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Abstract

The world is facing the challenge of finding new renewable sources of energy - first, in response
to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal
Energy Conversion (OTEC) can provide renewable energy by making use of the temperature
difference between the surface ocean and deep ocean water in a Rankine cycle. An OTEC plant
pumps huge volumes of water from the surface and nearly 1 km depth, and releases it at an
intermediate depth. The effects of this enormous flux are crucial to understand since disruption
of the ambient temperature stratification can affect the efficiency of the plant itself and of
adjacent plants.

This thesis aims to study the external fluid mechanics of offshore OTEC power plants, to assess
their environmental impact and to help analyze whether OTEC plants can provide a sustainable
source of energy. Although there has been interest in OTEC for several decades, so far primarily
physical and analytical models have been developed. In this study numerical models are
developed to model OTEC operating plants: integral models for the near and intermediate field
and a large-scale ocean general circulation model. Two strategies in modeling OTEC plant
discharge are used to analyze plume dynamics: the "Brute Force" approach, in which a
circulation model, MITgcm, computes the near, intermediate and far field mixing; and the
"Distributed Sources and Sinks" approach, in which the near and intermediate field are
represented in the circulation model by sources and sinks of mass computed by integral models.

This study concludes that the Brute Force modeling strategy is highly computationally
demanding and sometimes inaccurate. Such simulations are very sensitive to model resolution
and may require the use of unrealistic model parameters. The Distributed Sources and Sinks
approach was found to be capable of modeling the plume dynamics accurately. This method can
be applied to the study of adjacent OTEC power plant interaction, redistribution of nutrients, and
propagation of contaminants.

Thesis Supervisor: E. Eric Adams
Title: Lecturer and Senior Research Engineer of Civil and Environmental Engineering
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Chapter 1 - Introduction

1.1 Ocean Thermal Energy Conversion Principles of Operation

In tropical oceans, surface water temperature reaches about 28 "C and deep-water temperature is

about 4.4 'C, yielding an important thermal gradient of about 23 'C. Ocean Thermal Energy

Conversion (OTEC) is an energy conversion technology that uses this thermal gradient to

produce energy, by a closed Rankine cycle in a heat engine to produce mechanical work that

generates electricity.

Two OTEC power cycles are illustrated in Figures 1.1 and 1.2. Systems can be either closed-

cycle or open-cycle. In the closed-cycle engine (Figure 1.1) warm surface water is drawn into an

evaporator where its heat vaporizes a pressurized refrigerant such as ammonia. That gas in turn

spins a turbine, producing electrical power. Heat is removed from the low-pressure vapor by

pumping cold water through a condenser. The re-liquefied ammonia is pressurized by a feed

pump and returned to the evaporator. The cycle can then repeat. Refrigerants such as ammonia or

R-134a are used in closed-cycle engines because of the low temperatures involved. Open-cycle

engines (Figure 1.2) use vapor from the seawater itself as the working fluid. A significant

advantage of the open-cycle process is that the condensate can serve as a freshwater source much

less expensively than using reverse osmosis.

Figure 1.3 illustrates a hybrid OTEC cycle. A hybrid cycle involves elements of both closed and

open cycle systems. Warm seawater is flash-evaporated; this is an open cycle process. That

seawater, now in gaseous form, vaporizes the working fluid of a closed loop, ammonia. In turn,

the vaporized ammonia drives a turbine, generating electricity. The gas then condenses in the

heat exchanger, producing desalinated water.
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Warm
water in

Power Discharge
water to sea

Working fluid

Working fluid
condensate

Figure 1.1 - OTEC closed-cycle (Khaligh et al., 2010).

Steam Power

Vacuum pump
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flash evaporator

Discharged
warm water Disc arg

Warm cold water

water in Discharge
water to sea

Vacuum chamber flash
evaporator

Condenser

Desalinated
+ water

Cold
water in

Figure 1.2 - OTEC open-cycle (Khaligh et al., 2010).
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Steam condenser/
ammonia vaporizer Steam turns to

desalinized water

Spouts

Noncondensable
gases

Liquid ammonia Ammonia
pump condenser

Cold seawater

Figure 1.3 - OTEC hybrid cycle (Khaligh et al., 2010).

1.2 Thermodynamic Efficiency

The ideal thermodynamic efficiency of a heat engine operating between a warm water

temperature T, and a cold water temperature T, is (Carnot efficiency):

rlmax = 1

where temperature is in degrees Kelvin. The maximum thermal efficiency of an OTEC plant is

7.5 to 8% based on typical temperatures of the surface water and water at 1 km depth for the

most favorable locations (Avery and Wu, 1994). However, the real efficiency of a plant is

smaller than this theoretical value due in part to the warming of the cold water and the loss of

heat of the warm water. Furthermore, the heat exchangers' (evaporator and condenser) efficiency

reduces the overall plant efficiency. Figure 1.4 illustrates the OTEC temperature ladder. As a

reference, a 20C seawater temperature difference corresponds to an effective temperature

difference across the heat engine of about 10C (Nihous, 2007). Consequently, the net

thermodynamic efficiency of OTEC processes is of the order of 3% (Avery and Wu, 1994). This
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efficiency is significantly smaller than the 32%-36% for a conventional thermal plant (Vega

1992). In order to exploit the low-grade energy resource, enormous seawater flow rates are

required to produce amounts of electricity comparable to conventional power plants.

Surface seawater temperature

Surface seawater cooling

Evaporator pinch point

Working-fluid

AT temperature
20*C AT- 100C

Condenser pinch point

Deep seawater warming

in condenser
Deep seawater temperature

Figure 1.4 - OTEC temperature ladder (adapted from G. Nihous 2007).

1.3 Ocean Thermal Energy Resource Available

A shallow mixed layer at the surface of the ocean (uniform temperature and salinity field), 35 to

100 m thick, absorbs and retains all the energy the ocean receives from the sun. In the tropical

oceans (15' north to 15' south latitude) the mixed layer reaches almost 28'C. This temperature

remains virtually unchanged day and night, month after month, with the annual average

temperature in the mixed layer ranging from an estimated 27 to 29'C across the region.

The temperature beneath the mixed layer, within the thermocline, drops to values of 4.4'C at

depths of 800 to 1000 m. Closer to the bottom of the ocean (average ocean depth 2 km), the

temperature slightly decreases. This cold water - melted from the Polar Regions - flows along

the ocean bottom towards the equator and displaces the lower-density water above.
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The stable higher density in the thermocline inhibits the vertical transfer of heat and momentum.

Figure 1.5 shows the typical vertical temperature distribution of the ocean for five different

locations, a structure that is found across all tropical areas. The temperature difference between

the surface and water at a depth of 1 km remains stable throughout the year, except for extremely

slight variations due to the seasons and day-to-night changes (Avery and Wu, 1994).

0.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30

Temperature of Seawater ("C)

Figure 1.5 - Vertical temperature distribution of seawater
(GEC Co., http://www.otec.ws/otecprinciple.html).

Figure 1.6 shows the sea surface annual temperature, and Figure 1.7 shows the temperature

difference between the sea surface and 1000 m in depth. Favorable locations of OTEC plants,

where the temperature difference exceeds 22*C, occupy approximately 60 million km2 (Avery

and Wu, 1994).
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1.4 OTEC History of Development

The first proposal to harness energy from temperature differences in the ocean was made in 1881

by French physicist Jacques D'Arsonval. Fifty years later, his student George Claude

implemented this plan and built the first-ever OTEC plant, in Matanzas Bay, Cuba. Figure 1.8

and 1.9 show pictures of the first OTEC installation. In addition, in 1935 he built another open

cycle OTEC plant on the coast of Brazil, shown in Figure 1.10. Although his first plant managed

to output 22 KW of electricity, neither plant could produce a net gain in electricity. The plants

also failed to survive bad weather conditions. In the following years, OTEC development was

slowed by competition with inexpensive hydroelectric power production (US Department of

Energy, 1989).

Renewed interest in OTEC plants developed in the 1970s amidst the era's energy shortage (US

Department of Energy, 1989). In 1974, Hawaii established the Natural Energy Laboratory

(NELHA) to study OTEC technology at Keahole Point on the Kona coast. A picture of this

facility is shown in Figure 1.11. In 1979 NELHA built the first system to produce net power,

"Mini-OTEC." This was a closed-cycle plant mounted on a converted US Navy barge. It

produced 52 KW of gross power and 15 KW of net power (Survey, 2007).

In 1980, the US Department of Energy (DOE) built OTEC-1, a test site for OTEC heat

exchangers, on board a converted US Navy tanker. They tested commercial-scale heat exchanger

designs and demonstrated that OTEC can operate from slowly moving ships with minor impact

on the environment (Survey, 2007).

In 1981, Japan built a 100 KW (gross) closed-cycle shore-based plant in the Republic of Nauru

in the Pacific Ocean. It had a net power production of 31.5 KW, exceeding production

expectations (Survey, 2007).

In May 1993, an open-cycle OTEC plant at NELHA produced 50 KW of net power (US

Department of Energy). In 2001, the National Institute of Ocean Technology (NIOT) in India

implemented a 1-MW closed-cycle pilot OTEC plant in the south east coast of India (Kobayashi

et al. 2001).

Currently, private corporations have displaced government laboratories as the major contributors
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to OTEC development. For example, in 2002, SEA Solar designed a 100-MW plant-ship to the

US Navy (Sea 02, 2004).

In 2009, Lockheed Martin was awarded $12.5 million from the U.S. Naval Facilities Engineering

Command to make progress in the design of an OTEC pilot plant off the coast of Hawaii

intended to lead to the later development of large-scale OTEC plants (Lockheed Martin).

In 2011, the Bahamas Electricity Corporation (BEC) and a private company signed a contract to

develop two OTEC plants to be implemented in the islands to provide energy. These plants will

be the first OTEC plants to be used commercially (Ocean Thermal Energy Corporation, 2013).

Figure 1.8 - Cold water pipe used in Cuba by Dr. Claude
(Offshore Infrastructure Associates, Inc., http://www.offinf.com/history.htm).

Figure 1.9 - Installation of the cold water pipe in Cuba
(Offshore Infrastructure Associates, Inc., http://www.offinf.com/history.htm).
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Figure 1.10 - Ship on which OTEC plant was installed in Brazil
(Offshore Infrastructure Associates, Inc., http://www.offinf.com/history.htm).

Figure 1.11 - A land based OTEC facility at Keahole Point on the Kona coast of Hawaii
(United States Department of Energy).

1.5 Prospect for OTEC

According to the U.S. Energy Information Administration, world energy consumption is

estimated to grow by 53% from 2008 to 2035. Figure 1.12 shows the estimated world energy

consumption by fuel. During this time, fossil fuel prices are expected to rise, which in addition to
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environmental concern, leads to a decrease in their total contribution to the world energy market

from 34% to 29%. One of the biggest sources of energy projected to replace this gap is from

renewable energy. Renewable energy production is expected to rise from 10 % in 2008 to 14%

by 2035.

250 Hisor 2008 Projections

200

Liquids

ISO

100

50

0
1990 2000 2008 2015 2025 2035

Figure 1.12 - World energy consumption by fuel, 1990-2035
(US Department of Energy/EIA 2011).

in quadrillion BTU

OTEC plants are an attractive form of this renewable energy. The favorable locations for OTEC

plants (60 million km2) store the energy equivalent to the heat of 245 billion barrels of oil. As

reference, only 0.1% of this amount equals 15 times the current US electricity consumption (US

Department of Energy, 2011). Several renewable energy sources such as winds, solar, and ocean

waves, are variable in output power. In contrast, OTEC can be considered a base-load

technology, which makes it an appealing renewable source of energy.

1.6 Previous Work on OTEC Modeling

In the 1970s many physical models were developed to understand the interaction between the

OTEC plant intake and the discharge, and other local environmental impacts. Sundaram et al.

(1978) conducted some experiments to identify the variables that affect the effluent recirculation.

Adams et al. (1979) performed many experiments analyzing realistic ambient stratification
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profiles, and realistic ocean currents. They considered different variables: the evaporator intake

flow rate, evaporator intake depth below water surface, evaporator and condenser combined

discharge depth below water surface, combined discharge flow rate, discharge vertical angle,

plant characteristic sizes, background currents, and discharge and ambient densities. They

concluded that effluent recirculation from a plant with radial discharge can be reduced by an

adequate choice of separation between the plant intake and discharge. This study is limited to the

immediate surrounding of the OTEC plant.

Concurrently, some investigators started to model this numerically. Jirka et al. (1977), proposed

a theoretical model based on the potential flow hypothesis and a two-dimensional continuity

equation, considering the OTEC discharge as a source and assuming uniform background flow,

with either a two-layer or linear stratification profile. The proposed flow field is two-dimensional

and extremely simplified. Roberts (1977) proposed a simplified two-dimensional numerical

model to study the flow near two outflows and a warm inflow of an OTEC plant. Because of the

limitations and simplifications of the model, they reached qualitative results rather than

quantitative. They concluded that recirculation can be avoided and that it is possible to capture

warm water with a temperature very close to the surface temperature by limiting the intake

velocity and the separation between the intake and the discharge. Wang (1984) conducted a

study of the far field of OTEC discharge at regional scales using a general circulation model but

without treating the behavior of the effluent in detail. The plume discharge is represented just by

a source of mass and heat into a far field model. The warm and cold water intake are not

included in the model. This model was able to predict plume characteristics and velocities for a

40 MW OTEC plant considering both quiescent ambient conditions and background currents.

Over the next 30 years, very little research was conducted on theoretical modeling of OTEC

plants. OTEC plants had to compete with wind and solar energies, and due to their complexity

and very low efficiency were no longer pursued. Difficulties in plant construction, vulnerability

to bad weather conditions (waves, storms), and uncertain profitability slowed its development.

Recently, there has been renewed interest in developing OTEC plants. Even with wind and

solar, there is once again a high demand for new renewable energy sources, including OTEC

plants. This lead to numerical modeling of OTEC plants to be studied again. A private company
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in Hawaii involved with Lockheed Martin is pursuing OTEC modeling and experiments to

develop this technology for Hawaii.

