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Abstract

Modern computing systems require applications to balance competing goals, e.g.,high
performance and low power or high performance and high precision. Achieving the
right balance for a particular application and system places an unrealistic burden on
application programmers who must understand the power, performance, and preci-
sion implications of a variety of application and system configurations (e.g.,changing
algorithms or allocating cores). To address this problem, we propose the Self-aware
Computing framework, or SEEC. SEEC automatically and dynamically configures
systems and applications to meet goals accurately and efficiently. While other self-
aware implementations have been proposed, SEEC is uniquely distinguished by its
decoupled approach, which allows application and systems programmers to separately
specify goals and configurations, each according to their expertise. SEEC's runtime
decision engine observes and configures the system automatically, reducing program-
mer burden. This general and extensible decision engine employs both control theory
and machine learning to reason about previously unseen applications and system con-
figurations while automatically adapting to changes in both application and system
behavior. This thesis describes the SEEC framework and evaluates it in several case
studies.

SEEC is evaluated by implementing its interfaces and runtime system on multi-
ple, modern Linux x86 servers. Applications are then instrumented to emit goals and
progress, while system services are instrumented to describe available adaptations.
The SEEC runtime decision engine is then evaluated for its ability to meet goals
accurately and efficiently. For example, SEEC is shown to meet performance goals
with less than 3% average error while bringing average power consumption within
92% of optimal. SEEC is also shown to meet power goals with less than 2% average
error while achieving over 96% of optimal performance on average. Additional stud-
ies show SEEC reacting to maintain performance in response to unexpected events
including fluctuations in application workload and reduction in available resources.
These studies demonstrate that SEEC can have a positive impact on real systems by
understanding high level goals and adapting to meet those goals online.
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Chapter 1

Introduction

1.1 Motivation

For many computer scientists, optimizing a computing system (including application,

system software and hardware) has traditionally referred to maximizing its perfor-

mance (i.e.,increasing speed or reducing execution time). Recently, though, changes

in the nature of applications and the physical constraints on the machines that sup-

port them have given rise to new metrics which can be as important as application

speed. For example, many applications (such as those that process massive amounts

of data) have a tradeoff between the precision of the result they produce and the

power or time that they require to produce that result. In addition, many compo-

nents (e.g.,memory, processing cores, operating system) of a computer system support

tradeoffs between their power consumption and performance. Given these additional

metrics, optimizing a program is no longer about maximizing performance, but is

instead an exercise in positioning the application and system at a particular point in

the performance/power/precision tradeoff space.

While configuring an application in a multidimensional tradeoff space is difficult,

this problem is often further exacerbated by the dynamic nature of modern computing

systems. For example, systems must cope with fluctuations in application workload,

variations in available power, and failures of system components. Creating an ap-

plication and system which can dynamically reconfigure itself in a multidimensional
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tradeoff space is a challenge beyond most application programmers, yet one that will

become increasingly important as the complexity of computing systems increases.

1.2 Background

Dealing with multiple constraints and dynamic fluctuations requires application de-

velopers to be experts in system optimization in addition to the expertise already

required in a particular application domain. Thus, a great deal of knowledge must

be acquired by one user and it is natural to look for ways to reduce this burden.

One promising approach is the adoption of autonomic, or self-adaptive techniques,

which can reconfigure themselves automatically [46, 54]. Ideally, a self-adaptive ap-

proach will drive the system to a desired operating point in a way that is both accurate

(i.e.,the application and system meet a desired precision, performance, or power goal)

and efficient (i.e.,goals are met while optimizing behavior in unconstrained dimen-

sions).

Prior approaches to building self-adaptive systems that ease programmer bur-

den by addressing combinations of power, performance and precision tradeoffs have

achieved accuracy and efficiency using one of two strategies. First, many researchers

have adopted system-specific solutions that work with only a fixed set of components

which are known at design time [11, 21, 23, 25, 79]; if new components become avail-

able, or existing ones fail, these systems have to be redesigned and re-implemented.

Second, other projects have adopted application-specific approaches that require the

application programmer to understand the interaction of all components in the sys-

tem [18, 30, 40, 58, 72, 95] and do not generalize across applications. It is a challenge

to build a general system that achieves accuracy and efficiency when the goals, system,

and application are not known ahead of time.
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1.3 The SEEC Model

This thesis designs and implements the SElf-awarE Computing (SEEC) Model, a novel

solution for accurate and efficient management of power, performance, and precision

tradeoffs in a computer system. Instead of working with a fixed set of adaptations or

a fixed application, SEEC is designed to be general with respect to the components

and applications it supports. This generality is achieved through two interfaces and

a runtime system which allow the construction of an observe-decide-act (ODA) loop

as illustrated in Figure 1-1.

The SEEC model supports observation through an interface that allows expression

of high-level goals (e.g.,target performance, power consumption, or precision) and the

current progress towards those goals. The model supports action through a separate

interface that allows specification of components and behaviors that can be changed in

a system (e.g.,changing the clock speed). Finally, the model supports decision through

a runtime system that observes the goals and available actions then determines how

to apply those actions and ensure that goals are met accurately and efficiently even

in the face of unexpected changes like workload fluctuations or resource failure.

" Specifying Goals and Progress: In SEEC, applications explicitly state their

goals and other system components measure whether those goals are being

met. SEEC uses the Application Heartbeats application programming interface

(API) [37] to specify application goals and progress. The API's key abstrac-

tion is a heartbeat; applications use a function to emit heartbeats at important

intervals, while additional API calls specify goals in terms of this heartbeat.

SEEC currently supports three application specified goals: performance, preci-

sion, and power. All three goals are specified through the Heartbeats API.

" Specifying Actions in the System: SEEC supports a range of actions spec-

ified from the application-level, system software level, and the hardware level.

SEEC does so by providing an interface that all system components use to

specify available actions. This interface is designed to be general and support

actions exposed by different developers working at different levels of the system
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stack. Actions are specified by describing the actuators that implement them.

In SEEC, an actuator is a data object with: a name, a list of allowable settings,

a function that changes the setting, a set of metrics which the actuator affects

(e.g.,performance and power), and the effects of each setting on each metric.

Making Decisions: SEEC's runtime system automatically selects actions to

meet goals while reducing cost. The SEEC decision engine is designed to work

without prior knowledge of the applications which it will support. In addition,

the runtime system will need to react quickly to changes in application load

and fluctuations in available resources. To meet these requirements for handling

unknown applications and volatile environments, the SEEC decision engine is

designed with multiple layers of adaptation. At the lowest-level, SEEC acts as

a classical control system, taking feedback, in the form of heartbeats, and using

it to tune actuators to meet goals. The classical control system works well

given prior knowledge about the application's behavior. Additional layers of

adaptation, including adaptive control and machine learning based techniques,

allow the SEEC runtime to allocate resources efficiently without prior knowledge

of the application, or when the behavior of the actuator diverges from the

predicted behavior.

1.4 Example

Consider the development of a video encoder whose goal is to encode thirty frames

per second while minimizing power. Furthermore, these goals must be met even

though different videos (and even frames within one video) differ in their compute

demands and these demands cannot be predicted a priori. In a traditional system,

the application developer must understand the power and performance tradeoffs of

different system configurations (such as number of cores, clock speed, and memory

usage) and optimize the encoder to meet performance with minimal power while

adapting to both input and system fluctuations.

In contrast, SEEC's runtime system observes application behavior and optimizes
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Figure 1-1: The SEEC model. Using SEEC, application developers provide goals and
feedback while systems developers describe actions that can be taken in the system.
SEEC's runtime decision engine uses a general and extensible mechanism to select
actions that meet goals accurately and efficiently.

the system for the application. Using SEEC, the encoder developer indicates the goal

of thirty frames per second and the current speed of the encoder. Independently,

systems developers specify actions that affect applications (e.g.,allocation of cores,

clock-speed, and memory). SEEC's runtime decision engine determines a sequence

of actions that achieve thirty frames per second while minimizing power. If an input

becomes more difficult, the encoder does not meet its goals and SEEC assigns it ad-

ditional resources. If an input becomes less difficult, the encoder exceeds its goals,

and SEEC will reclaim resources to save power. In addition, SEEC continuously up-

dates its internal models of applications and systems, so it can adapt if new resources

become available or if existing resources fail.
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1.5 Properties of SEEC

SEEC's runtime decision engine is heavily based in control theoretic techniques. This

use of well-founded decision mechanisms allows important properties of the decision

system to be demonstrated analytically. Specifically, this analysis demonstrates that

SEEC will accurately and efficiently converge to achieve a target goal given some

set of initial assumptions. Different assumptions allow different guarantees about

convergence time and the trajectory SEEC takes to reach this target.

This thesis is concerned with five properties that describe how the decision engine

meets its goals. The first four are sometimes referred to as SASO properties and

consist of: stability, accuracy, settling time, and overshoot [36]. The final property is

efficiency. Stability is the property that the system converges. Accuracy is achieved

when the system converges to the desired target. Settling time refers to the time

that the system takes to become stable. Overshoot describes the maximum value by

which the system may miss its target on the way to converging. Efficiency describes

how close to optimal the system behavior in the uncontrolled dimension; e.g.,when

controlling performance, how much is power reduced for that performance goal.

In general, different levels of adaptation in the SEEC runtime system provide

different tradeoffs in terms of their flexibility and the guarantees they provide. The

classic control system provides full guarantees about system behavior for each of

the five desired properties, but these guarantees are based on a fairly rigid set of

assumptions. In contrast, machine learning starts with an extremely flexible set of

initial assumptions, but provides the fewest guarantees about system behavior. The

intermediate layers of adaptive control provide intermediate sets of tradeoffs.

1.6 Systems Case Studies

In addition to an analytical evaluation of SEEC, this thesis presents several cases

studies showing how SEEC can be used to build self-adaptive systems. These studies

include:

24



" Creating seven different adaptive systems on a Linux/x86 system. These sys-

tems show simple examples of SEEC managing performance, power and preci-

sion goals.

" Building a system that manages power/performance tradeoffs accurately and

efficiently for the PARSEC benchmarks on two different Linux/x86 machines

with different power/performance characteristics.

" Constructing a system that automatically turns statically configured applica-

tions into dynamic applications which self-manage precision/peroformance/power

tradeoffs.

" Demonstrating SEEC reacting to unforeseen events like errors in SEEC's inter-

nal models or the failure of some system components.

These case studies demonstrate how a small set of application changes, combined

with the SEEC runtime system, can enable a tremendous shift in system behavior.

Specifically, simply by understanding high-level application goals, the runtime can

adapt the system configuration to accurately and efficiently meet those goals. Across

a range of applications on different machines, SEEC is found to drive the system to

within a few percent of a target goal while achieving close to optimal behavior in other

dimensions. Additional studies show how systems built with SEEC can automatically

maintain goals even in the face of unforeseen events.

1.7 Scope

SEEC navigates power/performance/precision tradeoffs. Specifically, SEEC is meant

for systems which have a constraint (or goal) in one of these three dimensions and

have some freedom to vary behavior in one or more other dimensions. Such systems

are already in use and may become even more important as physical phenomena

(e.g.,dark silicon [31, 66]) place hard limits on some dimensions. In contrast, some

systems are not constrained, but instead support a "performance at all costs" model

and these systems are not a good match for SEEC.

SEEC delivers accuracy and efficiency for a wide range of applications, including
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those with high variance in their performance; however, there are some applications

which are not a good match for this approach. First, extremely short-lived appli-

cations may not provide enough feedback for SEEC to converge, unless users are

willing to allow SEEC to collect data from multiple innovations of an application. In

addition, other applications may not be divisible into small units which indicate the

performance of the larger application. Such applications will not benefit from SEEC's

active monitoring approach.

1.8 Contributions

This thesis makes the following contributions:

o It designs the Application Heartbeats API, which allows application develop-

ers to express performance, power, and precision goals to the rest of the sys-

tem. Other system components can then read these goals and the application's

progress towards them. This interface is unique in that it allows applications to

explicitly indicate design decisions (such as the preference for meeting a target

power consumption over maximizing performance) that were previously implicit

in the application and unknown to the rest of the system.

o It designs a separate Actuator Interface which allows systems developers to

express available actions that change the power/performance/accuracy tradeoffs

of a system.

o It designs and develops the SEEC runtime decision engine which translates

application specified goals into system specified actions. The runtime decision

engine has several novel features that allow it to meet goals accurately and

efficiently. The first feature is its unique incorporation of adaptive control to

meet the goals of previously unseen applications accurately. The second feature

is the use of adaptive actuator selection, which allows SEEC to meet goals

efficiently on different machines or with different sets of actuators. Finally,

SEEC incorporates machine learning to ensure accuracy and efficiency even

when nothing is known about application and system behavior.
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* It creates a decoupled approach to the design and implementation of adaptive

systems. In prior work, adaptive systems were designed monolithically and

required one developer to specify all phases of the ODA loop. SEEC enables a

unique approach to the design of adaptive systems, one that allows a separation

of concerns. Using SEEC, application programmers specify goals and progress,

but do not need to be aware of the actions available in the system. Similarly,

systems developers specify actions that the system can take, but do not need

to understand the applications they support. Finally, no developer needs to

understand decision making techniques, but instead application and systems

developers rely on the SEEC runtime decision engine to translate observations

into actions.

* It analyzes properties of the SEEC runtime decision engine. This analysis de-

scribes tradeoffs between different sets of initial assumptions and the guarantees

provided by different layers of SEEC's runtime decision engine. This analysis

can guide the customization of the SEEC system for different deployments with

differing requirements.

* Through numerous case studies, it demonstrates how SEEC can be used to de-

velop real adaptive systems. These case studies implement SEEC on modern

Linux x86 servers and test SEEC's ability to handle a range of different appli-

cation behaviors, including highly regular and highly variant applications. In

these studies, SEEC's accuracy and efficiency is compared to other approaches

including oracle systems (which cannot be implemented) that represent the

best possible results. SEEC is found to be quite accurate, typically within a

few percent of the target goal. In addition, SEEC is shown to be efficient,

in many cases delivering results close to what could be achieved by the oracle

system. For example, when managing performance and power tradeoffs, SEEC

meets power goals while providing 96.1% of the maximum performance and

meets performance goals while exceeding the minimal power consumption by

only 7.2%. Finally, additional studies show how SEEC maintains goals while

reacting to unforeseen fluctuations in the environment including changes in ap-
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plication workload and changes in available resources.

The remainder of this document is organized as follows. Chapter 2 describes

related work and highlights some of the key innovations of SEEC compared to prior

approaches. Chapter 3 describes the SEEC approach including both interfaces and

the SEEC runtime system. Chapter 4 describes how application and system devel-

opers can make use of the SEEC framework. Chapter 5 describes the case studies

we use to evaluate SEEC. Chapter 6 evaluates the SEEC decision engine analyti-

cally. Chapter 7 wraps up the thesis by discussing lessons learned, future work and

conclusions.
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Chapter 2

Background and Related Work

This chapter discusses some of the background and prior research on adaptive sys-

tems and the relationship between these existing systems and the SEEC approach.

The implementation and deployment of adaptive systems has the potential to make

the process of programming complicated systems much easier, leading to reduced

development time and greater efficiency. One major challenge in the design and im-

plementation of adaptive systems is to make such systems as general as possible with

respect to the applications they support and the components (i.e.,actions) that they

manage. Generality is important because a more general approach should be more

widely applicable and have a greater impact on reducing programmer burden.

Prior approaches to achieving generality in adaptation tend to fall into two cate-

gories: those that are application-specific and those that are system-specific. Application-

specific approaches tend to be general with respect to the adaptations that they sup-

port but limited in their support for new applications. System-specific approaches

tend to be general with respect to the applications they support but are built for

specific sets of system hardware and software components and have difficulty incor-

porating new components without redesign.

Part of the problem with these prior approaches is that they tend to make a single

developer responsible for the entire process of specifying the observe-decide-act (ODA)

loop characteristic of adaptive computing. Application-specific approaches make the

application developer responsible for all phases, when application-level developers re-
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ally should focus on specifying how to observe the application and, possibly, how the

application can adapt. In contrast, system-specific approaches tend to make the sys-

tems developer responsible for all ODA phases, when system developers should focus

on how to specify low-level observations and actions that the system can implement.

In contrast to prior approaches, the SEEC model is designed to be general with

respect to both applications and systems components. SEEC achieves this by having

separate interfaces that can be used by different developers so that each specifies the

components of the ODA loop with which they are most familiar.

This chapter describes both how SEEC is influenced by and differs from prior

work. The chapter first presents an overview of adaptive systems, then describes

existing application- and system- specific approaches, and finally highlights some

unique features of SEEC.

2.1 Overview of Self-Adaptive Systems

Self-aware, or autonomic, computing has been proposed as one method to deal with

the rising complexity of computer systems [46, 54], and adaptive systems have been

implemented in both hardware [4, 11, 23, 25] and software [77]. Some example sys-

tems include those that that manage resource allocation in multicore chips [11], sched-

ule asymmetric processing resources [83, 76], optimize for power [53], and manage

cache allocation online to avoid resource conflicts [93]. In addition, languages and

compilers have been developed to support adapting application implementation for

performance [89, 5], power [6, 82], or both [39]. Adaptive techniques have been built

to provide performance [9, 58, 71, 78, 95] and reliability [14] in web servers. Real-time

schedulers have been augmented with adaptive computing [12, 34, 60]. Operating sys-

tems are also a natural fit for self-aware computation [17, 45, 52, 69]. Self-aware tech-

niques are prominent in industry; companies such as IBM [41] (e.g.,IBM Touchpoint

Simulator, the K42 Operating System [52]), Oracle (e.g.,Oracle Automatic Work-

load Repository [70]), and Intel (e.g.,Intel RAS Technologies for Enterprise [43]) have

released products with self-aware capabilities.
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Table 2.1: Comparison of several self-aware approaches.
ControlWare [95] Tunability In- METE [79] Choi & Ye- Bitirgen et SEEC

terface [18] ung [23] al. [11]
Observation Application System System" System System Application &

System

Decision Controlb Classifier Adaptive Con- Hill Climbing Neural Network Adaptive Con-
trol trol & Machine

Learning

Action Application Application Application System System Application &
System

Handles un- No No No Yes Yes Yes
known applica-
tions?
Add actions Yes Yes Yes No No Yes
without re-
design?

goals to IPC, but does not support the case where application performance does not

the tested implementations use classic control.

aThe paper allows a transducer that converts application
translate directly to IPC.

bThe paper claims that adaptive control is supported, but



While the use of self-adaptive techniques has become common, there are many

challenges still to overcome, some of which are described in [47, 65, 77]. One challenge

facing researchers is the development of general and extensible self-aware implemen-

tations. It is important to distinguish the concept of a general implementation from a

general technique and note that many general techniques have been identified. For ex-

ample, reinforcement learning [88] and control theory [36] are both general techniques

which can be used to create a variety of adaptive systems. However, general tech-

niques tend to be customized when deployed, and through that customization they

become problem-specific; i.e.,they are designed with a single, narrow problem in mind

and do not generalize. Generalization of an implementation can be limited in multiple

ways: 1) they may be application-specific, i.e.,built to manage a specific application

(e.g.,a webserver [78]) and 2) they may be system-specific; i.e.,general with respect to

applications but handling only a fixed and known set of actions (e.g.,managing the

hardware for a memory controller [44]).

2.2 Application-Specific Approaches

Researchers have developed several frameworks that can be customized for a specific

application. These approaches include: ControlWare [95], Agilos [58], SWiFT [30],

the tunability interface [18], AutoPilot [72], and Active Harmony [40]. One limitation

to the generality of these approaches is their exclusive focus on customization at the

application level. For example, ControlWare allows application developers to specify

application-level feedback (such as the latency of a request in a web server) as well as

application-level adaptations (such as admission control for requests). Unfortunately,

these approaches do not allow application-level feedback to be linked to system-level

actions performed by the hardware, compiler, or operating system. Furthermore, once

these frameworks are customized, they lose their generality. In contrast, SEEC allows

applications to specify the feedback to be used for observation, but does not require

application developers to make decisions or specify alternative actions (application

developers can optionally specify application-level actions, see Section 3.2). Addition-
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ally, the SEEC runtime system is designed to handle previously unseen applications

and can do so without redesign or re-implementation. Thus, SEEC's decoupled ap-

proach allows application programmers to take advantage of underlying system-level

adaptations without even knowing they are available.

2.2.1 Limitations of Application-Specific Approaches

This section presents a small experiment illustrating how application-specific ap-

proaches can fail to generalize. This experiment is run on a Linux/x86 system. First

the facesim benchmark (from PARSEC [10]) is modified so it can adjust its core us-

age and processor speed to meet a target performance while minimizing power. Sep-

arately, the blackscholes benchmark is modified to do the same. Both benchmarks

target a performance that is 50% of the maximum achievable, and performance and

power are measured for these benchmarks. After running each benchmark, the man-

agement systems for each are switched, so that facesim is managed by the system

designed for blackscholes and blackscholes is managed by the system designed for

facesim.

Figure 2-1 shows the results of this study. The x-axis shows the two benchmarks

and the y-axis shows the performance per Watt measured for these two benchmarks

and normalized to the best result for that application. There are two bars shown per

benchmark. The first shows the results when using a system designed for blackscholes.

The second shows the results when using a system designed for facesim.

The results in Figure 2-1 demonstrate some of the issues with application-specific

approaches. Both approaches are comparable when controlling facesim; however,

when controlling blackscholes, the system designed for facesim does a poor job. In

fact, this system achieves just over 60% of the possible performance per Watt.

