (3.99) and (3.101) imply [8]

,MN _ 6AB eAM eB N (3.102)

This leaves a local O(D) x O(D + n) symmetry unbroken, and in this gauge we can

think of the frame field eAM as a O(D, D + n)-valued coset representative that is sub-

ject to local 0(D) x O(D + n) transformations. Thus, this formulation can be viewed

as a generalized coset space construction based on O(D, D + n)/(O(D) x O(D + n)),

in analogy to the structure appearing in dimensional reduction of heterotic supergrav-

ity [36]. Fixing the local symmetry further, one may give explicit parametrizations

of the frame field eA in terms of the physical fields that give rise to the form (3.20)

of HMN according to (3.102), see, e.g., eq. (4.12) in [36].

We turn now to the definition of the scalar curvature R that can be used to define

an invariant action as in (3.71). It can be written in terms of 'generalized coefficients

of anholonomy' QABC that are defined via the C-bracket (3.35),

[eA,eB] j = nAB ec . (3.103)
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Defining4

hABC = (eAeB M)ecM, (3.104)

where eA = eAM M, one obtains explicitly

QABC = 2 h[AB|C + hC[AB) = hABC + hBCA + hCAB = 3 h[ABC]. (3.105)

Here we used that the gauge condition implies that 9AB is constant and therefore

hABC = -hACB from the definition (3.104). Finally, defining

NA = 6 MeAM - 2eAd, (3.106)

the scalar curvature is given by

2b 1 2 1 2±1 agb1, = en" ± na2 + eaebga - -Qab2 - l[abc] + 8 e . (3.107)

In [10] it has been verified that starting from this expression for R and using the

definition of HMN in terms of the frame fields, this reduces precisely to the form

given above in (3.72), up to an overall factor of 4. This proof immediately generalizes

to the abelian case of the heterotic string, as all expressions, including the definition

(3.101) of XMN, are formally the same.

3.5.2 Non-abelian extension

Let us now turn to the non-abelian generalization, which has also been mentioned in

[41]. A natural starting point is the deformed bracket (3.65) of gauge transformations.

We further generalize the coefficients of anholonomy by defining

rM C M(eAeB~f = QAB ec (3.108)

4We note that we changed notation as compared to [5,10], where this quantity has been denotes
by f, in order to distinguish it from the structure constants.
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By (3.65) and (3.103) this implies

CN K'QABC = ABC - CAB, fCAB = fMNK eMC eA eB (3.109)

where we introduced structure constants with flattened indices. The f-bracket of

two vectors that transform covariantly under the deformed gauge transformations

transforms covariantly in the same sense, i.e.,

S(X, Y ] M= Zj (X,Y] _Nf MNK [X,Y ] K. (3.110)

To see this, we recall from [10] that the C-bracket is invariant under the generalized

Lie derivative. Thus, it remains to be shown that the non-covariant part of the

variation of the C-bracket due to the deformed gauge variation cancels against the

variation of the new term in the f-bracket. As in the proof of gauge invariance of the

action above, we denote the non-covariant part of the variation by AC and compute

A1X,Y] PK PN K N (3.111)C 2

- xNON MPKK) + IxNaM(PfNPKyK -- + .

Using the constraint (3.54), it is straightforward to verify that this can be rewritten

as

Ac(X,Y] = - NfMNK [X - (fMNK)XN

The second term here is precisely cancelled by the non-covariant variation of the f-

dependent term in the f-bracket, which finally proves the covariance relation (3.110).

Next, we discuss the extension of the scalar curvature (3.107). Given the covari-

ance of the f-bracket, it follows from (3.108) that Q is a scalar under CM transfor-

mations, while its frame transformations are as in the abelian case. Therefore, if we

replace in (3.107) Q by 5, the resulting expression will also be a scalar. The Ricci
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scalar is modified as

:2- +Ia2c2 1 2 1abc] ± agc eac (3.113)
2 2 412 8

Inserting here the definition (3.109), we infer

Rf = R? - I-(-M2abcfa+fab f&! _ - 2Qiabcif ak ± fabcf abc) . (3.114)4 12(

With lengthy computations one can verify that this expression indeed agrees with the

definition (3.75) above, using

eaMeaN _ MN _ MN), (3.115)

eM N = MN nMN(

We omit the detailed computations here, which can be found in [11] for interested

readers.

3.6 Conclusions

In this chapter we have extended the double field theory formulation of [8] to the

low-energy action of the heterotic string, which features extra non-abelian gauge

fields. These extra gauge fields neatly assemble with the massless fields of closed

bosonic string theory into an enlarged generalized metric that transforms covariantly

under the enhanced T-duality group O(D, D + n) and thereby represent a further

'unification'. For the abelian subsector, the action takes the same structural form

as for the bosonic string, but based on the enlarged generalized metric. In the non-

abelian case, the T-duality group is broken to a subgroup, but interestingly the action

can still be written in a covariant fashion, with new couplings which are precisely

analogous to those encountered in lower-dimensional gauged supergravities. These

new couplings are parametrized by a tensor fMNK, and any such tensor satisfying a

number of covariant constraints defines a consistent deformation of the abelian theory.
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This means that rather than having a proper global O(D, D + n) symmetry, there is

an action of this group on the 'space of consistent deformations' of the abelian theory.

Whether this space consists of a single O(D, D + n) orbit or whether there are more

general solutions to the constraints that are inequivalent to (4.241) (and thereby to

the conventional Yang-Mills-type theory) remains to be seen.

105



106



Chapter 4

Double Field Theory of Type II

Strings and its Massive Extension

A bulk of this chapter appeared in "Double Field Theory of Type II Strings" with Olaf

Hohm and Barton Zwiebach [13], and "Massive Type II in Double Field Theory" with

Olaf Hohm [141. They are reprinted with the permission of JHEP.

Summary : We use double field theory to give a unified description of the low

energy limits of type IIA and type IIB superstrings. The Ramond-Ramond potentials

fit into spinor representations of the duality group O(D, D) and field-strengths are

obtained by acting with the Dirac operator on the potentials. The action, supple-

mented by a Spin+(D, D) covariant self-duality condition on field strengths, reduces

to the IIA and IIB theories in different frames. As usual, the NS-NS gravitational

variables are described through the generalized metric. Our work suggests that the

fundamental gravitational variable is a hermitian element of the group Spin(D, D)

whose natural projection to O(D, D) gives the generalized metric.

For the special case that only the RR one-form of type IIA depend simultaneously

on the 10-dimensional space-time coordinates and linearly on the dual winding coor-

dinates, we obtain the massive deformation of type IIA supergravity due to Romans.

For T-dual configurations we obtain a massive but non-covariant formulation of type

IIB, in which the 10-dimensional diffeomorphism symmetry is deformed by the mass

parameter.
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4.1 Introduction

T-duality transformations along circles of compactified type II superstrings show that

type IIA and type IIB superstrings are, in fact, the same theory for toroidal back-

grounds of odd dimension (see [2] and references therein). This naturally leads to

the question of whether there exists a formulation of type II theories that makes this

feature manifest. In this chapter we will address this question in terms of double field

theory formulation of type II strings developed in [12,13].

In the papers we construct the double field theory of the RR massless sector of

superstring theory. The NS-NS massless sector is described by the same theory that

describes the massless sector of the bosonic string. The RR sector requires some new

ingredients. The first one is that the RR gauge fields fit naturally into the spinor

representation of O(D, D). In the case of interest, the physical dimension is D = 10

and we have a spinor of 0(10,10). Calling X the spinor that encodes the RR forms

we have the duality transformations

Duality transformations: x -> S X, S E Spin(D, D). (4.1)

We show that this implies

OX -+ Sx, S E Spin(D, D), (4.2)

where $ is a Dirac operator, which will be defined in the next section. Since $ is first

order in derivatives, Ox is naturally interpreted as the field strength associated to the

RR potentials, to which it indeed reduces for 5' = 0.

Following the insights of [61] it is natural to consider the spin group representative

of R to discuss the coupling of the RR fields to the NS-NS fields. The generalized

metric H is a symmetric matrix that is also an O(D, D) element. Since the determi-

nant of 7H is plus one, we actually have W E SO(D, D). The group SO(D, D) has

two disconnected components: the subgroup SO+(D, D) that contains the identity

and a coset denoted by SO- (D, D). One can check that in Lorentzian signature R
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is actually in SO- (D, D). The associated spin representatives are in Spin- (D, D);

they are elements S and -S, such that p(±S) = -H.

It turns out to be impossible to choose a spin representative in a single-valued

and continuous way over the space of possible H. We note that this phenomenon

occurs whenever a timelike T-duality is employed, and therefore does not arise in

Euclidean signature where H E SO+(D, D) and a lift to Spin+(D, D) can be chosen

continuously. In light of this topological subtlety we suggest that instead of viewing

H as the fundamental gravitational field, from which a spin representative needs

to be constructed, we view the spin element itself as the dynamical field, denoted

by S E Spin- (D, D). The generalized metric can then be defined uniquely by the

homomorphism: H = p(S). The condition that R is symmetric requires that S be

hermitian, S = S. Under the duality transformation (4.1) we declare that

Duality transformations: S -+ S' = (S- 1 )t SS- 1  S E Spin(D, D). (4.3)

This transformation is consistent with that of the generalized metric, namely, p(S) is

an SO(D, D) transformation that takes 'H = p(S) to V = p(S').

We can now discuss the double field theory action for type II theories, whose

independent fields are S, X and d. It is the sum of the action (1.45) for the NS-NS

sector and a new action for the RR sector:

S = dxdz (e-2d R(H d) ± (X)t s 
4 (4.4)

H = p(S), S E Spin-(D,D), St = S.

The duality invariance of the RR action is manifest on account of (4.2) and (4.3).

The definition of the theory also requires the field strength Ox to satisfy a self-duality

constraint that can be written in a manifestly duality covariant way,

$x = -C- 1S $x. (4.5)

Here the charge conjugation matrix C satisfies C-FMC = (M)t. While the action is
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invariant under Spin(D, D), the self-duality constraint breaks the duality symmetry

down to Spin+(D, D).

The RR potentials have the usual abelian gauge symmetries in which the form

fields are shifted by exact forms. This symmetry also takes a manifestly duality

covariant form,

6 AX = OA, (4.6)

and leaves (4.4) invariant because $2 = 0. More nontrivially, the invariance of the

theory under the gauge symmetries parameterized by (M requires that x transform

as

gx= x= O(4.7)

In here we defined the generalized Lie derivative Le acting on a spinor.

We find that the natural form of the gauge transformation of S is

og S = (M& S + 2C[F , C1 S]1 Q. (4.8)

and the action (4.4) is gauge invariant under the gauge transformations.

Let us now discuss the evaluation of the action in different T-duality frames.

Suppose we have chosen a chirality of x and a parametrization of S such that the

theory reduces for 0 = 0 to type IIA. All other solutions of the strong constraint can

be obtained from this one by an O(D, D) transformation. Unlike in bosonic double

field theory, T-duality generally relates different type II theories to each other. If,

for instance, the theory reduces in one frame to type IIA, we will see that it reduces

in any other frame obtained by an odd number of spacelike T-duality inversions to

type IIB, and vice versa. If, on the other hand, the frames are related by an even

number of spacelike T-duality inversions, the theory reduces in both frames to the

same theory, either IIA or IIB.

A timelike T-duality transformation gives quite a different result. If we start from

a T-duality frame in which the double field theory reduces to type IIA (IIB), we

indeed find that the same theory reduces to IIB* (IIA*), which differs by an overall
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sign in the RR kinetic terms from IIB (IIA), in any frame obtained by a timelike T-

duality transformation. In summary, the manifestly T-duality invariant double field

theory defined by (4.4) and (4.5) unifies these four different type II theories in that

each of them arises in particular T-duality frames.

There is the massive extension of type IIA supergravity due to Romans [28],

which can be motivated as follows. If one introduces for each RR p-form the dual

8 - p form, type IIA contains all odd forms with p = 1, ... , 7. We can also introduce

a 9-form potential, but imposing the standard field equations sets its field strength

F'O) = dC(9) to a constant and so a 9-form carries no propagating degrees of freedom.

We can think of massive type IIA as obtained by choosing this integration constant to

be non-zero and equal to the mass parameter m. In the resulting theory, m enters as

a cosmological constant and deforms the gauge transformations corresponding to the

NS-NS b-field such that the RR 1-form transforms with a Stiickelberg shift symmetry.

It does not admit a maximally symmetric vacuum, but its most symmetric solution

is the D8 brane solution that features 9-dimensional Poincare invariance [71].

As we have already seen above, the 0(10,10) spinor representation of RR poten-

tials is isomorphic to the set of all even or odd forms, depending on the chirality of the

spinor, and so for type IIA the theory contains already a 9-form potential. However,

the duality relations

*P(10) -() 0 (4.9)

imply that its field strength is zero, because there is no non-trivial F(0 ) due to the

absence of '(-1)-form' potentials, and therefore the 9-form is on-shell determined to

be pure gauge. Formally, one may introduce a (-1)-form potential C-1) and then

set m = F(0 ) = dC(-), as has been done in [72], but so far it has been unclear how to

find a mathematically satisfactory interpretation of such objects. In this note we will

show that a non-trivial 0-form field strength (and thus a mass parameter) is naturally

included in the type II double field theory by assuming that the RR 1-form depends

linearly on the winding coordinates,

CC(x,z) = Ci(x)dxi +mi 1 dx 1 , (4.10)
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where C and all other fields depend only on the 10-dimensional coordinates. We will

see that the second term in (4.10) effectively acts as a (-1)-form and that the double

field theory reduces precisely to massive type IIA.

It should be stressed that the consistency of the ansatz (4.10) is non-trivial in

terms of O(D, D) covariant constraints of double field theory. These constraints are

necessary for gauge invariance of the action and closure of the gauge algebra. In its

weak form, which requires &M&M = 2&1& to annihilate all fields and parameters, it

is a direct consequence of the level matching condition of closed string theory, and

it allows for field configurations such as (4.10) that depend locally both on x and z.
The double field theory constructions completed so far, however, impose the stronger

form. In this form the constraint implies that locally all fields depend only on half of

the coordinates, and so (4.10) violates the strong constraint. Remarkably, as we will

show here, the gauge transformations can be reformulated on the RR fields so that

the strong constraint can be relaxed. It cannot be relaxed to the weak constraint

as formulated above, but it is sufficient for the ansatz (4.10) to be consistent. In

particular, this formulation guarantees that in the action and gauge transformations

the linear z dependence drops out, such that the resulting theory has a conventional

10-dimensional interpretation.

This chapter is organized as follows. In sec. 2 we review the properties of the

spinor representation of O(D, D) and of its double covering group. Due to the afore-

mentioned topological subtleties, we find it necessary to delve in some detail into the

mathematical issues. In sec. 3 we discuss the field that is interpreted as the spinor

representative of the generalized metric. The duality covariant form of the action and

duality relations is introduced in sec. 4, while their evaluation in particular T-duality

frames is done in sec. 5 and 6. The massive deformation of type IIA double field

theory is discussed in sec. 7.
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4.2 O(D,D) spinor representation

In this section we review properties of the T-duality group O(D, D) and its spinor

representation or, more precisely, the properties its two-fold covering group Pin(D, D)

and its representations. Convenient references for this section are [61], [31], and [22].

4.2.1 O(D, D), Clifford algebras, and Pin(D, D)

In order to fix our conventions, we start by recalling some basic properties of O(D, D).

This group is defined to be the group leaving the metric of signature (1D, -1D)

invariant. We choose a basis where the metric takes the form

0 1
(4.1)

1 0)

and we denote it by q1MN or 7 MN which, viewed as matrices, are equal. The indices

M, N run over the 2D values 1,2,..., 2D. The preservation of 77 implies that group

elements h E O(D, D), viewed as matrices, satisfy

yMN = " N PQ T=7 hmp hNQQ - = h 7hTh (4.2)

This implies that det(h) = ±1. The subgroup of O(D, D) whose elements have

determinant plus one is denoted by SO(D, D). While the group O(D, D) has four

connected components, SO(D, D) has two connected components. In SO(D, D) the

component connected to the identity is the subgroup denoted as SO+(D, D). It can

be shown that in the basis where the metric takes the diagonal form diag(1D, -1D),

the two D x D block-diagonal matrices of any SO+(D, D) element have positive

determinant. The other component of SO(D, D) is denoted by SO-(D, D). It is not

a subgroup of SO(D, D) but rather a coset of SO+(D, D).

The Lie algebra of O(D, D) is spanned by generators TMN = TNM satisfying

[T MN, TKL] = ,1MK TLN - 7NK TLM - 7ML TKN ± 7NL TKM. (4.3)
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Any group element connected to the identity can be written as an exponential of Lie

algebra generators,

hMN = [exp (ApQTPQ)] MN, (4.4)

where

(T MN)KL = 2K[MjN]L, (4.5)

is the fundamental representation of the Lie algebra (4.3). We use the anti-symmetrization

convention X[MN] (XMN - XNM)-

We turn now to the spinor representation of O(D, D) and to the groups Spin(D, D)

and Pin(D, D), whose properties will be instrumental below. The (reducible) spinor

representation of O(D, D) has dimension 2 D and can be chosen to be real or Majo-

rana. Imposing an additional Weyl condition will yield two spinor representations of

opposite chirality, both of dimension 2 -. These can be identified with even and

odd forms and thus with the RR fields in type II.

