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Abstract
Adaptive control technology is a promising candidate to deliver high performance in air-
craft systems in the presence of uncertainties. Currently, there is a lack of robustness guar-
antees against time delay with the difficulty arising from the fact that the underlying prob-
lem is nonlinear and time varying. Existing results for this problem have been quite limited,
with most results either being local or at best, semi-global. In this thesis, robust adaptive
control for a class of plants with global boundedness in the presence of time-delay is es-
tablished. This class of plants pertains to linear systems whose states are accessible. The
global boundedness is accomplished using a standard adaptive control law with a projection
algorithm for a range of non-zero delays. The upper bound of such delays, i.e. the delay
margin, is explicitly computed. The results of this thesis provide a highly desirable fun-
damental property of adaptive control, robustness to time-delays, a necessary step towards
developing theoretically verifiable flight control systems.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Senior Research Scientist of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Adaptive Controller for Safe Flight

One of the most important ingredients needed for achieving reliable flight is flight safety.

Flight safety may be violated when an aircraft meets non-normal flight conditions such as

failures, damages, or other upsets, and the flight controller on-board may not be adequate

for stabilization and therefore fail to ensure safety. Therefore an advanced control method

that can guarantee stability in the presence of these non-normal flight conditions is needed.

Adaptive control has been believed to be a strong candidate to achieve this goal with the

potential to improve flight safety. In the context of the underlying dynamic model, most of

the non-normal flight conditions can be directly mapped into parametric uncertainties, and

adaptive control is the theoretical discipline which was developed with an aim to maintain

stability against parametric uncertainties. Therefore, an adaptation-based reconfigurable

flight controller is believed to maintain satisfactory performance when actuator failures,

flight upsets, and other unforeseen changes in the system dynamics occur.

Adaptive control theory itself has been extensively studied over the past three decades,

with its basic performance and robustness properties currently well understood [44, 34, 27,

60, 53, 3, 58]. With promising features, such as the stability against parametric uncertain-

ties, adaptive control theory has been studied extensively in the context of adaptive flight

13



control systems too after 90s and its potential has been verified both theoretically and nu-

merically, [54, 18, 4, 19] for example. More recently, there has been significant interest

[31, 35, 12, 11, 49] and success in applying adaptive methods to flight. In this thesis, we

also demonstrate as well that introducing adaptation into the transport aircraft improves

flight safety through high-fidelity simulation studies based on NASA Generic Transport

Model (GTM). The improved safety against some failure scenarios will be discussed in

Chapter 2, where adaptive controller achieves stable behavior in comparison to nominal

controller in the presence of flight failures.

What remains to be shown is a rigorous demonstration of guarantees of robustness of

these adaptive flight control systems in the presence of non-parametric perturbations such

as unmodeled dynamics and more importantly, time-delays.

1.1.2 Time Delay

In a typical flight control problem, there almost always are perturbations which cannot be

modeled as parametric uncertainties. Examples of such perturbations are unmodeled dy-

namics, time-delays, and nonlinearities. Reference [1] discusses challenges of adaptive

control and shows that undesirable features such as instability and bursting can occur in

their presence. Therefore what is important is to derive robustness of adaptive control sys-

tems. That is, a guarantee that even in the presence of these non-parametric uncertainties,

the developed adaptive control systems remain to be stable needs to be established.

Figure 1-1: Time delays in flight control system

Time delay, a typical example of a non-parametric uncertainty, is critical when con-

sidering the robustness of flight control systems to be developed, since in flight systems

14



there are usually present time delays (Figure 1-1) which are highly unknown due to signal

processing, control computations, or telemetry. It is well known that control systems in

general and adaptive control systems in particular can result in degraded performance or

instability in the presence of time delays in closed-loop. We also demonstrate this unde-

sirable property of adaptive systems against time delays in a flight example in Chapter 2,

and rigorously analyze instability of standard Model Reference Adaptive Control (MRAC)

in Chapter 3. Therefore it is imperative to develop a robust adaptive system which remains

stable in the presence of time delays and to prove it rigorously.

Figure 1-2: Time delay margins of control system

In order to state the problem concerning time delay formally, we begin with an intro-

duction of a robustness metric: time delay margin. τ? is said to be time-delay margin of a

closed-loop system if for all time-delays τ with 0≤ τ < τ?, the closed-loop system is guar-

anteed to be stable (See Figure 1-2 for an example). To-date, whether adaptive systems

have a delay margin or not has not yet been answered.

Without a guaranteed delay margin, adaptive flight systems have not been allowed yet

to be applied to commercial aviation, and noting the possible significant improvement in

flight safety which can be introduced by adaptation, this can have a negative impact.

Our goal is to develop a robust adaptive control system in the presence of time delay,

and provide analytically computable delay margins. In other words, the main goal is to

solve a long standing problem in adaptive control for a class of plants with parametric un-

certainties. The class corresponds to linear time-invariant plants with unknown parameters

and subjected to certain unmodeled dynamics and time-delays, whose states are accessible

for measurement. In this thesis we only consider the input delay, which corresponds to

the left figure in Figure 1-2. Since the plant is linear, it can be noted that having a de-
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lay in the plant input or output has the same impact on stability and delay margins of the

corresponding closed-loop systems should be identical.

1.2 Background and Previous Works

In this section we lay out the background and review the most relevant previous works.

Time delay can be regarded as a special case of unmodeled dynamics, and therefore we start

with reviewing the previous works on the robustness of adaptive systems against unmodeled

dynamics.

1.2.1 Stability Margin for Unmodeled Dynamics

One of the first major milestones of robust adaptive control is robustness of uncertain linear

plants to bounded disturbances in 1990 [42]. Several attempts have been made since then to

extend the robustness properties of adaptive systems to the case when unmodeled dynamics

are present. The most general result to date in this direction can be found in [44], [27] where

semi-global stability is guaranteed for a certain class of unmodeled dynamics with a small

parameter µ (see section 9.3 in [27], section 8.7 in [44]) and several papers published in

the ’90s (see [25] for example). The recently popular L 1-adaptive controllers have also

been shown to be only semi-global in the presence of unmodeled dynamics [8].

It should be noted that there have been also some results on global stability such as

[41, 38], but are limited in their usefulness. In [41], the adaptive control problem for a

continuous-time plant of arbitrary relative degree in the presence of bounded disturbances

and a class of unmodeled dynamics is considered, and it is shown that global boundedness

can be achieved by the usual gradient update law with parameter projection. However, the

unmodeled dynamics analyzed in [41] and most of the other global results are again those

which can be described with the small gain µ and it is not possible to apply the result

to time delays straightforwardly. Furthermore, [41] is almost an existence type result and

hence it is difficult to explicitly compute something that can be used in practice.

In [29] and [38], unmodeled dynamics described with a different form are studied so

that the result can be applied to a Pade approximation of a delay. Using a Pade approxi-
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mation, the problem with a delay is converted into one with a state-dependent disturbance

which enables the results on more general unmodeled dynamics to be applied and demon-

strate semi-global or global boundedness, respectively. However it turned out to be that

such result on delays is too conservative to compute margins [29] or is applicable only to

open-loop stable plants [38]. Therefore in spite of the rich results on unmodeled dynamics,

a general, practically useful solution to our goal - delay margin, is unavailable to-date.

1.2.2 Global v.s. Local Results

In this subsection we mainly review the previous works on a delay margin of adaptive

systems.

Due to the difficult nature of the problem, there have been only a handful of papers so

far that have tackled this problem. Among them, the major works are [20, 45, 28, 29, 7, 9],

and [17]. In [20] the authors studied MRAC system in the presence of time delay on the

first-order plant. In [45], [28] and [29], the authors tried to provide computable delay

margins for a standard MRAC possibly with σ -modification by taking approximations of a

time delay. In [9], the authors proved stability of L 1 adaptive controller in the presence of

sufficiently small delays. In [17], newly proposed nonlinear robustness analysis tools are

applied to adaptive flight control to analyze time delay margin based on local stability.

Even though these works provide a lot of insights into the adaptive systems which are

subject to time delay, there is a critical limitation which is common throughout them. That

is, all of the results are only either local or semi-global.

Since adaptive systems are nonlinear, the stability of states in the system depend on

initial conditions. Given a finite time delay, the results so far guarantee stability or bound-

edness only for a finite set of initial conditions around the origin as in the left hand-side of

Figure 1-3. This leads to the problem that we can compute a critical time delay only for a

certain finite set of initial conditions, but may not be for any finite sets. Or, we may be only

able to prove the existence of the critical time delay for any finite sets of initial conditions.

Therefore those results do not provide a delay margin, which should exist for any initial

conditions. In comparison to local results, global results do not have constraints on initial
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conditions and regardless of initial conditions the boundedness of trajectory is guaranteed

as shown in Figure 1-3.

Figure 1-3: Local and global results

Noting the limitation in the previous works, our approach is the following;

• Develop a robust adaptive control system which ensures global boundedness in the

presence of time delay.

Defining a delay margin τ? as in Definition 1, our goal is to compute a delay margin τ∗ for

adaptive control systems. This lays a foundation to guarantee the robustness of adaptive

flight control systems (AFCS).

Definition 1. Time delay margin τ? > 0 is a positive number such that the adaptive control

system exhibits global boundedness for all delay τ with 0≤ τ < τ?.

We note that the previous works discussed above implicitly or explicitly define time

delay margins through the existence of a stable region, or only for a finite set of initial con-

ditions. On the other hand, the proposed research removes any ambiguities of the definition

of delay margins or restrictions arising with initial condition dependent results.

1.2.3 Adaptive Controller for Time-Delay Systems

There are some notables works on adaptive control systems with a delay which obtain

global results with respect to known / unknown time delays. While these insightful pre-

vious works developed useful and important techniques, these works may lack in imple-

mentability or their efficiency has not been verified.
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We start with briefly reviewing previous results obtained for known time delays. There

are many works which studied adaptive control systems for plants with known time delays,

such as [59, 46, 10, 48, 62]. However they require knowing time delays in the system

a priori, and therefore there is still a huge gap between our goal of developing a robust

adaptive controller in the presence of a set of time delays which are usually not known.