When looking at the behavior of blackscholes over time, the situation is revealed

to be even worse. Figure 2-2 shows the performance of blackscholes as a function

of time when controlled by a system designed for blackscholes and a system designed

for facesim. In this figure time is shown on the x-axis and performance is shown on

the y-axis.
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Figure 2-1: Applying a system designed for one application to a new application.

As shown in the figure, when controlled by the system designed for facesim,

blackscholes' performance never converges. This represents a lack of accuracy. Indeed,

the performance oscillates between two extremes. When controlled by the system de-

signed for blackscholes, however, the performance converges to the desired value after

some initial instability.

These results demonstrate how application-specific approaches can fail to provide

accuracy and efficiency when generalized to work with new applications. This lack

of generality means that additional work has to be done for every application a

developer wants to create. This work includes understanding the interaction of the

new application and the available adaptations, which can be a large and tedious task.

We note, however, that most application-specific approaches (including all listed as

reference in this section) provide good support for decision making so that application

developers do not have to micro-manage the decision making mechanism.
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Figure 2-2: Accuracy of application-specific approaches.

One of SEEC's goals is to create a system that will work with new applications

without requiring the application developer to understand how the application inter-

acts with the adaptations available in the system. Instead, SEEC requires only that

applications emit some high-level goals and a measure of progress towards those goals.

Application developers do not need even to know what adaptations are available in

the system. This generality has two clear benefits. First, this approach should reduce

the amount of knowledge required by the application developer. Second, because

applications do not contain any system-specific information, they can be ported to

new platforms without rewrite. These benefits illustrate some of the ways the SEEC

approach can reduce programmer burden.
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2.3 System-Specific Approaches

Many research projects have explored ways to manage a single system component's

tradeoffs. Examples include: reducing power consumption through idling [28], lim-

iting cache usage [7], managing dynamic voltage and frequency scaling (DVFS) [91],

creating adaptive applications [39], and managing memory controllers [44]. These ap-

proaches move the component to a desired operating point accurately and efficiently;

however, it is unclear how the system will act when multiple such components are

adjusted independently.

Other researchers have developed self-aware approaches to adapt multiple system-

level actions (made available in system software or hardware) to handle a variety of

previously unseen applications. Such system-level approaches include machine learn-

ing hardware for managing a memory controller [44], a neural network approach to

managing on-chip resources in multicores [11], a hill-climbing technique for managing

resources in a simultaneous multi-threaded architecture [23], techniques for adapting

the behavior of super-scalar processors [4], a control system for allocating resources in

a multicore [79], and several operating systems with adaptive features [17, 45, 52, 69].

While these approaches allow system-level adaptations to be performed without

input from the application programmer, they suffer from other drawbacks. First, ap-

plication performance must be inferred from either low-level metrics (e.g.,performance

counters [4] or instructions-per-clock (IPC) [79]) or high-level metrics (e.g.,total sys-

tem throughput [11]), and there is no way for the system to tell if a specific application

is meeting its goals. In contrast, SEEC allows systems developers to specify available

actions independently from the specification of feedback that guides action selection.

In addition, these prior systems work with a fixed set of available actions and require

redesign and re-implementation if the set of available actions changes. For example,

if a new hardware resource becomes available for allocation, the control system used

by METE [79] will have to be redesigned and re-implemented. For this reason, we

refer to these approaches as closed adaptive systems because they are not designed

to be general with respect to the set of adaptations they support. In contrast, SEEC
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can combine actions specified by different developers and learn models for these new

combinations of actions online without a redesign of its control system.

2.3.1 Limitations of System-Specific Approaches

One major drawback of closed adaptive systems is that they cannot be composed.

This drawback will become increasingly important as the number of adaptive com-

ponents deployed on a single system increases.

To illustrate the problems of composing closed adaptive systems, we present the

following experiment. Using the Graphite simulator [68], we run the barnes applica-

tion from the SPLASH2 benchmark suite on a multicore system with two possible

adaptations: the total number of cores assigned to it (from 1-64, by powers of 2),

and the size of the L2-cache on each core (from 16-256 KB, by powers of 2). For each

combination of core allocation and cache size, we measure the performance of the ap-

plication and the total energy consumed. The results are shown in Figure 2-3, where

the x-axis shows energy and the y-axis shows instructions per second. The solid dia-

mond points represent all tested configurations. The squares show configurations that

appear optimal for a closed system which only considers cache adaptations. The tri-

angles show possible configurations for a system that only considers core allocations.

The best configurations are the ones with highest performance and lowest total en-

ergy; i.e.,the Pareto-optimal frontier which is depicted by those diamond points that

are connected by a line in the figure. Notice that both triangles and squares appear to

the right of the Pareto frontier, and these points represent configurations that closed

systems would believe to be optimal, but, in fact, are sub-optimal for the overall

system.

These sub-optimal points can prevent the system from ever actually settling into

a Pareto-optimal configuration, because optimizing a single adaptation without in-

formation from others will cause the overall system to jump between sub-optimal

configurations. For example, one system might increase core count, and observe that

it overshoots the performance goal. However, unbeknownst to it, the sizes of the

caches were also increased at the same time, which was the reason for the overshoot
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Figure 2-3: Efficiency of closed adaptive systems.

of the performance goal. Since neither system is aware of the other, they both pull

back their adaptation and end up undershooting the performance goal. The greater

number of sub-optimal configurations that an independent closed system might con-

sider as optimal, the worse this problem becomes.

To avoid sub-optimal configurations, the SEEC model provides a general in-

terface allowing adaptations supported by different system components to be de-

scribed by their designer and then manipulated by the SEEC runtime decision sys-

tem. For example, this interface can be used to describe both operating system-level

actions (e.g.,allocation of cores to an application [62]) and hardware-level actions

(e.g.,reconfiguration of the hardware data cache [7]). Given this information, the

SEEC runtime system can coordinate adaptation to keep the system on the Pareto

optimal curve shown in Figure 2-3. To support this model, hardware must be ex-

plicitly designed to expose adaptations instead of attempting to adapt as a closed

system.
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2.4 Unique Features of the SEEC Approach

Table 2.1 highlights the differences between SEEC and some representative prior

adaptive implementations. The table includes approaches for both application- and

system-specific adaptation. For each project, the table shows the level (system or

application) at which observation and actions are specified and the methodology used

to make decisions. In addition, the table indicates whether the system can handle

previously unseen applications and whether the emergence of new actions requires

redesign of the decision engine.

As shown in Table 2.1, SEEC is unique in several respects. SEEC is the only

system designed to incorporate observations made at both the system and application

level. SEEC is also the only system designed to incorporate actions specified at both

application and system level. SEEC's novel decision engine is, itself, an adaptive

system combining both machine learning and control theory and capable of learning

new application and system models online. Finally, SEEC is the only adaptive system

that can both handle previously unseen applications and incorporate new actions

without redesign of its decision engine.

2.4.1 Importance of Application-Level Feedback

SEEC distinguishes itself from many existing systems by incorporating application-

level feedback in the form of heartbeats. This distinction can be critical for applica-

tions that execute data dependent code, i.e., where the processing changes based on

the input data.

As an example of why this distinction is important, consider the x264 benchmark

from PARSEC. This benchmark performs video encoding and the key metric of per-

formance is therefore frames per second. It is easy to indicate this goal by issuing a

heartbeat every time a frame is encoded. To show the benefits of using heartbeats,

we collect 16 different HD video inputs from xiph.org and measure both the heart

rate (or frames per second) and the instructions per second (micro-ops retired per

second) on a Linux x86 Xeon server.
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Figure 2-4: Instructions per second vs. heart rate.

Figure 2-4 shows the results with instructions per second on the x-axis and

heartbeats (or frames) per second on the y-axis. In addition, the figure shows the

trend line and the R 2 value for this data. The results show that instructions per second

is a poor predictor of actual application-level performance goals for this benchmark.

In fact, there is a slight negative correlation between the two, which means that

a system which uses instructions per second to allocate resources to x264 would

do the wrong thing and under-allocate resources when they are most needed. This

negative correlation is because harder inputs cause x264 to spend more time in motion

estimation, which is expensive, but implemented with highly efficient code. Overall,

these results show the importance of using application-level feedback for applications

whose performance is data-dependent; i.e.,whose behavior or progress varies as the

data processed varies. Since we cannot know if application progress is data dependent

ahead of time, the SEEC framework adopts the stance of using application feedback

for all applications.
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2.4.2 Comparison with Other Control-Based Approaches

SEEC makes decisions about how to schedule actions using a control theoretic deci-

sion engine. Hellerstein et al [36] and Karamanolis et al [45] have both suggested that

control systems can be used as "off-the-shelf" solutions for managing the complexity

of modern computing systems, especially multi-tiered web-applications. While con-

trol theory represents a general technique, specific deployments require identification

of a feedback mechanism and translation of an existing control model into software.

These are difficult concepts to generalize, which leads to solutions that address a

specific computing problem (e.g.,managing utilization in a web server) using control

theory, but cannot handle other applications or other actuators [59, 71, 84, 86]. In

contrast, SEEC provides a general runtime that is not tied to a particular application

or set of actuators. The runtime works with a range of applications and system com-

ponents, and thus overcomes some limitations of prior approaches recently identified

by Hellerstein [35].

In comparison with existing control-based approaches, one of the unique contri-

butions of SEEC is its generalized control strategy. SEEC's control system is de-

signed to work with any adaptations that affect power/performance/precision trade-

offs. Whereas prior approaches would control a specific actuator (e.g.,CPU utiliza-

tion), the SEEC control system computes a generalized control signal that describes

how behavior needs to change. The SEEC runtime system then translates this signal

into a specific set of actions. By separating the computation of the control from the

setting of the actuators, SEEC creates a general solution that can work with different

sets of actuators without redesign or re-implementation.
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Chapter 3

The SEEC Framework

This chapter designs and develops the SEEC framework for accurate and efficient

management of performance, power, and precision tradeoffs. The chapter begins

with a brief overview of SEEC and then describes the interfaces and runtime system

that comprise the framework.

A key novelty of the SEEC approach is its decoupling of observe-decide-act (ODA)

loop implementation. The SEEC framework achieves this decoupling through the use

of two interfaces and a runtime system. Thus, there are three distinct roles in the

SEEC model: application developer, system developer, and the SEEC runtime de-

cision system. Table 3.1 shows the responsibilities of each of these three entities

for the three phases of ODA execution: observation, decision, and action. The ap-

plication developer is responsible for indicating the application's goals and current

progress toward those goals. The systems developer is responsible for indicating a set

of actions and a function which implements these actions. The SEEC runtime system

is responsible for providing a generalized and extensible decision engine to coordi-

nate actions and meet goals. In practice, roles can overlap: application developers

can supply application-level actions and systems developers can provide system-level

observations.

One difficulty implementing a decoupled adaptive system is designing a decision

engine which can support a wide range of applications and actions. Given that diffi-

culty, the majority of this section focuses on SEEC's decision engine which augments
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Table 3.1: Roles and Responsibilities in the SEEC model.
Phase Applications De- Systems Devel- SEEC Runtime

_veloper oper

Observation Specify goals and - Read goals and per-
performance formance

Decision - Determine how to
meet goals with min-
imum cost

Action - Specify actions and Initiate actions and
initial models update models

a classical control system with several novel features. SEEC uses adaptive control

to tailor its response to previously unseen applications and react swiftly to changes

within an application. Second, SEEC implements adaptive actuator selection to make

efficient use of available components. Finally, SEEC incorporates a machine learn-

ing engine used to determine the true costs and benefits of each action online. This

hierarchy of adaptation in the SEEC system is illustrated in the block diagram of Fig-

ure 3-1.

This chapter first presents the interface used for specifying goals and progress in

Section 3.1. Next, the interface for specifying available actions is described in Sec-

tion 3.2. Section 3.3 describes the runtime decision engine. We note that observation

and action require developer input, but SEEC's runtime handles decisions without

requiring additional programmer involvement.

3.1 Observe

As described in Section 2.4.1, low-level hardware metrics of progress (e.g.,instructions

per second) do not necessarily correlate with application-level metrics of progress

(e.g.,frames per second). Therefore, SEEC exposes an interface that application pro-

grammers can use to set goals and indicate progress; the SEEC runtime system can

then observe these goals and determine whether or not they are being met. This

observation interface is based on the Application Heartbeats API [37]. The API's

key abstraction is a heartbeat; applications use a function to emit heartbeats at im-
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Figure 3-1: SEEC block diagram. SEEC's decision engine is built with multiple layers
of adaptation. At the lowest level, it is based on classical control theory. Additional
adaption incorporates adaptive control to adjust to application-specific characteris-
tics, adaptive actuator selection to adjust to different resource usage characteristics,
and reinforcement learning to adjust to unknown or changing costs and benefits.
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portant intervals, while additional API calls specify goals in terms of this heartbeat.

SEEC currently supports three application specified goals: performance, precision,

and power. Performance is specified as a target heart rate or a target latency be-

tween specially tagged heartbeats. Precision goals are measured as a distortion, or

linear distance from an application defined nominal value [39], measured over some

set of heartbeats. Power and energy goals can be specified as target average power

for a given heartrate or as a target energy between tagged heartbeats. This interface

is not exclusive to SEEC; heartbeat data can be read by any other process in the sys-

tem. In fact, several other projects have built adaptive systems based on heartbeats

without using SEEC [27, 26, 81].

Since heartbeats are meant to reduce programmer effort, they must be easy to

insert into applications. The basic Heartbeat API consists of only a few functions

(shown in Table 3.2) that can be called from applications or system software. To

maintain a simple, conventional programming style, the Heartbeats API uses only

standard function calls and does not rely on complex mechanisms such as OS call-

backs.

The key function in the Heartbeat API is HB-heartbeat. Calls to HB-heartbeat

are inserted into the application code at significant points to register the applica-

tion's progress. Each time HB-heartbeat is called, a heartbeat event is logged. Each

heartbeat generated is automatically stamped with the current time and thread ID

of the caller. In addition, the user may specify a tag that can be used to provide

additional information. For example, a server application may use one tag to denote

the arrival of a request and another tag to signal its completion. Tags can also be

used as sequence numbers in situations where some heartbeats may be dropped or

reordered. Finally, tags can be used to determine the latency between events, for

example, the time between a request arriving at an application and the completion of

the task. An optional argument to this function can be used to indicate the current

precision. For applications with power or energy goals, the system will independently

read available power information and add this to the record of heartbeat data.

Many applications will be concerned with performance in terms of throughput,
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Function Name
HB-initialize

Table 3.2: Heartbeat API
Arguments
window[int], buffer-size[int]

HB-heartbeat tag[int], precision[float]

HB-current-rate

HBget-current heartbeat

HB-set-target-rate

HB-get-target min-rate

HB-get-target-max-rate

HB-set-target-latency

HB-get-target minilatency

HB-get-target-maxilatency

HB-set-power-goal
HB-get-power-goal

HB-set-energy-goal

HB-get-energy-goal

HB-set-precision-goal
HB-get-precision-goal

HB-set-goal-priority

HB-get-goal-priority
HB-get-history

min[float], max[float]

mn[float], maxfloat],
tag[int], tag2[int]

tagl[int], tag2[int]

tagi [int], tag2[int]

min [int], max [int]

min [int], max [int], tag1 [int], tag2
[int]
tag1 [int], tag2 [int]

min [int], max [int]

goal [int]

n[int]

s
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tions
Description
Initialize the Heartbeat runtime sys-
tem and specify how many heart-
beats will be used to calculate the
default average heart rate and how
many heartbeats to buffer
Generate a heartbeat to indicate
progress, precision is an optional ar-
gument indicating current precision
level
Returns the average heart rate cal-
culated from the last window heart-
beats
Returns the tag, time-stamp, cur-
rent heart rate, power, and accuracy
measured the last time a heartbeat
was generated
Called by the application to indicate
to an external observer the average
heart rate it wants to maintain
Called by the application or an
external observer to retrieve the
minimum target heart rate set by
HB-set-target-rate
Called by the application or an
external observer to retrieve the
maximum target heart rate set by
HB-set-target-rate

Called by the application to indicate
to an external observer the average
latency it wants to achieve between
two heartbeats with the given tags
Called by the application or an
external observer to retrieve the
minimum target latency set by
H Bset-target-latency
Called by the application or an
external observer to retrieve the
maximum target latency set by
H Bset-target-latency
Sets desired power
Called by observer to retrieve power
information
Sets desired energy between tags

Called by observer to retrieve power
information
Sets desired precision
Called by observer to retrieve de-
sired precision
Set priority goal to performance
(goal=O), power (goal=1), or preci-
sion (goal=2)
get priority goal
Returns the time-stamp, tag, and
thread ID for the last n heartbeats



or the rate at which heartbeats are generated. For example, a video encoder may

generate a heartbeat for every frame of video. For these applications, it is likely

that the key metric will be the average frequency of heartbeats or heart rate. The

HB-current-rate function returns the average heart rate. It is important to note that

SEEC (and Application Heartbeats) do not assume that the emission of heartbeats

is regular. Continuing the video encoder example, it is possible that different frames

of video will take different times to encode, depending on their complexity. It is up

to the system (SEEC or another heartbeat reader) to handle variance in heartbeat

data. It is not a requirement that the application issue heartbeats at regular time

intervals. Rather, applications should issue heartbeats at a place that is meaningful

to the application. As will be discussed in Section 3.3 much work has been put into

the decision engine to address the possibility of irregular heartbeats.

Different applications and observers may be concerned with either long- or short-

term trends. Therefore, it is possible to specify the number of heartbeats (or window)

used to calculate the average heart rate, power, and precision. There may be some

tension between the application registering the heartbeats and the system service

reading the heartbeats. We assume that the application knows which window size

is most appropriate for the computation it is performing, so the API allows the

application to set the window size and this size is the default used whenever an

external system requests the current heart rate. A system service that wants to

calculate a windowed average using a different window size can make use of the

HB-get-history function discussed in greater detail below.

Applications with real-time deadlines or performance goals will generally have a

target heart rate that they wish to maintain. For example, if a heartbeat is produced

at the completion of a task, then this corresponds to completing a certain number

of tasks per second. Some applications will observe their own heartbeats and take

corrective action if they are not meeting their goals. However, the value in the Heart-

beats approach lies in communicating the performance and goals of an application to

external systems which can also adapt their behavior and increase performance. To

enable this communication, the API provides the HB-set-target-rate function which
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allows the application to specify a target heart rate range. If a system service sees

that an application is not meeting its goals, it can adapt its behavior to assist the

application. Alternatively, if an application is achieving greater performance than it

requires, services can reclaim some resources from that application.

Some applications may be more interested in reducing latency than increasing

throughput. For example, a server might want to minimize the latency of process-

ing a given type of request rather than strictly maximizing the number of requests

serviced. In this case, applications can specify a target latency desired between two

heartbeat tags using the function HB-set-target-latency. In the server example, one

tag value would be used to indicate receiving a request while a distinct value indi-

cates request completion. The HBseLtarget-latency function allows the server to

specify the desired latency between these two events. Other functions allow external

observers to determine the desired latency and then make their own decisions as to

how to help the application meet this goal.

In addition to performance goals, the Heartbeats API allows applications to set

power/energy and precision goals. These functions and there usage is essentially the

same as those that establish performance goals. One difference is that applications

must explicitly state their current precision, as this is a quantity that can only be de-

rived from the application. In addition, applications are not responsible for reporting

their power consumption. Instead it is assumed that any system which is controlling

power has a way to measure this value1 . An API function allows applications to

specify the priority goal in the system. For example, some systems might want to

guarantee performance and minimize power or maximize precision, while other sys-

tems might want to maintain a set power consumption and maximize performance.

When more in-depth analysis of heartbeats are required, the HB-get-history func-

tion can be used to get a complete log of recent heartbeats. It returns an array of

the last n heartbeats in the order that they were produced. This allows the user

to examine intervals between individual heartbeats or filter heartbeats according to

'The studies in this thesis use a WattsUp? power meter, which reports full system power con-
sumption at one second intervals.

49



their tags. The maximum value of n is determined by the buffer-depth parameter

passed to the heartbeat initialization function.

While not necessary for SEEC, some systems may contain hardware that can

automatically adapt using heartbeat information. For example, hardware could au-

tomatically adjust its own supply voltage to maintain a desired heart rate in the

application. Therefore, it must be possible for hardware to directly read from the

heartbeat buffers. In this case the hardware must be designed to manipulate the

buffers' data structures just as software would. To facilitate this, an additional stan-

dard must be established specifying the components and layout of the heartbeat data

structures in memory. We leave the establishment of this standard and the design of

hardware that uses it to future work.

3.2 Act

The SEEC model provides a separate, system programmers interface for specifying

actions that can be taken in the system, which is summarized in Table 3.3. The key

abstraction in the SPI is a control panel populated with actuators. The SEEC runtime

exports a control panel and systems developers use the SPI to register new actuators.

The actuator data structure includes: a name, a list of allowable settings, a function

which changes the setting, and the benefits and costs of each setting. These costs

and benefits are listed as multipliers over a nominal setting, whose costs and benefits

are unity. In addition, each actuator specifies the axis for its costs and benefits as

one of PERFORMANCE, POWER, or PRECISION. Each actuator specifies a delay,

or the time between when it is set and when its effects can be observed. Finally,

each actuator specifies whether it works on only the application that registered it

or if it works on all applications. This last feature allows applications to register

application-specific actuators with the control panel.