Rajagopalan and Nihous (2013), for the first time made an estimation of the global OTEC

resource using an ocean general circulation model. They assumed a uniform distribution of

OTEC plants in the favorable locations (between 15 N and 15 S latitude). Each plant is modeled

by sources representing the effluent discharge, and sinks representing the intakes. They studied

effects for a time span of 1000 simulated years, using a horizontal 4'x4' grid size. They conclude

that the maximum net OTEC power production possible on Earth is 30 TW. However, this study

does not use a realistic representation of the OTEC plumes discharge since it does not account

for the entrainment process, which requires extremely fine spatial resolution, or a small scale and

large scale coupling strategy as presented in this thesis.

1.7 Research Objectives

The objective of this research is to develop numerical models to study the external fluid

mechanics associated with OTEC plants operating in the tropical oceans. These models are

detailed in the following chapters. The possibility of using a state-of-the-art ocean general

circulation model is explored. This study aims to identify interaction of adjacent plants since

how closely OTEC plants can operate is still unknown.

This thesis studies:

* Interaction between plumes of adjacent plants

e Redistribution of ocean nutrients

applied to:

* Small and large OTEC power plants

" Both quiescent environment and background currents
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1.8 Thesis Outline

This thesis is organized in six chapters. Chapter 1 presents an overview of the general

background and principles of Ocean Thermal Energy Conversion. Chapter 2 describes the

characteristics of OTEC external flows. The models used to study the external flow of OTEC

plants, a near, an intermediate and a far field model, are described in Chapter 3. Typical OTEC

discharges as well as the effect of background currents are also studied in this chapter. Chapter 4

explores the strategy of coupling the models by two methods: the Brute Force method and the

Distributed Sources and Sinks method, studying their applicability to OTEC problems. Chapter 5

presents the impact of OTEC plants on induced upwelling velocities and ocean nutrient

redistribution. Finally, Chapter 6 summarizes the results and proposes direction for future

research.
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Chapter 2 - OTEC External Flows

2.1 General Characteristics

An OTEC plant takes in both warm seawater from near the surface and cold water from a depth

varying from 800 to 1000 m. An operating OTEC plant represents a combination of sources and

sinks of mass (discharges and intakes) operating in the stratified ocean. To exploit the small

effective temperature difference of the water at the intakes, an OTEC plant pumps large volumes

of water, about 4 m3/s of deep cold seawater and at least as much surface warm seawater per net

megawatt of electrical power. As reference, a 100-MW power plant with 20'C seawater

temperature difference, corresponding to an effective temperature difference across the heat

engine of 100C, operating at an efficiency of 3%, requires a cold water intake flow and warm

water intake flow of 400 m3/s each, which is equivalent to eighty times the average Charles

River flow. Therefore, the source-sink system is expected to produce significant impact in the

ambient temperature structure and ocean currents. A schematization of these effects is shown in

Figure 2.1.

Figure 2.1 - Scheme of an OTEC intake flows and discharge plume, causing deformation of the ocean thermal
structure (Dr. Jason Goodman, personal communication 2009).

The external flow generated by an OTEC plant is crucial since the plant interacts with itself by:
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e Alteration of the ambient stratification. The discharge jets generate turbulent mixing of

the upper warm layers. This may cause a reduction of the mixed layer temperature, or can

induce non-selective withdrawal from the upper mixed layer in the warm intake by taking

colder water form the upper thermocline.

* Direct or indirect recirculation. Effluent or water entrained by the jet discharge can be

recirculated into inflows.

All these processes can cause the degradation of the thermal resource available. The effluent

recirculation is affected by the intake design characteristics (distances between water intake and

water discharge), the flow rates, the initial effluent buoyancy, the presence of background

currents, and the thickness of the mixed layer.

This study aims to determine whether OTEC plant performance can be diminished by potential

recirculation of the discharge or alteration of ocean temperature structure. This study analyzes

offshore closed cycle OTEC plants. Figure 2.2 presents a schematic of an OTEC plant structure

and typical water intake and exhaust temperatures.

Warm water intake
25"C r-t

Dscharge t
17"C

Power cable to shore

Cold water intake -
80C

Bottom of the sea

Figure 2.2 - OTEC combined discharge general scheme, indicating typical intake temperatures and typical
effluent temperature for a 100-MW power plant.
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2.2 Warm Water Intake

The warm intake structure is located near the sea surface. Typical designs for pilot plants consist

of an intake at 10 m depth, while for commercial plants (which require larger flow rates), the

intake is located at 20 m depth. The intake withdraws water from different levels (depending on

the stratification profile, the pumped flow and background currents). The goal is to capture water

only from the upper mixed layer where water is the warmest. The temperature difference

between cold and warm water intake determines the maximum possible plant energy production.

A change in this temperature difference significantly affects the power production. For example,

a decrease of 10 C in this temperature difference typically would result in a 15% decrease in net

OTEC power production (Nihous, 2010). Warm intake flow rates are in the range of 3-5 m3/s per

MW (Myers et al., 1986).

2.3 Cold Water Intake

Cold water is pumped up though a 750 m to 1-kilometer long pipe. The exact choice of intake

depth is a tradeoff between the costs of a longer pipe and more energy needed to pump the water,

and the thermal efficiency gained by using colder water in the Rankine cycle. An OTEC plant

uses similar cold flow and warm flow rates, 3-5 m3/s per MW, (Myers et al., 1986). However, in

order to reduce the cost of the pumping, the plant operates with smaller cold flow. The cold

intake is not expected to interfere with the warm water intake because of the large distance

between them. The simulations carried out verify this.

2.4 Discharge

The warm and cold water exhaust can be either combined or mixed, as illustrated in Figure 2.3.

In the separate discharge configuration, separate discharge structures for the warm and cold

waters are used, while in the mixed discharge configuration the same discharge structure is used

for both. The discharge may consist of a single discharge pipe, several discharge pipes or a

multiple port diffuser. OTEC discharge design is crucial, since it can affect the operation of the
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plant itself and the environment. The goal in its design is to avoid effluent recirculation into the

warm intake, which may lead to a reduction of the efficiency of the plant.

The temperature of the seawater effluent from an OTEC plant is different from the temperature

of the ocean at the released depth. Depending on whether the discharge is combined or separate,

the effluent can be positively or negatively buoyant. In the case of a separate cold discharge,

considering typical temperatures of the ocean and effluent, the cold effluent is denser than the

ambient water. In a combined discharge the resulting density difference with the ambient is

smaller. In the separate warm water discharge, the density difference is very small, as just a few

degrees Celsius are lost as heat is extracted by the evaporator (Nihous, 2007).

Mixed discharge Warm discharge

Cold discharge

Figure 2.3 - Different OTEC discharge schemes (adapted from Fry and Adams, 1983).

Once the effluent is discharged into the ambient, its dynamics are controlled by the discharge

momentum, background currents, and by its initial buoyancy. The discharged plume sinks or

rises depending on its density. While it sinks, or rises, it mixes with ambient water reducing the

density difference respect to the ambient, until reaching a depth where the average density of the

diluted effluent equals the ambient ocean.

2.5 Flow Rates

There are three degrees of freedom to operate a given OTEC system:

1. cold seawater flow rate

2. warm seawater flow rate
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3. working fluid flow rate

The ratio of the cold and warm flow rate is a variable of design. It depends on the thermal

resource available and the energetic cost of the seawater and the working fluid pumping. In

general designs, this parameter varies from one to two. In this study it is assumed a ratio of the

warm water intake over the cold water intake of 1.25.

Table 2.1 shows the typical flow rates for 10 and 100-MW OTEC plant size, assuming a ratio

between cold and warm intake of 1.25.

Table 2.1 - Typical OTEC flow rates.

Power QcoId (m 3
/s) Qwarm (m 3

/s) Qwarm/Qcold Qtotai (m 3
/s)

100 MW 320 400 1.25 720

10 MW 32 40 1.25 72

2.6 Ambient Temperature Profile

As described in Section 1.3, the ocean has an upper warm mixed layer above the thermocline

region and an almost isothermal region close to the bottom of the ocean. The depth of the mixed

layer, the steepness of the thermocline, and the water temperature depend on the particular region

of the earth considered. For this analysis we assumed a typical ocean temperature profile with a

50 m mixed layer thickness followed by gradual decrease in temperature with depth as shown in

Figure 2.4.
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Figure 2.4 - Typical ocean ambient temperature profile (data from Paddock and Ditmars, 1983).

2.7 Exhaust Temperatures

A relevant characteristic of OTEC effluents, which affects the dilution achieved further

downstream, is its initial buoyancy. Typical temperature differences between the OTEC effluent

and the environment water at the discharge level for a 100-MW power plant are:

* 4.1 0C for the combined exhaust (negatively buoyant)

* 12.5'C for the separate cold exhaust (negatively buoyant)

* -0.7'C for the separate warm exhaust (positively buoyant)

Table 2.2 presents the characteristics of the separate and combined discharges. To compute the

temperature difference between the effluent and the ambient, AT, it is assumed that heat

exchange with the evaporator and condensers leads to variations of temperature of 1 'C in each

separate discharge outflow. For the combined discharge case, the heat lost in the evaporator and

the heat gained in the condenser are approximately in balance in the OTEC combined outflow.
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Table 2.2 - Typical temperature differences between OTEC exhausts and ocean water.

Depth (m) Tambient (C) Texhaust (00 AT (T)

Warm discharge 70 23.3 24 -0.7

Cold discharge 100 21.5 9 12.5

Combined discharge 100 21.5 17.4 4.1

The initial temperature difference between the effluent and the ambient ocean in a combined

discharge is small, 4.1 C, and therefore the effluent plume is not expected to sink much.
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Chapter 3 - Modeling Tools

3.1 Plume Dynamics Scales

Different length scales are involved in the study of the OTEC external flow. Figure 3.1

schematizes the near, intermediate and far field of an OTEC discharge. To solve both the

millimeter-scale turbulence mixing and the kilometer-scale of regional hydrodynamics involved

in the study of OTEC plumes, one single model is not sufficient since computer power is limited.

+o-Warm-Water Intake

Near Fld

Intermediate Field Far Fld

--- +ergo r pCold-water intake

Figure 3.1 - Scheme of OTEC discharge, identifying near, intermediate and far fields

(Paddock and Ditmars, 1983).

The plume dynamics scales can be divided into:

1. Near field

Time scales are of order of minutes and length scales are tens to hundreds of meters

2. Intermediate field

It is the region where plume collapses. Time scales are of order of hours.
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3. Far field

Ambient currents and the Coriolis force drive the plume dynamics. Turbulent diffusion is

the main mechanism of dilution. Time scales are of order of hours and length scales are

of order of kilometers.

3.2 Ambient Stratification

The main feature of the OTEC plume dynamics is the stratification of the ambient due to non-

uniform vertical temperature profile. Considering a combined discharge, initially, the effluent is

denser (colder) than the ambient. The plume entrains fluid from the ambient until reaching a

level where it becomes neutrally buoyant respect to the ambient. Due to the vertical momentum

gained, the plume overshoots the level of neutral buoyancy. At this point, the plume is still

lighter than the ambient, so it rises until reaching the neutrally buoyant depth.

Different depths can be identified over the plume trajectory in a stratified ambient:

1. Neutral buoyancy level

Corresponds to the first elevation where the ambient density coincides with the density of

the plume.

2. Peak depth

Corresponds to the maximum depth reached in the trajectory. At this level the vertical

velocity vanishes and the vertical acceleration is a maximum.

3. Trapping depth

Corresponds to the elevation where the plume finally gets trapped due to ambient

stratification. In this approach, it is defined as the elevation where the plume and ambient

density difference vanishes after the plume has reached its peak depth.

The mathematical model used predicts an infinite number of oscillations in the trajectory

around the equilibrium depth after the trajectory reaches its peak. In reality, these

oscillations are damped by turbulence and viscosity. Therefore, the mathematical model

will not be used beyond the second elevation of neutral buoyancy.
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Figure 3.2 shows the centerline trajectory and ambient density minus plume centerline density.

In the graph we can identify the first Neutral buoyancy level, Peak depth and the Trapping depth.

Trajectory
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Figure 3.2 - Plume centerline trajectory and ambient density minus plume centerline density for a
100-MW OTEC combined exhaust plant in a typical stratified ambient.

To model the near and intermediate fields, we used analytical models. To model the far field we

used a General Circulation Model: MITgcm.

3.3 Near Field Model

In the neighborhood of the OTEC discharge, the jet dynamics can be well resolved by a validated

integral model, which predicts the properties of the jet by conservation principles. The flow and

the excess density with respect to the ambient are assumed to be self-similar after a zone of flow

establishment, with the mean axial velocity and excess density having a Gaussian distribution, as

illustrated in Figure 3.3. The mean axial velocity and the excess density with respect to the

ambient along the centerline direction are expressed as:

u(s, r) = uc (s)e~- F
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Ap(s, r) = Ape (s)e(1b

where uc and Ape are the centerline maximum velocity and excess density defined as

Apc = Pa(z) - Pc, (Pa is the ambient density), b is the jet radius defined by the location with

velocity e-'ue, s is the local jet coordinate following the centerline, and r is the radial

coordinate perpendicular to the centerline. The parameter A is a dispersion ratio, which accounts

for the faster spreading rate of scalar quantities than velocity (A > 1).

The conservation equations are integrated over a cylindrical element control volume, yielding a

set of ordinary differential equations. The longitudinal turbulent fluxes are neglected in the

integral magnitudes. The density difference between the flow and the ambient fluid is assumed to

be small, (Boussinesq approximation, << 1), thus density differences can be neglected in the
P

governing equations except in the terms multiplied by g (gravity constant). The fluid is assumed

incompressible.

/

z
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9

Ta Pa

X

Figure 3.3 - Gaussian profiles of velocity and excess density for a buoyant jet
(adapted from lectures by E. Adams, spring 2010).
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3.3.1 Ambient Currents

In order to develop a more general near field model, we included background currents. The

background flow is assumed to be in the x direction. Figure 3.4 sketches a three-dimensional

buoyant jet discharge into ambient flow, and presents all the variables involved in the following

formulation.

z
A 

4I

u.(z)

6

p.(z) r

jet promes

u, g'=R g, c

U., p,
0., Cr.

x

Figure 3.4 - Three-dimensional buoyant jet discharged into ambient flow with global (x,y,z) and local (s,r)
coordinate system (Jirka, 2004).