There are also many other works which tackled unknown time delays, [22, 21, 64, 63,

33], for example. In [21], robust adaptive control is presented for a class of parametric-

strict-feedback nonlinear systems where unknown time delays were compensated by using

appropriate Lyapunov-Krasovskii functionals. It is proved that the proposed systematic

backstepping design method is able to guarantee global uniform ultimate boundedness of

all the signals in the closed-loop system. In [64], an adaptive controller is developed based

on linear matrix inequality technique and it is shown that the controller can guarantee the

state variables of the closed-loop system to converge, globally, uniformly and exponen-

tially, to a ball in the state space with any pre-specified convergence rate. In [63], adap-

tive neural control is proposed for a class of uncertain multi-input multi-output nonlinear

state time-varying delay systems in a triangular control structure with unknown nonlinear

dead-zones and gain signs. The design is based on the principle of sliding mode con-

trol, the use of Nussbaum-type functions, and appropriate Lyapunov-Krasovskii function-

als and proved to be semi-globally uniformly ultimately bounded. In [33], compensation of

infinite-dimensional actuator and sensor dynamics were developed. A PDE backstepping

approach was used to design delay adaptive systems for plants with infinite dimensional

input dynamics.

Even though the above works successfully achieve global results with respect to un-

known time delays and are insightful for developing robust adaptive systems with nonzero

delay margins, their controller designs are often complicated or hard to implement. Also

it should be noted that some of them are existence type of results with no explicit compu-

tation of delay margins. With these limitations of previous works, we hope to explore the

robustness properties of simple adaptive laws. Such simple adaptive laws are also verified

to be promising for flight control systems as shown in Chapter 2 as well as in literature.
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1.3 Thesis Contributions

Currently the state of the art in robust adaptive control is that there is no rigorous demon-

stration of guarantee of robustness of adaptive flight control systems in the presence of time

delays. The question frequently asked is; what is the time delay margin of the adaptive sys-

tems? The lack of a clear answer to this question is critical, and this is one of the major

causes which prevent this promising technology from being certified in flight applications.

The main result that we establish in this thesis is that MRAC with projection algorithm

does have a nonzero delay margin, which is analytically computable. This result theoret-

ically verifies the adaptive control systems with time delay in general, and will enable us

to get close to a certification for flight applications, which will significantly improve flight

safety in commercial aviation.

Furthermore, analytic relations among control parameters, delay margins, and guaran-

teed bounds on states will allow us to study the dependencies among them and provide

tuning capabilities of the control parameters so as to obtain better performance.

1.4 Thesis Layout

The remainder of this thesis is organized as follows. In Chapter 2, we discuss the actual

development of adaptive control architecture for safe flight, in which a significant improve-

ment from adaptation is observed as well as a robustness concern against time delays is

confirmed. In Chapter 3, adaptive stabilizer systems with standard adaptive laws are stud-

ied to reveal their properties with respect to time delays (instability results). The chapter is

concluded with proposing a simple solution to achieve global boundedness - modifying the

standard adaptive law with a projection algorithm, as well as stating relevant definitions and

lemmas of the algorithm. Chapter 4 then illustrates the analysis of the standard adaptive

system with the projection algorithm, in the presence of unmodeled dynamics. The result

is applied to Pade-approximated input delays. The result in Chapter 4, however, turns out

to be overly conservative, and conclusions which can be drawn about time delays are quite

restrictive. To overcome the limitation of the analysis method used in Chapter 4, Chapter
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5 analyzes the identical adaptive system with a scalar plant, based on first-principles anal-

ysis and successfully provides a computable delay margin. Chapter 6 is the extension of

Chapter 5 to higher-order plants and proposes a new adaptive law based on the projection

algorithm and a nonsingular matrix transformation. Chapter 6 as well as Chapter 5 state

the main results of the thesis. Finally, Chapter 7 presents concluding remarks and future

works.
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Chapter 2

Adaptive Control System for Safe Flight

against Non-normal Conditions

In this chapter we focus on the development and implementation of adaptive control tech-

nology for safe flight. The developed control architecture consists of a nominal controller

that provides satisfactory performance under nominal flying conditions; and a direct Model

Reference Adaptive Controller (MRAC) that provides robustness to parametric uncertainty.

The design, implementation and simulation studies with various uncertainties of both the

nominal and augmented controllers are presented. The designing procedures which encom-

pass both theoretical and practical considerations enable us to develop a controller suitable

for flight.

The proposed adaptive control architecture is applied to the Generic Transport Model

(GTM) developed by NASA Langley Research Center. Numerous simulation studies,

which were conducted with various uncertainties and failures, indicate some advantages

and drawbacks of adaptation. While a significant improvement in flight safety introduced

by the suggested control design is observed with several failure and damage cases, an

undesirable flight performance and robustness concerns also become apparent. The ad-

verse conditions considered are grouped into four categories: aerodynamic uncertainties,

structural damage, unknown time delays, and actuator failures. These failures include par-

tial and total loss of control effectiveness, locked-in-place control surface deflections, and

engine-out conditions.
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Figure 2-1: NASA GTM test article and its concept of operations.

2.1 Generic Transport Model

The Generic Transport Model (GTM) is a model of a transport aircraft for which both a

dynamically scaled flight-test article and a high-fidelity simulation are available. Figure

2.1 shows the flight test article and its concept of operations. References [30], [40], [16]

provide details on the vehicle’s configuration and characteristics, the concept of operations,

and the flight experiments. The aircraft is piloted from a ground station via radio frequency

links by using on-board cameras and synthetic vision technology.

The high-fidelity simulation uses non-linear aerodynamic models extracted from wind

tunnel data and system identification for conditions that include high angles of attack and

spins, and considers actuator dynamics with rate and range limits, engine dynamics, sensor

dynamics along with analog-digital-analog latencies and quantization, sensor noise and

biases, telemetry uplink and downlink time delays, turbulence, atmospheric conditions, etc.

The open-loop system model has 278 state variables. As the actual vehicle itself, this model

departs considerably from the Linear Time Invariant (LTI) system usually assumed for

control design and therefore enables us to determine whether the improvements in stability,

safety, and performance expected can be realized in practice.
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2.2 Control Architecture

The augmented control architecture consists of a nominal controller that provides satis-

factory performance under nominal flying conditions; and a direct MRAC that provides

robustness to parametric uncertainty. The nominal controller consists of a single-point lon-

gitudinal multivariable controller having the elevator and the throttle inputs to both engines

as control inputs; and a single-point lateral/directional multivariable controller having the

ailerons and rudders as control inputs. A fixed control allocation of this controller’s out-

puts precludes using the engines for attitude control. On the other hand, the direct model-

reference adaptive controller manipulates the control surfaces and throttle inputs indepen-

dently; therefore, it is solely responsible for generating thrust differentials. In this section

we discuss the design of the developed control architecture in detail.

The system dynamics can be represented as

Ẋ = F(X ,ΛU), (2.1)

where F is a nonlinear function of the state vector X , the control input U , and Λ > 0 is the

control effectiveness matrix. For control design purposes, this nonlinear plant is linearized

about a trim point (X0,U0) satisfying F(X0,U0) = 0. Deviations from the trim values X0

and U0 will be written as lower-case letters hereafter, e.g., X = X0 + xp and U = U0 + u.

Linearization of (2.1) about the trim point leads to the system

ẋp = Apxp +Bpu+h(xp,u), (2.2)

where

Ap =
∂F
∂X

∣∣∣∣
X0, U0

, Bp =
∂F
∂U

∣∣∣∣
X0, U0

, (2.3)

and h(xp,u) contains higher-order terms. In a sufficiently small neighborhood of the trim

point the effect of the higher-order terms is negligible. The Linear Time Invariant (LTI)

representation of the plant results from dropping the higher-order terms from Equation
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(2.2). This LTI system can be written as

ẋp = Ap(p̂)xp +BpΛ(p̂)(Rs(u)+d)+B2r̂, (2.4)

where Ap and Λ are unknown matrices that depend on the uncertain parameter p̂, d(t)

is an exogenous disturbance, r̂(t) is the reference command generated by the pilot, and

Rs(u) is a saturation function that enforces range saturation limits. The vector p̂, which

parametrizes the adverse flying conditions (i.e., aerodynamic uncertainties, damage, un-

known time delays and actuator failures), takes on the value p̄ when the aircraft flies under

nominal operating conditions.

The state xp is given by

xp = [α β V p q r x y z ψ θ φ ]T (2.5)

which are angle of attack, sideslip angle, true aerodynamic speed, roll rate, pitch rate, yaw

rate, longitude, latitude, altitude, and the three Euler angles [57]. The control input u is

u = [δe δa δr δthL δthR]
T (2.6)

which are the elevators deflection, the ailerons deflection, the rudders deflection, the throt-

tle input to the left engine and the throttle input to the right engine, respectively. The

reference command r̂ consist of angle of attack-, sideslip-, aerodynamic speed- and roll

rate-commands

r = [αcmd βcmd Vcmd pcmd]
T . (2.7)

These four commands are generated by the pilot to attain the desired flight maneuver. Both

the nominal and adaptive controllers are based on a single trim point design.
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Figure 2-2: Control architecture.

2.2.1 Augmented Controller

Figure 2-2 shows the components of the augmented control architecture. The total control

input is

u = unom +uada, (2.8)

where unom is the output of the nominal controller and uada is the output of the adaptive

controller. Any nominal controller, regardless of its structure and design methodology, can

be augmented in the same fashion. Details of the structure of both controllers are presented

below.

2.2.2 Nominal Controller

The nominal controller consists of independent controllers for the longitudinal and the

lateral / directional dynamics. Both controllers assume a multivariate Linear-Quadratic-

Regulator structure with Proportional and Integral (LQR-PI) terms having integral error

states for each of the components of the reference command r̂. Furthermore, strategies

for preventing integration wind-up caused by input saturation are applied. A fixed control

allocation matrix that correlates inputs of the same class is used to determine the ten main
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plant inputs: 4 elevators, 2 ailerons, 2 rudders and 2 throttles. As a result, out of these 10

inputs only 4 are independent.