A systems developer writes a program to register an actuator. This program

first calls ACT-attach-control-panel to connect to the SEEC control panel. It then

calls the ACThregister-actuator function providing both the name of a text file and

50



Table 3.3: SEEC System Programmer Interface Listing
Function Name Arguments Description
ACT-attach-control-panel Gets a handle to the sys-

tem control panel
ACT-detach-control-panel Releases handle to the

control panel
ACT-register-actuator name [string], file [string] Registers new actuator

with properties specified
in the file

ACT-delete-actuator name [string] Removes the named ac-
tuator from the control
panel

ACT-get-nactuators Returns the number of ac-
tuators registered to the
control panel

ACT-get-actuators Returns an array with all
actuators registered to the
control panel

a name for the actuator. The text file simply has an enumeration of the attributes

of the actuator (settings, costs and benefits, delay). Specifying these values in a

text file aids portability as the same program can be used on different systems by

changing the file. For example, the same program can register a DVFS actuator

on machines with different clock speeds by simply changing the file. If the systems

developer wants to disable an actuator, the ACTdelete-actuator function will remove

it from the control panel. Two query functions are used (primarily by the SEEC

runtime) to get information about the number of actuators and the different actuators

available. These functions allow multiple systems developers to register actuators

independently. The costs and benefits for actuators only serve as initial estimates

and the SEEC runtime uses adaptive actuator selection to recover if there are errors

in the values specified by the systems developer. However, SEEC allows these models

to be specified to provide maximum responsiveness in the case where the models are

accurate.

By convention, the actuator setting with identifier 0 is considered to be the one

with a benefit of 1 and a cost of 1; the benefits and costs of additional actions

are specified as multipliers. Additionally, the systems developer specifies whether
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an action can affect all applications or a single application; in the case of a single

application, the developer indicates the process identifier of the affected application.

Finally, for each action the systems developer indicates a list (possibly empty) of

conflicting actions. Conflicting actions represent subsets of actions which cannot be

taken at the same time; e.g.,allocation of both five and four cores in an 8-core system.

For example, to specify the allocation of cores to a process in an 8-core system,

the developer indicates an actuator with eight settings (i E- {0, ... , 7}) and provides a

function that takes a process identifier and action identifier i binding the process to

i +1 cores. The systems developer provides an estimate of the increase in performance

and power consumption associated with each i. For the core allocator, the speedup of

action i might be i+1, i.e.,linear speedup, while the increase in power consumption will

be found by profiling the target architecture. For each action i, the list of conflicting

actions includes all j such that j + 1 + i + 1 > 8. Finally, the core allocator will

indicate that it can affect any application. In contrast, application-level adaptations

indicate that they only affect the given application.

SEEC combines n sets of actuator settings A', ... , An-' defined by (possibly) dif-

ferent developers using the following procedure. First, SEEC creates a new actuator

where each setting is defined by the n-tuple < ao, aJ, ... , n-i>, and corresponds to

taking the ith setting from set A0 , the jth setting from set A', etc. The benefit of

each new set is computed as s<aO n-i> SaO X ... X san- and the cost is computed

similarly. SEEC may need to combine some actions that affect a single application

with others that can affect all applications. If so, SEEC computes and maintains a

separate set of actions for each application.

The models only serve as initial estimates and the SEEC runtime system can

adapt to even large errors in the values specified by the systems developer. However,

SEEC allows these models to be specified to provide maximum responsiveness in the

case where the models are accurate. SEEC's runtime adjustment to errors in the

models is handled by the different adaptation levels and is described in greater detail

in the next section.
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Table 3.4: Adaptation in SEEC Decision Engine.
Adaptation Level Benefits Drawbacks
Classical Control System Commonly used, rela- Does not generalize to

tively simple unseen applications and
unreliable system mod-
els

Adaptive Control System Tailors decisions to spe- Assumes reasonable sys-
cific application and in- tem model
put

Adaptive Actuator Selection Supports both race-to- May over-provision re-
idle and proportional al- sources if system models
location are inaccurate

Machine Learning Learns system models Requires time to learn,
online guarantees performance

only in limit

3.3 Decide

The SEEC runtime automatically and dynamically sets actuators to meet goals accu-

rately and efficiently. The SEEC decision engine is designed to handle general-purpose

environments and the SEEC runtime system will often have to make decisions about

actions and applications with which it has no prior experience. In addition, the

runtime system will need to react quickly to changes in application load and fluctu-

ations in available resources. To meet these requirements for handling general and

volatile environments, the SEEC decision engine is designed with multiple layers of

adaptation, each of which is discussed below.

SEEC uses one set of equations to control performance and another to control

power; however, these approaches are extremely similar. Therefore, Sections 3.3.2-

3.3.3 provide an in-depth explanation of the system which controls performance. Sec-

tion 3.3.5 and Section 3.3.6 succinctly explain how to modify performance control for

a power or precision goal.

3.3.1 Classical Control System

In its most basic form, the SEEC runtime system implements a basic, model-based

feedback control system [36], which complements and generalizes the control system
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described in [62]. The controller reads the performance goal gi for application i,

collects the heart rate hi(t) of application i at time t, computes a speedup si(t) to

apply to application i at time t, and then translates that speedup into a set of actions

based on the model provided by the systems programmer. SEEC uses a generic second

order control system which can be customized for a specific system by fine-tuning the

tradeoff between responsiveness and rejection of noise.

SEEC's controller observes the heartbeat data of all applications and assumes the

heart rate hi(t) of application i at time t is

si(t - 1)
hi (t) = - + ohi (3.1)

Wi

Where wi(t) is the workload of application i. Workload is defined as the expected

time between two subsequent heartbeats when the system is in the state that provides

the lowest speedup, i.e.,when the system takes action 0. In the classical control

formulation, SEEC assumes that the workload is not time variant and any noise or

variation in the system is modeled with the term 6hi, representing an exogenous

disturbance in the measurement of the heartbeat data for application i.

SEEC's goal is to eliminate the error ei(t) between the heart rate goal gi and the

observed heart rate hi(t) where:

e2(t) = gi - hi(t) (3.2)

SEEC reduces ei(t) by controlling the speedup si(t) applied to application i at time

t. SEEC employs a generic second order transfer function so users can customize

the transient behavior of the closed loop system shown in Figure 3-1. Since SEEC

employs a discrete time system, we follow standard practice [57, p17] and analyze its

transient behavior in the Z-domain:

( ( - p1)(1 -p2) z - zi
1-Zz (Z P)(Z-P2(3.3)
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where F (z) is the Z-transform of the closed-loop transfer function for application i

and {z1 , Pi, P2} is a set of customizable parameters which alter the transient behavior

of the system. The gain of this function is 1, so ei(t) is guaranteed to reach 0 for all

applications. From Equation 3.3, the generic SEEC controller is synthesized following

a classical control procedure [57, p281] and SEEC calculates si(t) as:

si(t) =F - [ A si(t -- 1) + Bsi(t - 2) +

Cei(t)wi + Dei(t -1) wi]

A = piz 1 + P2z 1 - pip2 - 1

B = -p2z1 - pizi + zi + PiP2 (3.4)

C P2 - PIP2 + PI - 1

D (pip2 - p2 - pi + )zi

F (zi - 1) 1

To customize the generic controller for specific behavior, the values {zi, Pi, P2} must

be fixed. For stability, SEEC requires P1 I, P21 < 1. Setting zi = Z2 = Pi = 0 produces

a pure delay controller which eliminates transient behavior 2 allowing the system to

reach e (t) = 0 as quickly as possible; however, this formulation is sensitive to noise

and changes in ohi will result in commensurate changes in the applied speedup (see

Equation 3.1). If Pi z1 < P2, the controller becomes a slow convergence controller

which increases the time the system takes to reach gi. As zi approaches pi, the

system will converge more slowly, but will reject larger disturbances in the 6hi term;

i.e.,in noisier systems zi should be closer to p1. SEEC can also support an oscillating

controller. To achieve this, suppose without loss of generality, P2 > Pi1 If at least

one of these values is negative, the system will oscillate around f. If Pi < z 1 < P2,

the system will slowly converge to f. The closer zi is to P2, the faster the system will

reach f. If zi ;> p the system is subject to overshoot f and if z 1 > 1 the system

is subject to undershoot. Pi = -E, P2 = Zi = 0 produces oscillating behavior that

allows the system to reach the steady state quickly, while if pi = -1 + E the oscillating

2In a control-theoretic sense transient behavior cannot be fully eliminated, but this formulation
makes the transient period as small as possible.
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behavior slowly converges to the desired value.

3.3.2 Adaptive Control

Unlike the classical control system, the adaptive control system estimates application

workload online turning the constant w from Equation 3.4 into a per-application,

time varying value. This change allows SEEC to rapidly respond to previously unseen

applications and sudden changes in application performance. The true workload

cannot be measured online as it requires running the application with all possible

actions set to provide a speedup of 1, which will likely fail to meet the application's

goals. Therefore, SEEC views the true workload as a hidden state and estimates it

using a one dimensional Kalman filter [92].

SEEC represents the true workload for application i at time t as wi(t) E R and

models this workload as:

wi(t) = wi(t - 1) + 6wi(t)

sj(t - 1) (3.5)
hi(t) = 1)+ 6hi(t)

wj(t - 1)

where 6wi(t) and 6hi(t) represent time varying noise in the true workload and heart

rate measurement, respectively. SEEC recursively estimates the workload for appli-

cation i at time t as fvi(t) using the following Kalman filter formulation:

=(t) = jt - 1)

p7(t) = pi(t - 1) +qi(t)

ki (t) pi(t) si(t - 1)

[s,(t)]2py(t) + O, (3.6)
2 t =i(t) + ki (t) [hi (t) - si (t - 1) __(t)]

p (t) =[1 - ki ft)si(t - 1)]pi (t)

1

Wher j (t)at t

Where qj (t) and oi represent the application variance and measurement variance,
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respectively. The application variance qi(t) is the variance in the heart rate signal

since the last filter update. SEEC assumes that oi is a small fixed value as heartbeats

have been shown to be a low-noise measurement technique [37]. hi(t) is the measured

heart rate for application i at time t and si(t) is the applied speedup (according

to Equation 3.4). ±i(t) and ±i(t)- represent the a posterioriand a prioriestimate

of the inverse of application i's workload at time t. pi(t) and pi (t) represent the a

posterioriand a prioriestimate error variance, respectively. ki(t) is the Kalman gain

for the application i at time t.

SEEC's runtime improves on the classical control formulation by replacing the

fixed value of w from Equations 3.1 and 3.4 with the estimated value of fsi(t). By

automatically adapting workload on the fly, SEEC can control different applications

without having to profile and model the applications ahead of time. Additionally,

this flexibility allows SEEC to rapidly respond to changes in application behavior. In

contrast, the classic control model presented in the previous section must use a single

value of w for all controlled applications which greatly limits its efficacy in a general

computing environment.

Note, wi(t) and si(t) have an inverse relationship in Equation 3.1. Therefore,

Equation 3.6 allows SEEC to respond to changes in both application behavior and

system resources, as any error in the speedup models will be perceived (using just

the adaptive controller) as an error in workload and compensated accordingly. For

example, suppose the actions available to SEEC include allocation of cores. Further,

suppose an application i is meeting its goals with four cores until the clock speed

of these cores is lowered. The change in compute power will change the heart rate

hi(t) at time t, which will, in turn, immediately affect the workload estimate Tbi(t)

(Equation 3.6) and cause a corresponding change in the applied speedup si(t) (Equa-

tion 3.4). This change in speedup will result in the allocation of additional cores. If

the temperature cools and all cores are restored, the workload estimator will return

lower values of wi(t) and SEEC will reduce the allocated cores.
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3.3.3 Adaptive Actuator Selection

SEEC's adaptive control system produces a continuous speedup signal si (t) which the

runtime must translate into a set of actions. SEEC does this by scheduling actions

over a time window of T heartbeats. Given a set A = {a} of actions with speedups sa

and costs Ca, SEEC would like to schedule each action for Ta < T time units in such

a way that the desired speedup is met and the total cost of all actions is minimized.

In other words, SEEC tries to solve the following optimization problem:

minimize(Tidlecidle + Z EaA(TaCa)) S. t.

I ZaA TaSa = si(t) (37)

Tidle + ZaEA Ta = T

Ta, Tidle > 0, Va

Note the idle action, which idles the system paying a cost of CiAe and achieving no

speedup. It is impractical to solve this system online, so SEEC instead considers three

candidate solutions: race-to-idle, proportional allocation, and a hybrid approach.

First, SEEC considers race-to-idle, i.e.,taking the action that achieves maximum

speedup for a short duration hoping to idle the system for as long as possible. As-

suming that max E A such that Smax SaVa C A, then racing to idle is equivalent

to setting Tmax = " and Tidle = T - Tmax. The cost of doing so is then equivalent

to Crace = Tmax - Cmax ± Tidle cidle-

SEEC then considers proportional scheduling. SEEC selects from actions which

are Pareto-optimal in terms of speedup and cost to find an action j with the smallest

speedup sj such that sj > si(t) and an action k such that sk < sj. The focus on

Pareto-optimal actions ensures j is the lowest cost action whose speedup exceeds the

target. Given these two actions, SEEC takes action j for Tj time units and k for Tk

time units where si(t) = T - sj + Tk - sk and T = T + Tk. The cost of this solution is

Cprop = Tj ' Cj + Tk ' Ck-

The third solution SEEC considers is a hybrid, where SEEC finds an action j as

in the proportional approach. Again, sj is the smallest speedup such that sj > si(t);
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however, SEEC considers only action j and the idle action, so si (t) =r -Si + Tidle -Sidle,

T = Ti + Tidle, and Chybrid = Ti - Ci + Tidle - Cidle.

In practice, the SEEC runtime system solves Equation 3.7 by finding the minimum

of Crace, cprop, and Chybrid and using the set of actions corresponding to this minimum

cost.

3.3.4 Reinforcement Learning

The use of adaptive control and adaptive actuator selection augments a classical con-

trol system with the capability to adjust its behavior dynamically and control even

previously unseen applications. Even with this flexibility, however, the control system

can behave sub-optimally if the costs and benefits of the actions as supplied by the

application programmer are incorrect or inconsistent across applications. For exam-

ple, suppose a systems programmer specifies a set of actions which change proces-

sor frequency. Furthermore, the systems programmer specifies that the applications

speedup linearly with a linear increase in frequency. This model will work well for

compute-bound applications, but the control solutions described so far may allocate

too much frequency for I/O bound applications.

To overcome this limitation, SEEC augments its adaptive control system with

machine learning. At each time-step, SEEC computes a speedup according to Equa-

tion 3.4 using the workload estimate from Equation 3.6 and uses reinforcement

learning (RL) to determine an action that will achieve this speedup with lowest cost.

Specifically, SEEC uses temporal difference learning to determine the expected utility

Qa, a E A of the available actions3 . Qa is initialized to be Sa/Ca; if the developer's

estimates are accurate, the learner will converge more quickly.

Each time the learner selects an action, it receives a reward r(t) = h(t)/cost(t)

where h(t) is the measured heart rate and cost(t) is the measured cost of taking the

action a for Ta time units and idling for the remaining Tidle = T - Ta time units. Given

3 SEEC learns the Q functions on a per application basis, but to enhance readability in this section
we drop the i subscript denoting application i.
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the reward signal, SEEC updates its estimate of the utility function Qa by calculating:

Qa(t) = Qa(t - 1) + a(r(t) - Qa(t - 1)) (3.8)

Where a is the learning rate and 0 < a < 14. In addition, SEEC keeps estimates of

Sa and Ca calculated as

ha(t) = ha(t -1) + a(h(t) - ha(t - 1))

sa (t) = a (3.9)ho(t)

a(t) = 6(t - 1) + a(cost(t) - aa(t - 1))

Given a desired speedup s(t) and the current estimate of utility Qa(t)Va C A,

SEEC updates its estimates of speedups and costs according to Equation 3.8 and then

selects an action using Algorithm 1. The selection algorithm uses Value-Difference

Based Exploration (VDBE) [90] to balance exploration and exploitation. As shown

in the algorithm listing, SEEC keeps track of a parameter, e (where 0 < c < 1) that

is used to balance the tradeoff between exploration and exploitation. When selecting

an action to meet the desired speedup, a random number r (where 0 < r < 1)

is generated. If r < e, the algorithm randomly selects an action. Otherwise, the

algorithm selects the lowest cost action that meets the desired speedup. The value

of e is updated every time the algorithm is called. A large difference between the

reward r(t) and the utility estimate Qa(t) results in a large e, while a small difference

makes e small. Thus, when SEEC's estimates of the true speedups and costs are

wrong, the algorithm explores available actions. As the estimates converge to the

true values, the algorithm exploits the best solution found so far. In other words, as

the model converges, the ML system behaves like the adaptive actuator selector from

section Section 3.3.3.

Having selected and action a', SEEC executes that action and waits until T heart-

beats have been completed (and SEEC idles itself during this time). If the heartbeats

complete sooner than desired for the given value of s, then sa' was larger than nec-

4 In our system the learning rate is set to 0.85 for all experiments.
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Algorithm 1 Select an action to meet the desired speedup.
Inputs:

s - a desired speedup
Q - estimated utility for available actions
r(t) - the reward at time t
a - the learning rate parameter
A - the set of available actions
a E A - the last action selected
c - parameter that governs exploitation vs. exploration

Outputs:
next - the next action to be taken
E - an updated value

- a(r(t)-Qa(t) I
x=e
f _ 1-x

1+x

e - f + (1 - 6) -
r a random number drawn with uniform distribution from 0 to 1
if r < c then

randomly select a' from A using a uniform distribution
else

find A' = {blb C A, sb > s}
select a' C A' s.t. Qa(t) > Qb, Vb c A'

end if
return a' and e
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essary, so SEEC idles the system for the extra time. If sea' was too small, then SEEC

does not idle. In either case, the cost and reward are immediately computed us-

ing Equation 3.8 and a new action is selected using Algorithm 1. We note that by

idling the system if the selected action was too large, SEEC can learn to correctly

race-to-idle even when the system models are incorrect.

3.3.5 Managing Power

We modify the equations from Sections 3.3.1-3.3.4 to control power while providing

efficient performance. SEEC models the power consumption as:

power(t + 1) = b -c(t) (3.10)

Where power(t) is the power consumption at time t, b is the base power consump-

tion (defined as power consumption when the system is active, but using minimal

resources), and c(t) is a coefficient representing the cost of additional power con-

sumption at time t.

Given Equation 3.10, SEEC eliminates the error epow(t) = gpou) - p(t) between

the power consumption goal gpo, and p(t), the measured power at time t. When

controlling power, error is reduced by modifying the current cost c(t), and we again

analyze transient behavior in the Z-domain:

Gj(z) = z (3.11)

where Gi (z) is the Z-transform of the closed-loop transfer function that controls power

consumption. As is the case for Equation 3.3, we see that Equation 3.11 has a

gain of unity when z = 1 so the system is accurate when controlling power. From

Equation 3.11, the power controller is synthesized as:

c(t) c(t - 1) + e,,,(t) (3.12)b

where e(t) is the error at time t and c(t) is the cost (in additional power consumption)
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to incur at time t.

The coefficient b is analogous to wi in Equation 3.4 in that both are constants

which affect the gain of the controller and thus have tremendous effect on the accuracy

and efficiency of control. So, just as we estimate wi using Equation 3.6, we denote our

estimate of the true value of b as b and calculate it using a Kalman Filter formulation:

-(t) = (t - 1)

p(t) = Pb(t - 1) + qb(t)

kb(t) p (t)c(t - 1) (3.13)
[c(t )]2Pb-( ) + ob

b(t) b-(t) + kb(t)[power(t) - c(t - 1)b-(t)]

pb(t) [I - kb(tOC(t - 1)lpb (

Where qb(t) and ob represent the system power variance and power measurement

variance, respectively. Similar to Equation 3.6, qb(t) is the variance in the power

signal since the last filter update. In this case, ob represents the noise in the power

measurement device, in this case a WattsUp power meter. We set this value to be 2,

as we never measured a standard deviation in power of more than 1.4 for a system

running a constant workload. power(t) is the measured power consumption at time t

(Equation 3.10 and c(t) is the additional cost (Equation 3.4) applied at time t. b(t) and

b(t)- represent the a posterioriand a prioriestimate of the base power consumption.

Again, Pb(t) and pb (t) represent the a posterioriand a prioriestimate error variance.

kb(t) is the Kalman gain for the system power consumption at time t.

When controlling power, SEEC first updates its estimate of the base power using

Equation 3.13 and then substitutes this new value of b(t) in place of the fixed value

b in Equation 3.12. While base power does not vary as much as workload (which is

entirely application dependent), estimation is beneficial because different applications

have different power characteristics based on their instruction mixes, cache uses, etc.

As was the case for controlling performance, the continuous control signal c(t)

needs to be translated into actuator settings. In this case, SEEC meets the power

goal while trying to maximizing the speedup provided to the application, so the
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relevant optimization problem is:

maximize(Tilecidle + ZacA(TaSa)) S. t.

SacA TaCa <_c(t)
7 (3.14)

Tidle + aEA Ta ~ T

Ta, Tidle > 0, Va

As before, SEEC considers the solution at three points and, in this case, takes the one

that provides the maximum speedup. As was the case when controlling performance,

SEEC continuously updates estimates of key metrics using Equation 3.9.

