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Abstract

Increased air traffic demand over the past two decades has resulted in significant increases in surface
congestion at major airports in the United States. The overall objective of this thesis is to mitigate
the adverse effects of airport surface congestion, including increased taxi-out times, fuel burn, and
emissions. The thesis tackles this objective in three steps: The first part deals with the analysis of
departure operations and the characterization of airport capacity; the second part develops a new
model of the departure process; and the third part of the thesis proposes and tests, both on the
field and in simulations, algorithms for the control of the departure process.

The characterization and estimation of airport capacity is essential for the successful manage-
ment of congestion. This thesis proposes a new parametric method for estimating the departure
capacity of a runway system, the most constrained element of most airports. The insights gained
from the proposed technique are demonstrated through a case study of Boston Logan International
Airport (BOS). Subsequently, the methodology is generalized to the study of interactions among
the three main airports of the New York Metroplex, namely, John F. Kennedy International Air-
port (JFK), Newark Liberty International Airport (EWR) and LaGuardia Airport (LGA). The
individual capacities of the three airports are estimated, dependencies between their operations are
identified, and the capacity of the Metroplex as a whole is characterized. The thesis also identifies
opportunities for improving the operational capacity of the Metroplex without significant redesign
of the airspace. The proposed methodology is finally used to assess the relationship between route
availability during convective weather and the capacity of LGA.

The second part of the thesis develops a novel analytical model of the departure process. The
modeling procedure includes the estimation of unimpeded taxi-out time distributions, and the
development of a stochastic and dynamic queuing model of the departure runway(s), based on the
transient analysis of D(t)/Ek(t)/1 queuing systems. The parameters of the runway service process
are estimated using operational data. Using the aircraft pushback schedule as input, the model
predicts the expected runway schedule and the takeoff times. It also estimates the expected queuing
delay and its variance for each flight, along with the congestion level of the airport, sizes of the
departure queues, and the departure throughput. The model is trained using data from EWR in
2011, and is subsequently used to predict taxi-out times at EWR in 2007 and 2010.

The final part of this thesis proposes dynamic programming algorithms for controlling the
departure process, given the current operating environment. These algorithms, called Pushback
Rate Control protocols, predict the departure throughput of the airport, and recommend a rate at
which to release pushbacks from the gate in order to control congestion. The thesis describes the
design and field-testing of a variant of Pushback Rate Control at BOS in 2011, and the development
of a decision-support tool for its implementation. The analysis shows that during 8 four-hour test
periods, fuel use was reduced by an estimated 9 US tons (2,650 US gallons), and taxi-out times
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were reduced by an average of 5.3 min for the 144 flights that were held at the gate. The thesis
concludes with simulations of the Pushback Rate Control protocol at Philadelphia International
Airport (PHL), one of the most congested airports in the US, and a discussion of the potential
benefits and implementation challenges.

Thesis Supervisor: Hamsa Balakrishnan
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The significant increase in air traffic demand in the United States over the past two decades has

been accompanied by an increase in flight delays. A detailed analysis of domestic air traffic delays

in 2007 by the Joint Economic Committee of the U.S. Senate found that these delays had a $41

billion impact on the nation’s economy [65]. The study also estimated that while the major portion

of these delays were absorbed when flights were still at their gates, 20% of the delays were incurred

as flights were taxiing out to the runway. While some delays, such as those due to extreme weather

events, are unavoidable, others can be significantly decreased through better planning and control.

Delays caused by an imbalance between available capacity and demand, or delays due to congestion,

fall into this category. Operational data shows that in the past decade, more than 15% of National

Airspace System (NAS) flight delays have been due to terminal-area volume, or congestion around

airports [43]. These delays were incurred when the airports were operating in their optimum

configuration, and there were no other impacting conditions. Delays at major airports have also

been seen to propagate to large parts of the system [93]. In addition to the increased taxi-out

times and delays, airport congestion results in increased fuel burn, emissions, and noise and air

quality impacts [21, 82, 85, 107, 129]. The overarching objective of this thesis is the development

of approaches for the reduction of the adverse impacts of airport congestion, through the analysis,

modeling, and control of the departure process.

1.1 Motivation

Airport surface congestion has several undesirable impacts, the most noticeable of which is the

increase in taxi-out times. An analysis of operations in the year 2007 at John F. Kennedy (JFK),
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Newark Liberty (EWR) and Philadelphia (PHL) airports showed that they experienced surface

congestion, that is, there were more than enough active flights to sustain departure throughput at

the airport, 10% to 20% of the time (we will formalize this notion of congestion later in this thesis)

[108]. During these periods of congestion aircraft also experienced very high taxi-out times. For

example, even under Visual Meteorological Conditions (VMC), the average taxi-out time at JFK

was 56 min when the airport was congested, while the unimpeded taxi-out time at JFK was only

16 min in VMC. Similarly, the average taxi-out time at PHL was 38 min when the airport was

congested in VMC, while the unimpeded taxi-out time was only 12 min [108].

Figure 1-1 shows the nature of surface congestion during evening operations at PHL1 [102].

Aircraft taxiing out are depicted in green, and aircraft taxiing in are shown in red. Runway 27L,

highlighted with a green arrow, is the departure runway and Runway 27R, highlighted with a red

arrow, is the arrival runway. There are approximately 22 aircraft (AC) in the three queues forming

near the threshold of the departure runway. We note that it is quite difficult to quantify the exact

length of the departure queue, as the 35 aircraft taxiing out seem to be dispersed across multiple

taxiways.

Figure 1-1: Departure queue of Runway 27L at PHL [102].

We use data from the Aviation System Performance Metrics (ASPM) database [38] of the

1The visualizations used surface surveillance data from the Airport Surface Detection Equipment – Model X, or
ASDE-X system [37].
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Federal Aviation Administration (FAA) to further investigate the congestion problem at PHL. In

the upper plot of Figure 1-2, we show the average number of pushbacks and the average number

of takeoffs (or departures) that was recorded during each 15-minute time window for all days that

this runway configuration was in use in 2011. We also show the average departure capacity of this

runway configuration of PHL, which is estimated to be 13 AC/15 min, as it will be shown in this

thesis. This plot illustrates the imbalance between pushback rate and departure rate. While the

average departure throughput is constrained by the capacity of the airport, the demand (pushback

rate) can be much higher. The impact of this imbalance on taxi-out times is seen in the lower plot

of Figure 1-2, where the average taxi-out times for the flights that pushed back in each 15-minute

time window are shown. The figure clearly shows the correlation between excessive pushback rates

and large taxi-out times.
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Figure 1-2: Average number of pushbacks, average number of takeoffs and departure capacity per
15 minutes at PHL in 2011 (top); Average number of pushbacks per 15 minutes and average taxi-out
times (bottom).
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Figure 1-2 summarizes some of the challenges that motivate the work in this thesis. The first

question relates to the estimation of the departure capacity of an airport and its distribution under

different conditions. It is also desirable to identify opportunities for its improvement, since it is

well known that a small increase in capacity can yield large reduction in taxi-out delays [30, 57].

The characterization of the relationship between airport congestion and taxi-out delays is the next

objective. Understanding this relationship would help us predict the taxi-out delays that result

from the imbalance between demand and capacity, as shown in Figure 1-2. The final challenge

is the development of control algorithms that will reduce the impacts of ground congestion, by

appropriately regulating pushbacks. Our ultimate goal is to develop tools for the current system

that improve the efficiency and predictability of the departure process, and thereby reduce excessive

taxi-out times and the associated costs (fuel burn, emissions and controller workload). The proposed

approaches do not assume the presence of perfect information and 4D trajectory conformance, but

instead try to achieve efficient planning under existing conditions and levels of technology.

1.2 Background and literature review

1.2.1 Characterization of airport capacity

Quantifying the number of arrivals and departures that can be serviced at an airport is important

for both strategic planning purposes and tactical air traffic management. Airport capacity is one

of the most important inputs for air traffic flow management programs employed in practice by the

FAA [34] and proposed in research [12, 121]. It is also the fundamental input for studies aimed at

addressing the costs of air traffic delays [94, 125]. Despite the importance of the runway capacity,

there is no method available for a simple, consistent and generalizable quantification of airport

capacity. Instead, the FAA relies on heuristic estimates of runway capacity based on controller

experience and facilities’ preferences [40, 41].

Despite the usefulness of the current rules derived by operational experience, the lack of a

scientific approach in assessing the capacity of an airport can lead to misconceptions. For example,

recent slot limitations at EWR restricted the total number of movements in the airport to 81

movements/hour without differentiating between arrivals and departures [36]. However, this thesis

will show that the capacity of EWR is best defined as a function of departure and arrival capacity,

and not merely their sum. Another common approach is to study congestion pricing under the

assumption that all users impose the same external marginal cost on other users, all else being
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equal [35]. However, this thesis will show that the external marginal cost of a specific type of user

can differ significantly depending on the specifics of the airport. Such differences must be identified

before being used for the design of policy instruments.

Runway capacity estimation

It has been shown that the most fundamental quantity that characterizes the performance of the

airport is its runway capacity, since the main throughput bottleneck at an airport is the runway

system [61]. Along the same lines, runway capacity has been shown that it is the predominant

cause of the most extreme instances of delays [8]. Thus, the capacity of an airport is in most cases

synonymous of the capacity of the runway system.

The most influential work in the area of the empirical measurement of the capacity of an airport

is that of Gilbo [49], in which he proposed a quasi-statistical procedure for estimating the capacity

envelope of a single airport, for a given runway configuration. 15-minute arrival and departure

counts were used to estimate the capacity envelope as the convex hull of the scatter of the counts

after correcting for outliers. Frequency-based filtering was employed to eliminate outliers. Along

similar lines, Ramanujam and Balakrishnan proposed a systematic statistical approach for estimat-

ing intra- and inter-airport capacity envelopes from observed data by applying quantile regression

[97]. In the above-referenced papers, the capacity envelope was estimated using statistically sig-

nificant maximum counts of the movements. These estimated counts are probably achievable only

under certain circumstances, such as a favorable fleet mix, or favorable operations sequencing.

Thus, the estimated values do not represent expected number of movements, but rather the upper

bounds for the number of movements. In addition, these estimates of airport capacity do not reveal

its variance, caused by factors such as fleet mix, weather and airspace restrictions.

Theoretical methods have also been employed for measuring the capacity of the runway system

[30]. However, they heavily rely on stylized models and assumptions which tend to vary among

different airports. One such example is that wake vortex separation is the prevalent determining

factor for the departure capacity. It turns out, that in many cases, airspace constraints are more

important than wake vortex separation constraints, as it will be shown in this work. Thus, in

certain cases, stylized models can over-estimate the capacity. Theoretical models provide a very

good benchmark for identifying opportunities for improvement by comparing their estimates to the

empirical ones [64].
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New York Metroplex capacity estimation

A critical component of the NAS is the airport system of New York, comprising John F. Kennedy

International Airport (JFK), Newark Liberty International Airport (EWR), LaGuardia Airport

(LGA), and smaller regional airports. According to the Government Accountability Office (GAO),

41% of total delayed departures and 47% of the total delay in the NAS in 2009 were attributed to the

three major US airports (JFK, EWR and LGA) [124] . In response, the Regional Plan Association

laid out a comprehensive plan with options for adding capacity and reducing delays in New York

airspace [130]. Many researchers have recommended several solutions for improving the imbalance

between demand and capacity in the three New York airports [9, 93, 126]. Despite the great level of

interest that the major New York airports have attracted from the operations, research and policy

communities, few systematic studies have estimated the capacity of the individual airports as well

as the Metroplex.

1.2.2 Modeling of departure operations

Prior work on the modeling of the departure process at airports can be broadly classified into

three groups. The first group focuses on computing runway-related delays under dynamic and

stochastic conditions [71, 81, 94]. This runway-centric approach is justified by the observation that

the main throughput bottleneck at an airport is the runway system [61]. This approach views the

runway complex of an airport as a queuing system whose customers are aircraft that need to land

or takeoff. The models are then used to predict the expected system behavior, and their results

are typically most useful for long-term planning (for example, estimating the expected reduction

in delays from the construction of a new runway), or for estimating the network propagation of

local disruptions, such as thunderstorms. However, their level of abstraction is too high for studying

taxi-out reduction algorithms, or for predicting taxi-out times for individual flights. For this reason,

these models are typically used to estimate “treatment effects” in the entire NAS. The models are

used to calculate a baseline and then estimate the effect of network modifications, disruptions to the

system, scenarios of traffic demand, future technologies, or next-generation operations by comparing

the results of the test scenario to the baseline scenario. However, the simplifying abstraction of

modeling the airport as a runway server may influence these calculations. Recent research has also

shown that airspace constraints and downstream restrictions can also lead to significant delays in

the NAS [31, 32, 100]. In addition, these models use a Poisson process for modeling the aircraft
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service requests at the runway server, which may be an appropriate approximation for landings

[128], but has not been validated for departures. Recently, it was shown that simulating the service

requests with a less random process, that is, one with smaller support and variation around the

expected value, predicts both expected delays and their variability in congested airports [62].

The second category of prior research focused on predicting taxi-out times. Shumsky developed

a model to predict taxi times using a variety of explanatory variables such as the airline, the

departure runway and departure demand [104, 105]. He also developed a queuing model for the

runway service process. However, the queuing model was based on cumulative behavior and did

not reflect the stochastic nature of the process [104]. Idris et al. analyzed the main causal factors

that affect taxi times and based on this analysis, they developed a statistical regression model to

predict taxi times [58], as part of Departure Planning Project [47]. That work did not explicitly

model the runway service process, and so could not link the excessive taxi times with the capacity

constraints. It could therefore not be used for strategic surface flow management applications such

as the one considered in this thesis, where we like to consider gate-to-runway traffic states, and

determine how surface queues can be managed in order to reduce taxi-out times.

In contrast, Pujet et al. extended some these notions to predict taxi times using a simple

stochastic queuing model [92]. They assumed that an aircraft needs a certain (fixed) amount of

time, defined to be the travel time, to reach the departure runways. In their model, upon reaching

the departure runways, aircraft line up in the runway queue, where they get served by the runway

server according to a probabilistic service process. Pujet et al. estimated the travel time for each

flight based on several casual factors and also modeled the probabilistic service process. Given a

pushback schedule, the estimated taxi-out time is the sum of travel time and the wait time for

service (takeoff) at the runway queue. In earlier work, we provided with a more complete queuing

model of the departure process, by using better unimpeded taxi-out time estimations, new models

for the runway server(s) and the ramp and taxiway delays [107]. However, none of the above

surface models account for the impact of arrivals nor the air traffic flow management programs,

although it has been shown that they have a high impact on taxi-out times [59]. In addition, these

models simulate the runway service process using random number generators and thus the output

is just a random sample path. Multiple runs are necessary in order to obtain statistically significant

estimates.

Based on the progress of work on surface models, some queuing models of the NAS have tried to

incorporate a ground component instead of just modeling the airport as a runway server [24, 79, 127].
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In particular, the Detailed Policy Assessment Tool (DPAT) built on this approach by adding a

stochastic component for the taxiway related delay [127]. This resulted in the first system-wide

model to include delays that are not related to the runway queuing time. However, the runway

module of DPAT is a deterministic one and the taxiway delay is a user-input. It is not shown

how it can be derived, or modeled to reflect the actual taxiway-related delays. In LMINET [79],

taxiway delays are modeled by an M/M/1 queue. The assumption that the taxiway system can

be modeled as a single server with exponential service rate is debatable. Moreover, the runway

related delay model in LMINET is not validated by empirical data. In summary, both DPAT

and LMINET suffer from oversimplifying assumptions in the runway-and-taxiway-related delay

estimation, representation and prediction. It must be noted that the airport modules of these

models have not been fully validated. We hypothesize that such models will not be able to predict

taxi out times accurately and as a result, delays may be estimated inaccurately. This inaccuracy

may also result in errors in the estimation of the network-wide effects of airport delays.

Finally, a third body of work involves the microscopic modeling of all airport components, such

as the Airport and Airspace Simulation Model (SIMMOD) and the Total Airspace and Airport

Modeler (TAAM) [87]. These tools model the layout of an airport, the operating rules for every

aircraft type, and the dynamics of every gate, taxiway and runway with high fidelity. They need

extensive adaptation of both the airport layout and the traffic scenarios so as to generate statistically

significant results. It is therefore difficult to use them to perform a probabilistic analysis of the

departure process or to test new strategies, such as control of the departure process for emissions

reduction, because this would require simulating them over long periods of time [87].

Unimpeded taxi-out estimation

There has been relatively little prior analysis of unimpeded taxi times at airports. Unimpeded

taxi-out times are very crucial in understanding the performance of the airports [108], as they need

to be subtracted from taxi-out times in order to estimate taxi-out delays. They are also crucial for

modeling the departure process.

The FAA defines the unimpeded taxi-out time as the taxi-out time under optimal operating con-

ditions, when neither congestion, weather nor other factors delay the aircraft during its movement

from gate to takeoff [88]. The unimpeded taxi-out time is redefined in terms of available data as

the taxi-out time when the departure queue is equal to one and the arrival queue is equal to zero. A

linear regression of the observed taxi-out times with the observed departure and arrival queues is
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then conducted, and the unimpeded taxi-out time is estimated from the linear regression equation

by setting the departure queue equal to 1 and arrival queue equal to 0 [46].

Idris et al. [58] observed that (1) there is poor correlation of the taxi-out times with arriving

traffic, and (2) the taxi-out time of a flight is more strongly correlated with its takeoff queue than

the number of departing aircraft on the ground. The exact dependence of the taxi-out time of an

aircraft with the takeoff queue, and how this dependence can be used for estimating the unimpeded

taxi-out time, both remain unanswered questions.

Nevertheless, researchers have proposed solutions for better estimating the unimpeded taxi-out

time [20, 92]. However, all of these methods are heuristic improvements of the FAA method. For

example, Pujet [92] extended the method of FAA to consider a range of values 0-2 of the departure

queue. He also derived distributions instead of point estimates. We used a method based on the

concept of the takeoff queue, but we assumed normally distributed errors around the estimated

value [107]. However, it is known that unimpeded taxi-out times are not normally distributed in

practice [70, 92].

We also note that the recently available ground surveillance (ASDE-X) data enabled the ex-

traction of unimpeded taxi-out times by directly estimating the time an aircraft needs to cross a

taxiway link conditioned on this link being free of other traffic [70, 77]. ASDE-X coverage is poor

in the ramp area, and thus it renders ASDE-X data use unreliable for extracting the unimpeded

travel time from the gate to runway. In addition, we would like to develop a more general method

which does not need to rely on readily-available ASDE-X data capability.

1.2.3 Optimization of the departure process

Taxi-out time optimization

In most recent research, the control of the airport departure process is formulated as a surface

traffic optimization problem [75]. In these formulations, the airport taxiway system is modeled as

a network of links and nodes. In this node-link model, nodes represent significant control points on

the airport surface, such as gate locations, runway entry and exit points, intersections of taxiways,

and holding spots for clearance. The taxiway segments between two points on the surface are

represented as links between the respective nodes. Flights get routed through the network from a

starting to an ending point. If the flight is a departure, the starting point is its gate and the ending

point is the assigned departure runway. The surface traffic optimization problem is formulated as
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a scheduling or routing problem for the flights through the network. The objective of this problem

is to minimize taxi delay given a runway schedule. The optimization is performed by choosing

between alternative routes through the network, by scheduling the passage times on the nodes, or

a combination of both.

This optimization problem is typically solved as a Mixed Integer Linear Programming (MILP)

problem. Smeltink et al. were the first ones to develop a MILP model to determine the movement

of taxiing aircraft and meet basic safety and operational constraints for the Amsterdam airport

[115]. The model, however, had long computation times and missed some constraints such as the

runway occupancy time. Rathinam et al. improved Smeltink et al.’s model and applied their

approach to simulations at Dallas Fort Worth (DFW) airport [98]. They incorporated more oper-

ational constraints, such as the aircraft type for wake vortex separation requirements. However,

the model, tested with empirical data, showed very long computation time for high density traffic.

Balakrishnan and Jung proposed an integer programming formulation for optimizing surface opera-

tions at DFW by adapting the Bertsimas and Stock-Patterson formulation [12] for the Traffic Flow

Management Problem [7]. Through simulations with actual DFW airport data, they evaluated two

strategies for improving the taxi times; controlled pushback and taxiway reroutes. This model im-

proved the formulation for the surface operations optimization and its computational performance,

but did not account for several operational restrictions such as overtaking constraints and collision

avoidance at intersections. This formulation was further refined by Lee and Balakrishnan who

considered additional operational constraints [75].

This problem has, in its general form, been shown to be NP-hard [12, 115]. Practical imple-

mentations consider scheduling a small number of operations, typically 20-30 flights at a time. The

problem of scheduling a day of traffic at an airport is recast as a rolling-horizon problem, with a

typical horizon being 15 minutes. In other words, the solutions are open-loop policies subject to

periodic reoptimization. It is not clear how suboptimal the rolling-horizon solution is with respect

to the global solution. The robustness of the optimal solutions has not been extensively investi-

gated. In addition, perfect information of the location and the intent of all aircraft on the surface,

deterministically known schedules, and, in many cases, ability of the decision maker to instanta-

neously set and change aircraft states and speeds are assumed. It is not analyzed how well these

algorithms would perform in a dynamic environment in the presence of uncertainties, or unexpected

events, such as an aircraft taking too long to pushback, a mechanical problem, a datalink failure, a

safety incident, a temporary runway closure, etc. In related work, we have shown that applying the
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optimized schedule without enforcing pilot conformance to the specified arrival time at the network

nodes can end up being suboptimal even compared to current operations [76].

There has been little work on the stochastic optimization of the taxiing operations. One possible

reason for this is that the variability of the underlying processes is of the same order of magnitude

as the quantity to be optimized. For example, if the duration of the pushback process is uniformly

distributed between 2 and 5 minutes, and the optimized taxi-times are in the order of magnitude

of 15 minutes, it may be very hard, or not really useful to formulate the problem as a stochastic

routing problem through a network where inter-arrival times at successive nodes are as short as 30

seconds. Another challenge is that the computation requirements of the stochastic formulation of

this problem can be prohibitive.

There have also been a few alternative, non-MILP formulations to this routing problem. For

example, Gotteland et al. use genetic algorithms to choose between alternative taxi routes [50], and

Trani et al. use Time-Dependent Shortest Path techniques [122]. However, little has been shown

about the optimality, performance or robustness of these approaches.

Optimization of runway operations

A problem closely linked to the control of taxi times is that of runway operations scheduling.

Clearly, a more favorable runway schedule yields higher throughput and consequently shorter taxi

times for the aircraft in the sequence. In contrast, bad sequencing at the runway will mean higher

taxi times for everyone and could diminish any benefits of taxi-out time optimization or control.

Nowadays, runway scheduling at all major airports is mostly done on first-come-first-serve

(FCFS) basis. Air traffic controllers consider heuristic deviations from the FCFS discipline in order

to increase departure throughput2. For example, in Figure 1-1, we observe three queues feeding the

departure runway. Air traffic controllers at PHL feed aircraft in different queues so as to increase

opportunities for dispersal headings and improve the departure throughput of the airport [99].

In the research literature, the problem of scheduling runway operations has been particularly

studied for the case of landings. It has been shown that the problem of optimal runway operations

sequencing is in its general form NP-hard [10]. However, for practical applications, one only needs to

consider deviations from the FCFS discipline only within a specified maximum number of positions.

Such a policy is called constrained position shifting (CPS). The CPS problem has complexity that

scales linearly with the number of aircraft [6]. The CPS framework has also been extended for

2Interviews with air traffic controllers from the BOS and PHL Air Traffic Control Tower facility.
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robust runways operations planning allowing for uncertainty in the estimated time of arrival (ETA)

of an aircraft [22].

The problem of scheduling and sequencing departures at a runway exhibits significant differences

from the problem of landings. In the case of the landings, all aircraft are airborne and have an ETA

at the runway. This ETA can be assumed to be deterministic or probabilistic and the scheduling

and sequencing can be efficiently formulated as a dynamic programming recursion, as discussed

previously [6, 22]. However, in the case of departures, the ETA of aircraft at the runway is also

a decision variable. If a taxiway planner is available, it will attempt to minimize taxi times by

delaying flights at the gate as long as possible. Furthermore, estimating the time of arrival at the

runway of a departing aircraft after clearing it for pushback is a much harder problem. As we shall

see, the inherent uncertainties are much larger. These systematic uncertainties are mitigated today

by ensuring that there is a large pool of aircraft available for takeoff. This is at odds with the

taxiway planner, which would attempt to minimize the number of aircraft on the surface. Finally,

departures scheduling has occasionally to be traded with other events, like runway crossings, or

arrivals scheduling. These additional constraints are absent from the arrivals scheduling problem,

because arrivals are by default given priorities over these events.

There is relatively little work in the literature addressing the peculiarities of the departure

scheduling problem. Anagnostakis et al. addressed some of them, by incorporating constraints such

as runway crossings, minutes in trail, miles in trail and Expect Departure Clearance Time (EDCT)

requirements in the departures scheduling problem [1, 2, 3]. In particular Anagnostakis and Clarke

proposed a two stage solution approach: In the first stage, the optimal weight class sequencing is

heuristically determined. In the second stage, individual aircraft are assigned to available weight

class slots. The first stage maximizes throughput and the second stage minimizes individual aircraft

delay [1, 2]. Balakrishnan and Chandran proposed algorithms for departure scheduling in the

presence of position shift constraints [5]. However, the suggested heuristics and algorithms were

deterministic planning tools. More recently, a stochastic departure runway planning tool was

proposed by Solveling et al. [117] extending the two-stage deterministic approach proposed by

Anagnostakis and Clarke. This was the first stochastic planning tool tailored to the problem of

departures scheduling addressing the uncertainty of the pushback process, the taxiing process and

the time of arrival of landing aircraft. Nonetheless, it did not incorporate restrictions from air traffic

flow management programs. Additionally, the proposed algorithm had very high computational

cost, and an approximate solution could be found only for small sequences of flights, such as eight
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flights. For this reason, a rolling horizon approach was implemented.

Integration of taxiway and runway operations

While the problems of taxiway and runway operations optimization are clearly coupled, most works

have treated them separately. On the optimization front, there is one previous example of combining

a taxiway and a runway planner. As part of the NASA Airportal project [23], the taxiway planner

of Lee and Balakrishnan [75] was sequentially combined with the runway planner of Solveling

et al. [117]. The runway planner produced an optimal runway schedule, and the taxiway planner

minimized the taxi times that achieved the prescribed runway schedule. Preliminary results suggest

that the taxiway planner provided the most benefit in terms of reducing taxi-out time, that the

runway planner detracted from the positive effects of the taxiway planner, and that a FCFS runway

scheduler is sufficient for the traffic scenarios examined [52].

On the taxi-time control front, runway operations are typically viewed as a constraint that the

control algorithms must not violate: The taxi times must be controlled with sufficient robustness

so that there is always sufficient demand at the runway threshold. With the exception of the work

of Burgain [15], authors do not explicitly quantify what this sufficient demand is, but rather give

some conditions which are supposed to guarantee persistent demand at the runway. The problem

of synergistically reducing both the taxiway and runway inefficiencies is not examined.

1.2.4 Control of departure processes

In the realm of air traffic flow management, there is a class of alternative models to the ones that do

aircraft-based optimization. These models, called Eulerian models, are concerned with the optimal

control of the flow of aircraft, rather than the trajectory of individual aircraft. Eulerian models

only deal with aircraft counts in specific control volumes of airspace rather individual aircraft

trajectories, and are more tractable for the purpose of control [74, 101]. However, these dynamic

control approaches have not been applied to the aircraft flow on the surface of the airport.

An airport congestion control strategy in its simplest form would be a state-dependent pushback

policy aiming at reducing congestion on the ground. One such approach is the N-Control strategy.

N-Control is one implementation of the virtual queue concept described in the Departure Planner

[47] and variants of it have been extensively studied [16, 19, 20, 92]. The main idea behind N-

Control is an observation of the performance of the departure throughput of US airports: As

more aircraft pushback from their gates onto the taxiway system, the throughput of the departure
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runway initially increases because more aircraft are available in the departure queue. However, as

this number, denoted N , exceeds a threshold, the departure runway capacity becomes the limiting

factor, and there is no additional increase in throughput. We denote this threshold as N∗. The

dependence of the departure throughput on the number of aircraft taxiing out is illustrated in

Figure 1-3 using ASPM data from 2011 for runway configuration (VMC; 31 | 4) of LGA. Beyond the

threshold N∗, any additional aircraft that pushback simply incur taxi-out delays without increasing

the airport throughput [107].
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Figure 1-3: Departure throughput as a function of the number of aircraft taxiing out, for the (VMC;
31 | 4) configuration at LGA

The policy is effectively a simple threshold heuristic: If the total number of departing aircraft

on the ground exceeds a certain threshold, Nctrl, where Nctrl ≥ N∗ , stop dispatching aircraft

requesting pushback until the number of aircraft on the ground drops below the threshold. While

the choice of Nctrl must be large enough to maintain runway utilization, too large a value will be

overly conservative, and result in a loss of benefits from the control strategy. Such a policy aims

at preventing excessive congestion and is already heuristically in use by air traffic controllers [25]

during excessively congested situations.

The N-Control policy is also closely related to the constant work-in-process (CONWIP) policy

in manufacturing systems. The main benefits of CONWIP systems are their simplicity, imple-

mentability and controllability [118]. This approach presents an efficient way to control congestion
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by accepting an adjustable risk of capacity loss. The N-Control strategy has been shown through

several simulation studies to have similar properties.

More complex policies which attempt to attain some optimization objective have not been

considered for surface traffic until recently. In 2009, Burgain et al. used more advanced modeling

and optimization tools for the characterization of optimal pushback policies. More specifically, they

modeled the airport surface with a state space model, and characterized optimal pushback policies

as a function of the state of the system, and not just the total number of aircraft on the ground [17].

The optimal policies considered were full-state feedback policies, which faced some implementation

issues [15]. This control protocol was a generalization of the N-Control strategy, in which, at each

minute, the state of the surface was mapped to an on-off input signal.

All the above policies (N-Control, CONWIP systems, and Burgain et al.’s refinements of N-

Control) can be classified as token-based, or surplus-based policies [48]. In these approaches, every

state transition generates a token, an action or a signal, which is applied at the input to the system

(the pushback process). Equivalently, every state transition translates to a new surplus level (or

lack thereof) at different buffers of the system, which implies a different flow of input into the

system. More general approaches can be found in the literature on the dynamic control of queuing

systems.

There has been much prior research on the optimal control of a variety of queuing systems,

considering different decision variables and control objectives [29, 78, 80, 119, 120]. In the modeling

framework of Low [80] and Lippman [78] , the state of the system is the number of customers in the

system. A holding cost hi is incurred per unit time that the system is in state i and a reward (or

entrance fee) pλ is received (paid) whenever a customer enters the system at a point in time when

the arrival rate is λ. hi is assumed to be convex and non-decreasing. Then, it can be shown that

the optimal λ is a non-decreasing function of the state i. This formulation can be easily modified so

as to yield optimal policies with respect to performance measures such as throughput, congestion,

or a combination of the two.

Several challenges remain when attempting to apply results from queuing, manufacturing and

inventory control in the context of controlling the departure process. Firstly, on-off or event-driven

control policies for controlling the pushback process are difficult to implement in practice. Both

the air traffic controllers and the airlines would prefer a state-dependent pushback rate that would

be valid for a predefined time period, after which it would be updated. Air traffic controllers prefer

such periodically updated pushback rate recommendations for workload and procedural reasons,
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and airlines prefer them because of their predictability, which is essential for planning ground crews.

Secondly, the control input is applied at the gates during pushback, whereas the main bottleneck is

the runway. The control strategy cannot be applied directly at the runway queue, but instead has to

accommodate stochastic taxi-out times between the gate and the runway. Factors that contribute

to the stochasticity of taxi-out times include the pushback process, flight checklists, communication

delays, and variable taxi speeds.

For all of the above reasons, the N-Control strategy has not been applied as such in the airport

context. Researchers have developed several heuristic modifications of it for field-testing customized

for different airport environments and requirements. Characteristic examples of these efforts are

the metering of departures at New York JFK airport by PASSUR Aerospace, Inc. [86], the field

evaluation of the Collaborative Departure Queue Management concept at Memphis (MEM) airport

[14], the human-in-the-loop simulations of the Spot and Runway Departure Advisor (SARDA) con-

cept at DFW airport [66] and the trials of the Departure Manager (DMAN) concept [13] in Athens

International airport (ATH) [103]. During summer of 2010, we also developed and successfully

tested such a heuristic, the Pushback Rate Control protocol (henceforth referred to as PRC v1.0)

[110]. However, none of these efforts, which are essentially different variants of N-Control [85], have

explicitly estimated the stochasticity of the underlying processes, and developed algorithms that

explicitly attain certain objectives.

Finally, when applying results from queuing theory to congestion control, another critical issue is

that the service times are not exponentially distributed [55, 107, 113]. Researchers have considered

modeling them as time-dependent Erlang distributions [55, 94, 113], time-dependent deterministic

distributions [73, 89], binomial [91], or multinomial distributions [15, 107]. However, to the best of

our knowledge, empirical service times have not been extracted to date from operational data.

1.3 Main contributions of this thesis

This research takes important steps towards better understanding, modeling and tactically man-

aging the airport departure process. The main contributions of the research are:

1. The development of a new method for the characterization and parametric estimation of

airport capacity.

2. The analysis of the capacity of the New York Metroplex through a detailed case study.
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3. The development of a new analytical model for predicting unimpeded taxi-out times, taxi-out

times and departure queuing delays.

4. The algorithmic development of a class of airport surface congestion control algorithms based

on dynamic programing, and their evaluation through simulations.

5. The detailed evaluation of the field-testing of an airport surface congestion control algorithm

at Boston Logan International Airport (BOS) in summer 2011.

The contributions are briefly described in the following sections.

Characterization and estimation of runway and airport capacity

We introduce a new concept for characterizing the capacity of an airport which we name operational

throughput envelope. This method measures the average departure throughput under persistent

departure demand as a function of the average arrival throughput. We show how the conditions

for persistent demand can be guaranteed and compare our results to other capacity estimation

methods. We apply the methodology to the estimation of the operational throughput envelope for

major airports with different layouts, such as Boston Logan International Airport (BOS), Newark

Liberty International Airport (EWR), LaGuardia Airport (LGA), John F. Kennedy International

Airport (JFK), Charlotte Douglas International Airport (CLT), and Philadelphia International

Airport (PHL). We also apply it for measuring the capacity of runway 17R of Dallas Fort Worth

Airport (DFW). In all these cases, we provide operational throughput envelopes that can be used

for better understanding the tradeoffs between arrival and departure operations at each airport,

for strategically planning of operations and for identifying opportunities for improvement.

We extend the operational throughput envelope method to estimate the dependence of the depar-

ture throughput on parameters other than the arrival throughput. We show with several examples

how the explanatory variables can be chosen for different airport environments and the insights

provided by the analyses. For the case of BOS, we show that the ratio of propeller-driven aircraft

in the fleet mix is a more significant explanatory variable of the departure throughput, than is the

arrival throughput. For EWR, we show that the departure throughput is relatively inelastic to the

fleet mix of the departing aircraft.

We also introduce a recently available data-source, the Route Availability Planning Tool (RAPT),

and explain how it can be used for estimating the throughput of LGA during convective weather.

In particular, we measure the impact of available airspace capacity on the operational throughput
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of the airport. To the best of our knowledge, this is the first study to use route availability informa-

tion, and not simply local weather conditions, to characterize the available capacity of an airport.

Portions of this work appeared in [110, 112].

Capacity analysis of the New York Metroplex

We then extend the parametric estimation methodology to study interactions among different

airports, in particular the three major airports of New York Metroplex, JFK, EWR and LGA. We

show that operations at one airport do not adversely impact operations at another airport of the

Metroplex. We attribute this due to the current airspace design and operational procedures, which

keep operations at the three airports segregated. We conclude by characterizing the capacity of the

Metroplex under different configurations and conditions. Portions of this work appeared in [112].

Departure process modeling

We introduce a method that estimates the taxi-out times as a function of the traffic in the airport.

From this, we extract an empirical distribution for the unimpeded taxi-out times. We then esti-

mate the parameters of the runway service process using operational data and derive probability

distributions for the service times of the process and the capacity of the airport. We then develop

a new stochastic and dynamic queuing model for modeling the queuing delay at the departure

runway(s), based on the transient analysis of D(t)/Ek(t)/1 queuing systems. The model takes as

input the pushback schedule, derives the expected runway schedule and yields the expected takeoff

times. It provides estimates of the average taxi-out times, the average queuing delays and their

variance for each flight, the congestion state of the airport, the load of the departure queue(s) and

the departure throughput.

To the best of our knowledge, this model is the first analytical model to provide estimates

for the variance of the queuing delays. The analytical model yields very accurate predictions for

the airports analyzed, EWR, PHL and CLT. We also show how Monte Carlo simulations can be

run using the proposed framework to derive distributions for the taxi-out times. We demonstrate

the superiority of the stochastic model compared to a deterministic one and show that there is

insignificant benefit added from running detailed Monte Carlo simulations in lieu of the analytical

model for estimating expected delays. Portions of this work are described in [26, 76, 113].
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Dynamic control of airport departures

Here, we take several important steps with regard to the control of the airport departure process.

Using the findings from the previous sections, we address three main challenges of controlling the

departure process: the random delay between control actuation (at the gate) and the server being

controlled (the runway), the stochasticity of the runway service process and the need to develop

control strategies that can be implemented in practice by human air traffic controllers. We propose

control algorithms that predict the departure throughput in the next time window, and recommend

a rate at which to release pushbacks from the gate in order to control congestion and the associated

taxi-out times, fuel-burn and emissions. We name such algorithms Pushback Rate Control (PRC)

strategies. We derive two control algorithms using dynamic programing and approximate dynamic

programming. To this end, we model the runway system as a semi-Markov process, and we introduce

two new queuing models for modeling the controlled departure process, the (M(t)|R)/Ek/1 and

(M(t)|R)/Ds/1 model. These models contribute to the literature of transient queuing systems

analysis, as they assume a deterministically known number of aircraft, R, randomly reaching the

departure runway during a predetermined time-window. The proposed approach is trained with

ASPM data, simulated at PHL airport and compared to other control policies. Portions of this

work appeared in [109].

Testing of a Pushback Rate Control Strategy

We also train the controlled queuing model using ASDE-X data, and visual observations from BOS

and derive optimal pushback strategies for this particular airport. We describe the field-testing of

one PRC strategy at BOS during summer 2011. In addition to providing optimal pushback rates in

a real time operational environment, we design and implement a decision support tool that is used

by air traffic controllers during the field testing. Finally, we simulate the “what-if” scenario and

provide an extensive evaluation of the congestion management scheme, the takeoff rate prediction

accuracy and the implementation. To the best of our knowledge, this work offers the only detailed

evaluation of congestion management techniques. Portions of this work were published in [110, 111].

1.4 Organization of the thesis

The thesis is organized as follows. Chapters 2 and 3 deal with the analysis of airport departure

capacity. In Chapter 2, we describe the methodology to derive the average throughput envelope
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and the parametric estimation of the departure capacity. We demonstrate the approach by using

the example of BOS. In Chapter 3, we perform a capacity analysis for the New York Metroplex,

including the average throughput estimation for EWR, LGA and JFK, and the parametric analysis

of EWR departure capacity and LGA capacity. We also study the interactions among the three

airports, and characterize the capacity of the Metroplex. In Chapter 4, we develop an analytical

model of the departure process, and test its performance in predicting delays at EWR. In Chapter

5, we develop an algorithm for the dynamic control of the departure process. We also describe

the field-testing of a Pushback Rate Control strategy at BOS, and give a detailed evaluation of

the field-test. In Chapter 6, we summarize our main findings and discuss future directions of

this research. The appendices provide additional examples and case studies, including analyses

of single runway performance at PHL and DFW, prediction of delays at PHL, and assessment of

infrastructure improvements at Charlotte International Airport (CLT).
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Chapter 2

Characterization and Estimation of

Airport Capacity

The capacity of an airport is typically measured by the average number of movements that can be

performed on the runway system in the presence of continuous demand [30]. The runway system

is shared by departures and arrivals, and therefore the capacity of a runway system is represented

by the number of operations achieved at specific arrival/departure mix ratios, also known as the

capacity envelope [30].

In this chapter, we propose a new methodology for estimating and representing the capacity

envelope of a runway system. We also show how this methodology can be used to measure and

visualize the departure capacity conditioned on several explanatory variables, such as fleet mix,

arrival throughput etc. We first illustrate the steps involved by applying the proposed framework

to ASPM data [38] from Boston Logan International Airport (BOS) for one major runway configu-

ration in 2007. Subsequently, we show results for all major runway configurations at BOS, validate

the results with ASPM data from 2008, and compare them to those obtained with a different

data-source (ASDE-X).

All estimation problems are formulated as convex optimization problems, and solved using the

CVX MATLAB-based modeling software [51].

2.1 Average departure throughput

The first step in measuring the capacity of an airport is the estimation of the average departure

throughput. For this, we represent the departure throughput as a function of departure demand.
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The departure demand, N(t), at some time t (represented in 1-min increments), is defined as the

number of aircraft taxiing out during that time interval. In other words, it is the number of aircraft

that have pushed back from their gates, but have not taken off yet. The departure throughput

during a 15-minute period starting at time t, denoted T (t), is measured as the number of aircraft

that take off during the 15-minute interval [t, t+ 15) min.

This representation, introduced by Shumsky [104] and used by Pujet [91], yields plots such as

those shown in Figure 2-1a for the most frequently used runway configuration 22L, 27 | 22L, 22R at

BOS in 2007 under Visual Meteorological Conditions (VMC). For the entire year, we have 121,414

data points of the form (N,T ). In Figure 2-1a, we plot the mean and median departure throughput

for each value of the departure demand, N . The error bars depict the standard deviation of the

departure throughput at each value of N . As the number of aircraft taxiing out increases, the
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(a) Measurements of the departure throughput as
function of the number of aircraft taxiing out.
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(b) Regression of the departure throughput as func-
tion of the number of aircraft taxiing out.

Figure 2-1: BOS throughput in configuration (VMC; 22L, 27 | 22L, 22R).

departure throughput initially increases, but then saturates once the demand exceeds a critical

value N∗. From Figure 2-1a, we can infer that N∗ is around 20 aircraft and that the average

departure throughput in saturation is around 11 AC /15 min. Similar behavior was observed by

Shumsky [104], who used Airline Service Quality Performance (ASQP) [44] and Enhanced Traffic

Management System (ETMS) [45] data from year 1991, and Pujet [91], who used ASQP data

from year 1995. However, the parameters N∗ and saturation throughput, calculated by Pujet and

Shumsky, are significantly different from those estimated in this work. These differences can be

50



explained by the observation that their data included only 53% and 65% of flights respectively. In

the remainder of this thesis, we refer to plots such as those of Figure 2-1 as saturation plots.

We formalize the estimation of the mean and median throughput rate as functions of the

departure demand by formulating the estimation problems as regression problems. The functions

fmean and fmed to be fitted have to adhere to the physics of the system, namely, that:

• Departure throughput is a monotonically non-decreasing function of departure demand.

• Departure throughput is a concave function of departure demand.

We briefly explain why the departure throughput is expected to be a concave function of depar-

ture demand. Suppose that increasing the demand from (x− 1) AC to x AC implies an increase of

the departure throughput by y AC/15 min, where y ≤ 1. This increase can be interpreted as the

probability that the xth AC departs in the next 15 min. When increasing the departure demand

from x AC to (x + 1) AC, suppose that the departure throughput increases by z > y. If there is

enough capacity for the (x + 1)th AC to depart with probability z, the probability of the xth AC

departing is at least z, because if the xth AC does not depart, the (x + 1)th AC can clearly not

depart. This implies that z ≤ y, which is a contradiction. Thus, the departure throughput is a

concave function of departure demand.

We also note that there are cases in which very high departure demand can be associated with

decreasing throughput. An example of such a case is shown in Appendix G for PHL. One potential

reason for a decreasing trend in the empirical data is that very high values of traffic can lead to

gridlocks on the surface and loss of runway capacity. For example, all taxiways surrounding the

departure runway may be occupied by aircraft, and an aircraft may need to be routed through

the departure runway.1 In addition, as we shall see in the subsequent sections, there are are

other variables that explain the variation in the departure throughput apart from the departure

demand. For example, downstream restrictions can lead to decreased capacity, which can lead

to the accumulation of traffic on the ground. The taxiing-out traffic can accumulate and reach

very high values as aircraft push back, but are not able to take off. In these cases, high values of

departing traffic on the ground are due to decreased throughput. Such instances are omitted from

the fitting procedure. In Section 2.3.1, we describe a process for filtering out these instances.

The estimation of the data mean regression fit can be formulated as a least-squares problem:

Given m pairs of measurements N(t) and T (t), denoted (u1, y1), . . . , (um, ym), we seek a non-

1Such cases have been noted during observations at BOS and PHL airports [99, 25].
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decreasing, concave function fmean : R→ R that estimates the mean T = fmean(N). This infinite-

dimensional problem is significantly simplified by the fact that N is defined only in the domain of

natural numbers (N0). fmean can be restricted in the domain of N0 as well, and we need to estimate

the values fmean(0), fmean(1), . . . , fmean(n), where n = max(N(t)). The function fmean is simply a

piecewise linear function of N , and the monotonicity and concavity constraints are imposed at the

points 0, 1, . . . ,max(N(t)) by comparing the values and the slopes of subsequent pieces. fmean is

given by the solution to the simple convex optimization problem:

min

m∑
i=1

(ŷi − yi)2 (2.1)

subject to:

ŷi = fmean(ui), i = 1, . . . ,m (2.2)

fmean(i+ 1) ≥ fmean(i), i = 0, . . . (n− 1) (2.3)

fmean(i+ 1)− fmean(i) ≤ f(i)− f(i− 1), i = 1, . . . (n− 1) (2.4)

Analogously, the estimation problem of the median throughput as a function of the number of the

departure demand is formulated as:

min
m∑
i=1

|ŷi − yi| (2.5)

subject to:

ŷi = fmed(ui), i = 1, . . . ,m (2.6)

fmed(i+ 1) ≥ fmed(i), i = 0, . . . (n− 1) (2.7)

fmed(i+ 1)− fmed(i) ≤ fmed(i)− fmed(i− 1), i = 1, . . . (n− 1) (2.8)

The results of the regression fit can be seen in Figure 2-1b. The mean departure throughput

saturates at 11 AC/15 min when N ≥ 22, while median departure throughput saturates at the

same value when N ≥ 19. We observe that the average departure throughput of this runway

configuration under persistent demand is 11 AC/15 min, or 44 AC/hr. Persistent demand is

achieved when the number of aircraft taxiing out is around 20.

Finally, we note that this framework can be easily extended to find estimates of upper quantiles
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by formulating quantile regression, as described in [72], as a convex optimization problem:

min
m∑
i=1

(
(1− p) ·max(ŷi − yi, 0) + p ·max(−ŷi + yi, 0)

)
(2.9)

subject to:

ŷi = fp(ui), i = 1, . . . ,m (2.10)

fp(i+ 1) ≥ fp(i), i = 0, . . . (n− 1) (2.11)

fp(i+ 1)− fp(i) ≤ fp(i)− fp(i− 1), i = 1, . . . (n− 1) (2.12)

Here, p takes the value of the quantile we are interested in estimating: for the median it is 0.5, for

the 90% percentile 0.9, etc.

2.2 Departure throughput as a function of departure demand and

arrival throughput

The method described in Section 2.1 can be extended to represent departure throughput as a two

variable function of both departure demand and arrival throughput, where the arrival throughput,

denoted A(t), is defined to be the number of landings in the 15 minute interval [t, t + 15). In

other words, we represent the departure throughput, T (t), in the 15 minute interval [t, t+ 15) as a

function of both the departure demand N(t) at time t, and the arrival throughput A(t) in that 15

minute interval. The 2-variable fitting problem has additional constraints that arise from system

behavior:

• For a fixed departure demand, the departure throughput is a monotonically non-increasing,

concave function of the arrival throughput. This is follows from the behavior of capacity

envelopes [30], which have been shown to have this property [84].

• For any value of arrival throughput, the departure throughput, as a function of departure

demand, cannot increase at a higher rate than for a lower value of arrival throughput.

• For any value of departure demand, the departure throughput, as a function of arrival through-

put, cannot decrease at a lower rate than for a lower value of departure demand.

The problem is formulated as follows: Given m triplets of measurements N(t), A(t) and T (t),

denoted by (u1, v1, y1), . . . , (um, vm, ym), at all times, we seek a function g : R2 → R that estimates
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the mean T = g(N,A(t)). Both N(t), A(t) take values in the domain of natural numbers. We only

need to estimate the values g(0, 0), g(0, 1), . . . , g(n, l), where n = max(N(t)), and l = max(A(t)).

Thus, g is a piecewise linear function of A(t) and T (t). The constraints are imposed only between

neighboring points, as in the 2D case:

min

m∑
i=1

(ŷi − yi)2 (2.13)

subject to:

ŷi = g(ui, vi), i = 1, . . . ,m (2.14)

g(i+ 1, j) ≥ g(i, j), i = 0, . . . (n− 1),∀j (2.15)

g(i+ 1, j)− g(i, j) ≤ g(i, j)− g(i− 1, j), i = 1, . . . (n− 1), ∀j (2.16)

g(i, j + 1) ≤ g(i, j), j = 0, . . . (l − 1),∀i (2.17)

g(i, j + 1)− g(i, j) ≤ g(i, j)− g(i, j − 1), j = 1, . . . (l − 1),∀i (2.18)

g(i+ 1, j)− g(i, j) ≥ g(i+ 1, j + 1)− g(i, j + 1), i = 0, . . . (n− 1), j = 0, . . . (l − 1) (2.19)

g(i, j)− g(i, j + 1) ≤ g(i+ 1, j)− g(i+ 1, j + 1), i = 0, . . . (n− 1), j = 0, . . . (l − 1) (2.20)

Inequalities (2.15) -(2.16) ensure that for a fixed arrival throughput, the departure throughput

is a monotonically non-decreasing, concave function of the departure demand. Inequalities (2.17)-

(2.18) ensure that for fixed departure demand, the departure throughput is a non-increasing, con-

cave function of the arrival throughput. Finally, Equation (2.19) ensures that the marginal gain

in departure throughput from increasing the departure demand increases as the arrival through-

put decreases, and Equation (2.20) ensures that the marginal gain in departure throughput from

decreasing the arrival throughput decreases as the departure demand decreases.

Under these constraints, the departure throughput is estimated as a function of the departure

demand and arrival throughput. Two visualizations of the estimated function g can be seen in

Figure 2-2. Figure 2-2a is essentially the mean regression curve of Figure 2-1b parameterized for

different levels of arrival throughput. As expected, the arrival throughput impacts the departure

throughput. Figure 2-2b displays the same graph from a different perspective: the arrival through-

put is the variable on the x-axis and the departure demand is a parameter. We observe that the

tradeoff between arrival throughput and departure throughput changes with the departure demand.

We also note that for high values of departure demand, the departure runway(s) are under persistent
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demand and so the curves for values of N coincide and envelop all average departure throughput

data points. Thus, this envelope can be also interpreted as the capacity envelope for this run-

way configuration: It shows the average departure throughput under high departure demand as a

function of arrivals.
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Figure 2-2: BOS departure throughput in configuration (VMC; 22L, 27 | 22L, 22R) as function of
arrivals and departure demand.

2.2.1 Variance of departure throughput

It could be hypothesized that the high variance of the departure throughput, which can be observed

in Figure 2-1a, is explained by the (hidden) arrival throughput variable, and that by controlling

for the arrival throughput variable, the variance of the departure throughput would decrease sig-

nificantly. In order to informally inspect this hypothesis, we plot the departure throughput as a

function of departure demand for two frequently observed values of arrival throughput, overlaid

with the departure throughput for all values of arrival throughput in Figure 2-3a. We observe that

the variance of the departure throughput remains high even at individual arrival throughput values.

In Figure 2-3b, we visualize the boxplots of the throughput measurements grouped for every value

of the departure demand for only 7 arrivals, and for all arrivals. From the boxplots, we observe

that the 25th and 75th percentiles are spread over a range of 3 AC/15 min for both cases under

high departure demand.