To begin with, we introduce the Clifford algebra C(D, D) associated to the quadratic

form 7 (-, -) on R 2D. With basis vectors PM, M = 1, ... ,2D, we have

0 1
7MN = 77(rM N)= (4.6)

(1 0)

The main relation of the Clifford algebra states that for any V E R 2 D

V - V = 77(V V) 1, (4.7)

where 1 is the unit element and the dot indicates the product in the algebra. This

algebra is generated by the unit and basis vectors IM. Writing V = VMFM, substi-

tution in (4.7) gives

{M7 IN PM N N FM 2 7MN - (4-8)

Using the quadratic form TIMN and its inverse 7MN to raise and lower indices, we can
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write arbitrary vectors as V = VMFM = VMFM, which then allows to write (4.8)

with all indices raised.

An explicit representation of the Clifford algebra (and below of the Pin group)

can be conveniently constructed using fermionic oscillators Vi/ and #$j, i = 1, ... , D,

satisfying

{$i, $=} = - ,

where

{'i, $k} = 0,

($)I = gi .

{@i, 0} I= 0, (4.9)

(4.10)

Defining

P. = v2@i ,
J7i = (4.11)

the oscillators realize the algebra (4.8). Spinor states can be defined introducing a

Clifford vacuum 10) annihilated by the O/ for all i:

i10) = 0, Vi. (4.12)

From this, we derive a convenient identity that will be useful below,

V9 . . 0) = p.6/1O - - - 9ipO) (4.13)

A spinor x in the 2D-dimensional space can then be identified with a general state

(4.14)
D 

Ix) = E C ...O $ ... #6|0)
P--O P

where the coefficients are completely antisymmetric tensors. Thus, there is a natural

identification of the spinor representation with the p-forms on RD. We define (01 to

be the the 'dagger' of the state 10) and declare:

(010) = 1. (4.15)
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For more general states,

) ... = (0 |i, ... #ii . (4.16)

We work on a real vector space, so the t operation does not affect the numbers

multiplying the vectors. In the notation where dagger takes la) to (al and vice versa,

we can quickly show that (alb) = (bla). We see from these definitions that in the

spinor representation (Fi)t is indeed equal to ]Pi. Since all matrix elements are real,

the dagger operation is just transposition.

Let us now turn to the definition of the groups Spin(D, D) and Pin(D, D), which

act on the spinor states. These groups are, respectively, double covers of the groups

SO(D, D) and O(D, D). To describe these groups we need to introduce an anti-

involution * of the Clifford algebra C(D, D), which is defined by

(V -V2 --- -Vk? -)V - .V2-1. (4-17)

Note that for any vector V in R 2D, V* = -V. For arbitrary elements S, T of the

Clifford algebra one has (S + T)* = S* + T* and (S - T)* = T* - S*. The group

Pin(D, D) is now defined as follows:

Pin(D, D) := {S E C(D, D)IS-S* = ±1, V E R2D = SV.S, E R2D}. (4.18)

The first condition implies for all group elements that S* is, up to a sign, the inverse

of S. The second condition indicates that acting by conjugation with S on any

vector V E ]R2D results in a vector in R 2
D. One readily checks that S E Pin(D, D)

implies S* E Pin(D, D). In what follows we will omit the dot indicating Clifford

multiplication whenever no confusion can arise. We finally note that the Lie algebras

of O(D, D) and Pin(D, D) are isomorphic, and in spinor representation the generators

are given by

T MN _MN _ M rN]
2 4
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which satisfy (4.3).

Next, we define a group homomorphism

p: Pin(D, D) -- O(D, D), (4.20)

with kernel {1, -1}, that encodes the two-fold covering of O(D, D). It is defined via

its action on a vector V E R2D according to

p(S)V = SVS-1 . (4.21)

The map p can be written in a basis using V = VMJEM for the original vector and

V' = V'M M, with V'M = hMNVN, for the rotated vector, where hMN is an O(D, D)

element. With this, the map in (4.21) becomes

p(S)V = V' = SVS- 1  -+ hMN VNM M= SVMLM S'. (4.22)

Relabeling and canceling out the vector components we find

SEMs 1 = FNNM. (4.23)

Here p(S) = h, and h - with matrix representative hMN- is the O(D, D) element

associated with S. We rewrite the above equation by raising the indices. Using the

invariance property 77MN(h-1)NK = 7KNh NM, we find

sEms-1 = (h-1 )MNN (4.24)

Rewritten as hMN S pN S-1 = M, this is the familiar statement that gamma matrices

are invariant under the combined action of Pin(D, D) on the spinor and vector indices.

Let us now turn to the definition of the subgroup Spin(D, D) of Pin(D, D). It

is obtained if in (4.18) we have S E C(D, D)eve, which is the Clifford subalgebra

spanned by elements with an even number of products of basis vectors. In this case
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the homomorphism p above restricts to a homomorphism

p: Spin(D, D) -> SO(D, D), (4.25)

with kernel {1, -1}. If, in addition to restricting to C(D, D)e",, the normalization

condition is changed to SS* = 1, the resulting group is Spin+(D, D) and p would

map to SO+(D, D).

Let us consider a set of useful elements S of Pin(D, D). We write the elements

using the oscillators V#i and i,1

Sb = e 2jI~1)

Sr = 1 e*Ri* , (r= (ri ) = eR E GL+(D)),
v\/det r

Si ai+ #O, i = 1,., D),

(4.26)

where GL+(D) is the group of D x D matrices with strictly positive determinant.

It is instructive and straightforward to verify that the first condition in (4.18) holds.

Noting that (e)* = ex* we have

(Sb)* = (Sb)- , (Sr)* = (S,)-1 , Si = -Si = -- 1 (4.27)

We note that Sb E Spin+(D, D), S, E Spin+(D, D), and Si E Pin(D, D), while even

powers of the Si are in Spin(D, D).

Using the definition (4.21) we can calculate the O(D, D) elements associated with

these Spin(D, D) elements. For this we expand (4.23) to find

S Fi S 1 = Fk hik, +k hi,

Sri S-1 = Fkhki +k hki,

(4.28)

'Here we are closely following [61] with a slightly different notation.
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and we build the h matrix as follows

Applying the above to (4.26) one finds the O(D, D) matrices associated to the Pin

elements:

= 1 b , bT=-b,

0 1)

0

= - -ei

-ei 1-ei

(4.30)

(4.31)

(ei)jk 5ij6ik (i = 1, ... , D) .(4.32)

The group elements hb, hr and even powers of the hi generate the component SO+(D, D)

connected to the identity.

4.2.2 Conjugation in Pin(D, D)

We turn next to the definition of the charge conjugation matrix. The charge conjuga-

tion matrix C can be viewed as an element of Pin(D, D) in general and as an element

of Spin(D, D) for even D. It is defined in terms of the oscillators by

if D odd,

if D even.
(4.33)

Noticing that with i not summed (V#i i )(# i/) = i{±i,# } = ±1, simple

calculations show that

C+(C+)* = (-1)D, C_(C)* = 1. (4.34)
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(4.29)

hb p(Sb)

hr p(S,)

hi ap(Si)

C =
C+ = ($'+@1)(?2+02)- -(,D - OD),

C_ = (7l - 7p1)(7p2 - 02) -.-. (#pD - V)D) ,

L+(D) ,



It is useful to note that the charge conjugation matrix is proportional to its inverse,

C-1 = (- 1 )D(D-1)/2C. (4.35)

Since C and C- 1 just differ by a sign, all expressions of the form C...C- 1 can be

rewritten as C-1 ... C. It is straightforward to show that

(-1)Dv'i,

+= ()DVp

C-,Oi(C41- =

(4.36)
(_1)Db,.

It then follows from (4.241) that in all dimensions

C C (4.37)

As /i = (@i)f, these relations can be written in terms of gamma matrices as follows

C FM C-1 = (iM)t ,

Introducing the O(D, D) element

J*. = J =

or C FM C = (rM)t -

0

1
I,

0)

we can use (4.23) to write the second equation in (4.38) as

C FM C- 1 = FN (P(C))NM = (FM)t = FN JNM

We thus learn that

p(C) = J. (4.41)

Since C and C-1 just differ by a sign, p(C- 1) = J and equation (4.38) also implies

that

C- 1 M M= (fm)t (4.42)
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More generally we define the action of dagger by stating that 1f = 1, and that on

vectors V dagger is realized by C conjugation:

Vt = CVC-1 = J V. (4.43)

On general elements of the Clifford algebra we define dagger using

(V - V2 ----- Vn)t Van -- - 2 - Vi,(-

so that for general elements (Si S2 )I = St - St. A short calculation gives

Ct = C- 1 . (4.45)

It is straightforward to verify that S E Pin(D, D) implies St E Pin(D, D). It is then

natural to ask how the homomorphism p behaves under the dagger conjugation.

To answer this and related questions it is convenient to describe the dagger oper-

ation in C(D, D) in terms of C conjugation and the anti-involution 7 defined by

r(V1-V 2 ----- Vn)=V... -V 2 -V 1 , (4.46)

which satisfies r(S 1 S 2) = -r(S 2)T(S1). Indeed, it is clear that

St = C T(S) C-1. (4.47)

Then taking p of this equation gives

p(St) = p(S)r. (4.48)

For elements S of Spin(D, D), r(S) = S*, thus (4.47) becomes

St = C S* C~1, S E Spin(D, D). (4.49)
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Using that S* = ±S-1 for S E Spin*(D, D), this implies

St = C S1 C1 for S E Spin+(D, D) ,(4.50)

St = -C S- C-1 for S E Spin-(D, D) .

4.2.3 Chiral spinors

We close this section with a brief discussion of the chirality conditions to be imposed

on the spinors. To this end it is convenient to introduce a 'fermion number operator'

NF, defined by

NF kk . (4.51)
k

It acts on a spinor state that is of degree p in the oscillators as follows

NF ~ NF( 'Cl... i0
p. / (4.52)

= Zp 1 C... tk6khP --- 9 0) = pIx)p,
k

where (4.13) has been used. Thus, acting with (-1)NF on a general spinor state

(4.14), one obtains

D

(-1)NFX = -: . - 0.,lpJ) (4.53)
p=O

We conclude that the eigenstates of (-1)NF consist of a x that is a linear combination

of only even forms, with eigenvalue +1, or of a x that is a linear combination of only

odd forms, with eigenvalue -1. Given an arbitrary spinor x, one can project onto

the two respective chiralities,

X (1 ± (-1)NF)x ( 1 )NFX1 = ±x± . (4.54)

Then X+ has positive chirality, consisting only of even forms, and x- has negative

chirality, consisting only of odd forms. The operator (-1)NF is the analogue of the

7 5 matrix in four dimensions.
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Finally, we note that the chirality is preserved under an arbitrary Spin(D, D)

transformation. In fact, since the group elements of Spin(D, D) contain only an even

number of fermionic oscillators, they map even forms into even forms and odd forms

into odd forms. In contrast, a general Pin(D, D) transformation can act with an

odd number of oscillators and thereby map spinors of positive chirality to spinors of

negative chirality and vice versa. Thus, when fixing the chirality, as for the action to

be introduced below, we break the symmetry from Pin(D, D) to Spin(D, D).

4.3 Spin representative of the generalized metric

In this section we discuss the spin representative SH of the generalized metric XMN-

We determine its transformation behavior under gauge symmetries and T-duality.

More fundamentally, we will adopt the point of view that SH is just a particular

parametrization of the fundamental field S.

4.3.1 The generalized metric in Spin(D, D)

We take the fundamental field to be S, satisfying

S = St , S E Spin~(D, D). (4.55)

The generalized metric XMN will then be defined as

= p(S) -> HT = p(SY) = , E S0(D, D) . (4.56)

Moreover, we constrain K and thereby S by requiring that the upper-left D x D block

matrix encoding g-1 has Lorentzian signature. An immediate consequence of (4.55)

follows with (4.50)

S = St = -CS-1 C-1. (4.57)
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Equivalently, recalling that C = iC-1,

SCS = -C. (4.58)

It is also possible to adopt the opposite point of view, i.e., to take the group

element R as given and then determine a corresponding spin group representative

SH as a derived object. However, as we will discuss in more detail below, this cannot

be done in a consistent way globally over the space of X. In the following we first

determine a spin representative Su locally from H, but we stress that this should

be viewed as just a particular parameterization of S - in the same sense that the

explicit form of XMN in terms of g and b is just a particular parametrization of X.

We start by writing the O(D, D) matrix NMN as a product of simple group ele-

ments, 2

g-1 -g-1b 1 0 g -1 0 1 -bT
= g ?ib ==(j g )( b hi' hg-1 hb . (4.59)IH bg-1 g - bg-'b b 1 0 g 0 1 bhih -(.9

The matrices defined in the last equation are analogous to the matrices defined in

(4.30) and (4.31). More precisely, this is true for hb while for hg (or hg-1 = h-1)

eq. (4.31) is only valid if g has euclidean signature, because then g E GL+(D). Here,

however, we assume that g has Lorentzian signature (- + - ±). Accordingly, H is

indeed an element of SO-(D, D).

In order to find the corresponding spinor representative for h9 and thereby for XH,

it is convenient to introduce vielbeins in the usual way,

gij = e' ej kp , kap, = diag(-1,1,...,1), (4.60)

where a, #, ... = 1, ... , D are flat Lorentz indices with invariant metric kap. In matrix

notation, we also write

g = ekeT. (4.61)

2We note that our conventions differ slightly from those in [8] in that what we denote by R has
been denoted W- 1 there. All other conventions, however, are the same.

124



We can choose e to have positive determinant, and thus its spin representative can

be chosen to be Se as defined in (4.26). The spin representative of diag(k, k) can be

taken to be

Sk = $)1 @sb1 - )1V1 , (4.62)

where the label one denotes the timelike direction. We note that

Sk = SI =- S- =-S.

Since SkSZ = -1, we confirm that Sk E Spin-(D, D).

Thus, we can choose the spinor representative of g to be

S =-Se Sk Se = 1 et'Ei) pe1 - 1 {E
det(e)

(4.63)

(4.64)

where ei& = exp(E);&, and we used (ET)/i = E,1 . From its definition it follows that

= Sg. (4.65)

Similarly,

S- = (Se-1)f Sk Se-1 = det e e-)i(ET) 1 - -#, l) Ei3 (4.66)

We note that Sg is an element of Spin-(D, D) because it is the product of Sk E

Spin-(D, D) times elements of Spin+(D, D). From this and (4.49) we also infer that

S = Sg = C S* C-1 = -C Sg-1 C-1 (4.67)

We can finally define the element S- of Spin(D, D) as follows

Su= St S-1 Sb = e2bij'i 5;~1 e-bij**i (4.68)

125



Using (4.65) we infer that

SH = S'. (4.69)

By construction, the image of SH under the group homomorphism p is precisely 7H:

p(SH) = p(S)Tp(S,-l)p(Sb) = h h-hb =-X . (4.70)

Since Sb, Sb E Spin+(D, D) and S-1 E Spin-(D, D), we have Su E Spin-(D, D). As

a result, S- satisfies the identities (4.57) and (4.58) and therefore gives a consistent

parametrization of S.

The flat Minkowski background g = k with zero b-field gives a generalized metric

that we denote as 7o = diag(k, k). Since Sg = Sk and Sb = 1, we have

SRO = Sj- = Sk = 1 p1 -'1p (4.71)

4.3.2 Duality transformations

We discuss now the transformation behavior of S under some arbitrary element

S E Pin(D, D). Since we view S as an elementary field we can postulate such a

transformation. The transformation of S, however, must be consistent with the trans-

formation of the associated H = p(S). Writing also H'= p(S'), we want to postulate

a transformation for which

SS S' implies H P() H'. (4.72)

In words, the O(D, D) transformation p(S) associated with S E Pin(D, D) relates

the corresponding generalized metrics. The generalized metric appears explicitly in

the NS-NS action.

Recall that under an O(D, D) transformation h the generalized metric transforms

as

7 'MN = 'HpQ(h)MN(h-)N (4.73)
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In matrix notation, we will write W transformations as follows:

V' = h o = (h-1)T R h-1 . (4.74)

For an element S E Pin(D, D) we postulate the following S transformation:

S'(X') = (S-1)t S(X) S-1 . (4.75)

Here X' = hX, where h = p(S). The compatibility with (4.74) is verified by taking

p on both sides. Suppressing the coordinate arguments, we indeed find

R' = p(S') = p((S-1)t SS-) = p((S 1)t ) p(S)p(S- 1) (4.76)

= (p(S) 1)T1X p(S)-1 = (h-1)T H h-1 = h o X .