3.3.6 Managing Precision

Managing precision is done in entirely the same manner as power from the previous

section. In fact, the same equations are used, it is only the interpretation of the

equations that changes. Now, the system is controlling precision, so c(t) is interpreted

as the additional precision to apply at time t. Using classical control, it is again

assumed that b is time invariant, and, in this case, represents the base precision.

As precision is entirely application dependent, it is very important to use adaptive

control and estimate the value of b as b(t). Once again the same Kalman filter

formulation can be used. To make it work for precision, the only change required is

to measure the noise in the precision metric.

When controlling precision, SEEC can maximize performance or minimize power

consumption. The same strategies used to solve Equations 3.7 and 3.14 apply in this

case.

3.3.7 Changing goals dynamically

SEEC allows applications to change from performance to power to precision goals

dynamically. This may be useful if, for example, a user switches from wall power to

battery power and the primary concern switches from performance to power. Switch-

ing goals will cause a momentary loss of accuracy as SEEC switches from one goal to
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another. To minimize this period of instability, all state is maintained for all three

control systems regardless of whether the system is currently controlling power, pre-

cision, or performance. Specifically, the system always maintains a current value of

si(t) and c(t) and always updates its estimates of workload (Equation 3.6) and base

power (Equation 3.13) regardless of whether it is controlling performance or power.

Maintaining this state allows SEEC to rapidly transition from managing performance

to power (or power to performance) and still compute the correct value for si(t + 1),

which depends on si(t) (or c(t + 1), which depends on c(t)).

3.3.8 Multiple Applications

When working with multiple applications, the control system may request speedups

whose realization results in resource conflicts (e.g.,in an 8-core system, the assignment

of 5 cores to one application and 4 to another). SEEC resolves conflicting actions

using a priority scheme. Higher priority applications get first choice amongst any

set of actions which govern finite resources. Once actions are scheduled for a high

priority application, those actions are removed from consideration for lower priority

applications. In the example, the higher priority application would be assigned 5

cores with the other forced to use three and find speedup from an additional source

if available.

If applications have the same priority, SEEC resolves conflicts using a centroid

technique [61]. Suppose the total amount of a resource is n and this resource must be

split between m applications. SEEC defines an m-dimensional space and considers

the sub-space whose convex hull is defined by the combination of the origin and the

m points (n, 0,... , 0), (0, n... , 0), . . ., (0, 0,.. . , n). The desired resource allocation

is represented by the point p = (ni, n 2 ,. . ., nm), where the ith component of p is the

amount of resource needed by application i. If p is outside the convex hull, SEEC

then identifies the centroid point 1 (1,1, ... , 1) and the line I intersecting both the

centroid and p. SEEC computes the point p' where I intersects with the convex hull

and then allocates resource such that the ith component of point p is the amount

of resource allocated to application i. This method balances the needs of multiple
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applications when resources are oversubscribed.

3.4 Discussion

SEEC's decoupled approach has several benefits. First, application programmers fo-

cus on application-level goals and feedback without having to understand the system-

level adaptations available. Similarly, systems developers can specify available adap-

tations without knowing how to monitor an application. Both application and systems

developers can rely on SEEC's general and extensible decision engine to coordinate

the adaptations specified by the application developer and one or more systems de-

velopers. Thus, the decoupled approach makes it easier to develop adaptive systems.

Each of the adaptation levels in SEEC's runtime decision mechanism (Figure 3-1)

builds on adaptations from the previous level and each has its tradeoffs, summarized

in Table 3.4. In practice, we find that it is best to run SEEC using either adaptive

action selection or machine learning and each has different uses. When the systems

developer is very confident that the systems models (costs and benefits of actions)

are accurate and they do not contain local minima or maxima, then SEEC will work

best using adaptive actuator selection. In this case, SEEC can adapt to differing

applications quickly and adjust the resource allocation appropriately without machine

learning. In contrast, if the system will be running a mix of applications with varying

responses to actions, then it is unlikely that the models provided by the developer

will be accurate for all applications. In this case, SEEC's machine learning engine

can keep the control system from over-provisioning resources for little added gain.

Experiments demonstrating these tradeoffs are described in Chapter 5.

SEEC can support two types of application goals. If an application requests a

performance that is less than the maximum achievable on a system (e.g.,a video

encoder working with live video), SEEC will minimize the cost of achieving that

goal. When an application simply wants maximum performance, it can set its goal

to be a huge number. SEEC will attempt to meet that number, but it will do so

while minimizing costs. For example, if an application is memory bound and requests
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infinite performance, SEEC can allocate maximum memory resources, but also learn

not to allocate too many compute resources.

SEEC is designed to be general and extensible and SEEC can work with applica-

tions that it has not previously encountered and for which its provided models are

wrong. To support this generality, SEEC has mechanisms allowing it to learn both

application and systems models online. One limitation of this approach is that SEEC

needs enough feedback from the application to have time to adapt. Thus, SEEC

is appropriate for supporting either relatively long-lived applications or short-lived

applications that will be repeatedly exercised. In our test scenarios, all applications

emitted between 200 and 60000 heartbeats. SEEC is not designed to support short

lived applications that are executed only a small number of times.
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Chapter 4

Using SEEC

This section describes the applications and system components used to evaluate the

SEEC model and runtime.

4.1 Benchmarks

We use the PARSEC benchmarks [10] to test SEEC's ability to manage a variety of

applications. These benchmarks represent a mix of important, emerging multicore

workloads and we modify them to emit heartbeats as described in [37]. In general,

these benchmarks have some outer loop (in freqmine control is governed by a recursive

function call) and this is where the heartbeats are inserted. Table 4.1 shows where

the heartbeat is inserted in terms of the application's processing and the average

heart rate that the benchmark achieved over the course of its execution running the

"native" input data set on the eight-core x86 test platform.

Use of this suite tests SEEC's ability to handle a wide range of applications with

different heart rate characteristics. To illustrate this range, the variance in heart rate

for each of the PARSEC benchmarks is shown in Table 4.2. This data is gathered

by running each benchmark on an eight core processor, measuring the reported heart

rate at each heartbeat, and computing the variance in this heart rate signal. Bench-

marks with regular performance have low variance, while benchmarks with irregular

performance (some iterations much harder/easier than others) will have high vari-
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Table 4.1: Heartbeats in PARSEC Benchmarks
Benchmark Heartbeat Location Heart Rate (beat/s)

blackscholes Every 25000 options 561.03
bodytrack Every frame 4.31

canneal Every 1875 moves 1043.76
dedup Every "chunk" 264.30

facesim Every frame 0.72
ferret Every query 40.78

fluidanimate Every frame 41.25
freqmine Every recursive function call 7.18
raytrace Every frame 3.49

streamcluster Every 200000 points 0.02
swaptions Every "swaption" 2.27

vips Every task completion 34.37
x264 Every frame 11.32

Table 4.2: Variance in heart rate for PARSEC.
Benchmark Variance Benchmark Variance
blackscholes 1.90E-01 raytrace 9.55E-02
bodytrack 2.32E-01 streamcluster 7.41E-03
canneal 2.40E+09 swaptions 9.23E+07
dedup 1.10E+10 vips 4.93E+09
facesim 3.51E-03 x264 4.94E+02
ferret 2.27E+07 STREAM 1.93E-01
fluidanimate 1.29E-01 dijkstra 2.50E+01
freqmine 1.17E+09

ance. We note that 6 of the 13 PARSECs (bold in the table) have high variance. To

manage these benchmarks, SEEC will adapt its internal models to the characteristics

of each application including phases and variance within a single application.

Adding heartbeats to the PARSEC benchmark suite is easy, even when unfamiliar

with the benchmark implementations. The PARSEC documentation describes the

inputs for each benchmark. With that information it is simple to find the key loops

over the input data set and insert the call to register a heartbeat in this loop. The

amount of code required to add heartbeats to each of the benchmarks is under a

dozen lines for each application. The extra code is simply the inclusion of the header

file and declaration of a Heartbeat data structure, calls to initialize and finalize the

Heartbeats run-time system, and the call to register each heartbeat.

Unlike the PARSEC benchmarks, the STREAM benchmark does not scale well
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with increasing compute resources [64]. STREAM is designed to exercise a processor's

memory hierarchy and it is a classic example of a memory-bound benchmark; however,

it only becomes memory bound once it has enough compute resources to saturate the

memory controllers. To control STREAM optimally, SEEC will have to find the

balance between compute and memory resources. STREAM has an outer loop which

executes a number of smaller loops that operate on arrays too large to fit in cache.

We instrument STREAM to emit a heartbeat every outer loop. STREAM tests

SEEC's ability to adjust its models online and learn how to manage a memory-bound

benchmark.

The dijkstra benchmark was developed for this thesis specifically to test the SEEC

system. dijkstra is a parallel implementation of Dijkstra's single source shortest paths

algorithm processing a large, dense graph. The benchmark demonstrates limited

scalability, achieving modest speedup with small numbers of processors, but reduced

performance with large numbers of processors. The scaling for this benchmark is

limited by communication overhead as each iteration of the algorithm must select

from and update a priority queue. We instrument this application to emit a heartbeat

every time a new vertex is selected from the queue. dijkstra tests SEEC's ability to

adjust its models online and learn not to over-provision resources for a benchmark

that cannot make use of them.

Using the Heartbeats interface can provide additional insight into the performance

of these benchmarks beyond that provided by just measuring execution time. For

example, Figure 4-1 shows a moving average of heart rate for the x264 benchmark

using a 20 beat window (a heartbeat is registered as each frame is processed). The

chart shows that x264 has several distinct regions of performance when run on the

PARSEC native input. The first occurs in the first 100 frames where the heart rate

tends to the range of 12-14 beats per second. Then, between frames 100 and 330 the

heart rate jumps to the range of 23-29 beats per second. Finally, the heart rate settles

back down to its original range of 12-14 beats per second. In this example, the use of

Heartbeats shows distinct regions of performance for the x264 benchmark with the

native input size. This information can be useful for understanding the performance

71



of certain benchmarks and optimizing these benchmarks on a given architecture. Such

regions would be especially important to detect in an adaptive system.
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Figure 4-1: Heart rate of the x264 PARSEC benchmark executing native input on an
8-core x86 server.

In summary, the Heartbeats framework is easy to insert into a broad array of

applications and our reference implementations are low-overhead for the variety of

different computations represented by the PARSEC benchmarks. The next section

provides an example of using the Heartbeats framework to develop an adaptive ap-

plication.

4.2 Adaptations

SEEC can be used to manage both system- and application-level adaptations. This

section describes how both have been implemented using SEEC.
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Table 4.3: Hardware platforms used in evaluation.
Name Proc. No. No. Speeds No. Turbo- Max Idle

Cores Mem. (GHz) Speeds Boost Pow. Pow.
Conts. (Watts) (Watts)

Machine 1 Intel 8 1 2.000- 4 no 329 200
Xeon 3.160
X5460

Machine 2 Intel 8 2 1.596- 8 yes 220 90
Xeon 2.395
E5520

4.2.1 System-Level Adaptations

To demonstrate the generality of SEEC, we test it on two different machines whose

characteristics are summarized in Table 4.3. Both are equipped with Watts Up?

power meters [2], which measure average power consumption over an interval, the

smallest supported being 1 second. We use these devices to measure power consump-

tion on a per heartbeat basis. If heartbeat signals come less than a second apart, we

interpolate power, otherwise the power measurement is returned directly.

Both machines have similar compute capacities but there are distinct sets of com-

ponents available on each. Machine 1 supports three actuators which allow SEEC to

1) idle an application (by descheduling it), 2) assign cores to an application (through

affinity), and 3) change the clock speed of the cores assigned to an application (using

cpufrequtils). Machine 2 supports the first three actuators and two additional actu-

ators which change the assignment of memory controllers to an application (through

numa mappings) and turn the hardware's ability to use TurboBoost on and off. In

addition, machine 2 has four extra clock speeds available compared to machine 1.

The available actuators are summarized in Table 4.4. Although, these machines look

similar, SEEC uses different strategies to manage their performance/power tradeoffs

as we will see in the next section.
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Table 4.4: Summary of Actuators
Machine No. of Actuators Actuators
Machine 1 3 Idle time, Core Allocation, Clock Speed
Machine 2 5 Idle time, Core Allocation, Clock Speed, Memory

Controllers, TurboBoost

4.2.2 Application-Level Actuators

SEEC can be used to control actions specified at either the application or system

level. The previous section discussed some of the system-level actions that SEEC

can manage. This section describes a compiler framework that can turn statically

configured applications into applications with dynamic knobs, i.e.,applications whose

dynamic behavior is exposed by SEEC's actuator interface and controlled by the

SEEC runtime system [39].

This approach is designed for applications that 1) have static configuration pa-

rameters controlling performance versus precision tradeoffs and 2) use the Application

Heartbeats API (the compiler can automatically insert the required API calls). These

applications typically exhibit the following general computational pattern:

" Initialization: During initialization the application parses and processes the

configuration parameters, then computes and stores the resulting values in one

or more control variables in the address space of the running application.

* Main Control Loop: The application executes multiple iterations of a main

control loop. At each iteration it emits a heartbeat, reads the next unit of

input, processes this unit, produces the corresponding output, then executes

the next iteration of the loop. As it processes each input unit, it reads the

control variables to determine which algorithm to use.

With this computational pattern, the point in the performance versus precision

tradeoff space at which the application executes is determined by the configuration

parameters when the application starts and does not change during its execution. Us-

ing SEEC, the compiler can augment the application with the ability to dynamically

change the point in the tradeoff space at which it is operating. At a high level, this

goal is accomplished as follows:
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" Parameter Identification: The user of the program identifies a set of con-

figuration parameters and a range of settings for each such parameter. Each

combination of parameter settings corresponds to a different point in the per-

formance versus precision tradeoff space.

" Dynamic Knob Identification: For each combination of parameter settings,

the compiler uses dynamic influence tracing (which traces how the parameters

influence values in the running application) to locate the control variables and

record the values stored in each control variable.

" Dynamic Knob Calibration: Given a set of representative inputs and a preci-

sion goal, the compiler executes a training run for each input and combination of

parameter settings. For each training run it records performance and precision

information. It then processes this information to identify the Pareto-optimal

points in the explored performance versus precision tradeoff space.

" Dynamic Knob Insertion: The compiler inserts calls to SEEC's systems

programmer interface. As discussed in Chapter 3 SEEC's runtime uses the

information provided through these calls to set the control variables to values

previously recorded during dynamic knob identification, thereby moving the

application to a different Pareto-optimal point in the performance versus pre-

cision trade-off space. Subsequent iterations of the main control loop will read

the updated values in the control variables to (in effect) process further input

as if the configuration parameters had been set to their corresponding different

settings at application startup.

The result is an application that enables SEEC to dynamically control the point

in the performance versus precision tradeoff space at which the application executes.

In standard usage scenarios the application specifies a target heart rate. If SEEC

observes a heart rate slower than the target, it uses the calibrated dynamic knobs to

move the application to a new point in the tradeoff space with higher performance at

the cost, typically small, of some precision. If the observed heart rate is higher than

the target, SEEC moves the application to a new point with lower performance and

better precision.
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Figure 4-2: Dynamic Knob work flow.

4.2.3 Dynamic Knob Identification

To transform a given set of configuration parameters into something usable by SEEC,

the compiler must identify a set of control variables that satisfy the following condi-

tions:

* Complete and Pure: All variables whose values are derived from configura-

tion parameters during application startup (before the application emits its first

heartbeat) are control variables. The values of control variables are derived only

from the given set of configuration parameters and not from other parameters.

* Relevant and Constant: During executions of the main control loop, the

application reads but does not write the values of the control variables.

This compiler uses influence tracing [16, 29] to find the control variables for the

specified configuration parameters. For each combination of configuration parameter

settings, the compiler framework executes a version of the application instrumented

to trace, as the application executes, how the parameters influence the values that

the application computes. It uses the trace information to find the control variables

and record their values, applying the above conditions as follows:

9 Complete and Pure Check: It finds all variables that, before the first heart-

beat, contain values influenced by the specified configuration parameters. It

checks that these values are influenced only by the specified configuration pa-

rameters.
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* Relevance Check: It filters out any variables that the application does not

read after the first heartbeat - the values of these variables are not relevant to

the main control loop computation.

" Constant Check: It checks that the execution does not write a control variable

after the first heartbeat.

Finally, the compiler checks that the control variables are consistent, i.e.,that the dif-

ferent combinations of parameter settings all produce the same set of control variables.

If the application fails any of these checks, the transformation is rejected.

For each combination of parameter settings, the value of each control variable

is recorded. This information is passed to the SEEC runtime system through the

systems programmer interface. Note that because this approach uses a dynamic

influence analysis to find the control variables, it is possible for unexercised execution

paths to violate one or more of the above conditions. The influence analysis also does

not trace indirect control-flow or array index influence.

The influence tracing system is implemented as a static, source-based instrumen-

tor for C and C++. It is built on the LLVM compiler framework [16, 55] and inserts

code to trace the flow of influence through the values that the application computes.

For each value, it computes the configuration parameters that influenced that value.

The currently implemented system supports control variables with datatypes of int,

long, float, double, or STL vector. It augments the production version of the appli-

cation with calls to the SEEC system programmer interface to register the address

of each control variable and read in the previously recorded values corresponding to

the different dynamic knob settings. This mechanism gives the SEEC control system

the information it needs to apply a given actuator setting.

4.2.4 Dynamic Knob Calibration

In this step, the compiler explores the performance versus precision trade-off space

available to the application via the specified configuration parameters. The user

provides an application, a set of representative inputs, a set of specified configuration
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parameters, a range of values for each parameter, and a precision metric. Given

these values, the compiler produces, for each combination of parameter settings, a

specification of the point in the tradeoff space to which the parameter settings take

the application. This point is specified relative to the baseline performance and

precision of the parameter setting that delivers the highest precision (which, for our

set of benchmark applications, is the default parameter setting).

The calibrator executes all combinations of the representative inputs and config-

uration parameters. For each parameter combination it records the mean (over all

representative inputs) speedup of the application. It computes the speedup as the

execution time of the application running with the default parameter settings divided

by the execution time of the application with the current parameter combination. In

a separate instrumented execution, it also records the values of the control variables

(see Section 4.2.3).

For each combination of configuration parameters the compiler also records the

mean (over all representative inputs) precision. The precision metric works with a

user-provided, application-specific output abstraction which, when provided with an

output from the program, produces a set of numbers oi, . .. , om. The output abstrac-

tion typically extracts relevant numbers from the output or computes a measure of

output quality (such as, for example, the peak signal-to-noise ratio of the output).

Given the output abstraction from the baseline execution oi,... , om and an output

abstraction 6 1,. .. , 5m from the execution with the current parameter settings, we

compute the precision loss as the distortion [74]:

prec = - 1 'wi i-b (4.1)

Here each weight wi is optionally provided by the user to capture the relative im-

portance of the ith component of the output abstraction. Note that a prec of zero

indicates optimal precision, with higher numbers corresponding to worse precision.

This approach supports caps on precision loss - if a specific parameter setting pro-

duces a precision loss that exceeds a user-specified bound, the system can exclude the
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corresponding setting from further consideration.

At this point the compiler has created an application that can register goals and

actions with SEEC. The SEEC runtime system then manages this application to

maximize its precision subject to its stated performance goal.

4.2.5 Using the Compiler

The compiler framework is used to create four adaptive applications. swaptions,

bodytrack, and x264 are all taken from the PARSEC benchmark suite as described

above; swish++ is as open-source search engine [85]. For each application we acquire

a set of representative inputs, then randomly partition the inputs into training and

production sets. We use the training inputs to obtain the dynamic knob response

model (see Section 4.2.4) and the production inputs to evaluate the behavior on

previously unseen inputs. Table 4.5 summarizes the sources of these inputs. All of the

applications support both single- and multi-threaded execution. In our experiments

we use whichever mode is appropriate. In this section, each of these benchmarks is

described in turn.

Benchmark Training Inputs Production Inputs Source
swaptions 64 swaptions 512 swaptions PARSEC & randomly

generated swaptions
x264 4 HD videos of 200+ 12 HD videos of 200+ PARSEC & xiph.org

frames frames [3]
bodytrack sequence of 100 frames sequence of 261 frames PARSEC & additional

input from PARSEC
authors

swish++ 2000 books 2000 books Project Gutenberg [1]

Table 4.5: Summary of Training and Production Inputs for Each Benchmark

swaptions

Description: This financial analysis application uses Monte Carlo simulation to

solve a partial differential equation that prices a portfolio of swaptions. Both the
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accuracy and the execution time increase with the number of simulations - the

accuracy approaches an asymptote, while the execution time increases linearly.

Knobs: We use a single command line parameter, -sm, as the dynamic knob. This

integer parameter controls the number of Monte Carlo simulations for each swaption.

The values range from 10, 000 to 1, 000, 000 in increments of 10, 000; 1,000,000 is the

default value for the PARSEC native input.

Inputs: Each input contains a set of parameters for a given swaption. The native

PARSEC input simply repeats the same parameters multiple times, causing the ap-

plication to recalculate the same swaption price. We augment the evaluation input

set with additional randomly generated parameters so that the application computes

prices for a range of swaptions.

Precision Metric: Swaptions prints the computed prices for each swaption. The

precision metric computes the distortion of the swaption prices (see Equation 4.1),

weighting the prices equally to directly measure the application's ability to produce

accurate swaption prices.

x264 Description: This media application encodes a raw (uncompressed) video

according to the H.264 standard [94]. Like virtually all video encoders, it uses lossy

encoding, with the visual quality of the encoding typically measured using continuous

values such as peak signal-to-noise ration.