These results suggest that the observed variance of the departure throughput must be explained
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Figure 2-3: BOS departure throughput in configuration (VMC; 22L, 27 | 22L, 22R) for different
numbers of arrivals.

by other variables, such as, fleet mix, downstream restrictions, human factors (controller perfor-

mance, pilot response times), and unexpected incidents (runway closures, mechanical failures, etc.).

2.3 Operational throughput envelope

2.3.1 Data filtering

Traditional statistical methods for predicting the response variable (departure throughput) as a

function of several independent variables (departure demand, arrival throughput, fleet mix) do

not exploit the structure of the problem and do not impose the constraints that result from the

physics of the system. For this reason, we follow a different approach: We first isolate instances

of high departure demand and runway availability, and then estimate the departure throughput

as a function of the arrival throughput. The combination of the independent variable (arrival

throughput) and the dependent variable (departure throughput) yield the airport capacity. For

distinguishing it from other measures of capacity, we call this quantity “operational throughput” .

To this end, we need to estimate the threshold N∗ at which the departure throughput stops

varying with departure demand. There are several ways to estimate N∗, for example, through the

inspection of Figure 2-1a or Figure 2-1b. Both plots suggest that the mean throughput saturates

at N∗ = 22.
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A more robust way to identify N∗ is the following: The departure throughput is a function of

the departure demand and the arrival throughput. We construct a regression tree that represents

the dependence of the response variable (departure throughput) on the two exogenous indepen-

dent variables (departure demand and arrival throughput). A simplified version of the resulting

regression tree for this example is shown in Figure 2-4.

The regression tree enables us to represent the nonlinear relation between the departure through-

put and the two independent variables. For example, if the arrival throughput made use of all the

capacity of the airport, the departure throughput would be zero independent of the value of the

departure demand. At the other extreme, if the arrival demand is zero, all the capacity is allocated

to departures, and a high value of demand might be required to sustain the departure throughput

at its maximum value. From the regression tree, we identify the node at which the highest value of

departure demand explains some of the variation of the departure throughput. For this example,

this node is N ≥ 22, as can be seen as can also be seen in Figure 2-4. This means that for departure

demand greater than or equal to 22, the departure demand does not explain the variation of the

departure throughput independent of the value of the arrivals. Thus, N∗ = 22.

To avoid over-fitting, the regression trees are pruned with 10-fold cross-validation. Although

this method has certain shortcomings, such as the assumption of normally distributed errors in

each node and the instability of the pruned trees, it offers a simple and intuitive representation of

the different demand, arrival throughput and departure throughput scenarios. We have found that

it works well in different runway configurations as well as airports.

In addition, it is possible that some very high values of N are due to an operational anomaly, as

explained in Section 2.1. These instances can be identified from the regression tree: At some nodes,

an increasing value of N would lead to a decreasing value of departure throughput. In the present

example, N ≥ 27, A < 9 represents such a node, as can be seen in Figure 2-4. These instances

are filtered out and excluded from further analysis. We denote by Nmax the highest value of N for

which the throughput does not change with N . Here, Nmax=26.

Next, we use the data points for which N∗ ≤ N ≤ Nmax to isolate the instances of persistent

departure demand. However, as explained earlier, persistent departure demand does not necessarily

guarantee runway availability. For example, there could be a 15-minute interval during a busy high-

demand period when the runway is temporarily unavailable due to a thunderstorm, or a safety

incident. Unfortunately, this information is not recorded in the ASPM data, and does not reflect

runway capacity. One way to reduce this bias is to exclude the 15-minute intervals during which the
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Figure 2-4: BOS departure throughput (AC/15 min) as a function of arrival throughput (A) and
departure demand (N).

total departure throughput is extremely low. The threshold used to determine acceptable values

of departure throughput is set to be the highest Heavy aircraft departure throughput recorded in

any 15-minute interval. This threshold is reasonable because Heavy aircraft require the longest

inter-departure separation times. For the case of the 22L, 27 | 22L, 22R configuration at BOS, it

is 5 Heavy aircraft departures. Our assumption is that if there was a time interval during which 5

Heavy aircraft departures were serviced (in addition to other departures and arrivals), 5 departures

in total should be feasible at any time interval, regardless of fleet mix, or arrival throughput. We

have found that this simple filtering works sufficiently well in all airport environments considered.

In Chapter 3, we discuss how the filtering can be improved in the presence of information on weather

and airspace constraints.

An important concept in both theoretical and empirical capacity envelopes determination is

that of the arrival priority capacity, which is the statistically significant, highest value of arrival

58



throughput that can be realized at the airport. In order to estimate this quantity, we follow the

procedure outlined by Ramanujam and Balakrishnan [97]. All data points with arrival throughput

values higher than the estimated arrival priority capacity are filtered out as outliers.

In the remaining discussion of the fitting and estimation problems, we refer to the dataset of the

airport in saturation after having removed extreme values of N , A, and T , as the filtered dataset

in saturation.

2.3.2 Estimation method

Given k pairs of measurements A(t) and T (t), denoted (v1, y1), . . . , (vk, yk) from the filtered dataset

in saturation, we seek a non-increasing, concave function h : R→ R that estimates the mean T (t) =

h(A(t)). Similarly to the previous cases, we only need to estimate the values h(0), h(1), . . . , h(l),

where l = max(A(t)). Thus, function h is a piecewise linear function of A and the monotonicity

and concavity constraints are imposed at the points 0, 1, . . . , l by comparing the values and the

slopes of subsequent pieces. The formulation of this estimation problem is as follows:

min

k∑
i=1

(ŷi − yi)2 (2.21)

subject to:

ŷi = h(vi), i = 1, . . . , k (2.22)

h(i+ 1) ≤ h(i), i = 0, . . . (l − 1) (2.23)

h(i+ 1)− h(i) ≤ h(i)− h(i− 1), i = 1, . . . (l − 1) (2.24)

The mean and median of the departure throughput, for each value of the arrival throughput,

can be seen in Figure 2-5a, and the corresponding fitted function is shown in Figure 2-5b. The

plot of Figure 2-5b provides an estimate of the average departure throughput as a function of the

arrival throughput under persistent departure demand and runway availability. We refer to this

plot as the operational throughput envelope.

Comparing Figures 2-5a and 2-5b, we note that the values in the raw measurements dataset of

Figure 2-5a include as many as 16 AC/15 min. However, the arrival priority capacity is estimated

to be 14 AC/15 min for this runway configuration and for this reason the operational throughput

envelope is estimated for values of arrivals between 0 and 14 AC/15 min. The data points with more

than 14 AC/ 15 min are filtered out as outliers and are not considered in the estimation process.
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(a) Mean, median, and standard deviation of the
departure throughput for all values of the arrival
throughput.
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(b) Regression of the departure throughput as func-
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Figure 2-5: BOS operational throughput envelope in configuration (VMC; 22L, 27 | 22L, 22R).

In agreement with the theoretical models [30], the arrival priority data points can accommodate

additional departures. In this case, the total operational throughput at this operating point is 14

arrivals and 9 departures. This means, that under arrival priority capacity, up to 9 departures/15

min can be accommodated.

2.4 Parametrization of the operational throughput envelope

2.4.1 Role of ATC in allocating capacity

In this section, the operational throughput envelope is further parametrized in order to investigate

other significant capacity tradeoffs, besides the tradeoff between departures and arrivals. In all case

studies we focus on departure capacity for the following reasons:

Firstly, arrival capacity is an exogenous variable from the perspective of the airport. Arriving

traffic is handled by the Terminal Radar Approach Control Facility (TRACON) and is routed

to the airport according to allocated resources or agreed rates. For example, in the case of the

22L, 27 | 22L, 22R configuration at BOS, the highest number of landings, as sequenced by the
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TRACON, is 15 AC/ 15 min 2 independent of the departure rate. One can therefore analyze the

arrival throughput independent of the departure throughput, and study its dependence on runway

configuration, arrival demand, fleet mix, weather etc. One such example would be a plot showing

how the arrival capacity changes with route availability, or with the number of Heavy aircraft in

the arrival mix.

Secondly, from the perspective of the Airport Traffic Control Tower Facility (ATCT), what

matters is the departure capacity, since it have no direct control over the arrival capacity. Thus,

for the ATCT, it is important to measure how arrivals impact departure operations. The fact that

the arrival throughput is fixed by an external facility (the TRACON, an Area Control Center, or

FAA’s Command Center), and departures are realized as external conditions (including arrivals)

permit, justifies the use of the arrival capacity as the independent variable in the capacity envelope

representation.

An alternate method would simultaneously predict both arrival and departure capacity given

some interdependent variables: Arrival fleet mix, spacing and sequence, departure fleet mix, route

availability, winds etc. Such an analysis could be performed with multivariate multiple regression

or multivariate regression trees, and would estimate the average capacity given a set of exogenous

conditions. However, this analysis would not yield the simple representation of Figure 2-5b.

2.4.2 Multi-variable statistical models of departure capacity

In this section, we continue working with the filtered dataset in saturation. We address the problem

of estimating the departure throughput as a function of the arrival throughput and the fleet mix.

The fleet mix is not a simple numerical variable like the number of arrivals, and its impact is highly

dependent on the design and operating procedures of each airport (such as runway configuration,

sequencing decisions, airspace design, and local procedures). For runway configuration 22L, 27 |

22L, 22R under VMC at BOS, given operational information from controllers and observations in

the ATC tower, our hypothesis is that the fleet mix can be represented with two variables:

• Number of propeller-powered aircraft, or props, in the mix that is taking off in the 15-minute

interval (denoted PDeps) .

• Number of Heavy aircraft, or Heavies in the mix that is taking off in the 15-minute interval

(denoted HDeps) .

2Interviews with Controllers from Boston TRACON and Boston ATCT

61



Props are given dispersal headings when sequenced between jet departures, and are thus expected

to increase the departure throughput. Heavy aircraft introduce longer separation requirements, and

are expected to decrease the departure throughput. Based on these facts, we model the response

variable, departure throughput (T (t)) in each 15-minute time interval [t, t + 15), as a function of

four potential explanatory variables:

1. Number of aircraft (N(t)) taxiing out at time t.3

2. Arrival throughput (A(t)) in the 15-minute interval.

3. Number of props (PDeps(t)) departing in the 15-minute time interval.

4. Number of Heavy aircraft (HDeps(t)) departing in the 15-minute time interval.

We analyze the relation between all the variables in the model using Mutual Information (MI)

and locally weighted scatterplot smoothing (lowess) regression. Mutual Information can be applied

to study the relation between two random variables, X and Y . It measures how much of the

uncertainty of X is reduced when Y is observed, but does not capture situations in which two

random variables Y and Z combined reduce the uncertainty of X. For discrete random variables

X and Y , MI is expressed as:

I[X;Y ] =
∑
x

∑
y

pxy(x, y) log
pxy(x, y)

px(x)py(y)
(2.25)

All the random variables considered here are discrete and have a small domain (between 0 and

30), and their probability distributions are approximated by empirical ones. The MI scores between

each potential explanatory random variable considered and the departure throughput is shown in

Table 2.1. We also calculate and report the correlation coefficient.

From Table 2.1 we note that the random variables PDeps and A have the highest mutual in-

formation and linear correlation with departure throughput. As expected, departure demand has

very low mutual information with departure throughput. Finally, the Heavy departures appear to

not adversely impact departure throughput.

For lowess regression, we use the pairs function of the R programing language [96], which pro-

duces panels with correlations between all variables of the model. Each panel shows the scatterplot

3Although we have established that the departure throughput does not change significantly with the number of
aircraft on the ground in the filtered dataset in saturation, it is useful to revisit this hypothesis in the multi-variable
model.
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Table 2.1: Mutual information and correlation between departure throughput and potential
explanatory variables.

Variable
Mutual Information with Correlation with
departure throughput (T ) departure throughput (T )

Departure demand (N) 0.023 0.002

Arrival throughput (A) 0.079 -0.245

Departing props (PDeps) 0.151 0.414

Departing Heavies (HDeps) 0.019 0.045

between the variable on the vertical axis and the variable on the horizontal axis as well as the

lowess curve, in red color, through the set of data points. Lowess fits follow the general trend of

the data and are a good measure of the correlation between the two variables [27]. The response

variable, departure throughput, is shown on the y-axis of the top row of the panels.

From Figure 2-6, we observe that:

• The lowess fit line for the variable pair (N , T ) does not exhibit any large or systematic

deviation from the T = 11 line. This is further evidence that N∗ was calculated correctly,

and that for N ≥ N∗, there is no correlation between the departure demand and the departure

throughput. The departure throughput is shown to be stable at 11 AC/15 min, the same

value that was calculated using the estimation method of Figure 2-1b.

• The lowess fit line for the variable pair (A, T ) follows the same trend as in Figure 2-5b: It

shows that the departure throughput decreases from 12 to 9 AC/15 min as a concave function

of the arrival throughput.

• The lowess fit line for the variable pair (HDeps, T ) exhibits a rather inconclusive trend. The

curve initially increases from 10.5 to 11 and then decreases and stabilizes at around 10 AC/15

min.

• The lowess fit line for the variable pair (PDeps, T ) exhibit a clear positive correlation be-

tween the two: As the number of prop departures increases from 0 to 6, the total departure

throughput appears to increase from 9 to 14 AC/15 min.

The relationship between the departure throughput and these four variables is also examined

with other statistical tools, such as, regression trees, random forests and generalized additive mod-

els. They all lead to the same conclusion: The two most significant explanatory variables are the
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Figure 2-6: Correlation between departure throughput, departure demand, arrival throughput,
Heavy departures and departing props.

arrival throughput and the prop departures. Heavy aircraft departures do not impact the depar-

ture throughput significantly. While surprising, this result can be explained by the operational

procedures at BOS. Controllers use the large wake vortex separation requirement between a Heavy

aircraft and a subsequent departure to perform runway crossings, diminishing the impact of Heavy

departures on throughput.

2.4.3 Operational throughput parametrized by fleet mix

Having established that in the filtered dataset in saturation, the departure throughput is primarily

a function of arrival throughput and prop departures, we estimate the departure throughput as a

function of arrival throughput and prop departures using an approach similar to the one described

in Section 2.2. Similarly to the other curve fitting problems, we exclude data points with extreme

values of the variable PDeps by filtering out datapoints, which exceed the top 1 percentile of the
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measured values of PDeps.

Given k triplets of measurementsA(t), PDeps(t) and T (t), denoted by (v1, w1, y1), . . . , (vk, wk, yk),

in the filtered dataset in saturation, we seek a function hp : R2 → R that estimates the mean

T (t) = hp(A(t), PDeps(t)). Again, we only need to estimate the points hp(0, 0), hp(0, 1), . . . , hp(l,m),

where l = max(A(t)) and m = max(PDeps(t)). Thus, the function hp is a piecewise linear function

of A(t) and PDeps(t). The constraints are imposed only between neighboring points, as was done

in the 2D case:

min

m∑
i=1

(ŷi − yi)2 (2.26)

subject to:

ŷi = hp(vi, wi), i = 1, . . . , k (2.27)

hp(i+ 1, j) ≤ hp(i, j), i = 0, . . . (l − 1), ∀j (2.28)

hp(i+ 1, j)− hp(i, j) ≤ hp(i, j)− hp(i− 1, j), i = 1, . . . (l − 1),∀j (2.29)

hp(i, j + 1) ≥ hp(i, j), j = 0, . . . (m− 1), ∀i (2.30)

hp(i, j + 1)− hp(i, j) ≤ hp(i, j)− hp(i, j − 1), j = 1, . . . (m− 1), ∀i (2.31)

hp(i+ 1, j + 1)− hp(i+ 1, j) ≤ hp(i, j + 1)− hp(i, j), i = 0, . . . (l − 1), j = 0, . . . (m− 1) (2.32)

hp(i, j + 1)− hp(i+ 1, j + 1) ≥ hp(i, j)− hp(i+ 1, j), i = 0, . . . (l − 1), j = 0, . . . (m− 1) (2.33)

Inequalities (2.28)-(2.29) are analogous to those in the case of the capacity envelope (Inequalities

(2.23)-(2.24)). For a given fleet mix, the departure throughput is a monotonically non-increasing,

concave function of the arrival throughput. Inequalities (2.30)-(2.31) ensure that for fixed arrival

throughput, the departure throughput is a non-increasing, concave function of the number of prop

departures. This constraint models the operational observation that increasing the number of props

is expected to boost departure throughput. It is also expected to deliver diminishing gains as the

number increases, because opportunities for dispersal headings decrease.

Similarly, Equation (2.32) ensures that the marginal gain in departure throughput from increas-

ing the number of props by one unit decreases as the arrival throughput increases. The operational

reason for this is that as the number of arrivals increases, there is more pressure to cross arriving

aircraft on runway 22R, and this pressure can reduce the impact of dispersal headings. The runway

is likely to be utilized for crossing arriving aircraft during inter-departure intervals independent of
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the separation requirements.

Finally, Equation (2.33) ensures that the marginal gain in departure throughput from decreas-

ing the arrival throughput by one unit increases as the number of prop departures increases. If

decreasing the arrival throughput by one unit enables the airport to increase departure throughput

by some amount, decreasing the arrival throughput by one unit and replacing one jet aircraft with

one prop will lead to at least the same improvement in departure throughput.

The plot of the estimated function, hp(A,PDeps), can be seen in Figure 2-7 overlaid with the

dashed curve of Figure 2-5b (average throughput). The comparison shows that the solid lines in

Figure 2-7 are, in fact, the dashed line parameterized by the number of props departing in that

15-minute interval.
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Figure 2-7: BOS parametrized operational throughput envelope in configuration (VMC; 22L, 27 |
22L, 22R).

We observe the following features in Figure 2-7:

• The average departure throughput curve lies between those corresponding to a fleet mix of 1

departing prop/15 min and 2 departing props/15 min, which is consistent with the number

of props in the fleet mix at BOS (around 15% in 2007).

• The number of props has a significant impact on the departure throughput. During the most

common operating scenarios in which the arrival throughput is 5-10 aircraft/15 min and the

number of prop departures is 0-2/15 min, the departure throughput increases at a a rate of

almost one aircraft for each additional prop.
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• From this plot and the previous statistical analyses, we conclude that for this runway con-

figuration at BOS, the fleet mix is a more significant explanatory variable for the departure

throughput than the arrival throughput is. The departure throughput decreases with the

arrival throughput by at most 2.6 AC/15 min, for an increase of arrival throughput from 0

to 14 AC/15 min. In contrast, increasing the number of props in the fleet mix from 0 to 5

increases the departure throughput by 4.4 AC/15 min.

For completeness, we provide the parametrized operational throughput envelopes for the other

major runway configurations at BOS under VMC, 4R, 4L | 4R, 4L, 9 and 27, 32 | 33L, in Figures

2-8 and 2-9. We observe that the three runway configurations have similar characteristics: In all

of them arriving traffic utilizes two arrival runways and has the same arrival priority capacity

value, 14 AC/15 min. This is very close to the FAA airport arrival rates (AAR)4, which are 61

arrivals/hr and 59 arrivals/hr for the configurations 4R, 4L | 4R, 4L, 9 and 22L, 27 | 22L, 22R

[39] correspondingly. There is a fraction of unutilized arrival capacity, since the empirical capacity

is estimated at 14 AC/15 min (or 56 AC/hr), which is 3-5 aircraft fewer than the AAR . For

configuration 27, 32 | 33L at VMC, the AAR is 44 arrivals/ hour, which is much smaller than the

estimated arrival capacity (56 AC/hr). However, Runway 32 is exempt from Traffic Management

Initiatives (TMI’s) in the published AAR for this configuration [39]. Its empirical arrival priority

capacity can therefore be much higher, and is 56 AC/hr according to our analysis.

We also note that props increase the departure throughput in a similar fashion in all runway

configurations: As the number of props increases from 0 to 3, the departure throughput increases

by 2 AC/15 min. A policy implication of this observation is that the airport should incentivize the

use of props as opposed to jets of similar size, as this increases overall passenger capacity. By the

same rationale, the marginal external cost of a prop departure is much smaller than the marginal

cost of a jet departure.

4the number of arrivals an airport is capable of accepting each hour
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(a) Mean, median, and standard deviation of the
departure throughput for all values of the arrival
throughput.
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Figure 2-8: BOS operational throughput envelope in configuration (VMC; 4R, 4L | 4R, 4L, 9).
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Figure 2-9: BOS operational throughput envelope in configuration (VMC; 27, 32 | 33L).
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2.4.4 Comparison to empirical capacity envelopes

In the previous section, we showed that the departure throughput can be modeled as a function of

the arrival throughput and the fleet mix under persistent departure demand. For the case of BOS

configuration (22L, 27 | 22L, 22R), we saw that the average departure throughput under persistent

demand (11 AC/15 min) takes values in the range of 8.5 to 14.5 AC/15 min depending on the

arrival throughput and the fleet mix (Figure 2-7).
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Figure 2-10: Operational throughput envelope and capacity envelope comparison for BOS config-
uration (VMC; 22L, 27 | 22L, 22R).

In this section, we compare the estimated functions plotted in Figure 2-7 to empirical capacity

envelope estimates. Empirical capacity envelopes represent the highest departure throughput as a

concave non-increasing function of the arrival throughput: The curve enveloping the observed max-

imum arrival and departure counts, after correcting for outliers, is considered the airport capacity

envelope [49]. For the capacity envelope estimation, we use the approach proposed by Ramanujam

and Balakrishnan [97], which for this runway configuration at BOS yields the capacity envelope

plotted in Figure 2-10. The maximum total capacity is achieved at the point of arrival priority

capacity: 27 movements/15 minutes (14 arrivals and 13 departures).

The capacity envelope is overlaid with the average departure throughput curve and the highest

departure throughput curve (the one with the most favorable fleet mix). We observe that the

capacity envelope is close to the throughput curve of the most favorable fleet mix. This reveals

an inherent ambiguity in the capacity envelope analysis. While the commonly used definition of
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capacity is “the average number of movements that can be performed on the runway system in

the presence of continuous demand” [30], most empirical capacity envelope estimation methods

focus on the best-case scenario, that is, the maximum number of movements that can be performed

on the runway system in the presence of continuous demand [49]. These maximum counts are

achievable only under special circumstances, such as a favorable fleet mix or a favorable sequence.

In the case of BOS, the difference between the capacity envelope and the operational throughput

envelope estimates for the departure capacity at a given value of arrival throughput can be as large

as 4 AC/15 min, as can be seen in Figure 2-10.

2.5 Predictive ability of proposed methods

The proposed estimation procedure can be viewed as a supervised learning method, since we can

select independent variables and use them to predict the dependent variable. In this process, we

apply constraints that result from the physics of the system to avoid over-fitting. However, it

is still useful to measure the predictive power of the proposed method. We propose to use five

measures for goodness-of-fit: The mean absolute error (MAE), the mean square error (MSE), the

root mean square error (RMSE), the mean absolute percentage error (MAPE) and the root mean

square percentage error (RMSPE).

MAE =
1

N

m∑
i=1

|ŷi − yi| (2.34)

MSE =
1

N

m∑
i=1

(ŷi − yi)2 (2.35)

RMSE =

√√√√ 1

N

m∑
i=1

(ŷi − yi)2 (2.36)

MAPE =
1

N

m∑
i=1

| ŷi − yi
yi
| (2.37)

RMSPE =

√√√√ 1

N

m∑
i=1

(
ŷi − yi
yi

)2 (2.38)

The estimation procedure minimizes the MSE given the constraints. However, this measure

penalizes higher errors disproportionally compared to small errors. For this reason, we also record

the MAE, which linearly penalizes all errors. The RMSE offers a more direct comparison to the
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MAE. In order to assess our results, we compare three different estimates for ŷi:

1. The arithmetic mean (AM) of the departure throughput: y = 1
m

∑m
i=1 yi.

2. The predicted throughput predicted from the operational throughput envelope (OTE): h(vi).

3. The predicted throughput from the parametrized throughput envelope (PTE): hp(vi, wi).

The MSE, when the estimate is the (AM) of the departure throughput is an estimate of the

variance of the departure throughput. Comparing it to the MSE from the estimates of the (OTE)

and the (PTE) indicates how much of the variation of the departure throughput is explained by

the arrival throughput and the arrival throughput and prop departures, respectively.

Table 2.2: Statistics of the training and test datasets.

Dataset Time frame Source Size Use Mean Variance

1 Jan-Dec 2007 ASPM 9623 Train 10.56 3.72
2 Jan-Dec 2008 ASPM 7429 Test 10.56 3.56
3 Jan-Dec 2011 ASDE-X 5970 Train 11.45 2.79
4 Nov-Dec 2010 ASDE-X 628 Test 11.35 2.23

All the datasets described in Table 2.2 consist of the data points in saturation, that is the

data points at which N ≥ N∗. When training the (OTE) and (PTE) estimators, appropriate

filtering is applied as described in Section 2.3. However, the resulting predictors are applied to the

whole dataset in saturation in both the training and test datasets, by approximating the extreme

values of independent variables with the closest ones in the filtered dataset. Dataset 1, the first

training dataset, is the one we have been working with so far, namely ASPM data from 2007 in

saturation. Dataset 2, the dataset for which we test the predictors estimated with Dataset 1, is the

corresponding one for 2008. The saturation point is the same one as in the training dataset, that

is N∗ = 22. Comparing the ASPM datasets from 2007 and 2008 in Table 2.2, we notice that they

have the same average departure throughput: 10.56 AC/15 min. The variance of the departure

throughput is higher in 2007. In addition, for 2007, we have more data points, since it was a year

with more aircraft movements and more congestion at BOS. As far as the predictions are concerned,

we note from Table 2.3 that both the (OTE) and the (PTE) reduce the unexplained variation in

the dataset for both years. However, the benefit offered by the (OTE) is rather insignificant, since

the mean absolute error is reduced from 1.53 to 1.48 in the test dataset. This was also noted

when parametrizing the saturation plots for the arrival throughput (Figure 2-3). However, in both
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the training and test data, the (PTE) offers a significant reduction in both the MAE and MSE,

confirming that fleet mix is a very significant factor when studying the capacity of BOS.

Finally, for completeness, we repeat the same procedure with ASDE-X data, a dataset obtained

from ground surveillance data [37]. ASDE-X is a less noisy, more detailed and more complete

dataset. It is obtained from ground surveillance, does not rely on aircraft reporting of events, and

includes more flights. Demand is measured more accurately. We only include aircraft on the active

movement area when measuring demand, and we exclude aircraft in holding areas. Similarly, we

can recognize events like aborted take-offs. Finally, we can infer exact takeoff times, with seconds

precision5. By contrast, ASPM times are approximated from ACARS messages [88]. For these

reasons, we note with respect to Table 2.2, that the average throughput has both a higher value

and a smaller variance. The (PTE) for ASDE-X, shown in Figure 2-11, has a higher predictive

power in both the training and the test dataset. As can be seen from Table 2.3, the MSE is reduced

from 2.79 to 1.92 and from 2.24 to 1.20, in the training and the test datasets, respectively.

Despite its significant benefits, ASDE-X is a very new data source, and is available only for a few

airports, and only recently. It also requires significant filtering effort in order to obtain useful flight

event information. This difficulty can be observed in Table 2.2, where we only have two months of

ASDE-X data for testing our estimators. Runway 33 was closed for most of 2011, thus we cannot

construct the OTE and PTE for 27, 32 | 33L using the training dataset. These difficulties lead

us to focus our analysis on ASPM and show that significant information can be extracted despite

its limitations. For example, Figures 2-11a and 2-11b offer qualitatively the same information as

Figures 2-5b and 2-8b. The balanced operations capacity of runway configuration 22L, 27 | 22L,

22R when measured with ASPM is (10,10), whereas it is (11,11) when measured with ASDE-X.

Similarly it is (11,11) for 4R, 4L | 4R, 4L, 9 with ASPM and (12, 12) with ASDE-X. Regardless

of the data source, we can conclude that (4R, 4L | 4R, 4L, 9) is 20% more efficient than 22L, 27

| 22L, 22R. Similarly, for runway configuration 22L, 27 | 22L, 22R, both data sources offer the

same insights concerning the role of the props, that is increasing their number from 0 to 3 in the

departing fleet mix increases the departure throughput by 2 AC/15 min under the most frequently

encountered arrival rates (5-12 AC/15 min).

5The filtering and pre-processing of ASDE-X data was conducted by H. Khadilkar with the methods explained
here [68]
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Table 2.3: Comparison of three different estimators for the departure throughput on the
training and the test datasets.

Dataset Estimator MAE MSE RMSE MAPE RMSPE

1 AM 1.56 3.72 1.93 16.5% 22.3%
1 OTE 1.51 3.56 1.89 15.8% 21.3%
1 PTE 1.36 2.92 1.71 14.0% 19.3%

2 AM 1.53 3.56 1.89 15.7% 21.4%
2 OTE 1.48 3.49 1.87 15.3% 21.3%
2 PTE 1.35 2.93 1.71 14.01% 20.0%

3 AM 1.32 2.79 1.67 13.0% 16.0%
3 OTE 1.29 2.72 1.65 11.7% 15.8%
3 PTE 1.09 1.92 1.39 9.9% 13.4%

4 AM 1.19 2.24 1.50 10.7% 13.6%
4 OTE 1.16 2.16 1.47 10.5% 13.5%
4 PTE 0.87 1.20 1.10 7.7% 9.95%

2.6 Jet departure throughput at BOS

In Section 2.4, we showed that the departure throughput in the major VMC configurations at BOS

increases at the rate of almost one operation per prop in the departure fleet mix. This observation

prompts us to investigate the hypothesis (of the BOS ATCT) that jet and prop departure operations

are fairly decoupled at BOS. For studying the interaction of jets and props in more detail, we further

adapt the proposed methodology. We also show how the proposed framework can be used to study

second-order effects not revealed with standard statistical analysis tools. In particular, we examine

the impact of Heavy aircraft departures in more detail, although according to the statistical analysis

in Section 2.4, Heavy aircraft do not significantly impact the departure throughput of BOS.

2.6.1 Interactions between jet and prop departures

First, we estimate jet throughput under persistent jet demand as a function of arrival throughput

and prop departures. For this, we use the filtered dataset in saturation, but for jet aircraft only.

The filtered dataset in saturation satisfies the following conditions: The number of jets taxiing

out is greater than or equal to the number of 17, arrival throughput is less than or equal to 14, and

jet departures are greater than or equal to 5. Figure 2-12 shows the jet departure throughput as a

function of the arrival throughput and prop departures. We note that for this runway configuration

at BOS, increasing the number of props in the fleet mix does not significantly decrease the departure

throughput of jets. In particular, the curve of the average jet throughput given 3 prop takeoffs is
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(a) Departure throughput as a function of arrival
throughput and props departures using ASDE-X data
for BOS configuration (VMC; 22L, 27 | 22L, 22R).
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(b) Departure throughput as a function of arrival
throughput and props departures using ASDE-X data
for BOS configuration (VMC; 4R, 4L | 4R, 4L, 9).

Figure 2-11: BOS operational throughput envelopes estimated with ASDE-X data.

one unit lower than that of the average jet throughput given 0 props. This means that on average,

for every three prop departures, one fewer jet will takeoff. The total departure throughput of the

airport will increase by 2 AC/15 min in agreement with the plots of Figure 2-7.
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Figure 2-12: BOS departure throughput tradeoff between props and jets in configuration (VMC;
22L, 27 | 22L, 22R).

Figures 2-7 and 2-12 demonstrate that there is little interaction between jets and props for this

particular runway configuration at BOS. For small numbers of props typically seen in the departure

mix (the mean value of props departures is 1.04 and the median 1/15 min), the reduction of the

jet departure throughput is at most 0.5 operations. This observation validates the hypothesis of
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the air traffic controllers that prop departures have a small impact on jet departure throughput.

Next, we study the jet departure throughput as a function of jet departure demand and arrivals,

neglecting the impact of prop departures.

2.6.2 Saturation plot for jet departures

For this section, we use the whole dataset excluding all prop departures. As a first step, we generate

a saturation plot, similar to the analysis in Section 2.1. The jet departure demand, NJ , at some

time t is defined as the number of jets taxiing out at that time. The jet departure throughput

during a 15-minute period starting at time t is defined as the jet departure throughput, TJ , over

this time period and is measured as the number of jets that took off during the 15-minute interval

[t, t+ 15).

This representation yields the plots of Figure 2-13a, which show the mean and median jet

departure throughput for each value of the jet departure demand, NJ . The error bars depict one

standard deviation of the departure throughput at each value of NJ . In Figure 2-13b, we show the

corresponding regression fits. The mean jet departure throughput saturates at 9.6 AC/15 min when

NJ ≥ 20 and median jet departure throughput saturates at 10 AC/15 min when NJ ≥ 21. We

observe that the average jet departure throughput for this runway configuration under persistent

demand is around 10 AC/15 min. The fitted curves suggest that persistent demand is achieved

when the number of jets taxiing out exceeds 20.
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(a) Measurements of the jet departure throughput as
function of jets taxiing out.
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(b) Regression of the jet departure throughput as
function of jets taxiing out.

Figure 2-13: BOS jet departure throughput in configuration (VMC; 22L, 27 | 22L, 22R).
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2.6.3 Estimation of the saturation point

While the mean and median throughput measurements and fitted curves coincided in Figure 2-

1 during congestion, they are different in Figure 2-13. This discrepancy is a result of excluding

props. The median estimates are more robust to outliers, such as an unusually high number of

props, which would decrease the number of jet operations even under high demand. The fitted

curves also saturate at a very high value of NJ , that is, at NJ = 21 = N∗ − 1, also as a result of

excluding props. By contrast, the regression tree method estimates that N∗J = 17.

2.6.4 Jet departure throughput as a function of arrival throughput and fleet

mix

In a similar manner to Section 2.3, we isolate the filtered dataset in saturation and estimate the

average jet departure throughput as a non-increasing, concave function of the arrival throughput.

The fitted curve can be seen in Figure 2-14a in red, and is labeled Jet average throughput. We

also plot three curves from Figure 2-12, namely the average jet throughput given 0, 1 and 2 prop

departures. As a reminder, these throughput plots are fitted curves of the jet departure throughput,

parametrized by the number of prop departures. We note that the Jet average throughput curve

almost coincides with the curve of Jet throughput | 1 dep. prop and lies between the curves of

Jet throughput | 0 dep. props and Jet throughput | 2 dep. props. This observations suggests

that estimating the jet departure throughput while neglecting prop operations does not bias the

estimation, but it reflects the average mix between jets and props.

We study the impact of Heavy departures on jet departure throughput. In Section 2.4, it was

demonstrated that Heavy departures are a less significant explanatory variable of the departure

throughput than the number of prop departures and the arrival throughput are. Now, we visualize

this result by estimating the jet departure throughput as a function of the arrival throughput and

the number of Heavy departures in a 15-minute interval. The graph of the estimated function

is shown in Figure 2-14b. The jet departure throughput is insensitive to the number of Heavy

departures, as long as the number of Heavies is not higher than 3, which is true during 95% of the

high demand periods at BOS. We also note that the departure throughput when 5 Heavies depart

is at most 9.7 jet/15 min, which is consistent with two minute separation requirement after a Heavy

departure. Similarly, when the number of Heavies is 6, the jet departure throughput is around 9,

as expected. Finally, it is not surprising that the throughput curve given six Heavy departures
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is flat. The large number of Heavies results in many long separation requirements during which

practically all arrivals can cross the departure runway, making departure throughput independent

of the number of arrivals.
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(a) Jet departure throughput as a function of arrival
throughput and departing props.
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Figure 2-14: Operational jet throughput envelopes in configuration (VMC; 22L, 27 | 22L, 22R).

2.7 Conclusions

This chapter introduced new methods for the parametric estimation of the departure capacity. We

showed that the departure throughput can be estimated and represented as a function of departure

demand and arrival throughput. We also showed how to measure departure capacity as a function

of the arrival throughput and the fleet mix.

For the case of the 22L, 27 | 22L, 22R configuration of BOS, we showed that the average

departure capacity (11 AC/15 min) can range from 8.5 to 14.5 AC/ 15 min, depending on arrival

throughput, and fleet mix. We demonstrated that for this runway configuration, the fleet mix is a

more significant explanatory variable of the departure throughput than the arrival throughput is,

and compared our results to those of the state-of-the-art capacity envelope estimation technique.

The comparison suggested that the differences in results were primarily because previous approaches

do not consider the effect of fleet mix.

We also presented a methodology for studying the interactions between different types of air-

craft. This analysis indicated that jet operations are decoupled from prop operations at BOS.

Moreover, it showed that jet throughput is not adversely impacted by the Heavy jets among the

departing aircraft, for reasonable numbers of Heavy aircraft.
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In Chapter 3 and in Appendices D and H, we apply the methods introduced in this chapter

to the analysis of capacity in different environments, such as, Newark Liberty International Air-

port, La Guardia Airport, the New York Metroplex, the major departure runway at Philadelphia

International Airport, an individual runway at Dallas/ Fort Worth airport, and the new runway

capacity at Charlotte Douglas International Airport.
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Chapter 3

Case Study: Capacity Analysis of the

New York Metroplex

In this chapter, we analyze the operational throughput of major airports in the New York (NY)

Metroplex.

We first estimate the capacity of the Newark Liberty Airport (EWR) airport, quantifying the

tradeoffs between departure and arrival throughput in different configurations. We then investigate

the impact of the fleet mix of both arriving and departing aircraft on the departure throughput

of EWR. After a detailed analysis of these parameters, we propose a compact and robust charac-

terization of the capacity of the airport. We also identify the impact of the surrounding airspace

conditions on the operational throughput of EWR. In order to do this, we investigate poten-

tial tradeoffs between EWR operations and those at the other major airports in the New York

Metroplex, namely, John F. Kennedy International Airport (JFK), and LaGuardia Airport (LGA).

Subsequently, we estimate the capacity of the airport system consisting of these three airports and

discuss opportunities for improvement.

Finally, we introduce a recently developed tool, the Route Availability Planning Tool (RAPT)

[32], and explain how it can be used to estimate the operational throughput of LGA in the presence

of convective weather. In particular, we measure the effect of available airspace capacity on the

operational throughput of the airport.

The following analysis builds on the work of Donaldson and Hansman [33], who provide a

detailed description of the current operations in New York Metroplex, identify opportunities for

improvement, and formulate hypotheses regarding the sources of inefficiency associated with current

79



operations. We use ASPM data of 2007 for all estimation problems unless otherwise mentioned.

3.1 Operational throughput of EWR

In this section, we adapt the methodology developed in Chapter 2 to the capacity estimation of the

three major runway configurations of EWR, which are listed in Table 3.1. The saturation curves

look very similar to those in Figure 2-1 and can be found in earlier work [106, 112]. EWR is a very

congested airport and reaches more congested states than what was observed at BOS.

Table 3.1: Frequency of use of most frequently used EWR configurations under Visual and
Instrument Meteorological Conditions in 2007 and 2008.

Runway Configuration VMC IMC

Arrival Runway(s) | Departure Runway Count (hrs) Frequency Count (hrs) Frequency

22L | 22R 4453 40.3% 831 40.0%
11, 22L | 22R 2033 18.4% 74 3.6%

4R | 4L 2369 21.5% 981 47.2%

3.1.1 Estimation of operational throughput for configuration (VMC; 4R | 4L)

Following the method outlined in Section 2.3, we extract the filtered dataset in saturation, and use

its data-points to estimate the average departure throughput as a non-increasing, concave function

of the arrival throughput.

The scatterplot of the datapoints to which the fitting is applied, and the plot of the estimated

function (in red) are shown in Figure 3-1a. The plot of Figure 3-1a provides the operational

throughput envelope for this runway configuration at EWR. For example, for an arrival rate of

10 AC/15 min, the average departure throughput of this runway configuration under persistent

departure demand and runway availability is 10 AC/15 min. This datapoint implies a balanced

capacity of 20 movements/15 min, or 80 movements/hour. These values are close to the FAA

estimates which place the capacity of this runway configuration at 80-81 movements per hour

[83, 41].

Similarly to the BOS study, we compare the estimated function plotted in Figure 3-1a to

traditional empirical capacity envelope estimates, shown in Figure 3-1b. The maximum total

capacity is achieved at around 23-24 movements/15 min for several combinations of departure and

arrival counts. This number would translate to 92-96 operations per hour, which is significantly

higher than the number of movements that this runway configuration can sustain [41, 83].
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(a) Operational throughput envelope.
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Figure 3-1: Two different measures of the capacity of runway configuration (VMC; 4R | 4L) of
EWR.

Impact of fleet mix on departure capacity

In this section, we quantify the impact of the fleet mix of both arriving and departing aircraft on

departure capacity. According to the qualitative analysis of earlier work [112], our hypothesis is

that the fleet mix can be represented with three variables in the case of EWR:

• Number of Heavy departures (HDeps) in the 15-minute interval.

• Number of Heavy arrivals (HArrs) in the 15-minute interval.1

• Number of propeller-powered aircraft or props (PDeps) departing in the 15-minute interval.

The mutual information scores between each potential explanatory random variable considered

and the departure throughput are shown in Table 3.2, along with the correlation coefficients. We

observe that the arrival throughput explains most of the variation in the departure throughput.

Quite surprisingly, the Heavy arrivals appear to impact departure throughput to nearly the same

extent as the Heavy departures. We finally note that the departing props appear to be an irrelevant

variable in the case of this runway configuration of EWR.

Next, we consider a multi-variable model. We model the response variable, departure through-

put (T ), in each 15-minute time interval [t, t + 15), as a function of five potential explanatory

variables:

1In this analysis, we exclude B757s from the Heavy aircraft class, because B757s were shown to behave like Large
aircraft with regard to departure throughput.
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Table 3.2: Mutual information and correlation between departure throughput and potential
explanatory variables.

Feature
Mutual Information with Correlation with

Departure throughput (T ) Departure throughput (T )

Departure demand (N) 0.020 -0.033

Arrival throughput (A) 0.058 -0.243

Heavy departures (HDeps) 0.026 -0.148

Prop departures (PDeps) 0.001 0.015

Heavy arrivals (HArrs) 0.019 -0.150

1. Number of departing aircraft (N) on the ground at time t. 2

2. Number of arrivals (A) in the 15 minute interval.

3. Number of props taking off in the 15-minute time interval (PDeps).

4. Number of Heavy departures in the 15-minute time interval (HDeps).

5. Number of Heavy arrivals in the 15-minute time interval (HArrs).

We analyze the correlations between all the variables in the model using the pairs function of the

R programming language [96], as explained in Section 2.4.2. The results are shown in Figure 3-2.

In Figure 3-2, we observe that the lowess fit line for the variable pair (N , T ) does not exhibit

any large or systematic deviation from the area between the T = 10 and T = 11 lines. The lack of

dependence of the departure throughput on the departure demand validates the extraction of the

filtered dataset in saturation. We note that the lowess fit line for the variable pair (A, T ) follows

the same trend as the operational throughput envelope (Figure 3-1a). The departure throughput

decreases from 11 to 9 operations/15 min as a concave function of the arrival throughput.

The lowess fit line for the variable pair (HDeps, T ) decreases gradually from 11 to 10 AC/15

min as the number of Heavy departures increases from 0 to 8 AC/15 min. As was seen in the

case of BOS the rate of decrease is lower than what is theoretically expected. Heavy aircraft

departures require twice as long a wake vortex separation requirement as Large aircraft. However,

it appears that wake vortex separation is not the major driver of the departure throughput of this

runway configuration. The lowess fit line for the variable pair (HArrs, T ) exhibits a clear negative

correlation between the two variables. As the number of Heavy arrivals increases from 0 to 3, the

2Although we have established that in the filtered dataset in saturation the departure throughput does not change
significantly with the number of aircraft on the ground it is useful to revisit this hypothesis in the multi-variable
model.

82



Figure 3-2: Correlation between departure throughput, departure demand, arrival throughput,
Heavy departures, prop departures and Heavy arrivals.

departure throughput decreases from 11 to about 9. The lowess fit line for the variable pair (PDeps,

T ) does not show any clear relation between the two.

As was done for BOS, we examine the relationship between the departure throughput and these

five variables with other statistical tools as well (regression trees, random forests and generalized

additive models). They all lead to the same conclusion that the three most significant explanatory

variables are the number of arrivals, and the number of Heavy aircraft (among both arrivals and
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departures).

A tradeoff between Heavy arrivals and total departure throughput was not expected because of

the segregation of arrivals and departures in the configurations analyzed. However, Table 3.2 and

the plots of Figure 3-2 show that, in fact, Heavy arrivals do have a significant negative impact on

the departure throughput. Possible causes of this tradeoff are either that Heavy arrivals request the

departure runway, which is 1000 ft longer than the arrival runway, or the additional time required

for Heavy arrivals to cross the departure runway due to slower taxi acceleration. As a result, air

traffic controllers either have Heavy aircraft exit the arrival runway and immediately cross the

departure runway without slowing down, or bring the Heavy aircraft to a full stop before crossing

the departure runway. Both maneuvers disrupt the departure flow.

This conjecture also explains why the impact of Heavy arrivals is diluted when classifying

arriving B757s as Heavy arrivals. The taxi characteristics of B757s are similar to those of Large

aircraft, and they do not typically request a longer runway. By contrast, departing B757s have a

longer wake vortex separation requirement, similar to Heavy departures.

Parametric representation of departure capacity

Having established that the departure throughput is primarily a function of arrival throughput,

Heavy arrivals and Heavy departures, we estimate and plot this function. This is a challenging task

because (1) it is hard to visualize a three variable function, and (2) the impact of the explanatory

variables can be coupled. For these reasons, we adopt an approximate approach: We first estimate

the departure throughput in the filtered dataset in saturation as a function of the arrival throughput

and the number of Heavy departures in a 15-minute interval, neglecting the impact of Heavy arrivals.

We follow a similar procedure to that described in Chapter 2: Given k triplets of measurements

A(t), HDeps(t) and T (t), denoted by (u1, v1, y1), . . . , (uk, vk, yk), we seek a function gh1 : R2 → R

that estimates the mean T (t) = gh1(A(t), HDeps(t)). The constraints are imposed only between

neighboring points, as was explained in Section 2.4.3. The problem is formulated as follows, where

l = max(A(t)) and n = max(HDeps(t)):

min
m∑
i=1

(ŷi − yi)2 (3.1)
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subject to:

ŷi = gh1(ui, vi), i = 1, . . . , k (3.2)

gh1(i+ 1, j) ≤ gh1(i, j), i = 0, . . . (l − 1),∀j (3.3)

gh1(i+ 1, j)− gh1(i, j) ≤ gh1(i, j)− gh1(i− 1, j), i = 1, . . . (l − 1),∀j (3.4)

gh1(i, j + 1) ≤ gh1(i, j), j = 0, . . . (n− 1), ∀i (3.5)

gh1(i, j + 1)− gh1(i, j) ≤ gh1(i, j)− gh1(i, j − 1), j = 1, . . . (n− 1),∀i (3.6)

gh1(i, j + 1)− gh1(i, j) ≤ gh1(i+ 1, j + 1)− gh1(i+ 1, j), i = 0, . . . (l − 1), j = 0, . . . (n− 1) (3.7)

gh1(i, j)− gh1(i+ 1, j) ≥ gh1(i, j + 1)− gh1(i+ 1, j + 1), i = 0, . . . (l − 1), j = 0, . . . (n− 1) (3.8)

Here, Inequalities (3.3) and (3.4) are analogous to those in the case of the capacity envelope,

namely, for a given fleet mix, the departure throughput is a monotonically non-increasing, concave

function of the arrival throughput. Inequality (3.5) ensures that for fixed arrival throughput, the

departure throughput is a non-increasing, concave function of the number of Heavy departures.

This relation holds because each Heavy aircraft departure introduces a two minute separation

requirement. Heavy aircraft departures are also expected to result in increasing capacity loss as

their number increases: For a small number of Heavies, the extra separation requirement that they

introduce can be used to cross arrivals or sequence traffic. However, as the number of Heavy aircraft

increases, the wake vortex separation requirements become a tight constraint: For seven Heavies,

at most eight departures can be accommodated in that 15-min interval.

Similarly, Equation (3.7) ensures that the marginal loss in departure throughput from increasing

the number of Heavy departures by one unit decreases as the arrival throughput increases. This is

because there is more pressure from arriving aircraft to cross runway 4L as the number of arrivals

increases, and this pressure reduces the impact of Heavy departures. The departure runway will be

utilized for crossing arrivals independent of the wake vortex separation requirements of departing

aircraft.

Finally, Equation (3.8) ensures that the marginal loss in departure throughput from increasing

the arrival throughput by one unit increases as the number of departing Heavies increases. If

increasing the arrival throughput by one unit forces the airport to decrease departure throughput

by some amount, then decreasing the arrival throughput by one unit and replacing a Large aircraft

with a Heavy one will result in at least the same decrease in departure throughput.
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The plot of the estimated function, gh1(A,HDeps), is shown in Figure 3-3a overlaid with the red

curve of Figure 3-1b (the average throughput). The comparison shows that the lines in Figure 3-3a

are in fact the red line parametrized by the number of Heavy aircraft departing in the 15-minute

interval.

We also estimate the departure throughput as a function of the arrival throughput and the

number of Heavy arrivals in a 15-minute interval neglecting the impact of departing Heavies.

Given k triplets of measurementsA(t), HArrs(t) and T (t), denoted by (u1, w1, y1), . . . , (uk, wk, yk)

in the filtered dataset in saturation, we seek a function gh2 : R2 → R that estimates the mean

T = gh2(A(t), HArrs(t)). The problem formulation is as follows, where l = max(A(t)) and n =

max(HArrs(t)):

min
m∑
i=1

(ŷi − yi)2 (3.9)

subject to:

ŷi = gh2(ui, wi), i = 1, . . . , k (3.10)

gh2(i+ 1, j) ≤ gh2(i, j), i = 0, . . . (l − 1),∀j (3.11)

gh2(i+ 1, j)− gh2(i, j) ≤ gh2(i, j)− gh2(i− 1, j), i = 1, . . . (l − 1), ∀j (3.12)

gh2(i, j + 1) ≤ gh2(i, j), j = 0, . . . (n− 1), ∀i (3.13)

gh2(i, j + 1)− gh2(i, j) ≥ gh2(i, j)− gh2(i, j − 1), j = 1, . . . (n− 1),∀i (3.14)

gh2(i, j + 1)− gh2(i, j) ≤ gh2(i+ 1, j + 1)− gh2(i+ 1, j), i = 0, . . . (l − 1), j = 0, . . . (n− 1)

(3.15)

gh2(i, j)− gh2(i+ 1, j) ≥ gh2(i, j + 1)− gh2(i+ 1, j + 1), i = 0, . . . (l − 1), j = 0, . . . (n− 1)

(3.16)

Inequalities (3.11)- (3.12) are analogous to the ones in the case of the capacity envelope. For

a given fleet mix, the departure throughput is a monotonically non-increasing, concave function of

the arrival throughput. Inequality (3.13) ensures that for fixed arrival throughput, the departure

throughput is a non-increasing function of the number of Heavy arrivals. This relation holds because

Heavy arrivals are expected to slow departure throughput at least as much as non-Heavy arrivals.

Inequality (3.14) ensures that the departure throughput is a convex function of the number of

Heavy arrivals, for a given total number of arrivals. The rationale behind this is that replacing
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Small or Large aircraft with Heavy ones, will lead to diminishing capacity losses, since multiple

crossings of Heavy aircraft can be combined.

Similarly, Equation (3.15) ensures that the marginal loss in departure throughput from increas-

ing the number of Heavy aircraft by one unit decreases as the number of arrivals increases. Finally,

Equation (3.16) ensures that the marginal loss in departure throughput from increasing the arrival

throughput by one unit increases as the number of Heavy arrivals increases. If increasing the arrival

throughput by one unit results in a certain decrease of the departure throughput, then increasing

the arrival throughput by one unit and replacing a Large arrival with a Heavy one will yield at

least the same decrease in departure throughput.

The plot of the estimated function, gh2(A,HArrs), can be seen in Figure 3-3b overlaid with the

red curve of Figure 3-1b (average throughput).
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Figure 3-3: Parametric representation of the capacity of the 4R|4L runway configuration.

With regard to Figure 3-3a we first observe that the average departure throughput curve co-

incides with the curve describing the departure throughput conditioned on two Heavy departures

in a 15-minute interval. This is consistent with the proportion of Heavy aircraft in the fleet mix

at EWR, which was around 22% in 2007. Similar to the BOS results ( Section 2.6.4), the number

of departing Heavy aircraft does not significantly impact the departure throughput. For the most

common operating scenarios in which the rate of arrivals is 5-10 AC/15 min and the number of

Heavy departures is 1-3, the departure throughput does not change substantially. As the number

of arrivals increases, the impact of Heavy departures diminishes, and all the curves in Figure 3-3a
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converge to a single one, similar to what was observed for BOS.