In spherical coordinates, a and 0, the velocity and density excess can be written as:

u(s, r) = uc(s)e + Ua COS -cos6

Ap(s, r) = Ape (s)e(Ab

The velocity profile is assumed to be similar and Gaussian above the component of the ambient

velocity ua cos a- cos6.
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In the following equations we introduce the buoyancy defined by g' = Pa(z)-P g, where Pref is a

constant reference density consistent with the Boussinesq

Pref

approximation. Therefore the

buoyancy is defined as g' = g' .

3.3.2 Integral Quantities

Integrating through the cross-section of the jet we can define the following bulk variables (Jirka,

2004):

* Volume flux

Q RJ
Q=r 2x urdr = b 2 (uc+ 2uacos 0cos a)

. Axial momentum flux

M = 2T u2rdr =-wb 2 (uc + 2ua COS 0 COS -) 2

02

e Buoyancy flux

B j u b (u A2

B = 2x ug'rdr = 7Tb2" 1- + 2uacosOcoso-)g'c

The integration limit of these magnitudes, R, is usually taken to be infinity. However, the

crossflow contributions in the integrals for the volume flux, Q, and the axial momentum flux, M,

do not yield finite magnitudes. Therefore, in these two cases, the integration limit, R1 , is defined

as R; = V2b. For the velocity profile stated above, at Rj = V2b, the local excess velocity reaches

14% of the centerline value, and the tracer concentration reaches 22% of the centerline value,

assuming a typical value for ) of 1.15.
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3.3.3 Conservation Equations

The conservation principles for the flux quantities defined in the previous section are applied to a

jet element of length ds centered on the trajectory, as proposed by Jirka (2004). In the derivation

of these equations the pressure deviations from hydrostatic within the jet and the acceleration

effects due to jet curvature are neglected as well as the turbulent fluxes relative to the mean

fluxes in the momentum and scalar terms.

The conservation principles can be stated as:

1. Continuity

dQ
ds

The term E represents the entrainment rate.

2. Horizontal momentum in the x-direction (along the current direction)

d (McosOcosa)
ds = Eua + FD 1 - cos28cos2xds

The term FD represents the ambient drag force acting on the jet element.

3. Horizontal momentum in the y-direction (perpendicular to the current direction)

d (Mcos~sina) cos 2 sinacoso-

ds -- 1D - cos 2Ocos 2cr

4. Vertical momentum

d(Msin6) sin~cosOcoso-
= V1b

2  -FD
ds 41 - cos2Ocos2cx
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5. Buoyancy in a stratified ambient, being pa (z) the ambient density

d(B) g dPa siw
ds pref dz

Furthermore, the geometry of the trajectory is defined by:

dx

ds = COStCOS-

dy = cos~sino-
ds

dz
ds = sinO
ds

The local jet variables can be obtained from the integral variables by the following relations:

2M
uc= - 2 uacos&coso-

Q

b =

B
c - 7Tb 2  uc A + PtUaacosOcos)

The above conservation equations lead to a system of non-linear, coupled, differential equations

that allows one to solve for the six unknowns along the jet trajectory: uc, Apc, b, x, y, and z.

Similarly, a tracer concentration has a Gaussian distribution. We can also keep track of the

centerline concentration cc, by solving an additional conservation equation for the tracer flux.

This allows us to compute the tracer distribution within the buoyant jet and the centerline

dilution. It is known that the centerline dilution is A times the average volumetric dilution.
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3.3.4 Turbulent Closure

To solve this system of equations numerically, another closure equation is required. The

expression for entrainment, E, and the drag force, FD, defines the turbulence closure in the

integral model.

The entrainment rate, E , accounts for the streamwise and azimuthal shear mechanisms

responsible for the ambient fluid entrainment into the turbulent jet. It is defined by:

sinO ucos~coso-
E = 2wbue a1 + a2 F 2 +a 3 Ua) + 2WbuaV1 - cos2 0cos2 -a4 |cosOcoso-

Fi- ua + uc)

The streamwise entrainment terms, proportional to the centerline velocity uc, accounts for the

effects of:

1. Pure jet, represented by a,

2. Pure plume, represented by a 2 , which depends on the angle 0 and is inversely

proportional to the square of the local densimetric Froude number F, -

3. Pure wake, represented by a 3 , which is proportional to the wake parameter u+
Uc+ua

The entrainment velocity is defined at a radial distance b, the e- 1 width. The azimuthal

entrainment is proportional to the ambient velocity component transverse to the jet

Ua 1 - cos2 0cos2 ., with coefficient a4 , and the term IcosOcosal accounts for the angle

between the jet axis and the currents.

The following coefficients are used:

ai = 0.055

a 2 = 0.6

a3 = 0.055

a4 = 0.5

The jet drag force FD is defined as a quadratic function:
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2V-b ua2 (1 - cos2 0cos 2c.)
FD=CD2

where the term CD is the drag coefficient, 2NTZb represents the jet diameter, ua 1 - cos 2 6cos 2 .

represents the transverse velocity component. The drag force is defined in analogy to the flow

around a cylinder.

3.3.5 Solution Method

The system of coupled partial differential equations is solved by a fourth-order Runge-Kutta

algorithm programmed in MATLAB. Initial conditions have to be specified. The numerical

solution is computed from the discharge point until the point of neutral buoyancy, which is

considered the end of the near field.

3.3.6 Zone of Flow Establishment

When the jet is first discharged, its velocity and excess density profile are constant in a central

zone, called the Potential Core, as shown in Figure 3.5. Outside this region, the velocity and

density profiles decay. After a certain distance, the jet exhibits a Gaussian profile. The region

within this distance is defined as the Zone of Flow Establishment.

Experiments show that the length of this zone is 6.2 times the discharge diameter for round

axisymmetric jets (Lee and Chu, 2003). For OTEC typical discharge sizes, the corresponding

lengths are of the order of 100 m, which represent a significant horizontal extent with respect to

the horizontal development of the jet itself. To model this zone, we need to assume parameters

and simplifications not always verifiable. Therefore proposing a model for this zone would be

complex and not necessary accurate.
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Figure 3.5 - Jet showing Zone of Flow Establishment and Zone of Established Flow (Lee and Chu, 2003).

We assumed Gaussian profiles in the magnitudes, and conservation of mass, momentum and

buoyancy from the discharge section to the beginning of the jet development as initial conditions

for the numerical solution. We also assumed a discharge velocity of 2 m/s to determine the

diameter of the jet discharge.

3.3.7 Turbulent Fluctuations Terms

In this study a first order integral model is used, since second order terms due to turbulent

fluctuations in the mass and momentum fluxes are neglected. It is known that neglecting the

velocity and mass fluctuations in the cross section integrals introduces an error of about 10%

(Wang and Law, 2002), which is considered acceptable.

3.3.8 Earth Rotation

The plumes are released into the open ocean, and are subjected to the Coriolis effect. The

horizontal distance at which the plumes reach the neutral buoyant depth are of order of 100 m for

the range of volume fluxes involved in OTEC discharges. This distance is significantly smaller

than the Rossby Radius of deformation, LR = N, which is about 56 km based on H =500 m,

N =4.23x10-3 s-1 and f =3.7x10- 3 s-1 for a latitude of 150, where f is the Coriolis parameter

defined as f = 2wsinO (a is the earth's angular velocity and 0 is the latitude), H is the scale

height, and N is the stratification frequency of the ambient. For the range of flow rates
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considered, assuming quiescent background, the time required by the plumes to reach their

neutral buoyant level is of the order of a few minutes. This time scale is much smaller than the

rotation period of the earth. Given the magnitude of the time and length scales of the near field of

OTEC discharge, the earth rotation effect is negligible in the near field plume dynamics.

3.3.9 End of Near Field

The end of the near field is arbitrary since there is no clear limit between the near field and

intermediate field. In this study it is defined as the location where the plume reaches for the

second time the neutrally buoyant depth. The time required to reach the equilibrium depth is

computed by:

NF ds
t =-f S

In the model, the integral term is computed numerically.

3.3.10 Results

In this section we present the near field characteristics of a 100-MW power plant, with warm and

cold combined water discharge (400 m3/s warm water intake and 320 m3/s cold water intake)

located 100 below the water surface. The ambient is assumed to be quiescent and stratified, and

the initial discharge is assumed to be horizontal.

Figure 3.6 shows the trajectory described by the center of mass of the cross of the section of the

plume, the centerline velocity along the local progressive, the dilution and the plume radius. The

discharged fluid is colder than the environment; therefore the effluent sinks until reaching a

depth where the density of the plume is equal to the density of the stratified ambient. The

centerline describes a plane trajectory that reaches its neutrally buoyant depth 38.6 meters below

the discharge depth. The plume overshoots its neutrally depth due to the vertical momentum

gained. The centerline velocity decays until reaching values of 0.8 m/s at the end of the near

field. The volumetric dilution achieved at the end of the near field is 5.4. The plume radius grows

reaching a magnitude of 39.2 m at the end of the near field. The horizontal extent of the plume

development is 265.1 m. The time required to reach the equilibrium depth is 3.4 minutes.
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Figure 3.6 - Near field plume characteristics for a 100-MW OTEC plant with combined discharge.

The same OTEC effluent characteristics (warm and cold volume flux, discharge depth) presented

in this section are used to analyze the effect of a coflow and a crossflow current in the near field

in the following two sections.

3.3.11 Effect of a Coflow Current on Near Field Mixing

Different magnitudes of background current in the same direction as the initial jet momentum are

considered to analyze its impact on the near field mixing. Figure 3.7 shows the plume dilution,

the equilibrium depth, the time and the horizontal distance to reach the equilibrium depth, the

centerline velocity, and the plume radius at the end of the near field as functions of the

magnitude of the current.

48

N

a



Dilution
10

9-

8

7-Z7
7

6-

5
0 0.2 0.4 0.6

ua(m/s)

Time

0

E

E

0 0.2 0.4 0.6
ua(m/s)

Centerline Velocity
11ir.

0.2'
0 0.2 0.4 0.6

ua(m/s)

0)
N

0.8 1

0.8 1

E~
0)

0.8 1

-30

-32-

-34

-36

-38

-40
0

Terminal Depth

0.2 0.4 0.6
0.2 0.4 0.6

ua(mls)
Horizontal Distance

600

500

E c 400
S0)

300-

200
0 0.2 0.4 0.6

ua(m/s)

Plume Radius
40

38-

36-

34-

32-

30
0 0.2 0.4 0.6

ua(m/s)

Figure 3.7 - Effect of coflow current on mixing and plume characteristics at the end of the near field.

From the previous results the following conclusions can be drawn. As a general trend, dilution

increases as the background current increases. The final trap depth generally decreases due to the

enhanced mixing. As expected, the horizontal distance where the plume finds its neutrally

buoyant depth increases as the ambient current increases, as does the time required for the plume

to reach neutrally buoyant depth. The final centerline excess velocity with respect to the ambient

flow decreases as the background current increases. In general, the radius of the plume at the end

of the near field decreases with the magnitude of the current.

49

30

25

20

15

10

5

0

-/

0.8 1

0.8

0.8 1



3.3.12 Effect of a Crossflow Current on Near Field Mixing

Different magnitudes of the angle between the initial jet momentum and the background current,

-, ranging from 0 to 90 degrees, are considered to analyze its impact on the near field mixing. A

constant background current along the x direction of 0.1 m/s is considered. Figures 3.8-3.10

show top and vertical views of the centerline trajectories for five angles.

50 100 150
x(m)

200 250 300

Figure 3.8 - Top view of the centerline plume trajectory for different incidence angles between the
background current and the discharge momentum.
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Figure 3.9 - Vertical view of the centerline trajectory for different incidence angles between the background
current and the discharge momentum.
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Figure 3.10 - Vertical view of the centerline trajectory for different incidence angles between the background
current and the discharge momentum.

Figure 3.11 shows that the relation between the final volumetric dilution at the end of the near

field and the angle of incidence of the ambient current is not monotonic. Figure 3.12 shows the

same behavior between trap depth and the angle of incidence. However, the effect of the angle is

not very large. For an ambient current of 0.1 m/s, dilutions are of order six for all the angles

51



between 0 and 90 degrees, reaching a maximum at an angle of 47 degrees. The minimum

dilution is reached for an incident angle of 90 degrees. The final trap depth exhibits a minimum

at an angle of 47 degrees. The difference between the minimum and the maximum trap depth for

angles between 0 and 90 degrees is only about three meters.
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Figure 3.11 - Effect of crossflow angle on the volumetric dilution.
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Figure 3.12 - Effect of crossflow angle on the terminal trapping level (measured from the discharge level).
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3.4 Intermediate Field

The intermediate field is characterized by the vertical collapse and horizontal spreading of the

plume. Figure 3.13 illustrates the plume collapse in the transition between the near and the

intermediate field caused by the residual buoyancy forces. A general integral model is modified

to account for the phenomenon of plume collapse in the intermediate field. These modifications

provide more accurate simulations of OTEC plume behavior. The same considerations about

ambient flow, turbulence, and earth rotation effects are made as in the near field model.

The plume reaches its neutrally buoyant depth at the end of the near field. Therefore the plume

motion in the intermediate field corresponds to an internal density current. The excess velocity

with respect to the ambient flow exhibits a Gaussian profile with different spreading rates in the

vertical and horizontal directions due to ambient stratification. The centerline density excess,

APc, the buoyancy flux, B, and the jet angle with respect to the horizontal, 0, are zero in the

intermediate field. The vertical position of the centerline, z, remains constant.

Circular cross section Elliptical cross section

Near field

Neutral
buoyancy

Passive diffusion
Intermediate field and advection
Dynamic collapse Diffusive spreading greater than

dynamic spreading

Figure 3.13 - Plume collapse effect in the transition from near field to intermediate field
(adapted from Khondaker, 2000).
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In addition, in the near field the plant discharges become (nearly) aligned with the ambient

current, so for this study the angle between the background current and the jet velocity, -, is

considered to be zero and not included in all the following calculations.

y
h

b

Figure 3.14 - Collapsed plume cross-section.

