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Abstract

Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target
intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control
system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while
receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal
feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the
target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining
the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits
a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account
the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI
processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an
instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period
and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs
more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and
vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation
error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our
results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more
closely mimics the sensorimotor control system.
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Introduction

There has been a large body of work in the past decade on real-

time brain-machine interfaces (BMI) demonstrating that neural

signals from the motor cortical areas can be used to control

computer cursors or robotic arms in human and non-human

primates [1–22]. One type of such BMIs, which comprises most of

this work, aims to estimate a continuous trajectory—for example

the position of a computer cursor on the screen moving towards a

visual target [1–14,19]. Recent efforts with this type of BMIs have

demonstrated the ability to estimate continuous movement from

motor cortical activity. The other type of BMIs aim to predict a

desired discrete target without estimating the corresponding

desired trajectory towards it [15,16] and are valuable for purposes

such as typing on a keyboard. Recently, we designed another type

of BMI for sequential motor function that can concurrently decode

the full motor sequence before movement initiation [20].

The successful real-time attempts at individual decoding of the

continuous trajectory or the target of movement motivate the

development of a new type of real-time BMIs that aim to estimate

jointly both the trajectory of the movement and the intended

target. This approach is justified by two main reasons. First, the

activity in the motor cortical areas has been shown to be related to

both target and kinematics of movement [2,15,23–43]. Peri-

movement activity, i.e., the activity around the time of movement,

in the primary motor cortex, posterior parietal cortex (PPC), and

dorsal premotor cortex (PMd) is related to the movement

kinematics such as direction, velocity, position, and acceleration

[2,23–32]. In addition to perimovement activity, neural activity in
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the PPC has been shown to encode the intended target [15,33–36]

prior to movement initiation. Similar activity has also been

observed in the premotor cortex including PMd [28,30,37–43].

Second, this approach more closely mirrors the natural way in

which the sensorimotor system decides on a plan of action and

executes its movement. In other words, the several components of

the musculo-skeletal system are coordinated in order to reach a

target and hence the target of a movement and the desired

trajectory to reach it are strongly correlated [44,45]. Indeed, there

has been a body of offline work demonstrating the advantage of

combining both target and trajectory related information in the

decoder using either simulated neural data in [46–48] and in our

work [49,50], or previously recorded neural data in [11,51]. We

also presented promising results of a real-time BMI that jointly

decodes the target and trajectory in [52–54].

In addition to modeling both the target and trajectory

information, similar to the natural sensorimotor system, a BMI

system can be modeled as a feedback control system. When using a

BMI, the subject (controller) decides on the control commands and

consequently modulates the neural activity to move the prosthetic

device to a desired target (i.e., achieve the task goal) while

receiving real-time visual feedback of the state of the movement.

Based on these considerations, a more principled BMI design that

aims to mirror the sensorimotor control system and jointly decode

the movement target and the corresponding trajectory would

allow for a potentially more accurate movement execution.

Here we develop a real-time BMI that uses a novel optimal

feedback control design and combines information about target

and trajectory intent, and demonstrate its implementation in

sensorimotor tasks performed by two rhesus monkeys. This BMI

employs a novel two-stage approach. In the first stage, it uses the

neural spiking activity prior to movement initiation to predict the

intended target of the movement. In the second stage, it combines

this prediction with the peri-movement spiking activity to estimate

the movement trajectory. To decode the trajectory, inspired by the

optimal feedback control theory of the sensorimotor system

[44,45,55–57], we build an optimal feedback-controlled state-

space model for goal-directed movements, which we use in a

recursive Bayesian decoder. We have derived and presented the

algorithmic details of this decoder, used in the second stage of the

BMI, in [49,50] in a simulation study and assuming knowledge of

the intended target, and in [58]. We implement the combined two-

stage BMI for decoding movements in an instructed-delay center-

out task. The two-stage BMI processes the spikes directly in real

time, i.e., at the millisecond time-scale on which the neural spiking

activity is recorded. Here, we show that the two-stage BMI

performs better than either stage alone, demonstrating the

advantage of combining both target and trajectory related

information in real time. The optimal feedback control design

results in trajectories that are smoother, have lower estimation

error, and acquire the target more accurately. As a baseline, we

also make offline comparisons to a linear ridge regression decoder

[11,19], a regularized variant of the commonly used linear least

squares regression decoder [2–5,7], on the training sessions

(manual control) data and show that the two-stage decoder

outperforms the regression decoder.

Results

We measured the performance of our BMI in an instructed-

delay center-out directional task in which two monkeys used a

joystick to move a cursor from the center of the screen to one of

four targets displayed at its periphery (see Materials and Methods).

Unlike many BMI motor tasks in which the subject can freely

move until reaching a target, this task required the monkey to

reach the correct target without touching any of the incorrect

targets under a limited time constraint. Hence only trajectories

that reached the correct target and at no point touched an

incorrect target placed at the other three sides of the screen were

rewarded (Figure 1A). A performance measure used in these

experiments was the acquisition accuracy, which is the percentage

of trials on which the task is successfully completed. Multi-

electrode spiking activity was recorded from PMd and the

supplementary motor area (SMA) from which 2062 neurons

(mean 6 s.d.) were isolated and used. At the beginning of each

day, the monkey first performed the standard task using a joystick

(training session) during which target and kinematic neural models

were constructed. The monkey then performed the same task as

before but this time cursor position was controlled by the neural

activity recorded from the monkey (BMI sessions; Figure 1A) and

the monkey received visual feedback of the cursor on the screen.

Jointly Decoding the Target and Trajectory Using an
Optimal Feedback Control Design

The BMI processing consisted of two stages and decoded two

aspects of movement. During the first stage, it used a maximum-

likelihood (ML) decoder based on a point process model of the

neural spiking activity to predict the monkey’s intended target of

movement during the delay period after target presentation but

before movement initiation (see Materials and Methods). In the

second stage, the BMI combined this decoded target with the peri-

movement activity to estimate the trajectory. In this stage, the

spiking activity of each neuron was modeled as a point process

fitted to position and velocity. The BMI estimated the trajectory

using an optimal feedback control design that combined the

decoded target with the peri-movement activity. This design is

inspired by the optimal feedback control theory of the sensorimo-

tor control system used to explain its function [44,45,55–57,59],

and is cognizant of the fact that in the BMI context the system to

be controlled is the BMI instead of the musculo-skeletal system

(Figure 1B; see Materials and Methods for details). The result is a

recursive Bayesian decoder that we term the feedback-controlled

parallel point process filter (FC-P-PPF). We introduced this

decoder in [49,50] assuming knowledge of the target and using

simulated neural spiking activity. Here we implement this decoder

as the second stage in the two-stage real-time BMI and show its

performance in combination with target prediction and using

neural recordings in instructed-delay center-out tasks both offline

and in real time. In the BMI experiments, the decoder updated the

estimated position of the cursor in fine-scaled steps of 5 ms in real

time, which was also used to bin the spikes.

Model Training and Validation
Models for the BMI were trained on the neural spiking activity

during the training session at the beginning of each day. Neural

recordings were made during target presentation prior to the

presentation of the ‘‘go’’ cue, which signaled that the monkey

could move the joystick, as well as during movement itself after the

‘‘go’’ cue (Figure 1A).

Each training session consisted of an average of 8962 trials.

Point process models relating the spiking activity of each recorded

neuron to target location and movement kinematics were

constructed based on the known target location and cursor

position for each trial and the recorded multiple-neuronal activity

using the generalized linear models (GLM) framework [60].