Longitudinal Controller

The plant in the longitudinal axis takes the form

ẋlon = Alonxlon +Blonulon, (2.9)

where Alon ∈R3×3 is the system matrix, Blon ∈R3×2 is the input matrix, xlon = [α q V ]T is

the state and ulon = [δe δth]
T is the input. To enable command tracking for angle of attack

and airspeed, the integral error states

eα =
∫
(α−αcmd)dt (2.10)

eV =
∫
(V −Vcmd)dt (2.11)

are added. This leads to the augmented plant
ẋlon

ėα

ėV

=

 Alon 0

H1 0




xlon

eα

eV

+
Blon

0

δe

δth

+
 0

−I

αcmd

Vcmd

 , (2.12)

where H1 =
[
[1,0]T [0,0]T [0,1]T

]
. A constant gain LQR-PI controller that minimizes (ig-

noring last term in 2.12)

J =
∫

∞

0

([
xT

lon eα eV
]
Qlon

[
xT

lon eα eV
]T

+uT
lonRlonulon

)
dt, (2.13)

where Qlon = QT
lon ≥ 0, Rlon = RT

lon > 0 are weighting matrices, is designed. This leads to

δe

δth

=
[
Klon Keα KeV

]
xlon

eα

eV

 . (2.14)
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This controller must attain ample stability margins so the inclusion of the low-pass- and

anti-aliasing-filters from sensors and the delay caused by telemetry do not compromise

stability. In particular, we use 6dB of gain margin and 60 deg of phase margin.

The plant’s input is given by

(Rs(u))i =


ui if ui,min < ui < ui,max,

ui,max if ui ≥ ui,max,

ui,min otherwise

(2.15)

where u is the controller’s output, µi denotes the i the component of vector µ , and ui,max

and ui,min are the saturation limits of each actuator. The control deficiency caused by this

saturation function is given by

u∆ = Rs(u)−u. (2.16)

In the following we discuss a resetting-based anti-windup modification technique in

detail. The aim of anti-windup compensation is to modify the dynamics of a control loop

during control saturation so that an improved transient behavior is attained after desatura-

tion. This practice mitigates the chance of having limit cycle oscillations and successive

saturation. The anti-windup technique used prevents the occurrence of excessively large

controller outputs by imposing virtual saturation limits and resetting to the integral error

state used for feedback. Let 〈e,δ 〉 denote a strongly coupled pair of an integral error state

e and a control input δ , e.g., eα and δe. The anti-windup scheme proposed is governed by

the saturation function Re defined as follows:

Re(e,δ ) =


e if R2 ≤ e≤ R1,

R1 if R1 ≤ e,

R2 if e≤ R2

(2.17)

where the limits R1 and R2 are time-varying functions, assuming the smallest value of e
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for which the plant input is equal to any of its saturation values δmin or δmax. We note

the similarities between (2.15) and (2.17). The integral error state is reset to the virtual

saturation limit R1 or R2 when ė(t) = 0 and either δ < δmin or δ > δmax. Magnitude sat-

uration limits affect the plant inputs and the anti-wind up logic via Equations (2.15) and

(2.17). Magnitude and rate saturation limits for all actuators are present in the nonlinear

simulation distributed by Langley, therefore their effects are accounted for in the simula-

tion studies with some failure scenarios (Section 2.3). Analogous to Equation (2.16), the

error deficiency caused by the anti-windup logic is

e∆ = Re(e,δ )− e. (2.18)

The saturated value of the integral error state Re(e,δ ), not the integral error state itself e,

will be used for feedback. Additional details of this technique are available in [37, 39].

In the longitudinal controller case, we apply this strategy to the 〈eα ,δe〉 pair. The

effectiveness of the anti-windup scheme is a function of how well the LTI model predicts

saturation and desaturation. Nonlinearities such as control surface dead-band and hysteresis

play a minor role in those predictions. In the case of 〈eV ,δth〉, the highly nonlinear engine

dynamics, where the thrust is a nonlinear function of the engine’s RPM’s, make the anti-

windup scheme ineffective. The determination of whether such a scheme is effective or not

is based on comparing the LTI predictions with those of the coupled, fully nonlinear GTM

model.

The substitutions of ulon with Rs(ulon); and of e with Re(e,δ ) for e = eα , δ = δe into

Equation (2.12) lead to
ẋlon

ėα

ėV

=
Alon +BlonKlon BlonKe

H1 0




xlon

eα

eV

+
Blon

0

ulon,∆

+

Blon

0

Ke

eα,∆

0

+
 0

−I

αcmd

Vcmd

 . (2.19)

This linear time varying system prescribes the closed-loop longitudinal dynamics with anti-
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windup. The boundedness of the resulting system can be established for all initial condi-

tions inside a bounded set [37]. This bounded set extends to the entire state-space when the

open-loop plant is stable and there are no unmodeled dynamics.

Lateral/Directional Controller

An LTI model of the corresponding plant is

ẋlat = Alatxlat +Blatulat, (2.20)

where Alat ∈R3×3 is the system matrix, Blat ∈R3×2 is the input matrix, xlat = [β p r]T is the

state, and ulat = [δa δr]
T is the input. To enable satisfactory command following, integral

error states for sideslip and roll rate, given by

eβ =
∫
(β −βcmd)dt (2.21)

ep =
∫
(p− pcmd)dt (2.22)

are added. The integral error in sideslip was chosen over that of the yaw rate to facilitate the

generation of commands for coordinated turns with non-zero bank angles and cross-wind

landing. The augmented plant is given by
ẋlat

ėβ

ėp

=

 Alat 0

H2 0




xlat

eβ

ep

+
Blat

0

ulat +

 0

−I

βcmd

pcmd

 , (2.23)

where H2 =
[
[1,0]T [0,1]T [0,0]T

]
. A LQR-PI control structure for the lateral controller is

adopted. This leads to

δa

δr

=
[
Klat Keβ

Kep

]
xlat

eβ

ep

 , (2.24)
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As before, ample stability margins (e.g., 6 dB and 60 deg) should be attained to accommo-

date for the filters and time delays. The anti-windup technique presented earlier is applied

to the 〈eβ ,δr〉 and 〈ep,δa〉 pairs. The anti-wind up scheme pairs an integral error state with

a control input. In its present form, this scheme requires pairing only one integral error

state to a single control input. The pairs chosen exhibit the strongest dependence between

the control input and the dynamics of the integral error state, i.e., 〈ep,δa〉 is more important

than 〈ep,δr〉.

Control Allocation

Equations (2.14) and (2.24) along with the three realizations of the anti-windup technique

mentioned above, prescribe the pre-allocated input un = [δe δa δr δth]
T , where

un = Kn
[
xT

lon eα eV xT
lat eβ ep

]T
(2.25)

and Kn ∈ R4×10 is the feedback gain. This input along with a control allocation scheme

fully determines the 10 control inputs of the aircraft. This relationship can be written as

unom = Gnomun, (2.26)

where Gnom ∈ R10×4 is the control allocation matrix. The allocation of un enforced by

Gnom makes the deflection of the four elevators equal, the thrust of both engines equal, the

deflection of both rudders equal, and the deflection of both ailerons equal in magnitude

having opposite directions.

2.2.3 Adaptive Controller

The second component of the architecture is an adaptive controller. The adaptive controller

generates independent signals for the three main control surfaces as well as for each throttle

input. This enables using the engines for attitude control. Because of the placement of

the engines and the orientation of the thrust vector relative to the CG, changes in thrust

create a pitching moment disturbance that must be canceled by the elevators. Auto-throttle
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designs that only depend on the aircraft velocity rely on the pilot’s ability to generate a

suitable set of pitch commands to attain the desired cancellation. The controller proposed

pursues this cancellation automatically, thereby considerably reducing the pilot’s workload.

An immediate consequence of integrating the engines into the flight control system is the

enlargement of the failure set where the vehicle remains controllable (e.g., the generation

of thrust differentials to overcome a locked-in-place rudder).

We note that the LTI plants used for designing the nominal controller are good approxi-

mations of the aircraft dynamics as long as the longitudinal and lateral/directional dynamics

are weakly coupled. However, for high angles of attack as well as for many adverse flying

conditions this coupling is strong, e.g., when both left elevators are locked-in-place any de-

flection of the right elevators will excite the lateral/directional dynamics. In this case, the

adaptive component of the controller, which is based on a coupled model, will be active.

Reference Model

The reference model is a component of the adaptive controller responsible for setting the

desired closed-loop dynamics. These target dynamics are the same for both nominal and

off-nominal flying conditions (e.g., those when physical failures and/or damage have oc-

curred) regardless of the amount of control authority available. The reference model as-

sumed herein is the linear closed-loop system corresponding to the nominal controller

without anti-wind up modifications under nominal flying conditions. This leads to:

ẋm =

Ap(p̄) 0

H 0

+
Bp

0

GnomKn


︸ ︷︷ ︸

Am

xm +Bmr̂ (2.27)

where Am ∈ R10×10, Bm ∈ R10×4,

xm = [α β V p q r eα eV eβ ep]
T

and

r̂ = [αcmd Vcmd βcmd pcmd]
T .
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Figure 2-3: Implemented reference model.

This model will be used to design the adaptive controller, but not for calculating xm during

implementation. In the following we discuss our reference model implementation in detail.

The dynamics of the linear reference model in Equation (6.5) may differ considerably

from those of the actual aircraft. The unmodeled linear dynamics and nonlinearities re-

sponsible for this will trigger undesired adaptation. Since the primary objective of adaptive

control is to compensate for parametric uncertainties and not for nonlinear dynamics 1, this

situation may seriously compromise the aircraft’s stability and performance. In this sec-

tion we examine alternatives for expanding the flight envelope where the reference model

describes accurately the closed-loop dynamics corresponding to the nominal controller. A

natural choice for the plant model in the reference model design is a full nonlinear model.

Even though this will directly account for the main nonlinearities, the computational re-

quirements associated with it may be exceedingly high. This complexity results from hav-

ing to perform a high fidelity simulation in real time as well as from having to verify and

validate software and hardware. The search for an accurate yet simple reference model led

1In general, the primary objective of adaptive control is to compensate for parametric uncertainties and
unmodeled dynamics locally. The latter objective can be attained by identifying the coefficients of a ra-
dial basis function expansion of such dynamics. However, the effect of nonlinearities can not be perfectly
compensated for globally. The controller proposed does not compensate for such nonlinearities.
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us to the system in Figure 2-3. The main features of this system are as follows: (i) the

underlying structure of the plant is LTI, (ii) there is an engine model to accurately describe

the nonlinear dependency of the thrust on the engine’s RPMs, (iii) there is uplink time

delay between the controller and the plant capturing the effects of telemetry and signal pro-

cessing, (iv) there is a down link time delay due to sensor dynamics, (v) there is a bank of

low-pass filters for mitigating sensor noise, and (vi) there are anti-aliasing filters and com-

mand rate limiters as in the GTM. The states of the reference model implemented include

those in the reference model used for design, xm, the altitude, the three Euler angles, all the

delayed states and those of the engine dynamics. We however note that only those in xm

affect the adaptive controller. The sum of the time delay in items (iii) and (iv) constitute

a known time delay. In particular, they account for a 9ms downlink delay in all the states

used for feedback and a 12ms uplink delay in the application of the controller’s output to

the plant. Note that the implementation of this reference model is a significant departure of

the LTI framework supporting the theory; i.e., signal boundedness and asymptotic tracking

cannot be guaranteed theoretically.