We infer that ' satisfies (4.74).

Independently of the postulated transformation rule (4.75), we can ask how SH,

defined in (4.68) in terms of H, transforms under a duality transformation generated

by an element S E Pin(D, D). This transformation is simply given by

S : SH -+ Sn , where R' = p(S) o R. (4.77)

It is of interest to compare

(S-1)t Su S-1 SH'. (4.78)

Under p they both map to X', thus the two can be equal or can differ by a sign.

Perhaps surprisingly, there is a sign factor that depends nontrivially on p(S) and on

R. We will write

(S-1)t SH g-1 = Yp(s)(X) Sp(S)o- (4-79)

In the remainder of this section we determine this sign factor.

There is a large set of O(D, D) transformations h for which the sign in (4.79) is
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plus.

(SW')'Su SW' = + ShoH , when h E GL(D) x RD(D1) (480)

The group GL(D) x R2D(D1) is that generated by successive applications of GL(D)

transformations and b-shifts, transformations hb of the form indicated in (4.30), which

define the abelian subgroup R2D(D1)

It is the T-dualities that produce sign changes. We therefore consider the sign

factor in

(S 1)f S SuS = Ui() Son. (4.81)

As we can see, the sign factor depends on the particular 'H appearing on the left-hand

side above. Our final result is:

o-() = sgn(gii). (4.82)

It follows from this equation that for a general background H whose metric has

Lorentzian signature the duality transformation J about all of the spacetime coordi-

nates gives the sign factor:

-j('H) = -1. (4.83)

There seems to be some tension between the defined duality transformation of S

in (4.75), which has no signs, and the duality transformation (4.79) of its particu-

lar parametrization S-, which shows some signs. The sign-free transformation of S

implies that the double field theory action is fully invariant under all duality trans-

formations, including those, like timelike T-dualities, that give a sign in (4.79). Once

we choose a parametrization by setting S = SH, the sign factors in (4.79) have two

consequences. First, it follows that the Spin(D, D) invariance of the action cannot

be fully realized through transformations of the conventional fields g and b. More

precisely, it can only be realized for SO(D, D) transformations that do not involve

a timelike T-duality. This means that if we take timelike T-dualities seriously, we
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inevitably have to view S as the fundamental field. Second, when comparing the

double field theory evaluated in one T-duality frame (as 5' = 0) to the same theory

evaluated in another T-duality frame obtained by a timelike T-duality transforma-

tion (as ai = 0), the conventional effective RR action changes sign. This sign change

corresponds precisely to the transition from type II to type II* theories expected for

timelike T-dualities. Correspondingly, the freedom in the choice of parametrization

for S, namely +SH, has no physical significance in that it merely fixes for which

coordinates (x or z) we obtain the type II and for which we obtain the type II* the-

ory. Similarly, the actual sign of the RR term in the double field theory action (4.4)

has no physical significance. Therefore, we find a consistent picture, though certain

invariances of the action cannot be fully realized on the conventional gravitational

fields.

4.3.3 Gauge transformations

In this section we determine the gauge transformation of the spinor representative S

in such a way that it us consistent with the known gauge variation of the generalized

metric XMN. This variation can be rewritten as:

jXH = OLaLHM ± (0M9 - &KOM) ± (K _ K _ aK ) JjMK, (4.84)

where we used that the metric r/MN that lowers indices is gauge invariant. We have

positioned the indices of the generalized metric as in H*. to emphasize its role as an

O(D, D) group element. We also recall that XHMK HKN = 6MN- The matrix H used

so far represents H...

It turns out to be convenient to write the gauge variation in terms of the spin

variable C defined by

K = C- 1 S. (4.85)

This combination will be used to prove the gauge invariance of the action in sec-

tion 4.4.2. While S is a spin representative of H.., we now check that K is the spin
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representative of -*.. Indeed recalling that p(C-') = J with J defined in (4.39), we

have

p(K) = p(C- 1 )p(S) = JX.. = '*., (4.86)

since J is identical to the matrix r;- that raises indices. We write this conclusion as

Sn.. = K. (4.87)

The gauge transformation of K compatible with that of XH*, takes the form

oK= 1 MoMK -i[ F , PQK 1 ,]aQ (4.88)

where pPQ 2 [fP, IQ]. The proof of this form is based on a postulation that the

gauge transformation K is consistent with that of the generalized metric. Detailed

steps are provided in [13] for interested readers.

4.4 Action, duality relations, and gauge symme-

tries

In this section we introduce the O(D, D) covariant double field theory formulation of

the RR action and the duality relations. We prove T-duality invariance and gauge

invariance, and we determine the O(D, D) covariant form of the field equations.

4.4.1 Action, duality relations, and O(D, D) invariance

The dynamical field we will use to write an action is a spinor of Pin(D, D) written

as in (4.14):

x |x) = Z C i . (4.89)
p=o

Here the component forms C 1... x(, z) are the dynamical fields and, as is usual in

double field theory, they are real functions of the full collection of 2D coordinates x
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and i. We will assume x to have a definite chirality. Thus, as discussed in sec. 4.2.3,

it consists either of only odd forms or even forms. The bra associated with this ket

is called Xt and is defined by

D

xt = (xl = Z Ci ..., (OJ i, ... . (4.90)
P-0O

We conventionally define the conjugate spinor using the C matrix defined in sec-

tion 4.2.2:

~x tC. (4.91)

We will make use of a Dirac operator on spinors that behaves just as an exterior

derivative on the associated forms:

1
$ 1- pMOM = #iai - # 54, (4.92)

where we used (4.11). The $ operator behaves like the exterior derivative d in that

its repeated action gives zero:

2 1FMrNOMON = I IN}&MON- = 0, (4-93)
2 4 2

by the strong constraint. The $ operator will be used to define field strengths in a

Pin(D, D) covariant way. It is clear that acting on forms that do not depend on i,

the only term that survives, 4'ai~, both differentiates with respect to x and increases

the degree of the form by one. More details will be given in section 4.5.

We turn now to a discussion of the double field theory action. We claim that the

RR action is S = f dxdzrL, where the Lagrangian density L is simply given bys

L= ($x)t S X. (4.94)
4

The above Lagrangian is manifestly real: Lt = L because the spinor x is Grassmann

even and S is Hermitian. The Lagrangian can be written using conjugate spinors and
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the kinetic operator K = C'S. The above Lagrangian is equivalent to

1
£ = - aM rM K NaNX- (4-95)

8

The properties of bar conjugation allow us to recognize that

-1 1
$x = 7 (r OMX) (2 - rmMxt -= M -1(m )tc = ~MXM

(4.96)

and therefore we can write the action more compactly as

= -K $x (4.97)
4

Our first task now is to establish the global Spin(D, D) invariance of this La-

grangian (the dxdi measure is O(D, D) invariant). This is the maximal invariance

group that is consistent with the fixed chirality of X. Under the action of a Spin(D, D)

element S, whose associated O(D, D) element is h = p(S), the spinor field X trans-

forms as follows:

X --+ X' = S X .(4.98)

Implicit in here is that the coordinates the fields depend on are also transformed:

primed fields depend on primed coordinates X/M = hMNXN. Note also that the

daggered state transforms as

Xf -+ Xf St. (4.99)

Then the gauge transformation of OX can be readily computed as

$x -+ - S hMPP(h-1)NMNX = r =NNX S$X, (4-100)

We have thus leaned that OX transforms just like X. In other words, the Dirac

operator 0 is Spin(D, D) invariant. Recalling the transformation of S in (4.75) :
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S -+ (S-1)t S S-1, the invariance of the Lagrangian (4.94) is essentially manifest:

1C = -($x)t S O$ _ (X)'tt (S 1 )t gS x = SO. (4.101)
4 4

The action must be supplemented by duality constraints among the field strengths.

We can write Spin+(D, D) covariant versions of the duality relations that relate all

RR field strengths:3

$x = -K$x. (4.102)

According to (4.100), the left-hand side transforms covariantly with S E Spin(D, D).

The right-hand side transforms in the same way, since

-K $x - -C-1(S-1)t S S-1S$x = -S C-1 S = -S K$x , (4.103)

where we used that (4.50) implies C-1(S-1)t = SC- 1 for S E Spin+(D, D). Thus, the

duality relations are actually only invariant under Spin+(D, D). This is to be expected

since already for conventional duality relations the presence of an epsilon tensor breaks

the symmetry to the group GL+(D) of parity-preserving transformations.

The relations (4.102) require a consistency condition. Acting on both sides of

(4.102) with K, we see that consistency requires K 2 = 1, which in turn implies

K2 = C-1 SC-1 S = C(SCS) = C(-C) = -(-l) D(D-1) = 1

where we used (4.58) and (4.35). Thus, the duality relations are self-consistent in

dimensions for which jD(D - 1) is odd. For D < 10, these are

D= {10, 7,6,3,2}. (4.105)

We note that the even dimensions above are precisely those for which conventional

self-duality relations can be imposed consistently. Indeed, the middle degree forms

3For the special case of type IIA, a similar O(D, D)-covariant form of the duality relations has
also been proposed in the second reference of [59].
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corresponding to the self-dual field strengths are then odd, and for them *2 = 1 in

Lorentzian signature. As we will show in sec. 4.5.1 the component form of (4.102)

contains one self-duality relation in even dimensions, so this result is to be expected.

In the following we will focus on D = 10, but we note that D = 2,6 can be seen

as type II toy models. The possible significance of theories with odd D will not be

discussed here.

We close by giving the equations of motion of x, which are readily derived from

(4.95),

$(K $x) = 0 . (4.106)

As it should be, the equation of motion is the integrability condition for the duality

relations: acting with a $ on both sides of (4.102), and using $2 = 0, we recover the

field equation.

4.4.2 Gauge invariance

In this subsection we give the gauge transformation of the RR fields. The p-form

gauge transformations are manifestly invariances of the Lagrangian and of the duality

constraints. For the gauge transformations parameterized by (M the transformation

of x is nontrivial and so are the checks of gauge invariance of the Lagrangian and the

duality constraints.

Gauge transformations

We start by introducing the double field theory version of the abelian gauge symme-

tries of the p-form gauge fields. These are parameterized by a spacetime dependent

spinor A:

&X = $A. (4.107)

Since A encodes a set of forms and $ acts as an exterior derivative, the above trans-

formations are the familiar ones. It follows that

ox\x = $$A = 0, (4.108)
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and this implies the gauge invariance of the Lagrangian density (4.94) and of the

duality constraint (4.102).

For the gauge parameter (M that encodes the diffeomorphism and Kalb-Ramond

gauge symmetries, we postulate the gauge transformation

EgX X MOMX M X6 CX = LCX - O MOr ±
(4.109)

= ("MX -- 1~OO(
2

In the second form it is simple to verify that a gauge parameter of the form (M = O9ME

is trivial in that it generates no gauge transformations:

1
EggX = OMe MX ± ~aNMENMX = aNaME) X = 0. (4.110)

2

A short calculation gives the gauge transformation of the conjugate spinor V:

1
ogX= ± -Nc M FF. (4.111)

2

Let us now turn to the gauge algebra. We have shown that the gauge transfor-

mations parametrized by A and (m close as follows

[6A, 6] = 6 , (4.112)

where the right-hand side is the double field theory version of p-form gauge trans-

formation with parameter L2 A. We have also verified that, as expected, [41 62 =

where [-, -]c is the C-bracket discussed in [8].

Gauge invariance of the action and the duality constraints

The action is manifestly invariant under p-form gauge transformations. Here we check

the invariance under 6C. We use the Lagrangian in (4.95):

L = - $X k$X . (4.113)
4
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As usual, when we vary the Lagrangian, which has the index structure of a scalar, we

obtain a transport term and a 'non-covariant' term

og4 = ±MOME + ALL- (4.114)

Since Ag acts as a derivation and commutes with bar-conjugation,

AgL = - ((Agox) C $x ± (A CK) $ x O AOx. (4.115)
4

For the action to be gauge invariant, AgC must be such that JCL in (4.114) is a total

derivative. Indeed, we find

AC=! -M(M Ox K OX = &ML. (4.116)
4

Back in (4.114) we get JCL = (MML ± (aMOM) = OM(ML), which confirms the

gauge invariance of the action.

Finally, we have to prove gauge covariance of the duality constraints $x = -cox.

We now take the gauge variation og of both sides of the duality constraint. The

transport terms on both sides are identical, using the duality constraint. So only the

non-covariant terms matter, and we can evaluate AC on both sides of the constraint,

finding

ACx= -(AAK)$x - K $AC$X. (4.117)

Our task is to verify that this holds, using the duality constraint. Bringing all terms

to one side we must check that

Adx + (AC>)$X + ACg$X = 0. (4.118)

Using our earlier results we find that the left-hand side is equal to

I aPQ(FL'Q + [rP, K ] + KcrF )$x. (4.119)

136



Expanding the commutator and using the duality constraint we find that the above

becomes

-&PQ((1FQF - PQ)+ K (FPrQ - rPQ) $x = ap O 7PQ(1± K)$x = 0.

(4.120)

This concludes our proof.

4.4.3 General variation of S and gravitational equations of

motion

In this section we determine the general variation of the action under a variation of S

in order to determine the contribution of the new action to the field equations. This

is non-trivial since S is a constrained field in that it takes values in Spin(D, D). The

corresponding problem for the constrained variable given by the generalized metric

H has been discussed in [8], and the method employed there can be elevated to S, as

we discuss next.

In [8], sect. 4, it was shown that a general variation of the constrained variable

H can be parametrized in terms of a symmetric but otherwise unconstrained matrix

MMN as follows

SH = I [( 6 M, ± NMP) (6 N - HN M) ( 6 Mg - HMP) ( 6 NQ ± 7NQ)] PQ

M 2 AMN _ HM PQHNQ

(4.121)

We now form the Lie-algebra element

(PHM 1 MPR7 RQ (TPQ)MN> (4.122)
2

where we made repeated use of the symmetry properties of Hi and M and used (4.5).

137



In the spin representation this equation yields

1 1
(6K) A-' = IMPR HRQ pPQ = - MMNMP pNP (4.123)

4 4

after some index relabeling. Our final result for the variation is therefore

1
6K = -MMN- M P PNPI (4.124)

4

This, with 7*, = p(K), is the general variation of K consistent with its group property

K E Spin(D, D). It is consistent with the variation of generalized metric, and thus

the variation of the NS-NS action is unmodified as compared to the discussion in [8].

Next, we apply (4.124) in order to compute the variation of the RR action

1 - 1
5L = - $x 6 K $x = -M MNHMP OXNPK x. (4.125)

4 16

Since M is an arbitrary symmetric matrix, we read off that the contribution to the

field equations is given by the symmetric 'stress-tensor'

E MN _ __( N )

16 H(MF N)PK OX. (4.126)

It is possible to verify that, as required, the above symmetric tensor is real (EMN)t _

EMN. It is also important to note that EMN transforms covariantly under duality:

EIMN(X') = hmPhNQCPQ(X). (4.127)

Taking the variation of the NS-NS action into account, which leads to the tensor

RMN defined in eq. (4.58) of [8], this leads to the O(D, D) covariant form of the type

II field equations,

RMN + EMN = 0 , (4.128)

supplemented by the duality constraint (4.102). In fact, the duality constraint allows
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us to simplify EMN considerably:

EMN _ _ (M O fN)P OX. (4.129)
16

One may try to verify again the reality of this stress-tensor. A short calculation shows

that it is only real whenever CC = -1. This is precisely the constraint for consistent

duality constraints, as discussed at the end of section 4.4.1. Since we work with real

numbers throughout, a non-real stress-tensor can only be equal to zero.

4.5 Action and duality relations in the standard

frame

In this section we examine the form of the action and duality relations when choosing

the 'standard' duality frame 5' = 0, and we show that they reduce to the conventional

democratic formulation of type II theories. For this we have to assume that we are

in a region with a well-defined metric, so that we can choose the parametrization

S = SH. The physical significance of this particular parametrization will be discussed

in the next section. Note that the review of democratic formulation of type II theories

is omitted in the thesis and can be found in [13].

4.5.1 Action and duality relations in 5 = 0 frame

In this section we evaluate the action and duality relations in the standard frame

5 = 0. We begin by introducing some relations which will turn out to be useful for

this analysis. In order to determine the action of Sg = SeSkSt on general states, we

compute the action of the respective factors. For Se, we introduce e = exp(E) and

we have

Se 0) = 10) (expE) p'* 0) = etifr 10).
det e dete det e (10)

(4.130)
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For S. we find an expression with unusual index position

St/9j0) = 1 l0).'e '0'/det ej

The action of Sk can be easily computed,

Sk OP|0) = (0101 - V101) Vr 10) = -kpq#0) ,

using the flat Lorentz metric k = diag(-1, 1,..., 1) defined in (4.60). Using (4.130),

(4.131) and (4.132), the action of Sg is then given by

SgV,21l0) = SeSkAS)iI #0) = - 1 gig 10) (4.133)

where we used the definition of the metric in (4.60) and wrote det e = I/det gj.