Models were then cross-validated (leave-one-out) on the same data

by finding the corresponding target predictions and kinematic

estimates. Target location was predicted using the ML decoder

A Real-Time BMI Using an Optimal Feedback Control Design
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from the neural spiking activity in the 800 ms delay period prior to

the ‘‘go’’ cue. Kinematics were estimated using either the two-

stage decoder that combined the target predictions from the first

stage with the peri-movement activity, or its second stage but not

taking into account the target predicted from the first stage.

During the delay period, the ensemble spiking activity (2062

neurons) predicted the correct target with high accuracy in the

training sessions (leave-one-out cross-validation). The prediction

accuracy of the trained point process target models across sessions

(see Materials and Methods), measured as the percentage of trials

on which the models correctly predicted the target using the delay

neural activity, was 8163% (mean 6 s.d.). To examine further the

contribution of the individual neurons to the target prediction

accuracy, we performed a neuron dropping analysis in which the

spiking activity of a single neuron during the delay period was used

to decode the target (Figure S1A–D). We found that across

sessions, 48612% of the neurons had a target prediction accuracy

significantly greater than chance (Pv0:05). We further found that

relatively few neurons (on average 3.361.0 across sessions) were

sufficient to obtain a target prediction accuracy that was higher

than 90% that of the ensemble (Figure S1E).

During movement, the premotor neurons were tuned to

position and velocity. Fitting the point process models for the

kinematics using the GLM framework [60] (see Materials and

Methods), we found that across sessions 47616% of the premotor

neurons were significantly tuned to either position or velocity at

least in one dimension (Pv0:05; Bonferroni correction for

multiple comparisons). Of these neurons, 57% were tuned to

position only, 15% were tuned to velocity only, and 28% were

tuned to both position and velocity. In agreement with previous

studies, these findings suggested that the recorded premotor

neurons held significant information about both the target and

kinematics of the movement.

Figure 1. Experimental task and the optimal feedback control model. (A) Experimental task. The experiment consisted of an instructed-delay
center-out task with four targets (left). To be rewarded, the monkey not only had to acquire the correct target, but also had to avoid touching any of
the incorrect targets first (example successful and unsuccessful paths are shown on the right). After target presentation, there was 1 s of delay before
the ‘‘go’’ cue, signaling that the monkey could begin moving the joystick. During the training sessions, the monkey controlled the position of the
cursor using a joystick. During the BMI sessions, the joystick was disconnected and the real-time decoder controlled the cursor. (B) Optimal feedback
control framework to model the BMI. An optimal feedback control framework is used to model the BMI motor task. In this framework, each task is
performed to accomplish a goal during which there is real-time sensory feedback (e.g., visual feedback), yt , about the state of the system to be
controlled (e.g., BMI), xt. Based on the intended goal, the internal forward model about the dynamics of the system, and the sensory feedback about
the state of the system, the brain (controller) decides on a control command, which is reflected in its neural activity, Nt, and controls the system (see
Materials and Methods). Here we have assumed that the brain receives perfect sensory feedback of the state, i.e., yt~xt:
doi:10.1371/journal.pone.0059049.g001
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Offline Model Comparisons
We tested the performance of the two-stage decoder in an

offline analysis of the training sessions data using leave-one-out

cross-validation. We also compared to the performance of the

second stage of the decoder alone by replacing the feedback-

controlled state-space model in the FC-P-PPF (see Materials and

Methods) with a random-walk (RW) model, which uses no prior

target information and only enforces smoothness in the trajectory.

The resulting filter is the RW-PPF (see Materials and Methods).

We also compared the performance of the two-stage decoder to

that of the linear ridge regression decoder [11,19,61] that is a

regularized variant of the commonly used least-squares linear

regression decoder [2–5,7] (see Materials and Methods). For each

decoder we updated the position estimate every 5 ms, which was

also the bin width for the spiking activity. Note that the chance

level acquisition accuracy in our task using any decoder is at most

25% since there are four targets on the screen and hitting the

wrong one results in an error. We also confirmed that estimating

the trajectory from shuffled neural activity using a regression

decoder results in approximately this chance level accuracy (see

Materials and Methods).

We found that the acquisition accuracy of the two-stage decoder

across sessions was 8363%, higher compared to 6167% for the

RW-PPF that used only the peri-movement activity (one-sided

McNemar test, Pv10{15; Figure 2A). Hence target predictions

from the first stage of the decoder resulted in a correction rate of

(83{61)=(100{61)&56% for the inaccurate trajectory estima-

tion in the second stage (Figure 3B). More specifically, while 15%

of the trials with correct RW-PPF performance were not acquired

correctly by the two-stage decoder, 80% of the trials with incorrect

RW-PPF performance were corrected in the two-stage decoder,

resulting in an overall improvement. Also, the trajectories

estimated by the two-stage decoder were closer to the monkey’s

trajectory (Figure 3A,B and Figure 4). To quantify this, we

measured the average root mean-square (RMS) error across all

trials (Figure 2B). We found that the RMS error of the RW-PPF

on average was 40% higher than the two-stage decoder (one-sided

t-test, Pv10{15). As an alternative measure of error between the

estimated and the true trajectories, we also computed the signal-to-

noise ratio (SNR) that is calculated as the ratio of the desired signal

(joystick position) variance and the mean-squared estimation error,

SNR~10log10

signal variance

mean�square error
, and is used in a number of

BMI studies [13,62,63]. We found, consistently, that the SNR of

RW-PPF was lower than the two-stage decoder (one-sided t-test,

Pv10{15; Figure S2). While first-stage target prediction alone

does not estimate a continuous trajectory, we can compare it to the

two-stage decoder in terms of target acquisition accuracy. Making

this comparison, we found that the second stage resulted in a

correction rate of (83{81)=(100{81)&11% for the target

prediction errors (one-sided McNemar test, Pv10{3; Figure 3C;

Figure S3). Here, only 0.2% of the trials with correct target

prediction were not acquired correctly by the two-stage decoder,

while 12% of the trials with incorrect target prediction were

corrected in the two-stage decoder. However, as these were offline

estimation of fast joystick movements, the more appropriate test

for the correction of the incorrect target predictions by the peri-

movement activity in the second stage is in real-time BMI sessions

(see below).

We also compared the performance of the two-stage decoder to

that of a linear ridge regression decoder (Figure 3). The ridge

regression decoder reconstructed the position at each time as a

linear function of the history of the ensemble firing rates, which

were calculated every 5 ms in sliding bins of 100 ms (see Materials

and Methods for more detail). We included up to 800 ms—same

duration as the delay period used for target prediction—of history

coefficients in the regression decoder. Specifically, we found the

performance of the ridge regression decoder using 200 ms,

400 ms, 600 ms, and 800 ms of history coefficients and selected

the number of history coefficients that minimized the mean-square

error using leave-one-out cross-validation. The average accuracy

of the ridge regression decoder across sessions was 48 + 8%,

which was lower than the two-stage decoder (one-sided McNemar

test, Pv10{15; Figure 2A). Also the average RMS error of the

ridge regression decoder was 55% higher than the two-stage

decoder (one-sided t-test, Pv10{15; Figure 2B). Consistently, the

SNR of the ridge regression decoder was lower than the two-stage

decoder (one-sided t-test, Pv10{15; Figure S2). Note that the

ridge regression decoder uses the delay period activity due to its

history coefficients.