The velocity can be written in Cartesian coordinates as:

u(s,y,z) = uc(s)eG e( + Ua

where z and y represent the vertical and horizontal coordinate respectively, and h and b

represent the characteristic spreading length in vertical and horizontal directions respectively, as

shown in Figure 3.14, and ua represents the background current (assumed to be along the x-axis

as in the near field model).

3.4.1 Integral Magnitudes

For the new velocity profile, the integral magnitudes are defined as:

e Volume flux

SfA udA = fuf (uce e + a) dzdx

Q = 7rbh(uc + 2Ua)
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In the definitions of the volume flux, Q, and the momentum flux, M, the background

current does not yield bounded contributions. The integration limit on these two cases is

defined by an ellipse of horizontal axis V-Jb and vertical axis V2h instead of infinity.

0 Axial momentum flux

M = uzdA = ffW uceO feJ i) +ua dydz

M= rc (uc + 2Ua) 2

3.4.2 Conservation Equations

Analyzing a differential control volume, the fundamental principle of conservation is:

Horizontal momentum

dM

ds Eua

where E represents the plume entrainment rate defined as:

E = 2bucae- 5Ri + C2huc

and the Richardson number is defined as:

Ap gh
= Pre U2

The term Ap in the expression of Ri refers to a characteristic density difference, defined

between the center of the layer and the ambient density at the extreme of the layer, and is

calculated as:

a Ap = hAP aza
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where -- represents the ambient density slope at the centerline of the layer, and pref in

the expression of Ri represents a characteristic density.

The entrainment into the plume is composed of two terms, the vertical and the horizontal,

represented by the first and second terms respectively in the entrainment rate definition

equation. The coefficient a corresponds to the jet entrainment coefficient determined

experimentally in non-stratified ambient to be 0.055 (Jirka, 2004). The vertical

entrainment term is reduced by the factor e-5 Ri (Stolzenbach and Harleman, 1973) due to

the stratification effect.

Furthermore, the geometry of the trajectory is defined by

dx
=1

ds

3.4.3 Buoyant Spreading

To solve the system of equations that govern the intermediate field numerically, another closure

equation is required. Here, a spreading hypothesis is used. This approach is based on the

experimentally observed relationship for a jet:

dr
-= E

where r is the radius of the jet, s is the local coordinate along the centerline, and E is the

spreading rate. In the absence of ambient stratification, the spreading rate coefficient for a pure

jet is twice the entrainment coefficient (Lee and Chu, 2003):

dr
- = 2a
ds

In a stratified ambient, buoyancy forces induce a vertical thinning of the plume in addition to a

horizontal spreading. The jet dynamics in the intermediate field are modeled as the superposition

of two effects: the jet entrainment and the buoyant spreading. The plume-spreading process is

assumed to behave as a density current, which entrains fluid at the edge of the plume while it
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spreads laterally at a velocity v, (Jones et al. 1996). The spreading velocity is derived from a

balance of the net pressure forces and the drag force acting on the front:

vs = -g (2h) 2
6 az Pref CD

where CD is the drag coefficient of the flow, which varies from 0.5 to 2.0 (Doneker and Jirka,

1990), and Pref is a characteristic ambient density. This study assumes a value of 1.3 for CD

(Jirka, 2004).

The net spreading is modeled as the superposition of the two effects as follows:

db db db

ds dsjet dsstrat

where the term db represents the jet spreading rate, and the term - represents the
d~sjet dsstrat

additional spreading due to collapse in the stratified ambient.

Along a streamline the spreading velocity vs becomes:

db
Vs = (uc + Ua) dstrat

where uc represents the jet centerline excess velocity and Ua represents the ambient current.

Therefore the spreading rate due to the collapse effect can be computed as:

db VS

dSstrat Uc + Ua

The resulting expression of the net horizontal spreading resulting from the fluid entrainment into

the jet and the collapse is:

db db vs
dS dSjet +c + Ua

The vertical spreading is reduced due to the plume collapse effect in such a way as to conserve

the same cross section area of the layer during the collapse process.

57



The net vertical spreading rate is computed as:

dh dh vs h

s dsjet (uc + ua) b

where:

dh
-e = 2a

db SR
d = 2ae-Ri
dS jet

The entrainment coefficient a corresponds to a pure jet.

The resulting system of equations that govern the dynamics of the near field is:

db
1) = 2ae-SRi + S

ds (uc +ua)

d h vs h
2) d= 2 a - +U h

ds (uc + ua) b

3) d (r bh(uc + 2Ua) = (2bucae-5Ri + 2huca)uads 2

dx
4) = 1

These non-linear, coupled, differential equations allow one to solve for the four unknowns along

the jet trajectory: b, h, uc and x.

3.4.4 Solution Method

The above-coupled non-linear system of ordinary differential equations is solved using a fourth

order Runge-Kutta method implemented in MATLAB. The magnitude of the volume flux, Q,
momentum flux, M, and cross section center position, x, all at the end of the near field, are used

as initial conditions for the numerical solution of the intermediate field. Additionally, at the

beginning of the intermediate field, we assume that the jet width, b, equals the height, h.
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The initial local variables can be obtained from the integral magnitudes by the following

relations:

2M
uc - - 2 uaQ

b =1/2

ir(uc + 2ua)

3.4.5 End of Intermediate Field

The end of the intermediate field is defined as the location where the centerline velocity

approaches the ambient velocity. In this study, it was chosen as the location where the center of

the jet reaches an excess velocity of 0.19 m/s.

3.4.6 Results

In this section we present the intermediate field characteristics of a 100-MW power plant, with

warm and cold combined water discharge (400 m3 /s warm water intake and 320 m3/s cold water

intake) located 100 below the water surface. The ambient is assumed to be quiescent and

stratified, and the initial discharge is assumed to be horizontal.

The fluid motion is neutrally buoyant since the plume has reached equilibrium at the end of the

near field. The intermediate field has a horizontal extent of 800 m. The plume entrains fluid

while it collapses. Figure 3.15 shows the evolution of the volume flux, half the width of the

layer, half the vertical height of the layer, and the centerline velocity in the intermediate field.

Figure 3.16 shows a cross-section of the velocity distribution at the end of the intermediate field.

Figure 3.17 shows a top and a vertical view of the collapsed plume.

The width of the plume monotonically increases with the horizontal distance. However, the

height of the plume cross-section decreases initially due to the collapse effect, but after a certain

distance, it increases, evidencing that the entrainment surpasses the collapse effect. The final

width of the plume is 1276 m. The final height of the plume is similar to the initial value, 80 m.

The dilution achieved at the intermediate field is 3.8. The total average dilution achieved in the
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near and intermediate field is 20.5. The fluid takes 13.6 hours to reach the end of the

intermediate field. This time is computed numerically as in the near field model.
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Figure 3.15 - Intermediate field plume characteristics for a 100-MW OTEC plant with combined discharge.

60

16000 -

14000-

12000-

W 10000 -
E
a 8000 -

6000-

4000-

40-

38-

36-

34-

32-

30 -

28 -
200

20 0

-
0



-800 0.18

-600 0.16

-400 0.14

-200 0.12

00.1
N

200 
0.08

0.06
400

0.04
600

0.02
800

0
-500 0 500

y (M)

Figure 3.16 - Collapsed plume cross-section. Color scale indicates the velocity distribution in m/s, at the end
of the intermediate field.
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Figure 3.17 - Top and vertical view of the plume collapse into a layer. Solid line represents the layer
boundary, dotted line represents the centerline.

61

- -



3.5 Far Field Model

The simulations are performed using the numerical model MITgcm (MIT General Circulation

Model), which has been used for applications in both the atmosphere and the ocean. The model

can be used to study both atmospheric and oceanic phenomena with one hydrodynamic kernel

.(Adcroft et al., 2005), and it has a non-hydrostatic formulation allowing it to be used to study

both small-scale and large-scale processes. Figure 3.18 illustrates applications of MITgcm on

different scales.

-20 m

NON-HYDROSTATIC

- km -10 km

di

9-0- ap~ %OiFu

-100 km

HYDROSTATIC

Figure 3.18 - Applications of MITgcm on different scales (Adcroft et al., 2005).

Non-hydrostatic ocean models solve the full incompressible Navier-Stokes equations, which is

important to properly model the mixing OTEC plumes.

3.5.1 Governing Equations

The governing equations are:

1. Navier-Stokes equations of motion for an incompressible fluid

du lp' a au
fv + - V -AhVhu -l-Az =

dt p ax az( az
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dv 18p' O( aV~
S+ fu + Vh - AVhV A- = F

dt p ay az( az

dw p' lap' Of Ovw~d + g -+ V p,- n -AhVhw- aAz = F,
dt p p az oz az

2. Continuity

au av aw
-+ -+ -= 0

Ox ay Oz

3. Heat Balance

dO Vh - K7V 0 - Kzr a) = FO
dt az Zh~O=F

4. Salinity/Tracer Balance

dS O / S\
-S V - KhsVhS - aKzs ) = Fs

5. Equation of state

p = p(S,6)

where x, y, z are the Cartesian coordinate system, u, v, w, are the mean velocities components in

x, y, z direction respectively, t is the time, p' is the water pressure, KhT, KzT, KhS, Kzs are the

horizontal and vertical eddy diffusion coefficients for temperature and salinity respectively, Ah

and Az are the horizontal and vertical eddy viscosity coefficients, Fu, F, and F, are the

momentum forcing terms in each direction, g is the acceleration due to gravity, p' is the water

density, p is the reference water density, S is the salinity, 0 is the temperature, and F and F are

the source and sink term for salinity and temperature respectively. The above equations, use the
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Boussinesq approximation p' = p + p", where p" is small, and is ignored everywhere except in

the gravitational forces. It means density variations are neglected in the momentum and mass

conservation equation, except in buoyancy related terms.

3.5.2 Turbulence Model

A turbulent closure provides an expression for the eddy terms in the mass, heat, and momentum

equations. In MITgcm, the turbulent transport terms of momentum are related to the gradient of

the mean flow quantities (u, v, w) by the following closure:

____au av
u'v' = Ah +

where Ah is the horizontal eddy viscosity coefficient. In this model, this coefficient can be given

a value different from the vertical eddy viscosity coefficient, Az. In MITgcm these two

coefficients can be constant or variable.

Analogously, the turbulent transport terms of the concentration (governed by the salinity

transport equation) are modeled as:

ac
u'c' = K ,

where Kh is the horizontal eddy diffusion coefficient. MITgcm allows defining different

coefficients for each direction (Kh and Kz). MITgcm uses different eddy diffusion coefficients

for tracers and heat.

MITgcm allows using higher order viscosity and diffusion terms, but they were not used in this

study, and are not included in the governing equations presented. It should be noted that the

above formulas represent merely two terms of all the turbulent fluctuations terms involved in the

Navier-Stokes and the transport equations. The remaining formulas for other turbulent terms can

be extrapolated from these formulas.
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3.5.3 Spatial Discretization

As shown in Figure 3.19, for Cartesian grids the model employs a conventional Arakawa C-grid

and solves the governing equations by a finite volume approach. MITgcm treats the horizontal

and vertical directions as separable, which is useful due to the importance of stratification in the

vertical direction.

w

V
U U

Figure 3.19 - Arakawa C-grid (Adcroft et al., 2005).

To compute the calculations, the domain is divided into tiles. These tiles are distributed over

multiple processors. In this work, the MITgcm runs were performed on a 24-processor machine.

MITgcm allows uniform or variable grid size. For the simulations carried out a variable grid size

was used. In order to assure numerical stability at the zone of OTEC discharge where the

pumping flux is injected into the domain, a finer grid that coarsens further away from the mass

source was used, as shown in Figure 3.20.

z

- Y

Figure 3.20 - Variable grid size mesh used in OTEC simulations.
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3.5.4 Boundary Conditions

Different types of boundary conditions are available in MITgcm. For the free surface, the options

are rigid lid or implicit free surface. An implicit free surface boundary condition was used in the

simulations carried out. For solid boundaries, (bottom and walls), the conditions are either no

slip or free slip. In the simulations carried out, periodic boundary conditions are used at the

lateral boundaries of the domain, with a no slip condition at the ocean bottom.

3.5.5 Numerical Stability Criteria

MITgcm uses explicit and implicit methods to solve the model equations. For the explicit

calculations it was necessary to use a time step that assures stability. The stability time

conditions are based on the following dimensionless numbers:

1. Courant-Friedrichs-Lewy condition for advection

Sa - Iiil1st

2. Diffusion of momentum

S14Az tAZ2tSi=4

AXSt
S= 4 Ax

3. Internal waves

_c St
Sc =

Ax

c= NH
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4. Inertial oscillations

Si= f 26t 2

In general the above dimensionless numbers must remain smaller than order one to keep

numerical stability.
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Chapter 4 - Strategy of Coupling the Models

Since the grid sizes of the far field model are orders of magnitude larger than the characteristic

length scales of the entrainment process of the near field, it is of interest to identify ways of

coupling between the models.

In this thesis, two strategies are used to couple the models described in the previous chapter:

e Brute Force Approach

In this approach a general circulation numerical model is used to compute the near,

intermediate and far field mixing. This approach may require unrealistic adjustment of

viscosity coefficients, diffusion coefficients, and grid size. This strategy is motivated by

the work of Zhang and Adams (1999). They analyzed the prediction of near field plume

characteristics using a far field circulation model ECOMsi (Blumberg and Mellor 1987)

in application in Massachusetts Bay, and found that reasonable agreement could be

obtained using judicious choice of grid size and model mixing (viscosity and diffusion)

coefficients.

* Distributed Sources and Sinks Approach

This approach is motivated by the work presented by Lee and Choi (2007) about the

Distributed Entrainment Sink Approach for modeling mixing and transport in the

intermediate field. This method proposes an integral model to solve the near and the

intermediate field mixing, and uses a general circulation model to compute the far field

dynamics. For this study it is concluded that this method is better than the first one.