Similarly, for S1 one finds

Sg-1*p10) = - det g| giii |0) , (4.134)

where gli is, as usual, the inverse of the metric gij.

All of the above relations straightforwardly extend to the case where Sg acts on

multiple fermionic oscillators, for which eqs. (4.133) and (4.134) are generalized to

S- i -) -. -$P0) = -N/l det glgj -.. g'PJP /)j1 .- - -@ 10)

1
S,# -- -6|)- - degs -i - - gij enP ... 4,P |0).

With these ingredients we are now ready to evaluate the action.

The action

We start by writing the action in the duality frame 5 = 0. For this choice, the field

strength

IF) = OIX) , (4.136)
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reduces to

D I D 1

F) IE CZi... #ifZ ) -) = E l)! a[il C2.. iI ... - iP 0)
-0 P-Op-1

D

Fil ...4, ip -. - P - M90 (4.137)

where we performed an index shift and relabeled the indices. Thus, the components

are given by the conventional field strengths

Fis...g = p ogCi2... ] (4.138)

It is sometimes useful to avoid explicit indices and combinatorial factors by using

the language of differential forms. In general, we identify a spinor state jGp) with a

p-form GP) as follows

|Gp) = G... i -.. - - 10) -- G) = 1Gi... dx' A -- A dx2 . (4.139)

Whenever we speak of a p-form G(P) and its components Gil... ,,, we will assume a

normalization that includes the p! coefficient shown above. It is now straightforward

to translate (4.138) to form language:

F() = dC(-1). (4.140)

We now collect all field strengths of different degrees into a single form F = >, F(P)

and do the same for the potentials C = E C). We then have that (4.140), or for

that matter (4.138), for all relevant p is summarized by

F = dC. (4.141)
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In order to evaluate the action we need to choose a parameterization for S, which we

take to be SH,

S = SR = e2 S 1 e 2 1b3i** (4.142)

The b-dependent terms in Su suggest the definition of modified field strengths, related

to the original field strengths IF) = $lX) by the addition of Chern-Simons like terms:

IF) = e- biO'& 3 IF)

D

= - Fi...1,, Vil - - - 0)
p=1 P

(4.143)

This relation is summarized in form language by

F = e-b" A F = eb( 2 )A dC, with b 2 bij dx A dxI.
2

The bra corresponding to IF) is given by

DI

(F (Ol@p,, - . (4.145)

Next, we can evaluate the Lagrangian (4.94) using (4.142), (4.143) and (4.145), which

yields

4 S,i..ipFji...q(01Pip - il
Pq=1

S-' @ -f -93q10) . (4.146)

Using now (4.135) for the action of S-' and the normalization

(OI, - . .. ..m|0) = p 6pp!; [mi -.-. PmA]

following from (010) = 1, the action reduces to

D 

IE gilh
p=1

- - -ghi ...p )... , p

142

(4.144)

1 = 4(TI S, IF)

(4.147)

(4.148)

,

L = I- g



where we used the short-hand notation fg= v/det gl. This can also be written as

D

= - I f p , (4.149)
p= 1

where we define for any p-form w(P):

|Wo 12 = 1 ... iP)P wei...i~wi. . (4.150)

The result in (4.149) is the required sum of kinetic terms for all p-form gauge fields (of

odd or even degree, depending on the chirality of X), which appear in the democratic

formulation. This action needs to be supplemented by the duality relations, ensuring

that we propagate only the physical degrees of freedom of type II. We consider these

next.

Self-duality relations in terms of field strengths

Here we show that for &= 0 the self-duality conditions $X = -C$X, c.f. eq. (4.102),

reduce to
(D-p)(D-p-l) ( p

S)= (-1) 2 * F(DP) . (4.151)

These are conventional duality relations for p-form field strengths. In here we use the

following definition of the Hodge-dual form:

__ 1
(* = -gjl g ... +1 iPA . (4.152)

Our conventions for the epsilon symbols are as follows:

C12...D + ±1ii ... iD I 1 -iD

(4.153)

El 2...D ~~ 1 , i..D = 1... iD

i.e., E is a tensor density, while e is a (pseudo-)tensor. As usual, lowering the indices on

Ei. -iD with gij yields , and e and E coincide on flat space. We note the familiar
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relation for the square of the Hodge star on forms of degree p in a D-dimensional

spacetime with signature s:

(4.154)

We can ask when is (4.151) consistent with repeated application of the Hodge star

operation. A calculation gives the condition

s (-1)!D(D-1) = 1. (4.155)

Not surprisingly, in Lorenzian signature this agrees with the result in (4.104). Finally,

for D = 10, the duality constraints (4.151) take the form

(4.156)

We can now begin our calculation. Let us first introduce the short-hand notation

B = }bijV)'V , Bf = -j (4.157)

which allows us to write Su in (4.68) as follows

SuH = e-Bt S1 e-B (4.158)

The self-duality conditions Ox = -KCX can now be written as

e-B -X) = eB C- 1 e-Bt S-1 -B|X) , (4.159)

where we multiplied the factor e-B from the left to form the modified field strengths

IF) defined in (4.143):

IF) = -eB -1 -Bt Sg 1
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Using (4.37) we readily verify that

Ce-BC-1 -C - bf _B
Ce-~ = e-P-V-2 - e]B (4.161)

and, as a result,

IF) = -C-1 S-1 IlF) = SgC-1|F) = -SgCIF), (4.162)

using Sg = -C-'S;'C and C-1 = -C. This is the simplest possible form of the

duality constraints.

We can now examine (4.162

We find

D

p=1

) in terms of component fields, as defined in (4.143).

D

E =-Fi1  . Sg Pii"-'iPCI1)
P=J P!

(4.163)

where we used (4.37). Next, we show that the charge conjugation matrix in (4.163)

effectively acts like an epsilon symbol. In fact, by multiple application of the oscillator

algebra one can verify that

Oi - - i, C Io) = (P) 2 eii2---pip+1 .. . OiD 0)
(D -p)!

(4.164)

Back in (4.163) we have

DI

p= 
.. gi10)1

D _ _ __) -P 1

= (-1) (Dp)(p1) (*F)...i 4 - PO) . (4.165)
P=1

In obtaining this result we made use of (4.135), the definition (4.152) and some simple

manipulations. Thus, we have shown that the duality constraint implies the claimed

duality relations (4.151).
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4.5.2 Conventional gauge symmetries

Let us now verify that the gauge transformations parameterized by (M and A reduce

to the conventional gauge symmetries of type II theories in the frame 54 = 0. We start

with the p-form gauge symmetries (4.107) whose parameter we write in components

as
D

|A) = AZ... 2P 1. -- #0) (4.166)
p=0P

For 5 = 0 this implies

D

JA IX) = $|A) = i/9 lA) El Z ) [i, Ai2 ... i,1 Op -- 0) 7  (4.167)

from which we read off

o\Ci1...i = pO [ 1Ai2  . (4.168)

These are the conventional p-form gauge transformations. In form language they read

6, C = dA. (4.169)

Let us now discuss the gauge transformations parameterized by (m = (ii). We

first claim that the C forms transform as p-forms under diffeomorphisms parameter-

ized by (f. To see this, we compute

SIX) = ()j& +agk B 40kj ) Ci... i --... O10) . (4.170)
P-0

The transport term just gives rise to the transport term of the component fields. The

second term can be evaluated using (4.13), which then implies for the components

64Ch ...9 =p a ( Ci1...,, + P O~lVt Clili2 ...g= E] Cei. . (4.171)

This is the usual diffeomorphism symmetry which infinitesimally acts via the Lie

derivative.
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We now consider the j parameters, which are parameters for the b-field gauge

transformations. It turns out that the C forms transform non-trivially under this

symmetry. In order to see this we compute for 5= 0

5glx) = &kgl= EkapLp \x} = CI3 .E - +2\ 0)

D P= !(4.172)

= (p 2)! 19' 2Cb...g;$l -'i - 1 60),
p=2

where we performed an index shift p -+ p + 2 in the last equation. We thus read off

gCi...i = p(p - 1)l 'li. . (4.173)

In the language of forms the above equation reads

J C = di A C. (4.174)

Note that this implies that

6;C( ) = jgC 1 = 0, ogC( 2) =d - .. . , C)C(P) =d A C(p-2). (4.175)

4.6 IIA versus IIB

In the previous section we have seen that for fields with no z dependence or, equiva-

lently, setting si = 0, the proposed double field theory reduces to the type IIA or type

IIB theory in the democratic formulation, depending on the chosen chirality of x. It

is equally consistent with the strong constraint, however, to keep the z dependence

of fields while dropping the x dependence by setting 02 = 0. We will see that if the

theory reduces to type IIA when setting 54 = 0, the same theory reduces to type IIA*

when setting 0i = 0, and vice versa. Similarly, for the opposite chirality of x, in one

frame the theory reduces to type IIB and in the other frame to type IIB*.

More generally, we can consider intermediate frames that originate from the i = 0
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frame by an arbitrary O(D, D) transformation. Specifically, with the subgroup O(n -

1,1) x O(d, d) c O(D, D) acting on coordinates (xzzXza), with .= ,... ,rn - 1

and a = 1, ... , d, we can consider the O(d, d) transformation that maps the za = 0

frame to the Xa = 0 frame. Here we find that the resulting theory is equivalent to the

original one if d is even or to the theory with opposite chirality if d is odd. In other

words, for d odd, if we start with a chirality such that the theory reduces to IIA for

za = 0, the same theory reduces to type IIB for X = 0, and vice versa.

The two T-duality frames bi = 0 and 8i = 0 are mapped into each other by the

O(D, D) transformation J that exchanges x and z,

JMN 0 1 - (4.176)
1 0)

The action evaluated in one duality frame is equivalent to the action evaluated in

the other duality frame, but written in terms of field variables that are redefined

according to the O(D, D) transformation (4.176). To make this more explicit, we

introduce

5 - JX-J = X-1 . (4.177)

In components, we obtain

gij - bikgkibij bikgki(
N = (4.178)

- gkb, g J
If we view I5 as the generalized metric associated with a new metric g' and a new

antisymmetric field b', we would write

/g'ij -gikb's i pnk
= kj ), (4.179)

b'ig'ki g . - b'/g'klb. bikjkj §ij - ik kl

where in the second step we defined the tilde fields by

" g -+ jij = g'i , and ,. b' (4.180)
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The duality transformations of the metric imply that they satisfy [7]:

§,j = =E gkl Eu , gi - ik jklil , (4.181)

where SLi = gij + b and 513 = { -1)j = N + be'.

We note that the field redefinitions (4.180) interchange upper with lower indices

in order to work consistently with the lower indices of the dual coordinates ;i. In

particular, the diffeomorphisms in the dual coordinates are generated by f in that

the gauge transformations (see (2.37) and (2.38) of [7]) reduce for Oi = 0 to

ogsU = s+ 5i E + Ej Sik. (4.182)

Viewing 5jV with upper indices as a covariant rather than a contravariant tensor,

this is the conventional transformation of such a tensor under infinitesimal diffeomor-

phisms.

The double field theory action SNS-NS for the NS-NS fields is, of course, the same

as the double field theory action SDFT for the low energy bosonic string. We thus

write

SNS-NS = SDFT - = S [g,b,d,0] (4.183)

with S a function of the four arguments written above. In the dual frame 0 = 0 we

have

SNS-NS = SDFT =S [j,, d, - (4.184)

The replacements in the arguments of S are, explicitly,

gij- Q g' ->+ §i , byj ->+ bl , 83-- 5 (4.185)

Let us now see how this generalizes in presence of the RR fields. Before we give

a general discussion in the next section, it will be instructive to first examine more

explicitly, along the lines reviewed above, what happens in the frame 83 = 0 with
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' :/ 0. Let us first evaluate the field strength IF) in this frame,

D-1 1

IF) = P .. --- I0) . (4.186)
p=0

We introduce a dual potential C according to

Ci ... = ai Ej1... pjj...j_p Oil-D-" , (4.187)

where the numerical coefficients have values a = (-1)PCP-1)+1/(D-p)! whose deriva-

tion is omitted in this chapter. Then (4.186) reads

D-1

IF) = 1 P7 1 6J~ ji.~ 1 .jD-P1 5joil P1?, 2 ... *zP 10)

p=O 
(4.188)

D-1

= Cea+1 (-1)P Ei..ii ... -d-p Dpis . .. Op1)

where we introduced in analogy to (4.138)

Fil .. = p 6U10O- . (4.189)

We should stress that (4.187) does not involve any metric and so this is not the Hodge

dual. Consequently, O is not a covariant tensor in the usual sense. However, what we

actually have to verify is that, as in (4.182), this is a tensor in the T-dual sense that

it transforms under i rather than ( with a Lie derivative. To see this, we examine

the gauge transformation (4.109)

ogIx ) = E |x ) ± k kpjpk Ix). (4.190)

The transport term gives manifestly rise to the correct structure, so we focus on the
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second term, denoted by 6g, which yields

Dg|X) = a, p + ..) i ... k 1...kD -_ . . ..i1 - ) . (4.191)
p=0

To simplify this, we use that a fully antisymmetric tensor with D + 1 indices in D

dimensions vanishes identically,

0 = (D + 1) [j Eil...pk...kDp] (4.192)

= (P + 1)5& [l ei1 ... ,ip)k... kD-p - (D - p)5 [ki Eli,...ipik2...-kD-I-

Using this in (4.191), one obtains

D

= ( p! Ei ...ikl ...kD-, 6 O ... k -,pii - i/ - 0) , (4.193)
p=0

where we relabeled ki <-+ j. In total, we read off

6 -C---, = ±- (D - p)9ltI9 Olkli 2 .iD-,] -C. .(il...D-p . (4.194)

This is the dual Lie derivative with respect to i of a dual p-form, where we note that

upper indices are now covariant indices and so the signs in (4.194) are the conventional

ones, c.f. (4.171) and (4.182).

So far we have seen explicitly that the field strengths in the dual frame ai = 0, 9 #

0, take the conventional form when written in terms of the right 'T-dual' variables

O4'"6". We will now prove more generally that the action and duality relations in the

frame 9i = 0 yield the T-dual type II theory written in terms of the T-dual variables J

and I for the NS-NS fields and a for the RR fields. Since the O(D, D) transformation

inverts all space-time dimensions, it contains a timelike T-duality and thus maps, say,

IIA and IIA* into each other.

To proceed, we describe the field redefinition (4.187) by introducing the following
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tilde variable of the O(D, D) spinor,

i = Six, Si = C . (4.195)

This corresponds to the action of the spinor representative of the O(D, D) transfor-

mation J = J- that exchanges x and zj, which for convenience we have chosen to be

C, but we stress that this field redefinition does not affect the coordinate arguments.

In terms of the tilde variables (4.195) we have, using (4.24),

= 1 1
x rm M (Sli) = rMSflMi

1 1 £N JM (4.196)
=jMNsjNm* = sNM S - M M =

where we introduced a redefined derivative and Dirac operator,

I.FN2N, 0 N JMNOM (4.197)

Recalling that the matrix JMN has only the non-vanishing matrix elements J'3 and

Jg that are equal to Kronecker deltas we find that

+ = ±bi i. (4.198)

As expected, the &i and 5' derivatives have been exchanged. For the Lagrangian we

now find

= g($x)fSu$x = ( f(S fSt = -()fSg , (4.199)
4 4 4

where we used the sign factor in (4.83). We see that in tilde-variables the RR action

takes the same form as in the original variables, up to a sign. It can also be checked

that the duality constraints in the dual frame take the form

= C 1 S 1 i, (4.200)
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which differs from the constraints in the original frame by a sign factor.

It follows now that setting ai = 0 in the evaluation of the Lagrangian as written

in the first form in (4.199) is equivalent to setting 0 = 'ip's in the evaluation of

the Lagrangian as written in the last form in (4.199). But this latter evaluation is

identical to our original computation in sec. 5, with By derivatives replaced by 5'
derivatives and C,...j replaced by di.h. Of course, this time we get an extra minus

sign.

Due to this sign change in the RR action we conclude that if the theory reduces

for 5' = 0 to IIA, the same theory reduces for Oi = 0 to IIA*, but written in terms of

the T-dual variables. We thus have, for instance,

SDFTL = SHA 9, b7 d,, 9] , SDFTL = SUA*[ , , d,,5 , (4.201)
16=0L 80

where we indicated by SDFTIr the full double field theory action of type II, while SrA

and SHA- are the low-energy actions of IIA and IIA*, respectively. Moreover, the

corresponding duality constraints differ by a sign. This is the expected sign given

that the stress-tensor from the RR sector in the dual frame must have sign opposite

to the one in the original frame.

Similarly, if the chosen chirality is such that the theory reduces in the a' = 0

frame to type IIB, the same theory reduces in the ai = 0 frame to type IIB*. We

finally note that had we chosen the equally valid parametrization S = -Sn, we would

have obtained either IIA* or IIB* in the frame 5 = 0 and the conventional IIA or

IIB theories in the opposite frame.