By contrast, the number of Heavy arrivals has a higher impact on departure throughput than

Heavy departures, when measured in terms of throughput reduction/ Heavy operation. For the

most common operating scenarios in which the rate of arrivals is 5-10 AC/15 min, two Heavy

arrivals reduce the departure throughput by 0.5-1 operation per 15-min (i.e., 2-4 operations per

hour). As the number of arrivals increases, the impact of Heavy arrivals decreases from more than 1

fewer departure per 2 Heavy arrivals, to less than half a departure loss per two Heavy arrivals. We

hypothesize that controllers use the extra time required to cross a Heavy arrival to perform multiple

crossings in periods with many landings. In this manner, the impact of Heavy arrivals diminishes. A

comparison of the curves in Figures 3-3a and 3-3b suggest that Heavy arrivals are more detrimental

to departure throughput than Heavy departures. Two Heavy arrivals can introduce a departure

throughput penalty of one operation per 15 minutes, whereas two Heavy departures do not reduce

the departure efficiency.

We also observe that for low numbers of arrivals and no Heavy aircraft in the fleet mix, the

departure capacity is less than 11 AC/15-min. In theory, one would expect this number to be closer

to 15AC/15-min. The standard terminal radar separation between non-departing Heavies translates

to approximately one minute separation between successive takeoffs with the same heading. The

fact that it is significantly lower than the theoretical estimate suggests that other constraints (for

example, TRACON capacity, En Route Center capacity, or traffic flow management programs)

decrease the operational departure throughput of this runway configuration.

Finally, we note that such a parametric representation assumes that there is no correlation

between Heavy departures and Heavy arrivals; an analysis of the relation between these variables

is presented in Section 3.1.4.

3.1.2 Analysis of South flow configurations

In this section, we apply the methodology presented in section 3.1.1 to the two other major runway

configurations at EWR, namely, 22L | 22R and 11, 22L | 22R. These configurations are primarily

used under south winds.

As explained by Donaldson and Hansman [33], Runway 11 at EWR is used under south winds

and high arrival demand. However, several restrictions apply due to its short length (6800 ft), and

restricted approach geometry. Its use is typically limited to Boeing 737-700 and smaller aircraft and

15-mile spacing is required between successive arrivals. It is worth noting that the use of Runway
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11 often happens with a slight tailwind component, as the southerly prevailing winds are between

210◦ and 270◦ . Above a certain threshold, this tailwind component can lead to an increased

miles–in–trail (MIT) restriction of 20 miles between arrivals to Runway 11. Departures on 22R

can be operated independently from the two arrival runways as long as takeoffs begin south of the

intersection with Runway 11 [33]. The subsequent analysis in this chapter will identify the extent

of added arrival capacity offered by Runway 11, and its impact on the departure capacity.

Runway configuration 22L | 22R is symmetric to 4R | 4L, so one would expect the two config-

urations to have the same capacity. However, the airspace design differs substantially between the

two runway configurations: Airspace to the south is less restricted than that to the north, allowing

aircraft to be sent to two different (dispersal) departure headings (215◦ and 239◦) immediately

after takeoff from runway 22R. This procedure means the inter-departure spacing requirement is

reduced to 6000 ft or when the leading departure becomes airborne (unless the leading aircraft is

a Heavy or B757). Without multiple dispersal headings, subsequent departures from Runway 4L

must be given sufficient spacing to ensure that the required 2.5 mile terminal radar separation can

be maintained between them [33]. This typically translates to a one-minute separation requirement.

Our analysis investigates whether runway configuration 22L | 22R has a higher departure capacity

than 4R | 4L, as a result of its less restricted airspace.

Operational throughput envelopes

Following the method outlined in Section 2.3, we isolate the filtered dataset in saturation, and use

its data-points to estimate the average departure throughput as a concave non-increasing function

of the arrival throughput. The resulting operational throughput envelopes are shown in Figure 3-4.

Comparing Figures 3-1a, 3-4a and 3-4b , we first observe that runway configuration 11, 22L | 22R

tends to be used under high arrival demand. There are no data-points with fewer than 2 arrivals/

15 min, and most of the data-points are concentrated in high arrival counts, that is between 9 and

12 arrivals. By contrast, the data-points for runway configuration 22L | 22R are spread across a

broad range of arrival counts. With regards to the impact of Runway 11 on departure capacity, we

note that for arrival counts that can be accommodated by both configurations (4-12 arrivals/ 15

min), the departure capacity of the two configurations is not significantly different. This suggests

that the landings on Runway 11 do not impact the departures from 22R. We also note that the

addition of Runway 11 increases the arrival priority capacity by only two additional landings. Such

a small improvement may be explained by the MIT restrictions that apply to the use of Runway 11,

89



0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Arrival throughput (AC/15 min)

D
e

p
a

rt
u

re
 t

h
ro

u
g

h
p

u
t 

(A
C

/1
5

 m
in

)

 

 

Average throughput

Data scatter

(a) Operational throughput envelope of configuration
(VMC; 22L | 22R).
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(b) Operational throughput envelope of configuration
(VMC; 11, 22L | 22R).

Figure 3-4: Operational throughput envelopes of the two major south-flow runway configurations
at EWR.

and the fact that landings on it need to be sequenced with landings on 22L. Indeed, according to the

FAA EWR Traffic Management Tips [41], the AAR of runway 22L is 28-42 arrivals/hr, while that

of Runway 11 is only 4-6 arrivals/hr. The throughput envelopes show that the departure capacity

of runway configurations 22L | 22R and 11,22L | 22R is not significantly higher than that of the 4R

| 4L, in agreement with the FAA EWR Traffic Management Tips [41]. This finding suggests that,

on average, dispersal headings do not significantly increase departure capacity, possibly because of

fleet mix and taxiing-in aircraft crossing the departure runway.

Impact of departing Heavy aircraft

Following the procedure described in Section 3.1.1, we estimate the impact of Heavy departures on

the departure throughput for the 22L | 22R and 11, 22L | 22R runway configurations. The results

of the estimation procedure are shown in Figure 3-5.

From Figure 3-5a, we note that the departure throughput of the 22L | 22R runway configuration

increases from 11 AC/15 min to 12 AC/15 min, given no Heavy departures and a small number

of arrivals. This is in contrast to the departure throughput of the 4R | 4L configuration, which

does not increase substantially with a non-Heavy fleet mix (Figure 3-3a). We hypothesize that the

availability of dispersal headings for takeoffs from runway 22R explains this difference. From Figure
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Figure 3-5: Impact of Heavy departures on operational throughput for the two major south-flow
runway configurations at EWR.

3-5b we observe that the departure throughput of the 11, 22L | 22R configuration does not vary

significantly with the number of Heavy aircraft in the departing fleet mix. This can be explained by

the high arrival rate served by this runway configuration since air traffic controllers most probably

use the large separation requirement behind a Heavy departure to have arrivals cross the departure

runway. For the same reason, the throughput curves of Figure 3-5a converge as the number of

arrivals increases for the 22L | 22R configuration as well.

Impact of Heavy arrivals

Here, we estimate the impact of Heavy aircraft arrivals on the south–flow runway configurations.

The results can be seen in Figure 3-6. Heavy arrivals impact both south-flow runway configurations

in a similar fashion in the common range of arrival rates (4-12 arrivals/ 15 min). In the range of 4-8

arrivals/15 min, two Heavy arrivals come at approximately the cost of half a takeoff. The effect of

Heavy arrivals diminishes as the total number of arrivals increases, similar to the impact of Heavy

arrivals on departure throughput for the 4R | 4L configuration (Figure 3-3b).

3.1.3 Predictive capabilities of EWR models

Similarly to the analysis of BOS departure throughput in Section 2.5, we provide five measures for

goodness-of-fit of the proposed estimation as applied to EWR. We compare four different estimates
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Figure 3-6: Impact of Heavy aircraft arrivals for the two major south–flow runway configurations
at EWR.

for ŷi:

1. The arithmetic mean (AM) of the departure throughput : y = 1
k

∑k
i=1 yi.

2. The departure throughput predicted from the operational throughput envelope (OTE): h(ui).

3. The predicted throughput from the operational throughput envelope parametrized for Heavy

departures (PTE1): gh1(ui, vi).

4. The predicted throughput from the operational throughput envelope parametrized for Heavy

arrivals (PTE2): gh2(ui, wi).

Table 3.3 lists aggregate statistics for the dataset which is used for estimating the throughput

curves for the three major runway configurations at EWR. Comparing them to the corresponding

ones for BOS, shown in Table 2.2, we notice that the mean departure throughput of the major

runway configuration at BOS, 22L, 27 | 22L, 22R, in 2007 (10.56) is approximately the same as

the mean departure throughput of the major runway configuration of EWR, 22L | 22R, in 2007

(10.50). By contrast, the variance of the departure throughput of the major runway configuration

at BOS (3.72) is much higher than the variance of the departure throughput of the major runway

configuration of EWR (2.25). We also notice that the dataset in the case of EWR is much larger

than that of BOS, because EWR is a much more congested airport. This results in more data-points

in the filtered dataset in saturation.
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Table 3.3: Statistics of the training dataset for the EWR analysis.

Runway Configuration Time frame Source Size Mean Variance

4R | 4L Jan-Dec 2007 ASPM 10076 10.52 1.70
22L | 22R Jan-Dec 2007 ASPM 18926 10.50 2.25

11, 22L | 22R Jan-Dec 2007 ASPM 8622 10.19 1.73

Table 3.4 lists the goodness of fit results for the four estimators. In contrast to the case of

BOS, the parametrized capacity envelopes explain very little of the variation of the departure

throughput. There are two reasons for this: Firstly, as already discussed, the variance of the

departure throughput of EWR is much smaller. Secondly, in contrast to BOS, none of the potential

explanatory variables explain a significant portion of the variation. From Figures 3-3 to 3-6, we note

that in all of the parametrized throughput envelopes and for most of the ranges of the explanatory

variables considered, the departure throughput is within one operation of the 10 AC/ 15 min point.

Table 3.4: Comparison of four different estimators for the departure throughput on the EWR
training data set.

Estimator MAE MSE RMSE MAPE RMSPE

4R | 4L AM 1.08 1.70 1.30 10.6% 13.2%
4R | 4L OTE 1.02 1.59 1.26 10.0 % 12.7%
4R | 4L PTE1 1.00 1.56 1.25 10.0% 12.6%
4R | 4L PTE2 1.01 1.58 1.26 10.0% 12.7%

22L | 22R AM 1.25 2.25 1.500 1.22 % 15.0%
22L | 22R OTE 1.19 2.15 1.47 11.7% 14.6%
22L | 22R PTE1 1.17 2.10 1.45 11.5 % 14.5%
22L | 22R PTE2 1.17 2.11 1.45 11.5% 14.6%

11, 22L | 22R AM 1.08 1.73 1.31 10.8% 13.4%
11, 22L | 22R OTE 1.05 1.67 1.29 10.6% 13.2%
11, 22L | 22R PTE1 1.05 1.66 1.29 10.6% 13.2%
11, 22L | 22R PTE2 1.04 1.64 1.29 10.5 % 13.1%

3.1.4 Correlation between Heavy departures and Heavy arrivals

In Sections 3.1.1 and 3.1.2, we separately quantified the impact of Heavy arrivals and Heavy depar-

tures by estimating the departure throughput, first as a function of arrival throughput and Heavy

departures, and then as a function of arrival throughput and Heavy arrivals. In other words, the

curves of Figure 3-3a regress the departure rate on arrival throughput and Heavy departures ne-

glecting the impact of Heavy arrivals. For interpreting the results of this regression, it is essential
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to investigate potential correlation between the Heavy departures and the omitted variable, Heavy

arrivals. For example, if zero Heavy departures are highly correlated with zero Heavy arrivals, the

curves “0 dep. Heavies/15 min throughput” of Figure 3-3a and “0 arr. Heavies/15 min throughput”

of Figure 3-3b would estimate the same quantity, namely, the departure throughput as a function

of the arrival count, conditioned on zero Heavy departures and zero Heavy arrivals.

Next, we test for the correlation between the two variables, Heavy departures and Heavy arrivals.

In Figure 3-7, we plot the number of Heavy departures and the number of Heavy arrivals as a scatter

plot for the three major runway configurations at EWR.
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(a) Heavy Departures as a function of Heavy arrivals
at runway configuration 4R | 4L.
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(b) Heavy Departures as a function of Heavy arrivals
at runway configuration 22L | 22R.
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(c) Heavy Departures as a function of Heavy arrivals
at runway configuration 11, 22L | 22R.

Figure 3-7: Relation between Heavy departures and Heavy arrivals for three major runway config-
urations at EWR.

We also show the mean and median values of the number of Heavy departures, conditioned on
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the number of Heavy arrivals. The error bars represent one standard deviation of the distribution.

From these plots, we first note that there is no clear trend between Heavy departures and Heavy

arrivals. At all values of Heavy arrivals, there are, on average, 2-3 Heavy departures. We also note

that the variance of Heavy departures does not change across the range of Heavy arrivals with

sufficient data-points, that is, 0-3 Heavy arrivals. For all values of Heavy departures, the most

data-points correspond to periods with no Heavy arrivals. This implies that the curves of Figure

3-3a and Figure 3-5, in which the Heavy arrivals are neglected, are representative of no Heavy

arrivals, because most of the observations are under this condition.

Similarly, the regression fits of Figure 3-3b and Figure 3-6 neglect the impact of Heavy de-

partures. Since there is no correlation between Heavy departures and Heavy arrivals, neglecting

the Heavy departures does not introduce an omitted-variable bias in the fits. In addition, for all

values of Heavy arrivals, the observed counts of Heavy departures are more more evenly spread in

the range of 1-4 per 15 min. The fits of Figure 3-3b and Figure 3-6 are therefore representative

over a range of values of Heavy departures. Table 3.5 also presents the correlation and the mutual

information between the two variables for the three major configurations.

Table 3.5: Correlation between Heavy departures and Heavy arrivals for the prominent runway
configurations at EWR.

Correlation between Mutual information
Runway configuration Heavy departures Heavy departures

and Heavy arrivals and Heavy arrivals

4R | 4L 0.176 0.031
22L | 22R 0.157 0.026

11,22L | 22R -0.013 0.009

3.1.5 Concluding remarks on EWR analysis

Studying the three prominent VMC runway configurations at EWR, we conclude that the departure

throughput is inelastic to changes in arrival throughput. It is around 10 AC/15 min for all runway

configurations, and varies only by 1 AC/15 min when the arrival throughput takes values in the

range of 0-11 AC/15 min.

In Table 3.6, we summarize our findings for the three different configurations. Under the

column “Balanced Operations”, we present the capacity of the airport when it serves arrivals and

departures in equal numbers. Its capacity is approximately 20 AC/ 15 min, or 80 AC/hour. In

the column “Arrival Priority”, we present the capacity of the airport during periods in which the
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highest values of arrival throughput are realized. In this regime, the capacity is approximately 12

Arrivals/15 min and 9 Departures/15 min, or 48 Arrivals/hour and 36 Departures/hour. Similarly,

in the column “Departure Priority”, we present the capacity of the airport during periods in which

the highest values of departure throughput are realized. In this case, the capacity is approximately

6 Arrivals/15 min and 11 Departures/15 min, or 24 Arrivals/hour and 44 Departures/hour.

We notice that merely capping operations at 81 Movements/hour, like the slot control policy

proposed by FAA in 2009 [36], may not be very effective in demand management and delay re-

duction, since the allocation of movements to departures and arrivals also needs to be specified.

For example, there is no operational regime in which the airport can sustain either 81 Depar-

tures/hour or 81 Arrivals/hour, as demonstrated by Pyrgiotis [93]. Therefore, a more effective slot

control policy would be to cap operations in a manner similar to Table 3.6, instead of using a single

number.

Table 3.6: EWR aggregate average runway throughput (AC/15 minutes).

Capacity Balanced Operations Arrival Priority Departure Priority

Arrival 10 12 6
Departure 10 9 11

Total 20 21 17

3.2 Capacity of the New York Metroplex

It has been conjectured that the potential capacity of EWR is not achieved due to interactions

with the other airports in the New York Metroplex [33]. In section 3.1, we saw that the departure

capacity is relatively insensitive to variables that theoretical models suggest as being very influential,

such as, the departing aircraft fleet mix. The results of Section 3.1 motivate an investigation of

EWR’s interactions with the other two major airports in the New York Metroplex, JFK and LGA.

We first investigate whether these interactions explain some of the variation in EWR’s departure

capacity. Subsequently, we examine tradeoffs between the operations of the three major airports in

New York. We conclude this section by characterizing the capacity of the airport system comprising

JFK, EWR and LGA.
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3.2.1 Interactions between JFK and EWR

As a first step, we study the impact of JFK departures on EWR departures, to investigate potential

tradeoffs between the two airports. This tradeoff could be caused because of merging traffic at

departure gates, or by TRACON workload constraints [33]. In Figure 3-8, we show the scatter

plot of the departure throughput of EWR in saturation (i.e., under persistent demand)3 and the

departure throughput of JFK, for the three major runway configurations at EWR. We also show

the mean and median trend of the EWR departure throughput in saturation, conditioned on the

number of departures at JFK.

From Figure 3-8, we observe that there is no trend indicating that JFK departures negatively

impact EWR departure throughput for any of the EWR configurations. In fact, the plots suggest a

positive trend, which is most pronounced for the 22L | 22R configuration. The more efficient JFK

is, the more efficient EWR is as well. This positive correlation can be explained by the airspace

design, which keeps the departure flows out of the two airports sufficiently separated (Figure B-1).

Departures from JFK therefore do not negatively impact those from EWR. By comparing Figures

3-8a and 3-8b, we note that the mean EWR departure throughput does not exceed 11 AC/15 min for

all values of JFK departures in the 4R | 4L configuration. However, in the 22L | 22R configuration,

the mean departure throughput at EWR exceeds 11 AC/15 min for high values of JFK departures.

This suggests that when JFK departure throughput is very high, EWR throughput also increases, in

the 22L | 22R configuration. High JFK departure throughput implies high route availability in the

New York airspace, which, in turn, is correlated with high route availability for EWR departures.

Because the airspace to the south of EWR is not constrained, departures make use of the increased

routing options, resulting in increased departure throughput. However, when the airport operates

in the 4R | 4L configuration, the departure throughput cannot increase as much because of the

airspace constraints.

In order to further investigate the correlation between the departure capacities of the two

airports, we extract the data-points for which JFK is under persistent demand (in saturation).

The hypothesis we want to test is whether high JFK demand results in its prioritization. In Figure

3-9, we show the scatter plot of the departure throughput of EWR in saturation and the departure

throughput of JFK in saturation for the three major runway configurations at EWR. We also

show the mean and median trends of EWR departure throughput in saturation, conditioned on the

3In this section we do not filter low throughput values from the dataset in saturation, because we test the hypothesis
of whether they are related to operations at other airports of the NY Metroplex.
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(a) EWR departure capacity as a function of JFK
departures for the 4R | 4L configuration at EWR.
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(b) EWR departure capacity as a function of JFK
departures for the 22L | 22R configuration at EWR.
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(c) EWR departure capacity as a function of JFK de-
partures for the 11,22L | 22R configuration at EWR.

Figure 3-8: Relation between EWR departure capacity and JFK departures for the three major
runway configurations at EWR, during periods when EWR is in saturation.

departure throughput of JFK in saturation.

The plots of Figure 3-8 and Figure 3-9 are quite similar, suggesting that JFK departures interact

with EWR departures in the same manner irrespective of whether or not JFK is saturated. The

positive correlation between EWR and JFK capacity suggests the presence of hidden variables

which impact the departure capacity of the two airports in a similar fashion. One such factor could

be the arrival demand: When one airport experiences an arrival bank, the other airport is likely to

experience one as well. Similarly, both airports experience a large number of Heavy departures in

the evening. Another factor could be downstream weather, or route availability. We note that when
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(a) EWR departure capacity as a function of JFK
departure capacity for the 4R | 4L configuration at
EWR.
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(b) EWR departure capacity as a function of JFK
departure capacity for the 22L | 22R configuration at
EWR.
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(c) EWR departure capacity as a function of JFK
departure capacity for the 11,22L | 22R configuration
at EWR.

Figure 3-9: Relation between EWR departure capacity and JFK departure capacity, for three major
runway configurations at EWR during periods when both airports are in saturation.

the departure throughput of JFK is very low (fewer than 7 AC/15 min), the departure throughput

of EWR is low as well. In periods when both airports are under persistent departure demand

and both have very low departure throughput, it is likely that downstream constraints keep both

airports at low performance levels.

To further emphasize the correlation between EWR and JFK departure throughputs under per-

sistent demand, we compare the correlation coefficient between the two variables to the correlation

coefficient between EWR departure throughput in saturation and EWR arrival throughput (Table
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3.7). We note the absolute values of the correlation between the departure capacities of the two

airports is higher than those between the departure capacity of EWR and the arrival capacity of

EWR, for two out of the three major configurations. This preliminary analysis therefore shows no

evidence that JFK departures negatively impact EWR departures.

Table 3.7: Correlation between EWR departure capacity and JFK departure capacity.

EWR Correlation between Correlation between
runway EWR dep. capacity EWR dep. capacity

configuration and JFK dep. capacity and EWR arr. capacity

4R | 4L 0.142 -0.261
22L | 22R 0.474 -0.053

11, 22L | 22R 0.138 -0.082

3.2.2 Interactions between LGA and EWR

In this section, we investigate potential departure tradeoffs between EWR and LGA. In contrast

to the previous section, we look at configurations that are frequently in use simultaneously at the

two airports. Since JFK is hypothesized to be prioritized over the other New York airports, our

intention in Section 3.2.1 was to study how departures out of EWR are impacted by different levels

of departure throughput at JFK. Here, we focus on configuration combinations of EWR and LGA

that are known to share airspace resources, in particular departure fixes [33]. These configurations

are listed in Table 3.8.

Table 3.8: Frequency of simultaneous use of EWR and LGA configurations under Visual
Meteorological Conditions.

Airport(s) Runway Configuration Use
Count (hrs) Frequency

EWR 22L | 22R 2664 36.7 %
EWR 4R | 4L 1519 20.9%
EWR 11, 22L | 22R 1398 19.25 %
LGA 31 | 4 1400 19.2 %
LGA 22 | 31 1567 21.6 %
LGA 22 | 13 16585 22.8 %

(EWR, LGA) (22L | 22R; 31 | 4) 874 12.4 %
(EWR, LGA) (4R | 4L ; 22 | 31) 583 8.3 %
(EWR, LGA) (11, 22L | 22R ; 22 | 13) 583 8.3 %
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(a) EWR departure capacity as a function of LGA
departure capacity for the (22L | 22R; 31 | 4) config-
uration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

LGA departure throughput(AC/15 min)

E
W

R
 d

e
p

a
rt

u
re

 t
h

ro
u

g
h

p
u

t(
A

C
/1

5
 m

in
)

 

 

Data scatter

Data mean

99.25% Quantile Fit

(b) EWR departure capacity as a function of LGA
departure capacity for the (4R | 4L ; 22 | 31) config-
uration.
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(c) EWR departure capacity as a function of LGA
departure capacity for the (11, 22L | 22R ; 22 | 13)
configuration.

Figure 3-10: Relation between EWR departure capacity and LGA departure capacity for the three
major runway configurations at EWR and LGA.

In Figure 3-10, we show the scatter plot of the departure throughputs of the two airports in

saturation (i.e., under persistent departure demand). We also show the average EWR departure

throughput as a function of the LGA departure throughput. We note that similar to JFK, LGA

departure throughput does not appear to have negative correlation with the average EWR departure

throughput. For all runway configuration combinations, the average departure throughput of EWR
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increases with increasing departure throughput of LGA.

Figure 3-10 also shows the quantile regression fits. The quantiles are chosen according to the

methodology suggested by Ramanujam and Balakrishnan [97]. The quantile regression could be

informative if LGA had an adverse impact on the departure throughput of EWR, but this could

not be discerned by studying the average performance of EWR as a function of LGA departure

throughput. Average departure throughput is a multi-variable function, and the effect of LGA

alone cannot be isolated. However, by studying the statistically significant maximum observed

number of operations with quantile regression, we can find out whether increasing LGA throughput

reduces the maximum throughput achievable by EWR. The quantile regression is in agreement

with our previous observations, and in agreement with the results of Ramanujam and Balakrishnan

[97]. The departure throughputs of the two airports do not interact, and EWR can attain its

maximum throughput independent of LGA departure throughput. We also note that the maximum

throughput of EWR is higher under the 22L | 22R configuration because of the higher departure

route availability, as discussed in Section 3.1.2.

3.2.3 Operational throughputs of JFK and LGA

For completeness, we provide the operational throughput envelopes for the major runway config-

urations of JFK and LGA in Figures C-1 and C-2 of Appendix C. In Tables 3.9 and 3.10, we

summarize capacity estimates of these two airports. Comparing Tables 3.6, 3.9 and 3.10, we note

that the three major New York airports have very similar balanced operations capacity values (20

AC/15 min for JFK and EWR, and 18 AC/15 min for LGA). We also note that the departure

priority capacity is inelastic in all airports. Finally, we note that runway configuration 31L, 31R

| 31L at JFK, which favors arrival throughput, is the only runway configuration that exhibits a

clear tradeoff between arrival and departure throughput. Inspecting Figure C-1a, we note that in

order to reach the arrival priority operating point, the departure throughput decreases to 5. In this

runway configuration, the only departure runway, 31L, is shared by departures and arrivals.

Table 3.9: JFK aggregate average runway throughput (AC/15 min).

Capacity Balanced Operations Arrival Priority Departure Priority

Arrival 10 16 6
Departure 10 6 12

Total 20 22 18
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Table 3.10: LGA aggregate average runway throughput (AC/15 min).

Capacity Balanced Operations Arrival Priority Departure Priority

Arrival 9 12 6
Departure 9 8 10

Total 18 20 16

3.2.4 Local regression for Metroplex

Building on the work of Donaldson and Hansman [33], we treat the whole Metroplex as a single

airport system. Donaldson and Hansman identified three major Metroplex configurations, the

most frequently-used of which is labeled “South-Flow-VMC-Arrival Priority”. Its components can

be seen in Table 3.11. For all individual runway configurations comprising “South-Flow-VMC-

Arrival Priority”, we calculate the saturation point using the methodology of Section 3.1.1. We

now keep all data points for which the Metroplex is in “South-Flow-VMC-Arrival Priority” and all

individual airports are in saturation.

Table 3.11: Elements of the “South-Flow-VMC-Arrival Priority” Metroplex configuration.

Airport Runway configuration Weather N∗

JFK 13L, 22L | 13R VMC 25
EWR 11, 22L | 22R VMC 25
LGA 22 | 13 VMC 13

We study the interactions among the following variables:

1. JFK departure throughput: Departure throughput in each 15-min time interval at JFK.

2. JFK departure throughput: Arrival throughput in each 15-min interval at JFK.

3. EWR departure throughput: Departure throughput in each 15-min time interval at EWR.

4. EWR arrival throughput: Arrival throughput in each 15-min interval at EWR.

5. LGA departure throughput: Departure throughput in each 15-min interval at LGA.

6. LGA arrival throughput: Arrival throughput in each 15-min interval at LGA.

Similarly to Section 3.1.1, we analyze the correlations between all the variables using the pairs

function of the R programming language, which produces panels with the correlations among all

variables of the model. Each panel of Figure 3-11 shows the scatterplot between the variable

on the vertical axis and the variable on the horizontal axis, as well as the lowess curve (in red)
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Figure 3-11: Correlations between departures and arrivals in the NY Metroplex for the “South-
Flow-VMC-Arrival Priority” configuration.

through the set of data points. From the lowess fit lines, we observe that there is no clear negative

correlation between departures out of one airport in the Metroplex, and operations at another.

On the contrary, we note the decreasing trend between the departure throughput and the arrival

throughput resulting from the shared capacity between departures and arrivals at each individual

airport (the capacity envelope). We also note the non-decreasing trend between the departure

throughput of two individual airports. This observation is consistent with the analysis of Section

3.2.1, which showed a positive correlation between the departure capacities of EWR and JFK. The

trend between departures at LGA and departures at EWR is very similar to that in Figure 3-10c

reinforcing the conclusion that LGA departures have little impact on EWR departures. Similarly,

there are no decreasing trends between the departure throughput at one airport and the arrival

throughput at another, or between arrival throughputs at different airports.

These results were verified using other statistical models, as well, such as generalized additive

models, regression trees, and random forests. In summary, the analysis of the Metroplex configu-

ration “South-Flow-VMC-Arrival Priority” shows that the departure and arrival capacities of an

airport are not adversely impacted by operations at other airports.
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3.2.5 Metroplex operational throughput

We characterize the capacity of the NY Metroplex for the “South-Flow-VMC-Arrival Priority”

and two other major Metroplex configurations, as identified by Donaldson and Hansman [33], and

shown in Tables 3.12 and 3.13.

Table 3.12: Elements of the “South-Flow-VMC-Departure Priority” Metroplex configuration.

Airport Runway Configuration Weather N∗

JFK 22L | 22R, 31L VMC 29
EWR 22L | 22R VMC 26
LGA 22 | 31 VMC 13

Table 3.13: Elements of the “North-Flow-VMC-Departure Priority” Metroplex configuration.

Airport Runway Configuration Weather N∗

JFK 4R | 4L, 31L VMC 22
EWR 4R | 4L VMC 28
LGA 31 | 4 VMC 17

We isolate the datapoints for which all three airports are under persistent departure demand

and estimate the operational throughput envelopes of the three major Metroplex configurations

(Figures 3-12, 3-13a and 3-13b). Each “arrival throughput” point consists of the sum of the

arrival throughputs of the three airports, and each “departure throughput” point, the sum of their

departure throughputs. In other words, we treat the Metroplex as a single airport. The estimates

are shown in Table 3.14.

Comparing Figures 3-12 and 3-13, we notice that for the Departure Priority configurations,

the arrival throughput takes lower values and the departure priority throughput is higher. We

also notice that the departure throughput in South Flow is higher than the departure through-

put in the “North-Flow-Departure-Priority” configuration. Consistent with this, the departure

throughput of the three individual airports is higher when they operate in the corresponding run-

way configurations. Despite the symmetry in the airfield design of the runway configurations in the

“Departure-Priority-South-Flow” and “Departure-Priority-North-Flow” Metroplex configurations,

the airspace design is significantly different for the two flows. South flow offers more departure

fixes, allowing for a higher number of departure operations for a given number of arrivals. We note

that the departure throughput stays steady for the most part in the “South-Flow-VMC-Arrival

Priority” configuration. The reason for this behavior is that the departure throughput changes
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Figure 3-12: Operational throughput envelope of the New York Metroplex for the “South-Flow-
VMC-Arrival Priority” configuration.

very little in each individual airport with arrival throughput: In the case of JFK, the departure

throughput is in the range of 10-11 departures for 0-11 arrivals (Figure C-1a); in the case of EWR,

10-11 departures for 0-13 arrivals (Figure 3-4b); and in the case of LGA, 9 departures for 0-12

arrivals (Figure C-2a). Because of the averaging when treating the whole Metroplex as a single

“airport”, we observe a steady departure throughput of 30 aircraft for 14-35 arrivals. However,

when the number of arrivals exceeds 35, the departure throughput starts decreasing.

Table 3.14: New York Metroplex aggregate average throughput (AC/15 minutes).

Capacity Balanced Operations Arrival Priority Departure Priority

Arrival 30 38 20
Departure 29 28 33

Total 59 64 53

In conclusion, we note that even with the current airspace design of the New York Metroplex,

there are opportunities for performance improvement. For instance, in the “South-Flow-VMC-

Departure Priority” configuration, we saw that EWR does not appear to take advantage of the

availability of dispersal headings. Similarly, in the “South-Flow-VMC-Arrival Priority” configu-

ration, the added arrival runway increases the arrival priority capacity of JFK by only 3 AC/15
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(a) Operational throughput envelope for the“South-
Flow-VMC-Departure Priority” configuration.
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(b) Operational throughput envelope for the“North-
Flow-VMC-Departure Priority” configuration.

Figure 3-13: Operational throughput envelopes of the New York Metroplex for the Departure
Priority configurations.

min.

Analogously, we note that JFK uses two departure runways in the Departure-Priority configu-

rations, the operations of which are decoupled,4 but yet achieves a departure throughput of only 13

AC/15 min (Figure C-1). For these configurations and considering the fleet mix of JFK, theoret-

ical models predict much higher arrival and departure throughputs [33]. The investigation of the

reasons behind the low throughput at JFK is out of the scope of this thesis, but is an interesting

topic which, if addressed, could help improve airport congestion and resultant downstream delays

without necessitating airspace redesign, new runways or other expensive capacity improvements.

Our hypothesis is that aircraft are assigned to runways not with the objective of maximizing the

airport departure throughput, but according to their preferred departure fixes. This practice is

likely to result in frequent unbalanced utilization of the two departure runways, as has been seen

to occur at other US airports, like MEM5 and DFW6.

4Departures start their takeoff roll on 31L past the intersection with 22R, thereby allowing independent operations
on both runways.

5Interviews with the FedEx Surface Operations Management group.
6In Section D.2 of the Appendix, we discuss the impact of imbalanced runway utilization on the departure through-

put at DFW.
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3.3 Leveraging route availability information for operational through-

put estimation

All applications of the proposed methodology demonstrated so far involved runway configurations

during Visual Meteorological Conditions (VMC). Analogous plots can be constructed for Instru-

mental Meteorological Conditions (IMC). However, in addition to local meteorological conditions,

downstream restrictions can also impact the operational throughput of an airport [60]. There may

be thunderstorms blocking fixes out of the airport, or major departure routes. Aircraft that planned

to use these fixes or routes would then have to be rerouted. As the number of blocked fixes or routes

increases, the available rerouting options decrease, affecting aircraft in two ways: Some aircraft may

need to be routed over a small number of fixes or even a single fix. The throughput of a single fix

or route is typically much smaller than the capacity of a runway. The radar separation requirement

is 5 nm, and multiple airports might make use of a single fix. In these cases miles–in–trial (MIT),

minutes–in–trail (MINIT), or other traffic management initiatives be initiated at the origin airports

to ensure that aircraft arrive at the over-loaded fix or route at a sustainable rate. Other flights,

the available routes of which are blocked, will be delayed until one of their potential routes clears.

Both cases above decrease the number of the aircraft that are cleared for takeoff at a given

time. As fewer and fewer aircraft are allowed to take off, the throughput of the airport is effectively

decreased. Although capacity is theoretically available, it cannot be used because of downstream

restrictions. The affected aircraft may be classified as “departure demand” by our methods, because

in many cases, especially at the New York airports, aircraft are assigned route blockage-related

delays after they have left their gate [116].

3.3.1 Route Availability Planning Tool (RAPT)

In this section, we discuss how information on downstream restrictions can be used for estimating

the operational throughput of an airport. We focus on a particular class of downstream restrictions,

namely, route blockage for departures out of an airport as measured with the Route Availability

Planning Tool (RAPT). RAPT, developed by MIT Lincoln Laboratories, is an automated decision

support tool intended to help air traffic controllers determine the specific departure routes and

departure times that will be affected by operationally significant convective weather. RAPT helps

users determine when departure routes or fixes should be opened or closed, and to identify alter-

native departure routes that are free of convective weather. It has been in use for the past 10 years
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in the New York area airports and has reduced a great fraction of delays and costs associated with

convective weather [31, 32, 100]. We use archived RAPT data from LGA in 2010-2011 to study the

impact of route availability, as predicted by RAPT, on the capacity of the airport. We model the

impact of route availability on the mean value and the variance of the throughput of the airport,

in contrast to prior literature which focuses on calculating its impact on individual flights and fixes

[31, 32, 100].

RAPT assigns one of three status colors/values–RED/3 (blocked), YELLOW/2 (impacted),

DARK GREEN/1 (insignificant weather encountered) or GREEN/0 (clear)–to each route, every 5

minutes, for departure times up to 30 minutes into the future. In addition, it provides a wealth

of auxiliary information, such as the location of the blockage and the echo-top (height) of the

closest blockage on each route. However, we do not know how the RAPT status is actually used

by controllers, and which aircraft are affected. Data on the preferred and actual routes flown by

each aircraft are not available to us. We therefore use RAPT information in an aggregate way by

averaging across both time and routes. For each route and each 5-minute period, we calculate a

moving average of the seven entries of the “Blockage Status” of this route: the 15-min, 10-min and

5-min prior trends, the current time period trend, and the 5-min, 10-min and 15-min forecasts.

The time-averaging is performed to model the use of the tool in practice, since controllers, when

assessing the availability of a route, do not only consider its status in the current time, but its recent

values and predicted future trend as well. The recent values are used in assessing the reliability

and stability of the current trend. The future values are useful, as aircraft will use these routes in

the future. We average across the 13 routes to obtain a single value for each 5-minute period to

account for spatial errors. We discretize this value in steps of 0.2 and denote it as SRAPT (Surrogate

RAPT). In the absence of more detailed operational information, we believe that this simple metric

is a good approximation of weather impact on departure routes.

3.3.2 Analysis of LGA with RAPT data

In LGA during 2011, runway configuration 22 | 13 was in use during most days in which departure

routes were impacted by convective weather. Table 3.15 shows the statistics of use for this runway

configuration for the years 2010-2011, while Table 3.16 shows the usage of 22 | 31 .

For estimating the operational throughput, we extend the methodology developed in Section

2.3.1 as follows: For each runway configuration, we obtain the data for which the departure

throughput does not change significantly with the departure demand, that is, the data for which
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Table 3.15: RAPT indicators when runway configuration 22 | 13 was in use at LGA.

SRAPT Use (hrs) in 2010 Use (hrs) in 2011
value Total Saturation periods Total Saturation periods

0.0 1027 453 900 359
0.2 73 33 76 29
0.4 43 20 47 25
0.6 28 14 28 13
0.8 8 3 15 9
1 4 3 6 5

1.2 1 1 0 0

All 1184 527 1072 440

Table 3.16: RAPT indicators when runway configuration 22 | 31 was in use at LGA.

SRAPT Use (hrs) in 2010 Use (hrs) in 2011
value Total Saturation periods Total Saturation periods

0.0 1073 160 1228 139
0.2 41 8 29 7
0.4 28 10 11 1
0.6 31 7 3 1
0.8 12 5 3 1
1 6 1 0 0

1.2 1 0 0 0

All 1192 191 1274 149
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N∗ ≤ N ≤ Nmax. We do not apply any additional filtering. We do not exclude values of very low

departure throughput from the analysis, because we want to test the hypothesis that low route

availability can explain low throughput-high demand observations.

We estimate the departure throughput as a function of arrival throughput and route availability.

Givenm triplets of measurementsA(t), SRAPT (t) and T (t), denoted by (u1, w1, y1), . . . , (um, wm, ym),

at times when N∗ ≤ N ≤ Nmax, we seek a function hs : R2 → R that estimates the mean

T = hs(A,SRAPT ). As before. the constraints are imposed only between neighboring points:

min

m∑
i=1

(ŷi − yi)2 (3.17)

subject to:

ŷi = hs(ui, wi), i = 1, . . . ,m (3.18)

hs(i+ 1, j) ≤ hs(i, j), i = 0, . . . (l − 1),∀j, where l = max(A(t)) (3.19)

hs(i+ 1, j)− hs(i, j) ≤ hs(i, j)− hp(i− 1, j), i = 1, . . . (l − 1),∀j (3.20)

hs(i, j + 1) ≤ hs(i, j), j = 0, . . . (n− 1),∀i,where n = max(SRAPT (t)) (3.21)

Inequalities (3.19) and (3.20) are analogous to those in the case of the capacity envelope, i.e.,

for a given level of route availability, the departure throughput is a monotonically non-increasing,

concave function of the arrival throughput. Inequality (3.21) ensures that for a given value of arrival

throughput, departure throughput decreases as route availability decreases (SRAPT increases). We

do not impose more constraints in this fitting problem to avoid making further operational assump-

tions. For example, it is not clear whether for a given arrival throughput, the departure throughput

is a convex, or concave, function of SRAPT .

The estimated function is shown in Figure 3-14. The impact of lower route availability on the

departure throughput is evident. We also note that the average throughput is very close to the

throughput curve corresponding to the lowest value of SRAPT , that is, clear weather scenarios. It

can be seen from Tables 3.15 and 3.16 that the majority of the saturation periods in 2011 were at

times with clear routes (SRAPT = 0.0).

In conclusion, we also note that “operational throughput”, as it was defined, assumes not

only persistent demand, but runway availability as well. Therefore, the operational throughput

envelope is the one corresponding to the highest route availability (SRAPT = 0.0 in this case). If
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such information were not available, runway availability would have to be inferred by filtering the

data as explained in Section 2.3.1.
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(a) Operational throughput envelope for 22 | 13 -
configuration, parametrized by the SRAPT value.
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Figure 3-14: Use of route availability for operational throughput estimation.

3.3.3 Predictive ability of proposed method

We assess the predictive power of the proposed method for the estimation of the impact of the

route availability on the capacity of the airport by using five measures for goodness-of-fit: Mean

Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Ab-

solute Percentage Error (MAE) and Root Mean Square Percentage Error (RMSPE). We use data

from 2011 for training the estimators (Figure 3-14) and we use data from 2010 for testing them.

The statistics of the two datasets are listed in Table 3.17.

Table 3.17: Statistics of the training and test datasets for the LGA RAPT analysis.

Runway Configuration Time frame Source Size Use Mean Variance

22 | 13 Jan-Dec 2011 ASPM 26492 Train 8.97 3.04
22 | 13 Jan-Dec 2010 ASPM 31602 Test 8.98 2.92
22 | 31 Jan-Dec 2011 ASPM 8967 Train 9.45 2.86
22 | 31 Jan-Dec 2010 ASPM 11469 Test 9.35 4.04
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In order to assess the results, we compare three different estimates for ŷi:

1. The arithmetic mean (AM) of the departure throughput : y = 1
m

∑m
i=1 yi.

2. The throughput predicted from the operational throughput envelope (OTE): hs(ui, 0.0).

3. The predicted throughput from the SRAPT-parametrized throughput envelope (RAPT-TE):

hs(ui, wi).

We list the statistics for the average operational throughput envelope (OTE), and that parametrized

with SRAPT values (RAPT-TE) in Tables 3.18 and 3.19, respectively. We note that RAPT-TE re-

duces the mean square error in all cases considered. We also note that it provides the greatest

variability reduction in the most variable dataset considered, namely, the 22 | 31 throughput in

2010.

Finally, for all goodness-of-fit measures, we report the results for all data for which SRAPT =

0.0. The Mean Square Error for this case can be interpreted as the unexplained variation of the

operational throughput envelope after filtering-out all time periods with non-clear routes (SRAPT 6=

0.0). Comparing it to the MSE of the “OTE”, we note that in both training datasets and the testing

dataset for configuration 22 | 31, the MSE is reduced 20–40%. This means that route availability

explains 20–40% of the variation of the departure throughput of LGA. During time periods with

clear routes (SRAPT = 0.0), the departure process is much less variable than at other times. Thus,

although the point estimates of the departure throughput in saturation (dashed line in Figure 3-

14) are not statistically significantly different from the estimates of the departure throughput in

saturation given SRAPT = 0.0, the variance of the former is much higher.

Table 3.18: Comparison of three different estimators of departure throughput for runway
configuration 22 | 13 at LGA, showing the benefits of RAPT usage.

Dataset Estimator MAE MSE RMSE MAPE RMSPE

Training AM 1.21 3.05 1.75 15.5% 29.4%
Training OTE 1.21 3.05 1.75 15.5% 29.4%
Training RAPT-TE 1.29 2.61 1.62 15.01% 26.0%
Training RAPT-TE, SRAPT = 0 1.10 1.92 1.39 12.70% 20.6%

Testing AM 1.21 2.92 1.71 14.3% 23.4%
Testing OTE 1.20 2.93 1.71 14.1% 23.3%
Testing RAPT-TE 1.23 2.77 1.67 14.5% 22.6%
Testing RAPT-TE, SRAPT = 0 1.13 2.31 1.52 13.5% 21.5%
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Table 3.19: Comparison of three different estimators of departure throughput on the training
data set for runway configuration 22 | 31 at LGA, showing the benefits of RAPT usage.

Dataset Estimator MAE MSE RMSE MAPE RMSPE

Training AM 1.29 2.86 1.69 16.4% 31.9%
Training OTE 1.29 2.86 1.69 16.5% 32.3%
Training RAPT-TE 1.29 2.80 1.67 16.0% 30.5%
Training RAPT-TE, SRAPT = 0 1.27 2.714 1.648 15.5% 29.9%

Testing AM 1.48 4.04 2.01 18.2% 32.7%
Testing OTE 1.48 4.14 2.03 18.50% 33.7%
Testing RAPT-TE 1.42 3.46 1.86 16.78% 27.3%
Testing RAPT-TE, SRAPT = 0 1.29 2.80 1.67 14.3% 21.9%

3.4 Conclusions

In this chapter, we studied the three prominent VMC runway configurations at EWR, and we found

that the departure throughput of EWR is not sensitive to changes in runway configuration, arrival

throughput and fleet mix.

We then extended the methodology developed in Chapter 2 to study interactions among the

three major airports of the NY Metroplex, namely, JFK, EWR and LGA. We found that operations

at the three airports are not adversely impacted by operations at the other airports, and we derived

capacity envelopes for the system comprising the three airports under different configurations. We

estimated that the total balanced operations capacity of the Metroplex is 59 AC/15 min, the

departure priority capacity is 53 AC/15 min, and the arrival priority capacity is 63 AC/15 min.

We also identified opportunities for performance improvement.

We finally showed that information on route availability can be used for estimating the oper-

ational throughput of an airport. We demonstrated that route availability explains a significant

fraction of the variation of the departure throughput at LGA, when the prevailing conditions are

VMC and the airport is in saturation. In Appendix D, we show that route availability informa-

tion can be combined with fleet mix information for deriving parametrized operational throughput

envelopes for PHL.
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Chapter 4

Queuing Model of the Departure

Process

In this chapter, we develop an analytical queuing model of the departure process. We train this

model using ASPM data from EWR, and evaluate it in terms of its ability to predict taxi-out

times and the flow of aircraft on the airport surface. In contrast to Chapters 2 and 3, which

focused on estimating the expected throughput under different conditions, this chapter focuses on

the derivation of distributions of the random variables involved in the departure process, and the

estimation of the impact of their variability on the taxi-out delays.

The main objective of this chapter is to develop a generalizable and easily adaptable model of

departure operations. The model development is illustrated for the two main runway configurations

of EWR in 2011. The model is also calibrated for PHL in Appendix G, and for CLT in Appendix

H.

The model can be used for predicting aggregate taxi-out times and surface congestion, given

a pushback schedule for a short, or long time horizon1. In this chapter we use the model, which

is calibrated using 2011 data from EWR, to predict taxi-out times and surface congestion for

departures at the two main runway configurations of EWR in 2007 and 2010. We show that the

model can be used for tactical departure planning as well, that is, predicting taxi-out times and

departure queues for a short time horizon, like a few hours, or a day. We also assess the impact of

different pushback schedules on the variability of delays. Finally, we provide approximate estimates

1It is important to note that we do not investigate the impact of uncertainty in the pushback schedules in this work.
In other words, we study the predictive properties of the proposed models assuming that the pushback schedules are
known. In the current system this may only be realistic for short time horizons (of about 15 minutes).
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of the taxi-out times of individual flights.

In addition, the model can be used as a platform for developing and evaluating control al-

gorithms for the departure process, as will be shown in Chapter 5. It is also suitable for policy

analysis of infrastructure or operational changes, because of its analytical nature. We describe one

such application in Appendix H, where the proposed model is used to assess the impacts of the

new runway at CLT on the taxi-out times and the taxi-out delays at the airport.

4.1 Model inputs and outputs

The inputs to the model are

• Pushback schedule, PS.

• Airline of the departing flight, AL.

• Arrival throughput in a 15-minute period starting at time t, A(t).

• Route availability (in the airspace), if available, in a 15-minute period starting at time t,

SRAPT (t).

• Segment in use, (MC;RC), expressed as the combination of the visibility conditions, MC,

and the runway configuration, RC.

The outputs of the model are

• Number of departures (takeoffs) in the 15-minute period starting at time t, T (t).

• Total number of aircraft taxiing out at the beginning of period t, N(t). It indicates the

congestion of taxiing out aircraft on the ground.

• Number of aircraft waiting in the departure queue at the beginning of period t, Q(t). The

departure queue is defined as the queue which is formed at the threshold(s) of the departure

runway(s), where the aircraft queue for takeoff.

• Number of departing aircraft traveling in the ramp and the taxiways towards the departure

queue at the beginning of period t (i.e., the number of departures on the surface that have

not reached the departure queue), R(t).

• Expected taxi time of departing aircraft l, E[τ(l)].

116



• Expected queuing delay that departing aircraft l experiences, E[Dl].

• Variance of the queuing delay that departing aircraft l experiences, var(Dl).

• Number of aircraft taking off between the pushback and takeoff time of aircraft l (the length

of the takeoff queue experienced by aircraft l [58]), NQ(l).

• Runway schedule, RW . It refers to the times at which aircraft arrive at the departure queue.

4.2 Model structure

The proposed model, shown in Figure 4-1 consists of two components, or modules: (1) the process

encompassing aircraft pushing back from the gates and traveling to the departure runway, and (2)

the queuing process at the departure runway.

Taxi time 
distributions 

Pushbacks 

Departure 
queue 

Departure  
throughput 

Ramp and 
Taxiway delays 

Travel time 

Module 2 Module 1 

Queuing delay Taxi-out time   = + 

Figure 4-1: Departure process model.

By modeling the departure process in this manner, the taxi-out time τ(l) of each departing

aircraft l can be expressed as

τ(l) = τtravel(l) +Dl (4.1)

where

• τtravel(l) is the travel time of each departing aircraft l from its gate to the departure runway(s).

• Dl is the queuing delay that aircraft l experiences upon its arrival at the departure queue.

The connection between the two modules is provided by the output of Module 1, that is, the

runway schedule.
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4.2.1 Data sources

The Aviation System Performance Metrics (ASPM) database offers a wealth of data which enables

the study of the performance of the busiest 77 airports in the United States [38]. For every

recorded flight, the ASPM database contains their actual push back time and their actual takeoff

time. ASPM also reports the runway configuration and the local meteorological conditions at each

airport. However, as it has been shown in earlier work [106], the ASPM estimates for the pushback

times of the flights that do not automatically report ACARS messages (non-OOOI flights) can be

very inaccurate. For these flights, we obtain their pushback times from the Flightstats website [28].

We also obtain information on the terminal and the gate of each flight, from the same website.

4.3 Travel time estimation (Module 1)

In this section, we describe an algorithm that calculates the travel time from the gates to the

departure runway(s), namely the first module of the departure process (Figure 4-1). The module

can be conceptually described in the following manner: Aircraft pushback from their gates according

to the pushback schedule. They enter the ramp and then the taxiway system, and taxi to the

departure queue which is formed at the threshold of the departure runway(s). During this traveling

phase, aircraft interact with each other. For example, aircraft queue to get access to a confined

part of the ramp, to cross an active runway, to enter a taxiway segment in which another aircraft

is taxiing, or they get redirected through longer routes to minimize interference with built up

congestion. We cumulatively denote these spatially distributed queues and delays, which occur

while aircraft traverse the airport surface from their gates towards the departure queue, as ramp

and taxiway interactions.

We represent the delays due to ramp and taxiway interactions with an additive term which gets

added to the nominal travel time of each aircraft. The travel time τtravel of each departing aircraft

is expressed as:

τtravel = τunimped + τtaxiway (4.2)

The first term of Equation (4.2), τunimped, reflects the nominal or unimpeded taxi-out time of

the flight. This is the time that the aircraft would spend in the departure process if it were the only

aircraft on the ground. The second term, τtaxiway, reflects the delay due to aircraft interactions

on the ramp and the taxiways. In other words, τtaxiway reflects the delay incurred due to other
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aircraft that are also on their way to the departure queue. The number of such aircraft is given by

R(t) = N(t)−Q(t). The magnitude of this delay will depend on the exact interactions among the

taxiing aircraft, that is, the level and location of congestion in the ramp and the taxiways.