4.1 "Brute Force" Approach

The objective of this section is to study and determine the accuracy and limitations of MITgcm

to solve the process of plume entrainment in a stratified ambient. Mixing mechanisms involve

highly complex turbulent structures, developed over milliseconds to hours and in millimeter to

hundred meters length, difficult to model. Different numerical models are more accurate than
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others in simulating the entrainment into a plume. Studying the model sensitivity is an important

initial step since it can save time in running demanding non-hydrostatic simulations. This section

explores the dependence of plume entrainment and mixing with ambient fluid on model

resolution and other model parameters. The model resolution requires a compromise between

accuracy and fast computation. To model the plume entrainment processes with relative accuracy

using MITgcm, it is necessary to employ a very small grid size, making this testing stage very

expensive and time consuming. Of particular importance is the vertical discretization of the

domain.

4.1.1 Setup

We studied the discharge of a negatively buoyant fluid into a quiescent and linearly stratified

one. Salinity is kept uniform within the domain. Density stratification is due to temperature

stratification. The discharged fluid has the same salinity as the environment. A linear equation of

state for density is assumed and no earth rotation is considered. Figure 4.1 shows the modeled

domain, the ambient stratification used, and the location of the fluid source.

TFluids-
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28.5
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27.5
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24.5
24
23.5
23

Figure 4.1 - Modeled domain showing the thermal stratification of the fluid and the source location.

For the adjustment of the model parameters, a mixed OTEC discharge is considered. Typical

temperature differences between an OTEC discharge and the environment water at the discharge

level are of the order of 4*C for the combined exhaust case. For the model calibration, we
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considered volume flux, Q0, and buoyancy flux, B, within the range of the values corresponding

to 10 MW-100 MW plants and configurations with one to four discharges. For a 10-MW plant,

each of the four plumes has values of 0.14 m4/s 3 and 18 m3/s for buoyancy flux and volume flux

respectively. For a 100-MW plant, considering one single discharge, the former is 5.8 m4/s3 and

the latter is 720 m3 /s.

A passive tracer is used to distinguish the discharged water from the ambient fluid. Its

concentration is defined as unity in the discharged water and zero in the ambient fluid. The tracer

concentration allows us to illustrate the plume mixing with the ambient water and to identify the

boundary of the plume, which we define by a surface of concentration 0.01, as shown in Figure

4.2.

Z

Figure 4.2 - Numerical modeled plume defined by a surface of tracer concentration 0.01.

In all the simulations, we observed that as the discharged fluid (denser) descends it entrains

ambient fluid, diluting the tracer concentration, until the plume reaches the neutrally buoyant

depth.
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4.1.2 Plume Trapping

In a linear stratified ambient, Briggs (1969) predicts the trap depth ht of a plume, indicated in

Figure 4.3, in terms of the initial buoyancy flux at the source, B0, and the stratification frequency

of the ambient, N, as follows:

ht 3.8BO 1/4
= N 3/4

where

pQgAp0

N2 - g opN = p-p az

Assuming density depends only on temperature and varies linearly with it, the buoyancy flux and

the stratification frequency can be expressed as:

BO = QagaATO

N 2 = ga
az

where a is the water thermal expansion coefficient, assumed 2x 10-40K-1, and AT is the discharge

excess temperature.

The minimum plume dilution at the trap depth is computed as (Fischer et al. 1979):

0.9B0
3/4

=QN 5 / 4

We considered two volume fluxes with their corresponding initial buoyancy flux within the

range of the OTEC sizes considered. Table 4.1 presents the value of trap depth, ht, and the

minimum plume dilution at the trap depth, Sm. In all the simulations the ambient stratification

was kept constant with stratification frequency N=4.8x10-3 s-. The initial temperature difference

between the environment and the released fluid is 9'C.
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h t

Figure 4.3 - Plume trap depth (ht) definition.

Table 4.1 - Trap depth (ht) and dilution (Sm) for the tested cases.

Q (m3/s) B (m4 /s3 ) ht (m) Sm

20 0.35 161.1 16.4

200 3.53 286.5 9.22

4.1.2.1 Model Parameters to Control the Trap Depth

The model parameters to control the trap depth are:

1. Grid resolution

2. Eddy viscosity coefficient

This refers to the turbulent diffusion of momentum coefficient. Higher viscosity implies

higher momentum diffusion.

3. Eddy diffusion coefficient

MITgcm uses different coefficients for the tracer and for heat. For the temperature, in

order to preserve the background stratification, we set the explicit diffusion coefficient to

zero.

The model also requires defining an Advection scheme and a Time step. In all the simulations

carried out, a non-linear advection scheme is used for temperature and tracer, which introduces

some diffusion in the solution. For the volume rates considered, the plume length scale is

estimated as a few hundred meters guiding the choice of grid resolution. This limits the time step

that can be taken. The time step is chosen to make the model stable.
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4.1.3 Computational Domain and Model Resolution

A square domain of horizontal length about 6.5h,, and depth about 4.5h,, is used to capture the

sinking of the plume until it reaches its equilibrium level. The domain was discretized using

orthogonal grids. Horizontal and vertical domain lengths are chosen to be long enough such that

the boundaries do not interfere with the mixing. The plume mixing is mainly achieved within a

volume whose depth is of order h,. For this reason, and in order to reduce the computational cost

as much as possible, we adopted uniform resolution within a central region of horizontal length

of about 1.3h,, and a vertical depth of about 1.1h,. Outside this region, the grid size expands

smoothly following a power law. The grid size expansion is chosen to make the code stable and

to reduce significantly the computational cost of each simulation.

For each volume flux, simulations are carried out at three different resolutions, with the

minimum grid size for each: 2, 6 and 12 meters for a volume flux of 20 m3/s, and 6, 12 and 24

meters for a volume flux of 200 m3/s. For each resolution, model parameters are adjusted so that

the neutrally buoyant depth is in agreement with the analytical results. This matching between

parameters and resolutions can be used for later simulations of OTEC external flows.

The grid size constitutes a critical parameter in numerical simulations. The model stability is

very sensitive to the grid resolution particularly near the discharge zone, which is the zone

featuring the largest velocities. Relatively large or intermediate grid sizes do not produce

accurate numerical mixing and the numerical solution presents significant noise. In the scope of

this work a large number of simulations had to be carried out in order to find a grid size yielding

a stable solution within an affordable simulation time, which also results in accordance to

analytical predictions.

This testing stage is computationally very demanding since the grid size and the time step

required are very small. With the available computational resources it is extremely expensive to

run non-hydrostatic simulations for a highly resolved model using uniform resolution in the

vertical and horizontal direction for all the cases analyzed.

Table 4.2 shows the dimensions of the computational domain used in the simulations. For the

volume rate of 20 m3/s, a grid size of 2 m, and the largest eddy viscosity (10- m2/s), the
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dimensions of the domain had to be increased (2000 m in height and in horizontal extent) so the

boundaries do not interfere with the mixing.

Table 4.2 - Computational domain dimensions.

Q (m3/s) Lx= Ly (m) L, (m)

20 1000 650

200 2028 1350

For numerical stability, larger source sizes are required for larger fluxes (more grids to distribute

the flux). Table 4.3 shows the source dimension for each case analyzed.

Table 4.3 - Source lengths used.

Q (ms/s) Source length (m)

20 12

200 24

4.1.4 Numerical Trap Depth

The trap depth definition is somewhat arbitrary. We defined it as the middle depth between the

location of the upper and bottom contours of concentration 0.01 along the centerline plane

measured at 200 meters from the source. Figure 4.4 shows the plume boundary from which the

trap depth can be computed.

Figure 4.4 - Vertical view of the plume boundary from which the trap depth can be computed.
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4.1.5 Effect of Eddy Viscosity on Trap Depth

Simulations are carried out using four different values of eddy viscosity, 10-1, 10-2, 10- and 10-4

m 2/s. Isotropic turbulent viscosity is assumed. For all the simulations carried out the explicit

diffusion coefficients are set to zero. Figure 4.5 shows the dependence of trap depth on eddy

viscosity for different grid sizes for two volume fluxes.

Q(m3/s)=20

01-4 &0 -3 4-2
10 10 10

Eddy Viscosity (m 2/s)

Q(m 3/s)=200

Ec

CL

C)
0Z

10' 0-3 0-2
10 3 10 2

Eddy Viscosity (m2/s)

Figure 4.5 - Effect of eddy viscosity on plume trap depth for different model resolutions
(dx indicates the grid size).

The eddy viscosity is model resolution dependent. For the two cases shown in Figure 4.5, for

each resolution, trap depth increases when the eddy viscosity increases, with the exception of one

data point. This exception is very small and can be attributed to a misshapen plume due to a large

grid size.

In Figure 4.5, for the small volume flux case, there is a general trend that for a given viscosity,

trap depth decreases as grid size increases. This behavior is not fully observed for the large flux

case, where there is no monotonic trend. The trap depth obtained using a resolution of 12 m is
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smaller than that obtained using a resolution of 24 m. This might be explained by the arbitrary

definition of the trap depth used and the unrealistic misshapen plume produced for large grid

sizes. In the large flux case, coarser grids produce a plume with more fluid in the center,

overshooting the level at which the plume spreads. The value of the trap depth is affected by this.

As this occurs mainly at the center of the plume, for the coarser case, we measured the trap depth

at 600 meters from the center of the discharge. Even then, the trap depth obtained using a grid

size of 24 m is slightly larger than that obtained using a grid size of 12 m. For the range of

viscosities considered, both grid sizes, 12 and 24 m, underpredict the trap depth. Clearly, coarse

resolutions are inadequate when modeling large flux plumes.

For small fluxes, the model can reproduce the predicted trap depth (-161 m) by selecting an

appropriate turbulent viscosity coefficient for all the grid sizes tested. For large volume fluxes,

only the smallest grid size leads to a correct value of plume depth (-286 m) for the viscosity

range considered. For the cases of grid sizes of 12 and 24 m with a flow rate of 200 m3/s, the

trend in the plot suggests that much larger viscosities are needed. However, viscosities larger

than 101 m2 /s increase the computational time of the simulation beyond affordable limits, and

represent unrealistic conditions. This renders this method unusable for OTEC sized plants, where

the discharged volume fluxes are large.

Based on the results for small and large volume rates, we concluded that a grid size of 6 meters

can be considered acceptable since it represents an effective tradeoff between accuracy, using the

corresponding eddy viscosity, and computational cost. Grid sizes of 12 and 24 meters yield

unrealistic results, particularly for the large volume rate, as the plume discretization is too coarse.

The results are very sensitive to the grid size and therefore have not converged to a consistent

answer (the reality). This suggests that in order to model the plume entrainment process, - and

hence, the plume trap depth - in accordance with the reality, very fine grid sizes are needed.

However, this is only possible on a machine much more powerful than the one used in this

thesis, and is in general a severe limitation of the Brute Force method.
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4.1.6 Effect of Resolution and Eddy Viscosity on Plume Shape

Large grid sizes lead to unrealistic plume shapes. A model resolution of 2 meters or smaller is

ideal. For a coarse case, the fluid discharge is distributed among fewer grid cells, or even into

only one grid cell for the less resolved runs. Having a large volume flux located at one single

grid cell might contribute to the unrealistic plume shape identified in the 24 m case. Thus it is

recommended to spread the source over several grid cells. In addition, for large grid cells, the

model does not resolve smaller eddy structures and the plume displays relatively large bumps in

its surface. For finer grids, the plume shape displays ripples since smaller scale structures are

better resolved.

For small eddy viscosities, the model tends to align the spreading of the fluid along the model x

and y-axes, and this influences the resulting asymmetric shape of the plume. When examining

the shape of the plume, we note that the tracer advection scheme employed introduces enough

diffusion. Accordingly, setting the explicit coefficients to zero seems to be a reasonable

assumption. In large viscosity simulations, the plume boundary does not exhibit eddy structures,

since the shear that drives the mixing is limited. The highly viscous fluid sinks, remaining almost

unmixed with the ambient fluid until reaching the depth where the ambient density is similar to

the original fluid discharge density.

Figures 4.7 and 4.8 present the plumes for different eddy viscosities and grid sizes, for a small

and large volume flux respectively, at the moment when the plume reaches its trap depth.

4.1.7 Effect of Eddy Diffusion on Plume Trap Depth and Plume Shape

We studied the effect of eddy diffusion on the plume trap depth by considering values of

horizontal and vertical eddy diffusion ranging from zero up to the eddy viscosity coefficient. As

both parameters are governed by turbulence, it is a reasonable assumption to set the maximum

value of the eddy diffusion coefficient equal to the eddy viscosity coefficient.

The effect of increasing the diffusion coefficient is to wipe out any ripple or irregularity of the

plume boundary. No significant changes in the plume trap depth can be observed. We performed

several simulations increasing the diffusion coefficient five orders of magnitude (from 10-7 to

10-2 m2 /s) and the change in the magnitude of the trap depth is of the order of 1% (Figure 4.6).
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For the largest viscosity cases, in which the eddy viscosity coefficients in vertical and horizontal

directions are 10-1 m2/s, setting the diffusion coefficient equal to the viscosity introduces

excessive diffusion and the plume shape does not look real. The numerical solution resembles

more a diffusive source than a sinking plume. This corroborates the assumption of setting the

explicit diffusion coefficient to zero.
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Figure 4.6 - Effect of eddy diffusion on trap depth, for Q=20 m3/s, grid size 6 m, and eddy viscosity 10-2 m 2/s.

4.1.8 Conclusions

We concluded that it is not easy to satisfactorily reproduce numerically the correct entrainment.

The results are very sensitive to the grid size. For very coarse grids, the model generates

excessive mixing and the plume reaches smaller neutral buoyant depths. The plume is poorly

resolved. In order to model the plume entrainment process, and therefore the plume trap depth, in

agreement with reality, very fine grid meshes are needed. This represents a significant limitation

of the application of the Brute Force method to OTEC discharges characterized by large volume

rates.