Knobs: We use three knobs: -- subme (an integer parameter which determines the

algorithms used for sub-pixel motion estimation), -- merange (an integer which gov-

erns the maximum search range for motion estimation), and -- ref (which specifies

the number of reference frames searched during motion estimation). -- subme ranges

from 1 to 7, -- merange ranges from 1 to 16, and -- ref ranges from 1 to 5. In all

cases higher numbers correspond to higher quality encoded video and longer encoding

times. The PARSEC native defaults for these are 7, 16, and 5, respectively.

Inputs: The native PARSEC input contains a single high-definition (1080p) video.

We use this video and additional 1080p inputs from xiph.org [3].
Precision Metric: The precision metric is the distortion of the peak signal to
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noise ratio (PSNR, as measured by the H.264 reference decoder [33]) and bitrate (as

measured by the size of the encoded video file), with the PSNR and bitrate weighted

equally. This precision metric captures the two most important attributes of encoded

video: image quality and compression.

bodytrack Description: This computer vision application uses an annealed par-

ticle filter and videos from multiple cameras to track a human's movement through a

scene [24]. bodytrack produces two outputs: a text file containing a series of vectors

representing the positions of body components (head, torso, arms, and legs) over time

and a series of images graphically depicting the information in the vectors overlaid

on the video frames from the cameras. In envisioned usage contexts [24], a range of

vectors is acceptable as long as the vectors are reasonably accurately overlaid over

the actual corresponding body components.

Knobs: bodytrack uses positional parameters, two of which we convert to knobs:

argv [51, which controls the number of annealing layers, and argv [4], which controls

the number of particles. The number of layers ranges from 1 to 5 (the PARSEC

native default); the number of particles ranges from 100 to 4000 (the PARSEC native

default) in increments of 100.

Inputs: bodytrack requires data collected from four carefully calibrated cameras.

We use a sequence of 100 frames (obtained from the maintainers of PARSEC) as

the training input and the PARSEC native input (a sequence of 261 frames) as the

production input.

Precision Metric: The precision metric is the distortion of the vectors that represent

the position of the body parts. The weight of each vector component is proportional

to its magnitude. Vector components which represent larger body components (such

as the torso) therefore have a larger influence on the precision metric than vectors

that represent smaller body components (such as forearms).

swish++ Description: This search engine is used to index and search files on web

sites. Given a query, it searches its index for documents that match the query and
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returns the documents in rank order. We configure this benchmark to run as a server

- all queries originate from a remote location and search results must be returned

to the appropriate location.

Knobs: We use the command line parameter -- max-results (or -m, which controls

the maximum number of returned search results) as the single dynamic knob. We

use the values 5, 10, 25, 50, 75, and 100 (the default value).

Inputs: We use public domain books from Project Gutenberg [1] as our search

documents. We use the methodology described by Middleton and Baeza-Yates [67]
to generate queries for this corpus. Specifically, we construct a dictionary of all

words present in the documents, excluding stop words, and select words at random

following a power law distribution. We divide the documents randomly into equally-

sized training and production sets.

Precision Metric: We use F-measure [63] (a standard information retrieval metric)

as our precision metric. F-measure is the harmonic mean of the precisioni and recall.

Given a query, precision is the number of returned documents that are relevant to

the query divided by the total number of returned documents. Recall is the number

of relevant returned documents divided by the total number of relevant documents

(returned or not). We examine precision and recall at different cutoff values, using

typical notation P @N.

Discussion These applications are broadly representative of our target set of ap-

plications - they all have a performance versus precision tradeoff and they all make

that tradeoff available via configuration parameters. Other examples of applications

with appropriate tradeoff spaces include most sensory applications (applications that

process sensory data such as images, video, and audio), most machine learning appli-

cations, many financial analysis applications (especially applications designed for use

in competitive high-frequency trading systems, where time is critically important),

many scientific applications, and many Monte-Carlo simulations. Such applications

(unlike more traditional applications such as compilers or databases) are typically

'At this point the term precision is overloaded. For the remainder of this paragraph precision
refers to the information retrieval metric.
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inherently approximate computations that operate largely without a notion of hard

logical correctness - for any given input, they instead have a range of acceptable

outputs (with some outputs more precise and therefore more desirable than others).

This broad range of acceptable outputs, in combination with the fact that more pre-

cise outputs are often more computationally expensive to compute, gives rise to the

performance versus precision tradeoffs that SEEC enables the applications to dynam-

ically navigate.

There are a variety of reasons such applications would be deployed in contexts

that require responsive execution. Applications that process soft real-time data for

human users (for example, video-conferencing systems) need to produce results re-

sponsively to deliver an acceptable user experience. Search and information retrieval

applications must also present data responsively to human users (although with less

stringent response requirements). Other scenarios involve automated interactions.

Bodytrack and similar probabilistic analysis systems, for example, could be used in

real-time surveillance and automated response systems. High-frequency trading sys-

tems are often better off trading on less precise results that are available more quickly

because of competition with other automated trading systems, opportunities for

lucrative trades disappear if the system does not produce timely results.
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Chapter 5

Case Studies

5.1 Overview

This section presents numerous case studies demonstrating how SEEC's decoupled

approach can be used to build real adaptive systems that meet goals accurately and

efficiently. Section 5.2 discusses the overhead of the system. Next, Section 5.3

presents several simple examples demonstrating how performance, power, and preci-

sion can be controlled. Section 5.4 shows how SEEC can be used to manage power

and performance tradeoffs on the machines from Section 4.2.1, maintaining a goal in

one dimension and optimizing behavior in the other dimension. Section 5.5 shows

how the same system can be used to tailor the behavior of a video encoder to specific

inputs. Section 5.7 demonstrates how SEEC can control the behavior of applications.

Section 5.6 shows some situations where SEEC's machine learning approach provides

an advantage over adaptive control. Section 5.8 shows SEEC controlling multiple

applications and reacting to a fluctuation in the environment.
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Table 5.1: Performance of Heartbeats
Implementation Heartbeat Throughput Heartbeat Latency

(Kbeat/s) (microseconds)
Shared Memory 1508.2 1.5

File I/O 0.9 136.2

5.2 Overhead

5.2.1 Heartbeats API

This section discusses several experiments conducted to measure the performance and

overheads of our reference implementations of the Heartbeats API. There are two key

metrics needed to evaluate the suitability of the interface for a given application or a

system service. The first is the time taken to register a heartbeat, while the second is

the delay from when the heartbeat is registered in an application to when it can be

read in an external process. We refer to the first metric as the heartbeat throughput

while the second is called the heartbeat latency.

To measure heartbeat throughput, we simply write an application that calls the

heartbeat API function repeatedly in a loop. After exiting the loop, we read the global

heart rate. The results for both the file-based and shared memory implementations

are shown in Table 5.1. Not surprisingly, the shared memory implementation is

significantly faster.

These throughput measures can be used to determine how much overhead the use

of heartbeats will add to an application. For example, consider an application that

anticipates a heart rate of 200 beats per second. Adding the shared memory based

implementation of heartbeats will add 1/1500000s to each beat, for an overhead of

approximately .01%. If instead, we used the file-based implementation of the API,

we would expect an overhead of approximately 18.5%. Knowing these values allows

applications developers to make informed decisions about the placement of Heartbeats

within their applications.

We test the heartbeat latency of our implementations using two applications which

"ping-pong" heartbeats between each other. Both applications emit heartbeats while

86



reading the other application's heartbeat data. The first application sends a heartbeat

and then waits to see the second application register a heartbeat with the same tag.

The second application works similarly, waiting for the first application and then

emitting a heartbeat. We measure the time taken from when the first application

sends its heartbeat until it detects a heartbeat with the same tag from the second

application. We measure this value 10000 times and take the average. This average

value represents the time taken to transmit two heartbeats (from the first application

to the second and from the second back to the first) so we divide the time in half to

obtain the heartbeat latency.

The values for heartbeat latency are also shown in Table 5.1. Knowing these

values can aid the development of autonomic system services as heartbeat latency

represents the minimum time required for the heartbeat data generated in an ap-

plication to reach the service that is requesting this data. This also represents the

minimum amount of time required for any change in behavior to be reflected in the

heartbeat.

For the file-based implementation, there is a tradeoff between heartbeat through-

put and heartbeat latency. The throughput could be increased by buffering several

heartbeats and writing multiple heartbeats worth of data to the file. This will de-

crease the overhead of file i/o in the application but will delay the ability of an

external process from reading this data. In fact, it would cause multiple heartbeats

to appear to an external observer simultaneously. We have therefore chosen a file i/o

implementation which minimizes heartbeat latency. Applications are free to reduce

heartbeat overhead by registering heartbeats less often and making corresponding

adjustments to their desired heart rates.

5.2.2 Overhead of Decision Engine

We account for SEEC's runtime overhead by measuring the time it takes to make

a new decision, which requires calculating a speedup, selecting actions, and possibly

updating the application and system models. On machine 1, classical control sustains

39.22 million decisions per second (d/s), adaptive control sustains 18.83 million d/s,
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and adaptive actuator selection sustains 8.87 million d/s. In practice the overhead of

signaling the heartbeat is greater than that of making a decision.

5.3 Controlling Performance, Power, and Preci-

sion

The first study demonstrates how SEEC can control performance, power, and pre-

cision. Example systems built to control each of the three metrics are described in

turn.

5.3.1 Performance Examples

This section presents five examples of SEEC controlling performance. The first four

show SEEC controlling application performance using various system-level adapta-

tions available on machine 1 as described in Section 4.2.1. The fifth example shows

SEEC controlling application-level adaptations for x264 exposed by the compiler

framework described in Section 4.2.2.

For each example, we first measure the minimum and maximum performance

available through static allocation of actions. In each example, the application re-

quests a target performance that is average of the maximum and minimum. Three

different versions of the SEEC runtime are compared: pure delay, slow convergence,

and oscillating, and each corresponds to a different instantiation of the parameters in

Equations 3.3-3.4 as described in Section 3.3.1.

The results of this study for all five systems controlling performance are shown

in Figures 5-1-5-5. For each chart, the x-axis shows time while the y-axis shows

performance normalized to the maximum value. The minimum and maximum per-

formance of the system are shown with dotted lines, while the behavior of the three

SEEC instantiations are shown with dashed lines.

Figure 5-1 shows SEEC controlling processor frequency for a single-core version

of swaptions. Figure 5-2 shows the behavior of SEEC managing core allocation for
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Figure 5-1: SEEC controlling processor speed for swaptions.

swaptions. In this case, the parallel version of swaptions is used and the noise in the

feedback system increases significantly as cores are added. Despite this noise, the

figure shows that all controllers converge to the desired performance, although the

oscillating controller's curve is distorted. Figure 5-3 shows the behavior of SEEC

controlling both clock speed and the number of cores. Again, all the curves converge

to the desired performance with some distortion due to noise.

Figure 5-4 shows the behavior of SEEC on machine 1 managing the number of

memory controllers assigned to the STREAM benchmark. As shown in the figure

all controllers converge to the desired behavior. This is notable because the memory

controller allocator only has two settings, but is still able to achieve arbitrary speedups

using the SEEC control system. The "spikes" in the curves are due to the overhead

of taking an action with this controller (which reallocates large chunks of memory).

Figure 5-5 shows the behavior of the adaptive x264 encoder using the PARSEC

native input. Again, the controller is able to achieve the desired performance. In
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Figure 5-2: SEEC controlling core allocation for swaptions.

this case, the SEEC framework is able to turn an arbitrary application into a soft-

real-time application with little work required on the part of the developer; SEEC

automatically adjusts and controls performance using options that already existed as

part of the software.

In summary, these results illustrate the generality and extensibility of the SEEC

approach. While each example uses a different set of actuators, the SEEC runtime

is able to manage all of them. These results demonstrate how SEEC can maintain

accuracy despite its general approach to constructing adaptive systems; in all five

examples SEEC converges to the target performance and does so following the tra-

jectory predicted by Equations 3.3-3.4. This convergence is achieved despite the fact

that the heartbeat signal is noisy for some examples. As expected, the oscillating

controls are most affected by the presence of noise. The slowly converging controllers

are least affected by noise while the pure delay controllers lie somewhere in between.
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Figure 5-3: SEEC controlling cores allocation and processor speed for swaptions.

5.3.2 Power Example

This section presents an example showing SEEC controlling the power consumption

of the dedup benchmark on machine 1 by managing all five available actuators. In

this case, the minimum and maximum power consumption for this application are

measured and the application requests a target performance that is halfway between

these two values. SEEC's runtime is instantiated with a pure delay controller and the

power consumption of the system under SEEC is compared to the power consumption

of the system assigned maximum resources with no control.

Figure 5-6 shows the results of this experiment. Time (in seconds) is shown on

the x-axis, while full system power consumption (in Watts) is shown on the y-axis.

As can be seen in the figure, if this application is left uncontrolled, then the power

spikes towards the middle of execution. However, using SEEC to control power, the

spike is detected and reduced.

These results demonstrate that SEEC can accurately control power consumption
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Figure 5-4: STREAM with the SEEC memory allocator.

as well as performance. In this case, SEEC significantly reduces the maximum power

consumed by the system by eliminating a power spike.

5.3.3 Precision Example

This section presents an example showing SEEC controlling precision for the x264

benchmark on machine 1 by managing its algorithm using the actions exposed by

the compiler described in Section 4.2.2. Here, the minimum and maximum precision

for this application are measured and the application requests a target performance

that is halfway between these two values. For this application, the precision refers to

the peak signal to noise ratio (PSNR) achieved by the encoder and is measured on a

frame by frame basis.

Controlling precision for this benchmark represents a challenge for SEEC. On

average, the maximum precision configuration achieves a PSNR that is less than 3%

higher than the minimum. This is a very small range of control. For this benchmark,
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Figure 5-5: SEEC controlling application-level actions for x264.

variations in scene will have a larger effect on precision than any of the algorithmic

knobs exposed to SEEC. Thus, in this example, SEEC will often be unable to achieve

the requested precision. When SEEC detects that it is exceeding the precision goal, it

will reduce precision and increase performance. When SEEC detects that it is below

the precision goal, it will increase precision and use the most precise algorithm at a

cost of performance.

Figure 5-7 shows the results of this experiment. Figure 5-7(a) shows precision

as a function of time, with time (measured in heartbeats) shown on the x-axis and

precision (measured in PSNR) shown on the y-axis. Figure 5-7(b) shows performance

as a function of time with time shown on the x-axis and performance (measured in

heart rate, or frame rate) shown on the y-axis. The figures show results when x264 is

uncontrolled and when precision is actively controlled by the SEEC runtime system.

For this experiment, x264 processes a video with three distinct scenes, the first

begins at heartbeat (frame) 0 and lasts until heartbeat 500, the second is from 500-
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Figure 5-6: Controlling power consumption for the dedup benchmark.

1000, and the third is from 1000-1500. The first scene is the most difficult and

during this scene, SEEC keeps precision at close to the maximum to try to meet the

goal. The next two scenes are significantly easier to encode and here SEEC reduces

precision because the goal is easily met even at the lowest precision setting. As shown

in Figure 5-7(b) when SEEC is able to reduce the precision it significantly increases

performance.

These results demonstrate SEEC's ability to control precision and to exchange

precision for increased performance. These results hint at SEEC's ability to efficiently

meet goals and the next section explores this in detail.
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Figure 5-7: Controlling precision for the x264 benchmark.

95

48

46

44

Z 42

>40

38

36

34

32

45

40

C 350
U

'~30

0.
25

E

6 20
U
C
m 15
E

10

5

0

Nor



5.4 Managing Power/Performance Tradeoffs

The second case study demonstrates how SEEC's decoupled approach can accurately

and efficiently meet power and performance goals for a wide variety of applications

(see Section 4.1) on the two machines described in Section 4.2.1.

5.4.1 Points of Comparison

To show the benefits of SEEC, we compare its decision engine to several other ap-

proaches. We compare two different instantiations of SEEC, one that uses adaptive

control and adaptive actuate selection (referred to as SEEC AAS) and one that uses

those two control schemes combined with machine learning (referred to as SEEC ML).

These two versions of SEEC are compared to other approaches including:

Static Oracle:

This approach configures components for an application once, at the beginning of

execution, but knows a priorithe best setting for each benchmark. The static oracle

is constructed by measuring the performance and power for all benchmarks with all

available actuators on each machine. This approach provides an interesting compari-

son for active decision making as it represents the best that can be achieved without

execution-time adaptation.

Uncoordinated Adaptation:

In this approach, components are tuned individually, without coordination. This

approach uses all available actuators but each is tuned by an independent instance of

the SEEC runtime. This approach represents what happens when the system-specific

adaptive systems (see Section 2.3.1) work to manage the same application.

Classical Control:

This is the system described in Section 3.3.1. One difficulty implementing this ap-

proach is the specification of w in Equation 3.4. Ideally, w is determined on a per
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application (or per input) basis, but these studies assume no a prioriknowledge. In-

stead, we use a fixed value of w = 0.5 designed to maximize stability, as recommended

in [62]. When controlling power, we use a fixed value of b which is easily measured

for both of our test machines. The use of classical control as a point of comparison

shows the benefits of SEEC's additional adaptive features over existing control-based

approaches like that shown in [62].

Fixed System Adaptation:

This approach uses the SEEC runtime's adaptive control, but fixes the actuator selec-

tion strategy to the best strategy for the other for the other machine; i.e.,on machine

1, the best strategy for machine 2 is used, and vice versa. For example, if the best

strategy for an application is race-to-idle on machine 1, then this approach uses race-

to-idle on machine 2. This comparison demonstrates how system-specific approaches

(see Section 2.3.1) fail to generalize when moving to a different set of components.

Dynamic Oracle:

At every heartbeat, this approach tunes actuators to the best settings for the next

window of heartbeats. Obviously the dynamic oracle cannot be built in practice.

Instead its behavior is computed after the fact by post processing empirical data for

each application. The dynamic oracle represents an upper bound on the benefits of

any adaptive system because it has 1) no overhead and 2) perfect knowledge of the

future.

5.4.2 Metrics

To evaluate accuracy we compute:

* Performance Error: Is calculated as (g - min(g, h))/ g, where g is the perfor-

mance goal, and h is the achieved performance (see Equation 3.1). This metric

penalizes systems for not achieving the performance goal, but provides no re-

ward or penalty for exceeding it. Note that exceeding the performance goal will
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likely cause greater than optimal power consumption, and this will be reflected

in the power efficiency.

e Power Error: Is calculated as (gpo. - max(gow, c))/ gpow, where gpo, is the

performance goal, and c is the achieved power consumption (see Equation 3.10).

This metric penalizes systems for exceeding the power goal, but provides no re-

ward or penalty for operating below it. Again, delivering power consumption

below the goal will likely result in suboptimal performance which will be re-

flected in the performance efficiency. When measuring power error, we measure

the total system power and subtract out the idle power, which magnifies the

penalty for inaccuracy.

For the error metrics, lower values are better than higher ones.

To evaluate efficiency we compute:

* Normalized Power: Measures average power consumption when controlling

a performance goal. Power is normalized to that achieved by the static oracle.

For this metric lower values are better; normalized power consumption less

than unity indicates a savings over the best possible non-adaptive strategy.

We compute power by measuring total system power and subtracting out idle

power.

o Normalized Performance: Measures average performance when controlling

a power goal. Performance is normalized to that achieved by the static oracle.

For this metric higher values are better; normalized performance greater than

unity indicates higher performance than the best possible non-adaptive strategy.

For the efficiency metrics, lower values of normalized power are better, while higher

values of normalized performance are better.

5.4.3 Controlling Performance and Minimizing Power

We launch each of the PARSEC benchmarks on a single core set to the minimum

clock speed and each requests a performance equal to half the maximum achievable on

Machine 1. For each benchmark, we compute the performance error and normalized
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power and Figures 5-8 and 5-9 show the results. In all cases, the x-axis shows the

benchmarks (and the average for all benchmarks). In Figures 5-8(a) and 5-9(a),

the y-axes show performance error on the two different machines. In Figures 5-8(b)

and 5-9(b), the y-axes show the normalized power for each machine (lower is better).

The results in Figures 5-8(a) and 5-9(a) indicate that, on average, SEEC is more

accurate for performance targets than either uncoordinated adaptation or classical

control. The average performance error on Machine 1 is 12.4% for uncoordinated

control, 23.4% for classical control, and 4.5% for fixed system control. For SEEC,

AAS achieves an error of 3.8%, while ML achieves an error of 4.8%. On Machine 2,

the average performance error is 11.7% for uncoordinated control, 35.8% for classical

control, and 9.0% for fixed system control. On the same machine, SEEC AAS achieves

1.4% error while ML achieves 4.7%. The lower performance error shows that both

forms of SEEC do a better job of meeting goals than existing approaches.

Figures 5-8(b) and 5-9(b) show that SEEC is more efficient than uncoordinated

adaptation; i.e.,provides lower power consumption for the given performance targets.

In some cases, power consumption is lower than the dynamic oracle. These cases cor-

respond to times when the performance target was missed so these additional savings

are coming at a cost of not meeting the performance goal, whereas the dynamic ora-

cle is 100% accurate. On machine 1, the normalized power is 1.18 for uncoordinated

adaptation, 1.14 for classical control, and 1.09 for fixed system control. For SEEC,

AAS achieves a normalized power of 0.82, while ML achieves 0.98. The best possi-

ble normalized power is that achieved by the dynamic oracle, 0.77. Uncoordinated,

classical, and fixed system control are all worse than the static oracle, while SEEC is

better. Uncoordinated control is 53% worse than the dynamic oracle while SEEC is

only off of optimal by 7.8%.