4.3.1 Unimpeded taxi-out time

Definition of unimpeded taxi-out times

The unimpeded taxi-out time is the nominal, free flow taxi out time. As the name suggests, it is

the taxi-out time of an aircraft if it taxis and takes off in the absence of any obstacles. The FAA

defines the unimpeded taxi-out time as the taxi-out time under optimal operating conditions, when

neither congestion, weather nor other factors delay the aircraft during its movement from gate to

takeoff [88]. We note that as per this definition, the unimpeded taxi-out time is not the minimum

time that an aircraft would need to taxi-out and take off, but the average time an aircraft needs to

complete the departure process when the aircraft spends no time waiting in queues. As explained

in earlier work [106], the service time for each of the steps of the departure process is a random

variable, and may vary among flights for several reasons, such as:

• Differences during the dispatch stage.

• Routing through different taxiways.

• Different taxi speeds.

• Different runway assignments.

• Variability in the duration of pushback and engine-start.

• Differences in pilot-controller communications.

• Differences in the staffing of the ATCT facility.

There are many forms of delays that an aircraft can incur in this process. For example, there

may be communication delays between the pilot and the tower, or the pilot may lack proper

weight-and-balance numbers. Factors such as communication delays cannot readily be observed in

the recorded data and contribute to the stochasticity of the unimpeded taxi time [18].
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Taxi-out times as a function of the adjusted traffic

The unimpeded taxi time is not directly observed, and needs to be estimated. In this section,

we propose a new method for the estimation of unimpeded taxi-out times from historical taxi-out

times at an airport.

First, we note that unimpeded taxi-out times can vary with the airline, the gate location,

the aircraft type2, the destination3, the local visibility conditions, the runway configuration, and

the runway assignment in case of airports with multiple departure runways [76, 106]. A variable

selection for each airport is outside the scope of this chapter. In addition, in all major EWR

runway configurations, there is only one departure runway at use. Therefore, for simplicity, we

estimate the unimpeded taxi-out time distribution for each airline at given visibility conditions and

runway configuration in use at EWR, using ASPM and Flightstats data from 2011. However, the

estimation method proposed in this section can be applied to each identified “cluster” of similar

flights instead of each airline. An example of such an application is shown in Appendix G for the

estimation of unimpeded taxi-out times at PHL.

Based on the findings of Idris et al. [58] and our earlier work [26], we know that the taxi-out time

of an aircraft correlates poorly with the number of aircraft taxiing-out on the surface at the time

of its pushback. This is because taxiing traffic may impact the aircraft that pushes back differently

depending on their relative location, speed and downstream restrictions. Similarly, other aircraft

may push after the aircraft and yet get ahead of it in the departure queue. For this reason, Idris et

al. [58] proposed the concept of the takeoff queue, that is, the number of aircraft taking off between

the pushback and takeoff time of an aircraft, and developed a probabilistic model to estimate the

takeoff queue for each pushback. Subsequently, they used the estimated takeoff queue to predict

taxi-out times.

The taxi-out time of an aircraft correlates well with its takeoff queue for several reasons. The

larger the number of aircraft that take off while an aircraft is taxiing, the longer that aircraft will

have to wait to take off. One may conjecture that this relationship can be used for estimating the

unimpeded taxi-out time. When the takeoff queue is zero, there are no aircraft taking off during

the time that the aircraft is taxiing, and so it taxies and takes off without incurring any delays

due to other aircraft. However, when estimating the takeoff queue from actual data, the estimates

are biased: All external factors being equal, an aircraft that ends up with a shorter takeoff queue

2Smaller aircraft move at faster speeds.
3International flights tend to have longer unimpeded taxi-out times, because of longer checklists [110].
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than another will complete the departure process faster than an aircraft that ends up with a longer

takeoff queue. For example, if the same aircraft taxies slower, it may get behind another aircraft in

the departure sequence. This selection-bias will result in the fastest aircraft having a zero takeoff

queue. Thus, an aircraft with a zero takeoff queue will not be representative of the average aircraft.

For this reason, we propose the following metrics:

Definition 1 Departure traffic at time t, N(t), is defined as the sum of the aircraft taxiing out at

time t, that is the aircraft that have pushed back, but have not taken off yet.

Definition 2 The effective traffic, Neff (l), for an aircraft l is defined as the sum of the aircraft

taxiing out, N(t), at the time of its pushback t, and the number of aircraft that push back while it

is traveling to the departure runway.

Based on this, we define the unimpeded taxi-out time as follows:

Definition 3 The empirical unimpeded taxi-out time distribution of an airline is derived from the

values of effective traffic for which the taxi-out time does not increase with increasing effective

traffic.

The effective traffic metric takes into account both the aircraft taxiing-out at the moment of

pushback and the traffic that gets added while the aircraft is traveling to the runway. Thus, for low

values of Neff (l), it ensures that the aircraft taxies out without being impeded by other aircraft.

After the aircraft reaches the queue, it does not matter if additional aircraft push back, as they

will not be sequenced in front of it.

The taxi-out time is expected to be a convex non-decreasing function of the effective traffic.

Each aircraft needs some amount of time to reach the departure runway. At low values of Neff (l),

the existing, or added, traffic has very little probability of interacting with aircraft l. Some aircraft

may be behind aircraft l, and some others will takeoff before l reaches the runway. As Neff (l)

increases, the probability of other aircraft delaying aircraft l increases. The only aircraft out of

Neff (l) that can end up behind aircraft l in sequence, are those that pushed back before aircraft l,

but are too slow and the ones that pushed after aircraft l, but did not overtake it. The majority of

aircraft in Neff (l) will be the takeoff queue for aircraft l. As Neff (l) increases even further, each

additional aircraft will impose a delay approximately equal to its service time at the runway. Thus

the slope of the function will increase from 0 to the average service time at the runway.
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We note here that the definition of effective traffic assumes availability of ASDE-X data. ASPM

data do not provide information on the times that aircraft join the departure queue. For ASPM

data, we heuristically modify the Neff (l) metric with the following one, first proposed by Clewlow

[95]:

Definition 4 The adjusted traffic, Nadj(l), for an aircraft l is defined as the sum of the aircraft

taxiing out, N(t), at the time of its pushback t, and the number of aircraft that push back while

aircraft l is taxiing out.

The two definitions (Neff (l) and Nadj(l)) are practically equivalent for estimating the taxi-out

time at low values of traffic.

Figure 4-2 shows the relationship between the adjusted traffic and the taxi-out time for flights

of ExpressJet Airlines4. We show the scatter plot, along with the mean, standard deviation and the

median taxi-out times for all values of the adjusted traffic. We notice the non-linear relationship

between the adjusted traffic and taxi-out time. Despite relaxing the definition of the effective traffic

to include also aircraft that push while aircraft l is in the departure queue, the mean taxi-out time

and the median taxi-out time appear to remain convex non-decreasing functions of the adjusted

traffic. This relation was observed in all cases considered. We therefore conjecture that taxi-out

times are a convex function of the adjusted traffic.

Finally, in Figure 4-2, we note that the median values are consistently lower than the mean

values. Similarly, we observe that the data-scatter for the each value of the adjusted traffic has

a longer tail for higher values of taxi-times. This is to be expected as taxi-out times, even the

unimpeded ones, can only be as short as the physics of the process allows, but they can grow large,

depending on a slow pushback. This is also consistent with the literature that suggests Erlang, or

Lognormal distributions for the unimpeded taxi-out time [20, 70].

For fitting a curve to the observations of Figure 4-2, we propose a simple estimation program.

We want to fit a convex, non-decreasing function to the data that estimates the taxi-out time

as a function of the adjusted traffic. Given m pairs of measurements Nadj(l) and τ(l), denoted

(u1, y1), . . . , (um, ym), we seek a convex non-decreasing function f : R→ R that estimates the mean

τ = f(Nadj(l)). This infinite-dimensional problem is significantly simplified by the fact that Nadj is

defined only in the domain of natural numbers (N0). f can be restricted to within the domain of N0

as well, and we need to estimate the values f(0), f(1), . . . , f(n), where n = max(Nadj). The function

4regional partner of Continental/ United Airlines
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Figure 4-2: Empirical data showing the taxi-out times as a function of the adjusted traffic for the
flights of ExpressJet Airlines in configuration 22L | 22R at EWR.

f is simply a piecewise linear function of N , and the monotonicity and convexity constraints are

imposed at the points 0, 1, . . . ,max(Nadj) by comparing the values and the slopes of subsequent

pieces. f is given by the solution to the following convex optimization problem:

min

m∑
i=1

(ŷi − yi)2 (4.3)

subject to:

ŷi = f(ui), i = 1, . . . ,m (4.4)

f(i+ 1) ≥ f(i), i = 0, . . . (n− 1) (4.5)

f(i+ 1)− f(i) ≥ f(i)− f(i− 1), i = 1, . . . (n− 1) (4.6)

The results of the regression fit are shown in Figure 4-3. We notice that the estimated function

simply smooths out the mean values of the raw data. We also note here that we can impose

constraints on the number of breakpoints and force the fitted function to comprise a certain number

of linear segments by applying piecewise regression. However, in this case, we do not want to

add more constraints on the set of values of Nadj for which the taxi-out time does not increase

with increasing Nadj . By inspecting Figure 4-3, we recognize that the fitted function is flat for

0 ≤ Nadj ≤ 4. Thus, the observations of taxi-out times for which 0 ≤ Nadj ≤ 4 provide the

123



empirical distribution of the unimpeded taxi-out times for ExpressJet Airlines. We fit a log-normal

distribution to the empirical distribution with mean equaling the estimated value in the flat region

(f(0)) and standard deviation equaling the standard error of the estimated mean. The resulting

distribution and the empirical one are shown in Figure 4-4.
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Figure 4-3: Regression fit of the taxi-out times as a function of the adjusted traffic for the flights
of ExpressJet Airlines in runway configuration 22L | 22R at EWR.

We show the estimated functions for two more airlines, JetBlue and US Airways for this runway

configuration of EWR in Appendix E. We also show a table with the parameters of the unimpeded

taxi-out time distributions for all major carriers of EWR in runway configuration 22L | 22R. In

Section 4.5.2, the distributions of the predicted taxi-out times are compared to the actual taxi-out

times. From comparing the distributions at low values of traffic, we validate that the unimpeded

taxi-out times are estimated correctly.

4.3.2 Ramp and taxiway interactions

In earlier work [107], we proposed a simple formula for modeling ramp and taxiway interactions:

τtaxiway = α ·R(t) (4.7)

Equation (4.7) implies:

τtravel = τunimped + α ·R(t) (4.8)
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Figure 4-4: Empirical and fitted distribution of the unimpeded taxi-out times of ExpressJet Airlines
in runway configuration 22L | 22R at EWR.

In Equations (4.7) and (4.8), the term αR(t) is a linear term used to model the interactions

among departing aircraft on the ramps and taxiways. α is a parameter that depends on the airport

and the runway configuration. The presence of this term is justified, since aircraft are expected

to stop at intersections on the ramp and taxiways. The probability of stopping increases with

the number of aircraft traveling towards the departure queue, at time t of pushback, R(t). The

parameter α can be interpreted as the expected number of stops multiplied by the expected length

of each stop. For instance, consider the expected number of stops being 0.2 multiplied by the

number of aircraft traveling. Thus if 10 aircraft are traveling at the time aircraft l pushes back,

aircraft l will experience on average 2 stops. If a stop lasts 0.5 min, this would translate to an

expected delay of 1 min. In this example, the parameter α equals 0.5 min×0.2/AC = 0.1 min /AC.

In earlier work, Equation (4.8) was validated using ASPM data and was subsequently successfully

applied in several studies regarding a variety of airports layouts [76, 85, 113]. We note that it is a

very aggregate way to describe interactions among aircraft in the ramp and queue areas, as different

areas of the tarmac imply higher probabilities of stopping (for example the horseshoe ramp areas

in EWR, BOS, PHL airports and others). Nonetheless, Khadlikar validated the linear dependence

of the travel time with the level of traffic using ASDE-X data [70], by studying the dependence of

the time an aircraft spends traversing a certain link of the airport surface with the level of traffic
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on the surface. Using ASDE-X data, we have also shown that by neglecting ramp and taxiway

interactions, the rate at which aircraft arrive at the runway is overestimated [110].

In this work, we do not use ASDE-X data. We select parameter α using a data-based method.

We choose α such that we match the predicted median taxi-out time with the actual median taxi-

out time. The reason for this choice is that we do not have information on traffic management

initiatives which tend to significantly delay aircraft for reasons not directly related to the departure

process of the origin airport [59], so we expect the estimated mean taxi-out time from our model to

be shorter than the actual mean taxi-out time. However, the median taxi-out time is less sensitive

to these outliers with very long taxi-out times.

4.3.3 Module 1 output: Expected runway schedule

In Section 4.2, we saw that Module 2 uses as input the runway schedule, which is provided by

Module 1. In reality, the runway schedule is not known in advance, as the travel times from the

gates to the departure queue are random variables. In the model, we assume that aircraft have fixed

unimpeded taxi-out times, which are equal to their expected values. In other words, we assume

that aircraft progress to the departure queue with their expected travel times.

E[τtravel(l)] = E[τunimped(l)] + α ·R(tpb(l)) (4.9)

In Equation (4.9), E[τunimped(l)] is the mean unimpeded taxi-out time of the airline that operates

aircraft l and R(tpb(l)) is the number of traveling aircraft at the time of pushback, tpb(l), of aircraft

l. We note that R(t) is calculated as the program progresses. Each aircraft increases R by one unit

during the time it progresses to the runway. In this way, the known runway schedule is generated,

and this is the input to the runway(s) in Module 2. Module 2 calculates the expected queuing

delays given this runway schedule. From the combined output of the model we get:

E[τ(l)] = E[τunimped(l)] + α ·R(tpb(l)) + E[Dl] (4.10)

The rationale for making the simplifying assumption that aircraft have fixed unimpeded taxi-

out times is that their unimpeded taxi-out time distributions are in general concentrated around

their expected value (Table E.1). Our hypothesis is that, provided the pushback times are known,

the variability of the unimpeded taxi-out times introduces very little additional delay. We verify,

through simulation, that the hypothesis of a known runway schedule for calculating delays is indeed
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a good approximation (Section 4.5.2).

4.4 Queuing delay estimation (Module 2)

In this section, we discuss the queuing model used for predicting the delays at the departure

runway(s). In Chapters 2 and 3, it was shown that the departure throughput of an airport is a

dynamic and stochastic process. External conditions (arrival throughput, downstream restrictions,

etc.) dynamically change the operational characteristics of the departure process, but do not

explain all of its variability. As was seen in Table 3.15, there is still unexplained variability in the

departure throughput at LGA after controlling for the arrival throughput and the route availability.

The departure process is a probabilistic process, the unpredictable variability of which stems from

a number of factors, such as controllers’ and pilots’ decisions, aircraft performance, human errors,

and incidents like aborted takeoffs, runway closures, etc.

4.4.1 Runway queuing model

We propose an analytical queuing model for estimating the queuing delays during the departure

service process of an aircraft. The proposed approach can be used to model the whole runway

system, or each individual runway, depending on the data availability, and the desired level of

modeling.

We define as the service rate, µ(t), the number of departing aircraft that can take off from the

runway(s) modeled per 15-minute interval. Four fundamental assumptions are made in our attempt

to model the service process in the runway system:

1. The demand is given by the known runway schedule, calculated by Module 1 of the model.

Thus, aircraft arrive at the queuing system according to the known runway schedule.

2. The service rate is assumed to follow a time-dependent (dynamic) Erlang distribution.

3. There is finite queuing space for the departing aircraft to wait in.

4. Aircraft in the departure queue are served on a First-Come-First-Served (FCFS) basis.

This framework is attractive because it models both the mean and variance of the departure

process throughput, which have been shown to be important when calculating queuing delays in

the context of airport systems [53, 54]. In queuing theory, this type of system would be denoted

as an D(t)/Ek(t)/1 with finite queuing space C. In our case, as it will be explained later, the

finite queuing space C is introduced for computational tractability and not for modeling the finite
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available space for aircraft to queue around the departure runway(s).

In terms of the queuing literature for airport systems modeling, this model fits into the “Micro

Model” literature. Each period of time of a day that the runway configuration considered is in

use is divided into time windows of equal duration, ∆, each of 15 minutes, and indexed with

i = 1, 2, . . . , T . For each time period i, a throughput distribution, of type Erlang with rate kiµi

and shape ki, is provided based on the operating conditions in the airport. Each flight of the

runway schedule is indexed with index l. During each time window i, we have (from Module 1)

the set of arrival times at the departure queue of aircraft in this time window, S(i). Their arrival

times are provided by Module 1 and are assumed known a priori, but are not necessarily uniformly

spaced in each time window.

We also note here that Module 2 models one departure runway in the case of EWR (Runway

4L/22R). Thus, the modeled queuing system maps to the physical queuing process at Runway

4L/22R. If there are multiple runways and the runway assignments are known, we can model each

of them with a queuing system. An application of such a model for the departure process at

Detroit Metropolitan Wayne County Airport (DTW) can be found in other work [76]. By contrast,

in Appendix G, we use a single queuing system to model the queuing process at the main runway

(27L) and the secondary runway (35) at PHL. Similarly in Appendix H, we use a single queuing

system for modeling the departure runways 18C/36C and 18L/36R at CLT. The approximation

of modeling two departure runways with a single queuing system is driven by the lack of runway

assignments in the ASPM data. However, the predictive power of the model remains strong, as can

be verified in Appendix G and in Appendix H.

We model this system with a discrete-time Markov Chain. A service completion of an Erlang

process with shape k and rate kµ is represented with k stages of exponentially distributed random

variables with rate kµ. We call each such stage a stage-of-work. Each stage of the Markov chain

q denotes that there are q stages-of-work to be completed at the runway, i.e., there are min(1, q)

aircraft in service and max(d(q − k)/ke, 0) aircraft in the departure queue.

We summarize the notation used in this section:

• l: Index of each aircraft.

• ∆: Duration of each time window.

• i: Index of each time window.

• ki: Shape parameter of the Erlang service time distribution during time window i.
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• kiµi: Rate parameter of the Erlang service time distribution during time window i.

• C: Queuing space of the queuing system, measured in units of aircraft.

• Ql : stages-of-work to be completed for emptying the system immediately after the lth air-

craft’s arrival. This means that there are Ql stages-of-work to be completed (including its

service time) until the lth aircraft exits the system.

• pQl(j) : Probability that Ql takes the value j.

• cl : Inter-arrival time at the system between the (l − 1)th and lth aircraft.

• Cl =
∑l

j=1 cj : time of arrival of the lth aircraft at the system.

• Sl: Total time that aircraft l spends in the queuing system, including time-in-service.

• Dl: Queuing delay that aircraft l experiences.

• Z0: Number of aircraft in queue at the beginning of the first time window.

• fν(x): P.m.f. of random variable X, drawn from a Poisson distribution with parameter ν.

• Fν(x): C.d.f. of random variable X, drawn from a Poisson distribution with parameter ν.

Static service process distribution

Here, we assume that that service process is static and is described by a single Erlang distribution

with parameters (k, kµ) at all time windows. We observe the system at the epochs of arrival, Cl, of

each aircraft l. In Figure 4-5, we show an example of the state of the Markov chain that an aircraft

encounters, assuming that there are exactly 3 stages-of-work to be completed before the arrival of lth

aircraft in the system, and an Erlang distribution with shape 2 for the departure throughput. Upon

the arrival of lth aircraft, 2 stages-of-work are added and the system (instantaneously) transitions

to state 5.

We turn now to calculating the probabilities pQl(j). plij is defined as the probability of the

following event: There are i stages-of-work to be completed immediately after the arrival of the

lth aircraft, given that there were j stages-of-work to be completed immediately after the arrival of

(l − 1)th aircraft:

plij = Pr(Ql = i|Ql−1 = j) (4.11)
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Figure 4-5: Markov chain transition at the time of arrival of the lth aircraft.

If the system is at state Ql−1 when (l− 1)thaircraft arrives, it evolves during time cl similarly to a

Poisson process:

plij =



e−kµcl ·(kµcl)j+k−i
(j+k−i)! if i = k + 1, k + 2, . . . , j + k, i < kC, i ≤ j − k

1−
∑j+k

z=k+1
e−kµcl ·(kµcl)z−k

(z−k)! if i = k∑j−i+k
z=0

e−kµcl ·(kµcl)z
(z)! if i = kC, i ≤ j − k

0 otherwise

(4.12)

Equation (4.12) can be explained as follows: Define as an event, the completion of a stage-of-

work in the Markov chain of the system. The time between each pair of consecutive events has an

exponential distribution with parameter (kµ). Each of the inter-arrival times of events is identically

distributed and independent of other inter-arrival times. Thus, the probability of the completion

of i < j stages-of-work (out of j) in time cl is given by the Poisson distribution with parameter

(kµcl). We note that up to j stages-of-work can be completed, and thus we can have up to j events

during time cl. The condition i ≤ j does not impact the probability distribution of i < j events.

Each event is independent of its previous and its future ones. The condition i ≤ j impacts the

probability distribution of having exactly i = j events (emptying the queuing system), which is

given by the probability of having j, j + 1, j + 2, . . . Poisson arrivals (or one minus the probability

of having 1, 2, . . . , j − 1 events).

For the third case of Equation (4.12) we have: If the system is in a state higher than kC − k

after the arrival of the (l − 1)th aircraft, we enforce that there will be space for the lth aircraft

when it arrives. Thus, for k(C − 1) < i ≤ kC, the system transitions to state j with the sum
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of the probability of 0, 1, . . . , i − j + k events. In other words, we enforce the completion of as

many stages-of-work as necessary to make space for the arrival of lth aircraft. We note that

this is different from standard queuing systems modeling convention, where the extra customer

is rejected from the system if there is no queuing space. Our convention gives an opportunity

for biasing the performance of the system, since selecting a very low value of parameter C can

“boost” the throughput of the system, by forcing stage-of-work completions at each arrival epoch.

Thus, selecting the queuing space parameter C is governed by tradeoffs between computational

tractability and accuracy. Numerical experiments suggest that setting C = 100 is a good choice for

modeling the runway queuing system. In other words, for C = 100, the system behaves as if it had

infinite queuing space.

During time cl, the system cannot get to a state higher than i since there are no arrivals of

aircraft in the system. We also note, that the calculated probabilities of having 0, 1, . . . , j events

during time cl map to the probabilities pl(j+k)j , p
l
(j+k−1)j , . . . , p

l
kj because the arrival of lth aircraft

at time Cl instantaneously adds k stages-of-work.

Using the Poisson distribution notation introduced, Equation (4.12) can be written in the

following form, where ν = kµcl:

P (ν) =



0 1 · · · kC − k kC − k + 1 · · · kC − 1 kC

0 0 0 · · · 0 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

k − 1 0 0 · · · 0 0 · · · 0 0

k 1 1− Fν(0) · · · 1− Fν(kC − k − 1) 1− Fν(kC − k) · · · 1− Fν(kC − 2) 1− Fν(kC − 1)

k + 1 0 fν(0) · · · fν(kC − k − 1) fν(kC − k) · · · fν(kC − 2) fν(kC − 1)
...

...
...

. . .
...

...
. . .

...
...

kC − 1 0 0 · · · fν(1) fν(2) · · · fν(k) fν(k + 1)

kC 0 0 · · · Fν(0) Fν(1) · · · Fν(k − 1) Fν(k)


(4.13)

Using Equation (4.12) we calculate the probabilities pQl :

pQl(i) =

j=kC∑
j=(i−k)

plijpQl−1
(j) for i = k, k + 1, . . . kC (4.14)

or pQl = P (ν)pQl−1
(4.15)

where pQl = [pQl(0), pQl(1), . . . , pQl(kC)]′

The starting condition for the calculation is the queue that the first aircraft arrival encounters
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(Z0). If the queue is empty at the beginning of the time period modeled, Z0 = 0, and the first

aircraft will bring the system to state k upon its arrival. A non-empty queue starting condition is

interesting for runway configuration changes, where aircraft that pushed back before the runway

configuration change are lined up at the new departure runway when its use commences.

pQ0(i) =


1 if i = k · Z0

0 otherwise

(4.16)

By inspection, we note that Matrix (4.13) is a stochastic matrix, as its columns add up to 1 for

all values of k, and ν. Thus for a valid pQl−1
vector, the multiplication of Equation (4.15) returns

a valid probability vector pQl .

To summarize, Equation (4.16) gives the state of the queue at the first aircraft’s arrival at time

C1. The state of the queue at the times of arrival of aircraft 2, 3, . . . is calculated with Equation

(4.15).

Dynamic service process distribution

For dynamic service time distributions, Equation (4.15) is still valid by using the appropriate service

time distribution parameters (ki, kiµi) for the time window i, in which inter-arrival time cl falls:

νi = kiµicl (4.17)

pQl = P (νi)pQl−1
(4.18)

A subtlety here is that the state space of the queuing system can change. For example, if we

have two throughput distributions, with shapes k1 and k2, where k1 6= k2, the space of the chain of

the queuing system corresponding to the first distribution will be {0, 1, . . . , k1 · C} and the second

{0, 1, . . . , k2 ·C}. Transitioning from the throughput distribution of the former to that of the latter

can be done only by approximately mapping the probabilities of states {0, 1, . . . , k1 ·C} to those of

{0, 1, . . . , k2 · C}.
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4.4.2 Queuing delay calculations

Static service process distribution

Given the probabilistic state of the Markov chain described by pQl at the time of arrival, we

calculate the moments of the queuing time of each aircraft, assuming a static service process, that

is, an Erlang distribution with parameters (k, kµ).

E[Sl] = E
[
E[Sl|Ql]

]
(4.19)

= E
[ j
kµ
|Ql = j

]
(4.20)

=
kC∑
j=0

j · pQl(j)
kµ

(4.21)

Similarly:

E[S2
l ] = E

[
E[S2

l |Ql]
]

(4.22)

= E
[j(j + 1)

µ2
|Ql = j

]
(4.23)

=

kC∑
j=k

j(j + 1)

(kµ)2
· pQl(j) (4.24)

In Equations (4.21) and (4.24), we note that given that the system is in state j immediately after

the arrival of the lth aircraft, the total time that the lth aircraft spends in the system is given

by the sum of j exponential distributions, each with rate kµ. The probability distribution for its

delay is given by an Erlang distribution with shape j and rate kµ. Thus, given the state j at time

of arrival, we can fully characterize the time-in-the-system distribution for aircraft l. If the state

j is not known, we can derive all the moments of the distribution in the system using the total

expectation theorem and the moment generating function for the Erlang distribution, as shown

in Equations (4.21) and (4.24) for the first two moments. This process can be computationally

expensive, so we restrict our efforts to the first two moments, which yield the expected delay and

its variance for each aircraft. We also note that Equations (4.21) and (4.24) refer to the total time

that aircraft l spends in the queuing system. For calculating the queuing delay we need to subtract
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the time that is spent for servicing lth aircraft, that is, the last k stages-of-work.

E[Dl] = E
[
E[Dl|Ql]

]
(4.25)

= E
[j − k
kµ
|Ql = j

]
(4.26)

=

kC∑
j=k

(j − k) · pQl(j)
kµ

(4.27)

E[D2
l ] = E

[
E[D2

l |Ql]
]

(4.28)

= E
[(j − k)(j − k + 1)

(kµ)2
|Ql = j

]
(4.29)

=
kC∑
j=0

(j − k)(j − k + 1)

(kµ)2
· pQl(j) (4.30)

Finally, the probability vector pQl can be used to calculate the probability, rl(d̄), of the queuing

delay of flight l exceeding a certain threshold d̄: 5

rl(d̄) = Pr(Dl > d̄) =

kC∑
j=k

Pr(Dl > d̄|Ql = j) · pQl(j) (4.31)

=
kC∑
j=k

(
1− γ(j, kµd̄)

(kµ− 1)!

)
· pQl(j) (4.32)

Dynamic service process distribution

In the general case, the service process is dynamic. This means that parameters (k, kµ) can change

across time windows. In this case, the Equations (4.27), (4.30) and (4.32) cannot be used, because

the intermediate Equations (4.26), (4.29) and (4.31) do not apply anymore. Given a state in the

queuing system we cannot calculate the expected delay, because the parameters of the associated

transition change dynamically. This problem has been acknowledged by other authors working with

dynamic models [8, 53, 93]. Here, we propose the following approximation, building on Gupta’s

approximation for D(t)/M(t)/1 systems.

For each aircraft, we calculate the effective queue, q̃i(j), that aircraft l encounters immediately

after entering the queuing system:

q̃l(j) =

kiC∑
j=ki

(j − ki) · pQl(j)
ki

(4.33)

5This metric for evaluating the risk of high delays was recently proposed by Jacquillat [63].
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The effective queue, q̃l(j), is an estimate of the physical queue that aircraft l faces. Equation (4.33)

measures the queue in terms of aircraft and not stages-of-work. It does not depend on the service

time distributions in the future. In addition, it is a more accurate estimate of the queue than the

expected queue, E[Ql]:

E[Ql] =

kiC∑
j=ki

dj − ki
ki
e · pQl(j) (4.34)

This is because for the expected queue calculation, all stages-of-work associated with one unit in

the physical queue collapse to a single state. By contrast, when calculating the effective queue, each

stage-of-work is considered separately.

For each aircraft arriving at the departure queue, we calculate its effective queue, q̃l(j), at the

moment of its arrival. Subsequently, we use the equivalent deterministic service process to calculate

the total time that it will take for the effective queue, q̃l(j), to be dissipated. In this way, each

aircraft in the effective queue of aircraft l is served with the service rate that applies at the time

of their takeoff. We call this time effective delay, and denote it d̃l(j). To demonstrate the effective

delay idea, we give two examples, assuming that each time window has a duration of 15 minutes.

In the first example, aircraft 1 arrives at the queuing system in the 5th minute of ∆1. During ∆1

the service rate is 10 AC/15 min. We calculate the effective queue for aircraft 1 and it is found to

be 4 AC. Given the current service rate, all of the 4 AC will be served in time window ∆1 assuming

a deterministic service process. It will take 6 minutes (4AC / (10 AC/15 min)) to serve them and

this is the adjusted queuing delay.

In the second example, aircraft 1 arrives at the queuing system in the 5th minute of ∆1. In ∆1,

the service rate is 10 AC/15 min, and in ∆2, the service rate is 8 AC/15 min. We calculate the

effective queue for aircraft 1 , which equals 10 AC. Assuming a deterministic service process, 6.7

of them are served in the remainder of ∆1 (10/15 ×10 min). The remaining 3.3 AC are served in

time window ∆2 with a service rate of 8 AC/15 min, which corresponds to a delay of 6.25 min.

Thus the total effective delay equals 10 min + 6.25 min, or 16.35 min.

We note that the notion of the effective delay follows very closely Gupta’s proposition for the

effective service rate [53]. The contribution of our approach is the notion of the effective queue,

which is necessary for considering Erlang service time distributions.

For estimating the variance of the queuing delays, we make yet another approximation and

simply use Equation 4.30, with parameters (k, kµ) those at the time of arrival of the aircraft at the

135



departure queue.

4.4.3 Estimation of the departure capacity distributions

For estimating the departure process characteristics we follow an approach similar to that described

in Chapters 2 and 3 for estimating the operational throughput envelopes.

For EWR’s most frequently used runway configuration, (VMC; 22L | 22R) in 2011, we first plot

the saturation plot, shown in Figure 4-6. The saturation plot shows the dependence of the departure

throughput on the departure demand. We note that the average throughput stabilizes at around

17 aircraft taxiing out and stays at around 10 AC/15 min until it starts fluctuating for taxiing out

traffic higher than 25 aircraft on the ground. We also note that the departure throughput has very

high variability. For measuring the impact of other explanatory variables, we use the approach

outlined in Section 2.3.1: We construct the regression tree that shows the departure throughput

(T ) as a function of the departure demand (N), the arrival throughput (A) , and the surrogate

RAPT value (SRAPT ). The regression tree indicates that EWR is in saturation for 16 ≤ N ≤ 31.
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Figure 4-6: EWR saturation plot for configuration (VMC; 22L | 22R) in year 2011.

We use the saturation data-points to estimate the departure throughput as a function of the

arrival throughput and the route availability (RAPT). We first use the methodology outlined in

Section 3.3.1 for estimating the departure throughput as a function of route availability and arrival

throughput. In Figure 4-7a, we show the departure throughput curves parametrized by route avail-

ability. Each point of these curves provides a point estimate for the expected departure throughput
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given an arrival throughput and a SRAPT value. These point estimates are very useful for repre-

sentation purposes, but do not provide information on higher order moments of the throughput

distribution. For this reason, we turn to regression tress. We estimate the departure throughput in

saturation as a function of arrival throughput and route availability. The resulting (pruned) tree is

shown in Figure 4-7b. Comparing the throughput curves with the regression tree, we note that in

the regression tree, several operational points of the throughput curves are merged in a single leaf

of the tree. For example, all points of the curves with SRAPT values lower than 0.6 for which arrival

throughput is less than 6 AC/15 min are represented by one leaf with throughput 10.34. From

their curves in Figure 4-7a, we note that for arrival throughput less than 6 AC/15 min and SRAPT

value lower than 0.6, all throughput estimates are between 10 AC/15 min and 10.5 AC/15 min.

Given the variance of the departure throughput measurements in this area, all these estimates are

merged into a single leaf with expected throughput (µ) 10.34 AC/15 min and standard deviation

(σ) 2.19 AC/15 min.
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(a) Throughput curves for (VMC; 22L | 22R) configuration
parametrized by route availability.
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(b) Regression tree showing the departure
throughput of (VMC; 22L | 22R) configuration
parametrized by route availability and arrival
throughput.

Figure 4-7: Two representations of the EWR departure capacity

Erlang distribution fitting

We use trees such as the one of Figure 4-7b for characterizing the dynamics and stochasticity of

the departure process. At each 15-minute period, the route availability and the arrival throughput
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map to a leaf of the tree of Figure 4-7b. Each leaf of the tree is associated with an empirical

distribution that consists of all the observations satisfying its conditions. These distributions are

denoted frw. Figure 4-8 shows the corresponding four empirical distributions frw for each leaf of

the tree in Figure 4-7.
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Figure 4-8: Empirical (frw) and modeled (frm) probability distributions of the departure through-
put of runway configuration 22L |22R under different conditions.

Let µ1 and µ2 denote the first and second moment of the empirical distribution frw. We

assume that the service times are generated from an Erlang distribution with parameters (k, kµ).

We estimate these parameters using an approximation based on the method of moments. The

output is the Poisson distribution satisfied by the kth arrival of the exponential distribution with

rate (kµ) in a ∆ time period that matches the first moment and has the smallest absolute error of

the second moment of frw.

Denote as ti the time at which the ith service time occurs assuming an infinite queue in the
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system. Then we have:

µ1 = 0 · P{t1 > ∆}+

∞∑
i=1

i · P{(ti ≤ ∆) ∩ (ti + 1 > ∆)} (4.35)

µ2 = 0 · P{t1 > ∆}+

∞∑
i=1

i2 · P{(ti ≤ ∆) ∩ (ti + 1 > ∆)} (4.36)

Given that the times ti’s are generated from an Erlang distribution (k, kµ), the event of having

exactly i services in the time interval ∆ has the weighted sum of the probabilities of (i − 1) · k +

1, . . . , i · k, . . . (i+ 1) · k− 1 of occurrences of a Poisson random variable z with parameter (kµ ·∆).

Thus:

µ1 =
∞∑
i=0

i · (i+1)k−1∑
j=(i−1)k+1

k − |ik − j|
k

· e(−kµ·∆) · (kµ ·∆)j

j!

 (4.37)

µ2 =
∞∑
i=0

i2 · (i+1)k−1∑
j=(i−1)k+1

k − |ik − j|
k

· e(−kµ·∆) · (kµ ·∆)j

j!

 (4.38)

The method of moments cannot be applied exactly because k is constrained to be a natural

number. For this reason we make the following approximation. µ is obtained by numerically

solving Equation (4.37) as a function of different increasing k’s. For each set of (µ, kµ) the error of

Equation (4.38) is calculated. When the absolute error increases, we stop the iteration: A further

increase in k would imply a further decrease in variance and an increased absolute error in the

value of the second moment. For the empirical distribution of the third leaf of the regression tree

shown in Figure 4-7b, we obtain the parameters of Erlang distribution (2, 1.38). The mean service

time is 2/1.38 min = 1.54 min. The variance of the service time is 2/1.382 min2 = 1.05 min2. The

corresponding distribution, frm, of the number of takeoffs in ∆ min is depicted in the lower left

plot of Figure 4-8. The distributions of the other three leafs are shown in the remaining plots. The

four empirical and modeled distributions are similar, as can also be seen in Table 4.1 that compares

their standard deviations.

4.4.4 Service time distributions

In this section, we examine the validity of the Erlang-distribution for the service times. The

Erlang distribution has been widely used in the air transportation literature (for example [54,

71, 81]) since it was first proposed by Hengsbach and Odoni [56]. As seen in Section 4.4.2, the
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Table 4.1: Standard deviation of the distributions frw and frm.

Dist. frw frm

1 2.19 2.30
2 1.86 1.87
3 1.74 1.84
4 2.33 1.95

Erlang distribution offers certain computational advantages, because it can be viewed as a sum

of exponential distributions. To the best of our knowledge, validation of the Erlang distribution

assumptions has been performed informally with aggregate data, like those of Figure 4-8, or the

ones found in earlier work [113]. ASPM data presents several challenges for validating actual service

time distributions:

• Aircraft takeoff times are approximated from the ACARS messages and are rounded at the

minute [88]. Thus the distribution is discretized, and aircraft can appear to be taking off

with zero inter-departure time (from the same runway), if their takeoff time is rounded at the

same minute.

• To infer service times from departure times, persistent demand must be guaranteed which

requires filtering ASPM data making several assumptions, as was seen in Section 2.3.1. These

assumptions, albeit necessary for measuring departure throughput over a 15-minute, may be

not be appropriate when applied to estimating service times.

ASDE-X data provides solutions to both these issues. Departure times can be captured with

seconds precision. In addition, inter-departure times can be measured conditioned on the actual

state of the departure queue, that is the number of aircraft that are physically in the queuing area

surrounding the threshold of the departure runways. This is enabled by using surveillance data to

measure the precise number of aircraft in queue [69, 102].

For these reasons, in this section, we use ASDE-X data. Because ASDE-X data is not available

for EWR, we use BOS data from the year 2011. Using ASDE-X data from the year 2011 for BOS

major runway configuration 22L, 27 | 22L, 22R, we estimate the instances of persistent demand

and fit an Erlang distribution, as described in Section 4.4.3. The empirical and fitted throughput

distribution are shown in Figure 4-9. The actual, frw, and fitted, frm, distribution parameters are

listed in Table 4.2. The parameters (k, kµ) of the Erlang distribution, grm, yielding the throughput
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Table 4.2: Distributions frw and frm.

Distribution frw frm

Mean 9.81 9.81
Variance 1.91 1.80

distribution frm are (6, 3.92). The Erlang distribution grm has an average service time of 1.53 min

with variance 0.39 min2.
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Figure 4-9: Empirical (frw) and modeled (frm) probability distributions of the departure through-
put of BOS runway configuration 22L, 27 | 22L, 22R.

We turn now to the estimation of service times using ASDE-X data. Conforming to Air Traffic

Controllers’ phraseology, we define a queue with pressure as a departure queue with a sufficient

number of aircraft in it that aircraft take off as soon as the runway is available for takeoffs. Condi-

tioning on a queue with pressure, the service time equals the inter-departure time. For estimating

the condition that implies a queue with pressure, we use the following algorithm, where dq(l) is

defined as the departure queue at the time of takeoff of the lth aircraft . Z is the largest occurrence

of dq(l):

for i = 1→ Z do

Si ← set of inter-departure times of aircraft for which dq = i

end for
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i← 1

C ← 0

while C 6= 1 do

if inter-departure time distributions of sets Si, . . . , Sn statistically significantly different then

i← i+ 1

else

C ← 1

end if

end while

return i

In other words, the algorithm identifies the value of dq for which the inter-departure times do

not change significantly with the number of aircraft in the queue. For comparing the distributions

of service time in sets Si, . . . , SZ , we use a non-parametric method, namely the Kruskal-Wallis one-

way analysis of variance. For this example, the algorithm returns a value of 5. This result implies

that the inter-departure times for this configuration at BOS are distributed differently when there

are 4 aircraft in queue and when there are 5 aircraft in queue. We note here, that such high number

of aircraft in the queue area is necessary to guarantee that the trailing aircraft is at the runway

threshold, and not traveling through the queuing area, or on hold.

For the aircraft in sets S5, S6 . . . SZ , the inter-departure time equals the service time. We note

here that the obtained set of service times does not consist of independent samples. Two subsequent

takeoffs may be correlated. As shown in Section 2.6.4, a departure of one Heavy aircraft within a

15-minute interval does not impact the departure throughput significantly, because the controllers

use the longer separation to perform runway crossings. Thus, the inter-departure time of the

surrounding non-Heavy aircraft is shorter than otherwise. In such a scenario, the service times are

correlated. Even if there is no Heavy aircraft in the departure queue, a controller might choose to

perform a stream of tight non-Heavy departures followed by a stream of runway crossings. In this

case, the service-time of the departures will be correlated. This issue has also been considered in

the literature, and it is recommended that capacity is defined over a long time period (for instance

the saturation capacity, the practical hourly capacity and the sustained capacity are all defined over

an hourly-time window [30]). In Chapter 2, the 15-minute period was chosen as good compromise

of achieving both a long time period and enough data-points in saturation for the whole length of

the time period.
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In order to get independent samples of service time distributions, we sample a random set of

service times that are all spaced 15 minutes apart. The 15-minute requirement was chosen for

consistency with the throughput estimates which are also performed for 15-minute time windows.

The empirical distribution for the service times of aircraft with 5 or more aircraft in the depar-

ture queue at the time of their takeoff and which are spaced at least 15 minutes apart is shown in

Figure 4-10. From Figure 4-10, we notice that the service time distributions have a very long tail

despite having a queue with pressure. We also notice that the distribution’s support starts around

50 sec and not 60 sec as theoretically expected. The reason for this is that inter-departure times

are measured at the time of wheels-off and not at the start of the takeoff roll where separation is

applied by the controllers. The mode of the distribution is at 68 sec. The distribution exhibits also

a second distinct pick at around 100 sec which can be attributed to Heavy aircraft departures.
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Figure 4-10: Empirical service time probability distribution for departures of runway configuration
22L, 27 | 22L, 22R at BOS.

We compare four different fits to the empirical service time distributions:

1. The maximum likelihood estimation (MLE) Gamma distribution fit (ggl).

We simply estimate the maximum likelihood parameters of a Gamma distribution fit to the

empirical distribution of Figure 4-10.

2. The displaced exponential distribution fit (gde).

The displaced exponential distribution is given in Equation (4.39). The displaced exponential
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distribution is often used in traffic engineering applications because it assumes that there is a

minimum headway, d, between vehicles in addition to a probabilistic quantity [123]. Similarly,

it can be hypothesized to be a good model for the service time distribution, to model the

minimum separation requirement between successive departures.

gde(x;φ, d) =


φ · e−φ(x−d) if x ≥ d

0 otherwise

(4.39)

For fitting the displaced exponential distribution, we choose the parameters (φ, d) using the

Method of Moments:

d+
1

φ
= E[S] (4.40)

1

φ2
= var(S) (4.41)

3. The Erlang distribution fit from applying an approximate method of moments (MoM), gem.

Here, we first use the Method of Moments to fit a gamma distribution to the observed service

times histogram. The Method of Moments for the gamma distribution yields estimates k̂ and

λ̂ for the shape and scale parameters as follows:

k̂ =
(E[S])2

var(S)
(4.42)

λ̂ =
E[S]

var(S)
(4.43)

As a next step, we constrain k to be an integer, in order to transform the Gamma distribution

to Erlang. We seek to find the Erlang distribution which has the same mean as the observed

service time distribution and shape (k) that will result in a variance as close as possible to

the observed one:

k̂ = b(E[S])2

var(S)
+ 0.5c (4.44)

λ̂ =
b (E[S])2

var(S) + 0.5c
E[S]

(4.45)
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The resulting Erlang distribution will have a mean E[Lk] and variance σ2
Lk

:

E[Lk] =
k̂

λ̂
= E[S] (4.46)

σ2
Lk

=
k̂

λ̂2
=

E[S]2

b (E[S])2

var(S) + 0.5c
≈ var(S) (4.47)

4. The Erlang distribution fit grw.

For this fit, we simply use the Erlang distribution grw with parameters (6, 3.92), which was

obtained by fitting frm to frw, as seen in Figure 4-9. We note here that frw comprises all

departure throughput observations in saturation, whereas the service time distribution shown

in Figure 4-10 comprises independent samples of inter-departure times given a queue with

pressure. The objective here is to compare grw to gem. They both essentially model the

same quantity but are estimated differently. We note here that some differences are expected

between the two distributions, because the empirical distribution grw is sampled randomly.

A different sampling could yield different parameters.

The results of applying the four different fitting procedures can be seen in Figure 4-11. The

estimated parameters for the four distributions can be seen in Table 4.3. From the plots, we note

that the displaced exponential fit matches the empirical distribution best. d is estimated to be 0.88

min (53 sec). This means that it captures the minimum separation requirement very accurately.

However, it does not predict the mode of the distribution exactly. In addition, it matches the tail

of the empirical distribution very well. The Gamma and Erlang fits fail to predict the mode of

the distribution, and they overestimate the density of the distribution for values lower than 60

sec. By contrast, they predict the tails of the empirical distribution equally well as the displaced

exponential fit. The Gamma and Erlang distributions are different as can be verified from their

parameters in Table 4.3. The discrepancy does not result from the approximate method of method

applied when deriving distribution gem by rounding k̂ (it is rounded to 6 from 5.98) , but from

the different method applied (MLE versus MoM). Finally, we notice that distributions gem and

grw are very similar despite the fact that they were derived very differently. This further shows

the consistency of the estimated departure throughput in saturation and the inter-departure times

given a queue with pressure.

We conclude that estimating the service time distribution from the throughput distribution, as

outlined in Section 4.4.3, calculates accurately not only the mean and the variance of the departure
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Figure 4-11: Service time probability distribution fits for departures of runway configuration 22L,
27 | 22L, 22R at BOS.

Table 4.3: Distribution parameters

Distribution
Parameter 1 Parameter 2

Mean Variance
(Shape/ Displacement) (Rate)

Empirical – – 1.49 0.37
ggl 8.54 5.72 1.49 0.26
gde 0.88 0.62 1.49 0.30
gem 6 4.02 1.49 0.37
grw 6 3.92 1.53 0.39

throughput, but also the mean and variance of the inter-departure time given a queue with pressure.

On the other hand, the shape of the fitted Erlang distribution does not fit the actual empirical

distribution. From Figure 4-11, it can be hypothesized that the displaced exponential is a better

fit. To test this hypothesis, we propose the following method: Use the estimated parameters (k, kµ)

of the fitted frm distribution to derive a displaced exponential distribution with the same mean

and variance:

g̃de(x; φ̃, d̃) =


φ̃ · e−φ̃(x−d̃) if x ≥ d̃

0 otherwise

(4.48)
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such that:

d̃+
1

φ̃
=

1

µ
(4.49)

1

φ̃2
=

1

kµ2
(4.50)

For this example the parameters are calculated (0.91, 0.62). As expected, the parameters

are very similar to those of gde (Table 4.3). The corresponding f̃de is shown in Figure 4-12 and

matches well with the empirical distribution. We also note from Table 4.4 that it has smaller KL

divergence from the actual throughput distribution compared to frm. Thus, we conjecture that

distribution g̃de accurately represents the service time distribution. It models the minimum service

time requirement, the observed tail of the empirical service time distribution and the associated

departure throughput distribution.

We model the service times in our model with Erlang distributions as explained in Section

4.4.2. However, we will perform sensitivity analysis of the results. For this, we will use service time

distributions given by Equation (4.48) to investigate if they lead to different queuing delays than

those calculated using the Erlang distribution with parameters (k, kµ).
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Figure 4-12: Empirical throughput distribution, frw, and fits frm and f̃de for departures of BOS
runway configuration 22L, 27 | 22L, 22R.
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Table 4.4: Comparison of the distributions frw, frm and fde.

Distribution Mean Variance KL Divergence

frw 9.81 1.90 –
frm 9.81 1.80 0.0102

f̃de 9.81 1.77 0.0079

The need for sampling

Here, we demonstrate the need to sample the service times with an example. In Figure 4-10,

we show the empirical distribution grw of the sampled service times given a queue with pressure.

Suppose we have only this distribution and we generate the corresponding throughput distribution,

fsf in a 15-minute period. We consider now the distribution gsa of all the service times given a

queue with pressure. We similarly generate the corresponding throughput distribution, fsa, in a

15-minute period. We compare the distributions fsf and fsa to the empirical distribution frw in

Figure 4-13. We also compare the three distributions in Table 4.5. We notice that fsa is a less

variable throughput distribution than frw. This results from constructing the empirical distribution

fsa using dependent observations. From Table 4.5 we also note that fsa has a higher KL-distance

from frw than fsf has.
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Figure 4-13: Empirical throughput distribution, frw, and fits fsf and fsa for departures of BOS
runway configuration 22L, 27 | 22L, 22R.
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Table 4.5: Comparison of the distributions frw, fsf and fsa.

Distribution Mean Variance KL Divergence

frw 9.81 1.90 –
fsf 10.05 1.78 0.0445
fsa 10.06 1.49 0.1053

Service time and fleet mix

The empirical service time distributions can be further parametrized by fleet mix. The Heavy jets

are theoretically expected to have a service time of at least 2 minutes (120 sec). In Figure 4-14,

we show the empirical service time distributions parametrized by the type of aircraft taking off.

The distribution of the service times for the Heavy aircraft is clearly distinct from that of the non-

Heavy jets. Heavy jets have much longer service times, as it was expected given their separation

requirement. The mode of the distribution is at 105 sec. The service time is measured as the

difference between successive wheels-off times, and thus it is on average shorter than the separation

at the start of the takeoff roll if the leading aircraft is a Heavy. Heavy aircraft have on average

longer roll times. The average service time of non-Heavy aircraft is 87 sec and of Heavy aircraft

119 sec.
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Figure 4-14: Empirical service time probability distributions for departures of BOS runway config-
uration 22L, 27 | 22L, 22R for Heavy and non-Heavy jets.
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Finally, we discuss how these findings compare to the findings regarding the jet departure

capacity of Section 2.6.4. There, we concluded that the departure throughput does not depend on

Heavy aircraft, whereas from Figure 4-14, we clearly see that Heavy aircraft are separated from

the subsequent departures on average for much longer than non-Heavy aircraft (32 sec). However,

Figure 4-14 does not show how departing Heavy aircraft impact the service times of surrounding

non-Heavy aircraft. This is precisely the value of the parametrized capacity envelope. Figure 2-

14b conveys that controllers utilize the runway in such way that the impact of Heavy aircraft is

diminished in a 15-minute time window. Regarding Figure 4-14, this would imply that short non-

Heavy aircraft service times are correlated with Heavy departures in the surrounding time-window.

Similarly, the impact of an arrival bank will not be revealed on the inter-departure time of a single

aircraft, but will be shown in the 15-minute departure throughput.

To fully capture the separation requirements and the impact of the exogenous variables (arrivals

crossings, route availability, props fanning), one would need a hidden Markov model where the

exogenous variables (arrivals crossings, route availability, props fanning), along with the endogenous

one (Heavy vs. non-Heavy) would explain the separation times. The complexity of such model

renders it impractical for both modeling and simulation. For this reason, we estimate the departure

throughput distribution given the endogenous and exogenous conditions in each 15-minute time-

window, and allocate service-time distributions to individual aircraft consistent with the estimated

departure throughput distribution.

4.4.5 Module 2 outputs

Module 2 takes a runway schedule (RS) as input from Module 1. For each 15-minute time period,

i, given the parameters of the service time distribution (ki, kµi), and the inter-arrival times cl, it

calculates the queue state probability vector pQl . For each aircraft l it calculates its effective queue

length q̃l(j) and its effective queuing delay d̃l(j). The takeoff time of each aircraft is assumed to be

Cl + d̃l(j), that is, the sum of its arrival time at the departure queue and is effective queuing delay.