We close this section with a brief discussion of intermediate frames, which we

illustrate with the simplest case of one T-duality inversion. Thus, we split the indices

as xi = (X1, Xa) and assume that the non-trivial derivatives are (01, ca), where '1'

denotes the special direction. As above, we consider a field redefinition that takes the
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form of the T-duality inversion,

' = Six = (~?I1 ± #1)i) , (Cal...api-- @ + pCia....,,al - - ) |0)
P

(Cai... ap 4lVa1. ... ap +PCal....._,al ... - -1)| 0)

C ... 7,@1 -.- -@i 10). (4.202)

This implies that the redefined C(P are given in terms of the original ones by

l. Ca 2...ap if i1 = 1, i 2 = a2 , ... ,ip=ap (4.203)
C1a...,a if i1 = 1 , ... ,i, = a,.

Put differently, the new p-forms are obtained from the original ones by adding or

deleting the special index. It follows that this redefinition interchanges even and odd

forms and thus changes the chirality of X. The field strength then reads

OX = (" '+?p151)(0 1 +pi)x' = (1+1)(4)a(-a)& + 151)x = Si @iayx',

(4.204)

where we recognized the transformed (primed) derivatives & = ( -1, -a), recalling

that the transformation hi in (4.32) changes the overall sign of the coordinates Xa.

In precise analogy to (4.199), we can now conclude that the action in the frame

with 5', o9 $ 0 takes the same form as in the frame 54 = 0, just with all field variables

replaced by primed variables. Since the primed variables have the opposite chirality,

it follows that if the theory reduced for 54 = 0 to, say, type IIA, in the new frame

it reduces to type IIB if g1n is positive and to type IIB* if g11 is negative. More

generally, if we evaluate the theory in any frame that results from the 5' = 0 frame

by an O(d, d) transformation, we obtain the corresponding T-dual theory.
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4.7 Massive type IIA theories

4.7.1 Reformulation of gauge symmetries

The gauge invariance of the type II double field theory requires for (M transformations

the strong form of the constraint, but for A transformations only the weak constraint.

Here, we will perform a change of basis for the gauge parameters such that, for the RR

sector, the (M transformations are consistent with a weaker form of the constraint.

We start by rewriting the (M gauge transformation of X as follows

Egg = (MOMX ± OMNpMpNX
2 ±(4.205)

= "aMX - I rMrN NaMX M i Ma( NX2 2

The last term is of the form of a field-dependent A gauge transformation $A and can

therefore be ignored. We then use the Clifford algebra in the second term,

= M&X - 1(7MN-r FNPM )&&X I lFNFMwNMX. (4.206)
2 2

Using the 'slash' notation (4.92), we finally get

oa = Ox, (4.207)

which is the form of the (M gauge transformations we will use from now on.

We will show next that, starting from (4.207), gauge invariance of the RR action

and closure of the gauge algebra uses only the constraint

7MN MaNA = amaMA = 0 , A = {X, A,M} . (4.208)

In particular, we do not need to use the strong form of the constraint, &MAaMB = 0.

This observation does not imply, however, that the RR sector is 'weakly constrained'

in the sense that fields but not their products need to satisfy the constraint. In fact,

(4.207) is not a consistent transformation rule assuming that X and ( are weakly
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constrained. Before discussing this in more detail, we investigate some consequences

of the form (4.207) of the gauge transformations.

The original gauge transformations have the property that a gauge parameter of

the form V' = ME is 'trivial' in that it generates no gauge transformation. After

the above redefinition, this statement is modified. We compute

1 1
JoeX = irNFMONE 0 MX = IrNaN (E rMmX), (4.209)

assuming only the weaker form (4.208) of the constraint. Thus, the gauge variation

(4.209) takes the form of a field-dependent A gauge transformation,

JoeX = $A , A = E)OX. (4.210)

Therefore, the statement that (M = aMe leads to a trivial gauge transformation

leaving the fields invariant has to be relaxed to the statement that it leaves the fields

invariant up to a A gauge transformation, but it has the advantage that in this weaker

form only the constraint (4.208) is required.

We compute next the gauge variation of OX under (4.207), which is needed in

order to verify gauge invariance,

12 (4.211)

= 09 $X + (2 r}MN - r NrM )PoM0PX -2V4

The last term contains rMrP) -- 7MP and therefore vanishes by the weak constraint

(4.208), while the second term reduces to (M0M$X. In total we have

Jg ($X) = (M4oX + $. X - (4.212)

This result agrees with the variation under the original form of the gauge transfor-

mations determined in [12] (as it should be, because the modification is a A gauge

transformation that leaves OX invariant), but in the original derivation the strong con-
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straint was used. As the proof of gauge invariance of the action and the self-duality

constraint given in [12] requires only the transformation rule (4.212), we conclude

that gauge invariance requires only the weaker constraint (4.208).

Let us verify that also closure of the gauge transformations on x requires only this

weaker constraint. First, for the modified form of the gauge transformations there is

no non-vanishing commutator between A and ( gauge transformations because $x is

A-invariant. Thus, it remains to verify closure of the (M transformations, for which

we find

[6J1,6 2] x = g12X + X . (4.213)

Here,

= [ = 2N (1 +2) , (4.214)

which is given by the usual 'C-bracket' that characterizes the closure of (M transfor-

mations on the NS-NS fields [6,7], and

A = ($2 - 1 i2)>X. (4.215)

The verification of (4.213) is a straightforward though somewhat tedious exercise in

gamma matrix algebra, which we defer to the appendix. The computation makes

repeated use of the constraints, but only in its relaxed form (4.208). Thus, on the

RR field x all gauge symmetries close using only this weaker constraint.

We close this section by computing the form of these redefined (" gauge trans-

formations (4.207) for 52 = 0. For the diffeomorphism parameter (' we find

ogx = Zi j (5Ci...i,,i# -/ ... 0) . (4.216)
P

Using the oscillator algebra (4.9) to simplify this, we obtain

ogCi,,i = (p + 1)W&[jCii...,ip] = VF...i,, . (4.217)
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For the b-field gauge parameter i one obtains

gx = io x= S 1C0..., /'9 .- ip|0) , (4.218)
P P

from which we read off

6;C = AF. (4.219)

The diffeomorphism symmetry in the form (4.217) is sometimes referred to as 'im-

proved diffeomorphisms'. They can be introduced for any p-form gauge field by adding

to the familiar diffeomorphism symmetry (4.171) a field-dependent gauge transfor-

mation with (p - 1)-form parameter

Al... ,_,= -VC5i1... ,,- (4.220)

Similarly, (4.219) is obtained from the original ( transformation (4.174) by adding

an abelian gauge transformation with parameter A = -( A C. Thus, the redefinition

of the gauge transformations leading to (4.207) is precisely the double field theory

analogue of the improved diffeomorphisms in conventional gauge theories. In this

form the gauge field appears only under a derivative, which will be instrumental for

the generalization we discuss next.

4.7.2 Massive type IIA

In the previous section we have seen that gauge invariance and closure of the gauge

algebra requires only the weaker constraint (4.208) for the RR sector. Naively, this

would allow for field configurations like

x(x, J) = Xo() + xiz), (4.221)

where Xo,1 are arbitrary functions of their arguments, and similarly for the gauge

parameters. However, as mentioned above, there is a subtlety, because the gauge

variations (4.207) are not consistent assuming only the weak constraint. In fact, 6gy
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on the left-hand side should satisfy the constraint, but with x and ( being weakly

constrained their product on the right-hand side in general does not satisfy the con-

straint. Rather, one should introduce a projector that restricts to the part satisfying

the weak constraint [6], while our computation above did not keep track of these

projectors. After the insertion of projectors, the gauge invariance of the action and

closure of the gauge algebra does not follow from our computation (and is most likely

not true). Moreover, the RR fields interact with the NS-NS sector that is still strongly

constrained, and so it is presumably inconsistent to have a weakly constrained RR

sector. Thus, a complete relaxation of the strong constraint must await a resolution

of this problem for the NS-NS sector. However, if we only assume the function X1 in

(4.221) to depend linearly on z, the resulting gauge variations and field equations are

independent of 1, and therefore the constraint is satisfied without insertion of pro-

jectors. (In particular, the energy-momentum tensor of the RR fields depends only

on Ox [12] and is thereby independent of L.) An ansatz with linear iz dependence is

therefore consistent, and we will investigate its consequences in what follows.

We will show that the type II double field theory defined by (4.4) and (4.5) leads

to massive type IIA if we assume that the RR spinor x depends on the 10-dimensional

space-time coordinates and, in its 1-form part, also linearly on a winding coordinate.

We thus write

x(x, z) = C...s (x) VIi# ... *'P + mi4@1) 0) , (4.222)

where we assume that x is of negative chirality such that the sum extends only over

odd p. Here we have singled out a particular (winding) coordinate direction, but we

stress that this choice is immaterial for the final result: we could have chosen any

linear combination of the zi, which would merely amount to a rescaling of the mass

parameter m. Let us also note that it would be consistent to allow for a linear z

dependence in other p-form parts, both in x and in its gauge parameter A. We will

comment on this more general case below.

Let us next evaluate the field strength $x for (4.222). In contrast to (4.137), the
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term #ib' in $ acts now non-trivially,

OX = C ...i, VO - - -V)''|0) + #55 (mzio±)#10)
P

E (p + 1) a, Ci2 ... i ?, ?i$ 10) + m0) (4.223)

- p I ) (Fm)i ,...ip+i4'pi' ... 4,Z+1 10)
P+

P

where we used the oscillator algebra (4.9). We observe that the non-trivial action of

ia5' leads to a reduction of the form degree such that the '1-form potential' precisely

leads to a non-vanishing 0-form field strength or, in other words, that the z dependent

part acts effectively like a '(- 1)-form'. The m-deformed field strengths defined in the

last line of (4.223) then read

F ) = m , F -+1) = F(P+-) = dCCP) for p > . (4.224)

In the action the modified field strengths (4.144) enter, which are now deformed

according to (4.224),

Fm = eb( A (dC ± m). (4.225)

This reads explicitly

P(O) =m

) F(2) - mb(2) (4.226)

.P4)= F(4) - b(2) A F(2) + Imb(2) A b(2) , etc.in 2

These are precisely the m-deformed field strengths appearing in massive type IIA,

see, e.g., [71].

We turn now to the gauge symmetries acting on (4.222), starting with the A-

transformations (4.107). In analogy to (4.222) it is natural to allow here also for a

linear i dependence in the 0-form part of A, but such a contribution will be annihilated

by $ due to OIl0) = 0. We note, however, that a linear z dependence in the higher-
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form components of A can lead to a rigid shift of the RR forms, which is trivially a

global symmetry since all RR potentials appear under a derivative. We conclude that

the A gauge transformations are unchanged compared to the massless case (4.169).

The (M transformation (4.207) evaluated for the diffeomorphism parameter (i yields

no new contribution since

-x == OiYx = 0, (4.227)

due to the action of two annihilation operators #/j on (4.222). Thus, the diffeomor-

phism symmetry is given by (4.217), as for m = 0. Finally, the gauge transformation

of the b-field gauge parameter l, receives a non-trivial modification,

ox I = Fioiojbx = m~PvivV 1 I0) = m&?il0). (4.228)

Together with the gauge transformation (4.219) for m = 0 we thus obtain

JgC = AdC+mi. (4.229)

Therefore, for m # 0 the RR 1-form CM transforms with a Stfickelberg shift symme-

try under the b-field gauge transformations, which is precisely the expected result for

massive type IIA [71]. We note that the modified field strengths Fm are manifestly

invariant under the A gauge transformations. The invariance under i transformations

can be easily verified with ogb( = d ,

Jg6m = -(e- A (dC + m)) = - A m + e-( 2 A d( AdC + mi) (4.230)

= -dAFm + e-b AdA(dC+m) = -dlAFm+dEAFm = 0.

Let us now consider the double field theory action and duality relations (4.4) and

(4.5), evaluated for (4.222), and compare with the dynamics of massive type IIA. As

in (4.148), the action reduces to the sum of kinetic terms, but here for the modified
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field strengths (4.225),

110 1 10  1
AR *PP 2P

p=o p>1

The action contains now also the 0-form field strength, which contributes a cosmo-

logical term proportional to m2, as made explicit in the second equation. Moreover,

we can use the Stiickelberg gauge symmetry (4.229) with parameter to set C 1 ) = 0.

From the second equation in (4.226) we then infer that the kinetic term for C) re-

duces to a mass term for the b-field. Thus, the b-field becomes massive by 'eating'

the RR 1-form.

The self-duality constraint (4.5) reduces to the same duality relations as in (4.156),

again with all field strengths being m-deformed,

P()= - P(P+1 ) *pg0-) . (4.232)

This democratic formulation is equivalent to the conventional formulation of massive

type IIA. In the following we compare the two formulations in a little more detail.

The RR action of massive type IIA in the standard formulation is given by [28,71]

SRR = J( M)A *A A* +m2*1

+ J(2)(dC3))2 - (b(2))2 dC(1)dC(3 ) + (b(2))3(dC(1))2 (4.233)

+ m(b(N2 )3 dC(3 ) - m(b(2))4dC(1) + m2(b())5)

where for simplicity we have omitted all wedge products between forms in the topo-

logical Chern-Simons terms Scs in the second and third line.4 We note in passing that

this Chern-Simons action simplifies significantly if we formally introduce a (-1)-form

C(- 1 ) and then define

A = e-) A (C + C(-')) , (4.234)

4 This action differs from eq. (2.8) of [71] in certain numerical factors, which is due to different
conventions regarding differential forms. Moreover, there is a mismatch of a relative factor of -j2
between kinetic and Chern-Simons terms, but (4.233) is consistent with [28].
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where C still represents the formal sum of all (odd) p-forms with p > 1. The Chern-

Simons action can then simply be written as

Scs = 2 b(2) A d M A d . (4.235)

More precisely, expanding (4.235) according to (4.234), the resulting action can be

written, up to total derivatives, such that CC-i) enters only under an exterior deriva-

tive, and then setting m = dC(-) reproduces precisely the Chern-Simons terms in

(4.233). Formally, this drastic simplification can be understood as a consequence of

the b-field gauge transformations (4.229), which we rewrite here as

6JC = A= dA A (C± C(-)) -d( A (C±C +C1)) . (4.236)

The last term takes the form of a field-dependent A gauge transformation and can

thus be ignored. The A defined in (4.234) is then i gauge invariant,

-A A e-b(2 ) A (C + C(-') +e-b( 2 ) A (d A (C +C(-))) = 0, (4.237)

where we have taken C- 1 to be gauge invariant. From this we infer that (4.235)

is the only term invariant under gauge transformations (up to a boundary term).

Note that we could have included the (-1)-form potential into the sum of all p-forms,

in which case the gauge transformations would be formally as in the massless case.

We have verified the exact equivalence between the equations of motion following

from (4.233) and those derived by varying (4.231) and then supplementing them by

the duality relations (4.232). For the Einstein equations this is easy to see because

the Chern-Simons terms that are present in the conventional formulation do not

contribute to the variation of the metric. The energy-momentum tensor then agrees

for both formulations owing to the relative factor of I between the kinetic terms in2

(4.231) and (4.233), which compensates for the doubling of fields in the democratic

formulation. For the field equations of the p-forms the on-shell equivalence is a

163



consequence of the Bianchi identities

d'p=-E A Fm-2 , (4.238)

following from (4.225). More precisely, the duality relations yield the second-order

field equations as integrability conditions of d2 = 0, including the required source

terms originating from the Chern-Simons terms in the conventional formulation.

Thus, the double field theory leads precisely to massive type IIA.

4.7.3 T-duality and massive type IIB

We discuss now the double field theory evaluated for fields depending on coordinates

that result from the 10-dimensional space-time coordinates X by a T-duality inver-

sion. The 0(10,10) invariance of the constraints implies that fields resulting by an

0(10, 10) transformation from fields depending only on the x' (thereby satisfying the

constraint) also satisfy the constraint. For instance, we may perform a single T-

duality inversion in one direction, which exchanges a 'momentum coordinate' xi with

the corresponding 'winding coordinate' zfj. The double field theory evaluated for this

field configuration then reduces to the T-dual theory. If it reduces to type IIA in one

'T-duality frame', it reduces to type IIB in the other frame, when expressed in the

right T-dual field variables [12]. The mapping of (massless) type IIA into type IIB

under T-duality can therefore be discussed without reference to dimensional reduc-

tion, while in the usual approach this relation is inferred from the equivalence of type

IIA and type IIB upon reduction on a circle [54].

Our task is now to see how this generalizes in the massive case. The usual point of

view is as follows [71]. Massive type IIA reduced on a circle leads to a massive N = 2

theory in nine dimensions, but there is no corresponding massive deformation of type

IIB that could lead to the same nine-dimensional theory upon standard reduction.