Finally the trajectory estimations in the two-stage decoder were

smoother than either the RW-PPF or the ridge regression decoder

(Figure 3). To quantify this, we calculated the average roughness

coefficient [64] (see Materials and Methods) for each of the

decoders (Figure 2C). The roughness coefficient measures the

Figure 2. Offline model comparisons. The bars show mean quantities and the error bars show the standard deviation (s.d.) around the mean
across sessions. All quantities are obtained from the training sessions using leave-one-out cross-validation. (A) Accuracy of the different models. (B)
RMS error of the different models. (C) Roughness coefficient of the different models. The two-stage decoder (used in the real-time BMI) outperforms
all other models in terms of accuracy, RMS error, and smoothness.
doi:10.1371/journal.pone.0059049.g002
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degree of smoothness in the estimated trajectory and is smaller for

smoother estimates. We found that the average roughness

coefficients of the RW-PPF and the linear ridge regression decoder

were 4.5 and 5.6 times larger than that of the two-stage decoder,

respectively (one-sided t-test, Pv10{14 in both cases).

Combined Target and Trajectory Decoding in a Real-Time
BMI

To investigate whether kinematic and target related activity can

be jointly used to obtain accurate motor performance in real time,

monkeys performed the same task as before but using a BMI. The

task was again a center-out task requiring the monkey to move the

cursor using the BMI to the correct target without touching any of

the incorrect targets. The real-time BMI used the two-stage

decoder. During the 800 ms delay period prior to the ‘‘go’’ cue,

the BMI predicted the target and after the ‘‘go’’ cue it combined

this target information with the peri-movement activity using the

optimal feedback control design (FC-P-PPF) to decode the

trajectory. Note that the cursor was held at the center during

the delay period. We found that using the two-stage BMI, the

monkeys could perform the task with an average accuracy of

Figure 3. Comparison of the offline trajectory estimates. The green circle shows the instructed target and the yellow line shows the monkey’s
trajectory. The black line shows the trajectory estimate using the two-stage decoder, the red circle shows the predicted target from the first stage, the
blue line shows the trajectory estimate of RW-PPF (i.e., the second stage of the decoder without using the target prediction), and the red line shows
that of the linear ridge regression decoder. (A) Sample trials in which both the two-stage decoder and RW-PPF acquire the target correctly. (B) Sample
trials in which the two-stage decoder acquires the target correctly but RW-PPF does not. (C) Sample trials in which the two-stage decoder acquires
the target correctly but the target is predicted incorrectly from the first stage.
doi:10.1371/journal.pone.0059049.g003
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7769% (Figure 5A). To assess the stability of the performance

throughout the recordings per day, we compared it in the first and

second half of sessions. We found that accuracy did not change

significantly (Wilcoxon rank-sum test, Pw0:5) and remained

stable.

We found that the two stages of the BMI performed in a

complementary manner to achieve its overall accuracy; the correct

target predictions could compensate for the inaccurate perfor-

mance of the kinematics decoder and the ongoing trajectory

estimation could correct the incorrect target predictions. To

illustrate this complementary property of the BMI and how its two

stages contributed to its overall performance, we compared with

the performance of each of its stages alone using either the target-

related delay or the kinematic-related peri-movement activities.

To compare the accuracy of the BMI with that of using only the

peri-movement activity, i.e., using the second stage of the BMI

alone without target information, we decoded the trajectory offline

using RW-PPF on the same real-time data set (Figure 5B–D). The

average acquisition accuracy of the RW-PPF was 61+31%

(Figure 5A). This suggests that the first stage of the BMI resulted in

a correction rate of (77{61)=(100{61)&41% for the second

stage errors (Figure 5A,C). More specifically, while 14% of the

trials with correct RW-PPF performance were not acquired

correctly by the BMI, 63% of the trials with incorrect RW-PPF

performance were acquired correctly by the BMI, resulting in an

overall improvement. While the first stage of the BMI alone (i.e.,

real-time target prediction) cannot estimate the continuous

trajectory, we can still compare it to the two-stage BMI in terms

of target acquisition accuracy. The average real-time target

prediction accuracy of the first stage of the BMI was 72+3%.

This indicates that the second stage of the BMI (FC-P-PPF)

resulted in a correction rate of (77{72)=(100{72)&18% for the

target prediction errors of the first stage (Figure 5A,D). More

specifically, while 4% of the trials with correct target prediction

were not acquired correctly by the BMI, 27% of the trials with

incorrect target prediction were acquired correctly by the BMI,

resulting in an overall improvement. Hence the joint performance

of the BMI was higher than either stage alone using either

kinematic or target related activity. Also the trajectories estimated

by the BMI were smoother than those of the RW-PPF and had a

significantly lower roughness coefficient.

The acquisition time in the BMI sessions, i.e., time until the trial

ended by rewarding the monkey, was close to the natural

acquisition time in the training sessions. In our experiments we

used a short 3 s time-out condition to make the task more

challenging and the required acquisition time closer to that of

monkey’s own movement. The median acquisition time for the

natural movement was 0.6+0.3 s and for the two-stage BMI was

0.9+0.5 s.

Control Comparisons
To determine differences in BMI performance across monkeys

and therefore the robustness of the two-stage BMI to individual

variability, we examined differences in performances between the

two monkeys, A and B. For monkey A, the real-time BMI

accuracy (percentage of trials in which the correct target was

acquired without the cursor touching the incorrect targets) was

67+4%. Comparing to the second stage alone using only the peri-

movement activity, we found that the accuracy of the RW-PPF on

the real-time data set for this monkey was 29+1%. Hence, even

though the kinematic tuning in this monkey was weak, the real-

time BMI had a relative high accuracy. This showed that the first

stage of the BMI resulted in a correction rate of

(67{29)=(100{29)&54% for the inaccurate performance of

the trajectory decoder. The real-time target prediction accuracy of

the first stage using only the delay activity in this monkey was

71+1%. Note that because of the weak kinematic tuning in the

recorded neurons in this monkey, the correction happened only by

the first stage. For monkey B, the real-time BMI accuracy was

82+5%. Comparing to the second stage alone using only the peri-

movement activity, we found that the accuracy of the RW-PPF in

this monkey was 76+24% and hence the first stage of the BMI

resulted in a correction rate of (82{76)=(100{76)&25% for the

inaccurate trajectory estimation of the second stage. Comparing to

Figure 4. Trajectory estimates and their variations. The green circle shows the instructed target. The black lines show the trajectories
estimated using the two-stage decoder in multiple trials in which the decoder is correct. The blue lines show the trajectories estimated by RW-PPF
(i.e., the second stage of the decoder without using the target prediction) in multiple trials in which RW-PPF is correct.
doi:10.1371/journal.pone.0059049.g004

A Real-Time BMI Using an Optimal Feedback Control Design
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the average real-time target prediction accuracy of the first stage,

which was 73+4%, suggested that the second stage of the BMI in

monkey B resulted in a correction rate of

(82{73)=(100{73)&33% for the target prediction errors in

the first stage. Therefore, in this monkey both stages exhibited the

corrective behavior.

Together these findings suggest that although the performance

of one stage in the two-stage BMI may not be equal across

monkeys or recording areas, by combining both target and

trajectory related information the two-stage approach provides a

robust computational system that maintains good accuracy under

variable experimental conditions (see Figure S4 for a comment on

ridge regression).

Discussion

Based on our understanding of the sensorimotor system

[44,45,55–57,59], natural movement incorporates information

about the intended target as well as the trajectory of the

movement. We implemented a novel real-time BMI designed to

mimic the sensorimotor control system by a two-stage approach:

First the activity prior to movement initiation is used to predict the

intended target, and second this prediction is combined with the

peri-movement spiking activity to estimate the trajectory using an

optimal feedback control design. This is to our knowledge the first

time that sensorimotor optimal feedback control principles have

been used to decode the intended movement from neural

recordings. It is also the first time that combined estimation of

target and trajectory has been done in real time.