Repeating this process for each aircraft yields the expected takeoff schedule. From the runway

schedule, and the expected takeoff schedule we calculate airport performance characteristics such

as the expected throughput, expected queue length, and the expected number of aircraft on the

ground.

We also note that Module 2 is independent from Module 1. Thus, if we have the runway schedule

of two departure runways, we can solve Equation (4.18) independently for each of them to calculate
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their performance characteristics. As already explained, this framework was applied in other work

for modeling the departure process from runways of 21R and 22L of DTW [76].

4.5 Model results for EWR

In this section, we discuss the prediction results for the most frequently used runway configuration

of EWR, (VMC; 22L | 22R), in 2011. The unimpeded taxi-out times are estimated using ASPM

and Flightstats data from the year 2011, as explained in Section 4.3.1. Similarly, the throughput

distributions are estimated from ASPM, Flightstats and RAPT data, as explained in Section 4.4.3,

and are shown in Figure 4-8. As noted in Section 4.3.2, α is calculated so that the predicted median

taxi-out time equals the actual median time (18 min) and equals 0.27 min/AC.

Figure 4-15 shows the frequency of the different congestion states observed in the operational

data and predicted by the model. The model predicts the airport being at all congestion levels

as often as observed. Figure 4-15 also shows the expected taxi-out time as a function of the

number of aircraft taxiing-out at the time of pushback for both the actual operations and the

modeled operations. We note that the taxi-out time is predicted very accurately for all traffic

conditions. Table 4.6 contains more detailed statistics about the number of aircraft and the taxi

times in different congestion levels. In agreement with the plots of Figure 4-15, the model predicts

accurately both the frequency of the different congestion states and the taxi-out times at each state.

We note, in particular, that the predicted number of flights at congestion states greater than or

equal to 15 is only 2% higher than that in actual operations, and their predicted mean taxi-out

time is over-estimated only by 2%.

Table 4.6: Aggregate taxi time predictions for EWR runway configuration 22L | 22R in year
2011.

Congestion Actual # Actual mean Model # Model mean
level of flights taxi time (min) of flights taxi time (min)

all 65990 20.41 65977 20.19

(N ≤ 8) 27387 15.89 27964 15.10

(9 < N ≤ 14) 22594 19.51 21683 19.47

(N ≥ 15) 16009 29.42 16330 29.84

Figure 4-16 shows the predicted throughput of configuration 22L | 22R at EWR in 2011 as a

function of the congestion state N . The model predicts both the mean throughput and the median

throughput very accurately in all traffic conditions. However, the model is not capable of producing
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Figure 4-15: Actual and modeled frequency of each state N (top); Actual and modeled average
taxi-out time as a function of the state N at the time of pushback (bottom) for EWR runway
configuration 22L | 22R in year 2011.

estimates of the variance of the departure throughput.

We also list the prediction results for both the congestion state (N) and the predicted 15-minute

throughput at each minute at which there was traffic on the ground in the actual data (N(t) > 0)

in Table 4.14. We calculate the mean error (ME), the mean absolute error (MAE) and the root

mean square error (RMSE). As far as the predictions of the congestion state are concerned, we

note that the negative mean error of -0.2 indicates that the state is underpredicted by 0.2 units

(AC taxiing out) on average. The condition N(t) > 0 is applied for removing the data-points of no

traffic, which are of no interest. We also list the results for the conditions when N(t) > 10, because

these are the higher congestion states, and they are more relevant to the problem of congestion.

We note that given N(t) > 10, the congestion state is under-predicted by 0.9 units. This is due to

the fact that very high congestion states are also related to rare events (safety incidents, temporary

runway closures, mechanical problems, constraints at the destination airports, etc.), which are not

modeled.

The predictions for the 15-minute throughput at each minute are also listed in Table 4.7. The

errors are lower than the errors of the congestion state predictions because the average throughput
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Figure 4-16: Actual and modeled throughput of all states N for EWR runway configuration 22L |
22R in year 2011: Mean (top); Median (bottom).

is not very sensitive to the exact value of the congestion state N(t). Neighboring values of N may

imply the similar throughput, or the same throughput if they are in saturation. We note here that

the throughput comparison is performed by using time as a basis. At each minute t, the model

predicts both the number of aircraft on the ground and the throughput at this minute t with a

mean absolute error of 1.7 AC and 1.1 AC/15 min respectively.

Table 4.7: Prediction statistics for the congestion state and the throughput for EWR runway
configuration 22L | 22R in year 2011.

N(t) > 0 N(t) ≥ 10

ME MAE RMSE ME MAE RMSE

State (AC) -0.20 1.71 3.03 -0.91 3.00 4.5
Throughput (AC/15 min) 0.00 1.14 1.60 -0.32 1.37 1.85

4.5.1 Comparison to a deterministic model

In this section, we compare the results of the model to an alternative model where the service times

are deterministic. In this setting, each aircraft is served deterministically with the average service
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time of the time-window i in which it takes off . We use the same runway schedule as that used in

the previous section and compare the results of the two models.

In Table 4.8, we list the results for the taxi-out time predictions using the deterministic model.

It is evident that the deterministic model underestimates the average taxi-out time. It overes-

timates the number of aircraft that take-off under light congestion (N ≤ 8) and analogously it

underestimates the number of aircraft that take-off in higher congestion states (N ≥ 15). However,

for the aircraft that are predicted to take-off in higher congestion, their taxi-out time is predicted

very accurately. It is only 0.5% lower than the actual one.

In high congestion, the deterministic and stochastic model converge to the same delays [73].

However, the deterministic model transitions to higher-congestion states less often than the stochas-

tic one. Thus, fewer flights end up facing a long queue in the deterministic than in the stochastic

model. For the ones that end up facing a long queue in both models, their delays are very similar.

Table 4.8: Aggregate taxi time predictions using a deterministic model for EWR runway
configuration 22L | 22R in year 2011.

Congestion Actual # Actual mean Model # Model mean
level of flights taxi time (min) of flights taxi time (min)

all 65,990 20.41 65,977 19.10

(N ≤ 8) 27,387 15.89 30,277 14.77

(9 < N ≤ 14) 22,594 19.51 21,494 18.47

(N ≥ 15) 16,009 29.42 14,204 29.27

In Figure 4-17, we show the taxi-out time of each aircraft as a function of its takeoff queue,

that is the number of aircraft that take-off between its pushback and takeoff time. At low values

of the takeoff queue, (Ntoff ≤ 6) both the deterministic and the stochastic model overestimate the

taxi-out time for a given value of the takeoff queue compared to the actual data. This is because

of the selection-bias in the actual data, as discussed in Section 4.3.1. The flights with shorter

unimpeded taxi-out times than the average will be associated with lower take-off queues. In both

the deterministic and stochastic model, flights are assumed to travel with their average unimpeded

taxi-out time to the runway. Thus the measurements are not biased and their curves lie higher

than that of the actual data.

For intermediate values of the takeoff queue (8 < Ntoff < 18), the stochastic model predicts the

same average taxi-out time as it was observed. By contrast, the deterministic model consistently

underestimates the taxi-out time. This discrepancy can help explain the necessity for a stochastic

model. The takeoff queue of an aircraft is distributed over its route from gate to runway. At
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Figure 4-17: Actual and predicted average taxi-out time as a function of the takeoff queue of each
aircraft.

medium values of the takeoff queue, the departure queue has a positive probability of being empty.

In these cases, an event of service time shorter than the average will not benefit other aircraft:

The departure queue is empty, thus no aircraft can take advantage of the runway availability. By

contrast, an event of service time longer than the average has a positive probability of inducing

a delay cost on other aircraft taxiing out. This holds even given an empty queue at the time of

departure. The longer service time has a positive probability of resulting in a queuing time for the

next aircraft that reaches the runway and that would have arrived at an empty system in the case

of a deterministic service process.

As the values of the takeoff queue increase, the probability of having a positive departure queue

at all times increases. In this case, a shorter service time of an aircraft translates to a shorter

queuing time for the aircraft in queue. Given a queue with pressure, takeoffs take place at the same

rate as the service rate and on average each aircraft experiences a delay proportional to the number

of aircraft getting served while it taxies-out (its takeoff queue) independently of the service process

characteristics. Thus, as the takeoff queue increases, the predicted taxi-out time of both models

converge, as shown in Figure 4-17.
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4.5.2 Comparison to Monte Carlo simulations

The stochastic model described so far showed promising results. We examine the sensitivity of the

model to two important assumptions that were used in its construction.

• The stochasticity of the travel times can be ignored, thus the travel times and the runway

schedule can be assumed to be deterministic. We can derive the runway schedule using the

expected travel time (Equation 4.9).

• The distribution of the service times can be assumed Erlang although this is a bad fit to the

actual service time distributions (Figure 4-11).

To test the robustness of the model to these assumptions, we run 100 Monte-Carlo simulations

of four different simulation settings, relaxing each assumption sequentially. The four different

simulation settings are described as follows:

1. Fixed unimpeded taxi-out times (equal to their expected value), and service times sampled

from the Erlang distribution. This simulation uses the same assumptions as the model, but

simulates the Erlang service process instead of modeling it. It provides a benchmark for the

statistical significance of the errors of the other Monte Carlo simulations. For an increasing

number of trials, it should yield, on average, the same results as the model.

2. Fixed unimpeded taxi-out times (equal to their expected value), and service times at each

time-window sampled from the displaced exponential distribution with the same mean and

variance as the Erlang distribution (Equation 4.48). This simulation will reveal the error

from using an Erlang distribution for the service times.

3. Unimpeded taxi-out times sampled from their distribution, and service times sampled from

the Erlang distribution. In each run, the unimpeded taxi-out time of each aircraft is sampled

from the Lognormal distribution that describes the unimpeded taxi-out time of its airline.

This simulation will reveal the error of assuming fixed values for the unimpeded taxi-out

times.

4. Unimpeded taxi-out times sampled from their distribution, and service times at each time-

window sampled from the displaced exponential with the same mean and variance as the

Erlang distribution (Equation 4.48). This simulation will reveal the combined error from
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using an Erlang distribution for the service times and assuming deterministic unimpeded

taxi-out times.

In Tables 4.9-4.12 , we list the results for the four Monte Carlo simulation settings. From

comparing the results of simulation settings 1 and 2, and simulation settings 3 and 4 pairwise,

we notice, that the estimated taxi-out times are not sensitive to the distribution family assumed

for the service times. Comparing the results of simulation settings 3 and 4 to those of simulation

setting 1 and the model we notice that, in agreement with earlier research [107], the taxi-out time

estimates show very little sensitivity to the assumption of fixed travel times. In particular, the

average taxi-out time increases only from 20.19 min to 20.25 min. We conclude that the delays

estimations is fairly insensitive to the two assumptions of the model.

We also note that the average taxi-out time predicted by the first Monte Carlo simulation setting

matches the expected taxi-out time calculated with the model. This provides a numerical validation

for the developed analytical model. However, the congestion state (N) frequencies predicted by the

Monte Carlo simulation as seen in Table 4.9 do not match the frequencies predicted by the stochastic

model and listed in Table 4.6. This is because of an approximation used, by construction, in the

model that was explained in Section 4.4.5. The congestion states N are estimated from the expected

runway schedule, that is, from the expected takeoff times. The results of the model would match

the results of the Monte Carlo simulation, if we calculated the expected congestion state at each

minute using the queuing state probability vector.

Finally, we note here that the Monte Carlo simulation is useful for estimating the distribution of

taxi-out times. Figure 4-18 shows the histogram of the measured taxi-out times and the simulated

taxi-out times. For the simulation, we simply use a single run of simulation setting 4. We notice that

the simulation yields very good estimates of the frequency of each observed value for taxi-out times

lower than 30 minutes. This provides further evidence of the unimpeded taxi-out time distributions

are estimated correctly. For taxi times higher than 30 min, the fit is less good, presumably because

of the impact of unmodeled factors.
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Figure 4-18: Actual and modeled histogram of taxi-out times for EWR runway configuration 22L
| 22R in year 2011.
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Table 4.9: Averaged taxi time predictions from Monte Carlo simulations of simulation setting
1 for EWR runway configuration 22L | 22R in year 2011.

Congestion Actual # Actual mean Model # Simulated mean
level of flights taxi time (min) of flights taxi time (min)

all 65990 20.41 65970 20.18

(N ≤ 8) 27387 15.89 29095 15.05

(9 < N ≤ 14) 22594 19.51 20966 19.19

(N ≥ 15) 16009 29.42 15909 30.87

Table 4.10: Averaged taxi time predictions from Monte Carlo simulations of simulation setting
2 for EWR runway configuration 22L | 22R in year 2011.

Congestion Actual # Actual mean Model # Simulated mean
level of flights taxi time (min) of flights taxi time (min)

all 65990 20.41 65969 20.18

(N ≤ 8) 27387 15.89 29109 15.06

(9 < N ≤ 14) 22594 19.51 21010 19.17

(N ≥ 15) 16009 29.42 15850 30.93

Table 4.11: Averaged taxi time predictions from Monte Carlo simulations of simulation setting
3 for EWR runway configuration 22L | 22R in year 2011.

Congestion Actual # Actual mean Model # Simulated mean
level of flights taxi time (min) of flights taxi time (min)

all 65990 20.41 65955 20.25

(N ≤ 8) 27387 15.89 28887 15.21

(9 < N ≤ 14) 22594 19.51 21055 19.29

(N ≥ 15) 16009 29.42 16013 30.59

Table 4.12: Averaged taxi time predictions from Monte Carlo simulations of simulation setting
4 for EWR runway configuration 22L | 22R in year 2011.

Congestion Actual # Actual mean Model # Simulated mean
level of flights taxi time (min) of flights taxi time (min)

all 65990 20.41 65955 20.20

(N ≤ 8) 27387 15.89 28909 15.22

(9 < N ≤ 14) 22594 19.51 21280 19.24

(N ≥ 15) 16009 29.42 15766 30.64
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4.6 Predictive ability of the proposed model

In this section, we assess the capability of the model to predict operations in different years. For

this, we predict taxi-out times in the years 2010 and 2007. We use the realized pushback schedule,

the arrival throughput and the RAPT value for the times that runway configuration 22L | 22R was

in use as an input to the developed model. We do not have RAPT data for the year 2007, and

thus we expect our predictions to be worse for this year, compared to year 2010.

4.6.1 Predictions for EWR in year 2010

Here, we validate the predictions of the model by applying it for predicting the operations for this

runway configuration in 2010. In Figure 4-19, we show the actual and predicted frequency of each

congestion state and the predicted average taxi-out time as a function of the number of aircraft

taxiing out at the time of pushback. We observe that, qualitatively, the predictions match the

actual operations as well as they did for 2011. Table 4.13 lists the predicted average taxi-out times

at different states. We notice that the number and the delays of the flights in higher congestion

states (N ≥ 15) is underestimated. The median taxi-out time is underestimated as well: It is

measured 18 min, but its estimated value is 17.94 min.

Table 4.13: Aggregate taxi time predictions for EWR runway configuration 22L | 22R in year
2010.

Congestion Actual # Actual mean Model # Model mean
level of flights taxi time (min) of flights taxi time (min)

all 63633 20.83 63585 20.30

(N ≤ 8) 27945 15.46 27942 15.19

(9 < N ≤ 14) 19530 19.49 20234 19.69

(N ≥ 15) 16158 31.73 15409 30.32

Figure 4-20 shows the predicted throughput of segment (VMC; 22L | 22R) at EWR in 2010

as a function of the number of departing aircraft on the ground. As can be observed, the model

overpredicts both the mean throughput and the median throughput in high congestion states. From

the actual mean and median throughput curves shown in Figure 4-20, we note that the throughput

is 2010 decreases for congestion states higher than 25. This decrease is not predicted by the model,

and so the taxi-out times are underestimated.
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Figure 4-19: Actual and modeled frequency of all states N (top); Actual and modeled average
taxi-out time as a function of the state N at the time of pushback (bottom) for EWR runway
configuration 22L | 22R in year 2010.

Table 4.14: Prediction statistics for the congestion state and the throughput for EWR runway
configuration 22L | 22R in year 2010.

N(t) > 0 N(t) ≥ 10

ME MAE RMSE ME MAE RMSE

State (AC) -0.33 1.78 3.49 -1.55 3.45 5.56
Throughput (AC/15 min) -0.01 1.12 1.61 -0.34 1.41 1.92

4.6.2 Predictions of delays on individual days

Given the times at which flights push back, we would like to estimate their travel time to the

runway, the amount of time that they spend in the departure queue, the overall state of the airport

surface (for example, the number of departures on the ground), and the length of the departure

queue. The research question is whether the model, the parameters of which were estimated with

operational data from 2011, can predict operations on a day of 2010 that runway configuration 22L

| 22R is in use.

Figures 4-21, 4-22 and 4-23 show the results of making predictions using the pushback schedule

for a 13-hour period on three days in EWR, together with the observed data. The upper plot shows
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Figure 4-20: Actual and modeled throughput of all states N for EWR runway configuration 22L |
22R in year 2010: Mean (top); Median (bottom).

the observed and predicted number of departures in a 15-minute window, the middle plot contains

the average taxi-out times of the flights that push back in the corresponding 15-minute window,

and the lower plot show the average predicted departure queue size for each 15-minute window and

the number of pushbacks in this 15-minute window for that day. For the average taxi-out time

predictions we use the estimated variance of the queuing delays to provide a confidence interval for

the estimates. The dashed lines are calculated from the standard deviation of the queuing delay for

the flight that is expected to takeoff in the middle of each 15 minute interval. The queuing delays

of individual flights are clearly correlated, thus the variance of the queuing delay of a representative

flight is a simple measure of the variability of the delays in each time-window.

In Figure 4-21, we notice that the departure queue is expected to comprise at least 10 AC for

3.5 hours, between 1745 hours and 2115 hours. The persistently long queue induces an increased

variance of the queuing delays as can be seen from the middle plot of Figure 4-21. For flights

that pushed back between 1945 and 2045 hours, the queuing delay standard deviation is around

25 minutes. Concerning the average taxi-out time prediction, we note that it is underestimated

between 1600 and 1800 hours and overestimated between 1930 and 2030 hours. It is clearly very

hard to accurately predict taxi-out times without updates in such a dynamic and stochastic system
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where the queue remains under pressure for a long time.

The throughput is predicted very accurately. During the very busy hours (1800 to 2100 hours),

the error is at most 2 AC/15 min. However, each error propagates to the taxi-out times of all

later flights until the end of the day, since the queue never empties. The standard deviation of the

delays, albeit very approximate, provides potentially helpful information to the system operators

on the delay risks of such dense pushback schedule.

Figures 4-22 and 4-23 offer similar insights. Figure 4-22 shows a day with much less demand.

We notice that both the average delays and their variability is much smaller than those of Figure

4-21. Figure 4-23 is a day with high demand, but not-uniformly distributed during the day. At

1200 hours, the taxi-out time is both in the predictions and the actual data very long (30 minutes).

However, the departure push is very short, the queue does not build up and the delay queuing

variance stays very small. By contrast, for the time period between 1730 and 1815 hours shorter

expected delays are predicted. However, the predictions are much more uncertain.
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Figure 4-21: Predictions of departure throughput, average taxi-out times and departure queue
lengths in each 15-min interval over a 13-hour period on Thursday, August 5, 2010.
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Figure 4-22: Predictions of departure throughput, average taxi-out times and departure queue
lengths in each 15-min interval over a 12-hour period on Friday, 26 November, 2010.

10 12 14 16 18 20 22
0

2

4

6

8

10

12

Time
 

 

10 12 14 16 18 20 22

10

15

20

25

30

Time of pushback

 

 

Actual deps

Predicted deps

Actual taxi−out time

Predicted taxi−out time

10 12 14 16 18 20 22
0

5

10

15

20

Time

 

 

Pushbacks

Predicted queue

Figure 4-23: Predictions of departure throughput, average taxi-out times and departure queue
lengths in each 15-min interval over a 13-hour period on Wednesday, 8 December, 2010.
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4.6.3 Predictions for EWR in year 2007

We also use the model (developed with 2011 data) to predict congestion and delays at runway

configuration 22L | 22R in 2007, the worst recent year in terms of delays. In Figure 4-24, we show

the actual and predicted frequency of each congestion state, and the predicted average taxi-out

time as a function of the number of aircraft taxiing out at the time of pushback. We observe that

the quality of the predictions deteriorates. The model still predicts a much higher average taxi-out

time than in 2010 or 2011. In particular, from Table 4.15, we observe that it underestimates the

number of flights that have average taxi-out times of 36 min only by 15% (18640 flights compared

to 22101, in real data). Thus, despite the underestimation of the average delays, the model provides

useful information for the magnitude and severity of delays expected as a result of the very high

demand in year 2007.
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Figure 4-24: Actual and modeled frequency of all states N (top); Actual and modeled average
taxi-out time as a function of the state N at the time of pushback (bottom) for EWR runway
configuration 22L | 22R in year 2007.

Figure 4-25 shows the predicted throughput of segment (VMC; 22L | 22R) at EWR in 2007 as

a function of the number of departing aircraft on the ground. The model overpredicts both the

mean throughput and the median throughput in intermediate congestion states. Thus, flights are

predicted to take-off at a higher rate than they actually do and delays are underestimated.
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Table 4.15: Aggregate taxi time predictions for EWR runway configuration 22L | 22R in year
2007.

Congestion Actual # Actual mean Model # Model mean
level of flights taxi time (min) of flights taxi time (min)

all 55506 25.83 55704 23.48

(N ≤ 8) 17899 17.09 21424 15.49

(9 < N ≤ 14) 15506 19.49 15640 19.61

(N ≥ 15) 22101 36.12 18640 35.91
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Figure 4-25: Actual and modeled throughput of all states N for EWR runway configuration 22L |
22R in year 2007: Mean (top); Median (bottom).

Variability of queuing delays

The predictions of the model can still be used for evaluating the delay uncertainty of a very busy

schedule, such as the one of EWR in 2007. In Figure 4-26, we show the scatter plot of the predicted

expected queuing delay of each flight (in min) and its predicted variance (in min2) for all flights

in configuration 22L | 22R in the years 2007 and 2011. Figure 4-26 shows the impact of the much

higher pushback demand in the year 2007 on the variability of queuing delays, as predicted by the

model.
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Table 4.16: Prediction statistics for the congestion state and the throughput for EWR runway
configuration 22L | 22R in year 2007.

N(t) > 0 N(t) ≥ 10

ME MAE RMSE ME MAE RMSE

State (AC) -1.27 2.94 5.84 -2.78 5.09 8.36
Throughput (AC/15 min) 0.01 1.32 1.89 -0.27 1.57 2.17

Figure 4-26: Predicted impact of high congestion on the variability of the queuing delays.

4.6.4 Predictions of taxi-out times of individual flights

In addition to aggregate comparisons, it is interesting to see how the model predicts individual taxi

times. We compare the predicted taxi-out time for the flights for EWR configuration 22L | 22R in

2007, 2010 and 2011 to their recorded one. Figure 4-27 shows the cumulative distribution of the

prediction error E(l) for each flight l defined as

E(l) = τ(l)pred − τ(l)obs (4.51)

In Figure 4-27, we observe that the error distribution is very similar for the years 2010 and

2011, and that for 88% of the flights, the taxi-out times are predicted within ± 10 minutes from the
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recorded ones. The errors are much higher in 2007, and for only 73% of the flights are the taxi-out

times are predicted within ± 10 minutes of the recorded ones. We also note that for approximately

2% of the flights (1000 flights) the taxi-out time is underestimated for 50 minutes or more in 2007.

There are much fewer such flights in the years 2010 and 2011 (approximately 300). This change

may have been related to the 3-hour tarmac delay rule that encourages airlines to cancel flights

experiencing very long taxi-out times.
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Figure 4-27: Taxi-out time prediction error for individual flights for EWR runway configuration
22L | 22R.

Table 4.17 lists the Mean Error (ME), Mean Absolute Error (MAE) and the Root Mean Square

Error (RMSE) for these predictions. From Table 4.17, we observe that the model predicts taxi

times of individual flights reasonably well in the years 2010 and 2011. The mean error is significant,

which shows that there is some systematic underprediction in the predictions, which is by design,

as explained earlier. In the following section, we investigate the reasons behind the weak prediction

performance in 2007.
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Table 4.17: Prediction statistics for individual taxi-out times for EWR runway configuration
22L | 22R in year 2007.

Year ME (min) MAE (min) RMSE (min)

2011 -0.22 5.51 8.81
2010 -0.53 5.82 9.88
2007 -2.35 8.53 16.09

4.6.5 Airport performance in 2007

In Figure 4-28, we show the actual mean and median throughput measured in this runway con-

figuration at EWR in the different years 2007, 2010 and 2011. It is evident that the throughput

of the airport changes from years 2007 to 2011, especially at intermediate values of the number

of aircraft taxiing out. Thus, although the average capacity of the airport stays at 10 AC/15 min

across the three years, the expected throughput as a function of the number of aircraft taxiing out

changes. We hypothesize that route availability, for which we do not recorded data for 2007, could

drive this different behavior. Other possible reasons behind the difference across the three years

include unimpeded taxi-out times, different local procedures, different magnitude of downstream

constraints and traffic management initiatives, or regulations (for example the 3-hour tarmac delay

rule).

4.6.6 Predictions for runway configuration 4R | 4L

We present the predictions for the second-most frequently used runway configuration at EWR in

Appendix F. The methods used and the insights are similar to those discussed earlier in this

chapter. We estimate the parameters using 2011 data, and predict operations in 2007 and 2010.

Table 4.20 summarizes the main results for the individual flights taxi-out time predictions. The

predictions are better than those for runway configuration 22L | 22R. For runway configuration 4R

| 4L, the model predicts the average taxi-out times very accurately in all three years. 4R | 4L tends

to not be used during convective weather, and thus the predictions are less impacted by the lack of

route availability information in 2007 than those for runway configuration 22L | 22R. We also note

that the individual flights taxi-out time prediction errors for 2010 (a testing dataset) are smaller

than for 2011 (the training dataset).

Tables 4.19 and 4.20 summarize the actual mean taxi-out times for runway configurations 22L

| 22R, 4R | 4L and those predicted by the model for the years 2007, 2010 and 2011. The model
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Figure 4-28: Actual throughput in all states N for EWR runway configuration 22L | 22R in years
2007, 2010 and 2011: Mean (top); Median (bottom).

Table 4.18: Prediction statistics for individual taxi-out times for EWR runway configuration
4R | 4L in years 2007, 2010 and 2011.

Year
Number Average taxi-out

ME AME RMSE
of flights time (min)

2011 37132 22.73 -0.50 5.58 8.67
2010 39785 22.86 0.17 5.48 8.17
2007 34378 29.55 -0.12 7.63 11.27

predicts the average airport performance reasonably well at both major runway configurations

across different years.

4.7 Conclusions

In this chapter, we designed and validated a new analytical queuing model of the departure pro-

cesses at airports that can be used for strategic planning and tactical predictions. For this, we

developed a stochastic and dynamic queuing model of the departure runway(s), based on the tran-

sient analysis of D(t)/Ek(t)/1 queuing systems. A new method for estimating the unimpeded taxi

times distribution, and a consistent method to estimate both the distribution of inter-departure
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Table 4.19: Summarized prediction results for EWR runway configuration 22L | 22R in years
2007, 2010 and 2011.

Year
Actual mean Model mean Actual median Model median

taxi-out time (min) taxi-out time (min) taxi-out time (min) taxi-out time (min)

2011 20.41 20.19 18 18
2010 20.83 20.30 18 18
2007 25.83 23.48 21 19

Table 4.20: Summarized prediction results for EWR runway configuration 4R | 4L in years
2007, 2010 and 2011.

Year
Actual mean Model mean Actual median Model median

taxi-out time (min) taxi-out time (min) taxi-out time (min) taxi-out time (min)

2011 22.73 22.23 20 20
2010 22.86 23.03 20 21
2007 29.55 29.43 25 24

times and the throughput distribution were also proposed. The model was validated against Monte

Carlo simulations and real data. It predicted taxi-out times, airport throughput and airport con-

gestion level very accurately for the two major runway configurations of EWR in the years 2007,

2010 and 2011. In addition, we estimated the variance of the predicted queuing delays, and showed

how these estimates can be used for evaluating operational uncertainty.
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Chapter 5

Dynamic Control of Airport

Departures

5.1 Introduction

In this chapter, we formulate the airport surface congestion management problem as a dynamic

control problem, and present our findings both in terms of algorithmic development and field

evaluation. Firstly, we develop a queuing model for the prediction of the departure throughput and

derive two Pushback Rate Control (PRC) algorithms using dynamic programing and approximate

dynamic programming (henceforth referred to as PRC v2.0, and PRC v2.1). Then, we describe

the design of a Decision Support Tool that was used by air traffic controllers during the field

testing of PRC v2.1 at BOS in 2011. Subsequently, we describe the extensive evaluation of the

congestion management scheme, the accuracy of the departure throughput prediction, and the

implementation of PRC v2.1. Finally, we describe an extension of these algorithms to a different

airport environment, simulate its performance at PHL, and compare it to two other popular control

mechanisms: N-Control and Slot-Control.

A large portion of the work presented in this chapter has appeared in conference publications

[109, 110, 111].

5.2 Design of the control strategy

The objective of the control strategy is to minimize the amount of taxiing-out traffic, and thus

taxi-out times, while maintaining runway utilization. In addition, it must be compatible with
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current levels of information and automation in the airport tower, and capable of integration with

current operational procedures, with minimal controller workload. Thus, the proposed strategy

does not require Collaborative Decision Making, and does not assume the ability to plan and

resequence departures. Its design has to address the uncertainties in the entire taxi-out process,

from call-ready to takeoff.

For these reasons, the desired form of a congestion control strategy is one that periodically

recommends a pushback (release) rate to air traffic controllers. The suggested pushback rate is

updated at the beginning of each time-window, and is valid through that time period.

Careful monitoring of off-nominal events and constraints is also necessary for implementation

at a particular site. In the case of BOS, of particular concern are gate conflicts (for example, an

arriving aircraft is assigned the same gate as a departure that is being held), and the ability to meet

controlled departure times (Expected Departure Clearance Times or EDCTs) and other constraints

from Traffic Management Initiatives. In consultation with the BOS ATCT, it was decided that

flights with EDCTs would be handled as usual and released First-Come-First-Served. Similarly,

pushbacks would be expedited to allow arrivals to use the gate if needed. Finally, the analysis in

Chapter 2 showed that, at BOS, prop departures do not interfere with jet departures and increase

the total departure throughput. The main implication of this observation for the control strategy

design at BOS is that props are exempt from the PRC.

Similarly, qualitative and quantitative observations show that there are differences in the de-

parture process in the morning and evening periods [25]. In the morning, it is impacted by many

EDCTs, whereas in the evening by heavy arrival pushes. For these reasons, we refine the data

analysis and the departure throughput estimation for the evening times. The resultant saturation

curve is shown in Figure 5-1.

5.2.1 Data sources

Figure 5-1 was determined using ASDE-X data, while the jet throughput analysis in Section 2.6

was performed with ASPM data. Pushback times in ASPM are based on the brake release times

reported through the ACARS system, and are prone to error. About 40% of the flights departing

from BOS do not automatically report these times [106]. While the ASDE-X data is more accurate

than the ASPM data, it is still noisy, due to factors such as late transponder capture (the ASDE-X

tracks only begin after the pilot has turned on the transponder, which may be before or after the

actual pushback time), aborted takeoffs (which may have multiple departure times), flights cancelled
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Figure 5-1: Regression of the departure throughput as a function of the number of aircraft taxiing
out, for the 22L, 27 | 22L, 22R configuration at BOS during evenings, under VMC, using ASDE-X
data.

after pushback, etc. A comparison of both ASDE-X and ASPM records with live observations made

in the BOS tower on August 26, 2010 revealed that the average difference between the number of

pushbacks per 15-minutes as recorded by ASDE-X and by visual means is 0.42, while it is -3.25 for

ASPM and visual observations, showing that the ASPM records differ considerably from ASDE-X

and live observations. The above comparison motivates the recalibration of airport performance

curves and parameters using ASDE-X data in addition to ASPM data [110]. However, a comparison

of ASDE-X records with live observations made in the tower of BOS during the evenings of July 7

– July 12, 2011 revealed that the average delay between the time that an aircraft was authorized

to push back and the time at which it was captured in ASDE-X was 4 minutes. This delay was

also shown to be random and not correlated with airline, aircraft type, or other information and

introduces significant noise in the measurements of taxi-out times.

5.3 Departure process model

5.3.1 State variables

The beginning of each time-window is called epoch. At each epoch, we observe the state of the

airport system, and recommend a pushback rate. For the purposes of control, the state is described

by the following variables:

1. Visibility conditions and runway configuration (MC;RC).

2. Number of jet aircraft traveling from the gates to the departure runway (G).

3. Number of jet aircraft in the departure queue (D).

175



4. Expected number of arrivals in the next 15 min. (A).

5. Number of props taxiing out (P ).

All these variables are readily available in the current tower environment: G corresponds to the

number of jet aircraft strips in the ground controller’s rack, D is the number of jet aircraft strips

local controller’s rack, P can be determined visually from the same racks, and A can be determined

from the Traffic Situation Display (TSD). The state of the departure process has to described using

all or a subset of these variables. It is clear that a high-cardinality state space like the one proposed

by Burgain [15], or assumed as input for the MILP models [75, 98, 115] cannot be applied in such

an environment.

For developing the basic control algorithm PRC v2.0, we use only two variables to describe the

state of the airport given the current segment in use (MC;RC): At any time t, the state Nt of the

departure process consists of the number of jet aircraft traveling from the gates to the departure

queue (Gt) and the number of aircraft in the departure queue (Dt):

Nt = (Gt, Dt) (5.1)

Wt = Gt +Dt (5.2)

Wt is the total number of aircraft taxiing out, also known as the total work-in-process of the

departure process.

5.3.2 Selection of time period

In general, the length of the time period, ∆, should be equal to the lead time of the system, that is,

the delay between the application of the control input (setting an arrival rate at the runway server

by controlling the pushback rate) and the time at which the runway sees that arrival rate. For

the departure process, this time delay is given by the travel time from the gates to the departure

queue. By choosing a time horizon that is approximately equal to the expected travel time from

the gates to the departure queue, the flights released from the gate during a given time period are

expected to reach the departure queue in the next time period.

In this way, we achieve meaningful relations among the variables (G,D) that describe the surface

of the airport at each epoch, and the decision variable λ. Suppose, that at epoch τ , the system is

at state (Gτ , Dτ ) and the rate λτ is selected. Then, Gτ+∆ correlates very well with λτ , and Dτ+∆

with (Gτ , Dτ ).
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5.3.3 Pushback process

At the beginning of each time period, the decision maker chooses a pushback rate (arrival rate into

the surface system), λ ∈ Λ = [0, λmax]. λ is expressed as the number of pushbacks per ∆ minutes.

The time instances at which the pushback rate is updated are called epochs. In contrast to typical

dynamic queuing control problems in which the decision maker sets the arrival rate into a facility,

in our case, when setting a pushback rate at epoch τ , the decision maker authorizes λ aircraft to

push back in that time period. In other words, λ pushbacks will occur in the time period (τ, τ + ∆]

with probability 1 (w.p. 1). Furthermore, λ is an integer: λ ∈ [0, 1, . . . , λmax].

5.3.4 Runway service process

The model treats the departure runways as a single server at which aircraft line up (queue) to await

takeoff. The queuing system has finite queuing space C, which depends on the airport layout and

operational procedures. At each airport, there is an upper bound on the number of aircraft that

can queue up, which is the queuing space C of the queuing system. The runway service times are

modeled as being Erlang distributed. The shape and rate (k, kµ) of the distribution are extracted

from surveillance (ASDE-X) data, as explained in Section 4.4.3. The arrival times at the queuing

system are modeled to be random and independent from each other. However, at each epoch, the

total number or aircraft traveling from the gate to the departure queue is known (denoted Rτ ).

We assume that by the next epoch, all of them (Rτ ) will have reached the runway server. We

show later how this assumption can be relaxed. In summary, the arrival process at the runway is

modeled as a non-stationary Poisson process, in which the rate is updated every ∆ minutes, and

the process is conditioned on the number of arrivals at the runway between two epochs.

This departure runway queuing system resembles a M(t)/Ek/1 system of queuing space C,

with the additional constraint of Rτ arrivals during the (τ, τ + ∆] time interval. We denote it

(M(t)|Rτ )/Ek/1. Assuming that at epoch τ , Rτ aircraft are traveling to the departure runway, the

probability density function g of the rth arrival at the departure runway at time t is:

g(r, t) = Rτ−(r−1)
(τ+∆)−t , t ∈ (τ, τ + ∆], r = 0, 1, . . . Rτ

= R0−(r−1)
∆−t , for τ = 0, t ∈ (0,∆], r = 0, . . . R0

(5.3)

To derive Equation (5.3), we consider R0 − (r − 1) uniformly distributed random variables in the

time interval (t,∆]. The probability that one of these lies in the interval (t, t + dt] is
(
R0 − (r −
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1)
)
dt/(∆− t).

The state of the queuing system at time t is denoted by

St = (Rt, Qt) (5.4)

where Rt is the number of aircraft that were traveling to the departure runway at the start of that

epoch but have not reached the departure queue yet, and Qt ∈ {0, 1, . . . , kC} is the state of the

embedded chain of the semi-Markov process. An example of the chain for k = 2 and C = 4 is

shown in Figure 5-2.

A service completion of an Erlang process with shape k and rate kµ is represented with k stages

of exponentially distributed random variables with rate kµ. We call each such stage stage of work,

as explained in Section 4.4.1. Each state of the Markov chain (r, q) denotes that there are r aircraft

that have been traveling to the runway since the start of that epoch, and there are q stages of work

to be completed at the departure runway server, i.e., there are min(1, q) aircraft in service and

max(d(q − k)/ke, 0) aircraft in the departure queue.
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Figure 5-2: State transition diagram for an (M(t)|R0)/E2/1 system with queuing space of 4 cus-
tomers in the system.

At epoch 0, the Markov chain is in state (R0, Q0). In Figure 5-2, the chain is in the bottom
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level (R0 aircraft traveling to the departure runway) with Q0 stages of work to be completed. By

the end of the time interval ∆, all of R0 aircraft will have reached the departure queue, and the

Markov chain will be at the top level (0 aircraft traveling). Let Pr,q(t) denote the probability

that the queuing system is in state (r, q) at time t, where 0 < t ≤ ∆. The state probabili-

ties P0,0(∆), P0,1(∆), · · ·P0,kC(∆) describe fully the state of the queuing system at the end of the

time interval ∆. They are calculated by deriving the first-order differential equations (Chapman-

Kolmogorov equations) that describe the evolution over the time (0,∆], given R0 arrivals in this

interval: For 0 < t ≤ ∆, and 1 ≤ r < R0:

dP0,0

dt
= kµP0,1 (5.5)

dP0,q

dt
= kµP0,q+1 − kµP0,q, 1 ≤ q < k (5.6)

dP0,q

dt
= kµP0,q+1 +

1

∆− t
P1,q−k − kµP0,q, k ≤ q < kC (5.7)

dP0,kC

dt
=

1

∆− t
P1,k(C−1) − kµP0,kC (5.8)

dPr,0
dt

= kµPr,1 −
r

∆− t
Pr,0 (5.9)

dPr,q
dt

= kµPr,q+1 − kµPr,q −
r

∆− t
Pr,q, 1 ≤ q < k (5.10)

dPr,q
dt

= kµPr,q+1 +
r + 1

∆− t
Pr+1,q−k −

r

∆− t
Pr,q − kµPr,q, k ≤ q ≤ k(C − 1) (5.11)

dPr,q
dt

= kµPr,q+1 +
r + 1

∆− t
Pr+1,q−k − kµPr,q, k(C − 1) < q < kC

dPr,kC
dt

=
r + 1

∆− t
Pr+1,k(C−1)) − kµPr,kC (5.12)

dPR0,0

dt
= kµPR0,1 −

R0

∆− t
PR0,0 (5.13)

dPR0,q

dt
= kµPR0,q+1 −

(
R0

∆− t
− kµ

)
PR0,q, 1 ≤ q ≤ k(C − 1) (5.14)

dPR0,q

dt
= kµPR0,q+1 − kµPR0,q, k(C − 1) < q < kC (5.15)

dPR0,kC

dt
= −kµPR0,kC (5.16)

Solving Equations (5.5)-(5.16) numerically for time t = ∆ with initial value (R0, Q0), we obtain

the state probabilities P0,0(∆), P0,1(∆), ...P0,kC(∆). The state of the queuing system at time ∆,

Q∆, is a probabilistic function f of the initial value (R0, Q0), and the probabilities pq(i) of each
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state i are the calculated probabilities P0,i(∆):

Q∆ = f(R0, Q0) (5.17)

with pq(i)(R0, Q0) = P0,i(∆) for 0 ≤ i ≤ kC (5.18)

=⇒ pq(R0, Q0) = P0(∆) (5.19)

where P0(∆) = [P0,0(∆), P0,1(∆), ...P0,kC(∆)]′.

5.3.5 System dynamics

Suppose, at epoch τ , that Rτ aircraft are traveling to the departure runway, Qτ stages of work are

left to be completed in the queue, and the decision maker selects a pushback rate λτ . At τ + ∆, Rτ

aircraft will have reached the departure queue, λτ aircraft will be traveling, and Qτ+∆ = f(Rτ , Qτ )

stages of work will remain to be completed. The queuing system therefore evolves according to the

following equation:

(Rτ+∆, Qτ+∆) = (λτ , f(Rτ , Qτ )) (5.20)

The probabilities Pr(r,q)→(i,j)(λ) that the chain is in state (i, j) at the next epoch τ + ∆ given it is

in state (r, q) at the epoch τ and the pushback rate λ is chosen are:

Pr(r,q)→(i,j)(λ) =


pq(j)(r, q) if i = λ

0 otherwise

(5.21)

The state S of the queuing system maps to the state N of the departure process as follows:

Nt =


(
λt−∆,max(d(Qt − k)/ke, 0)

)
, t ∈ {0,∆, . . . }(

Vt +Rt,max(d(Qt − k)/ke, 0)
)
, otherwise

(5.22)

where Vt is the number of aircraft that pushed back between the start of the epoch within which t

lies, and the time t. We note that by sampling the system every ∆ time intervals, we decouple the

departure process into two processes that are independent of each other within each time period,

namely, the pushback process and the runway service process.
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5.3.6 Choice of cost function

The control strategy sets the arrival rate of aircraft to the queuing system, that is the pushback

rate, to balance two objectives, namely, to minimize the expected departure queue length and to

maximize the runway utilization. These requirements are captured in a cost function, c(q) for a

state (r, q) of the queuing system. This cost is a combination of the queuing cost and the cost of

non-utilization of the runway. The runway is unutilized when q = 0. If q ∈ {1, 2, . . . k}, both the

queuing and non-utilization costs are zero. For all higher states, q > k, there is a queuing cost

c(q), which is usually assumed to be a monotonically non-decreasing function of q with increasing

marginal costs [78, 80]. In this case, it scales quadratically with the state of the queue, because

the expected system delay scales as a quadratic function of queuing state ([D · (D + 1)/2]/µ). A

candidate cost function with these properties is:

c(q) =

 H, q = 0

(d(q − k)/ke)2 q = 1, . . . , kC
(5.23)

where H is the cost of a loss of runway utilization.

We solve Equations (5.5)-(5.16) numerically to calculate

pq(R0, Q0, t) =
[ R0∑
r=0

Pr,0(t),

R0∑
r=0

Pr,1(t), . . . ,

R0∑
r=0

Pr,kC(t)
]′

(5.24)

at time t. Numerical experiments showed that sampling every 6 sec (i.e. 10 times a minute) is

sufficiently accurate for calculating the expected cost of each state, c̄, over the time interval ∆:

c̄(R0, Q0) =

10∆−1∑
i=0

1

10
pq(R,Q, i/10) · c (5.25)

5.4 Dynamic programing formulation

The optimal costs, J∗(r, q), at each state, (r, q), for the infinite horizon problem with discount

factor α are given by Bellman’s equation:

J∗(r, q) = min
λ∈Λ
{c̄(r, q) + α

kC∑
j=0

Pr(r,q)→(λ,j)J
∗(λ, j)}

=⇒ J∗(r, q) = min
λ∈Λ
{c̄(r, q) + αpq(r, q) · J∗(λ) (5.26)
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where J∗(λ) = [J∗(λ, 0), J∗(λ, 1), . . . , J∗(λ, kC)]′ for r ∈ {0, 1, . . . , λmax} and q ∈ {0, 1, . . . , kC}.

We now relax the assumption of Equation (5.20) that Rτ aircraft traveling at epoch τ will reach

the queue during the time interval (τ, τ + ∆] and a pushback rate (λτ ) set at epoch τ will arrive at

the runway at t > τ + ∆ w.p. 1, as follows. For each value of λτ and Rτ , i out of the λτ aircraft

reach the runway during the time interval (τ, τ + ∆], with probability βi. Similarly, i out of the Rτ

aircraft reach the runway at t > τ + ∆ with probability γi. Finally, Rτ aircraft reach the runway

during the time interval (τ, τ + ∆], and λτ aircraft at t > τ + ∆, with probability 1−
∑
βi −

∑
γi.

Equation (5.20) becomes:

(Rτ+∆, Qτ+∆) =



(
λτ , f(Rτ , Qτ )

)
, w.p. 1−

∑
βi −

∑
γi(

λτ − i, f(Rτ + i,Dτ )),w.p. βi, i = 1, . . . , λτ(
λτ + i, f(Rτ − i,Dτ )),w.p. γi, i = 1, . . . , Rτ

(5.27)

We note that Equation (5.27) maintains the Markov property. For these system dynamics, the

Bellman equation for the infinite horizon problem with discount factor α is:

J∗(r, q) = min
λ∈Λ

{
(1−

∑
βi −

∑
γi)[c̄(r, q) + αpq(r, q) · J∗(λ)]

+
∑
βi[c̄(r + i, q) + αpq(r + i, q) · J∗(λ− i)]

+
∑
γi[c̄(r − i, q) + αpq(r − i, q) · J∗(λ+ i)]

} (5.28)

Equation (5.28) illustrates the tradeoffs involved with the choice of appropriate time period, ∆.

If the time period is large, less frequent updates of the optimal policy are necessary, which makes

implementation easier. On the other hand, it is then necessary to predict runway performance and

maintain runway utilization over a longer period of time, which may lead to less effective congestion

control. If the time period is significantly shorter than the lead time, finer control is theoretically

possible. Thus, a smaller inventory will be necessary at the departure queue to maintain runway

utilization. On the other hand, a larger number of aircraft traveling will be necessary at each epoch,

because only a fraction of them will have arrived at the runway by the next epoch (that is, large

values of γi). In other words, the state at epoch τ , (Rτ , Qτ ), will correlate poorly with the state

of the queue at the next epoch, Qτ+∆. Thus, it is not clear if the policy will be more effective at

controlling congestion. In addition, more frequent updates of the optimal policy will be necessary,

which will increase the workload of air traffic controllers.
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Finally, we note that this problem satisfies the property of weak accessibility: Suppose that at

the beginning of epoch 0, the embedded chain is at state (r0, q0). At the beginning of the next

epoch the chain will be at any of the states (λ0, 0), (λ0, 1), . . . (λ0,min(r0 + q0, kC)) with non-zero

probability. Suppose that the following control law is applied: For all (r0, q0), λ0 = λmax, where

λmax > µ. Then, the queuing system will reach the state (λmax, kC) within a finite number of

epochs with nonzero probability. Also, at the next epoch, the state will be in any of the states

(λmax, 0), (λmax, 1), . . . (λmax, kC)) with nonzero probability. As before, from any of these states,

the chain will reach the state (λmax, kC) within a finite number of epochs with nonzero probability.

Therefore, the state (λmax, kC) is recurrent under this control law, and weak accessibility is satisfied.

Using a discount factor as in Equation (5.28) may not be appropriate, since the cost of an

unutilized runway remains constant in time. An alternate formulation is to determine the policies

that minimize the average optimal cost per stage, c∗:

c∗ + h∗(r, q) = min
λ∈Λ

{
(1−

∑
βi −

∑
γi)[c̄(r, q) + pq(r, q) · h∗(λ)]

+
∑

βi[c̄(r + i, q) + pq(r + i, q) · h∗(λ− i)]

+
∑

γi[c̄(r − i, q) + pq(r − i, q) · h∗(λ+ i)]

}
(5.29)

5.5 Application of PRC at BOS

This section describes the application of PRC v2.0, as given by Equation (5.29), to the departure

process at BOS. We focus on runway configuration 22L, 27 | 22L, 22R in VMC during the evening

departure push. The control strategy is applied only to jet aircraft at BOS, for reasons explained

in Section 5.2. We also refined PRC v2.0 for runway configuration 4L, 4R | 4L, 4R, 9 in VMC

during the evening departure push and 4R | 4R, 9 in IMC during the evening departure push.

5.5.1 Selection of time period

The average unimpeded taxi-out time at BOS is 12.6 minutes under VMC [107]. There is an added

delay due to taxiway congestion, which is proportional to the number of aircraft traveling to the

runway[70, 107]. For non-excessive traffic levels, the additional average delay in the case of the

BOS airport is 1-2 minutes. This makes 15 minutes a suitable choice of time-window for BOS.

Furthermore, we assume that βi = γi = 0 for all i because of lack of accurate measurements, as
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explained in 5.2.1. Equation (5.29) then becomes:

c∗ + h∗(r, q) = min
λ∈Λ

{
(c̄(r, q) + pq(r, q) · h∗(λ)

}
(5.30)

5.5.2 Estimation of runway service process parameters

We are interested in estimating the parameters of the runway service process of the BOS airport

during peak evening times. For this reason, we perform the analysis outlined in Chapter 2 with

ASDE-X data from November 2010-June 2011, and isolate 15-minute intervals in the filtered dataset

in saturation. We obtain 1726 measurements of the runway throughput (AC/15 min) that provide

an empirical distribution of the departure capacity in the evening times. Figure 5-3 shows the

resulting empirical distribution frw in black.
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Figure 5-3: Empirical (frw) and modeled (frm) probability distributions of the departure capacity
of runway configuration 22L, 27|22L,22R under visual meteorological conditions during evening
times.

An Erlang distribution, frw, is fitted using the approximate Method of Moments outlined in

Section 4.4.3. For the empirical distribution of Figure 5-3, we obtain the parameters of Erlang

distribution (5, 3.25). The mean service time is 5/3.25 = 1.54 min. The variance of the service

time is 0.47 min2. The corresponding distribution, frm, of the number of departures in 15 min is

depicted in Figure 5-3 in grey. The empirical and modeled distributions are similar, as can also be

seen in Table 5.1.
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Table 5.1: First two moments of the distributions frw and frm.

frw frm

µ1(AC/min) 9.74 9.74

µ2(AC/min)2 96.80 96.92

5.5.3 Maximum pushback rate and cost function

The set of permissible policies is defined as 0, 1, . . . , λmax. At BOS, as in most airports, there

is a natural threshold for the maximum admissible rate of arrivals into the departure process

(pushbacks). At BOS, λmax is calculated to be 15 AC/15 min, that is, Λ = {0, 1, . . . , 15}. The

space of the queuing system (C) is estimated to be 30, and the cost of underutilizing the runway,

c(0), is chosen to be equal to the cost of a queue of 25 departures. c(0) is chosen to reflect the fact

that at BOS, a very long queue can lead to surface gridlock, and consequently, non-utilization of

the runway.

5.5.4 Calculation of optimal policies

Given the service time distribution (k, kµ), the time period ∆, the queuing space C, the set Λ and

the costs c, Equation (5.30) can be solved to obtain the optimal pushback policies. The efficient

solution of Equation (5.30) is possible using the policy iteration method with a suitable choice of

initial policy. In selecting initial policies, we use the insights that (1) For given q, the pushback

policy is expected to be a non-decreasing function of r; (2) For given r, the pushback policy is

expected to be a non-decreasing function of q; (3) The pushback policy is expected to target for

a specific level of inventory (number of aircraft in the queue). (4) The pushback rates take values

between 0 and λmax. We used a target inventory, bf = 5 aircraft in the queue. For each state (r, q),

the initial policy λ0(r, q) is calculated as:

dmin(max(µ+ bf −max(r + max(d(q − k)/ke, 0)− µ, 0), 0), λmax)e

The policy iteration algorithm converges in fewer than 10 iterations. The optimal policies λ∗ are a

function of the state of the embedded chain (r, q), which is not observable. However, each state of

the chain is mapped to an observed state of the process, N (Equation 5.22). For 0 ≤ T ≤ λmax,
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the optimal pushback rate is approximated by:

λ̄(G, 0) = b
∑k

j=0 λ
∗(G, j)

k + 1
+ 0.5c (5.31)

λ̄(G,D) = b
∑(D+1)k

j=Dk+1 λ
∗(G, j)

k
+ 0.5c for 1 ≤ D < C (5.32)

Figure 5-4a shows the contours of the optimal pushback policy λ̄ as a function of the number

of aircraft in the departure queue (D) and the number of aircraft traveling to the runway (G).