Adaptive Law

In this section we present an adaptive law that accounts for control saturation and integra-

tion anti-wind up. This anti-wind up scheme is independent of the anti-wind up scheme

applied to the nominal controller.

The plant to be controlled assumes the LTI representation

ẋ =

Ap(p̂) 0

H 0

x+B1Λ(p̂)(Rs(u)+d)+B2r̂ (2.28)

where Ap ∈ R6×6, B1 ∈ R10×5, Λ = diag{λ} ∈ R5×5 and B2 ∈ R10×4. The states, inputs,
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and commands in (2.28) are

x =
[
xT

lon xT
lat eα eV eβ ep

]T
u = [δe δa δr δthL δthR]

T

r̂ = [αcmd Vcmd βcmd pcmd]
T

(2.29)

while d ∈ R5×1 is a vector of input disturbances.

The pre-allocated adaptive input is given by

ua = [θx θd]

 x̂

1

= θ
T

ω, (2.30)

where θx ∈ R5×10 and θd ∈ R5×1 are adaptive parameters, and

x̂ =
[
xT

lon xT
lat f (eα) eV eβ ep

]T
(2.31)

is the state being fed back. The function f , which is part of the adaptive anti-wind up logic,

is defined as f (eα) =Re(eα ,δe). Adaptive laws without the anti-windup modification make

f equal to its argument so x̂ = x. The adaptive input is

uada = Gadaua, (2.32)

where Gada ∈ R10×5 is a control allocation matrix. The allocation of ua by Gada makes

the deflection of the four elevators equal, the deflection of both rudders equal, and the

deflection of both ailerons equal in magnitude with opposite directions.

The adaptive laws are chosen as

θ̇ = Proj
(
θ ,−Γ1ωeT

u PB1sign(Λ)Γ2
)

(2.33)

˙̂
λ = Γλ diag(κ)BT

1 Peu (2.34)

ė∆ = Ame∆ +B1diag
(

λ̂

)
κ (2.35)

κ = u∆ +(KT
eα
+θ

T
eα
)eα,∆ (2.36)
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where Proj(·) is the projection operator [36], [51] which will be defined later in Chapter

3 in (3.21), eu = e− e∆, P = PT > 0 satisfies AT
mP+PAm = −Q for a fixed Q = QT > 0,

e = x̂− xm, and u∆ is the input deficiency given in Equation (2.16). While e∆ is the error

caused by the saturation of the control inputs and of the integral error state eα , eu can be

considered as the error caused by parametric uncertainties. The variables Q > 0, Γ1 ∈

R11×11 > 0, Γ2 ∈R5×5 > 0, θmax ∈R11×11 > 0 and Γλ ∈R5×5 > 0 are design parameters.

The anti-windup modification to the adaptive law is enforced using the variable κ . κ

depends on the column vectors of Kn and θ corresponding to eα and f (eα) respectively.

In contrast to the anti-wind up modification of Section 2.2.2, this anti-windup modification

not only modifies the integral error state used for feedback (i.e., ω) but also changes the

controller gain (i.e., θ ). The anti-windup modification for the 〈eα ,δe〉 pair is based on

monitoring the total elevator input and modifying the integral error state of the adaptive

controller when saturation occurs. The strong coupling between β and p, and the nonlinear

engine dynamics made the anti-wind up modification for the 〈eβ ,δa〉, 〈ep,δr〉 and 〈eV ,δth〉

pairs ineffective. This is the reason κ in Equation (2.36) only takes eα into account2.

The adaptive law in Equations (2.33-2.36) makes the plant’s state track the state of the

reference model, accommodates for control saturation, and mitigates the effects of integral

windup in eα . The Lyapunov stability analysis in reference [37] demonstrates that for a

bounded set of commands, θ , x and e are semi-globally bounded. This result holds under

the assumption that time-delays and unmodeled dynamics are not present and that both the

plant and the reference model are LTI.

In the LTI framework supporting the theory, asymptotic tracking and stability are guar-

anteed for any adaptation rates satisfying Γ1 > 0, Γ2 > 0 and Γλ > 0. While excessively

small adaptation rates nullify the advantages of adaptation by practically turning the adap-

tive controller off, excessively large ones, along with noise, saturation, time delay and/or

unmodeled dynamics, induce high frequency oscillations that may not only degrade the

system performance but can also lead to instability. The challenge from the control de-

signer perspective is to balance these two attributes. A dead zone, where Γ1 and Γλ are

2The modifications for the 〈eV ,δth〉, 〈eβ ,δr〉 and 〈ep,δa〉 pairs, which are solely based on the develop-
ments of Section 2.2.2, are based on monitoring the control inputs generated by the nominal controller and
modifying the integral error states of such a controller when saturation/desaturation occur.
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made equal to zero (i.e., adaptation is switched off) depending on the state of the aircraft

xp, the pilot’s command r̂, and the tracking error due to uncertainties eu, can be used to

counteract some of the anomalies caused by unmodeled dynamics. In particular, we im-

posed dead zones when the deviation in V and bank angle from the trim state were large. In

those regions, the significant discrepancies between the dynamics of the reference model

and of the plant trigger unintended adaptation. The domain where the adaptive rates are

non-zero and θ(t) is away from the projection boundaries in Equation (2.33) defines the

range of adaptation.

2.3 Simulation Studies

In this section we showcase some of the advantages and disadvantages of adaptation using

a set of batch simulations for various realizations of the uncertainty/failure.

2.3.1 Off-line Simulation

These are simulations where the reference commands are set a priori and for which the

aircraft performs the desired maneuver under nominal flying conditions. For this we use

the high-fidelity model described in Section 2.1, a set of representative flying maneuvers, a

flight-validated nominal controller [14], and adaptive controllers with the structure as above

but having various adaptation rates. These rates were prescribed according to the observed

aircraft performance for a representative set of flying maneuvers and uncertainties among

an extensive set of candidate designs. This is the most conventional tuning practice.

Figure 2-4 shows the closed-loop response of the nominal and augmented controllers

to a set of command doublets when the effectiveness of the elevators is reduced to 50%

and a severe degradation in pitch stiffness Cmα and roll damping Cl p occur. This case

corresponds to 100% uncertainty in the nominal value of the aero-coefficients (open-loop

marginal stability). Note that the nominal controller is unable to stabilize the pitch dynam-

ics. The augmented controller on the other hand, not only stabilizes these dynamics but

also exhibits a much better roll rate tracking. This is a situation where adaptation yields

a significant improvement in performance. Against other types of parametric uncertainties
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Figure 2-4: Closed-loop responses corresponding to the nominal and augmented con-
trollers, where the effectiveness of the elevators is reduced to 50% and a severe degradation
in pitch stiffness Cmα and roll damping Cl p occur.

and/or failures, non-trivial improvements in flight safety due to adaptation were demon-

strated [15].

However, the adaptive component of this controller exhibits undesirable behavior for

another type of uncertainties - unknown time delays. Figure 2-5 shows the closed-loop

response for the same controllers when there is an uplink time delay of 60 ms. While the

nominal controller achieves command tracking with minimal residual oscillations, the aug-

mented controller yields a severely degraded response. The response to larger time delays,

where the nominal system response is stable but the augmented one is not, demonstrates

that adaptation itself can compromise safety.

While the first case demonstrates the promising ability of adaptation to achieve safe

flight against some realistic failure scenarios, the second case raises a robustness concern

against unknown time delays and unmodeled dynamics.

2.3.2 Tuning of Control Parameters

It should be noted that the above cases also highlight the importance of prescribing adap-

tive rates that effectively compensate for uncertainties and failures without magnifying the
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Figure 2-5: Closed-loop responses corresponding to the nominal and augmented con-
trollers, with an uplink time delay of 60 ms.

adverse effects caused by unmodeled dynamics and time delays. Because these simulations

(as all simulations) only give a local notion of the system’s robustness, the framework pro-

posed in [13] is used in [15] to evaluate robustness from a global perspective and tune the

control parameters effectively. This framework enables sizing the set of deviations from

nominal operating conditions for which the closed-loop requirements are met. The analy-

sis is performed in a setting where most of the assumptions and simplifications supporting

the control design procedure (e.g., decoupled longitudinal and lateral/directional dynamics,

LTI plants, existence of matching conditions) do not hold. The specific adverse conditions

considered are grouped into four categories: aerodynamic uncertainties (i.e., deviations in

pitch stiffness, roll and yaw damping from nominal values), aspects of structural damage

(e.g., situations where the Center of Gravity (CG) moves from its nominal location), un-

known time delays, and actuator failures (e.g., situations where symmetric and asymmetric

failures in control surfaces and engines occur). These failures include partial and total loss

of control effectiveness, locked-in-place control surface deflections, and engine-out con-

ditions. The requirements considered are fast pilot command tracking, bounded structural

loading, bounded flight envelope (i.e., region in the state space where the aircraft dynamics

are properly modeled and flying is safe); and satisfactory handling/ride qualities. We note

40



that the controller’s ability to satisfy these requirements depends on the aircraft’s transient

response, whose representation is mathematically intractable due to nonlinearities. Further

these requirements define conflicting objectives. The application of this framework to a

MRAC designed for the GTM illustrates some advantages and liabilities of this control

architecture as well as the risks of over-tuning the controller’s parameters based on point

simulations.

In [15], a computational approach that integrates a design-optimization technique into

this robustness analysis framework is used to search for the controller’s parameters that

yield optimal characteristics. We note that the adaptive controller’s parameters, which

have a significant influence on the system’s response, are commonly set using trial and

error procedures, or ad-hoc [18]. These procedures may not converge to a controller with

the desired robustness characteristics. Furthermore, the determination of whether the con-

vergence took place or not is based on computationally intensive Monte Carlo analyses.