To decode the movement, we used an optimal feedback control

design inspired by the optimal feedback control theory of the

sensorimotor system [44,45]. In this view, each task is performed

to accomplish a goal during which there is sensory feedback about

the external state of the system. Specifying an approximate

forward dynamics model, modeling the real-time sensory feedback

about the state of the system, and quantifying the task goals as cost

functions and the desired time to accomplish them, we can predict

the next plan of action or control command by finding the one

that minimizes the cost function. For a BMI, the same framework

can be applied to predict the next plan of action. The difference is

that the system being controlled is the BMI instead of an

individual’s own musculo-skeletal system. Hence the individual’s

next plan of action is reflected in the neural activity, this activity

controls the BMI, and the individual in turn receives real-time

visual feedback of the resulting movement (Figure 1B). Also, the

BMI does not have knowledge of the desired time to accomplish

the goal, which is decided by the controller (the individual). The

present BMI hence resolved this movement duration uncertainty

based on the neural spiking activity in real time (see Materials and

Methods; [49,50]). The BMI also processed the spiking activity

directly and hence operated at the millisecond time-scale of the

spikes. In addition to its application to interpreting the sensori-

motor function, optimal feedback control has also been deemed

valuable for interpreting the neural basis of movement in the

motor cortical areas [65]. This further motivates the use of optimal

feedback control principles for the design of real-time BMIs.

In addition to modeling the BMI as an optimal feedback control

system, we also decoded both target-related delay and kinematic-

related peri-movement activities using a two-stage design. We

demonstrated that the two stages in the BMI functioned in a

complementary manner. When the spiking activity for one stage

was less informative, the other stage often provided sufficient

information for the BMI to reach the correct target. As a result,

the two-stage BMI performed better than either stage alone.

Overall, the estimated trajectories using the two-stage optimal

feedback control design were more accurate, had lower RMS

error, and were smoother than the linear ridge regression decoder

or a random-walk point-process decoder.

Unlike ‘‘free-roaming’’ motor tasks in which subjects could

move freely until reaching a target, the present task was

demanding in that at no point the trajectories could touch the

incorrect targets and then proceed to the correct target. This was

considered an incorrect response (Figure 1A). In addition the

response time was constrained. Despite this, the monkeys were

able to achieve a relatively high accuracy using the two-stage BMI

(77+9%). This accuracy was obtained by using relatively few

neurons (11 on average) that were tuned to either target or

trajectory.

Our BMI used direct point process modeling of the spiking

activity. It hence processed the spikes directly in real time as

opposed to a rate function calculated from these spikes as is done

in previous real-time BMI work. Recent work [66] has demon-

strated that reducing the bin width used to calculate the firing rates

of the spiking activity, which are in turn used as input in a BMI,

improves its performance. An interesting question for future

investigation in real-time experiments is therefore whether moving

to the time-scale on which the spiking activity is recorded, i.e.,

processing the spikes directly, could improve the performance of

real-time BMIs.

The two-stage decoder combined both the target-related

activity prior to movement and the trajectory-related peri-

movement activity in real time. This combination makes the

two-stage decoder robust to variations across recording conditions.

Hence in scenarios where one type of activity is not strongly tuned

in a recording area, it could still be possible for the decoder to

result in acceptable performance. For example, if the delay activity

is not strongly tuned to the target in an experiment, the second

stage, i.e., the feedback-controlled parallel point process filter, can

still be used to model the BMI target-directed movement and

decode it from the peri-movement activity. In this case the decoder

would need to additionally put a prior distribution on the target

locations since no target information can be obtained prior to

movement (see Materials and Methods and [51]). It is also

important to note that in certain applications, such as key

selection, there may be no need for estimating the continuous

trajectory, and faster performance may take precedence over more

accurate performance. In such scenarios, first-stage target predic-

tion alone using the delay activity may be a valuable approach

[15,16].

In the two-stage BMI, one stage compensated for the

inaccuracies of the other and vice versa. Since our model relies

on neural activity to estimate the movement, we cannot test

directly to what extent the brain uses these two aspects of motor

control to execute a movement. It is interesting to speculate,

however, that similar to findings made in these experiments, the

premotor cortex may use information on intended target location

to correct for discrepancies in ongoing movement. Similarly, it

may use information about ongoing movement to fine-tune

A Real-Time BMI Using an Optimal Feedback Control Design
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differences between initially intended target location and target

location during movement itself. Hence, in addition to enabling

the design of more accurate decoding algorithms, the present

optimal feedback control design may provide insight into the

control aspects of the motor function in natural settings. Therefore

the two-stage optimal feedback control based BMI could provide

an important and unique new step in developing neuroprosthetics

that take advantage of the multiple types of movement informa-

tion.

Materials and Methods

Ethics Statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health, and

under regulation of the Subcommittee on Research Animal Care

at Harvard Medical School. The protocol was approved by the

Institutional Animal Care and Use Committee for Massachusetts

General Hospital (animal welfare assurance number: A3596-01).

All surgery was performed under inhalational anesthesia in

combination with Ketamine and opiate analgesia, and every

effort was made to minimize suffering, in accordance with the

recommendations of the Weatherall report, ‘‘The use of non-

human primates in research’’. Animals were housed in their cages

in the primate animal facility. Animals were fed regularly with

regulated fluid administration and were given environmental

enrichment. Animals were completely unrestrained within their

home cages. At the conclusion of experiments one animal was

euthanized to allow for histological verification of recording sites

with Ketamine and Pentobarbital, in conformance with recom-

mendations of the American Veterinary Medical Association

(AVMA) Guidelines on Euthanasia.

Behavioral Task
We used two adult male rhesus monkeys (macaca mulatta) in the

study. During the tasks, the animals were seated in a primate chair

(Crist Instrument Co Ltd, Damascus, MD). The primates’ head

were restrained using a head post, and a spout was placed in front

of their mouth to deliver juice using an automated solenoid. A

spring-loaded, two-degrees of freedom manipulandum was

mounted anterior to chair on the side contralateral to recording.

A computer monitor was placed in front of the animals at eye level

which displayed the task. A NI DAQ card (National Instruments,

TX) was used for the I/O behavioral interface, and the behavioral

program was run in Matlab (MathWorks, MA) using custom made

software (www.monkeylogic.net).

Primates performed a center-out visually-instructed motor

directional task that penalized touching the incorrect targets.

The monkeys held the joystick contralateral to the site of

recordings and could move their limb freely in the horizontal

and vertical dimensions during the task. A computer monitor

displayed the target locations and a cursor was used to represent

the position of the joystick handle. Each individual trial began with

the presentation of a central fixation point surrounded by four

gray circular targets. Once the animals held the cursor within a

central radius for a delay of 500 ms, one of the four randomly

selected targets would turn green. After another 1000 ms, the

fixation point would change color (‘‘go’’ cue), at which time the

monkeys could use the joystick to move the cursor from the center

of the screen to the instructed target. Once the cursor reached the

target, the animal received a drop of juice following a 320 ms

delay if the correct target was reached and no incorrect targets

Figure 5. Real-time trajectories and the complementary property of the two-stage BMI. (A) Comparison of the real-time BMI accuracy with
the real-time target prediction accuracy from the first stage and also with the accuracy of RW-PPF (i.e., the second stage without using the target
prediction) obtained offline using the same real-time data set. The bars show mean quantities and the error bars show the standard deviation (s.d.)
around the mean across sessions. The two-stage BMI outperforms either stage alone. (B–C) Sample decoded trajectories. In all panels, the green circle
shows the instructed target, the red circle shows the predicted target from the first stage, the black line shows the trajectory estimate of the two-
stage BMI, and the blue line shows that of RW-PPF using only the peri-movement activity. Sample trials where both the two-stage BMI and RW-PPF
correctly acquire the target are shown in B. The complementary property of the two-stage BMI is illustrated in C and D. C shows sample trials in which
the correct target prediction of the first stage compensates for the inaccurate estimation of the kinematic decoder in the second stage. D shows
sample trials in which the kinematic decoder in the second stage, using ongoing peri-movement activity, compensates for the incorrect target
prediction of the first stage.
doi:10.1371/journal.pone.0059049.g005
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were touched by the cursor. If during a trial, the animals moved

prematurely, failed to reach any target during the allowed time or

touched an incorrect target before reaching the correct target, the

trial aborted. Note that all targets had the same size as illustrated

in Figures 3, 4, and 5. Once reward was delivered, another

1000 ms would lapse, the targets would erase, and the sequence

would repeat again. The animals were required to return the

spring-loaded joystick to the center fixation point before a new

trial began.