As expected, the optimal pushback rates decrease for increasing D and G. A different way to

characterize the optimal policies is to plot the expected work-in-process at the next epoch, W̄τ+∆ =

Gτ+∆ + D̄τ+∆ = λ̄τ + D̄τ+∆ (5.20) as a function of the current state (Gτ , Dτ ), as shown in Figure

5-4b. When Wτ ≥ 23, the optimal pushback rate is 0, but it is not sufficient to reduce W̄τ+∆ to 13.

We also note that when Wτ ≤ 13, the optimal pushback policy increases W̄τ+∆ to values higher

than 13.
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(a) Optimal pushback policy λ̄τ as a function of the
number of aircraft in the departure queue (Dτ ) and
the number of aircraft traveling to the runway (Gτ ).

Departe Queue (D)

A
ir
c
ra

ft
 t

ra
v
e

lin
g

 t
o

 t
h

e
 r

u
n

w
a

y
 (

G
)

 

 

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

15

14

13

13

14 16

18
20

25

(b) Expected work-in-process at the next epoch,
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Figure 5-4: Optimal pushback policy and expected work-in-process as a function of the current
state.

Figure 5-4b suggests that the algorithm aims at controlling the process to a desired value of Wτ .

The expected work in process W̄τ+∆ consists of the expected queue length at τ +∆, D̄τ+∆, and the

pushback rate λ̄τ set at at time τ (Equation 5.22). Comparing Figures 5-4a and 5-4b, we observe
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that each λ̄τ is associated with one value of W̄τ+∆, or D̄τ+∆. For example, when W̄τ+∆ = 0,

λ̄τ=15, and when W̄τ+∆ = 13, λ̄τ = 13− D̄τ+∆. This implies that the optimal pushback policy at

time τ , is a function of the expected queue length at time τ + ∆.

Figure 5-5 shows the scatterplot between the optimal pushback rate λ̄τ (Gτ , Dτ ) and the expected

D̄τ+∆(Gτ , Dτ ), for all 0 ≤ G ≤ λmax and 0 ≤ D ≤ C, along with a fitted convex non-increasing

function that minimizes absolute deviations from the calculated points. The equivalent PRC v1.0

strategy [110], which aims at keeping Wτ+∆ always at 13 irrespective of the state Nτ , is also shown.

For the most part, the two strategies are the same after rounding to the closest integer. However,

when the expected queue length at τ + ∆ is less than 4, the optimal pushback policy increases

Wτ+∆ to 14 or 15. In this region, the departure throughput can be increased with a high pushback

rate at a very low congestion cost. Figure 5-5 also shows the benefit of the PRC v1.0 strategy

[110]. By simply aiming at a target Wτ+∆ at the next epoch, the strategy is suboptimal only

when the expected value of Wτ+∆ is 1, 2 or 3. However, these are instances of high risk of runway

non-utilization, and PRC v2.0 accounts better for this risk.
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Figure 5-5: Optimal pushback policy λ̄τ as a function of the expected queue D̄τ+∆ at the next
epoch (τ + ∆).

To illustrate how the control algorithm would work in conjunction with the system dynamics

described in Equation (5.20), we consider a sample path of the certainty equivalent system: At the

first epoch (t = 0), the state is (0, 0), that is, there are no aircraft on the ground. At the next epoch

(t = 15), the expected queue will be zero, and the curve of Figure 5-5 recommends that 15 aircraft

pushback in the next 15 minutes (or a pushback rate of 1/ minute). Thus, S15 = (15, 0). Solving the

Chapman-Kolmogorov equations numerically for the queuing model (M(t)|Rτ )/Ek/1, we find that
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at the third epoch (t = 30), the expected queue length is 5. As a result, Figure 5-5 recommends a

pushback rate of (8/15 minutes), so S30 = (8, 5). Similarly, S45 = (11, 3), S60 = (9, 4), S75 = (11, 3),

etc. Therefore, after two cycles, the system stabilizes at a traffic level of 13-14 aircraft, and the

queue at 3-4 aircraft. We also note that the target queue length at each epoch is at least 3. Finally,

since the pushback rate is bounded at 15 AC/15 min, the traffic level can reach at most 24 aircraft:

This happens in the extreme case in which the state is (0, 10), which implies λ̄ = 14, and no aircraft

manages to takeoff. If this happens, due to an unpredicted runway closure for example, the next

state is (14, 10) and the pushback rate is set to 0, as can be seen from Figure 5-13.

5.5.5 Conditional throughput forecasts

Parameters such as the fleet mix and the expected number of landings in the next time window

(τ, τ + ∆] can provide a conditional forecast for the runway service time distribution as discussed

in Section 4.4.3. These parameters explain some of the variance of the departure throughput and

provide a better estimate of the expected departure capacity. For example, for runway configuration

22L,27 | 22L,22R at evening times under visual meteorological conditions, the departure throughput

given arrival throughput (landings) and props demand can be estimated from the regression tree

of Figure 5-6. This regression tree is validated using 10-fold cross validation.

P< 1 P≥ 1 

A< 7 A≥ 7 P≥ 3 P< 3 

(10.95, 1.34)  
A< 7 A≥ 7 

(10.28, 1.18) 

(9.79, 1.29)  (7.93, 1.23) 

(9.74, 1.41)  

(9.42, 1.23) 

A< 8 A≥ 8 A< 8 A≥ 8 

P< 5 P≥ 5 

 (8.78, 1.08) 

 (9.1, 1.26) 

(10.26, 1.27)  

Figure 5-6: Jet departure throughput prediction (mean, standard deviation) given expected number
of Arrivals in the next 15 minutes and number of props taxiing out.

These conditional forecasts are incorporated into the algorithm as follows:

• At epoch τ , calculate the conditional throughput distribution estimate for the time window

(τ, τ + ∆] using the expected number of Arrivals (A) and the number of props taxiing out

188



(P ) from the regression tree.

• Calculate the expected takeoff rate in the time window (τ, τ+∆] and queue length at τ+∆ us-

ing the queuing model (M(t)|Rτ )/Ek/1 with parameters fitted to the conditional throughput

forecast distribution

• Use the PRC v2.0 curve (such as the one of Figure 5-5) to calculate the optimal pushback

policy for this expected queue length.

This is a heuristic modification of PRC v2.0 in the spirit of roll-out algorithms [11] to incorporate the

conditional forecast. We call this control protocol PRC v2.1. The intuition behind the derivation

of PRC v2.1 is that we use the conditional forecasts only for updating our belief for the expected

queue. We do not take advantage of the fact that the reduction in the variance of the capacity

distribution could imply a more aggressive control policy, that is a shorter target queue. Given

that the conditional forecast has reduced variance compared to the unconditional one, we conjecture

that PRC v2.1 is more optimal than PRC v2.0. We denote the optimal policies of PRC v2.1 as

λ̌. The optimal policy λ̌τ is a function of the departure queue, the number of aircraft traveling to

the runway , the number of props taxiing out at epoch τ and the expected number of landings in

the time window (τ, τ + ∆]. This heuristic is chosen because of its simplicity and intuitiveness. An

alternative would be to augment the state and include the throughput forecast as a state variable.

We also note that another approach to predicting the takeoff rate would be a data-driven ap-

proach. In this approach, we would predict the jet departure throughput given the four explanatory

variables G, D, A, P from statistical models derived from historical data. The simplest such model

would be simply using the fitted throughput curve of Figure 5-1. This curve yields the expected jets

throughput in the time window (τ, τ + ∆] given that there are currently (G+D) jets taxiing out.

We also develop a more sophisticated version of this model that considered all four explanatory

variables using regression trees. A significant issue with these models is the delayed capture of the

aircraft in ASDE-X. As explained in Section 5.2.1, aircraft appear in ASDE-X on average 4 minutes

after they pushed back. Thus, when ASDE-X shows x aircraft taxiing, the actual number could be

significantly higher. We discuss the performance of these models in Section 5.7.3.

5.5.6 Rounding of optimal policies

As explained in Section 5.2, it is required for the optimal policy to be given in form of a rate. Thus,

the optimal pushback policy for each 15-minute time-period is rounded to one of the following rates:
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0 AC/15 min, 1 AC/5 min, 1 AC/3 min, 2AC/5 min, 1 AC/2 min, 3AC/5 min, 2 AC/3 min, 4

AC/5 min, 1 AC/min.

5.6 Design of a Decision Support Tool

The next step of our research is the investigation of the downstream deployment potential of PRC

algorithms. To this end, we develop an application that uses the necessary inputs to automatically

determine the suggested rate. The design and development was joint work with M. Sandberg and is

described in detail here [111]. The device used is a tablet computer, the 7-inch Samsung Galaxy Tab

TM, which has the advantages of being portable and compact. In addition, the Android operating

system offers a convenient application development environment. Two tablet computers are used

for the implementation of the strategy; the rate control transmitter and the rate control receiver.

The rate control transmitter is used to input the data, and the rate control receiver to display the

recommended rate to the Boston Gate (BG) controller, who is responsible for authorizing aircraft

to monitor ground control for their pushback. The two devices communicate with each other using

a Bluetooth wireless link (Figure 5-7).

Figure 5-7: Setup of rate control transmitter and receiver in the BOS ATCT.
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5.6.1 Inputs

The application developed calculates the expected departure throughput and the recommended

pushback rate using look-up tables for the PRC v2.1 algorithm. The previously defined state

variables are given as inputs: runway configuration, weather (visibility conditions), expected arrival

rate in the next 15 minutes, jets on ground control, jets on local control, and number of props taxiing

out. The input interface is shown in Figure 5-8a.

(a) Rate control transmitter, show-
ing the input interface.

Pushbacks in current time period 
can be released (grayed out) 

Unused rate carried over to the 
next time interval 

Pushbacks can be reserved for 
later in the time period (angled) 

Pushbacks can also be reserved 
for the next 15-min time period 

(b) Actions in the volume control display of the rate control receiver.

Figure 5-8: The two tablets used during the 2011 field-trials at BOS.

5.6.2 Outputs

Once the suggested pushback rate is determined and transmitted, the receiver conveys the infor-

mation to the BG controller through one of two display modes: the rate control and the volume

control displays.

Rate control display

In this mode, the output is simply an image of a color-coded pushback rate, showing the number of

allowed pushbacks per interval of minutes. With this display mode, the BG controller keeps track

of the time intervals and the number of aircraft that have already pushed back. When the demand

for pushbacks exceeds the recommended rate, an aircraft is held until the next time interval starts.
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Again, the BG controller has to keep track of holding the aircraft and then releasing them when

the next time interval begins.

Volume Control Display

This display mode helps BG controllers keep track of the number of aircraft that had called and

been released. It was observed during the field trials in 2010 that many controllers used handwritten

notes to keep track of the number of aircraft released, so as not to exceed the recommended rate

[110]. The volume control mode helps them with this task, and also provides visual cues of the

timeline and upcoming actions.

On the volume control display, the 15-minute time period is broken down into smaller time

intervals, based on the rate. For example, if the rate is 3 per 5 minutes, the display shows three

rows of three aircraft icons, with each row corresponding to a 5-minute time interval. The current

time interval is indicated by a small black arrow to the left of the time interval. Aircraft can only

be released during an ongoing time interval. Other positions can only be reserved. Any unused

release spots for a given time interval roll over to the next time interval. The following actions are

available in the volume control display (illustrated in Figure 5-8b):

1. Releasing an airplane: If a flight calls for pushback, one of the aircraft icons in the ongoing

time interval is selected. The color of the icon changes from black to gray, indicating that it

has been released.

2. Reserving an airplane: If a flight calls for pushback and there are no more positions

available in the current time interval, the BG controller tells the aircraft to hold and reserves

a position for it in a future time interval. This is done by selecting an aircraft icon on the

display, which then rotates by 45 degrees to indicate that it has been reserved. When that

aircraft is eventually released, the controller clicks on the aircraft icon again; the icon then

rotates back and turns gray.

3. Reserving a position in a future time period: An aircraft position for an upcoming

15-minute time period can be reserved by clicking on the white space next to that time period.

A rotated aircraft icon then appears in order to indicate a reservation. When the appropriate

time period arrives and the suggested rate has been calculated, that aircraft icon will appear

already reserved.
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5.6.3 Tablet deployment

During the 2011 field trials, a member of the research team gathered and inputed data into the

rate control transmitter. The rate control receiver was located next to the BG controller, who

chose between rate control display and volume control display. It is expected that in an actual

deployment, the traffic management coordinator (TMC) or the Supervisor would collect and input

the data. In half of the test hours, the BG position was staffed by an individual controller, and in

the other half, it was merged with another position – Clearance Delivery (CD) or the TMC (Figure

5-7). The merging of positions was conducted to investigate the potential implementation of PRC

without requiring an additional controller at BG, which is typically only functional during times of

extreme weather.

5.7 Field trials evaluation

Although the PRC strategy was tested at BOS during 19 demo periods between July 18th and

September 11th 2011, there was very little need to control pushbacks when the airport operated in

its most efficient configuration 4L, 4R | 4L, 4R, 9, or when demand was low. In only eight of the

demo periods was there enough congestion for gateholds to be experienced. A total of 144 flights

were held, with an average gate-hold duration of 5.3 min. During the most congested periods, up

to 44% of flights experienced gateholds.

Table 5.2: Summary of gate-hold times for the eight demo periods with significant gateholds.

Date Period Configuration
No. of Total

gateholds gateholds
(min)

7/18 4.45-8PM 22L, 27 | 22L, 22R 14 28
7/21 5.15-9PM 22L, 27 | 22L, 22R 42 384
7/22 5.15-8.30PM 22L, 27 | 22L, 22R 50 290
7/24 5.15-8PM 4L ,4R | 4L, 4R, 9 12 13
7/28 5.30-8PM 4L ,4R | 4L, 4R, 9 7 13
8/11 5.30-8.15PM 22L, 27 | 22L, 22R 6 9

8/14
5.00-6.30PM 22L, 27 | 22L, 22R 1 1
6.30-7.30PM 4L ,4R | 4L, 4R, 9 0 0

9/11
5.30-6.30PM 4L ,4R | 4L, 4R, 9 0 0
6.30-8.15PM 22L, 27 | 22L, 22R 12 23

Total 144 761
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5.7.1 Congestion control

In this section, we describe the basic results of the PRC field-tests with regard to congestion control.

Two illustrative examples

Here, we examine a day with significant gateholds (July 21, 2011) and a day with few gateholds

(September 11, 2011) Figure 5-9 depicts the events of the demo period on July 21, 2011 and

September 11, 2011 divided into 15-minute windows. The top plots show the demand for pushbacks

(that is, the number of aircraft that called for push), the pushbacks that were cleared, and the

resulting number of jet aircraft actively taxiing out. The center plots show the throughput predicted

by our algorithm and the throughput measured using ASDE-X data. Finally, the bottom plots show

the average taxi-out times and gate-holding times for aircraft that pushed back in each time interval.

From the top plot in Figure 5-9a, we observe that as the number of jet aircraft taxiing-out

increases and exceeds 14, gateholds are initiated in order to regulate the traffic to the desired state.

For configuration 22L, 27 | 22L, 22R, the desired state is 13-14 aircraft on the surface. We see that

the algorithm reduces this number, from 15 to 14, and then to 12.

The airport stays in the desired state despite the high variance of the departure throughput

(middle plot of Figure 5-9a) and the rounding-off of the recommended pushback rates. An objective

of the PRC v2.1 algorithm is to balance congestion management with predictability (and thus ease

of implementation), and this is done fairly well. While the desired traffic level stays within 1 or 2

units of the target value, the recommended pushback rate does not fluctuate excessively, and stays

centered around 8 aircraft per 15 minutes throughout the high-demand period, 1930 to 2030 hours.

With regards to the predictability of the pushback control strategy, we also note that the traffic

level at the airport was successfully regulated to a similar extent during the high-demand period

(1930 to 2030 hours) on all days of the field trials despite the different demand patterns, departure

throughput, and the duration and number of gateholds.

Finally, we show the same plots for September 11, 2011, a day without significant metering, in

Figure 5-9b. On this day, a configuration change was initiated at 1835 hours. In its aftermath, the

throughput was lower than predicted for the time window 1845-1900 hours. However, the pushback

demand was low and the airport stayed within the desired traffic level, that is 13 to 14 aircraft

for the next hour, despite non-predicted fluctuations in the departure throughput. In particular,

the drop in departure throughput performance in the time window 1915-1930 hours was due to
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Figure 5-9: Surface congestion at each time window, demand and pushbacks during each time
window (top), departure throughput measurements and predictions (center) and average taxi-out
times and gateholds (bottom) during each time window for two days of field-testing

wrong estimation of the departure readiness for 3 flights with EDCTs by the TMC. We note, that

there were no gateholds at the time. The pushback rate was set at at 9 AC/15 min for the time

period 1900-2000 hours. However, the demand followed the same trend, thus very few gateholds

were necessary. The few gateholds were mainly applied for smoothing the demand evenly in this

hour. By 2000 hours, some traffic built up similarly to July 21, 2011. However, the demand was

subsequently extremely low and no further gateholds were necessary. Comparing Figures 5-9a and

5-9b, we note that the traffic on the surface and the taxi-out times follow similar trends (12-15 AC

on the ground, and approximately 20 minutes taxi-out times) despite the departure throughput

fluctuations. However, on July 21, the high pushback demand resulted in extensive gateholds so

as to keep the airport in the desired operational regime. This was not necessary on September 1,

when the demand was low and steady throughout the evening departure push and subsided after

2000 hours.

Runway utilization

A key objective of the field-test was to maintain pressure on the departure runways, while limiting

surface congestion. By maintaining runway utilization, it is reasonable to expect that gate-hold

times translate to taxi-out time reduction. We confirm that runway utilization was not impacted
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by the control strategy by validating that the runway queue was always loaded with at least one

aircraft. This validation was performed both visually during the trials, and by Khadilkar using

ASDE-X data, as described in [110].

5.7.2 Translating gate-hold times to taxi-out time reductions

Having field tested the pushback rate control protocol, the next step is to quantify the benefits

of the approach. The main dimensions of the benefits that we address are the taxi-out time and

fuel burn reductions. Intuitively, it is reasonable to use the gate-hold times as a surrogate for

the taxi-out time reduction, as long as runway throughput is maintained. We test this hypothesis

through a simulation of operations with and without metering.

Simulation set-up

The purpose of these simulations is to estimate the taxi-time savings and to investigate the fairness

of the strategy in terms of the distribution of gateholds. In particular, we compare three different

sets of outcomes:

1. Data from actual operations: This case corresponds to the system behavior during the push-

back rate control demo periods. The taxi-times and queuing times are measured using ASDE-

X data.

2. Simulation predictions: This case corresponds to the simulated output of pushback rate

control demo periods. In this simulation, flights are cleared for pushback at the same times

that they received pushback clearance (after being assigned gateholds) during the demo.

3. Hypothetical (no pushback rate control) simulation: Finally, the model is used to simulate

what would have happened if pushback rate control was not in effect, that is, if flights had

been cleared for pushback as soon as they called ready to push. In the simulations, the

pushback clearance times for flights are set to be equal to the call-ready times, that is, all

gate-hold times are set to zero.

The common elements in all simulations are the following:

1. The departure slots are fixed and determined by the data from actual operations for each

day. This reflects the fact that there are differences in runway performance across days due

to factors not related to the pushback rate control strategy.
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2. The flights with EDCTs and DSPs are assumed to have fixed departure times-same as the

ones observed in real operations. This is because these flights have pre-defined departure

times.

The first step is to determine the unimpeded taxi-out times of flights using ASDE-X data,

adopting the procedure outlined in Section 4.3.1. Given the pushback clearance time, the unim-

peded taxi-out time and a taxiway congestion component, each flight is propagated to the runway,

where it is assigned to the next available departure slot for that time period, which determines the

predicted wheels-off time. The difference between this wheels-off time and the pushback clearance

time is the expected taxi-out time.

The fixed departure slots are a reasonable assumption as long as there is a nonzero queue at

the departure threshold. The total and mean taxi-out times from the actual data and the model

predictions are expected to be the same, since the pushback times and departure slots are the same

for both cases. The additional comparison of the actual and predicted runway queuing times would

reflect the ability to predict the travel time from the ramp to the runway queue, and subsequently

to compare the impact of the control strategy using the simulations.

The results are summarized in Table 5.3 for the two days with significant gateholds. The results

pertain to flights that were released for pushback between 1675 and 2045 hours, that is, near and

during the metering period. There were 21 flights with EDCTs and DSPs on July 21 and 17 such

flights on July 22. As can be seen in Table 5.3, the mean taxi-out time and the mean queuing time

(the time an aircraft spends in the departure runway queue) are generally predicted very well by

the model.

Table 5.3: Effect of gate-holding on mean taxi-times and queue lengths.

Date

Actual operations Model predictions No pushback rate ctrl.

No. of Taxi-out Queuing Gate-hold Taxi-out Queuing Taxi-out Queuing
flights time (min) time (min) time (min) time (min) time (min) time (min) time (min)

7/21 121 16.5 5.7 368 16.5 5.8 19.5 7.9
7/22 121 17.9 7.2 279 17.9 7.4 20.2 9.2

In the top part of Figure 5-10 we show the instant actual and simulated queue on July 21. They

match very well, so the actual queue is predicted accurately by the simulations. In the bottom

part of the same figure we compare the simulated queues of July 21 with and without PRC. The

evident difference between the simulated queue sizes shows the benefit of the pushback rate control

strategy.
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Figure 5-10: Queue sizes measured and predicted per minute, on July 21, 2011.

In addition, we conduct a benefits analysis of the fuel burn savings by using the simulated

taxi-out time savings times as a first-order estimate of the actual taxi-out time savings using the

methodology outlined in prior work [70, 110]. The total fuel savings are estimated to be 2,650 US

gallons, which translates to average fuel savings per gate-held flight of about 57 kg.

Distribution of benefits

Equity is an important factor in evaluating potential congestion management or metering strategies.

The PRC approach, as implemented in these field tests, invokes a First-Come-First-Serve (FCFS)

policy in clearing flights for pushback. One would therefore expect that there would be no bias

toward any airline with regard to gateholds incurred, and that the number of gateholds for a

particular airline would be commensurate with the contribution of that airline to the departure

traffic during the congested periods. However the taxi-out time saving predicted by the simulations

is not equal to the gate holding time of each individual flight. Thus, the taxi time savings of each

carrier can differ from the total time flights of this carrier were held at the gate as can be seen in

Figure 5-11. This is because the benefit of holding a flight at the gate can spill over to other flights

as well as explained in earlier studies of N-Control [107]. In short there are two main reasons for
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this:

• Overtaking: Consider a scenario in which aircraft A calls for push and is authorized to

push. Aircraft B calls for push just a few seconds later and is held at the gate for 3 minutes.

Subsequently, aircraft B pushes back and finds itself in the departure queue behind aircraft

A. In absence of the metering program, aircraft B would have pushed a few seconds and

not 3 minutes later than aircraft A. This might have been enough time for aircraft B to

overtake aircraft A if it taxied at a faster speed, its gate was located closer to the runway,

or it performed the pushback process faster. Thus, in the counterfactual scenario, aircraft B

could have ended up in front of aircraft A in the departure queue. In such a scenario the cost

and the benefit of the program could swap between two flights.

• Re-scheduling despite same sequencing: Consider a scenario in which all pushback

slots have been utilized and there are 5 more minutes left until the end of the current time-

window. In this time-window 4 new flights call for pushback, each one a minute apart from the

previous one. When the next time window commences, the rate is set to 3 every 5 minutes.

The controller authorizes the first 3 aircraft to push back together, and the forth one five

minutes later.

As a result of these two phenomena and their combinations, the benefits of the metering scheme

can be divided and allocated between flights in an unpredictable manner. However, the first come

first serve sequence is maintained and in general the gateholding times would be approximately

equal to the taxi-time reduction experienced by each airline, as can be confirmed from Figure 5-

11. However, the actual fuel burn benefit also depends on its fleet mix. Figure 5-11 shows that

while the taxi-out time reductions are similar to the gateholds, some airlines (for example, the ones

denoted Airlines 4, 13, 21 and 27) benefit from a greater proportion of fuel savings. These airlines

are typically ones with several Heavy aircraft during the evening times.

5.7.3 Departure throughput prediction

As explained in Section 5.5, we use the algorithm PRC v 2.1 for predicting the jet departure

throughput. Because of the sources of inaccuracy in both ASDE-X and ASPM data [110], we

validate the predictions during shadow testing (June 30-July 17 2011) by means of visual observa-

tions and subsequently use them during the 19 days of the trials to predict the throughput. Table
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Figure 5-11: Percentage of gate-hold times, taxi-out time reduction and fuel burn savings corre-
sponding to each airline.

5.4 reports the average error, average absolute error and root mean square error of the predicted

throughput (relative to observed throughput) during 182 15-min periods of field testing.

For completeness, the corresponding errors of alternative prediction methods which we could

have used are also shown:

• Predictions from PRC v 2.0, that is, the queuing model with the “unconditional” service time

distribution of each runway configuration in the evenings. This algorithm would input the

number of aircraft traveling and queuing into the queuing model to predict the throughput

without using arrivals and props demand information.

• Predictions from the demand curves (DC), that is, using Figure 5-1 for each runway con-

figuration to predict the departure throughput based on the total number of departing jets

taxiing out.

• Predictions from regression trees (RT): This method would use trees such as the one of Figure

5-6 to predict the departure throughput given the number of aircraft traveling, queuing, props

and arrival demand information.

Finally, we also compare the errors for the 93 periods where the traffic was 10 aircraft or more,

because these are the times when gateholds are most likely.

Table 5.4 shows that the regression tree based prediction algorithm used in PRC v2.1 predicts

the takeoff-rate reasonably well: The mean absolute error is only 1.14 during medium and high

traffic conditions (10 jets or more). However, there is little benefit from using the conditional
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Table 5.4: Comparison of the estimator used and three alternatives for predicting jet departure
throughput.

All traffic conditions ≥ 10 jets taxiing

Estimator ME MAE RMSE ME MAE RMSE

PRC v 2.0 -0.09 1.24 1.62 0.08 1.14 1.54
PRC v 2.1 -0.20 1.25 1.64 -0.03 1.14 1.58

DC 0.71 1.32 1.74 0.64 1.18 1.69
RT 0.64 1.35 1.78 0.59 1.19 1.78

throughput distributions. By using the unconditional evenings throughput distribution, we could

achieve the same, or even better prediction accuracy. While this could imply that the parametrized

distributions are an artifact of over-fitting, Figure 5-6 captures an underlying trade-off between jet

departure rates, props departure rates and arrival rates. We therefore hypothesize that the small

size of the training dataset, or the few test days lead to high prediction errors. Another possible

reason for the large variance is that we do not account for some significant hidden variables, such as

summer convective weather. The model was trained using mostly non-convective days (November

2010- June 2011), but it was applied during the months of July and August which are subject to

high convective activity. In particular, at 53 out of the 182 time windows experienced significant

convective weather in the North-East US.

More importantly, we note that the prediction algorithm accuracy is in agreement with the

uncertainty considered in the design of the pushback control strategy. For configuration 22L, 27

| 22L, 22R and when at least 10 jet departures were taxiing, the highest underestimation of the

departure throughput was 2.7. The algorithm tries to maintain a queue of at least 3 aircraft for this

configuration, as explained in Section 5.5.4. Similarly, for configuration 4L, 4R | 4L, 4R, 9 and when

at least 10 jet departures were taxiing, the highest underestimation of the departure throughput

was 3.7. For this configuration, the algorithm tries to maintain a queue of at least 5 aircraft. The

above observations suggest that the inventory targeted by the algorithm at the queue was set at

the correct level in terms of avoiding runway underutilization; a more aggressive congestion control

policy could have resulted in an empty runway queue in these two cases. However, a reduction in

the variance of the actual or predicted departure throughput could lead to more aggressive control

of the traffic. The importance of a sufficient inventory at the runway queue has also been noted by

other researchers [103].

The demand curve based model (DC) and the regression trees (RT) has worse jet departure
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throughput predictions than the other two models, and tend to overestimate the throughput. These

models are trained with ASDE-X data, which underestimates the traffic levels because of the delay

between the actual pushback and ASDE-X capture times [110]. A purely statistical predictive

model therefore yields high errors reflecting ASDE-X measurement errors.

5.7.4 Evaluation of the Decision Support Tool

A survey of the controllers was conducted to gather their opinions on the study as a whole, and

specifically on the implementation and use of the tablet. The survey was presented to the controllers

after the field-tests had been completed. There are 21 respondents in total, 15 of whom were BG

in 2010, 13 in 2011, and 12 during both years.

We solicited quantitative ratings on five topics: Whether they thought fuel burn decreased,

whether surface traffic flows improved, whether throughput was adversely impacted, whether the

new (tablet) display was easier to use that the color-coded cards used in 2010, and whether they

found the new display easy to use. The histograms of the results are shown in Figure 5-12. We

see that the survey responses were generally positive, and that the controllers liked the new tablet

displays as well. We also hypothesize that there may have been some confusion about the scale on

the question of throughput, since several of the controllers who agreed that the throughput was

adversely impacted also agreed that the surface traffic flow improved.

Thirteen responses were also positive about combining BG and another position. Ten of these

responses suggested CD, three indicate the TMC, and one each indicate GC and Flight Data

(more than one position could be indicated). The survey also shows that the controllers like the

tablet volume control display format a lot. Among the comments on the best features are: “the

ability to touch planes”, “reserve spots”, “count the planes and account for aircraft with long

delays”, “allows me to push & tells me to hold”, and “easy to use & understand”. Suggestions

for improvement include increasing the icon sizes and maintaining more pressure on the runway.

Finally, the controllers are satisfied with the modifications between 2010 [110] and 2011 field trials,

with one of them remarking: “Liked the improvement in just one year”.
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Figure 5-12: Histogram of responses from air traffic controller survey regarding PRC at BOS.

5.7.5 Qualitative observations

Compatibility with traffic flow management initiatives

An important goal of this study was to investigate the compatibility of PRC with traffic flow

management initiatives. Under highly convective weather, the abundance of these programs leads

to many target departure times, schedule disruptions or flight cancellations. As a result, congestion

does not build up, and there is no metering.

However, there are days during which the traffic management programs do not lower demand

significantly. July 18, 2011 was one such day. There were two Minutes-In-Trail (MINIT) programs

during the departure push of this day: All westbound flights had 5 MINIT between 2245 and 2335

hours, and 3 MINIT between 2335-0030. At the same time, there was a 5 MINIT restriction for all

flights over LUCOS. These programs spread out the departures, and decreased the opportunities

for metering, but did not lower the overall departure demand. This resulted in a combination of

the MINIT programs and the congestion metering program between 2245 and 2300 hours. The

integration of the two programs was very simple and effective: The total number of flights released

per time window was set by the metering program, and the mix by the MINIT program. For

example, if the pushback rate were 3/5 min while westbound flights had 5 MINIT, the controller
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would release two flights with no MINIT restrictions along with a westbound departure. Similarly

when the pushback rate was 4/5 min, the controller would release three flights with no MINIT

restrictions along with a westbound departure.

The field tests also showed that the approach is capable of handling target departure times

(e.g., EDCTs), but for that it is preferable to get EDCTs while still at gate. Flights with EDCTs

were generally exempt from gateholds. However, on days in which the BG and TMC positions were

merged (for example, July 21), delays due to the controlled departure times could be absorbed as

gateholds. During the July 21 demo period, two flights with EDCTs called for push when gateholds

were in effect. The controller informed them that gateholds are in effect, asked them to hold their

push and called the appropriate centers to obtain their controlled departure times. Subsequently,

he released them from their gate so that they could takeoff at their assigned times. Both flights took

off a minute before their assigned times. In this way, the flights with EDCTs absorbed their delays

at the gate, saved fuel, and were integrated with the rest of the traffic after pushback clearance.

This made it easier for the controller to handle them and ensure that they met their controlled

departure times.

Increased predictability

An additional benefit of the approach is the ability to communicate expected pushback times to

pilots in advance. For instance, on July 21, more than 10 aircraft were on hold at the beginning of

the periods 2000-2015 hours and 2015-2030 hours. Once the suggested pushback rate was given to

the controller at the start of each time period, the controller communicated the expected release

times to all aircraft on hold. These flights received their release times several minutes in advance,

which could be useful in planning ground resources.

Natural metering effect

The suggested pushback rate in very low congestion time-periods is 1 per min. However, we

noticed that the merging of the BG position with another position resulted in a natural rate of

1/min without explicit gateholds. For example, when the BG position was merged with the TMC,

after the controller cleared an aircraft that called for push, he/she would have to spend the rest of

the minute for a traffic management task (such as, calling the center to obtain an EDCT). As a

result, the next aircraft would only be released after a minute, resulting in a natural metering of 1

per min unless a lower rate was recommended.
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This effect offers a good opportunity for the operational deployment of a metering scheme at

no added personnel cost. The gate position could easily be merged with another position, such as

Clearance Delivery or the TMC.

5.8 An alternate model for the runway service process

5.8.1 Motivation

In Section 5.3.4, we proposed a model for the runway service process assuming that the service

times follow an Erlang distribution. This enabled us to model the evolution of the queuing system

using the set of Equations (5.5) - (5.16). However, this model presents several challenges. First, it

is hard to parametrize. For example, if we want to modify the shape of the Erlang distribution so as

to observe the impact of the coefficient of variation of the service times on the control strategy, we

need to numerically solve the Equations (5.5) - (5.16) for the new service time distribution (k′, k′µ)

and subsequently run the policy iteration algorithm to obtain the optimal policies. In other words,

we cannot utilize a previously derived solution at any stage of the process. In addition, for larger

values of the shape parameter, the dimensionality of the system becomes prohibitive. Moreover, the

state of the embedded Markov chain maps to the state of the system only in an approximate manner

as different stages of work have to be mapped to a single state (Equations (5.31) - (5.32)). Finally,

if we have multiple throughput distributions, conditioned on external variables, the corresponding

embedded Markov chains will not necessarily be in the same state space. For example, if we have

two throughput distributions, with shapes k1 and k2, where k1 6= k2, the space of the chain of

the queuing system corresponding to the first distribution will be {0, 1, . . . , k1 · C} and the second

{0, 1, . . . , k2 ·C}. Transitioning from the throughput distribution of the former to that of the latter

can be done only by approximately mapping the probabilities of states {0, 1, . . . , k1 ·C} to those of

{0, 1, . . . , k2 · C}. For these reasons, we chose to develop the approximate algorithm PRC v2.1 to

make use of the conditional throughput forecasts instead of introducing the throughput forecast as

a state variable.

5.8.2 The (M(t)|R0)/Ds/1 model

Here, we propose an alternate model for the runway service process. We assume that during

each time window the service rate is deterministic, but not known. It is sampled from a finite

set µ1, µ2, . . . , µs with weights derived from the empirical distribution. The set µ1, µ2, . . . , µs, of
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cardinality s is the support of the empirical distribution function. With reference to the empir-

ical throughput distribution of Figure 5-3, this would imply that in each 15-minute window, the

throughput process is deterministic with rate 5, 6, . . . , or 13. The probability of each rate equals

the probability mass of each rate of the empirical throughput distribution. For example, the proba-

bility that the service rate is 10/15 min is 0.277. This model yields an exact match of the empirical

and modeled probability distributions of the departure throughput. On the downside, it does not

model the fact that a service rate of 10 AC/15 min does not imply uniformly spaced service times

of 1.5 min.

We summarize that notation used in this section:

• µi: Deterministic service rate (AC/15 min).

• M : Set, of cardinality s, of all deterministic service rates µ1, µ2, . . . , µs.

• (R,Q;µi): State of the queuing system given the deterministic service rate µi.

• F : Set, of cardinality z, of all throughput distribution forecasts f1, f2, . . . , fz.

• w(i; fj): Probability that the service rate equals µi given throughput forecast fj .

Assume for now a single deterministic service rate, µ, which implies M = {µ}. In a given

time window, the system resembles a transient M(t)/D/1 queuing system with the exception that

the number of arrivals during a time interval is known. Following the framework of Section 5.3.4,

we denote it as (M(t)|R0)/D/1. For analyzing this system we extend the framework proposed

by Koopman [73]. In this framework, the service epochs are a priori marked on the time axis.

Continuing the previous example, where the service rate is assumed to be 10/15, the (potential)

service time epochs are marked at times 1.5, 3, . . . , 15 minutes from the beginning of the time

window. This assumption implies that if an aircraft arrives at an empty system in minute 1, it will

wait until minute 1.5 before its service starts. Thus, delays at lower states might be overestimated.

On the other hand, this assumption makes the analysis of the system tractable: If at epoch 0, R0

aircraft are taxiing out, the probability mass function ĝ of k arrivals between the departure runway

service times i and i+ 1 assuming that j − k aircraft have already arrived, is:

ĝ(i, j, k) = Pr{k arrivals in(ti, ti+1]|(R0 − (j − k))arrivals in(ti,∆]}

=


(R0−(j−k)

k

)
( τi+1−τi

∆−τi )k(∆−τi+1

∆−τi )(R0−j) , if 0 ≤ k ≤ j, j ≤ R0, τi+1 ≤ ∆

0, otherwise

(5.33)
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Analogously to the (M(t)|R0)/E(k)/1 system, the state of the runway system is denoted as

(R,Q;µ), where R is the number of aircraft traveling (aircraft to be delivered to the queuing

system), Q is the number of aircraft in the queuing system (in service, or in queue) and µ is the

assumed deterministic service rate. Now, we observe that ĝ(i, j, k) is the probability of transitioning

from state (R0 − (j − k), j − k + 1{j−k≥1};µ)τi to state (R0 − j, j;µ)τi+1 . The condition j − k ≥ 1

implies that there were one or more aircraft in the system before the arrival of the k aircraft between

service times i and i+1, and one of them was served. At epoch 0 the system is in state (R0, Q0, µ).

The state of the queuing system at time ∆, Q̂∆(µ), is a probabilistic function of the initial value

(R0, Q0, µ), the functions ĝ(i, j, k) describing the probability of each allowable transition, and the

assumed service rate µ.

In the actual system, for each throughput forecast f , we have a finite set µ1, µ2, . . . , µs of

deterministic service rates each with probability w(1; f), w(2; f), . . . , w(s; f). The state of the

queuing system at ∆, Q∆ is given by the weighted sum of the Q̂∆(µi)’s:

Q∆(f) =
s∑
i=1

w(i; f) · Q̂∆(µi) (5.34)

Equation (5.34) reveals the benefit of this formulation: The probability vector of the state of the

system Q∆(f) given a throughput forecast f is decomposed in a weighted sum of Q̂∆(µi)’s, which

are independent of the weights of the summation w(1; f), w(2; f), . . . , w(s; f). Thus, a different

throughput distribution f can be modeled by simply changing the weights w(i; f) in Equation

(5.34). We denote this queuing model of deterministic service times sampled from a finite set

and a known number of arrivals at random times as (M(t)|R0)/Ds/1. Moreover, Equation (5.34)

offers the ability to track each individual arrival at the queue. Each possible transition is assigned a

probability (ĝ(i, j, k)) and a cost. The cost has two components, the queuing and the non-utilization

of the runway. For the queuing cost we have that the first out of k arrivals between service times i

and i+ 1 will encounter a system with j − k aircraft, the second j − k + 1, the kth a system with

j − 1. Thus, each transition can be explicitly penalized in terms of its expected queuing delay (in

minutes). Similarly, each transition from an empty system (j − k = 0), can be penalized in terms

of loss of runway utilization. A loss of runway utilization can be also expressed in minutes: It is

the minutes of additional delay later flights are likely to incur because of the capacity loss.
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5.8.3 Comparison of the two models

The first step is to compare the performance of the two models presented, the (M(t)|R0)/E(k)/1

and the (M(t)|R0)/Ds(t)/1 in terms of predicting the state of the queue after a 15-minute period

given the range of possible initial conditions G and D, for the example considered in Section 5.5. In

this example, we have one throughput forecast: The jet departure throughput at BOS configuration

22L, 27 | 22L, 22R in evening times.
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Figure 5-13: Expected queue length after 15 minutes as a function of the number of aircraft in the
departure queue (D) and the number of aircraft traveling to the runway (G) for the two models,
(M(t)|R0)/E(k)/1 in solid line, (M(t)|R0)/Ds(t)/1 in dashed line.

We note that the two models predict for most initial conditions the same value for the expected

queue, except for the states, where the initial value of the queue is very low (0-3 aircraft). For

example, given 0 aircraft queuing and 12 aircraft traveling to the runway, (M(t)|R0)/Ds/1 predicts

an expected queue of 4 after 15 minutes, whereas (M(t)|R0)/E(k)/1 predicts an expected queue of

3. We conjecture that (M(t)|R0)/Ds/1 underestimates the throughput (and thus overestimates the

queue) compared to the (M(t)|R0)/E(k)/1 in these occasions, because of the simplifying assumption

that the service times are a priori equally spaced in the time window.

For deriving optimal pushback policies we obtain the optimal cost-per-stage solutions for the
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(M(t)|R0)/Ds/1 model. We have for the probability of the queue being in state q after ∆ minutes:

pq(r, q) =
s∑
i=1

w(i; f) · Pr(Q̂∆(µi) = q) (5.35)

The Bellman equation for the average optimal cost-per-stage, c∗, for the control of the (M(t)|R0)/Ds/1

model can be written as :

c∗ + h∗(r, q) = min
λ∈Λ

{
(c̄(r, q) + pq(r, q) · h∗(λ)

}
(5.36)

for r ∈ {0, 1, . . . , λmax} and q ∈ {0, 1, . . . , C}

We note that the state space is significantly reduced from that of the (M(t)|R0)/E(k)/1 (Equa-

tion (5.30)). The state space describing the (M(t)|R0)/Ds/1 system is (1 + λmax) · (1 +C), and it

does not change with the parameter s, whereas the state space describing the (M(t)|R0)/E(k)/1

system is (1 + λmax) · (1 + k · C) and grows linearly with k.

We name the resulting strategy PRC v3.0. The cost of capacity loss experienced with an empty

queuing system is set equal to 120 minutes of queuing delay. This is because at an airport like BOS,

a minute of loss of runway utilization can delay subsequent departures cumulatively for as long as

60 minutes during the evening departure push. We multiply this delay by 2, because the delay

resulting from loss of runway capacity directly increase takeoff delays, in contrast to queuing delays

which do not change takeoff delays in general, but where they are allocated (gate vs. surface).

Analogously to Figure 5-5, we show in Figure 5-14 the scatterplot between the optimal pushback

rate λ̂τ (Gτ , Dτ ) and the expected D̄τ+∆(Gτ , Dτ ), for all 0 ≤ G ≤ λmax and 0 ≤ D < C, along with

a fitted convex non-increasing function that minimizes absolute deviations from the data for the

strategy PRC v3.0. We also show the scatterplot and the fitted function for PRC v2.0. We observe

that the two strategies deviate when the expected queue length is equal to zero. In this case,

PRC v3.0 recommends one fewer aircraft than PRC v2.0. At higher states, the small deviation is

due to the approximate derivation of the optimal policies for PRC v2.0 from the embedded chain

(Equations (5.31) and (5.32)). Another reason for the differences between the two policies is the

different cost structure considered: PRC v2.0 penalizes queuing states, whereas PRC v3.0 penalizes

expected queuing delays.
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Figure 5-14: Optimal pushback policy as a function of the expected queue D̄τ+∆ at the next epoch
(τ + ∆) for the policies PRC v2.0 and PRC v3.0.

5.8.4 Parametric analysis

As a next step, we modify the algorithm PRC v3.0 in order to investigate the validity of the

approximate PRC v2.1. For this, we modify the state space to include the throughput forecast (F )

as a state of the system:

Nt = (Gt, Dt, Ft) (5.37)

In this case, the average optimal cost per stage, c∗ is calculated as:

c∗ + h∗(r, q, f) = min
λ∈Λ

{
(c̄(r, q, f) +

∑
f

pfpq(r, q, f) · h∗(λ, f)
}

(5.38)

where pf is the probability of each throughput forecast and pq(r, q, f) is the probability vector of

the state of the queue at the end of the time-window given that the state at the beginning of the

time window is (t, q, f). We call the resulting algorithm PRC v3.1.

The formulation is to determine the average optimal cost per stage, c∗ for PRC v3.1 in its

general form is:
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c∗ + h∗(r, q, f) = min
λ∈Λ

{
(1−

∑
βi −

∑
γi)[c̄(r, q, f) +

∑
f

pfpq(r, q, f) · h∗(λ, f)]

+
∑

βi[c̄(r + i, q, f) +
∑
f

pfpq(r + i, q, f) · h∗(λ− i, f)]

+
∑

γi[c̄(r − i, q, f) +
∑
f

pfpq(r − i, q, f) · h∗(λ+ i, f)]

}
(5.39)

In Figure 5-15, we show the optimal pushback policies for each conditional forecast shown in

Figure 5-6.
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Figure 5-15: Optimal pushback policy λ̂τ as a function of the expected queue D̄τ+∆ at the next
epoch (τ + ∆) for the policies PRC v3.0 and PRC v3.1.

We notice that the policies of PRC v3.0 are more “conservative” compared to those derived

using the conditional throughput forecasts. This was expected because PRC v3.0 is derived using a

throughput distribution of higher variance. The biggest difference between PRC v3.0 and PRC v3.1

policies is for throughput forecast 8.8. This forecast has the lowest variance (Figure 5-6) and the

algorithm can afford to be more aggressive when the queue is expected to be longer than 6 AC.

We note, that the expected value of the throughput forecast does not impact how different its

curve from PRC v3.0 lies. The impact of the expected value of the throughput is accounted by
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the expected queue length. This was indeed the rational for using the expected queue length as

a quasi-state of the system when proposing PRC v2.1. We observe this also in Figure 5-15. The

forecast with the lowest throughput (7.93) is shown with the dashed line and its optimal pushback

policy is practically the same as that of PRC v3.0. This analysis shows that PRC v2.1 is an

effective approximate algorithm that allows us to incorporate on-line any conditional, or updated

throughput forecast (as long as the general distribution of the departure throughput does not

change significantly). The updated throughput forecast could be for a special occasion pertaining

to a particular 15-minute interval which is not part of the training data. For example, the TMC

might decide that due to route closures, the throughput during a 15-minute interval will be only

5 AC/15 min. PRC v2.1 can be used for calculating the optimal pushback rate for this occasion

despite the fact that such a throughput forecast is not a member of the set of throughput forecasts,

as shown in Figure 5-6.
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(a) Optimal pushback policy λ̂τ as a function of the
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different cost functions.
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PRC_v3.0 for low variance cap. dist.

(b) Optimal pushback policy λ̂τ as a function of the
expected queue D̄τ+∆ at the next epoch (τ + ∆) for a
high variance throughput distribution and a low vari-
ance throughput distribution.

Figure 5-16: Sensitivity analysis examples.

We can also use this model to perform sensitivity analyses. An example of such sensitivity

analysis is shown in Figure 5-16a, where we investigate the impact of the cost function on the

optimal policy derived with PRC v3.0 (and shown in Figure 5-14). For this analysis, the cost of

an empty queuing system is set equal to a range of values between 60 and 240 minutes of queuing

delay. As expected, a higher cost associated with an empty queue results in more conservative
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pushback rate policies, which aim at securing a larger inventory of aircraft at the departure queue.

For example, when the cost of an empty queuing system is 60 min the policy targets a queue of 2

AC, when it is 90 min, at 3 AC, and for a cost of an empty queuing system at 240 min, it targets

a queue of 6 AC. As already explained in Section 5.5.4, for our chosen empty queuing system cost

(120 min), the algorithm targets a queue of 3-4 AC.

Finally, we use this model to more closely investigate the impact of the variance of the departure

throughput on the optimal policies. We hypothesize that, similar to other operations management

problems [114], the reduced variance of the departure throughput would result in less inventory in

the runway queue, and thus more aggressive policies. For this investigation, we compare the policy

PRC v3.0 developed for the departure throughput of Figure 5-3 (high variance) to the policy for

one with the same average throughput (9.74), but where all the probability mass is concentrated

at 9 and 10. In other words, in this low variance scenario, the service rate in a 15-minute time

period is 9 AC/15 min with probability 0.26 and 10 AC/15 min with probability 0.74. In Figure

5-16b, we show the PRC v3.0 optimal pushback policies for the low variance and the high variance

throughput distributions. As expected, PRC v3.0 is more aggressive for a throughput distribution

with lower variance.

5.8.5 Simulation of PRC at PHL

PHL departure model

Following the process outlined in Chapter 4, we model the departure process for the major runway

configuration of PHL, 26, 27R, 35 | 27L, 35, which was in use 74% of the time under VMC in 2011.

In this runway configuration, the major departure runway is 27L, and the major arrival runway,

27R. According to ASDE-X data analysis presented in Section D.3 of the appendix, there is one

departure on runway 35 for every 11.5 departures on 27L. Additionally, the thresholds of the two

runways are very close to each other, and the aircraft heading to both of them are part of the

same flow. The detailed results of the model are discussed in Appendix G. We also present the

operational throughput envelopes for this configuration in Appendix C.

We can use the model to predict the evolution of the departure throughput and taxi-out times

over a day at PHL. In the upper plot of Figure 5-17, we show the average number of pushbacks

and the average number of takeoffs (or departures) that was recorded during each 15 minute time

window for all days in which this runway configuration was in use in 2011. We also show the average
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number of departures of this runway configuration of PHL, as predicted by the model. In the lower

part of Figure 5-17, we show the actual and predicted average taxi-out times for the flights that

pushed back in each 15-minute time window. We observe that the model is representative of an

average day at PHL.
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Figure 5-17: Average number of pushbacks, and average numbers of actual and predicted takeoffs
by time of day at PHL in 2011 (top); Average actual and predicted taxi-out times (bottom).

PRC v3.1 calibration

The modeling effort described in Appendix G provides the empirical capacity distributions, thus

the µ and w parameters of Equation (5.35) that are necessary for estimating the queuing transition

probabilities are known. Additionally, as already explained in Section 5.8.4, it is not necessary to

recalculate the transition probabilities, nor the congestion costs. They are simply weighted with

the appropriate weights w’s in the dynamic program (Equation (5.39)). The maximum pushback

rate is set to 24 AC/15 min, which is the maximum pushback rate observed currently at PHL
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after eliminating outliers. This rate is assumed to be the a natural threshold for the maximum

admissible rate of arrivals into the departure process (pushbacks).

The next step involves the decision of the optimal time window, ∆, for this runway configuration.

For this, we do a simple flow analysis. On average, in a controlled scenario, aircraft enter the system

at the same rate as they exit, that is the average departure throughput (13.0 AC/15 min). The

average unimpeded taxi-out time is 11.8 min and parameter α is 0.22 min/AC. From this, we

calculate that the average number of aircraft traveling from the gates to the departure runway

during each minute is 12.6 AC. Thus, the average travel time of each aircraft entering the system

is 11.8 min + 0.22× 12.6 min = 14.6 min. Therefore, the time window ∆ is set at 15 min.

The last step involves calculating the probabilities βi(R, λ) and γi(R, λ), which are necessary

for deriving the system dynamics (Equation (5.27)). For this calculation, we use Monte-Carlo

simulations to estimate the empirical distribution of the number of aircraft traveling to the runway

at the next epoch, Rτ+∆ given the current number of aircraft traveling, Rτ , and the current

pushback rate, λτ . We let the system evolve starting from a randomized initial condition, and we

select random pushback rates every 15 minutes. These rates are allocated to airlines according

to their relative presence at the airport. Every 15 minutes, we record the transition Rτ+∆, given

the current Rτ and pushback rate λτ . Finally, we derive βi and γi from the simulated empirical

distributions Rτ+∆ = g(Rτ , λτ ).