These analyses provide no guidance on how to tune the controller’s parameters to achieve

the desired objectives. The presence of conflicting design objectives (e.g., achieving a fast

transient response and a sufficiently large time delay margin in the presence of uncertainty)

further obscures the notion of causality required to deploy such methods effectively. The

control tuning practice proposed in [13] compensates for these deficiencies by searching

for controllers with improved characteristics in a systematic and automated fashion.

The framework supporting the analysis and the control tuning method based on it are

out of the scope of this thesis. The readers refer to [15] for the details how we set up the

framework for the proposed flight control architecture and tune the control parameters, as

well as the analysis results of the proposed controller.

2.3.3 Real Time Simulation

With the optimized control parameters determined as in Section 2.3.2, extensive piloted

simulations were performed as well for several sets of flying conditions. In those condi-

tions, not only the trim point at which the controller is engaged (e.g., wings-level flight at

various airspeeds), but also the desired maneuver was varied. These maneuvers included
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Figure 2-6: Closed-loop responses corresponding to a train of roll rate commands

coordinated turns, angle-of-attack captures, crab configurations and off-set landings. In the

real time simulation, and in contrast to the simulations above, the pilot commands r̂ are

generated in real time according to the desired trajectory and the aircraft’s response. Two

FAA licensed commercial, multi-engine, and instrument-rated pilots performed the piloted

simulations. They have served as research pilots on several NASA remotely piloted vehi-

cle research programs [16]. Furthermore, there is a more accurate aerodynamic model, a

surface dead-band in all control surfaces, sensor noise and moderate turbulence.

Figure 2-6 shows the closed-loop responses corresponding to the nominal controller

and the augmented controller when δCl p and δCmα make the open-loop unstable. The

improvement in the transient roll rate response attained by adaptation is apparent.

2.4 Summary

In this chapter, we designed an adaptive control architecture for safe flight, particularly

for the GTM developed by NASA Langley Research Center. The high-fidelity simulation

model of the GTM aircraft enables us to determine whether the improvements in stability,

safety, and performance expected can be realized in practice. Extensive simulation studies

using the model, which were conducted with various uncertainties and failures, indicate
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some advantages and drawbacks of adaptation. While a significant improvement in flight

safety introduced by the proposed control design is observed in several realistic failure and

damage scenarios, an undesirable flight performance and robustness concerns also became

apparent. Particularly, the robustness concern against unknown time delays is crucial. It

should be noted that it is one of the critical components usually tested in issuing a flight

certification up to how much delay the flight control system remains stable. For the rest of

the thesis, we will focus on developing robust adaptive control systems with respect to time

delays as well as achieving analytically computable delay margins.
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Chapter 3

Standard MRACs in the Presence of

Time Delay

The study of adaptive control has enjoyed its theoretical development and maturity for over

30 years. It seemed that the recent technologies finally had catch up to make this theoreti-

cally mature discipline to be introduced into the real world. However, the recent trials and

works in the fields, as well as the actual adaptive flight control architecture developed in

the previous chapter, have revealed or confirmed several undesirable aspects of this tech-

nology. Some of those aspects have been already recognized as a concern in the community

[52, 50, 26] and studied as a context of robust adaptive control (see [27] for example). Ex-

amples among them are bounded disturbances or a class of unmodeled dynamics, which

have been solved by suggesting new theories, modifications or strategies. There are still

some crucial issues remaining to be solved [1] before we bring adaptive controllers into the

real world - which include time delays.

Time delay is the property of a physical system by which the response to an applied

signal or delayed in its effect. Whenever material, information or energy is physically

transmitted from one place to another, there always exists a delay. As a result, a large class

of physical systems are modeled well by describing them with delays. The presence of large

delays makes system analysis and control design much complex. A general concept of a

feedback control system is to react immediately to errors such that the errors are reduced or

eliminated in time. However, for a system with time delays, only after the inherent delays
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do the errors start to have its influence over the whole system. Therefore, the situation is

changed significantly once large delays come into the system. In the worst case, delays are

too large such that the system does not hold a desirable property such as stability, which

is ensured by one without delays. Therefore, it is important to recognize the existence of

delays in a system, and properly understand how they change the property of the whole

system. In the end, we have to design a controller such that the delays do not trigger the

system to suffer from poor transient or even to go unstable.

For some systems, it is rather easy to evaluate or estimate the time delays, such as

telecommunication delays. If we know the exact or have a good estimate of a time delay,

we can design a controller by applying the techniques suggested recently which guarantee

stability with its presence. Examples of those adaptive controllers which achieve this goal

are [59, 46, 10, 48, 62].

For some systems, however, it is difficult to determine how much time delays are

present in the system. Even the systems which are constructed such that stability is guar-

anteed for a certain time delay which is known, they may become unstable if the delay

changes - i.e. an unknown time delay exists. Especially for adaptive systems, in simula-

tions, industrial applications and experiments, it has been observed that a large unknown

time delay messes up adaptation and undesirably keeps giving energy to the system, as a

result of which the system goes instability. In these cases, the question is what is the time

delay margin, i.e. up to how much time delay deviation the system is guaranteed to be

globally stable. In the following of the thesis we analyze and establish time delay margins

for adaptive systems. In the analyses, any approximation like Pade approximation which

are used in some of the previous works is not used, except for Chapter 4.

To begin with, in this chapter we first show that standard adaptive systems (standard

MRAC, possibly with σ -modification) do not have a time delay margin. We also show that

a delayed adaptive stabilizer modified only with a projection algorithm guarantees non-zero

time delay margin.

The main claims to be appeared in this chapter are the followings.

Theorem 1. A standard MRAC does not have a time delay margin, which means that for

any positive time delay τ > 0, global boundedness does not hold.
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Theorem 2. A standard MRAC with σ -modification does not have a time delay margin.

Theorem 3. An adaptive stabilizer system with a projection algorithm does have a non-

zero time delay margin, which is analytically computable.

The theorems are stated precisely and discussed in details in the following sections.

3.1 Problem Statement

It has been long believed that adaptive controllers tend to result in undesirable behaviors in

the presence of time delays. Furthermore, some people in the community have associated

the reason to that since the one of the main features of adaptation is auto-tuning of feedback

gains in the time domain. However, it has never explicitly analyzed what are the crucial

factors of adaptive systems with respect to delays. In this section, we try to identify one

of the dominant factors of instability induced by time delays, in order to get an insight and

understand the issue of adaptive systems with delays.

As one of the most basic adaptive controllers known, a model reference adaptive con-

troller (MRAC), possibly with some modifications, is studied in this section.

3.1.1 Problem Formulation

A first order plant with a scalar input and a parameter uncertainty is given by

ẋp(t) = apxp(t)+bpu(t) (3.1)

where ap is an unknown parameter. For the sake of simplicity we assume that bp = 1

without loss of generality. Also, we assume that ap > 0, which means the open-loop is

unstable so definitely it needs a non-trivial control input to be stabilized. An adaptive

controller is chosen as

u(t) = θ(t)xp(t)+ r(t). (3.2)

where θ(t) is time varying and r(t) is a reference input.
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The input u(t) is additionally subject to the unknown time delay which is denoted τ .

ẋp(t) = apxp(t)+u(t− τ)

= apxp(t)+u(t)+
(
u(t− τ)−u(t)

)︸ ︷︷ ︸
η(t)

(3.3)

Therefore the system subject to the input time delay is interpreted as a disturbed system

with an unmodeled dynamics η(t).

A reference model is chosen as

ẋm(t) = amxm(t)+ r(t) (3.4)

where am < 0. A matching condition defines θ ? as

ap +θ
? = am. (3.5)

Errors in the state and the gain are given as

θ̃(t) = θ(t)−θ
?(t), e(t) = xp(t)− xm(t). (3.6)

The closed-loop is then given by

ẋp(t) = amxp(t)+ θ̃(t)xp(t)+ r(t)+η(t) (3.7)

which gives the error equation

ė(t) = ame(t)+ θ̃(t)xp(t)+η(t). (3.8)

An adaptive law can be chosen as

θ̇(t) =−γxp(t)e(t) (3.9)
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based on which several modifications exist, such as

θ̇(t) =−γxp(t)e(t)−σθ(t) σ -modification (3.10)

θ̇(t) = Proj(θ(t),−γxp(t)e(t)) projection algorithm (3.11)

where the projection operator is later defined in (3.21). With the adaptive law given by

(3.9), a time derivative of the following Lyapunov function

V =
1
2

e2 +
1
2γ

θ̃
2 (3.12)

is obtained as

V̇ = ame2 + eη . (3.13)

When there is no time delay(τ = 0), (3.13) becomes V̇ = ame2, and since am < 0, we can

show V̇ < 0 and therefore the adaptive system is globally stable with the single equilibrium

point at the origin. Therefore, the adaptive controller given by (3.2)(3.4)(3.5)(3.6), and

(3.9) truly achieves the goal of stabilizing an uncertain unstable plant (3.1).

3.1.2 Robustness of Standard MRACs against Time Delay

The story is different when there is a time delay τ > 0 in the system. The following figures

describe how the system responses change when there is a delay in input.

Figure 3-1 shows two trajectories in (e, θ̃) space with and without a delay. It can be

seen that although starting the same initial condition the trajectories behave differently, and

with a delay the system results in an unbounded solution.

Figure 3-2 shows a time response of signal e(t)×η(t). It can be seen that η(t), which

is a disturbance term due to the delay, belongs to nearly the opposite sign from that of e(t).

In (3.13), it can be implied that if the term e(t)η(t) takes positive values and dominates, it

leads the system to instability.

In the following we consider a stabilizer case, i.e. xm(t) = 0 ∀t and therefore
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Figure 3-1: Trajectories with / without a delay, given the same initial condition

Figure 3-2: Time response of e(t)×η(t)
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Figure 3-3: Trajectories with different initial conditions; implying local stability, and sta-
ble(S):white / unbounded(F):gray domains with non-zero delay
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(a) τ = 0.135

(b) τ = 0.090

(c) τ = 0.045

(d) τ = 0.030

Figure 3-4: Stable(S):white / unbounded(F):gray domains with delays. Left - standard
MRAC, Right - with σ -modification.
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xp(t) = e(t) ∀t. Although the analyses conducted in this chapter are only on stabilizer

systems and therefore restricted, it will be shown that we can identify one of the crucial

sources of instability of adaptive systems with the simplest adaptive laws (3.9) and (3.10).