In contrast to the conclusions of the work by Zhang and Adams (1999), who were able to

artificially adjust far field model parameters to correctly predict near field plume characteristics
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for a marine waste water discharge, with MITgcm it was found that it is not always possible to

adjust model parameters to obtain results in agreement with theoretical predictions when applied

to OTEC discharges characterized by large volume flux.

Zhang and Adams performed their study for smaller volume fluxes (3 m3/s to 9 m3/s), and larger

buoyancy fluxes (discharge density difference of about 3%), compared to the values used in this

study (volume fluxes of 20 and 200 m3/s and density difference of 0.18 %). Hence momentum

was less important for them. Moreover, they were able to use much larger horizontal grid sizes,

and therefore fewer grids. The difference in model response here, when compared to their study,

can be explained by the fact that the relatively large fluid discharges, and yet moderate buoyancy

fluxes, of an OTEC plant discharge are harder to model accurately than the smaller wastewater

treatment of plant plumes.
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4.1.9 Application to Real OTEC Scenarios

MITgcm is frequently applied to model ocean flows using the hydrostatic version since the

horizontal scales involved are much larger than the vertical ones making the vertical acceleration

terms negligible. The main difference between an OTEC model and other MITgcm applications

is the need for inclusion of sources and sinks of mass into the fluid domain. The original

MITgcm source code was modified to implement OTEC warm and cold water intakes and warm

and cold water exhausts into the computational domain. OTEC intakes are represented by sinks,

and OTEC discharges are represented by sources of mass. This way, water is added at the

outflow depth and is removed from the intake depths as schematized in Figure 4.9.

MITgcm has a built in option, which allows including mass sources and mass sinks into the

domain. In an input file created for the particular OTEC model, the locations and strengths of

mass inflows and outflows are defined. The code modifications implemented account for the

heat, salinity and momentum changes in the grid cells affected by OTEC outflows. New

variables were defined for the temperature and concentration of the outflow. The modeled OTEC

power plant draws in water from places where it has defined negative source mass, and expels

water at places where source mass is positive, ensuring that heat and salt are conserved in the

process. The code implemented assumes that the heat exchange in the condenser and evaporator

is negligible and not considered in the outflow temperature.

For the OTEC plant size range studied, the source is distributed along several grids in a

horizontal plane to keep numerical stability. As the fluid sinks or rises depending on the initial

buoyancy, it was not necessary to extend the source or the sink in the vertical direction for

numerical stability. It was necessary to use larger source lengths as the volume flux increase, to

spread the flux over larger area.

The following sections present several tests that were performed to better understand how

MITgcm represents an OTEC discharge.
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Figure 4.9 - OTEC plant representation into MITgem for the combined exhaust discharge.

4.1.9.1 Comparison of MITgcm and Integral model

In this section we compared the plume trap depth predicted by an integral model, detailed in the

near field section, and that computed by MITgcm. The aim of this comparison is to be able to

assess weather MITgcm can predict similar results to the integral model.

For this comparison, in the integral model we considered a horizontal discharge and a discharge

inclined 45' below the horizontal. For this model, the trap depth is defined in two different ways

as the:

" First depth where the plume has the same density as the ambient (denoted "no

overshoot")

* Second depth where the plume shows no density difference with the ambient (denoted

"with overshoot")

For both MITgcm simulations and integral model calculations, we assumed a temperature profile

shown in Figure 2.4, and a combined effluent discharge at a temperature 17.4 C. Figure 4.10

shows the trap depth as a function of the volume flux for both the integral model and MITgcm.

The MITgcm simulations carried out assume an eddy viscosity of 102 m2 /s and a grid size of 6

m.
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Figure 4.10 - Comparison of trap depth computed by the integral model and MITgcm for different OTEC
plant sizes (0 is the angle measured from the horizontal).

The downward-inclined discharge reaches higher trap depth, showing that the initial momentum

is of significant importance in the terminal trap depth. The final equilibrium depth is larger than

the depth of the first point of no density difference between the plume and the ambient due to the

vertical momentum that causes overshoot and leads to additional mixing.

As with the earlier analysis of a negatively buoyant source in a linear stratified ambient, MITgcm

underpredicts the trap depth for the majority of the flux ranges considered. Only for small fluxes

does the trap depth predicted by MITgcm fall between the ones predicted for horizontal and

inclined discharges. The trapping depth predicted by MITgcm presents a nearly linear behavior

with the volume flux discharged, which differs from the behavior observed with the integral

model. This motivated the addition of momentum terms at the fluid source in the original

MITgcm code in order to improve the accuracy in predicting the trap depth.

4.1.9.2 Length Scales

It is useful to define several length scales to analyze buoyant jets:

1. Discharge Length Scale

The discharge length, LQ, compares the volume flux with the momentum flux.
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QO
LQ =4 M1/2

where Q0 is the initial flow rate, and MO is the initial momentum flux. In this study LQ is

important only for the comparison to the jet-to-plume length scale.

2. Jet-to-Plume Length Scale

The jet-to-plume length scale, Lm, compares the initial momentum flux with initial

buoyancy flux.

Lm= M0 3/4

L =BO 1/2

This length separates the initial region where momentum dominates the jet behavior, and

the region where buoyancy starts to control the dynamics of the jet.

From the ratio of both magnitudes, one can assess the relative importance of momentum and

buoyancy. For OTEC discharges, considering the typical ambient temperature of 21.5'C and the

effluent temperature discharge of 17.4'C (a temperature difference of 4.1 C), the magnitudes of

these characteristic lengths scales are shown in Table 4.4.

Table 4.4 - Length scales comparison for different OTEC fluxes.

Power (MW) Qtotai (m 3/s) no (m/s) M" (m4/s) B. (m4/s) LQ (m) Lm (m) Lm/LQ

10 72 2 144 0.6 6.0 54.9 9.2

100 720 2 1440 5.7 19.0 97.7 5.1

400 2,880 2 5,760 22.9 37.9 138.1 3.6

By comparing the magnitudes of Lm to LQ we note that the initial discharge momentum is of

significant importance. MITgcm source code considers the sources of mass as buoyancy sources,

and it does not account for momentum terms in the sources of mass. This characteristic of the

numerical model is thus not ideally suitable to model OTEC discharges where it is expected that

the momentum terms play a significant role in the plume dynamics. For this reason, including the

momentum at the mass source into MITgcm calculations would represent a good improvement

of OTEC plume modeling.
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4.1.10 Momentum Implementation in MITgcm Source Code

To date, there is no record of the inclusion of momentum terms at the source of mass to have

been implemented into MITgcm. The original Fortran codes were modified to include discharge

momentum (and the following qualitative conclusions were made) for the calculations of:

1. Horizontal Momentum

The code modifications implemented do not perfectly reproduce the physics of the

discharge. The discharged fluid flows via the imposed momentum discharge, but some

return near the source flow is observed at the initial times.

2. Vertical Momentum

Contrary to what was anticipated, it was observed that the addition of the vertical

momentum in the discharge reduces the plume trap level. This might be explained by the

initial downward momentum enhancing the entrainment from the levels above the source;

consequently, the relatively colder discharged fluid mixes with warmer fluid. The

resulting plume reaches neutral buoyancy at shallower depth. By looking at the tracer

concentrations, it can be seen that the plume is more diluted. This explains why the

plume traps at a shallower level.

Unfortunately there are no other applications of sources of mass with momentum terms to

compare results, so as to be able to evaluate if the code modifications were completely accurate.

In further simulations, momentum terms are not included in the code.

4.1.11 Sensitivity of Trap Depth to Initial Buoyancy

We analyzed the dependency of the trap depth of the plume computed by MITgcm on the initial

temperature difference between the ambient and the effluent in a typical stratified ambient. The

flux, the discharge depth, and the source length are kept constant. Figure 4.11 shows the results

computed for a 17-MW power plant, a discharge volume flux of 53.3 m3/s, located at 99 m

below the water surface, and a source length of 60 m. The behavior differs from the one

observed in a linear stratified ambient where the relationship between the trap depth and the

temperature difference follows a power law of coefficient 1/4. For the ambient temperature
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profile considered (Figure 2.4), MITgcm numerical results follow a power law of coefficient

0.57.

4.1.12 Temperature of the Source as Function of the Initial Buoyancy

For the same discharge characteristics, we analyzed the dependency of the temperature at a grid

cell corresponding to the source with the initial temperature of the discharged fluid. The resulting

temperature at the source grid differs from the temperature of the released fluid. For each model

grid, MITgcm computes the mixing and the heat balance from all the inflows and outflows. The

mixing of the injected fluid with the surrounding ambient at the cells corresponding to the source

causes the temperature difference between the discharged fluid and the source. Figure 4.12

shows the resulting temperature at the source as a function of the temperature difference between

the ambient and the discharge. The behavior is nearly linear.
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4.1.13 Full Scale OTEC Simulations

In this section we present different OTEC plant configurations simulated by MITgcm. With this

analysis we aim to determine the effectiveness of the model in representing the operation of the

OTEC plant. For the following simulations we used the MITgcm source code, with the

modifications required to represent an OTEC plant, without including momentum terms at the

discharge. The model domain has 3 km horizontal length and 2 km depth. We used a variable

grid size, which is 6 m in both the vertical and the horizontal directions in the center of the

domain, and it expands further from the source in both directions. Horizontal and vertical eddy

viscosities of 102 m2 /s were used.

1. Combined exhaust, quiescent environment, no rotation effects

Plant characteristics:

" Plant power: 400 MW

e Depth warm intake: at the surface

e Depth cold intake: 1000 m

e Combined exhaust depth: 100 m

* Warm flux: 1600 m3/s

* Cold flux: 1280 m3/s

Figure 4.13 shows the plume for this OTEC plant configuration at three different times as

indicated in each plot. This stagnant stratified test shows no recirculation of the effluent into

the warm intake. The plume presents a preferential direction induced by the square shape of

the source. Larger fluxes require larger source length for numerical stability, thus the plume

presents less radial symmetry. The plume traps at a depth of 40.8 m below the source. None

of the water intakes, even the near surface one that is closest to the effluent exhaust, affect

the local velocity field in the discharge. The effect of the cold intake is negligible on the

discharged plume.
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Figure 4.13 - OTEC effluent plume at three different times (combined exhaust, no rotating earth).
Plot axes are in meters, T indicates temperature in Celsius.
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2. Separate discharge, quiescent environment, no rotation

Plant characteristics:

* Plant power: 17 MW

e Depth warm intake: at the surface

e Depth cold intake: 1000 m

" Warm discharge depth: 50 m

* Cold discharge depth: 100 m

* Warm flux: 67 m3/s

e Cold flux: 53 m3/s

Figure 4.14 shows the plume for this OTEC plant configuration at three different times as

indicated in each plot. The shapes of the plumes are affected by the square geometry of the

sources. For this model configuration we observed recirculation of the warm effluent into the

warm intake. However, there is no recirculation of cold effluent. The effect of the cold intake

on the cold and the warm plumes is negligible. The cold plume traps at a depth of 42.5 m

below the source, while the warm effluent is being pumped into the warm intake.
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Figure 4.14 - OTEC effluent plume at three different times (separated exhaust,
Plot axes are in meters, T indicates Temperature in Celsius.

no rotating earth).

92

T

24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7



3. Combined discharge, quiescent environment, rotating frame northern hemisphere

Plant characteristics:

* Plant power: 200 MW

e Depth warm intake: at the surface

e Depth cold intake: 1000 m

" Mixed discharge depth: 100 m

" Warm flux: 800 m3/s

e Cold flux: 640 m3/s

Figure 4.15 shows the plume for this OTEC plant configuration at three different times as

indicated in each plot. At the surface level we observe a cyclonic vortex flow due to the sink

at the surface. There is a slight depression of the surface water of about 5 cm above the plant.

There is no significant rise in isotherms due to the fluid intake. The diverging and spreading

plume rotates clockwise forming an anticyclonic vortex, and it traps at a depth approximately

of 48 m. The radius of the vortex is approximately 1.2 km at 7.2 hours after the beginning of

OTEC pumping, and its maximum velocity is approximately 0.15 m/s. There are no

significant differences in the plume trap depth when compared to scenarios without a

Coriolis force on the plume. At the cold intake depth we observe a cyclonic vortex.
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Figure 4.15 - OTEC effluent plume at three different times (combined exhaust, rotating earth).
Plot axes are in meters, T indicates Temperature in Celsius.
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4. Separate discharge, quiescent environment, rotating frame northern hemisphere

Plant characteristics:

e Plant power: 100 MW

e Depth warm intake: at the surface

e Depth cold intake: 1000 m

* Warm discharge depth: 50 m

e Cold discharge depth: 100 m

" Warm flux: 400 m3/s

e Cold flux: 320 m3/s

Figure 4.16 shows the plume for this OTEC plant configuration at three different times as

indicated in each plot. Both warm and cold effluent plumes rotate clockwise. The warm

effluent recirculates into the warm intake. The sinking cold effluent at the source drags fluid

from the above layer, causing the warm effluent to be entrained into the cold source grid

cells.
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Figure 4.16 - OTEC effluent plume at three different times (separate exhaust, rotating earth).
Plot axes are in meters, T indicates Temperature in Celsius.
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5. Separate discharge, geostrophic currents of 10 cm/s

Plant characteristics:

e Plant power: 100 MW

e Depth warm intake: at the surface

* Depth cold intake: 1000 m

* Warm discharge depth: 50 m

e Cold discharge depth: 100 m

e Warm flux: 400 m3/s

e Cold flux: 320 m3/s

Background Flow

We considered a background steady flow of 0.1 m/s. The background flow is generated in

MITgcm as a geostrophic flow. The flow is driven by a water surface slope that produces a

pressure gradient to balance the Coriolis force.

The geostrophic flow u0 , along x-direction, is given by:

g +fuo = 0
ay

where r7 represents the water surface elevation, and f represents the Coriolis parameter

(assumed to be 10-4 s-1). The required surface elevation to generate the geostrophic current is:

ar/ = ufn

The domain is closed in the y direction and periodic in the x direction; in this way no

boundary effects are introduced in the x direction while still allowing flow.