Simulation setup

By simulating PRC v3.1 strategy at PHL, we are interested in observing the following:

1. PRC represents the state of the surface of the airport with only two variables: the number of

aircraft traveling to the departure queue (G) and the number of aircraft in queue (D). For

computational tractability, we do not have further information on where the traveling aircraft

are distributed. A simulation will illustrate the price of this state space reduction.

2. PRC v3.1 assumes the approximate model (M(t)|R0)/Ds/1 for the runway service process.

The simulation will indicate if this model is adequate.

3. PRC can be compared to other popular control mechanisms. For this comparison, we use

N-Control, the most popular state-dependent control mechanism, and Slot-Control, the most

popular non-feedback control applied in airport environments.
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In Appendix G.1, it is seen that the airport saturates when 20 aircraft are taxiing-out. Thus,

N∗ = 20. For calibrating N-Control1, we use an aggressive choice of Nctrl, that is Nctrl = N∗ = 20.

Simulations show that for Nctrl = 20, aircraft do not incur additional delay resulting from gate-

holding. Given that Nctrl ≥ N∗, the resulting taxi-out time reduction is the highest that can be

achieved with N-Control.

For simulating Slot-Control, we use the results of Section G.2. There, we show that the average

departure capacity of this runway configuration at PHL is 13AC/15 min. It is also explained that the

average departure capacity does not change significantly with arrival throughput. A straightforward

way to simulate Slot-Control, is therefore to limit pushbacks to the departure capacity, that is 13

AC/15 min. This limitation is imposed as a cap on the total number of pushbacks allowed in a

15-minute interval, and not as a pushback rate. Slot-Control is the simplest control policy; it is

open-loop and straightforward to implement. Its performance offers a benchmark for the additional

value provided by feedback-control policies, such as N-Control and PRC.

For all control policies, we impose the additional constraint that the pushback rate cannot

exceed 4 AC/min, which was the maximum number of pushbacks/minute achieved at PHL in 2011-

after eliminating outliers. This additional constraint aims at incorporating the practical limitation

that pushback coordination and communication require a certain minimum time. This phenomenon

relates closely to the natural metering effect observed at BOS, as discussed in Section 5.7.5.

Finally, the earliest possible pushback time of each flight is its recorded actual pushback time.

This means that in all scenarios, pushbacks can only be delayed, and not advanced. In addition,

for the cases of PRC and Slot-Control, if the pushback requests in a 15-minute time window are

fewer than the optimal pushback rate and the pushback cap respectively, the remaining slots are

unutilized. The likely resulting loss of runway utilization is because of the absence of sufficient

demand at this time period, and not because of the control scheme. Similarly, for the case of

N-Control, there are instances without sufficient pushback requests to bring the number of aircraft

on the surface to the Nctrl value.

Simulation results

For simulating the three strategies, we run 100 Monte Carlo simulations sampling the unimpeded

taxi-out time of each flight from the corresponding distribution, and using a displaced exponential

service time at the runway (Monte Carlo simulation setting 4, explained in Section 4.5.2). We also

1An overview of N-Control is provided in Section 1.2.4.
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simulate a do-nothing scenario. The results are summarized in Table 5.5, for a total number of

136,430 flights that pushed back and departed in this configuration at PHL in 2011. The column

“mean delay” lists the additional takeoff delay that flights incur as a result of the control scheme.

It is calculated by subtracting the take-off time in the do-nothing scenario from the takeoff time in

the controlled scenario.

Table 5.5: Taxi time predictions for PHL from simulating different control strategies.

Control Mean taxi-out Taxi out time Mean delay Mean holding Number of
algorithm time (min) st. dev. (min) (min) time (min) flights held

Do-nothing 18.46 8.53 0.00 0.00 0

N-Control 16.85 5.82 0.00 1.61 31,325

PRC 16.83 5.86 0.03 1.66 28,594

Slot-Control 17.03 6.60 0.27 1.70 52,042

From Table 5.5, we note that the PRC simulation shows that the strategy works as designed: It

manages to reduce average taxi-out times by 1.66 minutes, while adding a very short average delay

of 0.03 minutes. We believe that this a result of the (M(t)|R0)/Ds/1 model used for its derivation.

As explained in Section 5.8.3, this model underestimates the risk of an empty departure queue at

low values of demand. PRC also reduces the variation of taxi-out times. The N-Control strategy

results in slightly smaller taxi-out time savings, but at zero added delays. It is noteworthy that

the PRC strategy achieves very similar results to the N-Control strategy despite being applied

periodically, that is, every 15 minutes. We conjecture that this is because of the predictive nature

of PRC. Instead of aiming to keep the taxiing-out traffic below 21 AC, we use information on the

current state of the airport and predict the departure capacity and the departure queue in the next

15 minutes. The pushback rate is then set so as to optimize the load of the queue. These findings

suggest that the optimal PRC policies result in achieving taxi-out time savings very close to those

of N-Control.

From Table 5.5, we also notice that a Slot-Control policy performs significantly worse. Its taxi-

out time savings are less than those of both N-Control and PRC, and are achieved by delaying

flights by 0.27 min on average. This would imply a total added delay of 614 hours over the course

of a year. The reason behind this weaker performance is that the departure process in PHL is

very stochastic. The shapes of the fitted Erlang distributions are 1-3, as shown in Section G.2.

Clearly, an open-loop control policy is not well suited for such a dynamic process. Despite the fact

that the number of pushbacks is capped at the average departure capacity of the system, loss of

runway utilization occurs often enough that this capacity loss propagates to delay later aircraft.
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We also remark that Slot-Control would result in more variable taxi-out times than N-Control and

PRC. Taxi-out times grow much higher under Slot-Control because of the absence of a feedback

mechanism at times of significant congestion.

In Figure 5-18, we show a visualization of the averaged traffic statistics by time of day resulting

from a single run of N-Control simulation at PHL in 2011. Similarly, in Figure 5-19, we show a

visualization of the averaged traffic statistics by time of day resulting from a single run of PRC

simulation. From the lower plots of the figures, we notice that both strategies are very effective

in reducing long taxi-out times, and in particular removing the taxi-out time peaks at 1000 and

1900 hours. By comparing the upper plots of Figures 5-18 and 5-19, we notice that the controlled

pushback rate exhibits a similar trend under both strategies. It is high in the beginning of each

departure push, but it is subsequently rapidly reduced. This is because both strategies aim at

initially loading the runway queue, and subsequently regulating the flow of aircraft on the surface.

We also note that because of the differences between the two strategies, the pushback rates at the

beginning of each departure push are always slightly higher under the PRC strategy (for example

at 1745 hours). As discussed in Section 5.5, at low traffic conditions, the optimal optimal pushback

rate under PRC is very high, since it aims to build up the queue at the runway. Subsequently,

given the current state of the surface, (G,D), and the predicted capacity, the pushback rate is

regulated so as to maintain a desired inventory of aircraft at the queue, in this case 5-6 aircraft.

This means, that on average, and in steady state, there will be 5-6 aircraft in queue and 13 aircraft

taxiing to the runway. Although the initial level of traffic is higher for PRC than for N-Control, it

subsequently stabilizes at lower values (18-19 AC) on average.

In Figure 5-20, we show the averaged traffic statistics by time of day resulting from a single

run of the Slot-Control simulation at PHL in 2011. We notice that the trend of pushbacks under

Slot-Control is very different from that under the two other strategies. The pushback rate is always

capped at 13 AC/15 min. For example, the evening departure push is evenly distributed in the

1-hour time window 1745 - 1845 hours. From the lower plot of Figure 5-20, we observe that the

smoothing of the pushbacks results in significant taxi-out time reduction. Aircraft pushback at the

same rate as they takeoff, and delays build up very slowly. This behavior is in agreement with the

literature and operational experience [30, 93].

In Figure 5-21, we contrast the simulated taxi-out times from the three control strategies to the

do-nothing approach during the evening times. We notice that in the primary evening departure

push, between 1730 and 2000 hours, all control strategies achieve significant taxi-out time reduc-
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Figure 5-18: N-Control simulation: Average departure capacity (in black), average number of
pushbacks, average number of actual and simulated takeoffs at PHL in 2011 (top); Average actual
and simulated taxi-out times (bottom).

tions. Under Slot-Control, taxi-out times are low at the beginning of the departure push, because

aircraft push back at the same rate as the service rate (the departure capacity). However, between

1800 and 1830 hours, a significant number of Heavy aircraft push back, and the departure capacity

is reduced. As time progresses and aircraft arrive at the queue at a rate greater than the service

rate, queuing delays build up. By contrast, under both PRC and N-Control, delays are higher than

those under Slot-Control before 1815 hours, but subsequently, and until the end of the departure

push at 2000 hours, they become significantly lower than those under Slot-Control. We also notice

that between 1830 and 1930 hours, PRC performs better than N-Control. This is because we pre-

dict that departure capacity will be lower than its average value due to the large number of Heavy

aircraft taking off in this time frame (Figure G-7), and, with PRC, we can adjust the pushback

rate accordingly. By contrast, with the N-Control protocol, we cannot use of this information.

In conclusion, we note that despite the slight increase in average delays, Slot-Control is an easily

implementable strategy that, in addition to managing congestion, increases the transparency and

predictability of the system. Aircraft pushback times are determined in advance. At the other

end of the spectrum, N-Control holds and releases aircraft according to the congestion state of the

airport. Thus, an aircraft asking for permission to push, or being on hold, has no information on
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Figure 5-19: Slot-Control simulation: Average departure capacity (in black), average number of
pushbacks, average number of actual and simulated takeoffs at PHL in 2011 (top); Average actual
and simulated taxi-out times (bottom).

its release time. We believe that PRC offers a good compromise in the middle of this spectrum.

Congestion is efficiently managed, high runway utilization is achieved, and pushback rates, or

equivalently pushback tactical slots, are allocated every 15 minutes. Additionally, the pushback

rate can be adjusted to accommodate changes in the departure capacity. Finally, as we confirmed

from the field-testing of PRC at BOS (Section 5.7.5), PRC has the additional benefit that it can

be easily combined with other air traffic flow management programs.
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Figure 5-20: PRC simulation: Average departure capacity (in black), average number of pushbacks,
average number of actual and simulated takeoffs at PHL in 2011 (top); Average actual and simulated
taxi-out times (bottom).
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Figure 5-21: Comparison of the performance of the control strategies in the evening times
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5.9 Conclusions

This chapter presented the results of the demonstration of PRC at BOS in 2011. We developed and

simulated PRC algorithms using dynamic programming to balance the objectives of maintaining

runway utilization and limiting surface congestion. We also developed and field-tested a decision

support interface to display the suggested pushback rate, which helped the controllers keep track

of requests for pushback, gateholds, and other metering constraints. During 8 four-hour tests

conducted during the summer of 2011, fuel use was reduced by an estimated 9 US tons (2,650 US

gallons), while carbon dioxide emissions were reduced by an estimated 29 US tons. Aircraft gate

pushback times were increased by an average of 5.3 minutes for the 144 flights that were held at

the gate. A survey of the air traffic controllers involved in the 2011 demo indicated support for

the PRC approach, the manner of implementation, and the displays and communication protocols

developed for the deployment of such strategies. Finally, a simulation of PRC at PHL airport

showed that the developed approach is a promising solution for reducing congestion in a practical

and predictable way.
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Chapter 6

Summary and Next Steps

6.1 Summary of results

In the first part of this thesis, we developed a new method, the operational throughput envelope, for

characterizing airport capacity and applied it to several busy US airports. We also extended the

operational throughput envelope method to estimate the dependence of the departure throughput

on parameters other than the arrival throughput and derived the following results. For the case of

BOS, we showed that the departure throughout is more heavily dependent on the ratio of props in

the fleet mix than the arrival throughput. At all major runway configurations of BOS, the departure

throughput was estimated to decrease with an increase in arrival throughput by at most 2.6 AC/15

min, for an increase of arrival throughput from 0 to 14 AC/15 min. Increasing the number of props

in the fleet mix from 0 to 5 increased the departure throughput by at least 4 AC/15 min. By

contrast, at EWR, the departure throughput was found to be relatively inelastic to the fleet mix of

the departing aircraft. AT JFK, the departure capacity was found to be underutilized in current

operations.

We then extended the developed methodology to study interactions among the three major

airports of the NY Metroplex, JFK, EWR and LGA. We found that operations at the three airports

are not adversely impacted by operations at the other airports. We attributed this finding to the

current airspace design, which keeps operations at the three airports separated. We finally derived

capacity envelopes for the system comprising the three airports under different configurations. We

estimated that the total balanced capacity of the Metroplex is 59 AC/15 min, the departure priority

capacity is 53 AC/15 min, and the arrival priority capacity is 63 AC/15 min.

Subsequently, we presented an analytical model for the departure process. The model used a
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stochastic and dynamic queuing model that provided estimates for the performance of the airport,

mean taxi-out times, queuing delays and their variances. We used the model for predicting taxi-out

times at EWR. We estimated its parameters using ASPM data from 2011 and showed that it can

accurately estimate delays in 2007, the busiest year in the recent past. We also showed that the

variance estimates can be used to assess the delay uncertainty of a pushback schedule.

In the last part of the thesis, we developed a Pushback Rate Control algorithm using dynamic

programming to balance the objectives of maintaining runway utilization and limiting surface con-

gestion. We field tested the proposed algorithm at BOS during the summer of 2011. We also devel-

oped a decision support interface to display the suggested pushback rate, and help the controllers

keep track of requests for pushback, gate-holds, and other metering constraints. The field-tests

were comprehensively analyzed, and the suggested approach showed promising results. During 8

four-hour tests conducted during the summer of 2011, fuel use was reduced by an estimated 9 US

tons (2,650 US gallons), while carbon dioxide emissions were reduced by an estimated 29 US tons.

Aircraft gate pushback times were increased by an average of 5.3 minutes for the 144 flights that

were held at the gate. In addition, positive controller’s feedback supported the feasibility of the

proposed scheme. Lastly, we simulated the proposed strategy at PHL and showed that it is an

effective compromise between state-dependent control and static congestion control.

6.2 Future research directions

In this section we suggest directions for future work regarding the three main components of the

thesis.

Characterization and estimation of airport capacity

In the analysis presented in Chapter 2, arrival throughput is assumed to be an independent variable.

To obtain a further enriched understanding, we could extend the analysis to include the arrival

throughput as a function of arrival demand. Arrival demand is much harder to measure as arriving

aircraft are distributed over the larger terminal airspace area controlled by the TRACON. In

addition, the demand measurements can be censored. Aircraft may be on hold or delayed outside

the terminal airspace, as holding patterns are usually outside the terminal airspace. TRACON also

has the authority to change the aircraft acceptance rate at its airspace depending on the conditions

(runway configuration in use, visibility, fixes closures). If the TRACON sets a very low acceptance
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rate, we hypothesize that the arrival demand, as measured by the number of aircraft in the area

surrounding the airport, is also very low. However, the underlying demand may be much higher and

inbound aircraft can be delayed in other parts of the airspace, even on the surface of the airport of

origin. Thus measuring arrival throughput conditioned on persistent arrival demand is a challenging

and pertinent research direction. In addition, measuring inter-arrival spacing conditioned on an

arrival queue with pressure would yield inter-arrival spacing distributions and serve as a comparison

to the theoretical separation requirements. Moving forward, the dependence of arrival throughput

on factors such as the arrival fleet mix, and the prevailing winds could be studied.

Model of the departure process

The departure process model proposed in Chapter 4 is a static model in the sense that it is not

updated as it runs: Given a pushback schedule, it predicts operations in every time window using

information only on external conditions (arrival demand, weather etc.) and not the state of the

system. For tactical use of this model, that is for predicting the departure throughput and the

taxi-out times in the next time-window, it would be useful to modify the model to dynamic. In this

case, the user, or a decision support system could provide information such as the departure queue

length, the departure throughput, or aircraft facing downstream constraints. With this, the model

would update its state estimates. As it has been shown in literature, efficient dynamic updating of

the state probabilities can be very challenging, yet provide significant gains [15, 104].

In addition, in the analytical models developed in this work, the departure throughput distri-

bution was estimated using exogenous variables, that is, variables independent of the process being

modeled. These variables are usually the arrival throughput and route availability. A promising

topic of future research would involve modeling the departure capacity distribution using endoge-

nous information such as the sequence of aircraft in the departure queue, or the number of Heavy

aircraft that can depart in the next time-window. A dynamic and stochastic model using endoge-

nous variables for modeling its dynamics, while still yielding closed forms solutions, is another

challenging research direction. A first step towards such types of models is demonstrated in Ap-

pendix G, where information about the estimated type of aircraft taxiing out is used for predicting

the departure throughput.
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Dynamic control of the departure process

In the models developed in Chapter 5, we model the state of the surface of the airport with two

variables, the number of aircraft traveling to the departure queue and the number of aircraft in

the departure queue. A natural extension would be to include a third state for the ramp. This

added level of information on the location of aircraft on the surface is hypothesized to yield more

effective control strategies. At the same time, modeling the additional state in a computationally

tractable manner could be challenging. Similarly, there are many airports in the US with multiple

ramp towers (LGA, PHL, SEA) controlling different areas of the ramp. Another research direction

would include the modification of the PRC strategy for deriving separate rates for different ramp

towers. This could be done by introducing a state variable for each ramp, or by allocating the

central rate to the different ramp towers in an efficient and fair manner.

One feature of the PRC strategies is that they give an optimal pushback rate for the next

time window. There is a clear opportunity in using this information for enhancing the departure

throughput in addition to managing congestion. For example, if the departure runway of the

airport considered offers dispersal headings, one could choose the specific aircraft that push back

and their sequence in order to maximize the probability of dispersal headings, or the expected

throughput. Given the chosen sequence, the updated throughput forecast would be fed back into

the PRC algorithm to suggest a new pushback rate which would be at least as high as the original.

Naturally, this algorithm would require information on the earliest times that aircraft are available

for pushback in the following time window and the ability to violate the FCFS principle.

A good candidate airport for testing such a strategy is PHL because the main departure runway

27L can be used for dispersal headings. In addition re-sequencing of pushbacks could be applied

initially to the major user of the airport, US Airways. Similarly, the US Airways ramp tower houses

also the US Airways Operations Center, thus reliable information on the earliest pushback times

of the US Airways flights can be easily obtained.

226



Appendix A

Airport Diagrams
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A.1 John F. Kennedy International Airport(JFK)

Figure A-1: JFK airport diagram[83]
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A.2 Newark Liberty International Airport (EWR)

Figure A-2: EWR airport diagram[83]
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A.3 La Guardia Airport(LGA)

Figure A-3: EWR airport diagram[83]
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A.4 Philadelphia International Airport (PHL)

Figure A-4: PHL airport diagram[83]
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A.5 Boston Logan International Aiprort(BOS)

Figure A-5: BOS airport diagram[83]
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A.6 Charlotte Douglas International Aiprort(CLT)

Figure A-6: CLT airport diagram [42]

233



A.7 Dallas/Fort Worth International Airport (DFW)

Figure A-7: DFW airport diagram with runway crossing boxes ( courtesy of Lincoln Labs)
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Appendix B

New York Metroplex Airspace and

Airfields
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Figure B-1: Airspace Configuration [130]

Figure B-2: Relative runways orientation [130]
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Appendix C

Operational Throughput Envelopes
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C.1 John F. Kennedy International Airport(JFK)
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(a) Operational throughput envelope for 13L, 22L |
13R.
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(b) Operational throughput envelope for 31L, 31R |
31L.
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(c) Operational throughput envelope for 22L | 22R,
31L.
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(d) Operational throughput envelope for 4R | 4L, 31L.

Figure C-1: Operational throughput envelopes for the major runway configurations of JFK.
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C.2 La Guardia Airport(LGA)
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(a) Operational throughput envelope for 22 | 13.
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(b) Operational throughput envelope for 22 | 31.
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(c) Operational throughput envelope for 31 | 4.

Figure C-2: Operational throughput envelopes for the main runway configurations of LGA.
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C.3 Philadelphia International Airport (PHL)
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Figure C-3: operational throughput envelope for runway configuration 26, 27R, 35 | 27L, 35 of PHL
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Figure C-4: Parametrized operational throughput envelope for runway configuration 26, 27R, 35 |
27L, 35 of PHL
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Appendix D

Analysis of Single Runway

Operational Performance: Examples

from DFW and PHL

D.1 Introduction

In this chapter, we show how the methodology developed in Chapter 2 can be applied to the capacity

analysis of a particular runway using ASDE-X data. First, we perform a detailed estimation of the

capacity of Runway 17R at Dallas Fort Worth Airport (DFW) using a small, but detailed, dataset.

We show that ASDE-X data validates the conjectures of Chapters 2 and 3 regarding the impact of

runway crossings and Heavy departures on departure capacity. Subsequently, we use ASDE-X to

measure the departure capacity of Runway 27L at Philadelphia International Airport (PHL), which

is not utilized for arrival crossings, and characterize its dependence on Heavy aircraft departures.

D.2 Departure capacity of Runway 17R of DFW

In this section we study the departure capacity of Runway 17R at DFW, using an ASDE-X dataset1

that includes the times of all the events occurring at the runway. Detailed ASDE-X data, when

available, offers the ability to accurately characterize some of the phenomena discussed in this

thesis:

1The data was provided by MIT Lincoln Labs.
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• The differences in inter-departure times resulting from differences in the fleet mix.

• The cost of crossing taxiing traffic through an active runway.

It also addresses some of the limitations of the ASPM data, such as the inability to differentiate

between different runways, the requirement for a large dataset containing many congestion periods,

and the inherent ambiguity in defining the demand (N) as all aircraft taxiing out.

We present results for the estimation of inter-departure times for Runway 17R of DFW, and

the estimation of the capacity of this runway. First, we discuss the departure throughput of the

runway. Then, we derive linear regression models and regression trees for the prediction of inter-

departure times from a set of selected explanatory variables, such as aircraft type, queue length,

arrivals crossing the runway, etc.

D.2.1 Operations at DFW

Table D.1 lists the major runway configurations in DFW. Runway configuration 13R, 17C, 17L, 18R

| 17R, 18L, 18R which utilizes four runways for arrivals and two primary runways for departures

is used most frequently. The operations of the two departure runways are completely decoupled:

Aircraft with filed route departure fixes on the east side of the airport are assigned to east departure

runway (17R), and aircraft with filed route departure fixes on the west side of airport are assigned

to west departure runway (18L). Thus, the use of the two runways tends to be decoupled and

not balanced. In this case, the total number of aircraft taxiing out is not a good predictor of

the departure throughput, we also need information about the departure runway of each aircraft

to identify if a runway is in saturation. Similarly, the arrival throughput and the interaction of

arriving aircraft with departures can differ substantially depending on how the traffic is allocated

to the four runways.

Table D.1: Major runway configurations in DFW under Visual Meteorological Conditions.

Name Arrival Runways Departure Runways Frequency of use

South–flow 13R, 17C, 17L, 18R 17R, 18L, 13L (props) 60%
North–flow 31R, 35C, 35R, 36L 31L (props), 35L, 36R 39%
North–west 31L, 31R 31L, 31R 1%

Figure D-1 reveals these challenges. We notice that the saturation throughput exhibits an

unstable behavior. It nears 20 operations/ 15 minutes when departure demand is between 20-25

aircraft, subsequently drops and increases again at higher values of departure demand. This cyclic
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behavior could be attributed to different utilization of the three departure runways at different

high-demand periods. An overview of the imbalanced use of the departure runways and its impact

on taxi-out related delays in DFW was previously presented by Atkins and Walton [4].

It is not clear how to define departure throughput and to derive the filtered dataset in saturation

without knowing the demand at each individual runway. We show in the remainder of this section

how to measure the departure throughput of an individual runway of this runway configuration

(17R), and identify the explanatory variables that explain some of its variation using 11 days of

ASDE-X data from 2009.
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Figure D-1: Departure throughput as function of the number of aircraft taxiing out in 2010.

D.2.2 Departure throughput as a function of the departure queue

First, we construct the saturation throughput plot for Runway 17R alone, instead of the airport as

a whole. For this, we measure the departure throughput of Runway 17R using ASDE-X data. The

second step is to measure the departure demand for the runway accurately. For this, we measure

the number of aircraft in the queue area, shown in Figure A-7. This defines the departure demand

for this runway. This queue area is 750 meter long and wide enough to fit three aircraft abreast,

offering a queuing capacity of more than 30 aircraft. This queue area is further divided into three

parallel sub-queues [67].
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The departure throughput of Runway 17R is represented as a function of the departure demand,

Q(t), measured as the number of aircraft in the departure queue of Runway 17R during minute t.

In other words, it is the number of taxiing out aircraft that have reached the departure queue, but

not taken off yet.

T̄dt is defined as the number of takeoffs over the time period [t, t + 1, ..., t + dt). Adapting

the method suggested by Pujet [91], we find the time interval dt for which Q(t) and T̄dt have

the highest correlation. In this case, the highest correlation between Q(t) and T̄dt is obtained for

dt = 5, implying that the number of aircraft in the departure queue at time t, namely Q(t), is a

good predictor of the number of takeoffs during the 5-min time interval [t, t+ 5). This observation

reflects the lack of significant congestion in DFW. Since the capacity of the queue area is higher

than 30 aircraft and yet the number of aircraft in queue predicts the throughput at best only for

a 5-min horizon, the aircraft in queue will depart on average within the next 5 minutes.

This representation yields the plots of Figure D-2a for the 11 days of 2009. In total, we have

15,840 data points (Q, T̄dt)-one for every minute. The mean and median values of the takeoff

rate for each value of the departure demand, Q, are plotted. The error bars depict the standard

deviation of the takeoff rate at each value of Q.

From Figure D-2a, one observes that the departure throughput of this runway saturates at

around 4 takeoffs/ 5 min when the queue is around 5 aircraft or longer. A robust way to identify

the queue length beyond which the throughput does not vary with the queue length is to use the

algorithm presented in Section 4.4.4. We group the throughput observations of each value of Q, and

use the Kruskal-Wallis one-way analysis of variance test to test for significant differences between

the empirical throughput distributions of each group. The test does not reject the null-hypothesis

that the throughput observations at different values of Q are drawn from the same distribution at

both 0.05 and 0.1 significance levels for Q ≥ 6. However, it does reject the null hypothesis if more

groups at lower values of Q are included.

The test implies that the measurements of throughput for different values of Q when Q ≥ 6

are not significantly different. We define the inter-departure time between two aircraft under

persistent demand (that is, when the departure queue has six or more aircraft) as the service time

of a departure. The average service time is around 75 sec. In the rest of the analysis, we examine

the parametrization of this estimate using more information about fleet mix, arrivals crossings and

the departure queue.
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(a) Departure throughput as function of departure de-
mand.
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(b) Boxplots of the departure throughput for high val-
ues of departure demand.

Figure D-2: Departure throughput of Runway 17R as function of number of aircraft in the departure
queue.

Table D.2: Service time as a function of queue size.

Queue Length Mean Service time Median service time Number of observations
(AC) (sec) (sec)

1 104 97 1,324
2 89 81 1,102
3 81 74 719
4 79 69 421
5 78 66 185
6 73 58 85
7 80 65 31
8 65 56 14
9 75 75 1

D.2.3 The service time as a function of the queue length

As was done in Section 4.4.4, we define the queue length (dq(i)) for each aircraft i as the number of

aircraft in the departure queue at the moment when aircraft i starts its takeoff roll. We filter out

all flights that started their takeoff roll when the departure queue was empty. For all the remaining

flights, some other flight was in the departure queue when they took off. We first study how the

service time changes with the queue length. In Table D.2, the sample mean and median service

times as a function of the queue length at the start of the takeoff roll of a departing aircraft are

presented. One can observe that both the mean and the median service time seem to decrease as

the number of queued aircraft increases from 1 to 3. Beyond 3, the average service time fluctuates

around between 60 and 80 sec. We use the Kruskal-Wallis test to verify this inspection.

We group the throughput observations of each unique value of dq, and use the Kruskal-Wallis

test for significant differences between the service times of each group. The test does not reject the
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null-hypothesis that the service times for different values of dq are drawn from the same distribution

at both 0.05 and 0.1 significance levels for dq ≥ 3. However, it does reject the null hypothesis if we

include more groups at lower values of dq. The empirical distributions of the service time for two

different values of queue length (2 and 4) are visualized in Figure D-3a. The distinction between

the two distributions is clear. In Figure D-3b, we depict the boxplot of the service times for queue

length 3 and greater. One can observe the similarity between the boxplots.
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Figure D-3: Service time distributions.

In the subsequent analysis, we model and predict the service time. For this, we filter out all

flights for which the queue length was less than 3 when they started their takeoff roll. When the

queue length is smaller than 3, the inter-departure time between two flights might be longer, because

the trailing flight may not be at the runway threshold at the end of the separation requirement.

We also note that at DFW, one of the sub-queues is occasionally used as a holding area.

D.2.4 A linear regression model for the inter-departure time prediction

We formulate a linear regression model for the prediction of the service time of a departing aircraft,

conditioned on the queue length being greater than or equal to 3. We want to predict the inter-

departure times as a function of the aircraft type, the arrivals crossings and the departure queue.

In this section we describe the potential explanatory variables considered.

The inter-departure time is expected to be around 2 min if the leading aircraft is Heavy or

B757. Otherwise, it is expected to be 1 min or less. If the leading and trailing aircraft are assigned

to different departure fixes, the inter-departure time is expected to equal the required time for the

leading aircraft to clear the departure runway. For an average jet, this time is around 45 sec. If the
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leading and trailing non-Heavy aircraft head to the same departure fix, 2.5 miles spacing between

the two must be ensured which translates to approximately 60 sec inter-departure time.

In this runway configuration, aircraft arriving on runways 17C and 17L need to cross the

departure Runway 17R in order to reach the terminal area. These runway crossings could impact the

availability of the runway for departures, as recognized in other studies [69]. It is also hypothesized

that the further from the runway threshold that the crossing occurs, the higher the cost to runway

utilization will be. Taxiing-in aircraft can cross the runway as soon as the leading departure

has passed the crossing point. If the crossing is close enough to the intersection, the taxiing-in

aircraft has a high probability of crossing the runway within the separation requirement between

the two departures. In this case, it has no impact on the departure throughput. Similarly, two

taxiing-in aircraft crossing the departure runway in a staggered fashion, that is, through parallel

intersections, are hypothesized to occupy the departure runway for less time than two crossings

through the same intersection, because the staggered crossings can occur almost simultaneously.

The different taxiways that cross Runway 17R and are used in the dataset are shown in Figure A-7.

Finally, the queue length could be an explanatory variable, since longer queues may impact

the controllers’ efficiency. If the next departure is selected from the same subqueue or not, could

also be an explanatory variable. This could be the case, if aircraft are organized into sub-queues

according to their departure fix. In this case, if the leading and trailing aircraft are selected from

a different subqueue, they will have a shorter inter-departure time.

In summary, we consider the following potential explanatory variables in order to model the

above mentioned dependencies:

1. Heavy : Binary variable, equals 1 if the departing aircraft is Heavy, 0 otherwise.

2. B757 : Binary variable, equals 1 if the departing aircraft is some type of B757, 0 otherwise.

3. Small : Binary variable, equals 1 if the departing aircraft is small, 0 otherwise.

4. Queue length: Discrete variable, equals the queue length, greater than or equal to 3.

5. Same subqueue: Binary variable, equals 1 if the next departure is selected from the same

subqueue, 0 otherwise.

6. Arrivals crossing : Binary variable, equals 1 if some arriving aircraft crosses Runway 17R

after the departing aircraft takes off, 0 otherwise.
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7. First box : Discrete variable, equals zero if Arrivals crossing is zero. Otherwise: the box-

number of the first runway crossing.

8. Last box : Discrete variable, equals zero if Arrivals crossing is zero. Otherwise: the maximum

box-number of any runway crossing during the service time.

9. Maximum non-staggered crossings: Discrete variable, equals zero if Arrivals crossing is zero.

Otherwise: the largest number of aircraft that use the same box to cross Runway 17R minus

one.

10. Additional crossings: Discrete variables, equals zero if Arrivals crossing is zero. Otherwise:

the total number of crossings minus (Maximum non staggered crossings) minus one.

In case of a runway crossing, a set of four explanatory variables is used to evaluate the impact of

the crossing(s). We measure the total number of crossings that take place during the inter-departure

time. The first box variable takes the value of the box that the first crossing used. If there are

multiple runway crossings, we have: The last box takes the value of the maximum box-number used

by any arrival to cross the runway. For the reasons explained above, we separate the additional

crossings during the inter-departure time in two variables: The Maximum non-staggered crossings

takes the value of the crossings that use the same box minus one. We subtract one because the

first crossing is already accounted. The Additional crossings variable equals the number of the

remaining runway crossings.

We consider modeling the service time using two different types of linear models:

• Multiple linear regression.

• Regression trees.

For the case of the multiple linear regression, we use the LASSO method for variable selection. The

regression trees are pruned using 10-fold cross-validation.

The tree models are very useful for the investigation of complex interactions between the primary

explanatory variables. In a tree model, as depicted here, the longer the branches, the greater the

deviance explained. The value at the end leaf of each branch is the conditional mean of the taxi

out time under the conditions that the branches dictate. Figure D-4 indicates that the Arrivals

crossing variable (i.e., whether there is a runway crossing from some arriving aircraft) is by large

the most critical factor affecting inter-departure times.
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Figure D-4: Regression tree for the service time prediction.

For this reason, we construct two different linear regression models: The first one for the case

that Arrivals crossing=0 and the second one for the case that Arrivals crossing=1.

Linear regression model given zero arrivals crossings

In this case, we only need to choose between the first 5 potential explanatory variables. We find

that all of them except for the variables Small and Queue length have some statistical significance.

Table D.3 lists the resulting coefficients of the linear regression model. The “default” separation

time is around 60 sec, and both a Heavy and a B757 introduce longer spacing, as required by

regulations. Interestingly, the B757 introduces a 16 sec shorter spacing than a Heavy. We also

notice that the coefficient of the Same subqueue variable is non-zero. This suggests that the event

of the next plane being selected from the same subqueue introduces a longer inter-departure time,

as hypothesized.

We note from Table D.4 that the significance of the regression is small. The R2 value is 0.28.

This was expected since we have conditioned the linear regression on no arriving aircraft crossing

the departure runway and the queue being sufficiently large (≥ 3). Given these conditions and the

homogeneity of the fleet mix in DFW, it was expected that the remaining explanatory variables
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Table D.3: Intercept and regression coefficients for the multiple regression model given zero
arrivals crossings.

Coefficient Estimate (sec) Std. Error (sec) t-value p-value
(Intercept) 62 1 99 < 2 · 10−16

Same subqueue 7 1 6 9 · 10−09

Heavy 67 5 14 < 2 · 10−16

B757 51 4 13 < 2 · 10−16

Table D.4: Summarized results for the multiple regression model given zero arrivals crossings.

SER 16.94 on 1026 degrees of freedom
R2 Multiple R2: 0.2798 Adjusted R2: 0.2777

F-statistic 132.9 on 3 and 1026 DF, p-value: < 2.2e− 16

Table D.5: Intercept and regression coefficients for the robust regression model given zero
arrivals crossings.

Coefficient Estimate (sec) Std. Error (sec) t-value
(Intercept) 60 1 115

Same subqueue 6 1 6
Heavy 69 4 17
B757 53 3 16

would not explain much of the variance of the inter-departure times. Indeed, the sample mean is

66 sec and the sample standard deviation 20 sec. The regression model achieves a more accurate

estimate than the sample mean for the few cases that the next departure is selected from the same

subqueue (less than 28% of the time), and the even fewer times that the leading departure is a

Heavy or a B757 (less than 4% of the time).

The difference between the mean and median service time, shown in Table D.2 and the fat tail

of the distribution of the service times, shown in Figure D-3a suggest that the regression coefficients

could be biased by the presence of outliers. Thus, we also consider a more robust version of the

linear regression model, namely M-estimators (using Huber’s ψ function with the default turning

constant of 1.345). The resulting coefficients are presented in Table D.5. Comparing the results

listed in Tables D.4 and D.5, we note that all three explanatory variables remain significant and

that their estimated values do not change substantially.

Because of the simplicity of the model and the binary nature of most explanatory variables, the

tree model looks very similar (Figure D-5). It additionally suggests that the queue length could

also affect the inter-departure time: When it is longer than 3, the inter-service time is on average

6 sec shorter under certain conditions.

One could simplify this model even further by removing the Same subqueue variable. This is

useful if the value of this variable cannot be known in advance. We list the coefficients and the
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Figure D-5: Regression tree for the service time prediction given zero runway crossings.

results of this regression model in Table D.6 and Table D.7. The M-estimators are listed in Table

D.8. The estimated values for the intercept and the coefficients do not vary significantly with the

removal of the Same subqueue variable. This suggests that the estimated coefficients are not subject

to multicollinearity, and that they accurately measure the impact of each explanatory variable.

Linear regression model given nonzero arrivals crossings

For the regression model given nonzero arrivals crossings, the variable selection process is more

challenging since we have to select the most significant explanatory variables out of nine potential

explanatory variables (The sixth variable, Arrivals crossing, equals 1). We use again the LASSO

method for variable selection. We list the selected variables, their coefficients, and the results of the
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Table D.6: Intercept and regression coefficients for the multiple regression model given zero
arrivals crossings without the “Same subqueue” variable.

Coefficient Estimate (sec) Std. Error (sec) t-value p-value

(Intercept) 64 1 117 < 2 · 10−16

Heavy 67 5 13 < 2 · 10−16

B757 52 4 13 < 2 · 10−16

Table D.7: Summarized results for the multiple regression model given zero arrivals crossings
without the Same subqueue variable.

SER 17 on 1027 degrees of freedom

R2 Multiple R2: 0.26 Adjusted R2: 0.26

F-statistic 177 on 2 and 1027 DF, p-value: < 2 · 10−16

regression model in Table D.9 and Table D.10. The M-estimators are listed in Table D.11. Similarly

to the case of zero arrivals crossings, the M-estimators are very close to the linear regression

estimated coefficients. In fact, for 4 out of 5 estimators, they are within the standard error of the

estimated value.

Comparing Table D.3 and Table D.9, we note the remarkable difference between the values of

the intercept. If all the other variables equal zero, the mean inter-departure time increases from 62

to 104 sec because of a single arriving aircraft crossing Runway 17R. This implies that the cost of

a runway crossing is larger than 40 sec. However, this cost gets partially offset by the significant

difference in the coefficients of the variables Heavy and B757, which both decrease for about 40

sec. This results in approximately same service time of a Heavy or a B75 (62+67 sec and 104+30

sec for a Heavy and 62+51 sec and 104+12 sec for the B757) independently of the value of Arrivals

crossing. After a Heavy or B757 takeoff, the controllers utilize the long wake vortex separation

requirement (120 sec) to perform a runway crossing at almost no additional cost. In fact, the service

time of a departure of a Heavy or a B757 and an arrival crossing increases on average for less than

5 sec compared with the service time of just a departure of a Heavy or a B757.

This finding also provides further evidence supporting the conclusions for the impact of Heavy

Table D.8: Intercept and regression coefficients for the robust regression model given zero
arrivals crossings without the Same subqueue variable.

Coefficient Estimate (sec) Std. Error (sec) t-value

(Intercept) 62 0 137

Heavy 69 4 17

B757 54 3 17
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Table D.9: Intercept and regression coefficients for the multiple regression model given nonzero
arrivals crossing.

Coefficient Estimate (sec) Std. Error (sec) t-value p-value

(Intercept) 104 1 81 < 2 · 10−16

Heavy 30 3 9 < 2 · 10−16

B757 12 3 4 4.145 ·10−5

Additional crossings 7 1 5 4 ·10−7

Maximum non staggered crossings 11 3 3 2 ·10−3

Table D.10: Summarized results for the multiple regression model given nonzero arrivals
crossing.

SER 20 on 410 degrees of freedom

R2 Multiple R2: 0.32 Adjusted R2: 0.31

F-statistic 48 on 4 and 410 DF, p-value: < 2 · 10−16

Table D.11: Intercept and regression coefficients for the robust regression model given nonzero
arrivals crossing.

Coefficient Estimate (sec) Std. Error (sec) t-value

(Intercept) 103 1 101

Heavy 26 3 9

B757 12 2 4

Additional crossings 7 1 6

Maximum non staggered crossings 10 3 4
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and B757 aircraft departures in the case of BOS runway configuration 22L, 27 | 22R, 22L, which

is similar to this runway configuration of DFW. The primary departure runway is 22L and arrivals

on runways 22L and 27 have it cross it to reach the terminals. The curves of Figure 2-14b show

that under medium or heavy arrival rates, the 15-min departure throughput does not change for

0-4 Heavy or B757 departures. Medium or heavy arrival rates require many runway crossings. In

DFW, if 2 crossings are performed after a Heavy or B757 departure, the total runway time utilized

for runway crossings is the same as performing each crossing after a Large aircraft departure. With

such a strategy, the cost of a Heavy or B757 departure diminishes.

The significant difference in the coefficients of the intercept and the variables Heavy and B757

in Tables D.3 and D.9 also shows why it was necessary to construct two separate regression models

conditioned on the value of the Arrivals crossing variable.

Comparing Table D.4 and Table D.10, one can note that the standard error of the regression

(SER) increases for the model of nonzero arrivals crossing. However, the R2 coefficient increases

because the explanatory variables explain more of the variability of the data than for the case of

zero arrivals crossing. Given Arrivals crossing=1, the mean service time is 114 sec and the standard

deviation 24 sec. The linear regression model of Table D.10 explains 31% of this variability.

Concerning the selection of variables, it turns out that the box, or boxes that are used for

the crossings are not significant explanatory variables in the linear regression model. However,

additional crossings lead to longer service times. As hypothesized, the non-staggered crossings

introduce a longer delay than the staggered ones. However, the difference is not significant. For

both types of crossing groupings, the delay for an additional crossing is much shorter than the delay

of the first crossing (7 and 10 vs. 42 sec). This suggests that grouping the crossings is more efficient,

even if they are routed through the same box. The marginal cost of any additional crossing is at

most 10 sec. However, the cost of the first crossing is larger than 42 sec.

D.2.5 Operational throughput envelope of Runway 17R

The statistical analysis of Section D.2.4 is important for estimating the dependency of the inter-

departure time on several explanatory variables, but does not help us characterize the operational

capacity of the runway, as explained in Section 4.4.4. For example, in the presence of a demand

for five Large departures and five runway crossings, the throughput (and the delays) will be very

different in the following two strategies:

1. The controllers choose to alternate crossings and departures.
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2. The controllers perform all crossings staggered together after the last departure.

According to the results of Sections D.2.4 and D.2.4, the total time required would be 5× 104 sec

= 520 sec in the first case, which implies a throughput of 35 departures and 35 runway crossings/hr.

In the second case, the time required would be 64 × 4 + 104 + 7 × 4 sec = 388 sec. This strategy

would imply a throughput of 46 departures and 46 runway crossings/hr. The throughput of the

second strategy is 31% higher than the throughput of the first strategy.

The aggregate estimation methods proposed in this work, like the operational throughput en-

velope, address these issues by estimating the average number of departures and arrivals of the

airport over a longer time period, usually 15 minutes. In this case, we estimate the performance

only over a 5 minute period, because of data scarcity: Over the 11 days of ASDE-X data, we do

not have queue loads that would allow us to observe the departure throughput under high-demand

over a 15-minute period. As we saw in Section D.2.3, the longest queue is 9 aircraft and is observed

only once.

We extend the framework of Chapter 2 for estimating and representing the departure capacity of

Runway 17R as a function of the taxiing-in aircraft crossing the runway, and the number of Heavy

aircraft and B757s in the departing fleet mix. As established in Section D.2.2, the saturation

condition for this case is having 6 or more aircraft in queue. There are only 550 datapoints

that satisfy this condition. Under this condition, the departure throughput in the next 5-minute

interval does not change with the number of aircraft in the queue box. The scatter plot and the

fitted function for the departure throughput for different numbers of arrivals crossings is shown in

Figure D-6a.

The formulation to determine the fitted function is similar to the one of Section 2.3, but simpler.

We define T̄ (t) as the number of aircraft that take off during the 5-minute interval [t, t + 5) min.

Similarly, we define Z̄(t) as the number of runway crossings that are conducted during the 5-minute

interval [t, t + 5) min. Given k pairs of measurements Z̄(t) and T̄ (t), denoted (z1, y1), . . . , (zk, yk)

in the dataset in saturation, we seek a non-increasing function h : R→ R that estimates the mean

T̄ = g(Z̄(t)). The only constraint we impose is that the departure throughput is a non-increasing

function of the number or runway crossings:

min
k∑
i=1

(ŷi − yi)2 (D.1)

subject to:
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ŷi = g(zi), i = 1, . . . , k (D.2)

g(i+ 1) ≤ g(i), i = 0, . . . (l − 1),where l = max(Z̄(t)) (D.3)

We do not impose more constraints because we are interested in observing the marginal cost

of each crossing. From Figure D-6a we observe that the departure throughput given zero crossings

is 4.5 departures/5 min, which implies a 66 sec inter-departure time. This is the same duration as

the inter-departure time between flights without a runway crossing, which was estimated to be 66

sec in Section D.2.4 . For three crossings, the departure throughput decreases to 3.7 departures/5

min. This implies an 81 sec average inter-departure time. In Section D.2.4, it was found that

the average inter-departure time given a runway crossing is 114 sec. The difference between these

inter-departure times and the changing slope of the curve of Figure D-6a suggest that controllers

tend to combine runway crossings. They are not likely to authorize a crossing after each departure,

but instead conduct two crossings together during an inter-departure time.

We also note that the departure throughput decreases nonlinearly with increasing arrival cross-

ings. It decreases at a higher rate when the number of crossings increases from 0 to 2, compared to

when the number of crossings increases from 2 to 4 (when it stays stable). This suggests that the

first two crossings are not likely to be combined, but for higher number of crossings, some of them

will be performed during the same inter-departure time, thereby reducing their marginal cost. If

this is the case, the balanced capacity implied from this figure lies between the two extremes con-

sidered before (no crossings combined, and all crossings combined in a staggered manner). Indeed,

the balanced operations capacity of the runway is approximately 3.5 departures and 3.5 crossings/5

min. That would imply a capacity of 42 departures and 42 crossings/15 min.

For a more direct comparison with the results of the regression analysis, we parametrize the

results with the number of Heavy aircraft. Because of the data sparsity, we classify B757’s as

Heavy aircraft and estimate the departure throughput as a function of runway crossings and Heavy

departures. We define HDeps(t) as the number of B757’s as Heavy aircraft that take off during the

5-minute interval [t, t+ 5) min.

Given k triplets of measurements Z̄(t), HDeps(t) and T̄ (t), denoted by (z1, w1, y1), . . . , (zk, wk, yk),

we seek a function gh : R2 → R that estimates the mean T̄ = gh(Z̄(t), HDeps(t)). Thus, function

gh is a piecewise linear function of Z̄(t) and HDeps(t). The constraints are that the departure

throughput is a non-increasing function of the number or runway crossings, and a non-increasing

function of the number or Heavy aircraft in the fleet mix. The fitted function gh is plotted in Figure
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D-6b.

min
m∑
i=1

(ŷi − yi)2 (D.4)

subject to:

ŷi = gh(zi, wi), i = 1, . . . , k (D.5)

gh(i+ 1, j) ≤ gh(i, j), i = 0, . . . (l − 1),∀j,where l = max(Z̄(t)) (D.6)

gh(i, j + 1) ≤ gh(i, j), j = 0, . . . (n− 1), ∀i,where n = max(HDeps(t)) (D.7)
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(b) Operational throughput envelope for Runway 17R
parametrized by the number of departing Heavies.

Figure D-6: Operational throughput envelopes for Runway 17R.

From Figure D-6b, we observe that the estimated curves are in agreement with the results

of Section D.2.4. The departure throughput given one crossing is approximately equal to the

departure throughput given one Heavy departure. Secondly, as the number of crossings increases,

the departure throughput of 0 Heavy and 1 Heavy departures converges to the same number (3.1

departures/ 5 min). As the number of crossings increases, the controllers perform some crossings

after a Heavy departure. In this way, the cost of one Heavy departure is on average 20 sec. By

contrast, at lower numbers of crossings, there is a high probability that the crossing will not be

performed after the Heavy departure. Thus, the departure throughputs given no Heavy departures

and one Heavy departure decrease at the same rate for a low number of crossings (0-2).
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The results of Figure D-6b confirm the results of Section 2.6.3, where we modeled the dependence

of the departure throughput of BOS configuration 22L, 27 | 22L, 22R and concluded that as the

number or arrival throughput (and thus arrival crossings) increases, the cost of Heavy departures

becomes negligible. Here, using a much more detailed and accurate dataset, and relaxing all

constraints in the estimation problem regarding the interactions between Heavy departures and

crossings, we arrived at the same conclusion.

D.2.6 Estimation of DFW capacity

The results from the previous section can be also used for deriving approximate estimates of the

capacity of the whole airport under the most frequent runway configuration 13R, 17C, 17L, 18R |

17R, 18L, 13L (props) . We initially focus on operations on the east side, namely, on arrival runways

17C, and 17L and departure runway 17R. We have not considered operations on the arrival runways

at all, but the crossings observed at Runway 17R clearly provide a lower bound for the capacity

of these runways. If 5 crossings can be performed through Runway 17R in 5 minutes, this implies

that there is a demand for at least 5 crossings at Runway 17R, and that at least 5 aircraft have

landed on Runways 17C and 17L.

For zero arrivals, the average departure throughput of Runway 17R is 4.5 AC/5 min, or 54

AC/hr. For balanced operations, the average throughput is 42 departures/hr and 42 arrivals/hr.

Finally, for arrival priority, 5.0 crossings and 3.1 departures can be performed in 5 min, implying

a capacity of 37 departures/hr and 60 arrivals/hr.

Given that operations on Runways 13R, 18R and 18L are symmetric to those on Runways

17C, 17L and 17R, we simply multiply the previous capacity estimates by 2 and obtain capacity

estimates for configuration 13R, 17C, 17L, 18R | 17R, 18L. Departure priority capacity is 108

departures/hr, balanced capacity 84 departures/hr and 84 arrivals/ hr, and arrival priority capacity

is 74 departures/hr and 120 arrivals/hr.

Finally, the departure capacity is increased by the prop departures on Runway 13L. In 2010,

props comprised 5% of the fleet mix of the departing aircraft. Assuming that all of them are

assigned to Runway 13L, we can approximately estimate the departure capacity of 13L. For every

19 jet departures of Runways 17R, 18L, there is one prop departure of Runway 13L. This hypothesis

can be validated by comparing the saturation plot of Figure D-1 with the jet saturation plot of

Figure D-7. The saturation throughput decreases from 20 to 19 when considering jets only. We

have the following capacity estimates for runway configuration 13R, 17C, 17L, 18R | 17R, 18L, 13L
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(props): Departure priority capacity is 116 departures/hr, balanced capacity is 88 departures/hr

and 84 arrivals/hr, and arrival priority capacity is 78 departures/hr and 120 arrivals/hr. The AAR

of 13R, 17C, 17L, 18R | 17R, 18L, 13L (props) is 126 operations/hr, so our estimate for the arrival

priority arrival capacity is close to the declared airport acceptance rate.
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Figure D-7: Jet aircraft departure throughput as function of jets departure demand in 2010

In addition, 78 AC/hr is a lower bound for the available departure capacity of Runways 17R,

18L, and 13L. From Figure D-1, we note that the average departure throughput fluctuates between

13.5 and 19.5 AC/15 minutes, or 54 and 78 AC/hr. Thus, the average departure throughput of

Runways 17R, 18L, and 13L takes values less than or equal to the lower bound of the available

departure capacity. This appears to confirm our initial hypothesis, that the reason for the irregular

shape of the saturation throughput curve is an inefficient utilization of the three departure runways.

D.3 Departure capacity of Runway 27L of PHL

D.3.1 Comparison of ASPM and ASDE-X data

In most of the applications considered in Chapters 2 and 3, arrivals cross the departure Runway,

for example Runway 22L at BOS, and Runway 22L and 4R at EWR. Similarly, in Section D.2, we

concluded that runway crossings are a major driver of the performance of Runway 17R. In all these
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cases, it was observed that the impact of Heavy departures diminishes when there is a significant

number of arrival crossings.