We now widen our scope to the whole state-space to capture the relation between initial

conditions and stability of adaptive systems with a delay. Here we introduce the definition

of domains as follows;

F =
{
(x0,θ0) ∈ R2

∣∣∣if xp(t) = χx(t),θ(t) = χθ∀t ∈ [t0− τ, t0],

then ∀r ∈ R ∃t ∈ (t0, ∞) s.t. |xp(t)|+ |θ(t)|> r
}

where χx(t) and χθ (t) specify the initial conditions χx(t) = 0 ∀t ∈ [t0− τ, t0), χx(t0) = x0

χx(t) = θ0 ∀t ∈ [t0− τ, t0]

 .

In other words, a failure domain F is a set of initial conditions with which if the system

starts at t = t0, then either xp or θ , or both become unbounded. We further define the

compliment of F as S, a safe domain.

Given a time delay τ = 0.090, Figure 3-3 shows two trajectories starting at different

initial conditions. Since trajectory (a) in Figure 3-3 converges to a point and achieves

e(t)→ 0 as t → ∞,1 it is believed that this initial condition belongs to the set S. It is also

seen that most likely trajectory (b) belongs to the set F. According to these observations,

schematic shape of two domains are added over Figure 3-3 as white (S) and gray (F),

respectively. 2

Figure 3-3 gives us an important insight. Compared to adaptive systems without a time

delay for which global stability is guaranteed, the system with a delay is only locally stable.

Figure 3-4 shows some rough numerical simulation results with different size of time

delays. The plots are obtained from numerous point simulations, by determining whether

1Trajectory (a) however does not converge to the origin. This is because that in the adaptive stabilizer
case, θ̇ never takes positive values as later noted in (3.18).

2We note that actually it can be never concluded only from the simulation studies that a certain trajectory
is unstable or not, since it may still finally cease its growth and be bounded. In the next section, we prove the
instability rigorousely.
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the trajectory results in stable or unbounded solutions, with the point in state space set to

be an initial condition. The size and the shape of the domain S (or F) changes depending

on the system parameters such as the speed of adaptation γ , size of the time delay τ , and

plant parameter ap. With a smaller delay τ , the system allows larger initial conditions

which ensure boundedness. However, it is seen from the figures that the system always

only results in local stability with delays of these four different values. It can be actually

observed from the similar simulation studies that for any non-zero delays, we can always

find the failure domain which results in unbounded solutions.

According to our definition, this corresponds to that the system does not have a non-zero

delay margin, as stated in Theorem 1. Actually the same theorem also holds for MRAC

with σ -modification, which is one of the simplest modification in robust adaptive control

and known to be globally stable in the presence of bounded disturbances. This is stated as

Theorem 2.

In the following section we rigorously prove these Theorems.

3.2 Instability of Standard MRAC in the Presence of Time

Delay

In this section, we prove Theorem 1, the first of the main claims in this chapter. We start

with the following theorem for a delayed LTI system.

Theorem 4. (Instability of Delayed LTI System)

For any non-zero time delay τ > 0, there exists k? such that for all k > k? a system

ẋp(t) = apxp(t)− kxp(t− τ), ap > 0 (3.14)

is unstable.
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Proof. Including a term of disturbance,

ẋp(t) = apxp(t)− kxp(t− τ)+d(t),

where we can assume boundedness as |d(t)| ≤ dmax. Taking Laplace transform gives us

X(s) =
D(s)

s−ap + k exp(−τs)

where X(s),D(s) are the Laplace transform of xp(t),d(t), respectively. Figure 3-5 shows

the trajectory of s which satisfies s− ap + k exp(−τs) = 0 as k changes from 0 to ∞. The

specific values we take to obtain Figure 3-5 is ap = .1 and τ = 1. It corresponds to a root

locus plot of the corresponding open-loop system with a fixed time delay. Note that there

are infinite number of poles for the delayed system. Other examples of root locus diagrams

for time-delay systems may be found in [47].

Figure 3-5: Root locus with a delay
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If we take k? which satisfies

tan(ω?
τ) =

ω?

ap

k? =
√

a2
p +ω?2,

then with k > k?, s−ap+k exp(−τs) = 0 has at least two solutions which lie strictly in the

right half plane. Therefore, we can see that the system is unstable, proving the theorem.

k? is the function of τ and it can be further seen that given a constant feedback gain,

the system becomes unstable beyond a certain value of the time delay. We now extend

Theorem 4 to a broader class of systems, where the feedback gain is now time varying.

Theorem 5. (Instability of Delayed LTV System)

For any non-zero time delay τ > 0, there exists k?(τ) such that for all k(t) which is an

element of the class of systems K; [t0− τ ∞)→ R1 and satisfies limt→∞ k(t)→ kl where

kl > k?(τ), a system

ẋp(t) = apxp(t)− k(t− τ)xp(t− τ) (3.15)

is unstable.

Proof. We first note that since k(t) is a converging analytic function, the real parts of all

the characteristic roots λi i = 1,2, ... of k(t) satisfies Re(λi)≤ 0. Taking Laplace transform

of (3.15), including a term of disturbance, gives

sX(s) = apX(s)− 1
2πi

∫ c+i∞

c−i∞
K(p)X(s− p)exp(−τs)d p+D(s), (3.16)

where the integration is done along the vertical line ℜ(p) = c that lies entirely within

the region of convergence of K(s), which is the Laplace transform of k(t). (3.16) can be

rewritten as

X(s)(s−ap + kl exp(−τs)) = ∑
i,λi 6=O

kiX(s−λi)exp(−τs)+D(s). (3.17)
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where kis are the constants each of which corresponds to each pole λi. O denotes the origin.

Since kl > k?, s− ap + kl exp(−τs) = 0 has at least two solutions which lie strictly in

the right half plane. Noting that λi in the summand have strictly negative real part, it can

be proven from (3.17) that X(s)/D(s) has unstable poles.

Finally, we provide the proof for Theorem 1. We start with reformulating the theorem state-

ment.

Theorem 1’. For any non-zero time delay τ > 0, there exists a reference command r(t)

t ∈ [t0 ∞) and an initial condition xp(t0) = x0 ∈ R1 such that an adaptive system given by

(3.3), the control law (3.2), and the adaptive law (3.9) with (3.4) is unstable.

Proof. The statement can be proven with the simple reference command r(t) = 0 ∀t ≥ t0

(stabilizer), which then lets us to assume xm(t) = 0 ∀t ≥ t0 given xm(t0) = 0. We note that

with setting xm = 0, (3.9) becomes

θ̇ =−γx2
p. (3.18)

The theorem is proven by contradiction. We define the state of the system as z =[
xp θ

]T
. Suppose given τ , the system has a bounded solution z(t) ∀t ∈ [t0 ∞) for all initial

conditions ∀z0 ∈R2 where z(t0) = z0 =
[
x0 θ0

]T
. The assumption of boundedness of θ(t)

immediately leads to ∃M > 0 such that θ(t)≥−M ∀t ≥ t0. Since θ(t) is a monotonically

decreasing function from (3.18), we can conclude that there exists kl ∈ (−∞ M] which

satisfies θ(t)→−kl as t→ ∞. The following lemma is then useful.

Lemma 1. For any M′> 0, there exists z0 =
[
x0 θ0

]T
which leads to z(t0+τ)=

[
xτ θτ

]T

where xτ 6= 0 and θτ <−M′.

Proof. Consider the case when the system stays at equilibrium ∀t ∈ [t0−τ t0), i.e., xp(t) =

0 ∀t ∈ [t0− τ t0). Then let the sudden state change happens at t = t0, that is xp(t+0 ) = x0.

We note that xp(t−0 ) = 0. This state change can be due to a gust, or some disturbances,

which happen in the physical world. There is no discontinuity in θ at t = t0. Due to the
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time delay, the control signal stays at zero u(t− τ) = 0 ∀t ∈ [t0 t0 + τ). The state response

is then given as

xp(t) = exp(apt)x0 ∀t ∈ [t0 t0 + τ),

the magnitude of the system state is lower bounded as |xp(t)| ≥ |x0| ∀t ∈ [t0 t0 + τ). By

substituting into (3.18) and taking integral, θ(t0 + τ) is then upper bounded by θ(t0 + τ)−

θ(t0) ≤ −γ|x0|2τ . If we chose the initial condition which satisfies |x0| >
√

M′+θ0
γτ

, then

θτ <−M′.

Since θ(t) is a monotonically decreasing function, if we take sufficiently large M′ = k?,

kl > k?. From Theorem 5, it can be then proven that the state xp(t) is unstable.

This contradicts the assumption that the system has bounded solution for all xp(t0) = x0,

completing the proof.

3.3 Applications

In this section, we show several applications of the proof for Theorem 1 which is discussed

in the previous section.

3.3.1 Sigma Modification

In the previous section, we prove instability due to a time delay for the simplest adaptive

law given by (3.9). It is shown that given a finite time delay, once the gain θ(t) reaches the

critical value, it leads the plant state xp(t) to be unstable. Several modifications have been

proposed as robust adaptive laws to prevent θ(t) from blowing up, the most famous one of

which would be σ -modification.

In this section we show that the same discussion in Section 3.2 is also applied to the

adaptive law with σ -modification given by (3.10), and that the system has no time delay

margin either.

Theorem 2’. For any non-zero time delay τ > 0, there exists a reference command r(t)
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t ∈ [t0 ∞) and an initial condition xp(t0) = x0 ∈ R1 such that an adaptive system given by

(3.3), the control law (3.2), and the adaptive law (3.10) with (3.4) is unstable.

Proof. As in Theorem 1, a stabilizer case with the reference command r(t) = 0 ∀t ≥ t0

and xm(t) = 0 ∀t ≥ t0 is considered. An adaptive law in (3.18) is replaced by

θ̇ =−γx2
p−σθ .

Defining Θ(t) as θ(t) = exp(−σt)Θ(t), we obtain

Θ̇ =−exp(σt)γx2
p

which again ensures Θ(t) be a monotonically decreasing function. It is also straightforward

to see that the closed loop system is given by

ẋp(t) = amxp(t)+ exp(−σ(t− τ))Θ(t− τ)xp(t− τ). (3.19)

By taking Laplace transform of (3.19), it can be seen that a new pole s =−σ is introduced

into the system. The same discussion then holds as in the proof of Theorem 5. Further-

more, we can find critical initial conditions by proceeding in a similar way as in Lemma 1.