On machine 2, the normalized power is 0.93 for uncoordinated adaptation, 0.95 for

classical control, and 0.95 for fixed system control. In contrast, SEEC AAS achieves

a normalized power of 0.84 while SEEC ML achieves a normalized power of 0.96. The

dynamic oracle's normalized power is 0.79. In this case, all approaches improve on

the static oracle, but SEEC AAS is closest to optimal. On machine 2, uncoordinated
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control consumes 19% more power than the dynamic oracle while SEEC exceeds

optimal by only 6.5%.

These results demonstrate the accuracy and efficiency of SEEC, especially SEEC

AAS, which achieves the performance goal with low error and close to optimal savings.

In contrast, uncoordinated control is less accurate, less efficient, and on Machine 1 is

actually worse than the static oracle on average. Furthermore, the results indicate the

benefits of SEEC's adaptive control and adaptive actuator selection, as SEEC is both

more accurate and more efficient than classical control. These results illustrate that

when coordination occurs through classical control methods, accuracy and efficiency

can suffer unless control adapts to the application (e.g.,using adaptive control) and

system (e.g.,using adaptive action scheduling) on which it is running.

On both machines, SEEC AAS outperforms SEEC ML. For this study, the system

models are optimistic, but SEEC AAS is able to overcome errors because the relative

costs and benefits are close to correct for these applications. The ML engine provides

no additional benefit as it explores actions to learn exact models that are not necessary

for efficient control. SEEC ML achieves a lower average error across both machines.

The ML engine is more efficient than all adaptive systems (other than AAS) on

Machine 1. On Machine 2, SEEC ML achieves greater accuracy than the non-SEEC

approaches while providing comparable efficiency. Part of ML's performance relative

to AAS is that the ML is still exploring when the benchmark terminates. For longer

benchmarks ML approaches the performance of AAS.

5.4.4 Controlling Power and Maximizing Performance

We launch each of our benchmarks on a single core set to the minimum clock speed

and each targets an average power halfway between the minimum and maximum

achievable. For each benchmark, we compute the power error and normalized per-

formance; Figures 5-10 and 5-11 show the results. In all cases, the x-axis shows

the benchmarks (and the average for all benchmarks). A benchmark labeled with

an asterisk denotes that the power savings is the same for the static and dynamic

oracles. The y-axes in Figures 5-10(a) and 5-11(a) show the power error on the two
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different machines. The y-axes in Figures 5-10(b) and 5-11(b) show the normalized

performance for each machine (higher is better).

For this experiment, the benchmarks do not run long enough for SEEC ML to

converge to a meaningful result due to the limitations on power sampling in our

system. Therefore, all SEEC results in this section refer to SEEC AAS.

Figures 5-10(a) and 5-11(a) indicate that most approaches provide high accuracy

on average. The average power errors on Machine 1 are 0.11% for uncoordinated

control, 0.36% for classical control, 10.0% for fixed system, and 1.2% for SEEC.

The average power errors on Machine 2 are 4.0% for uncoordinated control, 3.3%

for classical control, 0.06% for fixed system, and 1.1% for SEEC. Overall, providing

accurate control is easier for power than for performance, likely because it is less

application dependent than performance, and all approaches do well.

Figures 5-10(b) and 5-11(b) show that, while all approaches are fairly accurate,

SEEC is significantly more efficient for the given power targets. Again, performance

can sometimes exceed that of the dynamic oracle when the power target is missed so

the additional speed comes at a cost of not meeting the power goal. On machine 1,

the normalized performance is 0.82 for uncoordinated adaptation, 0.87 for classical

control, 0.88 for fixed system, 1.11 for SEEC and 1.16 for the dynamic oracle. As was

the case when controlling performance on machine 1, uncoordinated, classical, and

fixed system are worse than the static oracle, while SEEC is better. Fixed system

control achieves only 67% of optimal performance, while SEEC achieves 96% of the

maximum performance for the given power target. On machine 2, the normalized

performance is 1.08 for uncoordinated adaptation, 1.30 for classical control, 0.95 for

fixed system, 1.39 for SEEC and 1.43 for the dynamic oracle. Again, all approaches

improve on the static oracle for machine 2, but SEEC is significantly closer to op-

timal. On machine 2, fixed system adaptation achieves only 76% of the maximum

performance while SEEC again achieve 96% of the best possible performance.

These results show that all techniques can accurately manage power goals. How-

ever, SEEC is more efficient, providing far more performance for a given power goal

than either uncoordinated adaptation or classical control.
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5.4.5 Detailed Results

This section discusses detailed results showing the behavior of SEEC AAS as a func-

tion of time for two benchmarks. We show one example of SEEC AAS controlling a

low-variance benchmark (facesim) and one example of SEEC AAS controlling a high-

variance benchmark (swaptions) (refer to Table 4.2 for variance of applications).

Figure 5-12 shows detailed results for the facesim benchmark when controlled

by both SEEC and by the static oracle. Figures 5-12(a)-5-12(c) show the power

consumption (subtracting out idle power), performance (normalized to the perfor-

mance goal), and actuator settings as a function of time for facesim on machine 1.

Figures 5-12(d)-5-12(f) show the same data for facesim on machine 2. In both cases,

SEEC's performance is very close to that of the static oracle which is close to the

desired performance. This is not surprising since facesim is a very regular benchmark;

however, SEEC saves power compared to the static oracle in both cases. On machine

1, SEEC saves 7% on average power consumption by allocating the minimal amount

of resource required to meet goals and idling for short amounts of time when there

is slack in the schedule, as shown in Figure 5-12(c). On machine 2, SEEC's average

performance is 98% of the target performance while its average power consumption is

27% less than the static oracle. On this machine, SEEC uses adaptive action schedul-

ing to periodically allocate all resources and then idle the machine for large portions

of time, as illustrated in Figure 5-12(f).

Figure 5-13 shows detailed results for swaptions controlled by both SEEC and

by the static oracle. Given the variance in swaptions' heart rate signal, we have

smoothed these results by computing heart rate on a windowed average of 16 heart-

beats. Despite this, it is apparent that swaptions' behavior is much less regular than

facesim. As an added benefit, SEEC holds average performance much closer to the

desired level. On machine 1, SEEC achieves 94% of the target performance while

consuming 10% less average power. For this machine SEEC allocates the minimal

amount of resources required to meet goals and idles for very short amounts of time

when there is slack in the schedule, as shown in Figure 5-13(c). On machine 2, SEEC

106



-- 5AFEP3 - S Static Oracle

so

45

40

35

30

-25

20

15

10

5

0 '

200 0 100 200 300 400 500 600
Time

(b) Power, Machine 1

1.4

1.2

1 '

E
40.8

90.6

0.4

0.2

50 100 150
Time (Heartbeat)

(a) Performance, Machine 1

1.2

0.8

0.6e /

C /
0.4 -- 7 -

.904

0
0 50 100 150 200

Time (Heartbeat)

(c) Actuators, Machine 1

-SAFEP3 .. Static Oracle -SAFEP3 -.- Static Oracle

90

0

70

60

50

40

30

20

10

50 100 150
Time (Heartbeat)

(d) Performance, Machine 2

200 0 100 200 300 400
Time

(e) Power, Machine 2

- Cores --- Clock Speed -Active Cycles - - Mem. Controllers-

1.2

0.8

' 0.6

-2 0.4

-0.2

0
500 600

-TurboBoost

j

ff
~1

0 50 100 150
Time (Heartbeat)

(f) Actuators, Machine 2

Figure 5-12: Details of SEEC controlling facesim on two different machines.

1.6

1.4

1.2

S06

Z 0.4

0.2

0
200

..... .......... .... .

- Cores .-. Clock Speed -Active Cycles-- SAFEP3 .... 5tatic Oracle



- Cores . Clock Speed -Active Cycles

1.2

4S

40

35

30

25

20

15

10

100 200 300 400 500 0 5 10 15 20 25 30 35 40 45

Time (Heartbeat) Time

(a) Performance, Machine 1 (b) Power, Machine 1

-SAFEP3 . .. Static Oracle -SAFEP3 -. Static Oracle

90

80

70

60

t40

30

20

10

100 200 300 400 500

Time (Heartbeat)

(d) Performance, Machine 2

2.5

2

E
1.5

=1

0

0.5

0

0.
1V

0.6 \

- 0.4

0.2

0
0 100 200 300 400 500

Time (Heartbeat)

(c) Actuators, Machine 1

- Cores . Clock Speed -Active Cycles - - Mem. Controllers - TurboBoost

1.2

~0,8 - -

0.6

G A

.20.4
t.2

. 2

10 20 30 40 50 0 100 200 300 400 500
Time Time (Heartbeat)

(e) Power, Machine 2 (f) Actuators, Machine 2

Figure 5-13: Details of SEEC controlling swaptions on two different machines.

00

3.5

.3

2.5

2

1.5

2 1

0.5

-- SAFEP3 --.. Static Oracle -- SAFEP3 -.. Static Oracle



Table 5.2: Summary Results.
Power Goals Perf. Goals

Method Accuracy Perf. Accuracy Power
Uncoord. 2.0% 73.2% 11.2% 38.8%
Classical 2.0% 83.0% 28.5% 37.5%
Fixed Sys. 2.4% 71.5% 5.6% 33.5%
SEEC AAS 1.2% 96.1% 2.9% 7.2%
SEEC ML 4.8% 27.25%

achieves 95% of the target performance while consuming 8.6% less average power than

the static oracle. SEEC achieves these results using adaptive action scheduling to pe-

riodically allocate all resources and then idle the machine for large portions of time,

as illustrated in Figure 5-13(f).

These results demonstrate the generality of the SEEC approach with respect to

both applications and components. SEEC can accurately and efficiently manage both

high-variance applications, like swaptions. In addition, SEEC can handle different

sets of components with different tradeoffs. As shown in the figures, SEEC adopts

different strategies on the two different machines and does so without redesign or

re-implementation.

5.4.6 Summary

Table 5.2 summarizes the average behavior for each of uncoordinated, classical, and

SEEC when managing power and performance goals. For power goals, the table shows

the percentage of the maximum performance that was achieved. For performance

goals, the table shows the additional power consumption over optimal.

The results show SEEC manages performance and power goals accurately and

efficiently. SEEC outperforms other approaches for several reasons. SEEC beats the

classical control system as adaptive control tailors response to specific applications

and inputs. SEEC outperforms uncoordinated and fixed system adaptation because

adaptive actuator selection takes a global view and avoids combinations of actuators

that are suboptimal. SEEC outperforms the static oracle by adapting to phases

within an application and tailoring resource usage appropriately.
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In addition, these results illustrate that SEEC can work with different types of

applications. As shown in Table 4.2 some benchmarks have high variance but SEEC

can still meet those applications' goals accurately and efficiently.

Finally, these results show that SEEC can work with different sets of components

without redesign and re-implementation. The two different machines used in this

study have different sets of components and the most effective strategy is different for

each machine. Despite these differences, the same SEEC runtime is able to accurately

and efficiently manage resources on both platforms, demonstrating the generality of

this approach with respect to the components being coordinated. SEEC provides

more accuracy and more efficiency than fixed system adaptation because it tailors its

response to the available components.

5.5 Adapting to Workload Fluctuations

This case study shows how SEEC can maintain a performance goal and minimize

power consumption even when the application workload changes.

In this experiment, SEEC's decision engine maintains desired performance for the

x264 video encoder across a range of inputs, each with differing compute demands. We

use fifteen 1080p videos from xiph.org and the PARSEC native input. We alter x264's

command line parameters to maintain an average performance of thirty frames per

second on the most difficult video using all compute resources available on Machine

1. x264 requests a heart rate of 30 beat/s corresponding to a desired encoding rate

of 30 frame/s. Each video is encoded separately, initially launching x264 on a single

core set to the lowest clock speed.

5.5.1 Point of Comparison

In this study, we compare SEEC AAS and SEEC ML to the static oracle and classical

control system (defined in Section 5.4). In addition, we compare to a scheme that

allocates for worst-case execution time (wcet).

The wcet allocator knows a priorithe amount of compute resources required to
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meet an application's goals in the worst case (e.g.,for the most difficult anticipated

input). We use this allocator as a point of comparison for the x264 video encoder

benchmark, and we construct it by measuring the amount of resources required to

meet goals for the hardest video. The wcet allocator assigns this worst-case amount

of resources to all inputs.

5.5.2 Metrics

We measure the performance per Watt for each input when controlled by the classical

control system, the wcet allocator, SEEC AAS and SEEC ML. Figure 5-14 shows

the results of this case study. The x-axis shows each input (with the average over all

inputs shown at the end). The y-axis shows the performance per Watt for each input

normalized to the static oracle.

5.5.3 Results

On average, SEEC AAS outperforms the static oracle by 1.1x, the classical control

system by 1.25x, and the wcet allocator by 1.44x. SEEC AAS bests these alternatives

because its adaptive control system tailors response to particular videos and even

phases within a video. Additionally, SEEC adaptively races-to-idle allowing x264 to

encode a burst of frames using all resources and then idling the system until the next

burst is ready. On average, SEEC AAS achieves 99% of the desired performance,

while SEEC ML achieves 93% of the desired performance.

SEEC AAS again outperforms SEEC ML in this study, although the difference

is just 10%. Again, the system models used here assume linear speedup and that

is good enough for SEEC AAS to control x264. Using ML, SEEC explores actions

to learn the true system models on a per input basis, but the exploration causes

performance goals to be missed without a large resulting power savings. Despite

this inefficiency, SEEC's ML approach achieves equivalent performance to the static

oracle, and outperforms both classic control and wcet.
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5.5.4 Detailed Results

SEEC outperforms the other approaches because it can adapt to phases within an

application. To illustrate this, we create a new video input by concatenating three of

our individual inputs: ducks-takeoff, rushhour, and old-town-cross. The first input

is the hardest, the second one is easiest, and the third is in between. The encoder

requests a performance of 30 frames per second. Concatenating these together creates

a new video with three distinct phases, which forces SEEC to adapt to maintain

performance as the workloads vary.

Figure 5-15 presents the results when SEEC controls x264 encoding the concate-

nated video. The x-axes show time, measured in heartbeats, and the y-axes show

performance (Figure 5-15(a)) measured in frames per second and power (Figure 5-

15(b)). Results are shown for both SEEC AAS and the worst-case-execution-time

(wcet) allocator. As shown in the figures, the first phase causes SEEC to work hard

and there are some sections for which neither SEEC nor wcet can maintain the target

goal. In the second phase, SEEC quickly adjusts to the ease in difficulty and main-

tains the target performance while wcet has reserved over twice as many resources

as needed, consuming unnecessary power. In the final phase, SEEC is able to closely

maintain the target performance and save power despite the noise evident in this

portion of the video.

5.6 Learning Models Online

In this section we test SEEC's ability to learn system models online and demonstrate

two cases where SEEC's ML engine provides a clear benefit over AAS alone. For these

test cases, SEEC must control the performance of STREAM and dijkstra on Machine

1 using the adaptations described in Section 4.2.1. Both applications request a heart

rate of 75% the maximum achievable. We run these applications separately, each

initially allocated a single core set to the lowest clock speed, and a single memory

controller. We record the performance and power throughout execution for a classic

control system, SEEC AAS, and SEEC ML.
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5.6.1 Results

The results of this case study are shown in Figures 5-16 and 5-17. In these fig-

ures time (measured in decision periods, see Section 3.3.3) is shown on the x-axis,

while performance and power are shown on the y-axis of the respective figures and

normalized to that achieved by a static oracle for the respective applications.

The two applications have very different characteristics, but the results are similar.

In both cases, the SEEC AAS approach is the fastest to bring performance to the

desired level, but it does so by over-allocating resources and using too much power. In

the case of STREAM, SEEC AAS allocates the maximum amount of resources to the

application and burns 40% more power to achieve the same performance. In the case

of dijkstra, SEEC AAS over-allocates resources and then attempts to race-to-idle,

but still burns about 10% more power than the static oracle. SEEC's AAS approach

cannot adapt its system models and thus it cannot overcome the errors for these two

applications.

In contrast, the SEEC ML approach takes longer to converge to the desired perfor-

mance, but does a much better job of allocating resources. In the case of STREAM,

SEEC ML is able to meet 98% of the performance goal while burning only 95% of

the power of the static oracle. SEEC ML does so by allocating 4 cores and 2 memory

controllers, running at the lowest clock speed, and using hybrid action selection to

idle the system occasionally. For dijkstra, SEEC converges to the performance goal

while achieving the same power consumption as the static oracle.

These experiments show the tradeoffs inherent using SEEC with and without

ML. Without ML, SEEC quickly converges to the desired performance even when the

system models have large error. However, these errors manifest themselves as wasted

resource usage. In contrast, SEEC's ML engine takes longer to converge, but it does

so without wasting resources. Both SEEC AAS and ML have advantages over the

classic control system. SEEC AAS converges to the target performance more quickly,

while SEEC ML saves average power. For dijkstra, the classic control system never

converges, instead oscillating around the desired value.
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5.7 Adaptive Applications

This section evaluates SEEC's ability to control actions specified at the applica-

tion level. Specifically, this section evaluates the adaptive applications described

in Section 4.2.2. First, the performance/precision tradeoffs of each application are

examined. Then, the power/precision tradeoffs are examined. Next, SEEC is shown

adjusting the application in response to a power fluctuation. Finally, SEEC is shown

adjusting the application in response to workload fluctuations.

5.7.1 Performance/Precision Tradeoffs

Dynamic knobs modulate power consumption by controlling the amount of compu-

tational work required to perform a given task. On a machine that delivers constant

baseline performance (in this case Machine 2, with no system-level adaptations en-

abled), changes in computational work correspond to changes in execution time.

Figures 5-18-5-21 present the points that dynamic knobs make available in the

speedup versus precision tradeoff space for each benchmark application. The points

in the graphs plot the observed mean (across the training or production inputs as in-

dicated) speedup as a function of the observed mean precision for each dynamic knob

setting. Gray dots plot results for the training inputs, with black squares (connected

by a line) indicating Pareto-optimal dynamic knob settings. White squares (again

connected by a line) plot the corresponding points for these Pareto-optimal dynamic

knob settings for the production inputs. All speedups and precision losses are calcu-

lated relative to the dynamic knob setting which delivers the highest precision (and

consequently the largest execution time). We observe the following facts:

e Effective Trade-Offs: Dynamic knobs provide access to operating points

across a broad range of speedups (up to 100 for swaptions, 4.5 for x264, and 7

for bodytrack). Moreover, precision losses are acceptably small for virtually all

Pareto-optimal knob settings (up to only 1.5% for swaptions, 7% for x264, and,

for speedups up to 6, 6% for bodytrack).

For swish++, dynamic knobs enable a speedup of up to approximately a factor
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Table 5.3: Correlation coefficient of observed values from training with measured
values on production inputs.

of 1.5. The precision loss increases linearly with the dynamic knob setting. The

effect of the dynamic knob is, however, very simple - it simply drops lower-

priority search results. So, for example, at the fastest dynamic knob setting,

swish++ returns the top five search results.

* Close Correlation: To cornpute how closely behavior on production inputs

tracks behavior on training inputs, we take each metric (speedup and precision

loss), compute a linear least squares fit of training data to production data, and

compute the correlation coefficient of each fit (see Table 5.3). The correlation

coefficients are all close to 1, indicating that behavior on training inputs is an

excellent predictor of behavior on production inputs.

To characterize the power versus precision tradeoff space that dynamic knobs

make available, we initially configure each application to run at its highest precision

point on a processor in its highest power state (2.4 GHz) and observe the performance

(mean time between heartbeats). The application then instructs the SEEC runtime

system to maintain the observed performance. Externally, we use cpufrequtils to

drop the clock frequency to each of the six lower-power states, run each application on

all of the production inputs, and measure the resulting performance, precision loss,

and mean power consumption (the mean of the power samples over the execution

of the application in the corresponding power state). We verify that, for all power

states, SEEC delivers performance within 5% of the target.

Figures 5-22-5-25 plot the resulting precision loss (right y axis, in percentages)

and mean power (left y axis) as a function of the processor power state. For x264,

the combination of dynamic knobs and frequency scaling can reduce system power

119

Benchmark Speedup Precision Loss

x264 0.995 0.975
bodytrack 0.999 0.839
swaptions 1.000 0.999
swish++ 0.996 0.999
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Figure 5-18: Performance versus precision for swaptions.

by as much as 21% for less than 0.5% precision loss. For bodytrack, we observe a

17% reduction in system power for less than 2.3% precision loss. For swaptions, we

observe an 18% reduction in system power for less than .05% precision loss. Finally,

for swish++ we observe power reductions of up to 16% for under 32% precision loss.

For swish++ the dynamic knob simply truncates the list of returned results - the

top results are the same, but swish++ returns fewer total results.

The graphs show that x264, bodytrack, and swaptions all have suboptimal ap-

plication configurations that are dominated by other, Pareto-optimal dynamic knob

settings. The exploration of the tradeoff space during training is therefore required

to find good points in the tradeoff space. The graphs also show that because the

Pareto-optimal settings are reasonably consistent across the training and production

inputs, the training exploration results appropriately generalize to the production

inputs.
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Figure 5-19: Performance versus precision for x264.