In MITgcm, for simplicity, this flow was created by imposing an initial surface elevation

with the slope required to generate a uniform current of 0.1 m/s. This geostrophic flow was

imposed as an initial condition in the entire fluid domain. By eliminating friction in the

bottom and walls of the domain, the generated flow approximates very well to a geostrophic

flow for the simulation times used, without introducing significant errors.
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Figure 4.17 shows the plume for this OTEC plant configuration for two times as indicated in

each plot. There is strong initial mixing induced by the background currents. This enhanced

mixing reduces the sinking of both plumes. We can see some recirculation of the warm

effluent into the warm intake.
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Figure 4.17 - OTEC effluent plume at two different times (separate exhaust, geostrophic currents of 0.1 m/s).
Plot axes are in meters, T indicates Temperature in Celsius.

6. Combined discharge with geostrophic currents of 10 cm/s

Plant characteristics:

e Plant power: 100 Mw

* Depth warm intake: at the surface

* Depth cold intake: 1000 m

* Warm discharge depth: 50 m

* Cold discharge depth: 100 m

e Warm flux: 400 m3/s

* Cold flux: 320 m3/s

98

z

Time(hours)=1.96 
X -

T

5000



Figure 4.18 shows the plumes for this OTEC plant configuration for two times as indicated in

each plot. Enhanced mixing due to currents produces little sinking of the combined exhaust

plume as seen in the figure.

Figure 4.18 - OTEC effluent plume at two different times (combined exhaust, geostrophic currents of
0.1 m/s). Plot axes are in meters, T indicates Temperature in Celsius.

4.1.13.1 Modeling Conclusions

In all the simulations carried out, a combined OTEC discharge had no effluent recirculation into

the warm intake. This can be explained by the negative buoyancy of the plume being strong

enough compared to the sink intake effect. In all the simulations, effluent discharges at 100 m

depth do not penetrate much below the releasing point due to the strong ambient stratification.

However, the enhanced numerical mixing and dilution in MITgcm may overestimate the

entrainment and therefore underpredict the right trap depth.

In all the simulations carried out, there is no interaction between the cold intake and the warm

intake since they are very far apart. Ambient currents lengthen the trajectory of the discharge

plume and increase plume dilution. In a current, the plume reaches its equilibrium shallower

depths, which can be explained by the enhanced mixing.
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4.2 Distributed Sources and Sinks Approach

The aim of this approach is to use analytically computed distributed sources and sinks as

"internal boundary conditions" for the general circulation model. The effect of the near field

mixing is represented by a distribution of mass sources and sinks. The plume mixing is

represented by a diluted source flow and entrainment sinks along the jet trajectory. Choi and Lee

(2007) applied this method to a number of environmental problems.

Figure 4.19 shows distributed sinks along the predicted plume trajectory representing the plume

entrainment. Sources placed at the predicted neutral buoyant depth represent the diluted flow of

the plume discharge. The integral model determines the sources' and sinks' strength and their

respective positions in the fluid domain. The distributed sources and sinks are introduced into the

MITgcm computational domain to solve numerically for the far field of the OTEC plume

discharges.

p (za

e entrainment sink G diluted source

Figure 4.19 - Sources and sinks method schematization (Choi and Lee, 2007).

The coupling between the near and far field is achieved by the following steps:

1. Use near and intermediate field models to compute the entrainment and turbulent mixing
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2. Use far field model, MITgcm, with near and intermediate field replaced by the distributed

sources and sinks

This method enables the use of a much larger grid size. Consequently, the simulations are less

computationally demanding, as larger time steps can be used. In this study, the far field grid size

used is of the order of one kilometer, while the grid size required in the first approach, "Brute

Force ", is on the order of a meter. Other OTEC studies on a global scale, such as Rajagopalan

and Nihous (2013), employ a grid size of the order of 400 km.

In the following sections we present the study of OTEC plumes on a larger scale using the

distributed entrainment sources and sinks method. Sources' and sinks' strength, location, and

velocities are computed via the integral models for the near and intermediate field. The plume

trajectory indicates where the entrainment sinks are placed. The source represents the diluted

flow, and is located at its neutral buoyancy level.

4.2.1 Application to a Single OTEC Plant

Here we analyze how MITgcm represents one operating OTEC plant in a quiescent ambient and

without considering earth's rotation, by using the distributed sources and sinks approach. The

near and intermediate field mixing is represented in the far field model by a vertical distribution

of sources and sinks of mass as shown in Figure 4.20. Sinks placed at the grid cells occupied by

the plume represent the plume entrainment at that location. The diluted flow at the end of the

plume is represented by a source term.

The far field model employs a grid size of 1065 m of horizontal length, which is the sum of the

near and the intermediate field scales. The grid height is 10 m. The near and intermediate field

plume characteristics are presented in Sections 3.3 and 3.4. In this simulation, no rotation effects

are considered, since it is intended only to simulate the fluid dynamics generated by sources and

sinks of mass within a stratified ambient.
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Figure 4.20 - Sources and sinks distribution in the mesh grid of the far field model.
Plot axes (ij,k) indicate the index of each grid cell of the model.

In the far field model, the released fluid is neutrally buoyant since the plume has already reached

its neutrally buoyant depth. Figure 4.21 shows a horizontal plane at the source of mass, where

the flow is radially outward. The neutrally buoyant fluid spreads horizontally at the released

elevation like an intrusion layer, as shown in Figure 4.22. The discharged fluid entrains fluid

from the layers above and below. As the top layer is less dense, the entrainment from it is

stronger than the entrainment from the bottom layer. At 37 days from the beginning of the

discharge, the plume has a diameter of 25.2 km. There is a strong vertical flow between the

layers around the dipole (source and sinks next to each other). There is some recirculation from

the source towards the sink due to their proximity. However, this effect is just limited to the

region immediately surrounding the dipole.

The flow near the cold and warm intakes (the lowermost and uppermost sinks) is radially inward,

as shown in Figure 4.23. The warm intake, located at the water surface, withdraws fluid from the

layer beneath it. The effect of the cold intake is largely localized in the area surrounding this

sink. It has no effect on the velocity field near the plume entrainment or warm intake because of

the distance between them.
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Figure 4.21 - Horizontal slice of the flow at the source level 37 days into OTEC operation.
Color scale indicates the tracer concentration S, the released fluid has a concentration S=1.

Arrows correspond to velocity vectors.

Figure 4.22 - Vertical slice of the flow across the distributed sources and sinks 37 days into OTEC operation.
Arrows correspond to velocity vectors, color scale indicated in Figure 4.21.
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Figure 4.23 - Horizontal slice of the flow at a sink level.
Arrows correspond to the velocity vectors.
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4.2.2 Application to Group of OTEC Power Plants

As an application of the sources and sinks coupling approach, we analyzed the interaction

between four operating OTEC plants, as illustrated in Figure 4.24. The preliminary plant spacing

was determined from the recommended OTEC plant density of 190 kW/km 2 (Avery and Wu,

1994). Considering power plants of 100 MW output, the average plant spacing is 22.9 km.

I)3

Figure 4.24 - OTEC group of plants.

When using the distributed sources and sinks approach, it is of interest to analyze:

1) Interaction of thermal plumes of adjacent plants

2) Redistribution of nutrients

This analysis considered a background current of 0.1 m/s. To produce that geostrophic current in

the modeled domain, which has a width of 126 km, assuming a Coriolis parameter f =10-4 s-1, a

water surface elevation difference of 12.8 cm was required.

We studied the interaction of four OTEC plants with different discharge depths ranging from 50

in up to 100 m. Figure 4.25 shows a top view of the configuration of the plants. Each plume has

different horizontal and vertical extents, as each plume has different initial buoyancy.
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Figure 4.25 - Top view of OTEC group of plants.

The near and intermediate field models are used to predict each plume's characteristics and to

determine the location and strength of each sink and source used. Figure 4.26 depicts their

locations in the MITgcm grids. The far field model grid size is 700 m in horizontal length and 10

m in height. This grid size comprises the near and intermediate field scale for all the plumes.
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Figure 4.26 - Sources and sinks distribution in the mesh grid of the far field model for a group of OTEC
plants. Plot axes (ij,k) indicate the index of each grid cell of the model.
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Table 4.5 shows the volumetric dilution achieved in the near and intermediate field for each

plume. The mixing in the intermediate field is smaller than that of the near field region.

Table 4.5 - Dilutions.

OTEC Plant Discharge depth (m) Near field dilution Intermediate field dilution Total dilution

1 100 6.07 2.18 13.3
2 70 6.50 2.70 17.5
3 50 6.38 2.02 12.9
4 60 6.57 1.99 13.0

OTEC plants displace large volumes of deep ocean water to the surface layer. Deep-sea water is

uniformly cold, and rich in nutrients. Figure 4.27 displays the vertical distribution of the

concentration of nitrites and nitrates in a tropical ocean. OTEC plants bring nutrients to near

surface depths. In Section 4.2.2.2 we present the effect of operating OTEC plants on nutrients

redistribution in the far field using the distributed sources and sinks method. The nutrient

upwelling effect of OTEC plants is further detailed in Chapter 5.
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Figure 4.27 - Natural vertical distribution of nutrients (adapted from Makai Ocean Engineering "Otec
Hydrodynamic Model", based on 8 years of data from HOTS Station ALOHA, courtesy of

University of Hawaii SOEST).
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Coupling

For each plume, the final nutrient concentration at the end of the intermediate field was

computed accounting for the entrainment of nutrients into each plume in addition to the nutrient

concentration in the intake flows. The resulting concentration in the diluted plume is used as

input concentration in the far field model.

The nutrient concentration at the end of the intermediate field is computed as:

0 out

where Ci and Qi are the nutrient concentration and entrainment flow at different depths along the

plume trajectory respectively. Plant numbering is indicated in Figure 4.25. Table 4.6 presents the

effluent characteristics at the end of the intermediate field, which are the inputs to the MITgcm

model. The resulting nutrient concentration at the end of the intermediate field for the four

plumes is higher than the natural ambient concentration despite the dilution in the near and

intermediate field.

Table 4.6 - OTEC discharge characteristics for each plant of the group.

OTEC OTEC Discharge Cot Plume Equilibrium Cambient
Plant Depth (m) (g mol/kg) Depth (m) (g mol/kg) Cout/Cambient

1 100 2.63 137.9 1.52 1.7

2 70 2.22 121.0 0.84 2.6
3 50 1.68 103.3 0.13 12.7

4 60 1.95 112.8 0.51 3.8

4.2.2.1 Interaction in Temperature Field

Figure 4.28 shows the boundary of the four plumes defined by a surface of a tracer concentration

0.01. The tracer concentration is defined as unity at the fluid source. The temperature of the

plume boundary is indicated by the color scale. Also in the plot, one horizontal and two vertical

slices are shown to illustrate the vertical and horizontal distribution of temperature of the

modeled domain.
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The plumes are advected by the ambient currents. While the plumes move downstream, they

grow in radius due to turbulent diffusion. They do not merge horizontally within the modeled

domain, since they are very far apart. The plume released from Plant 3 merges with the

downstream plant plume. In the simulations presented in this section, we used a horizontal tracer

diffusion coefficient of 4x 10- m2/s and zero in the vertical direction (explicit coefficients). Other

simulations with higher horizontal and vertical diffusion coefficients, show more plume

spreading in each direction respectively.

As the released fluid in the far field is neutrally buoyant (the plume had reached its equilibrium

depth at the end of the near field), the temperature of the plume is equal to that of the background

ocean. With background flow, for the plant configuration analyzed in which a sink term is

located downstream of a source term, the downstream plants withdraw water from the upstream

incident plume. However, as the plume temperature is the same as the background ambient, there

is no negative interaction between plants. No plant will affect the thermodynamic efficiency of

adjacent plants. The plume flux is much larger than the intake sink flux, and hence the remaining

fluid of the plume moves beyond the sink.

Figure 4.28 - OTEC effluent plumes. Plot axes are in meters, T indicates water temperature in Celsius.
Two vertical slices and one horizontal slice are shown to indicate the T field.
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Figure 4.29 shows four horizontal slices, one at each plume's equilibrium depth. Subplots a) to

d) are ordered by increasing depth. In the first slice, Figure 4.29(a), only the plumes of Plant 3

and 4 are reached. In Figure 4.29(b) all plumes are reached except that corresponding to Plant 1.

Figure 4.29(c) captures the intermediate depth plumes and Figure 4.29(d) only captures the

deeper ones (plumes corresponding to Plants 1 and 2). In all cases, the plumes start with tracer

concentrations near unity at the release point, and then disperse over time as the plumes are

advected downstream.
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Figure 4.29 - Tracer concentration field (S) shown at four different depths.
Plot axes are in meters.
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4.2.2.2 Nutrient Redistribution

The plumes do not merge horizontally, which indicates that the plant spacing is large enough. At

each level, each plume has a higher nutrient concentration than the environment for the four

plants analyzed. Further downstream from the discharge, turbulent diffusion dilutes the plume

and the concentration barely surpasses the background concentrations. Figures 4.30-4.33 show a

horizontal slice at different times for the four different equilibrium elevations of the plumes.
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Figure 4.30 - Nutrient concentration at 105 m below the water surface (equilibrium depth of Plume 3) shown
at three times. S indicates the nutrient concentration (nitrates and nitrites) expressed in pmol/kg.

Plot axes are in meters.
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Figure 4.31 - Nutrient concentration at 115 m below the water surface (equilibrium depth of Plume 4) shown

at three times. S indicates the nutrient concentration (nitrates and nitrites) expressed in gmol/kg.
Plot axes are in meters.
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Figure 4.32 - Nutrient concentration at 125 m below the water surface (equilibrium depth of Plume 2) shown

at three times. S indicates the nutrient concentration (nitrates and nitrites) expressed in gmol/kg.
Plot axes are in meters.
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Figure 4.33 - Nutrient concentration at 135 m below the water surface (equilibrium depth of Plume 1) shown
at three different times. S indicates the nutrient concentration expressed in pmol/kg.