Rather, to identify the proper T-duality rules one has to perform a Scherk-Schwarz

reduction [73] of massless type IIB, which introduces a mass parameter and leads to

the same massive N = 2 theory in nine dimensions. In contrast, in double field theory
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the T-dual theory is identified without any dimensional reduction, as we discussed

above, and so the puzzle arises what the T-dual to massive type IIA is if there is no

massive type IIB in ten dimensions.

In order to address this issue let us analyze the double field theory evaluated for

fields in which one space-time coordinate, say xio, is replaced by the corresponding

winding coordinate. We split the coordinates as x = (XA, X 0 ), p = 1,..., 9, and

replace (4.222) by the ansatz

x(x, z) = C ...,(, i)#4 ---#iZ + mzi@)0) , (4.239)

where again the sum extends over all odd p. In the massless case the double field the-

ory reduces to type IIB, which can be made manifest by performing a field redefinition

that takes the form of a T-duality inversion in the 10th direction [12].1 This T-duality

transformation acts on the RR spinor via the spin representative Sio = $10 + V)10,

i.e., we define

x = Siox = C ... ? - -i -. + mi(V)10 + i1o) 01)10), (4.240)

where in the first term we introduced redefined variables denoted by C'. As S10 is

linear in the fermionic oscillators the sum extends now over all even p. Specifically,

one finds (compare eq. (6.41) in [13])

C2 ...f if i 1 = 10, i2 =[ 2 , - , = P
Il---Sp(4.241)

SC101... p if i = i,... , ip = p .

Thus, the dual field variables are obtained by adding or deleting the special index,

thereby mapping odd forms into even forms, as required for the transition from type

IIA to type IIB. By performing this field redefinition (and renaming the coordinates)

5 fHere we assume that x10 is a space-like direction, gio,1o > 0. For T-dualities along time-like
directions the dual theories are the so-called type I1* theories [12], which have a reversed sign for

the RR kinetic terms [63]. Similarly, the double field theory discussed here contains also a massive

type IIA*.
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one infers that evaluating the theory for fields depending on x" and ijo is equivalent

to evaluating the theory for fields depending on xi, but with the opposite chirality

for the spinor, i.e., replacing odd forms by even forms. (See sec. 6.2 in [13] for more

details.) Now, in the massive case we have to take into account the second term in

(4.240), which reduces to mi? 10Vl1 . Thus, our task is to evaluate the double field

theory for

X(x, z) = C1... p (x) # - -'O/ + mifg,1o,| 0), (4.242)
P P

dropping the primes from now on. In other words, we have to evaluate the double

field theory for a field configuration in which the 2-form part depends now linearly

on z,

)= C(x) + 2mzi o[0 j] , (4.243)

with all other fields still depending only on the 10-dimensional space-time coordinates.

We start by computing the field strength

F = $X = Fm-o - #1j5 1 (mzi)5 17P0 |0) = Fm-o - mV10|0). (4.244)

Therefore, the field strength of the RR 0-form C0 ) gets modified in the 10th compo-

nent,

F(1) = dC(0 ) - mdxl0  F = 9 C(0) - m6|o , (4.245)

while all other field strengths F(P), p $ 1, remain unchanged. The 'hatted' field

strength (4.144) then receives corresponding modifications,

F = e- A (dC - mdxz0 ) , (4.246)

and thus in components

(3) F - bA dC(0) + mb) A dx1O , etc. (4.247)
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The dynamics is described by the same action (4.148) and duality relations (4.156)

as before, but with all field strengths replaced by their m-deformed version (4.246).

This theory breaks manifest 10-dimensional covariance in that the 10th coordinate

is treated on a different footing in (4.245). We observe, however, that this theory can

be obtained from standard (covariant) type IIB by performing the redefinition

C(0) -+ C(0) - mX10 , (4.248)

as is apparent from (4.245). Thus, the 'deformation' induced by the m-dependent

2-form contribution in (4.242) can be absorbed into a redefinition of the lower RR

form C(O), and therefore the obtained theory is nothing but standard type IIB after a

somewhat peculiar (non-covariant) redefinition. For this reason we do not introduce

a new symbol for the 'deformed' field strengths.

In order to understand the consequences of the non-covariance let us inspect the

gauge symmetries. As above, the A gauge transformations are unchanged compared

to the massless case. The gauge transformations (4.207) parametrized by (M applied

to (4.242) give

= O~ ± 'i)"x = m=0 rn(bioIo ± e 0) (4.249)

= Jex _- m p/10, 1 +b |0 I0) .mo

We read off the m-deformed gauge transformations which are modified on C,10,

ogCp10 = 2 gFifo,mo - mr, = 2(gFio] , (4.250)

and on C(0)

6JC(O) = (j8jC(O) -m(lo = F, (4.251)

where we used (4.245) for both equations in the last step. Thus, the nine-component

parameter (, acts as a Stickelberg symmetry on the off-diagonal RR 2-form compo-

nents, while the 10th diffeomorphism parameter (10 acts as a Stfickelberg symmetry
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on the RR 0-form. The field strength of C, 10 read off from (4.247),

Ftl10 = 2[,Cyjo + mb, + 1oCj, - b,a10 C(0 ) - 2biot,,vC(0 ) , (4.252)

is invariant under the , shift symmetry. Moreover, (4.245) is invariant under (10,

i.e., the theory is diffeomorphism invariant under x 10 - x10 - 10 (x) and (4.251),

opoFM) = -md( 10 + md( 10 = 0. (4.253)

Thus, despite the non-covariant formulation that treats the 10th direction on a differ-

ent footing, the theory is still fully diffeomorphism invariant, as it should be in view

of the fact that it results from standard type IIB by the redefinition (4.248). Since

this invariance under non-covariant diffeomorphisms is somewhat unconventional, let

us also verify this for the component form given in (4.245),

5gF = 8i( j8C(0 ) - m 10) = jaj(Q9C(0)) i j 3C(0 
- (4.254)

- g&Fi+± (.C -ms ) = g Fi+± &F .

Thus, the m-deformed field strength transforms under the m-deformed diffeomor-

phisms (4.251) with the usual Lie derivative of a 1-form field strength. Therefore,

the action and duality relations build with this field strength are diffeomorphism

invariant.

To summarize, we have identified the 10-dimensional theory that is the T-dual to

massive type IIA and that can be seen as a 'massive' formulation of type IIB. It is

unconventional in that the 10-dimensional diffeomorphism symmetry is not realized

in the usual way, but non-linearly in the 10th direction. This is, however, analogous to

the deformation of the gauge transformation of C() under the b-field gauge parameter

in massive type IIA, and since the diffeomorphisms and b-field gauge symmetries are

on the same footing in double field theory this result is not surprising.

Let us now discuss the physical content. We can choose a gauge for the ,

Stfickelberg symmetries by setting C,10 = 0. From (4.252) we then infer that their ki-
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netic terms give mass terms for the 9-dimensional components of the b-field, rendering

these components massive. This is analogous to massive type IIA, but in the latter

case the full 10-dimensional b-field becomes massive, carrying 36 massive degrees of

freedom, while here only the 9-dimensional components become massive, carrying 28

massive degrees of freedom. It turns out that the 8 missing degrees of freedom are

carried instead by the Kaluza-Klein vector field. In order to see this, let us perform a

Kaluza-Klein decomposition of the kinetic term involving C(0) (but we stress that we

are not performing a reduction in that the fields still depend on all 10 coordinates).

The standard Kaluza-Klein decomposition of the (inverse) metric reads

g = (YPi - A ) (4.255)
-A" f + AP A,

where -y, denotes the 9-dimensional metric, A, is the Kaluza-Klein vector and f the

Kaluza-Klein scalar. If we choose a gauge for the " Stiickelberg symmetry by setting

C-) 0, we infer with (4.245) that the relevant term in the Lagrangian reads

1 1 1

L =- /9gUFiF = -- jg 10 '0FoF = - m2 (1 + APA,) . (4.256)

Therefore, the Kaluza-Klein vector receives a mass term and so becomes massive by

'eating' the RR scalar C(0), thus carrying 8 massive degrees of freedom.

We have to point out that the above analysis of the physical content was somewhat

naive. In fact, one may wonder why this theory, if obtained from massless type IIB

by the mere redefinition (4.248), exhibits a spectrum that is rather different from the

usual physical content of type IIB, e.g., with (parts of) the b-field becoming massive

and a cosmological term in (4.256). The point is that such a classification of the

masses of various fields is only meaningful with respect to a particular background.

For instance, type IIB admits a 10-dimensional Minkowski solution, with all field

strengths zero in the background, and it is with respect to this background that the

b-field is massless. Now, after the redefinition (4.248) the theory of course still admits

the same Minkowski vacuum, but now we have to switch on a 'background flux' in
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order to realize this solution,

(gij) = 7ij, (dC(0)) = mdx'0 , (4.257)

because only then we have (F) = 0 in the Einstein equations, as follows with (4.245).

Around this background, the b-field is still massless.

Thus, there is no conflict of our above analysis of 'massive' type IIB with the

usual way type IIB is presented. The presence of massive fields just means that the

background space-time we consider is not flat space, but rather a background that

is appropriate for the comparison to the T-dual massive type IIA. In fact, massive

type IIA does not admit a Minkowski (or AdS) vacuum, but instead the D8-brane

solution that is invariant under the 9-dirnensional Poincare group corresponding to

its world-volume [71]. The T-dual configuration is the D7-brane solution of type IIB,

which is only invariant under the 8-dimensional Poincar6 group [71], and the above

analysis has to be understood with respect to such a background.

Let us close this section by comparing our result with the usual story that relates

massive type IIA to the Scherk-Schwarz reduction of massless type IIB [71, 72]. In

Scherk-Schwarz reduction one allows some fields to depend non-trivially on the inter-

nal coordinates in such a way that this dependence drops out in the effective lower-

dimensional theory. For the Scherk-Schwarz reduction of type IIB to nine dimensions

relevant for T-duality, the Kaluza-Klein ansatz allows for a linear xrO dependence for

the RR scalar C(0),

C(0)(X'A, XI) = c(0)(Xz) - mx 10 , (4.258)

where c(') denotes the nine-dimensional field. For all other fields the ansatz is as for

circle reductions, i.e., the fields are simply assumed to be independent of x 1 . In the

resulting action the dependence on x1O drops out, leaving a massive deformation of

the usual circle reduction of type IIB.

Instead of this Scherk-Schwarz reduction one may first perform the redefinition

(4.248) and then employ a standard reduction, as is apparent by comparing (4.258)

with (4.248). We conclude that the Scherk-Schwarz reduction of massless type IIB
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gives the same 9-dimensional theory as the conventional reduction of the 'massive'

formulation of type IIB. Thus, our results are consistent with [71,72], and the formu-

lation of type IIB that appears naturally in double field theory is already adapted to

the Scherk-Schwarz reduction.

4.8 Conclusions

In this chapter we introduced a double field theory formulation for the low-energy

limit of type II strings. T-duality relates different type II theories, a feature that does

not occur in bosonic or heterotic string theory. In the double field theory built here

each of the type II theories can be obtained by choosing different 'slicings' within the

doubled coordinates. Consistent slicings are those allowed by the O(D, D) covariant

strong constraint 9MM = 0 that originates from the LO - Lo = 0 constraint of closed

string theory. If we consider two slicings related by an odd number of T-duality

inversions and one yields type IIA, the other must yield type IIB. The double field

theory necessarily features the so-called type IIA* and type IIB* theories, which are

related to the conventional type II theories via T-dualities along timelike directions.

Despite this unification, the actual invariance group of the theory is only Spin+ (D, D)

and therefore does not contain any of the T-duality transformations that relate dif-

ferent type II theories. This means that the Pin(D, D) transformations that are not

in Spin+(D, D) must be viewed as dualities rather than invariances. More precisely,

while we fix the chirality of the spinor x from the outset, the opposite chirality is ob-

tained by the field redefinition induced by the appropriate T-duality transformation.

In section 7 of this chapter, we have shown that the type II double field theory

defined by (4.4) and (4.5) can be extended by slightly relaxing the strong constraint

such that the RR fields may depend simultaneously on all 10-dimensional space-time

coordinates and linearly on the winding coordinates. In case that only the RR 1-form

carries such a dependence, the double field theory reduces precisely to the massive

type IIA theory. We have shown that the T-dual configuration corresponds to the

case that the RR 2-form (4.243) of type IIB carries such a dependence. This gives rise
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to a 'massive' version of type IIB, whose circle reduction to nine dimensions yields the

same theory as the Scherk-Schwarz reduction of conventional type IIB. This massive

formulation of type IIB is still invariant under 10-dimensional diffeomorphisms, with

the 10th diffeomorphism being deformed by the mass parameter.
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Chapter 5

KV 1 Supersymmetric Double

Field Theory

A bulk of this chapter appeared in "I = 1 Supersymmetric Double Field Theory"

with Olaf Hohm [15] and is reprinted with the permission of JHEP.

Summary : We construct the K = 1 supersymmetric extension of double field

theory for D = 10, including the coupling to an arbitrary number n of abelian vector

multiplets. This theory features a local 0(1, 9 + n) x 0(1, 9) tangent space symmetry

under which the fermions transform. It is shown that the supersymmetry transfor-

mations close into the generalized diffeomorphisms of double field theory.

5.1 Introduction

In this chapter we construct the K = 1 supersymmetric extension of double field

theory for D = 10. This theory features two copies of the local Lorentz group as tan-

gent space symmetries, under which the fermions naturally transform. Consequently,

the formulation of double field theory that is most useful for our present purpose is

the frame or vielbein formulation. As usual, we may introduce frame fields EmA

using the splitting M = (j, i) of the O(D, D) index and A = (a, a) is the flat or

frame index. In the frame formulation there is an 0(1, 9 )L x 0(1, 9 )R 'tangent space'

gauge symmetry, with a, b... = 0,... , 9 and d,I... = 0,..., 9 denoting O(1, 9 )L and
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0(1, 9)R vector indices, respectively. Such a frame formalism has been developed by

Siegel prior to the generalized metric formulation [5]. Actually, Siegel's formalism

allows also for the larger tangent space group GL(D) x GL(D), but here we will re-

strict to the Lorentz subgroups in order to be able to define the corresponding spinor

representations. In this formalism one may introduce connections for the local frame

symmetry and construct invariant curvatures. This, in turn, allows one to write an

Einstein-Hilbert like action based on a generalized curvature scalar R, which provides

an equivalent definition of double field theory,

S = Jd1ox diz e-d R(E, d), (5.1)

where we defined e-2 __ e-2 4. In the frame formulation the theory has a global

0(10, 10) symmetry, a 0(1, 9)L x 0(1, 9)R gauge invariance and a 'generalized diffeo-

morphism' symmetry.

In this paper we will introduce fermions that, as usual in supergravity, are scalars

under (generalized) diffeomorphisms and 0(10,10), but which transform under the

local tangent space group 0(1, 9 )L x 0(1, 9 )R. The fermionic sector of supergravity

is thereby rewritten in a way that enlarges the local Lorentz group. Similar attempts

have in fact a long history, going back to the work of de Wit and Nicolai in the mid

80's, in which they showed that 11-dimensional supergravity can be reformulated

such that it permits an enhanced tangent space symmetry [75]. More recently, a

very interesting paper appeared which showed in the context of generalized geometry

that type II supergravity can be reformulated such that it permits a doubled Lorentz

group [27], as in double field theory, and our results are closely related (see also [26]).

We will introduce a gravitino field WIra that is a spinor under 0(1, 9)R and a vector

under 0(1, 9)L, together with a dilatino p, that is a spinor under 0(1, 9)R. The

minimally supersymmetric extension of (5.1) can then be written as

SgV=1 =J d1%x d1%z e-2 (R(E, d) - a5V & + ,-raVap + 2'IaVap) . (5.2)

Here, the -ya are ten-dimensional gamma matrices, which have to be thought of as
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gamma matrices of 0(1, 9)R, so that all suppressed spinor indices in (5.1) are 0(1, 9)R

spinor indices. Moreover, the covariant derivatives V are with respect to the connec-

tions introduced by Siegel [5], and therefore the action is manifestly 0(1, 9)L x O(1, 9)R

invariant.

We will show that (5.2), up to field redefinitions, reduces precisely to the standard

minimal K = 1 action in ten dimensions. In this paper we will not consider higher-

order fermi terms. Formally, (5.2) is contained in the results of [27] through the

straightforward truncation from AN = 2 to K = 1. The main difference between

generalized geometry, which was the starting point in [27], and double field theory

is that in the former the coordinates are not doubled but only the tangent space.

Consequently, in generalized geometry only the tangent space symmetry is enhanced,

while double field theory features also a global O(D, D) symmetry. With the fermions

being singlets under 0(D, D), this symmetry is somewhat trivially realized on the

fermionic sector, and therefore our results for the minimal K = 1 theory are to

some extent contained in those of generalized geometry given in [27]. In the context

of double field theory, however, it remains to verify closure of the supersymmetry

transformations into generalized diffeomorphisms and supersymmetric invariance of

(5.2), both modulo the O(D, D) invariant constraint. This will be done in sec. 2 of

this paper.