5.7.2 Adapting to Power Fluctuations

The SEEC system in combination with some set of actuators (in this case exposed

through the application by a compiler) makes it possible to dynamically adapt ap-

plication behavior to preserve performance (measured in heartbeats) in the face of

any event that degrades the computational capacity of the underlying platform. We

next investigate a specific scenario - the external imposition of a temporary power

cap via a forced reduction in clock frequency. We first start the application running

on a system with uncapped power in its highest power state (2.4 GHz). We instruct

the SEEC control system to maintain the observed performance (time between heart-

beats). Approximately one quarter of the way through the computation we impose

a power cap that drops the machine into its lowest power state (1.6 GHz). Approxi-

mately three quarters of the way through the computation we lift the power cap and

place the system back into its highest power state (2.4 GHz).

Figures 5-26-5-29 present the dynamic behavior of the benchmarks as they re-
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Figure 5-20: Performance versus precision for bodytrack.

spond to the power cap and corresponding processor frequency changes. Each graph

plots the observed performance of the application (left y axis) as a function of time.

We present the performance of three versions of the application: a version without

adaptation (marked with an x), a baseline version running with no power cap in place

(black points), and a version that uses SEEC to preserve the performance despite the

power cap (circles). We also present the "gain" or the instantaneous speedup achieved

by the SEEC runtime (right y axis).

All applications exhibit the same general pattern. At the imposition of the power

cap, SEEC adjusts application behavior, the gain increases (Knob Gain line), and

the performance of the application first spikes down (circles), then returns back up

to the baseline performance. When the power cap is lifted, SEEC adjusts again, the

gain decreases, and the application performance returns to the baseline after a brief

upward spike. For most of the first and last quarters of the execution, the application

executes with essentially no precision loss. For the middle half of the execution, the
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Figure 5-21: Performance versus precision for swish++.

application converges to the low power operating point plotted in Figures 5-22-5-25

as a function of the 1.6 GHz processor frequency. Without SEEC (marked with x),

application performance drops well below the baseline as soon as the power cap is

imposed, then rises back up to the baseline only after the power cap is lifted.

Within this general pattern the applications exhibit varying degrees of noise in

their response. Swaptions exhibits very predictable performance over time with little

noise (in this scenario swaptions is run on a single core). swish++, on the other

extreme, has relatively unpredictable performance over time with significant noise.

x264 and bodytrack fall somewhere in between. Despite the differences in application

characteristics, SEEC makes it possible for the applications to largely satisfy their

performance goals in the face of dynamically fluctuating power requirements.
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Figure 5-22: Power versus precision tradeoffs for swaptions.

5.7.3 Adapting to Workload Fluctuations

We next evaluate the use of dynamic applications to reduce the number of machines

required to service time-varying workloads with intermittent load spikes, thereby

reducing the number of machines, power, and indirect costs (such as cooling costs)

required to maintain responsive execution in the face of such spikes:

* Target Performance: We set the target performance to the performance

achieved by running one instance of the application on an otherwise unloaded

machine.

" Baseline System: We start by provisioning a system to deliver target perfor-

mance for a specific peak load of the applications running the baseline (default

command line) configuration. For the three PARSEC benchmarks we provision

for a peak load of 32 (four 8-core machines) concurrent instances of the applica-

tion. For swish++ we provision for a peak load of three concurrent instances,

each with eight threads. This system load balances all jobs proportionally across

available machines. Machines without jobs are idle but not powered off.
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Figure 5-23: Power versus precision tradeoffs for x264.

* Consolidated System: We impose a bound of either 5% (for the PARSEC

benchmarks) or 30% (for swish++) precision loss. We then provision the min-

imum number of machines required for SEEC to provide baseline performance

at peak load subject to the precision loss bound. For the PARSEC benchmarks

we provision a single machine. For swish++ we provision two machines.

* Power Consumption Experiments: We then vary the load from 0% uti-

lization of the original baseline system (no load at all) to 100% utilization (the

peak load). For each load, we measure the power consumption of the baseline

system (which delivers baseline precision at all utilizations) and the power con-

sumption and precision loss of the consolidated system (which uses SEEC to

deliver target performance). At low utilizations, SEEC will configure the appli-

cations to deliver maximum precision. As the utilization increases, SEEC will

progressively manipulate the applications to maintain the target performance

at the cost of some precision loss.
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Figure 5-24: Power versus precision tradeoffs for bodytrack.

Figures 5-30-5-33 present the results of these experiments. Each graph plots the

mean power consumption of the original (circles) and consolidated (black dot) systems

(left y axis) and the mean precision loss (solid line, right y axis) as a function of system

utilization (measured with respect to the original, fully provisioned system). These

graphs show that using adaptive applications and SEEC to consolidate machines can

provide considerable power savings across a range of system utilization. For each of

the PARSEC benchmarks, at system utilization of 25%, consolidation can provide an

average power savings of approximately 400 Watts, a reduction of 66%. For swish++

at 20% utilization, we see a power savings of approximately 125 Watts, a reduction

of 25%. These power savings come from the elimination of machines that would be

idle in the baseline system at these utilization levels.

Of course, it is not surprising that reducing the number of machines reduces power

consumption. A key benefit of the SEEC response mechanism is that even with the

reduction in computational capacity, it enables the system to maintain the same

performance at peak load while consuming significantly less power. For the PAR-
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Figure 5-25: Power versus precision tradeoffs for swish++.

SEC benchmarks at a system utilization of 100%, the consolidated systems consume

approximately 75% less power than the original system while providing the same per-

formance. For swish++ at 100% utilization, the consolidated system consumes 25%

less power.

The consolidated systems save power by automatically reducing precision to main-

tain performance. For swaptions, the maximum precision loss required to meet peak

load is 0.004%, for x264 it is 7.6%, and for bodytrack it is 2.5%. For swish++ with

P@10, the precision loss is 8% at a system utilization of 65%, rising to 30% at a

system utilization of 100%. We note, however, that the majority of the precision loss

for swish++ is due to a reduction in recall - top results are generally preserved in

order but fewer total results are returned. The top results are not affected by the

change in application behavior unless the P@N is less than the current setting. As the

lowest setting used by SEEC is five, the order is always perfect for the top 5 results.

For common usage patterns characterized by predominantly low utilization punc-

tuated by occasional high-utilization spikes [8], these results show that SEEC com-
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Figure 5-26: Behavior of swaptions with SEEC in response to power cap.

bined with the complier framework from Section 4.2.2 can substantially reduce overall

system cost, deliver the highest (or close to highest) precision in predominant oper-

ating conditions, and preserve performance and acceptable precision even when the

system experiences intermittent load spikes.

5.8 Controlling Multiple Applications

This experiment demonstrates SEEC using both system and application-level actions

to manage multiple applications in response to a fluctuation in system resources. In

this scenario, SEEC uses the adaptive version of x264 (described in Section 4.2.2) and

the statically configured version of bodytrack that is available through the PARSEC

benchmarks. Both applications are simultaneously launched on Machine 1 and request

a performance of half the maximum achievable, so the system has just enough capacity

to meet these goals. x264 is given lower-priority than bodytrack. In addition, x264

indicates a preference for system-level adaptations indicating that SEEC should only
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Figure 5-27: Behavior of x264 with SEEC in response to power cap.

take application-level actions if it has exhausted all system-level ones.

Approximately 10% of the way through execution we simulate a thermal emer-

gency as might occur if the chip is in danger of overheating. In response, the hardware

lowers the processor frequency to its lowest setting. To simulate this situation, we

force Machine l's clock speed to its minimum and disable the actions that allow SEE C

to change this value. Doing so forces the SEEC decision engine to adapt to try to

meet performance despite the loss of processing power and the fact that some of its

actions no longer have the anticipated effect. Online adaptation to the removal of

actions would not be possible with prior control systems such as ControlWare [951
and METE [79], but is possible with SEEC.

5.8.1 Results

Figures 5-34(a) and 5-34(b) illustrate the behavior of SEEC AAS in this scenario,

where Figure 5-34(a) depicts bodytrack's response and Figure 5-34(b) shows that of

x264. Both figures show performance (normalized to the target performance) on the
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Figure 5-28: Behavior of bodytrack with SEEC in response to power cap.

left y-axis and time (measured in heartbeats) on the x-axis. The time where frequency

changes is shown by the solid vertical line. For each application, performance is

shown with clock frequency changes but no adaptation ("No adapt"), and with SEEC

adapting to clock frequency changes using both AAS and ML.

Figure 5-34(a) shows that SEEC AAS maintains bodytrack's performance despite

the loss in compute power. SEEC observes the clock speed loss as a reduction in heart

rate and deallocates two cores from the lower-priority x264, assigning them to body-

track. Without SEEC bodytrack would only achieve 65% of its desired performance,

but with SEEC bodytrack meets its goals. SEEC ML also can bring bodytrack back

to its desired performance, but it takes longer and is done at a cost of oscillation as

the ML algorithm explores different actions.

Figure 5-34(b) shows how SEEC sacrifices x264's performance to meet the needs of

bodytrack. SEEC deallocates cores from x264 but compensates for this loss by alter-

ing x264's algorithm. By managing both application- and system-level adaptations,

SEEC is able to resolve resource conflicts and meet both application's goals. We note
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Figure 5-29: Behavior of swish++ with SEEC in response to power cap.

that if x264 had been the high-priority application, SEEC would not have changed

its algorithm because x264 requests system-level adaptations before application-level

ones. In this case, SEEC would have assigned x264 more processors and bodytrack

would not have met its goals. As with bodytrack, SEEC AAS is able to adapt more

quickly than SEEC ML, but both approaches converge to the desired value.

This study shows SEEC controlling multiple applications, some of which are them-

selves adaptive. This is possible because SEEC's decoupled implementation allows

application and system adaptations to be specified independently. In addition, SEEC

can automatically adapt to fluctuations in the environment by directly observing ap-

plication performance and goals. SEEC does not detect the clock frequency change

directly, but instead detects a change in the applications' heart rates, and SEEC can

respond to any change that alters the performance of the component applications.
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Chapter 6

Properties of SEEC

SEEC automatically makes decisions that affect the behavior of applications and

systems in an attempt to drive the system toward application-level goals. This design

approach raises some questions about what guarantees SEEC can provide about how

it drives the system to meet goals and this section discusses those guarantees.

As discussed in Chapter 3, the SEEC decision engine consists of multiple lay-

ers of adaptation. The lowest level, classical control, provides the most guarantees

about its behavior, but achieves those guarantees through a set of strict assumptions.

Additional layers of adaptation relax some of these assumptions, allowing for greater

flexibility. Thus, each layer of the SEEC decision engine presents a tradeoff in the

guarantees about its behavior and the flexibility to adapt as illustrated in Figure 6-1.

As will be shown in this section, the classical control system presents the strongest

guarantees and the least flexible set of assumptions. In contrast, the reinforcement

learner presents the most flexible decision mechanism at the cost of providing the

fewest guarantees.

In particular, this work is concerned with characterizing SEEC's behavior in terms

of five desirable properties. The first four properties are the SASO properties: sta-

bility, accuracy, settling time, and maximum overshoot) [36]. The fifth property is

efficiency. This section begins by defining the properties under analysis, and then

describes the guarantees that each level of the decision engine provides in terms of

these properties.
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6.1 Definitions of Properties

This section defines the properties of stability, accuracy, settling time, maximum over-

shoot, and efficiency. These properties describe the behavior of the SEEC decision

engine as it drives the system to a goal. The first four properties (SASO) describe

the behavior of the system in the goal dimension, while the fifth property (efficiency)

describes the behavior of the system in a free dimension. The SASO properties are il-

lustrated in Figure 6-2. For example, an application may express a performance goal

while a system developer may specify actions that change the performance/power

tradeoff space. In this case, the SASO properties will describe application perfor-

mance, while efficiency will describe the behavior of SEEC in the power dimension

(e.g.,, Figures 5-8-5-9). Alternatively, if the application had a power goal, the SASO

properties describe the behavior in the power dimension, while efficiency describes

the behavior in the performance dimension (e.g.,, Figures 5-10-5-11).
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6.1.1 Stability

Stability refers to the change in the target metric over time. A stable system con-

verges to a single value; i.e.,the derivative of the signal eventually becomes zero. The

remaining SASO properties are defined in terms of a stable system. For example,

if an application has a performance goal, stability refers to the property that the

performance converges to a steady value.

6.1.2 Accuracy

An accurate system is a stable system that converges to the target value. This is

the same property referred to in the introduction and demonstrated in Chapter 5.

This is one of the most important properties of a system built with SEEC because

guaranteeing this property means guaranteeing that the goals are met. For example,

if an application has a performance goal and performance target g, accuracy refers to

the property that the performance converges to g.

6.1.3 Settling Time

Settling time refers to the time that passes from system startup to the point where

the system becomes stable.

6.1.4 Max Overshoot

The maximum overshoot refers to the largest amount by which SEEC might fail to

miss the target on its way to becoming stable.

6.1.5 Efficiency

The first four properties describe the behavior of the system in the target dimension.

Efficiency characterizes behavior in the dimension of freedom. Specifically, efficiency

measures how far that dimension is from the best possible configuration that accu-

rately meets the goal.
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6.2 Properties of the Classical Control System

We begin by analyzing the properties of the classical control system. This section

follows the framework presented by Hellerstein et al for analyzing the properties of a

control system [36] with a focus on the unique features of the SEEC system.

6.2.1 Assumptions

This analysis begins with the following assumptions; subsequent sections will relax

these assumptions:

Assumption 1 The application produces a stable heart rate signal;

i.e.,application performance converges to a steady value.

These properties assume that the application is, itself stable. If the application's

behavior does not converge without SEEC, SEEC will not correct this issue. The

application can be composed of phases, however; and in this case each phase

must converge to a stable value.

Assumption 2 The desired speedup lies between the maximum and minimum

achievable speedups made available through various actuators.

If this assumption is violated, it is impossible to achieve the desired target, so

it does not make sense to describe SEEC's behavior on the way to the target.

Assumption 3 For any application under control, the workload - w in Equa-

tion 3.4 - is 1) known and 2) constant.

This assumption is reasonable for any application-specific system where the

application can be profiled ahead of time and the application's performance

does not vary based on input.

Assumption 4 Any set of actions that achieves the desired speedup has an

equivalent cost.
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This assumption is reasonable for systems with a single actuator. In this case,

it is easy to find Pareto-optimal settings whose use makes the assumption valid.

Assumption 5 The speedup of all actions available in the system and specified

through the system programmer API are 1) known and 2) constant.

This assumption is reasonable for application-specific systems where the appli-

cation response to a specific knob can be profiled ahead of time. This assump-

tion may also be reasonable for classes of applications and actuators that are

highly predictable; e.g.,for a known class of compute-bound applications.

6.2.2 Properties

Stability Stability is determined by analyzing the transfer function of the system

as presented in Equation 3.3 and reproduced here:

(I - p1)(1 - p2) z - zi
1 - zi (z - pi) (Z - P2)

The stability of the system is dependent on the specific values used to instantiate the

controller. In particular if |Pi , IP21 < 1 then the system is stable, and thus converges

to a steady performance.

Accuracy Accuracy measures the error in the steady-state performance -lei (t)I in

Equation 3.2. Application i converges to the target performance when ei (t) = 0 for all

t > tsteady, where tsteady represents the time at which the system reaches steady state.

The accuracy can be determined by computing the gain of the transfer function. Zero

error is achieved if and only if the steady state gain of the transfer function is unity.

The steady state gain can be analyzed simply by evaluating the transfer function

(Equation 3.3) at z = 1. Clearly, SEEC's transfer function has been constructed to

assure accuracy as F(1) = 1 for any values of Pi, P2 and zi.

Settling time Settling time is a function of the poles of Equation 3.3, and specif-

ically depends on the dominant pole: max(|p 1|, p2I). The settling time of the system
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can be approximated by [36]:

-4
tsettle ~ log max(|pi1, lP21) (6.1)

The choice of pi and P2 has an interesting effect on the behavior of SEEC systems.

For maximum response time, both values can be set to 0 causing SEEC to react

almost instantly to changes in behavior. While this agility can be beneficial in many

scenarios, it might not be desirable when the system is noisy and prone to disturbance.

Disturbance is modeled as 6hi in Equation 3.1. To reject larger disturbances, the

system should be initialized with max(pi ,|P2 |) close to 1 (but not equal to ensure

stability). For examples of system behavior with larger dominant poles, see the line

marked "slow convergence" in Figures 5-1-5-5.

Maximum Overshoot As with settling time, the maximum overshoot 0 max is

derived from the poles. Specifically, it is approximated by:

{x)0 if max(pi,p 2 ) > 0 (6.2)
1max(pi, P2)1 if max(|pl1 , JP2|) < 0

Efficiency Efficiency for the classical control system is trivial under Assumption 4.

This assumption states that all methods of achieving a given speedup are assumed

to have the same costs. In practice, it assumes that there is only one method for

obtaining a given speedup.

6.2.3 Results

Although SEEC is evaluated empirically in Chapter 5, it is informative to examine

the behavior of the classical control system in isolation to examine the practical effects

of the assumptions needed to provide these guarantees.

Figure 6-3 depicts data from the experiment described in Section 5.4.3. Specif-

ically, these results show SEEC's classical control system managing a performance
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goal and attempting to minimize power on machines 1 and 2. Here, the y-axis shows

performance per Watt normalized to the static oracle, while the x-axis shows the

results for each benchmark. The bar shows the performance of the classical control

system.

The results shown in Figure 6-3 are not particularly good. On average, the clas-

sical control system only achieves 60% of what the static oracle can accomplish. The

reason for the poor results lies primarily in Assumption 3 and Assumption 4. Fol-

lowing Assumption 3, the classical control system uses a fixed value for the workload

and the same controller then has to manage every application. In the best case, the

wrong value of workload will increase the settling time of the system. In the worst

case, the system will not stabilize. In fact, in Figure 2-2 we have already seen one

example of how the wrong value of workload can destabilize the system. In either

case, the system will be inefficient.

6.3 Properties of Adaptive Control

6.3.1 Assumptions

To try to improve on the classical control system we relax Assumption 3. We replace

this with the following weaker assumption:

Assumption 6 The process noise, i.e.,the variance in i application's heart rate

signal qi(t), is bounded above and below. Therefore,

qunin < qj(t) < qmax, Vt (6.3)

This assumption indicates that the variance in the application is bounded.

From Assumption 5 we can conclude that the maximum speedup is bounded by

a constant:

si(t) smax, Vt (6.4)
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Figure 6-3: The classic control system does not work well when confronted with a

range of different applications.
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Furthermore, if we require SEEC to hold the speedup constant until the Kalman

filter's change has reduced below some threshold, we can assume that the sequence

of speedups si(t) is persistently excitable, i.e.,:

a < si(t)' < b = s,' (6.5)

6.3.2 Properties

To describe the properties of adaptive control, the convergence of the Kalman Filter

is demonstrated. Then, the effects of the Kalman filter on the classical control system

are described.

The convergence of SEEC's Kalman filter is demonstrated following the process

first presented by Cao and Schwartz [15]. While the Cao and Schwartz technique

is general for the family of Kalman Filters, in this work we focus on the particular

features of the SEEC Kalman filter formulation.

To begin, we reproduce SEEC's Kalman filter here (from Equation 3.6):

±7(t) = ±(t - 1)

pi (t) pi(t - 1) +qi(t)

ki (t) pi(t)sj (t - 1)

[si(t)]2pi (t) + oi

zij(t ) = z(t) + ki (t) [hi (t ) - Si (t - 1) ii(t01

pi(t) =[1 - ki ft)s#~ - 1)]pi (t)

To describe the behavior of Equation 3.6 we first define the error of the Filter at

time t as z(t)':

i(t)= i(t) - Xo (6.6)

where xO is the true value of x.

Cao and Schwartz show that Kalman filters are exponentially convergent and

'For visual clarity, we drop the subscript i in this section, which denotes the application un-
der consideration. However, all values in this section are considered per application values unless
otherwise noted.
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provide the following bounds on the convergence:

a 13
Vo < z (t ) < -V

(+ P2) .(1 + p-i),
(6.7)

where Vo = /p (0). The remaining values in these inequalities are complex functions

of the filter, so we will list each in turn.

First, a and # represent bounds on p(t):

a < p(t) < # Vt (6.8)

where

1 Sax
a=qmin +( + )

t9min o
(6.9)

and

0

13 <qmax±+-
a

(6.10)

The values p,1 and P2 are relatively complicated functions of the filter parameters

and are defined as:
mint, vtyo M(t)

pi mint, vt>o
maxt, vt>o p~t - 1)

maxt, Vt>o M(t)
P2 maxt, V mint, Vt>o p(t - 1)

(6.11)

where M(t) is

2

[p(t - 1)]2 [s(t)]2
0

q(t) (1+
[s(t)]2 p(t - 1)

(6.12)

As M(t) is a fairly complicated function of the filter parameters, Cao and Schwartz

provide looser, but easier to calculate bounds:

a /3
Vo < (t) < Y) t V (6.13)
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where

< < M(t) < 6, Vt (6.14)

and

qmin a,2

/2

022 x 1 m 2 (6.15)
m3 Sax ( m/3rax)

0 o

These bounds allow us to argue about how the incorporation of adaptive control

affect SEEC.

Stability The bounds in Equation 6.7 demonstrate that the Kalman filter con-

verges, therefore the control system that estimates workload will converge; i.e.,adaptive

control is stable.