Neurophysiologic Recordings and BMI Setup
A titanium head post and recording electrodes were surgically

implanted in each monkey contralateral to the side of joystick use.

All procedures were performed in an IACUC-approved aseptic

primate surgical facility. Prior to electrode implantation, craniot-

omies were performed over the sites of interest using standard

stereotactic coordinates. Once the cortex was exposed and the

sulcal anatomy identified, several silicone microelectrode arrays

were placed in the cortex (Neuronexus technologies, MI) into the

PMd and supplementary motor areas. The electrodes were

secured into place using fibrin glue, silicone sealant, and

methylmethacrolate. The distal leads were then attached to a

female connector and secured to the skull with titanium miniplates

and dental acrylic. Anatomic post-mortem confirmation of

electrode positioning was performed in one monkey. The second

monkey is still performing behavioral tasks.

Recordings began at two weeks following surgical recovery. A

Plexon multichannel acquisition processor was used to amplify and

band-pass filter the neuronal signals (150 Hz{8 kHz; Plexon Inc.,

TX). Shielded cabling carried the signals from the electrode array

to a set of six 16-channel amplifiers. Signals were then digitized at

40 kHz and processed to extract action potentials in real time by

the Plexon workstation. Classification of the action potential

waveforms were accomplished using dual-window discrimination

and principle component analysis. Units with stable, identifiable

waveform shapes and adequate refractory periods determined by

autocorrelation were then used for the real-time experiments.

Joystick position was sampled and recorded at 1 kHz. Neuronal

data obtained from the Plexon workstation, in the form of action

potential time stamps and channel, were then transmitted to a

second PC computer running Matlab (Mathworks, MA) in real

time. On decoder training sessions, the primates would use the

joystick to move a cursor on the screen to one of four randomly

selected targets over multiple trials. On decoder BMI sessions, the

monkeys would still be allowed to use the joystick but the cursor

image displayed on the screen would be supplied by the Matlab

real-time decoder (Figure 1A). The cursor was initially placed at

the center fixation point at the beginning of each trial. Here,

estimated cursor movements would be relayed through a DAQ I/

O (National Instruments, TX) to a third PC computer running the

behavioral task. The computer would then display the estimated

cursor position.

Chance Level Accuracy
Since the task requires reaching the correct target and since first

touching any of the other (incorrect) targets results in an error, at

best any chance-based decoder would first reach the correct target

with equal probability among the four possible. Hence the

performance of such a chance-based decoder is at most 25%.

We also examined the performance of a linear regression decoder

on shuffled neural activity and confirmed that it approximately

resulted in 25% accuracy. To do so we shuffled the calculated

firing rates for each neuron across time and trials, keeping its

average firing rate the same.

Target Decoding
The BMI decodes the monkeys’ intended target of movement

by recording the ensemble spiking activity during the 800 ms delay

interval prior to the ‘‘go’’ cue. Note that the delay between the

start of target presentation and ‘‘go’’ cue is 1000 ms. We do not

use the activity in the first 200 ms in the BMI in order to allow

sufficient time for the visual target information to reach the PMd

and SMA [16]. Using offline cross-validation analyses we observed

that discarding this activity improves the prediction accuracy.

Spiking activity of each neuron during this delay interval is

modeled as a homogeneous Poisson process (a point process with

constant rate) whose firing rate is a function of the intended target,

fitted using the GLM framework. A maximum-likelihood (ML)

decoder first calculates the likelihood probability of this ensemble

activity for each possible target, G, and then selects the target with

the highest likelihood as its prediction. Denoting the neural point

process observations of the ensemble of C neurons by N1, � � � ,N t

where N t~(N1
t , � � � ,NC

t ) is the binary spike events of the C

neurons at time t, and assuming that the neurons are conditionally

independent given the target, the point process likelihood model

for the ensemble is given by [60]

p(NtDG)~ P
C

c~1
lc(G)Dð ÞN

c
t e{lc(G)D ð1Þ

where D~5 ms is the time increment used for binning the spikes

and lc(G) is the modeled firing rate of the cth neuron during the

delay period for target G. The ML decoder then predicts the target

as the one maximizing the ensemble likelihood,

ĜG~ arg max
G~1;:::;4

p(N1, � � � ,NTd =D
DG)

~ arg max
G

P
C

c~1
P

Td =D

t~1
lc(G)Dð ÞN

c
t e{lc(G)D

ð2Þ

Here Td~800 ms is the delay period. During the delay period the

cursor was held at the center of the screen.

Kinematic Decoding
In the second stage, the BMI combines the decoded target with

the peri-movement ensemble spiking activity using a recursive

Bayesian decoder with an optimal feedback control design. A

recursive Bayesian decoder in general consists of two probabilistic

models: the prior model on the time sequence of kinematic states,

and the observation model relating the neural signal to these states.

The prior model should in general incorporate any prior

information available about the kinematic states, which for a

goal-directed movement includes the intended target. We build

the prior movement model of the decoder using an optimal

feedback control design, which takes into account the decoded

target location and the sensory feedback. To develop the

observation model, we use a point process model of the spiking

activity whose instantaneous rate is a log-linear function of

kinematics. The resulting decoder hence processes the spikes

directly in real time and operates at the millisecond time scale of

the spiking activity. In the next few sections we present the prior

movement model and the neural observation model used in the

decoder for estimation of goal-directed movements, and the

decoder recursions.
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Goal-Directed Movement Model: an Optimal Feedback
Control Design

Previous offline work have built goal-directed prior models for

reaching movements by conditioning a linear Gaussian state-space

model, also known as a random-walk model, on being at the target

at a known arrival time [46,67] or using a linear feedforward

controlled (i.e., not taking into account the sensory feedback)

model again assuming a known arrival time [47]. Alternatively,

goal-directed prior models have been built by using a training data

set, for example fitting a linear Gaussian state-space model for a

given target to empirical reaches to its location [51] or fitting a

single model for arbitrary targets based on a data set of reaches to

their locations [11].

Since the goal of the decoder is to estimate the intended

movement of the subject, a prior movement model that aims to

emulate the sensorimotor processing underlying motor control

could result in more accurate estimation of movement. Hence we

build the prior goal-directed state-space model for the movement

kinematics based on the optimal feedback control theory of the

sensorimotor system [44,45]. This theory has been successfully

used to interpret the sensorimotor function. For example, it has

been shown that this theory can predict the bell-shaped velocity

profiles and straight line trajectories observed in reaching

movements [56,57]. In this optimal feedback control framework,

each task is performed to accomplish a goal during which there is

sensory feedback about the state of the system. Based on the

intended goal, the system’s forward dynamics model, the sensory

feedback (for example vision and proprioception) about the

current state of the system, and the desired time to accomplish

the goal, the subject (controller) decides on the next plan of action

or control command (for example muscle activation) and can

hence make real-time adjustments based on the feedback to

improve behavior. Specifying an approximate forward dynamics

model and quantifying the task goals as cost functions and also the

sensory feedback, this framework can predict the next plan of

action in the presence of model uncertainty and sensory noise.