As the main new result, we will present in sec. 3 the double field theory extension

of K = 1 supergravity in D = 10 coupled to an arbitrary number n of (abelian) vector

multiplets. For n = 16 this is the low-energy effective action of heterotic superstring

theory truncated to the Cartan subalgebra of SO(32) or E8 x E8 . As has been shown

in [11], the coupling of gauge vectors Aja can be neatly described by enlarging the

generalized metric to an 0(10 + n, 10) matrix that naturally contains the Aj'. In the

frame formulation this theory features, in addition, a 0(1, 9 + n) x 0(1, 9) tangent

space symmetry. The fermionic fields will still be spinors under 0(1, 9), but XFa is

now a vector under 0(1, 9+ n). Remarkably, it turns out that the same action (5.2),

but written with respect to these enlarged fields, reproduces precisely the K = 1

supergravity coupled to abelian vector multiplets, with the gauginos originating from
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the additional components of the T. Apart from exhibiting a further 'unification'

of the massless sector of heterotic superstring theory, this formulation provides a

significant technical simplification of the effective action, as should be apparent by

comparing (5.81) with (5.2). Moreover, the proof of supersymmetric invariance (up

to the higher order fermi terms) is much simpler than in the standard formulation,

being essentially reduced to a two-line calculation in (5.36).

5.2 Minimal )V 1 Double Field Theory for D = 10

In this section we introduce the minimal K = 1 theory. First, we review the vielbein

formalism with local 0(1, 9)L x 0(1, 9 )R symmetry. Second, we introduce the N = 1

double field theory and prove its supersymmetric invariance. In the third subsection

we verify that it reduces to conventional K = 1 supergravity upon setting the new

derivatives to zero.

5.2.1 Vielbein formulation with local 0(1,9) x 0(1,9) symme-

try

We start by reviewing some generalities on the vielbein formulation of double field

theory, which is contained in Siegel's frame formalism [5]. We refer to [10] for a

self-contained presentation of this formulation. The fundamental bosonic fields are

the frame field EAM and the dilaton d that depend both on doubled coordinates

X" - (xi). The frame field is subject to local 0(1, 9 )L x 0(1, 9)R transformations

acting on the index A = (a, a) and global 0(10,10) transformations acting on the

index M, which read infinitesimally

6EA M = kMN A B(X) EBN, k E o(10,10), A(X) E o(1,9)L@o(1,9)R,

(5.3)

where the parameters take values in the respective Lie algebras. The double field

theory is invariant under a 'generalized diffeomorphism' symmetry parameterized by

(" = (, ) that combines the b-field 1-form gauge parameter i with the vector-
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valued diffeomorphism parameter (*,

gEAM = I2EAM NONEM ± (N -NM)EA (5.4)

Here, aM = (&, A) are the doubled partial derivatives. The right-hand side of (5.4)

defines a generalized Lie derivative that can similarly be defined for an O(D, D) tensor

with an arbitrary number of upper and lower indices. On the dilaton d these gauge

transformations read
1

Jrd = Md - -&MaM . (5.5)
2

The gauge transformations close and leave the action invariant modulo the 'strong

constraint'

77MNaMaN O , MN = , (5.6)
(1 0)

when acting on arbitrary fields and parameters and all their products. Here, qMN

denotes the 0(10, 10) invariant metric, which will be used to raise and lower 0(10,10)

indices. This constraint implies that locally all fields depend only on half of the

coordinates, for instance only on the x.

We have to impose covariant constraints on the frame field in order to describe

only the physical degrees of freedom. These constraints are written in terms of the

tangent space metric

QAB =EAM EBN 7MN , (5.7)

resulting from the O(10,10) invariant metric 'q, and which will be used to raise and

lower flat indices. We require the 0(1, 9)L X 0(1, 9)R covariant constraints

9g = 0 , gab = 7lab, g = -7g . (5.8)

Note that the relative minus sign entering here is necessary due to the (10, 10) signa-

ture of gAB. It is a matter of convention to which metric we assign the minus sign,

but once the choice is made the symmetry between unbarred and barred indices is

broken. Since flat indices are raised and lowered with gAB, (5.8) leads to some un-
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conventional signs when comparing below to standard expressions for, say, the spin

connection. We will comment on this in due course.

A particular solution of these constraints, giving rise to the generalized metric

according to

MN = EM^ ENBJAB, '7AB = 0 , (5.9)
0 rig

is given by

Eai Ea' 1 eja + bijea eai
EAM = = -,(5.10)

(Eaj Ea' vf- -eia + big eas eat

where e is the vielbein of the conventional metric, g = e / eT. We stress that when

writing (5.10) the tangent space symmetry is gauge-fixed to the diagonal subgroup

of 0(1, 9 )L X 0(1, 9)R, as is clear from the fact that e carries in (5.10) both unbarred

and barred indices. In order to define the supersymmetric double field theory, how-

ever, (5.10) is never used. Rather, we view the (constrained) vielbein EAM as the

fundamental field and so the construction is manifestly invariant under two copies of

the local Lorentz group. It is only when comparing to the standard formulation of

supergravity that we have to use (5.10) and to partially gauge-fix.'

Let us now turn to the definition of connections and covariant derivatives. We

first note that the partial derivative of a field S that transforms as a scalar under (M,

i.e.,

J S = ("Bus (5.11)

transforms covariantly with a generalized Lie derivative [10]. This does not hold for

higher tensors, which in turn necessitates the introduction of covariant derivatives.

'This differs from the construction in [27] and [25,26], where two independent vielbein fields are
introduced, one transforming under 0(1, 9 )L and one transforming under O(1, 9 )R. Then, however,
the constraint should be imposed that both vielbein fields give rise to the same space-time metric
gij, i.e., that they are equal up to local Lorentz transformations, and it is not obvious to us how this
should be done in an O(D, D) covariant way.
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Given the frame field EAM, we introduce the 'flattened' partial derivative2

EA = v/2EAMaM .

We can then introduce 0(1, 9)L x 0(1, 9 )R covariant derivatives

VAVB = EAVB+WABCC , VAVB = EAVB _WACBVC ,

where we stress that the only non-trivial connections are WAbc and WA.

Next, we briefly summarize which connection components can be determined in

terms of EAM and d upon imposing covariant constraints. First, in order to be

compatible with the constancy of the tangent space metric gAB, the symmetric part

WA(BC), where indices have been lowered with g, is zero. Thus, WABC is antisymmetric

in its last two indices. Second, we can impose a generalized torsion constraint, which

reads

TABC = ABC + 3 W[ABC = 0, (5.14)

where we introduced the 'generalized coefficients of anholonomy'

QABC = 3 f[ABC] , fABC (EAEBM )ECM .

We note that fABC is antisymmetric in its last two indices as a consequence

constancy of gAB. Specializing the constraint (5.14) to 'T;, = 0 and abc =

derive the following solution for the 'off-diagonal' components

Wabe = - aL , WFac = -Qabc .

For later use let us determine these connection components for the gauge choice (5.10)

2Here we introduced a factor of x/2 for later convenience. With the constraints on the connections
to be imposed below, the covariant derivatives VA given here are x12 times the covariant derivatives
in [10].
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of the frame field, setting 5' = 0. We compute with (5.15)

fa~e = ea e[b0iejz + Ieai ebkejibi, fba = be(aj0iejz) + 1eieak e ibjk ,
2

(5.17)

from which we derive

(5.18)

where wL denotes the standard Levi-Civita spin connection expressed in terms of the

vielbein,

o (e) = e[aieqjoioejE - e b eE]iaieja + e1z!'ea1jioej. (5.19)

Similarly, one finds
1

Wabe = WLc(e) + IHae,ac 2

where we flattened the indices of H as in (5.18).3

For the 'diagonal' components, having either only unbarred or barred indices, the

totally antisymmetric parts are determined by (5.14) as follows

1[abc] = [bc]
w)[abc] = 3 ac s], U;Z = 1 [l = -

Again, we may determine these connections for the gauge choice (5.10) and 01 = 0.

One finds,

1
o[abc] = obcb (e) + 6Hae, = -W (e) + IHa ,[b 6

where we flattened the indices on H.

The torsion constraint leaves the mixed Young tableaux representation in Wabc and

w.&, undetermined, but its trace part can be fixed by imposing a covariant constraint

3We note that the relative sign between Wa and wLo in (5.18) is due to the fact that we lower
barred indices with g, = -,r/, see eq. (5.8), while in the standard expression (5.19) for the spin
connection the index is lowered with r7.. Correspondingly, there is no relative sign in (5.20) because
here indices are lowered with gab = 7 ab.
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oaL = - + e ie- e k ,
Wa~= wa 6(e) +2 a b H ijk,

(5.20)

(5.21)

(5.22)



that allows for partial integration in presence of the dilaton density,

e-2d VVAV A _ _ e-2d VAVAV, (5.23)

for arbitrary V and VA. This implies

WBAB = -A -V~e 2daM(EAMe-2d) , (5.24)

where we introduced nA for later use. Note that this determines precisely Wab and

Wgab, because the last two indices cannot be mixed.

Finally, we can introduce an invariant scalar curvature and Ricci tensor. In the

frame formalism there is an invariant curvature tensor lZABCD, but it is generally

not a function of the determined connections only. For the derived curvature scalar

and Ricci tensor, however, it depends only on the determined connections. Without

repeating the details of the construction, we give the explicit expressions.

The scalar curvature can be defined as the trace over, say, barred indices as follows

ab 3 [ai~ 1 da
2 27 (5.25)

= 2EQa +2- e _Q 2

where we have written in the second line the explicit expression in terms of Q and

thereby in terms of the physical fields. The Ricci tensor reads

)Za-b = EJWa _ EaLWO~b ± Wdb' WdEad _ L~d~ WE (5.26)

These curvature invariants can be obtained by variation of the (bosonic) double field

theory action. In order to see this it is convenient to introduce the variation

AEAB := EBM6EAM . (5.27)

Under the local 0(1, 9)L x 0(1, 9)R this variation reads AEab = Aas and AE. = Ag.

Thus, only the off-diagonal variation is not pure-gauge and the corresponding general
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variation of the action (5.1) can be written in terms of the curvatures as

6S = -2 dxdz e-d (6d R + AEa Ra) , (5.28)

which will be used below.

5.2.2 N = 1 Double Field Theory

We give now the A/ = 1 supersymmetric extension of double field theory in the

frame formulation reviewed above. The fermionic fields are the 'gravitino' Oa and the

'dilatino' p, and we will later see how they are related to the conventional gravitino

and dilatino via a field redefinition. These fields are scalars under 0(10,10) and

generalized diffeomorphisms and, together with the K = 1 supersymmetry parameter

e, transform under the local 0(1, 9)L x 0(1, 9)R as follows

Ta : vector of O(1,9)4 , spinor of O(1, 9 )R ,

p : spinor of O(1,9)R , (5.29)

E : spinor of O(1,9)R .

The AN = 1 supersymmetric extension of (5.1) is given by (5.2),

Sgu1 = J dxdzi e- 2 d (R(E, d) - "a7bL V1a + p7aVap + 2N aVap) , (5.30)

where all covariant derivatives are with respect to the connections introduced above.

We will see below that in here and in the supersymmetry rules all undetermined

connections drop out. When acting on 0(1, 9)R spinors the covariant derivatives are

given by
1 1

Va = Ea - WoE7 E , Va = E a . (5.31)

We observe that (5.30) is manifestly 0(1, 9)L x 0(1, 9)R invariant, because unbarred

and barred indices are properly contracted, and the ya are gamma matrices of 0(1, 9)R,

so that all suppressed spinor indices belong to 0(1, 9 )R. More precisely, we define the
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g' to satisfy

7 = -2gab = 27aC (5.32)

where the signs are such that the ya can be chosen to be conventional gamma matrices

in ten dimensions. We note that, according to our convention, on -ya the index is low-

ered with gab = -7a, so that it differs from the conventional ten-dimensional gamma

matrix with a lower index by a sign. Similarly, the minus signs in (5.31) are due to

the lowering of indices on wAbz with ga.. Let us finally stress that the assignment

(5.29) of 0(1, 9)L x 0(1, 9 )R representations is related to the constraint (5.8). We

could have chosen the opposite signatures for gab and ga,, but then supersymmetry

would require the gravitino to be a vector under 0(1, 9)R and a spinor under 0(1, 9 )L-

The action (5.30) is manifestly invariant under generalized diffeomorphisms,

ogEAM = I EAM, ogd = MaMd - 9MgM,2 (5.33)
J~~qfa = % a JP= am7

because with the fermions transforming as scalars the (flattened) derivatives in (5.30)

transform covariantly. Moreover, the action is invariant under the H = 1 supersym-

metry transformations

1 1
2 a4 (5.34)

Jqa= VaE , 6 = Y'a

Here, we have written the transformation of the frame field in terms of the variation

(5.27). Due to the 0(1, 9 )L x 0(1, 9)R gauge freedom, we can assume for the diagonal

supersymmetry variations AE Eab = AEas = 0.

Let us now verify that (5.30) is invariant under (5.34), again up to higher-order

fermi terms. We start with the variation of the bosonic part, which can be obtained

directly by inserting the fermionic supersymmetry rules of (5.34) into (5.28),

1 ±
6,Es = -EpR + E7594q4a ,a (5.35)

2
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where we denoted the bosonic Lagrangian (without the density e-d) by LB. Denoting

the fermionic part similarly by LF, one finds

6EF = -2 &a 7 V VaE + 2ji-yaVa ± 2VajVaP + 2fa Va (-YbVp) (5.36)
= -2 jp- [7LVL, Va] C ± 2pl (7.yavi-yb VL - Va Va) (5.36

Here we have used that according to (5.23) the covariant derivatives allow us to freely

partially integrate in presence of the dilaton density. Moreover, in the second line we

have combined the first and last and the second and third term. We can now use the

identities [27]

4 (5.37)

[-.yV&, Va I IE

which will be proved in the appendix, to see that this cancels precisely the variation

(5.35) of the bosonic term, proving supersymmetric invariance.

We turn now to the closure of the supersymmetry transformations. Since these

are an invariance of the action (5.30) they must close into the other local symmetries

of the theory, which are generalized diffeomorphisms and the doubled local Lorentz

transformations 0(1, 9)L x 0(1, 9)R. It is instructive, however, to investigate this

explicitly, and so we verify in the following closure on the bosonic fields. For the

dilaton we compute

[6e, 6e2]d = I(E17ZiV 2 -E27 '1) = 1 -ya (Ea- I waVY"L)6 2 - (1 <-+ 2) . (5.38)

Let us work out the first term in here,

1- 1
-1Eya 2 - (1 <-+ 2) = 17faEja' E2 - (1 +-+ 2) EMaM ( lYC 2)
4 4 2 Vf

(5.39)
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using C17'Y2 = -E2Yae1. For the second term we compute

- ECa E2 - (1 +- 2) -6 o - 2gz'7Z!1)E 2 - (1 +-+ 2) . (5.40)

The first term in here vanishes due to the antisymmetrization in (1 +-+ 2) and

2E17a" 2 = E27aze 1. The second term gives with (5.24)

1 1
--,a E, _=2 (aMEem - 2Ez"Mmd)EIvY%2 - (5.41)

4 2V2

The first term in here combines with (5.39) to give 8M (E2!m17ZE2). The second

term takes the form of a transport term so that we have shown in total

1 f1 M

[oC, 7Se2] d = (Md - -aMOM l= EEa c1a c2 . (5.42)
22

Thus, the supersymmetry transformations close into generalized diffeomorphisms, as

required.

Next, we verify closure on EAM. We compute

[6e, 6E2]EaM = :1 (EMBEBNE 2EaN) - (1 ++ 2)

= o1 (EMAEe 2 Ea;) - (1 -+ 2) = -- 6E (EMEf27ZIa) - (1 +-+ 2) ,

(5.43)

where we used that we can set AEEab = 0 by an appropriate 0(1, 9)4 transformation,

and we relabeled an index in the last equality. In order to disentangle the generalized

diffeomorphisms and local 0(1, 9)L x 0(1, 9)R transformations we project (5.43) by

multiplying with EbM and EbM, respectively. For the first we obtain

1
EbM [6ei, 6e2]EaM = Eb EM 2 eVaCl - (1 +-+ 2)

2 -(5.44)

1 - 27 EaNaN - Wa7 W)El - (1 +-+ 2),

where we used that only the variation of Wa is non-trivial as a consequence of AE =
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0. The first term in here reads

I (K2 rbc9NEl - ElrbaNE2)E.N - N ( N7E2)E.N (5.45)

For the second term we use as above that the y(3) structure drops due to the an-

tisymmetrization in (1 - 2). The remaining structure proportional to 7(1) is then

automatically antisymmetric in (1 - 2) and thus reads

- E2 -alz El 21 E2. (5.46)

The spin connection is given by

Wa = -3f[a-] = V (EaKE&NaKEEN -E6KaKEEN EaN -EZKEbN KEaN-

(5.47)

Inserting this into (5.46) and combining with (5.45) we obtain in total

E;M [6 1,6e2] EaM = EbM (NNEaM + (oMtN _ aNOM) EaN), (5.48)

where

(M= Ea"M1Ya 2 , (5.49)

is the same parameter as in (5.42).