Accuracy Accuracy is guaranteed by combining Assumption 5 with Equation 6.7.

If the speedup used by the filter is accurate (per the assumption) and the filter

converges, then it will converge to an accurate value.

In fact, it turns out that accuracy can be guaranteed even when we relax As-

sumption 5 if we allow the interpretation of the filter to change. As described in

Section 3.3.2, the filter is designed to estimate the workload of a controlled applica-

tion. This value is computed using the speedup applied to the application (indeed,

the bounds for convergence depend on the square of the magnitude of the speedup).

When the speedup is accurate, the value produced by the filter will also be accurate.

As can be seen from Equations 6.7-6.12, even when the speedup is not accurate,

the filter will still converge. How, then, do we interpret the meaning of the value pro-

duced by the filter? We note that speedup and workload have an inverse relationship

in terms of their effect on heartrate (see Equation 3.1). Thus assume, that the true

speedup applied at time t is so(t) and that s(t) = k -so(t). In this case, the filter will

converge to provide an estimate of w that is off by another factor of k; i.e.,the filter

will converge but to an inaccurate value. While the filter value is inaccurate in this
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case, its accuracy is wrong by the same factor that speedup is inaccurate. Therefore,

the application heartrate will converge to the correct value even when the speedup

is inaccurate. In conclusion, adaptive control maintains the accuracy of the classical

control system even when Assumption 5 is violated.

Settling time Under the adaptive control system, we lose guarantees on settling

time. In the classical control system the settling time is a simple function of the poles

of the control system and easy to calculate. With the adaptive control system, settling

time is determined by the bounds in Equation 6.7. While these bounds demonstrate

that the system is exponentially convergent under the stated assumptions, the bounds

are somewhat difficult to use in practice.

Both bounds are dependent on V, which in turn is a function of the initial error

in the estimate. This has the benefit that when the workload is known, the initial

error is zero and the system converges instantaneously. If, however, it is not possible

to quantify the initial error we cannot provide a quantitative bound on convergence.

Instead, we can say that in practice settling time is proportional on the error between

the application's stated workload and true workload. Furthermore, settling time will

depend on the noise in the application (o in Equation 3.6) and the speedup required by

the application s(t). Thus, while we lose the guarantee on settling time, Equation 6.7

tells us that the settling time is dependent on things the application can control

including: 1) error in workload estimate, 2) application noise, and 3) application

resource need. Significantly, settling time is not dependent on any parameters of the

runtime system that are beyond the application's control or visibility.

Maximum Overshoot With the use of the Kalman filter we lose the guarantee

of maximum overshoot. Once the filter converges, the guarantees from the classical

control system apply.

Efficiency The use of adaptive control does not change the efficiency of the system

in theory. In practice, efficiency improves when workload is not known a priori

because the system quickly adapts to the right workload, as demonstrated in the
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next section.

6.3.3 Results

Figure 6-4 depicts data from the experiment described in Section 5.4.3. Specifically,

this figure shows a stacked bar chart representing the additional performance per

Watt gains when using SEEC's adaptive control feature to meet a performance goal

while minimizing power on machines 1 and 2. Here, the y-axis shows performance

per Watt normalized to the static oracle, while the x-axis shows the results for each

benchmark.

As can be seen from Figure 6-4, incorporating adaptive control into SEEC im-

proves the performance per Watt by almost 50% and makes it competitive with the

static oracle. It is somewhat ironic that this improvement is due almost entirely to

the fact that the system is much faster to converge to the target heart rate, yet we

have lost specific guarantees about the convergence. These results demonstrate that

sometimes it is better to relax assumptions and lose guarantees than to have specific

guarantees that are based on assumptions that cannot be met in practice.

As described in the previous section, the adaptive controller will converge even

when the speedup specified by the systems developer is incorrect. This phenomenon

has been demonstrated in the results depicted in Figure 5-16(a). This figure shows

an experiment where the speedup and costs associated with actions are incorrect, yet

the adaptive control system still quickly converges to the desired performance.

6.4 Properties of Adaptive Actuator Selection

6.4.1 Assumptions

This section relaxes Assumption 4 which states that all combinations of actuators

that achieve the same speedup are equivalent. Thus, the adaptive actuator selec-

tion process recognizes that there may be multiple methods for achieving a given

speedup by that the costs (measured in power or precision) of different combinations
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Figure 6-4: Adaptive control provides greater performance per Watt across a range
of applications.
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of actuators which achieve the same speedup may differ.

6.4.2 Properties

Adaptive actuator selection uses the speedup signal produced by the adaptive control

system and does not affect the behavior of the system in the dimension under control.

Therefore, the SASO properties of the adaptive control system carry over to the

adaptive actuator selection system. To address efficiency, adaptive actuator selection

considers solutions to the linear optimization problem of Equation 3.7. Therefore,

any solution to this system is efficient, so the efficiency property is maintained despite

the elimination of Assumption 4.

6.4.3 Results

Figure 6-5 depicts data from the experiment described in Section 5.4.3. Specifically,

this figure shows a stacked bar chart representing the additional performance per

Watt gains when using SEEC's adaptive actuator selection to meet a performance

goal while minimizing power on machines 1 and 2. Here, the y-axis shows performance

per Watt normalized to the static oracle, while the x-axis shows the results for each

benchmark.

As shown in Figure 6-5, adaptive actuator selection provides a significant benefit

over adaptive control. This benefit comes from recognizing that there are typically

multiple configurations of actuators that meet a goal and that they do not have

equivalent costs. In general, on machine 1, adaptive actuator selection attempts to

allocate just enough resources to keep the machine busy most of the time. In contrast,

on machine 2, adaptive actuator selection uses race to idle to keep the machine busy

as much as possible.
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151



6.5 Properties of ML

6.5.1 Assumptions

When invoking SEEC's machine learner, we relax all assumptions except for Assump-

tion 1 and Assumption 6. These assumptions indicate that the application converges

to some performance when uncontrolled. Such assumptions are necessary so that

the learner can learn the performance of the application. If application performance

or noise is not convergent it is clearly impossible to learn what the true application

behavior is.

6.5.2 Properties

Stability The machine learner is stable under Assumptions 1 and 6. Given these

assumptions, Equation 3.8 will eventually stabilize [90]. Therefore, the predicted

Q-value of any state will eventually converge to the true value, and the probability

of the machine learner exploring the space will approach zero. Once that probability

becomes insignificant, the system behaves as the SEEC control system, but with one

caveat: there is a small, but non-zero, probability that the system converges before

exploring every state. In this case, Assumption 5 is violated and replaced with an

assumption that some subset of the costs and speedups of available actions are known.

Accuracy While the machine learner is stable because it is convergent, it provides

no guarantees that it stabilizes to the desired goal because it is not clear that it will

explore all states. What is known is that when the system stabilizes, it will stabilize

at a point that has been explored (and thus learned; i.e., Equation 3.9 is stable).

Furthermore, of all the explored states, the one to which the system converges is the

one which has the highest reward (see Equation 3.8).

Settling Time Unfortunately, settling time is not bounded for the machine learner,

so this approach provides no guarantees.
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Maximum Overshoot Similar to settling time, the machine learner provides no

guarantees about maximum overshoot. We note, however, that it is implemented

to idle once performance has been exceeded. Therefore, in practice it is not going

to overshoot the target. The larger issue is that there is no guarantee on minimum

undershoot.

Efficiency Unfortunately, there is only a weak guarantee on efficiency. When the

system converges, it will converge to an actuator configuration with the highest reward

of all explored states, but there is no guarantee on the extent to which the system

will explore.

6.5.3 Results

We have already presented several experiments that show the tradeoffs of SEEC's ML

approach. Figures 5-8 and 5-9 show that SEEC ML is better than other approaches

but is not competitive with SEEC AAS. In this scenario, the costs and speedups

are not known but they represent reasonable guesses for the benchmark applications

under study. The overhead of learning the true costs and benefits overwhelms the

gain.

In contrast, for the dijkstra and STREAM benchmarks presented in Section 5.6,

SEEC ML outperforms SEEC AAS. While both are accurate, SEEC ML is more

efficient than SEEC AAS for these applications. The issue here is that the initial

models for cost and speedup are so bad (Assumption 5 is violated to such a degree)

that the control systems (both SEEC AAS and classical control) converge to an

inefficient state. In contrast, when SEEC ML enters such a state, the difference

between its predicted utility and measured utility will be large and thus it will move

to another state with a very high probability.
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Table 6.1: Summary of Assumptions and Properties for SEEC Decision Engines
Classic Adaptive AAS ML

Assumptions 1-5 1,2, 4-6 1,2,5,6 1,6
Stability
Accuracy / / / K
Settling Time / K X X
Max Overshoot / X X X
Efficiency / / /

6.6 Summary

Table 6.1 summarizes the assumptions and properties covered in this section. The

table shows each of the four layers of SEEC, the assumptions made at each level,

and the guarantees provided at each level. A / means that the property can be

guaranteed. A X indicates that the property cannot be guaranteed.

The data in the table matches the general trend in Figure 6-1. Classical con-

trol provides the most guarantees, but also requires the strictest set of assumptions.

Machine learning requires the smallest set of assumptions, but in turn provides the

fewest guarantees.
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Chapter 7

Future Work and Conclusions

7.1 Future Work

7.1.1 Three or More Objectives

The SEEC runtime decision engine as described in Section 3.3 is built with two basic

assumptions: 1) the goals of the application and systems developer are the same and

2) there is a single degree of freedom (i.e.,efficiency is only measured in one dimension).

These assumptions cover a large number of cases, but clearly not every case. In the

future, we plan to extend SEEC to cover scenarios where the application developer and

systems developer may be at odds and where there are multiple degrees of freedom.

For example, consider a real-time video encoder, which has a clear performance goal;

however, the application programmer would like to maximize precision while the

systems developer would like to minimize power consumption. In this example, there

are two degrees of freedom (precision and power), but the application and systems

developers are competitors.

In this scenario, the runtime faces two key challenges: 1) arbitrating conflicts

and 2) achieving multi-dimensional efficiency. Conflicts occur when applications'

goals exceed the capabilities of the system or when applications and systems have

competing goals. Even without conflicts there may be multiple ways to achieve a set

of goals (e.g.,increase processor speed or increase the allocation of processors), and
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the runtime needs to ensure that actions are scheduled to meet goals efficiently in

both dimensions.

These two challenges represent problems of policy translation, which is an open

challenge in the creation of self-adaptive systems [77]. One solution is to address both

conflict arbitration and action scheduling using economic models, and thus translate

the problem to an economic problem. For each goal in the system, developers spec-

ify a function that assigns a value, measured in monetary units (MU), for progress

towards that goal. For example, a video encoder might assign 100 MU for meeting

a performance goal of 30 frames per second or higher, 90 MU for 25-29.9 frames per

second, and 0 MU otherwise. Similarly, a systems programmer could specify a func-

tion that converts energy usage into MU (analogous to what utility companies do).

Using this valuation of individual goals, the SEEC runtime can arbitrate conflicts and

schedule actions optimally by maximizing the total value in the system.

There are two attractive features to this programming model. First, it provides

a scalable method for reasoning about different goals; new goals are translated into

MU, so SEEC reasons about them by simply optimizing the total system MU. Sec-

ond, having a single metric for goodness allows optimization with multiple degrees of

freedom. For example, consider a system with a hard performance requirement, but

which can meet the performance requirement by either adjusting accuracy or power

consumption. This system represents an optimization problem with three dimensions,

one of which is a requirement (performance) and two of which are degrees of free-

dom (accuracy and power). In this system, there is insufficient information to reason

about whether to decrease accuracy or increase power consumption in order to meet

the performance goal. However, once values are assigned to all three dimensions, the

optimization problem simply becomes a problem of maximizing total system value.

Value is assigned to goals by specifying a translation function for each goal that

turns measured progress into a value in MU. Separate translation functions must be

provided for each separate goal dimension (e.g.,performance, power, etc.).
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Example

A brief example shows how the economic, self-aware model might be used to im-

plement a search engine. The search engine has a performance goal, measured in

requests processed per second, and an accuracy goal measured as the percentage of

the maximum number of results returned. This search engine can operate at a range

of different performance/accuracy tradeoffs [39]. The system on which the search

engine is running has a goal of minimizing power consumption, and there is one ac-

tuator which uses DVFS to change the clock speed of the server running the search

engine. In this example, the goals of high accuracy, high performance, and low power

are in conflict, but these conflicts are easily resolved by optimizing total value in the

system.

For this example performance is worth 30000 MU when the goal is met or exceeded

and 0 MU otherwise. Power is valued linearly at -100 MU/Watt (representing a

cost for power consumption). To illustrate the effects of different value functions

we use 4 different valuations of accuracy, and examine how they change the optimal

configuration of the system. Specifically, each unit of accuracy is worth either 50, 65,

110, or 150 MU.

The results are shown in Figures 7-1(a) and 7-1(d). Each figure is a three-

dimensional plot which shows the total value of the system as a function of the

achieved accuracy and power consumption. For each different valuation of accuracy

the system achieves a different total value. Furthermore, this optimal value occurs in

a different configuration. When accuracy has low value (50 MU), it is better to save

power and the system moves to a configuration with the lowest power consumption

(155 Watts) and an accuracy of 69.7%. When accuracy has high-value (150 MU), it is

better to use the maximum power to achieve maximum accuracy without sacrificing

the performance goal (185 Watts, 100%). When accuracy has an intermediate value

(65 or 110 MU), the optimal configuration occurs at intermediate values of accuracy

and power consumption (158 Watts, 73.8%; 162 Watts, 79.3%).

This example shows how a single runtime system can optimize total system per-
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Figure 7-1: Changes in optimal configuration for different valuations of accuracy.

formance using economic models because the system is aware of the value of achieving

multiple goals in different dimensions. Through awareness of these values the run-

time system understands how to compare accuracy to power and performance, can

weigh the relative benefits of increasing accuracy and decreasing power, and can drive

system behavior to a global optimum.

7.1.2 Architectural Support for the Model

The SEEC model was designed independently of any particular applications, system

software, or hardware. Chapter 5 presents several experiments that demonstrate

SEEC working with actions and observations supported by real systems. While these

results demonstrate the benefits of the SEEC approach, they also raise questions

about how much more could be achieved on a system built to support the SEEC

model.
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We have proposed a processor architecture, which focuses on features that explic-

itly support SEEC [38]. Angstrom is a massively manycore processor that supports

self-aware computing by exposing a wide array of actions (in the form of different

hardware configurations) and observations (including both traditional performance

counters [87] and energy counters [75]) to the SEEC runtime system.

Observation

The Angstrom processor design supports SEEC by providing visibility into the hard-

ware in the form of traditional performance counters, event probes, and non-traditional

sensors. This information allows SEEC's runtime decision engine to diagnose either

why goals are not being met, or whether there might be a lower cost set of actions

that would achieve the same goal.

Performance counters provide valuable insight into the behavior of an application

on a particular hardware architecture. Unfortunately, many existing systems limit

the number of counters that can be read simultaneously by software. This limitation

means that application tuning requires multiple profiling runs and prevents dynamic

exploitation of performance counter information. The Angstrom design exposes mul-

tiple performance counters that are memory-mapped and can be read by any level

of the software stack. These count simple events such as: memory operations, cache

hits and misses, pipeline stall cycles, network flits sent and received, etc. These are

useful for assessing average behavior over a period of time but since they must be

polled by software, they cannot be queried too frequently.

Besides observing processor state, Angstrom includes sensors to monitor things

like temperature, voltage, battery charge, and energy consumption [75]. This allows

the runtime decision engine to react to changing environmental conditions (such as

cooling failures or dying batteries) as well as observe how its actions impact these

quantities to handle goals like minimizing power consumption or limiting temperature

extremes. We expect some of these sensors to be deployed in a fine-grained manner

to measure variations between the 1000 cores.
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Action

As further support for the SEEC model, the Angstrom processor exposes a number

of different actions or different hardware configurations. Angstrom provides these

"knobs" but relies on the SEEC runtime system to set them in coordination with

other adaptations specified at the software level. This section discusses some of the

adaptations exposed by the Angstrom processor at both the intra- and inter-core

level.

Intra-core Adaptation In the Angstrom design, each core is capable of running at

different voltages and frequencies. Operating the processor designs at lower voltage

levels has been shown to increase energy efficiency, as with the voltage-scalable 32-bit

microprocessor design demonstrated in [42]. This processor operates at peak per-

formance with nominal voltages while supporting an energy efficient mode at 0.54V

with only 10.2 pJ/cycle energy consumption. Similarly, making each Angstrom core

capable of running at different voltage and frequency levels will optimize them for

applications with limited energy budgets and time varying processing loads.

Technology scaling is fueling integration of larger on chip caches in processor design

(e.g.,up to 50 MB [73]). In order to enable ultra-low power consumption, Angstrom

cores need to feature voltage-scalable SRAMs. Conventional SRAMs cannot work

at low-voltage levels due to stability problems. Thus, recent work has focused on

implementing different bit-cell topologies [19, 13] and peripheral assist circuits [50, 80]

to enable operation down to sub-VT levels.

Reconfiguration of the local caches is shown to reduce power consumption for the

same performance [7]. Disabling unnecessary parts of the Angstrom caches (sets and

ways) will help SEEC to optimize power and performance trade-offs. This adaptation

can be beneficial both for applications with small working sets and applications with

large working sets that do not achieve much locality on their data.

Inter-core Adaptations Angstrom supports dynamic adaptation of the on-chip

network by enabling software and hardware to interact in achieving goal-driven trade-

160



offs between performance and efficiency. This is accomplished with three architec-

ture features: express virtual channels (EVC) [20], bandwidth-adaptive networks

(BAN) [22], and application-aware oblivious routing (AOR) [51].

Angstrom also supports adaptation of the cache-coherence protocol used between

cores. For some applications, directory-based cache-coherence provides the best per-

formance and energy consumption [32]. However, for other applications it is more

efficient to use a shared-NUCA (non-uniform cache access) protocols because it pro-

vides for a large shared cache capacity and reduces the total number of off-chip

accesses [49]. The ARCc architecture has shown that combining these protocols and

adaptively selecting the best on a per application basis can improve performance and

energy efficiency [48]. Angstrom adopts the ARCc approach of providing multiple

coherence protocols and exposes these adaptations to SEEC for management.

Decision

Although self-aware optimizations are capable of dramatically improving the behavior

of applications, they do not come for free. Some resources must be devoted to making

runtime decisions to have a dynamic, adaptive system. To help reduce the costs of

runtime decision making the Angstrom processor contains specialized, low-power cores

called partner cores, which we describe below. More detail is available in [56].

Each main core in the Angstrom design has a partner core associated with it.

These two cores are tightly integrated so that the partner core can inspect and ma-

nipulate state (including performance counters and configuration registers) within

the main core. The partner core also has access to the event queues fed by event

probes. The partner core targets a lower performance point than the main core and

is designed to take much less area and energy. It has a simplified pipeline, smaller

caches and fewer functional units. It is designed to run at lower clock frequencies and

makes heavy use of low-power circuit techniques, requiring less energy per operation,

and making it more efficient to run dynamic optimization code on the partner core

than the main core. We estimate that each partner core will consume about 10% of

the area and 10% of the power of a main core.
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7.1.3 Distributing SEEC

SEEC's current runtime implementation is designed for existing multicore platforms

and will need to be parallelized to work with future large scale multicores. There are

two bottlenecks that will need to be addressed as the number of cores and the number

of tunable parameters scales. The first bottleneck is the speed at which information

can be transmitted from the applications to the SEEC decision engine, and the second

is the speed with which SEEC can schedule actions over upcoming time quanta.

We propose to address both of these issues by developing a hierarchical decision

engine for SEEC. In this hierarchical approach, regions of cores in the multicore will

be broken up into pods. The size of the pod will be determined by the latency with

which data can be communicated within the pod. Pods will be responsible for making

quick decisions at a local level. Each pod will then communicate with a centralized

decision engine which will be responsible for making longer term decisions at a slower

rate.

There is an additional scaling challenge that has to be addressed to take SEEC

to a multi-machine scenario. In such a case, we anticipate extending the hierarchical

scheme to allow multiple levels of hierarchy. At least one of these levels will cover

goals and constraints for the entire collection of machines under control. Another

level of hierarchy will correspond to a single chip level. There may need to be several

levels of additional hierarchy as well.

It is also possible that the economic models described in Section 7.1.1 could

provide an alternative approach to scaling SEEC up to larger machines. By assigning

economic value to actions and achievements, it may be possible to design systems

that act independently but in such a way to optimize overall behavior.

7.2 Conclusions

This work describes the SEEC system, a novel runtime and accompanying interfaces,

designed to manage power/performance/precision tradeoffs. SEEC drives the system

to application-specified goals by tuning actuators provided by individual system com-
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ponents. SEEC meets these goals accurately and efficiently using a combination of

classical control theory, adaptive feedback control, adaptive actuator selection, and

machine learning. A key contribution of SEEC is its use of separate Observation and

Actuator interfaces which allow a corresponding separation of concerns. Application

programmers use the Heartbeats API to specify application-level goals and progress,

while systems developers use the Actuator interface to specify components that affect

the performance/power/precision tradeoff space. The SEEC approach has been eval-

uated in a number of case studies including managing system resources on different

machines and managing application adaptation. The SEEC runtime meets goals with

low error and close to optimal behavior. SEEC is an example of an emerging class

of management systems which will help application and system developers navigate

the complicated tradeoff spaces brought in to being by the necessity of managing

multiple, competing goals.
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