The difference in applying this framework to natural arm

movement [44,45] and movement using a BMI is that in the latter

case the system to be controlled is the BMI (Figure 1B). While

performing the BMI task, the monkey decides on the next control

command based on the visual feedback of the cursor position and

the intended target. Similar to natural movement, in movement

using a BMI, the next plan of action is in turn reflected in the

neural activity but this time controls the system or BMI through

the decoder (as we will develop) as opposed to directly controlling

the arm (Figure 1B). Hence the BMI can be modeled in this

optimal feedback control framework.

Motivated by this view, we develop a prior feedback-controlled

state-space model for the kinematics that exploits the information

about the target location and takes into account the sensory

feedback. We introduced this model in [49,50] in a simulation

study. Based on this model, the decoder can predict the monkey’s

next plan of action or control command and consequently the next

kinematic state. Note that our prior model does not rely on a

training data set, as is the case in [11,51], and can therefore easily

extend to different target locations without requiring a set of

empirical reaches to these locations. Finally, by using the optimal

feedback control formulation, it could generalize to tasks other

than reaching movements, if desired, by simply quantifying the

goals of such tasks as the cost function in this formulation. We now

present the construction of this model.

Denoting the sequence of kinematic states by x0, � � � ,xt, we

assume they are generated according to the linear dynamical

system,

xtz1~AxtzButzwt: ð3Þ

This is the forward dynamics model. Here, ut is the control signal

at time t, which is decided by the controller (the primate in the

BMI context), wt is the zero-mean white Gaussian state noise with

covariance matrix W, and A and B are parameters of the forward

model. Here we assume that the sensory feedback yt, is noiseless

and yt~xt. This means that we assume the monkey has perfect

sensory feedback of the cursor position on the screen. We also

implicitly assume that the brain has acquired an internal

representation of this forward model, i.e., has formed an internal

forward model of the dynamics of movement in response to

control commands ut in the task [59]. To find ut in the control

framework, we need to specify a cost function that will then be

minimized by optimizing over ut. The cost function in a given task

should quantify its goal. For the above linear Gaussian dynamics,

if we pick the cost function as a quadratic function of the state and

control variables, i.e.,

J~
XT{1

t~1

xt
’Qtxtzut

’Rut

� �
zx’T QT xT , ð4Þ

where T is the movement duration, Qt is positive semidefinite and

R is positive definite, then the optimal control signal at any time,

ut, is simply a linear feedback of the state at that time [68], i.e.,

ut~{Lt(T)xt, ð5Þ

where Lt can be found recursively and offline [68]. This is the

well-known linear quadratic Gaussian (LQG) solution. Note that

we assumed the monkey has perfect visual feedback of the cursor

state, xt, in BMI control. Hence this optimal feedback control

policy can be interpreted as the monkey’s corrective control

command in response to the visual feedback of the BMI cursor

state that may deviate from the intended trajectory.

Substituting (5) in (3) reduces this state-space model to the

optimal feedback-controlled state-space model

xtz1~ A{BLt(T)ð Þxtzwt, ð6Þ

which can now be used as the prior model to make prediction on

the kinematic states. Note that Qt and R should be appropriately

designed for an application of interest and Lt(T) is time-varying

and a function of the duration T. Note also that the sensory

feedback is incorporated in the control term since the control term

is simply a linear function of the current kinematic state (see (5)),

assumed to be known through the feedback. This is in turn

reflected in the prior model in (6).

We can now specialize these to the reaching movements

used in our experiments. For a reaching movement the cost

function should enforce end-point positional accuracy, stop-

ping condition, and energetic efficiency [56,57]. Denoting the

desired target position by d* and taking the state to be

xt~ dt,vt,at½ �’ where the components represent position, veloc-

ity and force in the two dimensions respectively, similar to

previous studies [56,57] we take this cost function to be the

weighted sum

J~EdT{d�E2zwvEvTE2zwaEaTE2zwr

XT{1

t~1

EutE2 ð7Þ
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where the weights are chosen to penalize the terms in the cost

function approximately equally on average [56,57]. We adapt

the following first order lowpass muscle-like system [57] for the

dynamical system in (3) in each dimension,

dtz1

vtz1

atz1

2
64

3
75~

1 D 0

0 1{
bD

m

D

m

0 0 1{
D

t

2
6664

3
7775

dt

vt

at

2
64

3
75z

0

0
D

t

2
664

3
775utz

0

0

wt

2
64

3
75 ð8Þ

where the parameters b~10 Ns/m, t~0:05 s, and m~1 kg come

from biomechanics [57]. Note that we again assume that the monkey

has acquired an internal forward model of the dynamics of movement

in the task consistent with the above forward model [59] and uses this

internal forward model to decide on the next control command after

switching from manual control to biomimetic BMI control. The noise

term in the forward model wt in turn captures the uncertainty in the

forward model. In general, we can allow for this internal forward

model to change once in BMI mode especially if a non-biomimetic

decoder is used in combination with learning. Such considerations,

however, are outside the scope of this paper.

Having specified the forward dynamics model and the cost

function for the reaching movement, the feedback matrices Lt(T)
can now be easily precomputed offline from the recursive solution

of LQG [68] and stored for real-time use. Having these matrices,

we can predict the monkey’s next plan of action reflected in the

control signal, ut, using (5) and assuming perfect sensory feedback

about the current state of the cursor on the screen, xt. Note that in

our two-stage decoder d� is determined from the decoded target

location in the first stage (for more algorithmic details see

[49,50,58]).

Observation Model
We build the observation model for each neuron as a point

process whose instantaneous firing rate is a function of kinematics

[60], i.e.,

p(Nc
t Dxt)~ lc(tDxt)Dð ÞN

c
t e{lc(tDxt)D

We used a modified version of the cosine tuning model [23,26]

for the instantaneous firing rate, modeling it as a log-linear

function of position and velocity in the two dimensions [60], i.e.,

lc(tDxt)~ exp (ac
0za

0
cxt), ð9Þ

where xt denotes these kinematic states at time t and ac
0 and ac are

fitted using the GLM framework [60] on the peri-movement

spiking activity. More specifically, denoting the model parameters

for neuron c by wc~½ac
0,ac�, the GLM framework finds the

maximum likelihood estimate

ŵwc~ arg max
wc

p(Nc
1:Tt

Dx1:Tt ; wc)

where Nc
1:Tt

is the peri-movement spiking activity of the neuron

during training and x1:Tt are the corresponding kinematic states.

Using the GLM framework, P-values can also be obtained for all

the model parameters [60] (for example using the glmfit function

in Matlab) and hence the tuning properties of the neurons can be

examined.

We assumed that the spiking activity of the neurons are

conditionally independent given the kinematic states and hence

the observation model for the ensemble is given by

p(NtDxt)~ P
C

c~1
lc(tDxt)Dð ÞN

c
t e{lc(tDxt)D ð10Þ

Uncertainty in the Movement Duration
Having the prior and the observation models we can now

develop the recursions for the Bayesian decoder. However, the

prior model built in (6) is dependent on the movement

duration, T , which is not known to the decoder. In other

words, unlike natural movement in which the monkey

(controller) decides on the movement duration, in movement

using a BMI the decoder does not have a priori knowledge of

this duration. This is typically the case for goal-directed state-

space models as there is much more constraint on the

movement kinematics close to the arrival time at the target

compared to far from it since in the former case the trajectory

soon needs to reach the intended target [49,50,58]. Hence we

develop the BMI decoder to jointly resolve this duration

uncertainty and estimate the trajectory purely based on the

neural spiking activity. We first present the recursions of a

feedback-controlled point-process filter assuming a known

movement duration and then show how we can resolve the

duration uncertainty inherent to the prior model.