Next, we turn to the other projection,

1
EbM[6,1, 6e2]1EaM =E E2-Y27ePa - (1 * 2)

2 1 (5.50)
= dEb E 27'qWe - (1+-+ 2)= (17[)(279)-

The last term is antisymmetric in a, b and can thus be interpreted as a field-dependent

0(1, 9 )L gauge transformation. Here we would have expected also a generalized dif-

feomorphism with parameter (5.49), but for this particular projection such a term can

actually be absorbed into an 0(1, 9 )L gauge transformation. To show this it suffices
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to note that by definition (5.4)

EbM6EaM = (NEbMONEaM - 2MNE[aM Eb]N , (5.51)

is antisymmetric in a, b. Thus, equivalently, (5.50) closes into the required generalized

diffeomorphisms and into local 0(1, 9 )L transformations with parameter

Aab = I (y17F[a) (E2Y"b]) + NE[am&NEbIM ± 2BMuNE[aMEb] N, (5.52)

with (M given by (5.49). In total, combining (5.48) and (5.50), we have verified

closure,

[VEJ, 6e2]EaM = I2 Eam + AaEbM, (5.53)

with parameters given by (5.49) and (5.52). The verification for EaM is completely

analogous. In particular, the corresponding 0(1, 9)R parameter is given by

Aas = I(1Y[aFc) (E2ybj'P C) + NElaVmNE;]m + 2aMNE[aME] N. (5.54)

In general, the supersymmetry transformations close according to

[6CJ, Je2) = £e + oA + Aox, (5.55)

with ( given by (5.49), A by (5.52) and A by (5.54). We finally note that even though

we have not employed the field equations for the above computation, in general the

gauge algebra (5.55) will only hold on-shell. In fact, without auxiliary fields super-

symmetry transformations close on the fermions only modulo their field equations.

In contrast, for the bosons the field equations do not enter on dimensional grounds,

because they are second-order in derivatives.
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5.2.3 Reduction to standard M = 1 supergravity

Let us now verify that the action (5.30) and the supersymmetry rules (5.34) reduce

to the conventional AV = 1 supergravity in D = 10 upon setting 5' = 0. As discussed

above, this comparison requires a partial gauge fixing of the local 0(1, 9)L x 0(1, 9)R

to the diagonal subgroup. We can then write the frame field as in (5.10) in terms of bij

and the conventional vielbein eia. In the following we will show that the conventional

N = 1 theory is related to the action following from (5.30) by a field redefinition.

We start by recalling minimal N = 1, D = 10 supergravity in the string frame.

The field content is given by

(ei a, by , #, #i , A) , (5.56)

where the fermionic fields are the gravitino Oj and the dilatino A. The action reads4

S = 10 e e-2 R + 4YO p o - IH ik Hi)j
112

-YY p.Yikk + 20'i(O~jO)-e, - 2A-y1DiA - ji(0q4.yA (5.57)

24 Hijk (#mminln ± 60~i}iib - 20,n-1Y mA)

where Higk = 3&[ibyk and e = det(eia). Here, we denoted the covariant derivatives

with respect to the standard torsion-free Levi-Civita connection by Di in order to

distinguish them from the covariant derivatives V with respect to Siegel's connections.

If a non-trivial connection, say c', is used this will be indicated explicitly as Dj(cD). We

stress that the spin connection defining the Ricci scalar and thus the Einstein-Hilbert

term is also the conventional torsion-free connection rather than the super-covariant

one. We will not take into account terms higher order in fermions. Up to this order,

4This form of the supergravity action is I times the one obtained from eq. (10) of [76] by
performing the redefinitions - -+ e-0, A --+ VA, Fijk -> -3 Hijk, Bij -+ bij.
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the supersymmetry transformations leaving (5.57) invariant read

1 1
Se a = - E e *Aea

2 4

6.$8 = DiE - ±19)6 + ( 96ir")HkIme, (5.58)
8 96

eA = 1 1.
4 

1
bj= 2 (EYivp - E-Ygv'i) - 2

Next, we perform some field redefinitions that are necessary in order to compare

with the double field theory variables [27],

1
q/-27 A , p yj V-A = 7y1 i' + 4A . (5.59)

2

Moreover, as usual we introduce the T-duality invariant dilaton e-2d = e e-20. Writ-

ten in terms of these variables, the action (5.57) reads

S = dOxe -2d [(R + 40 4 - 1 HikHijk - jDiF+ 2Dip

1 1 1  - 1

+ryiDi4p + $qi 4pp + 2 Hi4 k + Higk15 ,

(5.60)

where $ = yiik Hijk. This is the final form of the action that is suitable for the

comparison with double field theory. The supersymmetry variations written in terms

of (5.59) are

6,ei = 1 ea

6ebij = ey[jx1 j ,

1
64d - cp , (5.61)

6,qfi =Dj(17)e,E

6ep = 'iDie - Hny~ike - (5,
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where we introduced a redefinition of the Levi-Civita spin connection wL,

L 1I 5.2
Wabc Wabc - Habc , (5.62)

2

because this is the combination that appears naturally in double field theory, see

(5.18).

Let us now return to the double field theory action and supersymmetry trans-

formations (5.30) and (5.34). We first observe that the kinetic terms in (5.30) and

(5.60) agree, upon converting flat into curved indices. We will show next that the

extra terms in the action (5.60) and the supersymmetry rules (5.61) as compared to

double field theory are precisely reproduced by the non-trivial connections inside the

covariant derivatives in double field theory.

We start with the supersymmetry transformations. First we note that the varia-

tion of Oj agrees with the double field theory variation (5.34), because (5.62) coincides

with (5.18). Next, consider the variation of the dilatino p in (5.34), which reads

&ep = y"VaE = 7 zoYgy E) . (5.63)

We can now work out the connection term in here,

Wa-Z~7 hE= WaE( b!- ga ' + gaEYb) = W[CbjYab ± 2 waa-yb, (5.64)

where we used that w is antisymmetric in its last two indices. Insertion into (5.63)

then yields
1 1

Sep = ( E - a 2 &). (5.65)
4 2

We see that only the totally antisymmetric and trace parts of the connections enter,

which in turn are fully determined by the constraints. This observation, which has

first been made in [27], will be used repeatedly below. Inserting now (5.22) and (5.24)

for these determined connections we can rewrite (5.63) as

&e = YiDie - 1 Hijk - ($), (5.66)
24
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which agrees with the required supersymmetry variation of p in (5.61). Thus, we

have shown that the supersymmetry variations of the fermions in double field theory

reproduce the transformations required by NA = 1 supergravity. For the supersym-

metry variations of the bosonic fields consistency with double field theory is manifest

for the dilaton d, while for the metric and b-field a short computation is required:

variation of (5.10) yields

1..1
AeEa; = e;z6ceia + eaceiL - eate-'q6bij = -- E7r9 . (5.67)

2 b 2 b

Due to the relative sign in the contraction of barred indices discussed after eq. (5.32)

we have to identify -yj = -eia-a. Projecting (5.67) onto its antisymmetric part we then

read off 6ebij = y[ij], in precise agreement with (5.61). In addition, the symmetric

projection of (5.67) determines the symmetric part of the supersymmetry variation

eb6eia. Its antisymmetric part is undetermined, as it should be, because this freedom

reflects the diagonal local Lorentz group that is left unbroken by the gauge-fixed form

(5.10). It is then easy to see that, up to these local Lorentz transformations, (5.67)

yields 6ea as in (5.61). In total, the supersymmetry transformations of double field

theory reduce precisely to (5.61).

We turn now to the action. Similarly to the discussion of the supersymmetry

transformations it is easy to see that all connections are determined and that writing

them out in terms of the Levi-Civita connection reproduces the H-dependent terms

in (5.60).

Let us start with the covariant derivative V& in the first fermionic term in (5.30),

which acts on Wa as an O(1, 9)R spinor and as an O(1, 9)L vector, i.e.,

1
17bV; q/ a = 7yb(E& a - 4o--7 WEa + oacqc) . (5.68)

As in (5.66), the first two terms combine into -yDiW, and 41 , while a d-dependent

term drops out as a consequence of F1PY'9j = 0. The last term gives the contribution

-4macb _ q/ 41a, c H W = - L4 c xc+ -HacP+ 2 ±- H7a , T2 (5.69)
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reproducing the term (HijklFy3 in (5.60).

Next, we consider the kinetic term of p which as in (5.66) reduces to

P7'VaP = H7Dip - PHikyi kp. (5.70)

Finally, the last structure in (5.30) yields

2qfaVap = 2Wa (Eap - wabyp) = 2iT'Dip+ HijkbPYisk . (5.71)

Collecting the term -!J&i4.Tj originating from (5.68) together with (5.69), (5.70) and

(5.71) we infer that the double field theory action reproduces (5.60). Summarizing,

we have shown that the K = 1 supersymmetric double field theory reduces for 54 = 0

to minimal K = 1 supergravity in D = 10.

5.3 Heterotic Supersymmetric Double Field The-

ory

In this section we extend the above construction to the coupling of an arbitrary

number n of abelian vector multiplets. For n = 16 this completes the construction

of [11] by the fermionic or NS-R sector of heterotic superstring theory truncated to

the Cartan subalgebra of E8 x E8 or SO(32). We first review the extension of the

frame formalism, in which the tangent space group is extended to 0(1, 9+n) x 0(1, 9).

Then we show that the same K = 1 double field theory action (5.2), but interpreted

with respect to the enlarged frame and spinor fields, reduces to K = 1 supergravity

coupled to n vector multiplets upon setting the extra derivatives to zero.

5.3.1 K = 1 Double Field Theory with local 0(1, 9+n) x 0(1, 9)

symmetry

Let us begin by reviewing the double field theory formulation in presence of n abelian

gauge vectors Ai" [11]. The generalized metric is extended to an 0(10 + n, 10) group
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element, naturally encoding these additional fields. Correspondingly, there are 20+ n

coordinates,

XM - , yai) ,= ,om aa ), (5.72)

transforming as an 0(10 +n, 10) vector, with indices that are raised and lowered with

0 0 110

17MN 0 in 0 (5.73)

110 0 0

We still impose the constraint 7MNgMaN = 0, using the O(10+n, 10) invariant metric

(5.73). It implies that one can always rotate into a frame in which 5' = a, = 0.

Next, we can introduce an enlarged frame field as in (5.9), but now with indices

a, b, ... taking 10 + n values and with the upper-left block of 7AB being

( ?ab 0 (
7lab = 0 . (5.74)

(0 J'0

Here and in the following we split flat indices as

A = (a, d) = (a, ,d), a=_ 1,.10 , =1,...,rn. (5.75)

The frame field is constrained by requiring that the tangent space metric 9 AB still

satisfies (5.8), which reads explicitly

g = 0, gab = % 9, ; = -?77, 9g_ = 6p_. (5.76)

We can then choose a gauge and parametrize the frame field as follows

Eai Ea Ea eia - ek Cki -eak AkI3 eai

EAM = E EoI3 Ea -- SI-Aia V6"2k , (5.77)

En Ea Ea' ; ein - enkcki -eak Aka eai
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where we defined cij = bij + !Ai"Aj,, and we freely raise and lower gauge group

indices with the Kronecker delta Sg.

All results of the frame formalism reviewed in sec. 5.2.1 extend directly to the

present generalization. In particular, all statements about determined connection

components can be readily applied. Moreover, the supersymmetric extension (5.30)

is well-defined for these extended fields in that the gamma matrices y' and all spinor

indices are still to be interpreted with respect to 0(1, 9). The check of supersymmetric

invariance and closure of the supersymmetry transformations immediately generalizes

to the present case, as it is never used whether a takes 10 or 10 + n values. Assum-

ing the parametrization (5.77) and setting = ,= 0 we compute the following

components:

1-

(lW] = - (;,- (e) - -Ha) , (5.78)

a 1 1 a
2, 2

where

Fa" = ea.eO' (9iAj* - OaAi") ,(5.79)

Habc = 3eaiebieck (a[ibjk] - A iajAk]a)

In particular, we obtain the required Chern-Simons modification of the field strength

H.

5.3.2 Reduction to N = 1 Supergravity with n vector multi-

plets

We will now show that the K = 1 double field theory action with tangent space

symmetry 0(1,9 + n) x 0(1,9) reproduces standard M = 1 supergravity with n

abelian vector multiplets upon setting 5i = a, = 0. Let us first recall K = 1
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supergravity coupled to n vector multiplets

(Ail, x") , a = 1,..., n .

The action is given by

S = Jd xe e-2[ R + 4'O4 ap- Ijijkfij-
1

- Dt - 2Xy'Di A - I "$xa2

± 2 (844)y7P$ - - ($4)-iA - I i. kFk +( I - gyA)

(5.81)

where Higk is the H-field strength modified by the Chern-Simons 3-form, as in (5.79).

This action is invariant under the supersymmetry transformation:

1 1

604 = - , E AA = y ix a
2

6eOi = Dp i(0 kim-
8 96~1 1

eA = I I
-. = 4 (04)E + 4 Yi' ijk'E,

, 6ex" = -1 iiFijaIe
4 )

(5.82)

1 11oJ big= (Eysty~ - E7jVk) - 7E7f5A + -Ej7[iXAa.

Next, we perform the same field redefinition (5.59) as for the minimal theory. We

obtain for the action

SF x e-2<i _I j7iDj9; + 2'IDip + pyDi p - X"yDix - 2" ikFkp
1

-"k Fika V + -"*k9,4 4

1- -.. 1f k p+ fHjkl' 9jy + fij kf i +±
2 43

(5.83)
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and the supersymmetry transformations are given by

1 _
oces" = i749 , 6,9I' = Di(.2)e ,

1
6ebij = E7[i'j] + 1y[XAj]

11 (5.84)
Jed = EP p , p o6 p = D -- Hijke "- E - O

4 2

6.Ai" = 1 ix , &X"= -17ijFae2 4

Let us now verify that the above action and supersymmetry rules are reproduced

by supersymmetric double field theory for 6' = c, = 0. Here, our discussion will be

a little briefer than above because it suffices to focus on the new structures involv-

ing the gauge vectors and gauginos. It turns out that the comparison requires the

identification

Ta = ('ha, W_) = (eas'Ti, yx_) , (5.85)

i.e., the gauginos are naturally identified with the additional components of the 'grav-

itino'. We start with the supersymmetry transformations. The gaugino variation Jx 0

can be obtained by considering

=eqa JXk = ="' (v1'EciaE-c W ;-;E) =~ af-.&b c Y7
- V2 - - 4 4c -2

(5.86)

where we used (5.78) and E,2 = 0 for the gauge choice (5.77). We read off

1
6ex = -- FaO-y e. (5.87)4

Comparison with (5.84) shows that we obtained the expected supersymmetry varia-

tion. For the supersymmetry variations of the vielbein ea, the b-field and the gauge

vectors we compute as in (5.67) the variation of the gauge-fixed frame field (5.77)

1 1 1
AeEa = eLtoceia + eas6ceib - ea e&ob 5 --2a*eg)A[ga6EAj] = - Pa , (5.88)

_ - -~ 2 2 2 -
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and

v/i. 1
A2. = -- e2x/A=- x -. (5.89)

Combining these two gives the required supersymmetry transformations (5.84).

Let us now turn to the action and show that it produces the required X-dependent

terms. For the first fermionic term in (5.2) we obtain

1 1
= - ~& Xc 2 .b a Xqfba~ ~ (.0

12~c _ -

= -;X ± - - 7

where we used in the first line that the last two terms are equal. The second fermionic

term in the action (5.2) does not give any X-dependent contribution. The third term

reads

2'pVap = 2WVap = -iVbCap = ;ey)Fp, (5.91)
ixNF 4 -4

reproducing the required coupling in (5.83). Thus, we have shown that all new F-

dependent terms due to the coupling of vector multiplets are precisely reproduced by

the extended connections of the 0(1, 9 + n) x 0(1, 9) tangent space symmetry.

5.4 Conclusions

In this chapter we have constructed the K = 1 supersymmetric extension of double

field theory for D = 10. This theory features two copies of the local Lorentz group

as tangent space symmetries, under which the fermions naturally transform. Inter-

estingly, the generalization to the coupling of n abelian vector multiplets amounts

only to the extension of the T-duality group to 0(10 + n, 10) and, correspondingly,

to the extension of the tangent space group to 0(1, 9 + n) x 0(1, 9). The 'gravitino'

Wa thereby receives n additional components that can be identified with the gaugi-

nos. Apart from exhibiting a further 'unification' of the massless sector of heterotic
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superstring theory, this formulation provides a significant technical simplification of

the effective action, as should be apparent by comparing (5.81) with (5.2). Moreover,

the proof of supersymmetric invariance (up to the higher order fermi terms) is much

simpler than in the standard formulation, being essentially reduced to a two-line

calculation in (5.36).
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