Therefore we can prove zero delay margin for the system with σ -modification.

3.3.2 Upper-bound of Local Stability

In the previous section, zero time delay margins of the standard adaptive systems are

proven. In other words, it is shown that for any nonzero time delay τ , these systems always

only guarantee local stability. Then the next question is, given a value of the delay τ , what

is the region where the systems are guaranteed to be stable?

It is challenging to exactly solve the boundary, however by using the part of the discus-

sion in the previous section, an upper bound of the boundary can be obtained in a certain

region. Specifically, |x0|>
√

M′+θ0
γτ

can be regarded as a bound of the unstable domain with

the given time delay. Figure 3-6 shows one such example. Here we consider the adaptive
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system which is defined in (3.1)-(3.9), where ap = 5, am =−1 and the control parameter is

chosen as γ = 2. A time delay considered is τ = .090.

Figure 3-6: Numerically obtained stable(S):white / unbounded(F):gray domains and ana-
lytic bound of unstable domain

In this figure numerically computed domains and the analytic boundary (red line), are

shown. We note that the analytic result only gives us a super set of S, outside which (below

the red line) it is guaranteed that the system becomes unstable (domain F) with the given

time delay. Note however that it is seen that the actual and estimated boundaries are only

differed by the factor of two, or at least of the same order. As a conclusion, this method is

considered to be a good estimate of the boundary of stable/unstable domains.

3.4 Projection Algorithm as a Tool to Achieve Global Bound-

edness

In the previous sections, it was seen that once the parameter being adapted θ(t) reaches the

crucial boundary k?(τ), it leads to unstable solutions. Also it is actually straightforward to

see that k? is a monotonically decreasing function of τ . A question which naturally arises
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is that, given an upper bound of the possible delay in the system τmax, what if we design

the adaptive law such that the parameter being adapted never exceeds the critical boundary

k?(τmax)?

A projection algorithm is the one which can be used to attain such properties, by en-

forcing the feedback gain θ(t) to stay in a certain region. The projection algorithm we

consider is formulated below, with general nth order vector θ .

We first state a few definitions and two lemmas. Let sets Ω0 and Ω1 be defined as

Ω0 =
{

θ ∈ Rn| f (θ)≤ 0
}

Ω1 =
{

θ ∈ Rn| f (θ)≤ 1
}
,

(3.20)

where f (·) is a convex function. A Projection function, denoted as Proj, is defined as

follows:

Proj(θ ,y) =


y− ∇ f (θ)(∇ f (θ))T

‖∇ f (θ)‖2 y f (θ)

if [ f (θ)> 0∧ yT ∇ f (θ)> 0]

y otherwise.

(3.21)

This is the definition of the projection operator which will be used throughout the thesis.

Lemma 2. Let θ ∈Ω1 and θ ? ∈Ω0. Then for any vector y, the following inequality holds:

(θ −θ
?)T (Proj(θ ,y)− y)≤ 0. (3.22)

The reader is referred, for the proof of Lemma 2 to [51] and to [36].

Lemma 3. For any time varying piecewise continuous vector y, if θ(t0) ∈Ω1 and

θ̇ = Proj(θ ,y) (3.23)

where Proj(θ ,y) is given by (3.21), then θ(t) ∈Ω1, for all t ≥ t0.

Proof. It is sufficient to show that [ f (θ(t0)) ≤ 1]⇒ [ f (θ(t)) ≤ 1] for all t ≥ t0. Towards

this end, compute time derivative of f (θ) along the trajectories of (3.23):

ḟ (θ) = (∇ f (θ))T
θ̇ = (∇ f (θ))T Proj(θ ,y). (3.24)
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Substituting (3.21) into (3.24) results in

ḟ (θ) =

 (∇ f (θ))T y(1− f (θ)) if [ f (θ)> 0
∧

yT ∇ f (θ)> 0]

(∇ f (θ))T y otherwise.

Consequently, 
ḟ (θ)> 0 if [0 < f (θ)< 1

∧
yT ∇ f (θ)> 0]

ḟ (θ) = 0 if [ f (θ) = 1
∧

yT ∇ f (θ)> 0]

ḟ (θ)< 0 if [ f (θ)≤ 1
∨

yT ∇ f (θ)≤ 0].

(3.25)

The first and the second relations in (3.25) imply that f (θ) monotonically increases but

never exceeds 1, while the third condition states that the function is monotonically decreas-

ing. In other words, if f (θ(t0)) ≤ 1 then f (θ(t)) ≤ 1, for all t ≥ t0. This completes the

proof of the Lemma.

Remark 1. The Projection operator in (3.23) modifies the velocity vector y only in the

annulus region Ω1\Ω0, such that θ(t) will never leave Ω1, for all future times. This is the

main benefit of the Projection operator.

Now we consider a specific convex function f (θ) and establish the following lemma.

Lemma 4. Consider the the dynamics with Projection algorithm in (3.23) with

f (θ) =
‖ θ ‖2 −θ ′2max
ε2 +2εθ ′max

(3.26)

where θ ′max and ε are arbitrary positive constants. Then,

‖ θ(t0) ‖≤ θmax =⇒‖ θ(t) ‖≤ θmax∀t ≥ t0 (3.27)

where θmax = θ ′max + ε .

The proof of Lemma 4 follows immediately from Lemma 3.
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If the adaptive law is chosen as in Lemma 3 (3.23) with

y =−γxpe, (3.28)

then irrespective of the boundedness of xp(t) or e(t), it follows that θ(t) is bounded and lies

in Ω1 if θ(t0) and θ ∗ belong to Ω1, Ω0 respectively. With the special choice of a convex

function (3.26), this corresponds to that (3.27) is satisfied.

The next theorem states that an adaptive control system with the projection algorithm,

where projection bounds are chosen appropriately, has a nonzero delay margin. In this

chapter we only discuss about the adaptive stabilizer of a scalar plant. More general con-

troller cases, with either first-order or higher-order plants, will be discussed in the rest of

the thesis.

Theorem 3’. Consider the closed-loop adaptive system given by (3.3), the control law

(3.2), the adaptive law (3.23) with y and f (θ) chosen as in (3.28) and (3.26). If xm(t) = 0

∀t ≥ t0 (stabilizer) and θ ′max, ε are such that θ ∗ in (3.5) belongs to Ω0, there exists τ? > 0

such that for any initial conditions xp(t0) ∈ R1 and θ(t0) ∈ Ω1, the closed-loop adaptive

system has bounded solutions for all τ ∈ [0 τ?).

Actually, with xm(t) = 0 ∀t ≥ t0, the origin is globally asymptotically stable. τ? can be

considered as a time delay margin of the system, and obtained by analyzing the LTI system

which corresponds to the closed-loop system with θ(t) =−θmax.

First, let us define the regions A and B in the system as in Figure 3-7.

Definition 2. We define the region A and the boundary region B as follow:

A =
{

z ∈ R2|−θmax < θ ≤ θmax
}

B =
{

z ∈ R2|θ =−θmax
}

where z(t) = [xp(t) θ(t)]T . These regions are illustrated in Figure 3-7.

Proof. Without loss of generality, let the initial condition is z0 =
[
x0 θ0

]
∈ A.
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Figure 3-7: Definition of regions

The boundedness of θ(t) is straightforward from the projection algorithm and it is

proven in Lemma 4 that |θ(t)| ≤ θmax.

First consider the case when z(t) ∈ A ∀t. We prove the boundedness of xp(t) by contra-

diction. Suppose that xp(t) is unbounded. Define

Ψ1 = {t||xp(t)| ≤ ς}

Ψ2 = {t||xp(t)|> ς}
(3.29)

where ς =
√

θmax+|θ0|
γδM

. Since xp(t) is unbounded and an analytic function, M(Ψ2) is finite

where M(·) denotes the measure. Let 0 < δM ≤ M(Ψ2). We note that y = −γx2
p from

(3.28), since xm(t) = 0 ∀t ≥ t0 immediately implies that xp(t) = e(t). Then from (3.23),

θ(t) =−γ

∫
Ψ1

xp(s)2ds− γ

∫
Ψ2

xp(s)2ds+θ0

<−γς
2
δM + |θ0|

=−θmax,

which contradicts the condition of the case. Therefore it is proven that if z(t) ∈ A ∀t, then

there exists x̄ ∈ R1 s.t. |xp(t)|< x̄ ∀t.

Next, we consider the case when there exists tb ∈ (0 ∞) s.t. z(tb) ∈ B. From (3.20) and
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(3.26), it is straightforward to see that f (θ(tb)) = 1. Together with the fact that y ≤ 0 in

the stabilizer case, it can be derived from the definition of the projection operator in (3.21)

that θ̇(tb) = 0. This leads to z(t) ∈ B for all t ≥ tb. In other words, once the system reaches

the projection boundary θ(t) = −θmax for the first time at t = tb, the system behaves as a

linear time invariant system with the fixed feedback gain afterwards (t ≥ tb). Therefore the

following theorem can be applied to study the stability of the system.

Theorem 6. (Stability of Delayed LTI System) For any ap > 0, there exists τ̄? > 0 such that

for all time delays τ ∈ [0 τ̄?), there exists kn(τ), k?(τ) with which a system

ẋp(t) = apxp(t)− kxp(t− τ) ap > 0

is stable if k ∈ (kn k?).

Similar to Theorem 4, the proof for Theorem 6 can be obtained straightforwardly by

studying the root locus of the delayed LTI system (Figure 3-5). Especially, it can be seen

that such kn, k? are given by

kn = ap,

k? =
√

a2
p +ω?2

where ω? is the minimum of all positive real numbers which satisfy

tan(ω?
τ) =

ω?

ap
.

It can be also proven that k?(τ) is a strictly monotonically decreasing function with

respect to τ . Taking τ? which satisfies k?(τ?) = θmax, from Theorem 6 we can show that

any trajectory of the system is guaranteed to be bounded with an input delay τ ∈ [0 τ?).

Non-zero time delay margin is therefore proven and given as τ?, proving Theorem 3. It can

be also seen that τ? < τ̄?(ap).

In this section, we introduced the projection algorithm into the adaptive law which
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immediately enforces θ to stay in a bounded region, and showed that it ensures non-zero

time delay margin of the stabilizer system.

Then, what are the drawbacks of having the projection algorithm in the adaptive law?