Feedback-Controlled Point Process Filter (FC-PPF) for a
Known Movement Duration

For now we assume that the movement duration is known. The

minimum mean-square error (MMSE) estimator is given by the

mean of the posterior density that is p(xtDN1:t,T) for a given

duration T . Denoting the one step prediction mean by

xtDt{1,T~E(xtDN1:t{1,T), its covariance matrix by WtDt{1,T , the

MMSE estimate by xtDt,T , and finally its covariance matrix by

WtDt,T , xtDt,T is found from the following recursions

xtDt{1,T~ A{BLt(T)ð Þxt{1Dt{1,T : ð11Þ

WtDt{1,T~ A{BLt(T)ð ÞWt{1Dt{1,T A{BLt(T)ð Þ
0
zWt ð12Þ

W{1
tDt,T~W{1

tDt{1,Tz

XC

c~1

L log lc(tDxt)

Lxt

� �0
L loglc(tDxt)

Lxt

� �
lc(tDxt)D

"

{(Nc
t {lc(tDxt)D)

L2 log lc(tDxt)

LxtLx
0
t

#
xtDt{1,T

ð13Þ

xtDt,T~xtDt{1,T

zWtDt,T

XC

c~1

L loglc(tDxt)

Lxt

� �’

(Nc
t {lc(tDxt)D)

" #
xtDt{1,T

ð14Þ
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where :½ �xtDt{1,T
denotes the evaluation of the expression at

xtDt{1,T . These recursions are obtained using (6) for the prediction

step and a Gaussian approximation for the update step as

previously derived [49,50,69]. For the rate model in (9) since

L loglc

Lxt

~a
0
c and

L2 loglc

LxtLx
0
t

~0 these recursions simplify to

xtDt{1,T~(A{BLt(T))xt{1Dt{1,T ð15Þ

WtDt{1,T~(A{BLt(T))Wt{1Dt{1,T (A{BLt(T))’zWt ð16Þ

W{1
tDt,T~W{1

tDt{1,Tz
XC

c~1

aca
0
clc(tDxtDt{1,T )D ð17Þ

xtDt,T~xtDt{1,TzWtDt,T

XC

c~1

ac(Nc
t {lc(tDxtDt{1,T )D) ð18Þ

To provide some insight into these recursions, note that in the

prediction step given in (15) the feedback-controlled prior model is

used to move the estimate forward. In the update step given in (18)

the estimate is found by making a correction or update to this

prediction. Here, lc(tDxtDt{1,T )D is the predicted probability of

having a spike in the time interval D and hence the correction is (1-

predicted probability of a spike) if a spike occurs and (0- predicted

probability of a spike) if no spike occurs. Hence if a spike occurs

and the predicted probability of a spike is high this correction is

small and vice versa. Therefore the estimate is a combination of

the prediction and the correction terms. The more informative the

spiking activity is about the state (determined through ac), the

more weight is placed on the correction term and vice versa. If the

spiking activity is not informative at all or is not used, then the

estimate will just be the prediction, which is obtained only using

the feedback-controlled state model and ignoring the observation

model. In this case and given a movement duration, the prediction

step will generate a straight line from the center to the predicted

target location according to the prior model.

Resolving the Duration Uncertainty: Feedback-Controlled
Parallel Point Process Filter (FC-P-PPF)

The feedback-controlled state-space model in (6) (and many

other goal-directed state-space models) is a function of movement

duration, T, not known a priori to the real-time BMI [49,50,58].

Hence any goal-directed real-time decoder needs to resolve this

duration uncertainty. We introduced a framework to resolve this

duration uncertainty in [49] by discretizing the movement

duration, finding the kinematic estimate for each discretized

duration, and then optimally combining these kinematic estimates

based on the neural data. A similar approach using a discretized

set of durations was subsequently used in a simulation study in [70]

to resolve the duration uncertainty of the prior model developed in

[46] for estimation of simulated trajectories. Our framework for

resolving the duration uncertainty is based on mixture modeling, a

common approach in statistical inference that is used to estimate a

desired density in different applications. For example, mixture

modeling combined with sequential state estimation in dynamical

systems, when the system is operating under different or changing

regimes of operation, has been used as early as in [71]. See also the

mixture Kalman filtering work in [72] and references therein. For

decoding the kinematics from neural activity, mixture modeling

was first used in [51] and successfully applied to combine

empirically fitted and time-invariant state models for reaching

movements to different targets in an offline study. Here, we use

mixture modeling to combine feedback-controlled prior models of

different durations and hence resolve the duration uncertainty

inherent to this prior model.

Our framework works by discretizing the duration, finding the

kinematic estimate for each discretized duration using an FC-PPF,

running these FC-PPF filters in parallel, and finding the likelihood

of each of the discretized duration points jointly with the

corresponding trajectory estimate, all purely based on the neural

spiking activity and in real time. The decoder then optimally

combines the trajectory estimates corresponding to the discretized

durations to get the overall trajectory estimate. The result is the

feedback-controlled parallel point process filter (FC-P-PPF) that

we have derived in detail in [49,50,58]. Denoting the overall

MMSE estimator by xtDt, it is given by the mean of the posterior

density, which using the law of total probability is expanded as,

xtDt~E(xtDN1:t)~
XJ

j~1

p(Tj DN1:t)xtDt,Tj
ð19Þ

where T1, � � � ,TJ are the J discretization points for T , xtDt,Tj
is the

estimate given that the duration is Tj and found from the

recursions in (15) to (18), p(Tj DN1:t) is the likelihood of the

corresponding duration given the peri-movement neural activity,

and finally the summation is over all j for which Tjwt. The

likelihood of the corresponding duration, p(Tj DN1:t), can be

computed as derived in our work in [49,50,58] and is only a

function of the prediction and posterior means and covariances

found in (15) to (18) and the parameters of the observation model.

Here we provide the final expressions for readers’ convenience.

These are given by

p(Tj DN1:t)!p N1:tDTj

� �
ð20Þ

with

p(N1:tDTj)~ P
t

i~1
p(Ni DN1:i{1,Tj)~ P

t

i~1
g(Ni DTj) ð21Þ

Using a Gaussian approximation to the posterior, the term

g(Ni DTj) as we derive in [49,50,58] is given by

g(Ni DTj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DWiDi,Tj

D

DWiDi{1,Tj
D

s
p(Ni DxiDi,Tj

,N1:i{1)

|exp {
1

2
(xiDi,Tj

{xiDi{1,Tj
)
0
W{1

iDi{1,Tj
(xiDi,Tj

{xiDi{1,Tj
)

� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DWiDi,Tj

D

DWiDi{1,Tj
D

s
P
c

lc(iDxiDi,Tj
)D

	 
Nc
i
e
{lc(iDxiDi,Tj

)D

| exp {
1

2
(xiDi,Tj

{xiDi{1,Tj
)
0
W{1

iDi{1,Tj
(xiDi,Tj

{xiDi{1,Tj
)

� �

ð22Þ

for j~1, � � � ,J where all the quantities are known. Note that
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XJ

j~1
p(Tj DN1:t)~1 and hence we can compute all the duration

likelihoods. Finally, combining in (19), we get the final estimate.

Here, we coarsely discretized the duration of a trial.