In this section, we study the departure capacity of Runway 27L, of the 26, 27R, 35 | 27L, 35

runway configuration, which is the most frequently one at PHL, and was used for 74% of the time

in 2011. In Figure D-8, we show the saturation curve for this runway configuration using both

ASPM data from year 2011 and ASDE-X data from the months June-August 2011. We notice

that the curves are shifted from each other. This results from late ASDE-X transponder capture,

as discussed in Sections 2.5 and 5.2.1. We also notice that the throughput in saturation is higher

when measured with ASPM data. A probable explanation for this is that the ASDE-X data is only

from the three summer months, and the high convective weather activity in the Northeastern US

during this period resulted in reduced capacity [90].
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Figure D-8: Departure throughput as function of aircraft taxiing out at PHL.

D.3.2 Use of RAPT for estimating the operational throughput envelope of PHL

Using ASDE-X data, we isolate the saturation curve for the major departure runway 27L only, which

we also show in Figure D-8. By inspection, we notice that in saturation, there is one departure

from Runway 35 for every 11 to 12 departures from Runway 27L. We also observe that none of the

curves fluctuates around the capacity in saturation, but instead, they all exhibit a clear decreasing

trend. A possible explanation for this trend is that excessive congestion creates bottlenecks and
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gridlocks. As a result, the performance of the airport decreases. Another reason could be that the

throughput decreases as a function of other (hidden) variables, such as, route availability, or traffic

management initiatives.

To derive the saturation area, we construct the regression tree that represents the departure

throughput of Runway 27L as a function of its demand (the number of aircraft taxiing out that

takeoff from Runway 27L), the arrival throughput, and the SRAPT value, as calculated for LGA in

Section 3.3.1. We do not have the RAPT values for PHL, but hypothesize that the route availability

of LGA correlates well with that of PHL. The the area for which the departure throughput does

not change with departure demand is estimated as 12 ≤ N ≤ 21. Values of N > 21 imply lower

throughput than 12 ≤ N ≤ 21, all else being equal.

Figure D-9a shows the observed mean values of the departure throughput at each value of the

arrival throughput for all SRAPT values, and for SRAPT = 0.0. We clearly see that the mean depar-

ture throughput given SRAPT = 0.0 takes higher values (11.8 versus 11.4 AC/15 min). In addition,

it has lower standard deviation (2.7 versus 2.9 AC/15 min), similar to the LGA observations (Sec-

tion 3.3.1). We also observe that the departure throughput of Runway 27L is insensitive to the

arrival throughput, as hypothesized. The major arrival runway 27R is between the terminals and

Runway 27L, and the secondary arrival runways, 26 and 35, do not interfere with the departures

either.

We apply the methodology described in Section 3.3.1 to estimate the departure throughput as

a function of arrival throughput and route availability. From Figure D-9b, we note the decreasing

trend of throughput with route availability. We also note that the throughput given SRAPT = 0.0 is

the only one that exhibits some (small) tradeoff with arrival throughput. It decreases by 1 AC/15

min as the arrival throughput increases.

D.3.3 Operational throughput envelope parametrized by Heavy aircraft depar-

tures

The conditions 12 ≤ N ≤ 21, and SRAPT = 0.0 guarantee persistent departure demand and high

route availability. Thus, the departure throughput curve given SRAPT = 0.0 in Figure D-9 can

be viewed as the operational throughput envelope of Runway 27L. We measure the impact of

Heavy aircraft departures by formulating the following estimation problem: Given k triplets of

measurements A(t), HDeps(t) and T (t), denoted by (u1, v1, y1), . . . , (uk, vk, yk), at times when 12 ≤

N ≤ 21, SRAPT = 0.0, we seek a function gh : R2 → R that estimates the mean T = gh(A,HDeps).
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Figure D-9: Departure throughput of Runway 27L of PHL as a function of arrival throughput and
route availability.

As before, the constraints are imposed only between neighboring points:

min
m∑
i=1

(ŷi − yi)2 (D.8)

subject to:

ŷi = gh(ui, vi), i = 1, . . . , k (D.9)

gh(i+ 1, j) ≤ gh(i, j), i = 0, . . . (l − 1),∀j,where l = max(A(t)) (D.10)

gh(i+ 1, j)− gh(i, j) ≤ gh(i, j)− gh(i− 1, j), i = 1, . . . (l − 1),∀j (D.11)

gh(i, j + 1) ≤ gh(i, j), j = 0, . . . (n− 1),∀i,where n = max(HDeps(t)) (D.12)

Inequalities (D.10) and (D.11) are analogous to those in the case of the capacity envelope, i.e.,

for a given number of departing Heavy aircraft, the departure throughput is a monotonically non-

increasing, concave function of the arrival throughput. Inequality (D.12) ensures that for a given

value of arrival throughput, the departure throughput decreases as the number of Heavy departures

increases. We do not impose any other constraints in this fitting problem to avoid making further

operational assumptions. Given that arrivals do not interact with departures in this configuration,

it is hypothesized that they do not interact with Heavy departures, either.

The estimated function is shown in Figure D-10. We notice that the operational throughput of
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Runway 27L stays above 12AC/15 min for a large range of values of the arrival throughput. This

can be contrasted with the operational throughput envelopes of EWR (shown in Figures 3-3a, 3-5),

which stay at 11AC/15 min for the same range of arrival throughput. In addition, the impact of

Heavy departures is clearly seen in Figure D-10. As Heavy aircraft departures increase from 0 to

4 AC/15 min, the departure throughput decreases by approximately 2AC/15 min.

In Chapter 1, as well as in Section 5.8.5, it was observed that PHL faces an acute congestion

problem and that Runway 27L is often under very high pressure. Given that we filter out the

conditions not conducive to high departure throughput, such as high congestion states (N > 22), or

low route availability, one would expect Runway 27L to be more efficient for zero Heavy departures.

Because Runway 27L is not used for runway crossings and offers dispersal headings, its departure

throughput for zero Heavies was expected to be closer to 15 AC/15 min. The congestion problem

at PHL, in combination with potential opportunities to increase departure throughput, suggest a

very exciting direction for future research.

Finally, in Appendix C, we presented the departure throughput estimation results conducted

with ASPM data for runway configuration 26, 27R, 35 | 27L, 35, during year 2011. The results here

are very similar, but the departure throughput estimates at all states were higher in Appendix C

as they included operations of Runway 35 as well.
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Figure D-10: Operational throughput envelope of Runway 27L of PHL parametrized by the number
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Appendix E

Unimpeded Taxi-out Time Estimation

Results
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Table E.1: Unimpeded taxi-out time estimates for runway configuration 22L | 22R of EWR

Number Estimated Estimated
Airline of data mean standard

points deviation

COA 19827 12.65 3.58
BTA 11141 12.33 3.26
CJC 3933 11.72 4.33
UAL 3333 12.26 3.02
UCA 3029 12.10 4.10
TCF 1982 11.66 3.58
DAL 1909 12.63 3.22
ASQ 2110 12.40 3.10
JBU 1723 15.35 4.02
SWA 1486 12.65 2.54
AAL 1270 12.65 3.28
USA 1231 13.32 4.07
ACA 986 12.40 3.75
PDT 563 8.63 3.39
EGF 528 11.38 2.34
DLH 496 12.55 4.17
other 8546 15.11 3.75
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Figure E-1: Fitted function of the taxi-out times of the flights for JetBlue in configuration 22L |
22R of EWR
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Figure E-2: Empirical and fitted distribution of the unimpeded taxi-out times for JetBlue in con-
figuration 22L | 22R at EWR
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Figure E-3: Fitted function of the taxi-out times of the flights for US Airways in configuration 22L
| 22R of EWR
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Figure E-4: Empirical and fitted distribution of the unimpeded taxi-out times for US Airways in
configuration 22L | 22R at EWR
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Appendix F

Model Predictions for EWR Runway

Configuration 4R | 4L

F.1 Model development

Analogously to runway configuration 22R | 22L we develop the model using 2011 data from ASPM.

Table F.1: Aggregate taxi time predictions for EWR runway configuration 4R | 4L in year
2011.

Congestion Actual # Actual mean Mod. # Mod. mean
level of flights taxi time of flights taxi time

all 37132 22.73 37124 22.23

(N ≤ 8) 13411 16.42 13113 16.16

(9 < N ≤ 14) 11521 20.46 12246 20.33

(N ≥ 15) 12200 31.80 11764 30.95

Table F.2: Prediction statistics for the congestion state and the throughput for EWR runway
configuration 4R | 4L in year 2011.

N(t) > 0 N(t) ≥ 10

ME MAE RMSE ME MAE RMSE

State (AC) -0.31 1.67 3.04 -1.15 2.75 4.38
Throughput (AC/15 min) -0.01 1.10 1.55 -0.22 1.25 1.69
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Figure F-1: Actual and modeled frequency of all states N (top); Actual and modeled dependence
of the average taxi-out time as a function of the state N at the time of pushback (bottom) for
EWR runway configuration 4R | 4L in year 2011.
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Figure F-2: Actual and modeled throughput of all states N for EWR runway configuration 4R |
4L in year 2011: Mean (top); Median (bottom).
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F.2 Predictions for year 2010
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Figure F-3: Actual and modeled frequency of all states N (top); Actual and modeled dependence
of the average taxi-out time as a function of the state N at the time of pushback (bottom) for
EWR runway configuration 4R | 4L in year 2010.

Table F.3: Aggregate taxi time predictions for EWR runway configuration 4R | 4L in year
2010.

Congestion Actual # Actual mean Mod. # Mod. mean
level of flights taxi time of flights taxi time

all 39,785 22.86 29723 23.03

(N ≤ 8) 14,285 15.94 13695 16.30

(9 < N ≤ 14) 11,599 20.24 12255 20.55

(N ≥ 15) 12200 32.17 13773 31.92
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Figure F-4: Actual and modeled throughput of all states N : Mean (top); Median (bottom) for
EWR runway configuration 4R | 4L in year 2010.

Table F.4: Prediction statistics for the congestion state and the throughput for EWR runway
configuration 4R | 4L in year 2010.

N(t) > 0 N(t) ≥ 10

ME MAE RMSE ME MAE RMSE

State (AC) -0.06 1.67 2.84 -0.70 2.63 3.97
Throughput (AC/15 min) -0.03 1.10 1.55 -0.24 1.23 1.67
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F.3 Predictions for year 2007
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Figure F-5: Actual and modeled frequency of all states N (top); Actual and modeled dependence
of the average taxi-out time as a function of the state N at the time of pushback (bottom) for
EWR runway configuration 4R | 4L in year 2007.

Table F.5: Aggregate taxi time predictions for EWR runway configuration 4R | 4L in year
2007.

Congestion Actual # Actual mean Mod. # Mod. mean
level of flights taxi time of flights taxi time

all 34,378 29.55 34400 29.43

(N ≤ 8) 8,418 17,44 8751 16.57

(9 < N ≤ 14) 7,861 21.60 8126 20.54

(N ≥ 15) 18,099 38,61 17523 39.97
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Figure F-6: Actual and modeled throughput of all states N for EWR runway configuration 4R |
4L in year 2011: Mean (top); Median (bottom).

Table F.6: Prediction statistics for the congestion state and the throughput for EWR runway
configuration 4R | 4L in year 2007.

N(t) > 0 N(t) ≥ 10

ME MAE RMSE ME MAE RMSE

State (AC) -0.25 2.58 4.17 -0.75 2.58 4.17
Throughput (AC/15 min) -0.02 1.32 1.85 -0.23 1.42 1.94
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F.4 Individual flights taxi-out times predictions

In addition to this, rather aggregate, comparison it is interesting to see how the model predicts

individual taxi times, to compare the predicted taxi-out time for the flights out of EWR segment

(VMC; 4R | 4L) in 2011, 2010 and 2007 with their recorded ones. Figure F-7 shows the cumulative

distribution or the prediction error E(i) defined as:

E = τ(i)sim − τ(i)obs (F.1)
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Figure F-7: Individual flights taxi time prediction error for EWR runway configuration 4R | 4L.

Table F.7: Prediction statistics for individual taxi-out times for EWR runway configuration
4R | 4L.

Year ME MAE RMSE

2011 -0.50 5.58 8.67
2010 0.16 5.48 8.17
2007 -0.12 7.63 11.27
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Appendix G

Model Predictions for PHL Runway

Configuration 26, 27R, 35 | 27L, 35

In this appendix, we describe the departure process model for the most frequently used runway

configuration at PHL, 26, 27R, 35 | 27L, 35. The model is applied in Section 5.8.5 for evaluating

the performance of different congestion control strategies at PHL. For developing the model, we

apply the methodology described in Chapter 4 using ASPM data from 2011, supplemented with

data from Flightstats for obtaining terminal and gate information and gate-out information for the

non-OOOI flights.

On the methodological front, we demonstrate how the runway service time distributions can

be parametrized by the aircraft type of the departing aircraft. In the other model development

examples considered in the thesis (EWR in Chapter 4 and CLT in Appendix H), the service time

distributions depend on exogenous variables, like the route availability and the arrival throughput.

G.1 Saturation plot

For estimating the departure process characteristics, we follow the approach described in Section

4.4.3. We first depict the saturation plot for runway configuration (VMC; 26, 27R, 35 | 27L, 35),

which is shown in Figure G-1. We note that the average throughput reaches its maximum value, 13

AC/15 min, for 20 aircraft taxiing out, and it starts decreasing at congestion states higher than 25

AC. The throughput decreases to 12 AC/15 min as the number of aircraft on the ground increases

from 25 to 35 and decreases even further for 35 or more aircraft on the ground. We also note that

the departure throughput exhibits very high variability.
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Figure G-1: PHL saturation plot for runway configuration 26, 27R, 35 | 27L, 35 in year 2011.

For estimating the area, for which the departure throughput does not change significantly with

the departure demand, we follow the approach outlined in Section 2.3. We use regression trees to

estimate the departure throughput as a function of all potentially significant explanatory variables:

Departure demand, route availability1, arrival throughput, Heavies departures, and props depar-

tures. Route availability, arrival throughput, and Heavies departures were found to be significant

variables in the analysis of ASDE-X data in Section D.3 of the appendix. Props departures are

hypothesized to play a significant role, because props often use the secondary runway, Runway 35

[99]. A simplified version of the resulting regression tree is shown in Figure G-2. From the tree,

we infer that the area that is not associated with increasing, or decreasing trend of the departure

throughput is 20 ≤ N ≤ 27.

G.2 Estimation of the departure capacity distributions

We use the saturation data-points to estimate the departure throughput as a function of the arrival

throughput, the route availability and the fleet-mix. Consistently with the method presented in

Section 4.4.3, we use regression trees. However, in the case of PHL, information about fleet mix

shall be used for predicting the departure capacity. From Figure D-10, we note that the departure

1For route availability, we use RAPT data from LGA, as explained in Section D.3.
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Figure G-2: Estimation of the area for which the departure throughput does not change with
departure demand.

throughput decreases with the number of Heavy aircraft departing in a 15-minute window. We

would like to use this information for dynamically predicting the departure throughput. This

poses the difficulty that the number of aircraft departing, and, thus, the number of Heavy aircraft

departing, is an output of the model. For this reason, we use information about the demand for

departures from Heavies and props, that is the number of Heavy aircraft taxiing out (NH) and

the number of props taxiing out (Np). The resulting regression tree, as well as the parameters of

the fitted Erlang distributions are shown in Figure G-3. From the regression tree we note that the

higher values of Heavy aircraft taxiing-out are associated with lower departure throughput. This

is consistent with the capacity envelope of PHL, parametrized by the number of Heavy departures,

shown in Figure D-10.

Conversely, higher values of prop aircraft taxiing-out are associated with higher departure

throughput. This was expected, because props tend to use the secondary departure runway, and

thus increase the overall departure throughput. Furthermore, decreasing route availability is asso-

ciated with decreasing departure throughput for all fleet mix conditions. We finally note that the

arrival throughput turns out to be a non-significant variable for predicting the departure through-

put. This was expected, because the main arrival runway, 27R, is between the main terminal area

and the main departure runway, 27L, and thus arriving traffic does not interfere with operations at

the main departure runway. The operational throughput envelope for this runway configuration,
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shown in Figure C-3, also indicates the very small dependence of the departure throughput on the

arrival throughput.

NH< 3	   NH≥ 3	  

Np<3	   Np≥3	  

SRAPT<0.4	   SRAPT≥0.4	  SRAPT<0.2	   SRAPT≥0.2	  

SRAPT<0.4	   SRAPT≥0.4	  

NH<1	   NH≥1 

NH<6	   NH≥6 

14.0	   13.4	  

12.1	   10.7	  14.3	   12.5	   11.4	  

9.9	  

13.04	  SRAPT:	  Surrogate	  RAPT	  value	  	  
A:	  Arrival	  throughput	  
NH:	  Heavies	  taxiing	  out	  
Np:	  Props	  taxiing	  out	  

Forecast µ k

1 9.9 1
2 14.3 2
3 12.1 2
4 10.7 1
5 12.5 3
6 11.4 3
7 14.0 3
8 13.4 3
8 13.4 3

All 12.9 2

Figure G-3: Expected departure throughput and service time distributions parameters for 20 ≤
N ≤ 27 conditioned on arrival demand, route blockage and fleet mix information.

G.3 Unimpeded taxi-out estimation

For estimating the unimpeded taxi-out times, we adapt the method developed in Section 4.3.1. US

Airways (USA) uses gates from terminals A, B, and C. Similarly, Republic Airlines (RPA) uses

gates from terminals B and C. All these gates are spread over a large area of the airport. For this

reason, we estimate the unimpeded taxi-out times of the flights of US Airways and Republic Airlines

by terminal. In addition, all international flights of US Airways depart from terminal A. For these

flights, we estimate the unimpeded taxi-out time separately, because they tend to have different

procedures [25, 110] and move at slower speed. The results can be seen in Table G.1. We note

that the international flights of the US Airways (USA) have longer unimpeded taxi-out times from

the rest of the US Airways flights of terminal A. The average unimpeded taxi-out time of British

Airways (BAW) flights is very similar. Piedmont Airlines (PDT), the fleet of which comprises only

turboprops, has very short unimpeded taxi-out time. We also observe, that airlines using terminals

D and E (DAL, AAL, SWA, TRS, EGF, UAL and COA) which are the closest to the threshold of

Runway 27L have shorter unimpeded taxi-out times than airlines that use terminal A, B, C and F

(USA, AWI, CHQ, RPA and BAW).
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Table G.1: Unimpeded taxi-out time estimates for PHL runway configuration 26, 27R, 35 |
27L, 35 in year 2011.

Estimated Estimated
Airline mean standard

(min) deviation (min)

USA, terminal A, domestic 14.03 4.65
USA, terminal A, international 15.56 4.60

USA, terminal B 14.14 5.68
USA, terminal C 11.37 3.80

AWI 11.89 3.19
PDT 9.03 2.77

RPA, terminal B 12.25 3.90
RPA, terminal C 12.76 4.08

SWA 9.01 1.73
DAL 11.51 3.28
AAL 10.81 3.55
UAL 10.69 2.61
CHQ 12.15 3.58
TRS 10.25 2.09
EGF 10.07 2.72
COA 9.88 2.70
LOF 10.51 1.86
ACA 11.66 2.46
MES 10.18 2.32
UCA 13.22 4.47
ASQ 10.40 2.16
COM 13.67 4.06
BAW 14.92 2.40
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G.4 Results

In this section, we discuss the prediction results for the most frequently used runway configuration

of PHL, (VMC; 26, 27R, 35 | 27L, 35), in 2011. The unimpeded taxi-out times estimated parameters

are listed in Table G.1 and the service time parameters are shown in Figure G-3. As explained in

Section 4.3.2, α is calculated so that the predicted median taxi-out time equals the actual median

taxi-out time (16 min) and equals 0.22 min/AC.

This model is only different from that described in Section 4.4.5 of Chapter 4 in its use of

endogenous information for predicting the departure capacity in each 15-minute period. At the

beginning of each 15-minute period, the model first predicts the number of props and Heavies

on the ground and then chooses the appropriate service time distribution (Figure G-3). This is

accomplished by estimating the expected number of Heavies and props taxiing out following the

method outlined in Section 4.4.5. The takeoff time of each aircraft is assumed to be Cl+ d̃l(j), that

is, the sum of its arrival time at the departure queue and is effective queuing delay. Repeating this

calculation for all Heavy and prop aircraft yields the expected takeoff schedule for these aircraft.

From their expected takeoff times, we calculate the expected number of Heavies and props on the

ground, which are then used to derive the service time distributions for each 15-minute interval.

Figure G-4 shows the frequency of the different congestion states observed in the operational

data and predicted by the model. The model predicts the airport being as often as observed at the

higher congestion states (N > 15). However, the model underpredicts the number of aircraft that

push back in medium congestion (5 < N ≤ 15) and correspondingly it overpredicts the number of

aircraft in low congestion (N ≤ 5). We hypothesize that this is an artifact of the runway utilization.

As shown in Figure D-8, in saturation, there is one departure out of runway 35 for every 11 to 12

departures out of runway 27L. However, at lower congestion states the secondary runway may be

used even less frequently.

Figure G-4 also shows the expected taxi-out time as a function of the number of aircraft taxiing-

out at the time of pushback for both the actual and the modeled operations. Consistently with the

traffic state predictions, we note that the taxi-out time is predicted very accurately for N > 15.

The underprediction of congestion results in a slight underprediction of taxi-out times at congestion

states lower than 15.

Table G.2 contains more detailed statistics about the number of aircraft and the taxi times in

different congestion levels. In agreement with the plots of Figure G-4, the model predicts accurately
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both the frequency of the different congestion states and the taxi-out times at higher congestion

states (N ≥ 15).
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Figure G-4: Actual and modeled frequency of all states N (top); Actual and modeled dependence
of the average taxi-out time as a function of the state N at the time of pushback (bottom) for PHL
runway configuration 26, 27R, 35 | 27L, 35 in year 2011.

Table G.2: Aggregate taxi time predictions for PHL runway configuration 26, 27R, 35 | 27L,
35 in year 2011.

Congestion Actual # Actual mean Mod. # Mod. mean
level of flights taxi time (min) of flights taxi time (min)

all 136286 18.98 136334 18.30

(N ≤ 8) 48874 14.18 52041 12.89

(9 < N ≤ 14) 35361 16.85 32064 16.343

(N ≥ 15) 52051 24.96 52207 24.86

In Figure G-5, we show the mean and median throughput as predicted by the model as a

function of the congestion state N . The model predicts both the mean throughput and the median

throughput very accurately in higher traffic conditions (N ≥ 15). It is noteworthy that the model

predicts the decrease of the mean and median departure throughput at very high congestion states

(N ≥ 30). This is because higher congestion states are associated with many Heavies, fewer props

and low route availability, which imply lower departure capacity (Figure G-3). The predictions for
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the 15-minute throughput at each minute are also listed in Table G.3. This case demonstrates the

importance of dynamic service time distributions. If we used only one service time distribution, this

would be derived from the departure throughput in saturation (20 ≤ N ≤ 27), which implies service

time Erlang distributed with parameters (2 × 13.0, 2). The results from applying the stochastic

and static model (S.M.) are also shown in Figure G-5 with the dashed black line. We note, that, as

expected, the static service time distributions predict a steady departure throughput at 13 AC/15

min after the airport enters the saturation regime.
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Figure G-5: Actual and modeled throughput of each state N : Mean (top); Median (bottom) for
PHL runway configuration 26, 27R, 35 | 27L, 35 in year 2011.

Table G.3: Prediction statistics for the congestion state and the throughput for PHL runway
configuration 26, 27R, 35 | 27L, 35 in year 2011.

N(t) > 0 N(t) ≥ 10

ME MAE RMSE ME MAE RMSE

State (AC) -0.45 1.85 3.32 -0.79 2.99 4.79
Throughput (AC/15 min) -0.01 1.48 2.07 -0.2 1.82 2.42

We can use the model to predict the evolution of the departure throughput and taxi-out times

over a day at PHL. In the upper plot of Figure G-6, we show the average number of pushbacks
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and the average number of takeoffs (or departures) that was recorded during each 15 minute time-

window for all days in which this runway configuration was in use in 2011. We also show the average

number of departures of this runway configuration of PHL, as predicted by the model. In the lower

part of Figure G-6, we show the actual and predicted average taxi-out times for the flights that

pushed back in each 15-minute time window. We observe that the model is representative of an

average day at PHL.
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Figure G-6: Average number of pushbacks, average number of actual and predicted takeoffs at PHL
in 2011 (top); Average actual and predicted taxi-out times (bottom).

Finally, in Figure G-7, we show the predictions for the departure throughput of Heavies and

props averaged over all days that this runway configuration was in use in 2011. We notice that

the departure throughput of both Heavy aircraft and props is predicted very accurately over the

course of the day. Thus, we see that the model not only uses fleet mix information to predict the

total departure throughput accurately, as shown in Figures G-5 and 5-17, but it also accurately

predicts the throughput of the aircraft types which are expected to reduce (Heavy aircraft) or
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increase (props) the departure throughput. This means that, on average, Heavy aircraft and props

are predicted to stay on the ground for as long as they actually do and thus using information

about their expected number on the ground does not bias the estimates. Concluding, we note by

inspecting Figures 5-17 and G-7 that the low departure throughput and the high taxi-out times

associated with the evening departure push (1730 to 1930 hours) are partly explained by the large

number of Heavy aircraft and the small number of props pushing back in that time-period.
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Figure G-7: Average number of pushbacks, average number of actual and predicted takeoffs of Heav-
ies at PHL in 2011 (top); Average number of pushbacks, average number of actual and predicted
takeoffs of props at PHL in 2011 (bottom).
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Appendix H

Assessment of the Impacts of the New

Runway at Charlotte International

Airport

In this appendix, we present a case study with policy implications. First, we apply the opera-

tional throughput method presented in Chapter 2 to measure the capacity increase in Charlotte

International Airport (CLT) resulting from the construction of runway 18R/36L in January 2010.

Subsequently, we apply the analytical queuing model presented in Chapter 4 to estimate the taxi-

out delay savings due to the added runway.

In addition to assessing of the operational gains from the deployment of the new runway, this

appendix offers two significant methodological contributions. Firstly, we show that operational

throughput envelopes can differ not only in counts, but also in shape from theoretical estimates,

and secondly, we show that the queuing model can be successfully applied to multi-departure

runway systems.

H.1 Operational throughput envelopes at CLT before and after

the new runway

Runway 18R/36L was constructed in 2009-2010, and became operational in January 2010. The

airport diagram can be seen in Figure A-6. The new runway added significant capacity to the two

major runway configurations of the airport in use during VMC:

287



• South flow configuration: 18R, 23 | 18R, 18L became 18C, 18R, 23 | 18C, 18L.

• North flow configuration: 36L, 36R | 36L, 36R became 36C, 36L, 36R | 36C, 36R.

In Figure H-1, we present the operational throughput envelopes for the two major runway config-

urations for three years before and two years after the addition of the new runway. The capacity

estimates are also summarized in Tables H.1 and H.2.
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Figure H-1: Operational throughput envelope of the major CLT runway configurations.

In Figure H-1, we notice two families of curves for both runway configurations: Those from

the years before the addition of the new runway (2007, 2008, and 2009) and those after (2010,

and 2011). The departure capacity appears to have increased by 2 to 4 AC/15 min for a given

arrival throughput and the arrival priority capacity by 4 AC/15 min. For the case of the north

flow configuration, shown in Figure H-1b, we also note the stability of the estimated curves, that

is, the estimated operational throughput envelopes are almost identical for the years 2007-2009 and

2010-2011. There is a higher variability in the estimated operational throughput envelopes for the

south flow runway configuration, shown in Figure H-1a, in the years 2007-2009. We hypothesize

that this is due to differences in the way the “diagonal runway”, Runway 23, has been deployed.
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In Figure H-1, we note that most of the fitted curves for this airport are convex, and not concave.

This choice is driven by the shape of the measurements of the departure throughput as a function of

the arrival throughput. For instance, Figure H-2 shows the mean value of the departure throughput

at all values of arrival throughput for runway configuration 18R, 23 | 18R, 18L in 2007, and the

fitted convex function. Clearly, the measured mean departure throughput is a convex function of

the arrival throughput.
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Figure H-2: Data scatter, mean values, and fitted throughput function the south flow configuration
(18R, 23 | 18R, 18L) in 2007.

As Morisset demonstrates, the theoretical capacity envelopes form a convex hull of all operating

points by definition [84]. If two points are valid points of the capacity envelope, like points (1, 22)

and (19, 16) of the envelope of Figure H-2, any linear combination between the two points is a

feasible operating point. It is achieved by operating some time at the first point and the rest of

the time at the second point. For example, operating point (10,19) is simply achieved by operating

half of the 15-minute period in the (1, 22) regime and the other half in the (19, 16) regime. All

points between two points of the envelope are feasible and thus the capacity envelope is the convex

hulls of these points. Thus, theoretically, the departure throughput is expected to be a concave

function of the arrival throughput.

However, in practice this does not need be the case. As Figure H-2 shows, the departure

throughput may not to be a concave function of the arrival throughput for an airport with a
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complex layout. We hypothesize that this happens when the available capacity is not utilized in

the same manner all the times, but it changes depending on aircraft fixes for the departure aircraft,

gate location of the arrival aircraft, pilots’ preferences, operating practices and other subjective

factors, like congestion on the ground, delay severity etc.

For the particular example of Figure H-2, the runway configuration is most efficiently utilized in

the balanced operations scenario as following: Each arrival on runway 23 is followed by a departure

on runway 18L. Analysis of ASDE-X data on airports with crossing runways, where the one runway

is used for arrivals and the other for departures (LGA runways 22 and 13 and BOS runways 27

and 33L) shows that 9 arrivals/15 min and 9 departures/15 min is a feasible operating point for

such cases. Additionally, Runway 18R can serve six arrivals and six departures in a 15 minute

interval. Thus, the balanced capacity is theoretically expected to be around 15 arrivals/15 min and

15 departures/15 min. Indeed, the estimated balanced operations capacity is 16 arrivals/15 min

and 16 departures/15 min.

Similarly, runway 18R can serve two arrivals and 10 departures in a 15-minute interval. This

would yield the operating point (11,19). In general, operating points (0,12), (1, 11), ...., (5,7), (6,6)

are valid for Runway 18R. At the same time, Runways 23 and 18L can operate at the (9,9) point.

This would yield a linear segment in the operational throughput envelope, of slope -1, between

points (9,21) and (15,15). However, as Figure H-2 reveals, the operational throughput envelope

stays almost flat at around 16 departures/15 min when the arrival throughput increases from 9 to

15 AC/15 min.

We hypothesize that this discrepancy results from different utilization of the runways. Consider

for example the following case: On average, 5 arrivals/15 min and 7 departures/15 min are per-

formed on Runway 18L. As arrival demand increases, arrival throughout on Runway 23 increases

from 4 AC/15 min to 10 AC/15 min, and the departure throughput of Runway 18R stays flat

around 9 AC/15 min. As it was shown with the example of LGA in Figure C-2, the departure

throughput of a departure runway that crosses an arrival runway changes very little with the ar-

rival throughput of the crossing runway. Thus, in this case and in agreement with Figure H-2, the

airport departure throughput stays flat at 16 AC/15 min, as the arrival throughput increases from

9 to 15 AC/15 min. ASDE-X data would be helpful for investigating the utilization of the runways

in more detail and for identifying opportunities for more efficient utilization of the runways.
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H.2 Estimation of added capacity at CLT

Tables H.1 and H.2 summarize the capacities of CLT before and after the addition of the new

runway for the two major configurations, as measured in the years 2007-2009 and 2010-2011. We

observe that the balanced operations capacity increased by 25%, the arrival priority capacity by

20%, and the departure priority capacity by 29% for the south flow configuration. For the north

flow configuration, the balanced operations capacity increased by 21%, the arrival priority capacity

by 16%, and the departure priority capacity by 17%. Overall, from Tables H.1 and H.2, we conclude

that the available capacity increased significantly.

Table H.1: CLT aggregate average runway throughput before and after the capacity expansion
for the south flow configuration (AC/15 min).

South flow 2007-2009 2010-2011

Capacity
Balanced Arrival Departure Balanced Arrival Departure
operations priority priority operations priority priority

Arrival 16 19 6 20 23 10
Departure 16 16 18 20 19 21

Total 32 35 24 40 42 31

Table H.2: CLT aggregate average runway throughput before and after the capacity expansion
for the north flow configuration (AC/15 min).

North flow 2007-2009 2010-2011

Capacity
Balanced Arrival Departure Balanced Arrival Departure
operations priority priority operations priority priority

Arrival 15 17 6 18 21 8
Departure 14 14 18 17 15 20

Total 29 31 24 35 36 28

Tables H.1 and H.2 are useful for measuring the increase in available capacity, but they do

not show the actual utilization of the additional capacity. For this, we use the fitted curves of

Figure H-1 and the arrival throughput measurements in the years 2009-2011. For all times in 2010

and 2011 that the north and south flow configurations were in use, the operational throughput

is defined by the sum of the arrival throughput and the corresponding departure throughput (as

measured with the curves “2010 Average throughput” and “2011 Average throughput” of Figure

H-1). We also measure the operational throughput in the scenario of no new runway, by summing

the arrival throughput at this minute and the corresponding departure throughput (as measured

with the curve “2009 Average throughput”).

For example, if the airport was in south flow in 2010 and the arrival throughput was 10 AC/15
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min, Figure H-1a implies that the departure throughput was 21 AC/15 min. Thus, the total opera-

tional throughput at this time was 21+10=31 AC/15 min. By contrast, in 2009, for 10 arrivals/15

min, the departure throughput was only 18 AC/15 min and the total operational throughput 28

AC/ 15 min. The operational throughput improvement is 3 AC/15 min. For the times with arrival

throughput larger than the arrival priority capacity in 2009 (arrival throughout ≥ 19 AC/15 min

in Figure H-1a), the improvement is calculated by adding the improvements in arrival through-

put and the departure throughput. Consider the following example: An arrival throughput of

20 AC/15 min in 2010 is higher than the arrival priority capacity of 2009. This suggests that

the airport would have operated at the maximum arrival capacity of 2009, had the new runway

not been added. Thus, the operational point would have been (19,16) in 2009, which implies an

operational throughput of 35 AC/15 min. In 2010, arrival throughput of 20 AC/15 min implies

departure throughput of 20 AC/15 min, thus the operational throughput is 40 AC/15 min and the

total throughput improvement is 5 AC/15 min.

Repeating this calculation for all datapoints in the south flow configuration, we measure a total

operational throughput increase of 12% in 2010, as compared to 2009. For 2011, we measure an

improvement of 11%, as compared to 2009. Similarly for datapoints in the north flow configuration

in 2010 and 2011, we obtain a total capacity increase of 12% compared to 2009. We also note that

the departure throughput increase is the primary contributor to the increase of the operational

throughput. For most of the times, the arrival throughput in 2010 and 2011 was within the arrival

priority capacity limits of 2009. Thus, the new runway contributed primarily towards the departure

throughput, which increased 14-16%. In the next section, we estimate the impact of this added

departure throughput on the taxi-out delays.

Table H.3: CLT aggregate runway operational throughput improvement in 2010-2011, relative
to the operational throughput in 2009.

South flow North flow

Year
Total thr. Arr. thr. Dep. thr. Total thr. Arr. thr. Dep. thr.
increase increase increase increase increase increase

2010 12% 8% 15% 12% 5% 16%

2011 11% 7% 14% 12% 4% 16%
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H.3 Taxi times at CLT

As a next step, we would like to evaluate the impact of the added capacity on the taxi-out times

at CLT. In Table H.4 we list the number of movements and the average taxi times at CLT in the

years 2006-2011 according to the ASPM database [38]. We notice that the traffic increased in the

years 2006-2008, and the average taxi-out time also increased from 17.30 min to 18.92 min. In

2009, there were fewer movements than in 2007. However, the average taxi-out time decreased

very little, and exceeded that of 2007. Clearly, the taxi-out times are a function not only of

the departure demand, but also the pushback schedule, the runway configuration utilization, the

weather, downstream constraints, gate locations of the departing flights etc. The average taxi-in

times were stable between 6 and 6.6 min in the years 2006-2009.

In 2010, the new runway became operational, and this resulted in a significant decrease of

taxi-out times despite the increase in the number of movements. In 2011, the traffic increased

further and exceeded 500,000 movements, but the taxi-out times remained lower than in the years

2007-2009. We also notice the sharp increase of taxi-in times in the years 2010 and 2011. It could

be conjectured that this increase is related to the addition of runway 18R/36L, which is primarily

an arrival runway, and is located further from the terminal than the other runways.

Table H.4: CLT aggregate taxi times in years 2007-2011.

Year Departures
Average

Arrivals
Average

taxi-out time (min) taxi-in time (min)

2006 234,974 17.30 234,521 6.00

2007 241,960 17.95 241,616 6.59

2008 248,162 18.92 248,224 6.54

2009 238,674 18.47 238,612 6.27

2010 248,430 17.16 248,236 7.46

2011 254,188 17.85 253,995 8.54

H.4 Impact of added capacity on taxi-out times

It is clear that the aggregate taxi time statistics provided in Section H.3 do not fully describe

the impact of the added runway capacity on the taxi-out times in CLT. The resultant observed

taxi-out times are a complicated function of the departure demand, the pushback schedule, the

arrival schedule, the added capacity, the runway configurations utilized, the gates utilized, the

downstream constraints, etc. For this reason, we calibrate the queuing model described in Chapter
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4 for the major runway configurations at CLT, and predict taxi-out times in 2010 and 2011 under

two different scenarios, keeping everything else equal:

1. No new runway (counter-factual scenario).

2. New runway, added in 2010.

By comparing the taxi-out times and taxi-out delays predictions of the model in the two scenarios,

we can evaluate the impact of the added runway capacity in the taxi-out operations. We also note

that the fleet mix at CLT did not change significantly in the years 2009-2011.

H.4.1 North flow configuration

No new runway

We first train the queuing model using 2009 data, the most recent year before the addition of the

new runway.

Using the filtered dataset in saturation, which was also used for deriving the operational

throughput envelope shown in Figure H-1b, we construct a regression tree predicting the departure

throughput as a function of the arrival throughput. We only have access to ASPM data, and do not

have information on downstream constraints. The resultant (pruned) tree is shown in Figure H-3.

We note that we do not have information on runway assignments either, thus the service process of

the two departure runways, 36L and 36R, is modeled with a single queuing system, the parameters

of which are estimated from the regression tree in Figure H-3.

We also estimate the unimpeded taxi-out times using the method described in Section 4.3.1.

The average taxi-out time is 13.43 min. The taxiway congestion parameter, α is estimated at 0.15

min/AC. We then use the model parameters and the actual pushback schedule to predict taxi-out

times for all flights that used runway configuration 36L, 36R | 36L, 36R in the years 2007-2009. The

pushback schedules of the years 2007 and 2008 are used as test datasets. The aggregate results are

summarized in Table H.5. We notice that the model predicts the average taxi-out times accurately

for the training as well as the two test datasets.

Finally, we use this model to predict the taxi-out times for the flights that used runway configu-

ration 36C, 36L, 36R | 36C, 36R in 2010 and 2011. The predicted taxi-out times and taxi-out delays

are listed in Table H.5. The large difference between the actual and the predicted taxi-out times

in the counterfactual scenario reflects the impact of the added capacity on the taxi-out times. In
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Arrivals<7* Arrivals≥7*

Arrivals<3* Arrivals≥3* Arrivals<11* Arrivals>=11*

Arrivals<10* Arrivals≥10*Arrivals<5* Arrivals≥5*

20.87* 19.25* 17.23* 16.13*

14.95*22.53*

Figure H-3: Regression tree showing the departure throughput (AC/15 min) of the (VMC; 36L,
36R | 36L, 36R) configuration in 2009, parametrized by arrival throughput (AC/15 min).

2011, the mean taxi-out time would have been 23.76 min had the new runway not been built, that

is, had the flights which used 36C, 36L, 36R | 36C, 36R used runway configuration 36C, 36R | 36C,

36R instead. The actual mean taxi-out time was only 19.54 min, that is 4.22 min less than what

would have been in the absence of the additional runway. Similarly, taxi-out times in 2010 would

have been, on average, longer by 3.76 min for the 40,497 flights that used runway configuration

36C, 36L, 36R | 36C, 36R, had the new runway not been constructed.

Table H.5: CLT aggregate taxi-out time predictions for the north flow configuration during
the years 2007-2011. No new runway is assumed in the model predictions.

Year Departures
Actual mean Model mean Model mean Actual med. Model med.

taxi-out taxi-out taxi-out taxi-out taxi-out
time (min) time (min) delay (min) time (min) time (min)

2007 74,216 19.81 19.63 6.20 18 18

2008 64,429 21.60 21.13 7.70 19 20

2009 59,631 22.37 21.93 8.50 20 20

2010 40,497 19.46 23.22 9.79 18 22

2011 43,005 19.54 23.76 10.33 18 22

New runway

We first train the queuing model using 2011 data, the most recent year after the addition of the new

runway. Using the filtered dataset in saturation, which was also used for deriving the operational

throughput envelope shown in Figure H-1b, we construct a regression tree predicting the departure

throughput as a function of the arrival throughput. The resultant (pruned) tree is shown in Figure
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H-4. Comparing it to the regression tree shown in Figure H-3, we immediately notice the increase

in departure throughput under all arrival throughput conditions.

Arrivals<10+ Arrivals≥10+

Arrivals<16+ Arrivals≥16+

Arrivals<14+ Arrivals≥14+

18.48+

Arrivals<5+ Arrivals≥5+

Arrivals<2+ Arrivals≥2+

22.55+

Arrivals<18+ Arrivals≥18+

16.56+19.66+ 17.78+23.40+

21.02+

Figure H-4: Regression tree showing the departure throughput (AC/15 min) of (VMC; 36C, 36L,
36R | 36C, 36R) configuration in 2011 parametrized by arrival throughput (AC/15 min).

We also estimate the unimpeded taxi-out times as described in Section 4.3.1. The average

taxi-out time is 13.28 min, very similar to that of 2009. This similarity was expected because

the new runway is not used for departures in this runway configuration. The taxiway congestion

parameter, α is estimated at 0.13 min/AC. We then use the model parameters and the actual

pushback schedule to predict taxi-out times for all flights that used runway configuration 36C, 36L,

36R | 36C, 36R in the years 2010 and 2011. The pushback schedule for 2010 is used as the test

dataset. The aggregate results are summarized in Table H.6. We notice that the model predicts

the average taxi-out times accurately for the training and the test dataset.

Table H.6: CLT aggregate taxi-out time predictions for the north flow configuration for the
years 2010-2011.

Year Departures
Actual mean Model mean Model mean Actual med. Model med.

taxi-out taxi-out taxi-out taxi-out taxi-out
time (min) time (min) delay (min) time (min) time (min)

2010 40,497 19.46 19.97 6.70 18 19

2011 43,005 19.54 19.24 5.96 18 18

Predicted delay reduction

We now compare the predicted taxi-out times and the predicted delays of the two scenarios and

estimate the taxi-out delay reduction resulting from the added capacity in Table H.7. From Tables
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H.3 and H.7, we notice that as predicted by the model, the 16% increase in departure operational

throughput resulted in 32% and 42% decrease in taxi-out delays tin 2010 and 2011 respectively.

Table H.7: CLT predicted taxi-out time and taxi-out delay reduction for the north flow con-
figuration in 2010 and 2011

Year Departures
Predicted mean Predicted mean Predicted percent Predicted percent
taxi-out time taxi-out delay taxi-out time taxi-out delay

reduction (min) reduction (min) reduction reduction

2010 40,497 3.25 3.09 14% 32%

2011 43,005 4.53 4.37 19% 42%

These results can also be visualized using the figures introduced in Chapters 4 and 5. Figure

H-5 shows the frequency of the different congestion states observed in the operational data and

predicted by the model in 2010 (the test dataset). The model predicts the frequency of congestion

levels reasonably well. Figure H-5 also shows the expected taxi-out time as a function of the number

of aircraft taxiing-out at the time of pushback, for both actual operations and modeled operations.

Figure H-6 shows the predicted throughput of configuration 36C, 36L, 36R | 36C, 36R at CLT in

2010 as a function of the congestion state N . We note that the model predicts the mean and the

median throughput and the mean taxi-out times very accurately in all traffic conditions, despite

modeling the two departure runways as a single server, and despite the slightly different airport

capacity in 2010 (Figure H-1b).

These results can be contrasted with the results shown in Figures H-7 and H-8, which show the

corresponding predictions in the counter-factual scenario, that is, had the new runway not been

added. The benefit of the added departure capacity in terms of reducing both the congestion and

the taxi-out times can be clearly seen in these figures.
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Figure H-5: Actual and modeled frequency of each state N (top); Actual and modeled average
taxi-out time as a function of the state N at the time of pushback (bottom) for CLT runway
configuration 36C, 36L, 36R | 36C, 36R in 2010.
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Figure H-6: Actual and modeled throughput of all states N for CLT runway configuration 36C,
36L, 36R | 36C, 36R in 2010: Mean (top); Median (bottom).
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Figure H-7: Actual and modeled frequency of each state N (top); Actual and modeled average
taxi-out time as a function of the state N at the time of pushback (bottom) for CLT runway
configuration 36C, 36R | 36C, 36R in 2010. No new runway is assumed in the model predictions.
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Figure H-8: Actual and modeled throughput of all states N for CLT runway configuration 36C,
36R | 36C, 36R in 2010: Mean (top); Median (bottom). No new runway is assumed in the model
predictions.
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We also use the model to predict the average throughput and taxi-out times evolution during

an average day at CLT in 2010. In the upper plot of Figure H-9, we show the average number of

takeoffs (or departures) that was recorded during each 15 minute time window for all days in which

this runway configuration was in use in 2010. We also show the average number of departures of

this runway configuration in CLT, as predicted by the model. In the lower part of Figure H-9,

we show the actual and predicted average taxi-out times for the flights that pushed back in each

15-minute time window. We observe that the model faithfully represents an average day at CLT.
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Figure H-9: Average number of pushbacks, and average numbers of actual and predicted takeoffs
by time of day at CLT for runway configuration 36C, 36L, 36R | 36C, 36R in 2010 (top); Average
actual and predicted taxi-out times (bottom).

Analogously, we show the predictions had the new runway capacity not been added in Figure H-

10. We notice that the absence of the new runway leads to much longer taxi-out times during most

departure pushes. Comparing Figures H-9 and H-10, we notice that the added capacity especially

benefits the flights that would have suffered the longest delays. Without the new runway, flights

that push back between 1000 hours and 1015 hours are predicted to have taxi-out times of 38 min

on average. With the new runway, the actual and predicted taxi-out times for these flights are only
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26-27 minutes.
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Figure H-10: Average number of pushbacks, and average numbers of actual and predicted takeoffs
by time of day at CLT for runway configuration 36C, 36R | 36C, 36R in 2010 (top); Average actual
and predicted taxi-out times (bottom). No new runway is assumed in the model predictions.

H.4.2 South flow configuration

Here, we repeat the process described in the previous section for the south flow runway configura-

tion. We first train the queuing model using 2009 data, the most recent year before the addition

of the new runway.

We use the model parameters and the actual pushback schedule to predict taxi-out times for all

flights that used runway configuration 18R, 23 | 18R, 18L in the years 2007-2009. The pushback

schedules of the years 2007 and 2008 are used as test datasets. The aggregate results are summarized

in Table H.8. We notice that the model does not predict the average taxi-out times very accurately

for the test datasets. This is because of the differences in the operational throughput curves in the

years 2007-2009 shown in Figure H-1a, and discussed in Section H.1. Clearly, the queuing model is

not capable of predicting changes in the airport capacity across different years.
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Subsequently, we use the model to predict the taxi-out times for the flights that used runway

configuration 18C, 18R, 23 | 18C, 18L in in 2010 and 2011. The predicted taxi-out times and

taxi-out delays are listed in Table H.8 as well. As in the case of the north flow configuration,

the significant difference between the actual and the predicted taxi-out times in the counterfactual

scenario indicates the impact of the added capacity on the taxi-out times. In 2011, the mean taxi-

out time would have been 19.64 min had the new runway not been built, that is, had the 61,540

flights which used runway 18C, 18R, 23 | 18R, 18L used runway configuration 18C, 23 | 18C, 18L

instead. The actual mean taxi-out time was only 16.73 min, that is 2.91 min less than what would

have been in the absence of the additional runway. Similarly, taxi-out times in 2010 would have

been on average 2.71 min longer for the 52,965 flights that used runway configuration 18C, 18R, 23

| 18C, 18L, had the new runway not been constructed.

Table H.8: CLT aggregate taxi-out time predictions for the south flow configuration in years
2007-2011. No new runway is assumed in the model predictions.

Year Departures
Actual mean Model mean Model mean Actual med. Model med.

taxi-out taxi-out taxi-out taxi-out taxi-out
time (min) time (min) delay (min) time (min) time (min)

2007 122,879 17.11 16.06 4.01 15 15

2008 104,233 18.08 16.85 4.80 16 16

2009 108,843 18.55 18.14 6.10 17 17

2010 52,965 16.56 19.27 7.23 15 18

2011 61,540 16.73 19.64 7.59 15 19

We then train the queuing model using 2011 data, the most recent year after the addition of the

new runway. We use the model parameters and the actual pushback schedule to predict taxi-out

times for all flights that used runway configuration 18C, 18R, 23 | 18C, 18L in the years 2010

and 2011. The pushback schedules for 2010 is used as the test dataset. The aggregate results are

summarized in Table H.9. We notice that the model predicts the average taxi-out times fairly well

for the training and the test datasets.

Table H.9: CLT aggregate taxi-out time predictions for the south flow configuration for the
years 2010-2011.

Year Departures
Actual mean Model mean Model mean Actual med. Model med.

taxi-out taxi-out taxi-out taxi-out taxi-out
time (min) time (min) time (min) time (min) time (min)

2010 52,965 16.56 16.78 5.26 15 16

2011 61,540 16.73 15.93 4.42 15 15
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We compare the predicted taxi-out times and the predicted delays of the two scenarios, and

estimate the taxi-out delay reduction resulting from the added capacity in Table H.10. From Tables

H.3 and H.10, we notice that as predicted, the 15% and 14% increase in departure operational

throughput in 2010 and 2011 resulted in 27% and 42% decreases in taxi-out delays, respectively.

Table H.10: CLT predicted taxi-out time and taxi-out delay reduction for the south flow
configuration in 2010 and 2011.

Year Departures
Predicted mean Predicted mean Predicted percent Predicted percent
taxi-out time taxi-out delay taxi-out time taxi-out delay

reduction (min) reduction (min) reduction reduction

2010 52,965 2.49 1.97 13% 27%

2011 61,540 3.70 3.18 19% 42%

Finally, we provide visualizations of the ability of the model to predict operations in a multi-

runway system with crossing runways by using a single stochastic and dynamic queuing system in

Figures H-11 and H-12, which show the predictions for 2010 (the test dataset). In Figure H-12,

we notice that the model predicts the average departure throughput at all congestion states very

accurately. Similarly, from Figure H-11, we notice that it predicts taxi-out times very accurately

at lower and medium congestion states (N < 30).
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Figure H-11: Actual and modeled frequency of each state N (top); Actual and modeled average
taxi-out time as a function of the state N at the time of pushback (bottom) for CLT runway
configuration 18C, 18R, 23 | 18C, 18L in 2010.

303



0 5 10 15 20 25 30 35 40
0

5

10

15

20

Number of aircraft taxiing out

 

 

Actual mean
Predicted mean

0 5 10 15 20 25 30 35 40
0

5

10

15

20

D
e

p
a

rt
u

re
 t

h
ro

u
g

h
p

u
t 

(A
C

/1
5

 m
in

)

 

 

Actual median
Predicted median

Figure H-12: Actual and modeled throughput of all states N for CLT runway configuration18C,
18R, 23 | 18C, 18L in 2010: Mean (top); Median (bottom).

H.5 Conclusions

In this appendix, we assessed the addition of a new runway at CLT in 2010. Firstly, we found that

the operational throughput envelopes for a multi-runway airport, where runways are shared by

arrivals and departures, are not necessarily convex. We measured the capacities of the two major

runway configurations of the airport before and after the addition of the runway. We found that

the balanced operations capacity of the south flow increased from 32 AC/15 min to 40 AC/15 min,

and that of the north flow increased from 29 AC/15 min to 35 AC/15 min. We also found that

the operational departure throughput increased on average by only 14% to 16% for the two major

runway configurations respectively. Finally, we calibrated the queuing model for the north flow

and the south flow runway configurations, and predicted the taxi-out times and the taxi-out delays

with and without the new runway. We estimated that taxi-out delays decreased approximately by

30% in 2010 and by 40% in 2011, as a result of added capacity.
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