Plot axes are in meters.
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Chapter 5 - Environmental Impact

OTEC plants do not produce many pollutants in their normal operation, nor do they consume any

non-renewable natural resources. However, they are not entirely without environmental impact:

they influence local temperatures and currents, affect fish attraction and production, create local

nutrient enhancement, are susceptible to accidents, may occasionally leak some chemicals and

corrosion products from metal parts, and require the use of chlorine to prevent biofouling in the

heat exchangers.

5.1 Artificial Nutrient Upwelling

An OTEC plant has an upwelling effect, displacing large volumes of deep ocean water into near

surface depths. The natural ocean temperature, salinity structure, and nutrient concentration are

altered by this water displacement. These aspects have no counterparts in conventional power

plants.

This displacement of deep ocean water to the surface layer brings with it nutrients such as

nitrites, nitrates, phosphates, and silicates that enrich surface water and may lead to

phytoplankton blooms. This is similar to natural upwelling, and the consequence may be

enhanced fishery production. Micronutrients (iron, manganese, and copper) can also increase

algae production. Heightened concentrations of metals such as copper, zinc, or cadmium could

be toxic (Myers et al., 1986).

Here we present the upwelling effect of one OTEC plant in a quiescent stratified ambient. Figure

5.1 is a schematic representation of this artificial upwelling effect of an operating OTEC plant.

The figure shows a high nutrient concentrated plume, enhancing phytoplankton production.

Figure 5.2 shows a vertical slice of the resulting nutrient concentration distribution (nitrites and

nitrates) in the ocean computed by MITgcm. The plant has a 100 MW capacity and has a

combined discharge (400 m3/s warm intake and 320 m3/s cold intake) at 100 m below the water

surface. As the initial condition, we assumed the profile of nutrients shown in Figure 4.27.

Figure 5.3 shows the effect of deep seawater pumping on the vertical profile of nutrient
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concentration at 200 m from the OTEC discharge, 6.6 hours from the beginning of the plant's

operation. The OTEC operation produces an excess concentration of nutrients (nitrates and

nitrites) that reaches values of 7.9 gmol/kg. This peak of excess nutrient concentration at an

intermediate depth is not insignificant, and may cause algal blooms and enhance fishing.

Sunlight
IliI1

OTEC plume Phytoplankton

Deep ocean water intake

Figure 5.1 - OTEC artificial upwelling effect (adapted from Energinat).
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Figure 5.2 - Nutrient concentration (nitrates and nitrites) 6.6 hours into OTEC operation.
Color scale: concentration in gmol/kg.
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The upwelling effect of an OTEC plant is particularly significant in the near field where the

nutrient concentration within the plume is higher than the background concentration. In the far

field, the concentration of nutrients in the plume is not much higher than the background

concentration due to the high dilution achieved in the near and intermediate field.

5 10 15 20 25 30
[Nitrate+Nitrite] (prmol/kg)

35 40 45

Figure 5.3 - Nutrient redistribution due to artificial upwelling.

Here we present the nutrient concentration computed numerically, by the Brute Force method

(using a grid size of 6 m and eddy viscosity coefficients of 10-2 m2/s), for a single OTEC plant in

a quiescent ambient, in order to portray the nutrient pumping effect.

In Section 4.2.1 (Table 4.6) we present the nutrient concentration at the end of the intermediate

field, accounting for the upwelled nutrients from the deep ocean via the cold water intake and for

the nutrient entrainment that occurs when the plume sinks and entrains the ambient water, for a

background flow of 0.1 m/s. We also analyzed how those nutrients behave in the far field using

the sources and sinks method in MITgcm (Figures 4.30-4.33).
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Both results (results presented in Section 4.2.1, and presented in this section) represent different

ambient conditions, and are therefore complementary to understand the effect of OTEC plants in

the environment.

The former analysis studies the nutrients distribution in large scale making assumptions about

the nutrients distribution in the near and intermediate field (immediate region of the OTEC

plant). The latter presents a numerically computed distribution of nutrients, which verifies the

assumptions made in the near and intermediate field (Gaussian distribution of excess nutrients

concentration).

In Section 4.2.1, using the integral models to calculate the entrainment fluxes, we determined

that the concentration at the end of the intermediate field is 2.8 jtmol/kg, noting that the plume

dilution achieved at 200 m predicted by MITgcm is smaller. This difference in the exact value of

concentration can be explained by several factors. Ambient currents increase the final dilution

achieved at the end of the near and intermediate field, therefore the concentration computed in

Section 4.2.1 is expected to be smaller than the concentration for a quiescent ambient. The length

scale of development of the near and intermediate field for the discharge considered, about 700

meters, is larger than 200 m and therefore allows more entrainment, making the plume more

diluted at the end of the intermediate field. In addition, as discussed in Section 4.1, MITgcm

presents inaccuracies in predicting the right entrainment for large flux discharges. Moreover, as

seen in the same section, there is not good agreement between the integral model and the

MITgcm predictions, which contributes to this difference in the nutrient concentration, predicted

by both models.

5.2 Upwelling Velocity

An OTEC plant operates as an ocean pump, displacing large volumes of water vertically. For the

following analysis, we consider a typical 100-MW OTEC power plant, with 400 m3/s of warm

water intake and 320 m3/s of cold water intake. The warm intake is located at the water surface,

and the cold intake is located 1 km below. The OTEC combined discharge (at 17.4'C) is placed

at 100 meters below the water surface. Figure 5.4 depicts the OTEC plant pumping effect for this

combined discharge.
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Figure 5.4 - Schematization of OTEC pumping effect for combined discharge.
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Figure 5.5 - Upwelling effect for a 100-MW OTEC plant with combined discharge.
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Figure 5.5 shows a vertical distribution of the vertical flow rate induced by the OTEC pumping.

These flow rates are due to the warm intake, the entrainment flux induced by the plume

discharge in the near and intermediate fields, the outward flux at the end of the plume, and the

cold intake. Their overall effect induces upwelling and downwelling velocities as shown in the

figure (note that a positive flow rate implies a vertically upward flow rate). For this analysis, the

outward flux at the end of the intermediate field is considered to be located at the center of the

spreading layer cross-section.

To help interpret this figure, we will proceed from the water surface to the ocean bottom. In the

top 100 meters of water, the warm intake induces an upwelling flux to supply the sink of mass.

At 100 meters below the water surface, the discharged plume starts to develop downward since

the discharged fluid is denser than the ambient. The plume entrainment demands more water that

must be supplied from the layers below, and therefore it increases the upwelling flux, as can be

noted in the figure.

Reaching the level of neutral buoyancy of the plume, there is an important outflow equivalent to

the plume-diluted flux. This volume flux surpasses the volume demanded by the warm intake

and the plume entrainment (this corresponds to the change of sign of the vertical flux seen in the

figure). Therefore, below the equilibrium depth, there is a downward flux. Just below this point

there is some vertical development of the plume, which entrains fluid. For this reason the

downward vertical flux gradually decreases down to the maximum depth of the plume. Further

down, this downwelling flux has a constant value (equal to the cold intake flow) until reaching

the sink level. Below this level, all the fluxes are in balance, to supply the required volume of

water of the sinks given by the sources, and therefore the resulting induced upwelling velocity is

zero.

Assuming an OTEC plant density of 190 kW/m 2 and based on results presented in Figure 5.5, for

the combined discharge of the 100-MW plant considered, the maximum induced downwelling

velocity is 0.24 m/day and the maximum upwelling velocity is 0.37 m/day.

Figure 5.7 shows the vertical distribution of the vertical flow rate induced by the OTEC pumping

for the same OTEC plant characteristics as described in the previous analysis, but considering

separate discharges. The separate discharge configuration is depicted in Figure 5.6. The warm
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water discharge (at 24'C, since 1 C is assumed to be lost in the heat exchanger) and the cold

water discharge (at 9*C, since 1 C is assumed to be gained in the condenser) are located 80 and

110 meters below the water surface respectively. For this case, the maximum induced

downwelling velocity is 0.21 m/day and the maximum upwelling velocity is 0.24 m/day. This

discharge scheme induces smaller upwelling and downwelling velocities than the combined

scheme. For the analysis of the mean vertical induced flow a vertical resolution of 2 m is used in

both cases presented (combined and separate discharge).

Warm intake -- L

Warm discharge <--

Cold discharge C-

Cold intake

Figure 5.6 - Schematization of OTEC pumping effect for separate discharge.
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Figure 5.7 - Upwelling effect for a 100-MW OTEC plant with separate discharges.

In the zones where natural upwelling takes place, such as off the coast of Peru, the upwelling

velocity can be estimated to be of the order 10 m/day (Avery and Wu, 1994). Assuming a typical

natural upwelling of 3 m/day, we can conclude that the OTEC operation induces an upwelling

velocity of about 8 to 12% of the natural one. This value is not negligible but not too large

compared to natural upwelling velocities.
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Chapter 6 - Summary and Conclusions

Ocean models involve a wide range of length scales. Since computer power is limited, no single

model can resolve both the centimeter-scale turbulent mixing in an OTEC outflow and the

kilometer-scale regional dynamics of the plumes. In this thesis, three models on different scales -

near, intermediate, and far field - were developed. A method to couple these models is analyzed

in order to study the dynamics of OTEC plumes.

To model OTEC plant discharges in the near and intermediate field of a stratified ocean, we

developed steady-state integral models based on well-proven principles. These models predict

the characteristics of the plume such as trajectory, volume flux, and excess density. Different

discharge configurations (combined and separate discharge, different discharge depths, and

different flow rates) and ambient conditions (background currents, several stratification profiles)

can be analyzed with these models. A three-dimensional circulation model predicts the flow in

the far field.

Two different approaches to coupling the models are analyzed. In the first approach, Brute

Force, only the far field model, MITgcm, is used for all scales, thereby eliminating the need to

couple the models. The plume entrainment computed by a numerical model is found to be highly

sensitive to the grid size and eddy viscosity considered. Analytical expressions predict the trap

depth and dilution for a simple case of a dense fluid released into a lighter linearly stratified

background. Therefore, model parameters of this simple case are adjusted until the simulation

matches the analytical prediction. After the model parameters are calibrated, more realistic cases

can be modeled.

The second approach, Distributed Sources and Sinks, combines all three models. In this method,

distributed entrainment sources and sinks are inserted into grid cells of the MITgcm domain. The

source and sink locations and flow rates are computed using the near and intermediate field

models. The sources and sinks replace the plume mixing effect in the far field model. The

MITgcm grid size depends on near and intermediate length scales.

123



The Brute Force approach demands significantly more computational power than the Distributed

Sources and Sinks approach, since the grid size and the time step required are considerably

smaller in the former case than in the latter one. For example, for the highest resolution (grid size

of 2 m), the largest domain, and the highest viscosity, one simulation took several days on a

24-processor machine. In some cases the Brute Force approach requires using unrealistic values

of model parameters, and even with this adjustment, it does not always yield accurate plume

simulations.

From the simulations carried out, it can be concluded that the OTEC effluent mixing can be

modeled by the Distributed Sources and Sinks method of coupling reasonably well. Choi and

Lee (2007) demonstrated the accuracy of this method for several complex flows, including

ambient stratification, achieving numerical predictions in excellent agreement with laboratory

data. This thesis analyzes more complex cases of OTEC plants in a typical tropical stratified

ocean. Therefore the accuracy of this method cannot be quantitatively assessed, but is verified

qualitatively. The resulting velocity field and the concentration of a tracer coincide qualitatively

with the behavior expected for an OTEC discharge. This method also conserves mass and

correctly reproduces the trap depth and dilution. However, while this method is good, it is not

perfect. The full dynamic effects of the plume mixing on distances smaller than the far field grid

size are inherently not represented in the far field model. Moreover, the model produces a dipole,

which in fact is not realistic (and hence neither is the local induced flow).

This method of coupling allows us to study interaction among a group of OTEC plants, induced

circulations, evolution of certain substances discharged by the plants, and redistribution of ocean

nutrients. In the first application of this method, we found that with a current, when an upstream

plume reaches a downstream plant, its temperature is the same as the environment. Therefore,

the water intake temperature is not affected by the incident plume. Neither plant affects the

other's thermodynamic efficiency. Regarding nutrients redistribution, there is a noticeable

upwelling effect. Nutrient concentrations in the far field are higher than natural concentrations.

This excess could induce phytoplankton blooms.

One big limitation of the study of nutrients redistribution in this research is the preservation of

the ambient profile. MITgcm uses diffusivities to mix the fluid supplied by the source, but it also

mixes the ambient, therefore eroding the background profile. The real world has sources and
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sinks of fresh water, nutrients, and heat that are not included in the model used in this thesis that

can maintain the ambient profile. Since MITgcm allows using different diffusivities for heat than

for tracers, we did not face that problem for the background temperature stratification.

These results were only obtained under geostrophic current conditions. However this approach is

also applicable under other types of background conditions, such as non-uniform, non-steady

flow.

Additionally, approximations made in the near and intermediate field models do not permit study

of an OTEC plant's interaction with itself, which is still a major outstanding issue, particularly

for the OTEC separate discharge scheme. It may be recalled that in Section 4.1.14, a simulation

was run for a 100-MW plant, with 50 meters separation between the intake and the warm

exhaust, and some recirculation of the warm discharge was observed. In order to more carefully

study this issue, additional modeling efforts should be conducted.

As a future direction for further research, optimal OTEC plant spacing needs to be determined

more accurately to ensure efficiency of energy production. Currently, other studies recommend

only approximate values. This thesis considers steady currents to analyze adjacent OTEC plume

interaction. Other types of background conditions need to be studied. As a next step in the

analysis of plant interaction on a regional scale (of the order of 100 km), different OTEC plant

scenarios should be analyzed. For example, a comparison of separate and combined plant

discharges, or a comparison of the effect of several small plants with the effect of one fewer

larger plants with the same nominal power output. For all these cases, the methodology of

coupling of near, intermediate, and far fields used in this thesis can be applied.

More modeling must be done to study long-term scenarios under conditions other than the ones

studied in this thesis. More research is needed to ensure that this process has no detrimental

effect on fish, nutrients, and thermal stratification. This thesis takes a step towards determining

whether the thermal energy stored in the ocean can be harnessed as an alternative source of

energy.
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