Random-Walk Point Process Filter (RW-PPF)
Setting B = 0 reduces the state-space model in (3) to the

random-walk model and consequently the recursions of FC-PPF

with this choice recover the RW-PPF.

Ridge Regression
We also find the performance of the linear ridge regression

decoder on the neural data. The commonly used regression

decoder in the BMI literature is the ordinary linear least squares

regression decoder that is fit by minimizing the residual squared

error. The linear least squares regression, however, can result in

high mean-square estimation error due to a high error variance,

for example in cases with correlated regressors [61]. An alternative

to the ordinary linear least squares regression is the linear ridge

regression that can result in lower mean-square error by reducing

the error variance at the price of some increase in bias [61]. Hence

ridge regression has been used in a number of BMI studies [11,19].

In ridge regression, the position variable at a given time is

reconstructed as a linear combination of the history of the

standardized firing rates of the ensemble of C neurons over a

selected number of time bins prior to and including that time. In

ridge regression, the regression coefficients are found by minimiz-

ing the residual squared error plus a regularization term that

penalizes large coefficient estimates [11,61]. Denoting the total

number of time samples in the training data set by U , the number

of history coefficients in the regression model by H , the U|HC
dimensional standardized firing rate matrix with R, the mean

subtracted position variable by ~dd, and the regression coefficients by

c, the ridge regression coefficients are given by [11,61].

ĉc~(R
0
RzdI){1R

0~dd ð23Þ

where d is the regularization parameter. The special case of d~0
gives the ordinary least squares regression solution. We selected d
by finding the mean-square error for a wide range of regulariza-

tion parameters and selecting the regularization parameter that

minimized the mean-square error using leave-one-out cross-

validation. We found the performance using multiple choices for

the length of the history window used by the ridge regression.

Specifically, we found the performance of the ridge regression

decoder using 200 ms, 400 ms, 600 ms, and 800 ms of history

coefficients and selected the number of history coefficients that

minimized the mean-square error using leave-one-out cross-

validation.

Possible Extensions
In our implementation of the BMI, the first stage of the decoder

makes a decision about the intended target. However, instead, the

BMI can easily include all targets in the FC-P-PPF but weight

them properly by their corresponding likelihood calculated from

the first stage similar to a previous offline study [51]. In our case,

this means including more parallel filters in the FC-P-PPF for the

different targets (and their discretized durations). This will

consequently increase the complexity of the decoder. We chose

not to implement this extension since, using offline analysis, we

observed that it resulted in little improvement at the price of four

times the complexity. The absence of a significant improvement in

this case was likely a result of the fact that in our experiments the

target-related activity during the delay period was strongly tuned

to the targets and that overall the peri-movement activity was not

as strongly tuned to the task. However, in cases where such target-

related activity is not strong, this extension will potentially result in

further improvement in the second stage as it allows for its higher

weighting compared to the first stage. Also applying such an

extension could potentially allow the FC-P-PPF decoding

algorithm to be applied in situations where no delay period

activity and hence no target information from the first stage is

available. In such a case, equal weights would be initially assigned

to the filters corresponding to each possible target in the FC-P-

PPF, and these weights would then be updated during movement

based on the peri-movement activity.

Even though in the present experiments we used four targets,

the decoder can generalize to the case with more targets. This is

because the prior model in (6) can be generalized to arbitrary

target locations by just replacing d* accordingly in the cost

function in (7). Given the present results, it is conceivable that a

similar complementary performance could be observed for the

two-stage BMI in the case where more targets are present,

especially given that in this case it will be harder for either stage

alone to result in accurate performance (for example the first stage

needs to decode one out of more targets). Investigating the

behavior of the decoder in experimental setups with more target

locations will be a valuable future research direction.

Finally, in our work we use the target onset and ‘‘go’’ cues to

indicate the boundaries between baseline, plan, and movement

epochs as is typically done in BMI experiments [73]. For a BMI to

be truly autonomous, however, such epochs should also be

detected based on the neural activity (see, e.g., [73]). Hence

extending our approach to also detect the movement epoch based

on the neural activity will be a future research direction.

Number of Neurons Required for Accurate Target
Prediction

To find the number of neurons that were sufficient to obtain an

accurate target prediction during the delay period, we performed a

single neuron analysis in which the spiking activity of a single

neuron was used to decode the target (Figure S1). We then sorted

the neurons based on their single-neuron accuracies. From the

sorted set, we selected different number of neurons and performed

the decoding analysis for them. For example the decoding analysis

for two neurons was done for the two neurons with the highest

single neuron accuracies. Doing so, we found the target prediction

accuracy as a function of the number of top cells included in the

decoding. We found that on average across sessions only 17+6%

of the neural ensemble or 3.3+1.0 neurons were sufficient to

obtain a prediction accuracy higher than 90% of the ensemble

accuracy.

Roughness Coefficient
The roughness coefficient for a sequence is an indicator of how

smooth it is [64]. For a sequence d1, � � � ,dT , it is defined as

r~

PT
t~2 (d t{dt{1)2PT

t~2 (d t � �dd)2

where �dd denotes the mean of the sequence. It can also be

generalized to the vector case by writing
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r~

PT
t~2 Edt{dt{1E2PT

t~2 Edt{�ddE2

For a trajectory of duration T this provides a measure of

smoothness where smaller coefficients correspond to smoother

trajectories. In this case dt corresponds to the position vector at

time t.

Supporting Information

Figure S1 Neuron dropping analysis. (A–D) Activity of a

single neuron under the four targets in one training session. In the

top figure, each row corresponds to a different trial and the black

dots indicate the spike times. The bottom figure shows the

corresponding firing rate. Activity is aligned to the target

presentation time and vertical dashed lines indicate the target

presentation and ‘‘go’’ cue times. The target prediction accuracy

(leave-one-out cross-validation) of this neuron is 65%. (E) Target

prediction accuracy as a function of the number of top neurons.

The solid lines show the target prediction accuracy of six training

sessions as a function of the number of neurons included in the

prediction (The curve for each session is shown in a different color

for clarity). Neurons were sorted based on their single neuron

accuracy. Chance level accuracy for target classification is 25%.

(TIF)

Figure S2 Offline SNR comparisons. The bars show mean

quantities and the error bars show the standard deviation (s.d.)

around the mean across sessions. SNR is obtained from the

training sessions using leave-one-out cross-validation.

(TIF)

Figure S3 Offline accuracy of the two-stage decoder on
the training sessions data. Accuracies of the two-stage

decoder, the first stage target prediction, and the RW-PPF (i.e.,

the second stage without using the target prediction) on the

training sessions joystick movements are shown. The bars show

mean quantities and the error bars show the standard deviation

around the mean across sessions. Comparisons of the RMS error

and the smoothness of the decoded trajectories for the two-stage

decoder and RW-PPF are given in Figure 2. Note that target

prediction, unlike the two-stage, RW-PPF, and the linear

regression decoders, does not generate an estimated trajectory.

(TIF)

Figure S4 Comparison of the trajectory estimates. For

completeness, we also found the accuracy of the ridge regression

decoder on the same real-time BMI data set. It is important to

note, however, that since the performance of the ridge regression

here is found offline, it is likely lower from its performance if used

in real time and practiced by the monkey. The black line shows the

trajectory estimate of the real-time BMI. The blue line shows that

of RW-PPF using only the peri-movement activity, and the red

line shows that of a linear ridge regression decoder, both run

offline but using the same real-time data set as the BMI. (A)

Sample trials in which the ridge regression decoder is correct. (B)

Sample trials in which the ridge regression decoder is incorrect.

The average accuracy of the linear ridge regression decoder on the

BMI data sets was 50611% (mean 6 s.d; c.f. Figure 5A).

(TIF)
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