We note that the original purpose of introducing adaptation is to stabilize the closed-loop

system in the presence of parametric uncertainty in ap. Projection algorithm restricts the

range of values which θ can take, i.e. |θ | ≤ θmax. If ap ≥ θmax > 0, then ap− θ ≥ 0

∀|θ | ≤ θmax and therefore the closed-loop system can not be stabilized even there is no

input delay (τ = 0). Actually, the existence of θ ? ∈ Ω0 (|θ ?| ≤ θ ′max) which satisfies the

matching condition (3.5) is necessary to guarantee the stability of a delay-free adaptive

system with the projection.

Therefore in order to apply the projection algorithm, it is necessary to know the size

of uncertainty (the bounds on the unknown parameter ap) so that we can choose the pro-

jection parameters θ ′max, ε appropriately. This is in contrast to the standard adaptive law

without projection, where any uncertain plant (∀ap ∈ R1) without a delay is guaranteed to

be stabilized.

3.5 Summary

In this chapter we demonstrated instability with the standard MRACs, which confirms the

necessity of developing a robust adaptive system with respect to time delay. We also intro-

duced the simple modification based on the projection algorithm, and showed that it leads

to a nonzero delay margin of the adaptive stabilizer. Although the analyses conducted in

this chapter are only a stabilizer case with a scalar plant and therefore very simple, they

enlighten the potential of projection algorithm as a tool to develop a robust adaptive system

with respect to time delay. In the following of the thesis, we study more general controller

cases.
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Chapter 4

Robust MRAC with Projection

Algorithm for Global Results

In this thesis, we will use the projection algorithm to achieve a robust adaptive system

which ensures global boundedness in the presence of delay, i.e. guarantees nonzero de-

lay margin. In this chapter we conduct some initial analyses on MRAC with projection

algorithm with respect to a class of unmodeled dynamics. Even though the result in this

chapter is quite restrictive and applicable only to a small class of plants with input delay

using Pade approximation, it sheds light on the potential of the projection algorithm as a

tool to achieve desirable robustness properties of adaptive systems.

4.1 Projection Algorithm for Global Results

Theorems 1 and 2 demonstrate that neither the standard MRAC nor the MRAC with σ -

modification can ensure a delay margin for adaptive systems. A different modification,

based on projection algorithm, was also discussed for a stabilizer of a scalar plant and a

desirable property stated as Theorem 3 was shown for this simple case. In this section, we

focus more on the projection algorithm and discuss our recent work which demonstrates

the potential of parameter projection in achieving global results.

Projection algorithms started being used in late 80s in continuous adaptive systems as

in [56] so that it enforces parameters to stay in certain appropriate ranges. Later in 90s
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projection algorithms were studied extensively in the context of robust adaptive control.

Among the works, notable results are Pomet et al.[51] and Naik et al.[41]. In [51] and

[41], the authors proved the global boundedness of adaptive systems with projection algo-

rithm against bounded disturbances and a class of unmodeled dynamics, which are however

not equivalent to time delays. As discussed in Chapter 3, the idea of protecting parame-

ters being adapted from blowing up due to disturbances or non-parametric uncertainties

naturally arises, and its potential was demonstrated with the simple adaptive stabilizer.

Given the above, it is seen that the projection algorithm is a promising tool to achieve

our goal of developing a robust adaptive system against time delay and obtaining delay

margin. In the following we revisit our recent work [2, 38] which demonstrates the potential

of the projection, where global results were obtained by modifying adaptive systems only

with projection algorithm [51, 36] in the presence of a class of unmodeled dynamics (see

Figure 4-1).
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Figure 4-1: Robust adaptive control system with projection algorithm in the presence of
unmodeled dynamics

We show that boundedness can be guaranteed for linear plants whose states are accessi-

ble for measurement, when subjected to parameter uncertainties and unmodeled dynamics,

for arbitrary initial conditions of the plant states. It is assumed that the parameter uncer-

tainties lie in a bounded hypercube, enabling the use of an adaptive law with the parameter

projection formulated in Chapter 3 using which the robustness result is established.
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4.2 Robust Adaptive Control Revisited

One of the very first problems where stable adaptive control was solved was for the case

when states are accessible [43], with the plant given by1

ẋp = Apxp +bλu (4.1)

where Ap ∈Rn×n and the scalar λ are unknown parameters with b and the sign of λ known,

and (Ap,b) controllable. It is well known that an adaptive controller of the form

u = θ
T
x (t)xp +θr(t)r, (4.2)

adaptive laws

θ̇ =−ΓωbT Pe, (4.3)

where Γ = ΓT > 0, ω =
[
xp r

]T
, θ =

[
θ T

x θr

]T
, e = xp− xm, and xm is the state of a

reference model

ẋm = Amxm +br (4.4)

with Am Hurwitz, and P is the solution of the Lyapunov equation AT
mP+PAm =−Q, Q > 0,

guarantees stability when the matching conditions

Ap +bλθ
?T
x = Am, λθ

∗
r = 1 (4.5)

are satisfied for some θ ∗ = [θ ∗Tx ,θ ∗r ]
T . The controller in (4.2) and (4.3) also ensures that

xp(t) tracks xm(t). The underlying Lyapunov function is quadratic in e and the parameter

error θ̃ = θ −θ ∗, with a negative semi-definite time-derivative V̇ [44].

When a bounded disturbance d is present, with the plant dynamics changed as

ẋp = Apxp +bλ (u+d(t)) (4.6)

1The argument t is suppressed for the sake of convenience, except for emphasis.
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robust adaptive laws need to be designed that modify (4.3) as

θ̇ =−ΓωbT Pe−σg(θ ,e) (4.7)

where g(θ ,e) = θ , ||e||θ , or of the form2

g(θ ,e) = θ

(
1− ||θ ||

θ̄max

)2

(4.8)

where θ̄max is a known bound on the parameter θ . While the boundedness of the over-

all adaptive systems is well known and was established several decades ago, we briefly

describe it below. Without loss of generality, we assume that λ > 0.

A quadratic positive definite function is chosen as

V =
1
2

eT Pe+
1
2

λ θ̃
T

Γ
−1

θ̃ (4.9)

which yields a time-derivative

V̇ ≤−1
2

eT Qe+ k1‖e‖‖d‖−
1
2

λσ‖θ̃‖g(θ ,e), k1 > 0. (4.10)

The property of g(e,θ), together with the fact that d is bounded, ensures that V̇ < 0 outside

a compact set Ω in the (e, θ̃) space. This ensures the global boundedness of both e and θ̃ .

Boundedness of xp follows.

In all of the above methods, the idea behind adding the term g(e,θ) is this: The pa-

rameter θ can drift away from the correct direction due to the term k1‖e‖‖d‖, and the con-

struction of g(e,θ) is such that it counteracts this drift and keeps the parameter in check, by

adding a negative quadratic term in θ̃ . The boundedness of both e and θ are simultaneously

assured in the above since V has a time-derivative V̇ that is non-positive outside a compact

set in the (e, θ̃) space. It should be noted however that this was possible to a large extent

because d was bounded and as a result, the sign-indefinite term remained linear in ‖e‖.

An alternate procedure, originally proposed in [51] and revised and refined in [55]

2One can choose to set γ to zero if ‖θ‖ ≤ θ̄max, as is done in [27, 32] and many other references in the
literature.
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proceeds in a slightly different manner. Here, the boundedness of θ is first established,

independent of the error equation. It should be noted that a similar approach is adopted in

the context of output feedback in plants with higher relative degree by using normalization

and an augmented error approach[44, 27]. In [55] and [38], no normalization is used but

a projection algorithm. In the following section, we present the adaptive law based on the

projection introduced in Section 3.4, which is of interest in this chapter, as well as the proof

of boundedness for the sake of completeness.

4.2.1 Robust Adaptive Control in the Presence of a Projection Algo-

rithm

The projection algorithm considered in this chapter is identical with the one defined in

Section 3.4 and given by (3.20) and (3.21) together with (3.26).

The implications of Lemma 3 on robust adaptive control are obvious. If the adaptive

law is chosen as in Lemma 3 with

y =−ωbT Pe, (4.11)

then irrespective of the boundedness of e, it follows that θ(t) is bounded and lies in Ω1 if

θ(t0) and θ ∗ belong to Ω1, Ω0 respectively. This is summarized in (3.27), with the special

selection of the convex function f (θ) chosen as (3.26) in Lemma 4.

Remark 2. We can also apply the projection algorithm to an adaptive law in a slightly

different way. Instead of treating the vector θ as a whole, it is also possible to implement

the projection algorithm by parts, for θx and θr independently. The design parameters in

this case will be θ ′x,max, εx, and θ ′r,max, εr, respectively. The boundedness of the norm of θx

by θx,max = θ ′x,max+εx and that of θr by θr,max = θ ′r,max+εr are guaranteed as in Lemma 4.

With the boundedness of θ established using Lemma 4, boundedness of e follows by the

application of the Gronwall-Bellman Lemma. This is summarized in the Theorem below.
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Throughout the chapter, we use the following notations. Let

sA = min
i

∣∣ℜ(λi(A)
)∣∣

s̄A = max
i

∣∣ℜ(λi(A)
)∣∣

where λi is ith eigenvalue of a matrix A and ℜ(λi) is its real part.

Theorem 7. Consider the closed-loop adaptive system given by (4.6), the control law (4.2),

the adaptive law (3.23) with y and f (θ) chosen as in (4.11) and (3.26). If the reference

model in (4.4) and θmax are such that θ ∗ in (4.5) belongs to Ω0, then for any initial con-

ditions xp(t0) and xm(t0), and θ(t0) ∈ Ω1, the closed-loop adaptive system has bounded

solutions, with θ(t) remaining in Ω1 for all t ≥ t0.

Proof. Lemma 4 implies that θ(t) ∈Ω1 with a bound as in (3.27). With a V as in (4.9), we

obtain

V̇ =−1
2

eT Qe+ eT Pbλd

+
(
eT Pbλ θ̃

T
ω +λ θ̃

T Proj(θ ,−ωbT Pe)
)
.

(4.12)

Equation (3.22) in Lemma 2 together with (4.11) implies that the term within the parenthe-

ses in Eq. (4.12) is non-positive. This in turn implies that

V̇ ≤−1
2

eT Qe+ k1‖e‖‖d‖. (4.13)

From (4.9) and (4.13) and the fact that θ(t) is bounded, it can be shown that

V̇ ≤−k2 (V − k3)+ k4
√

V (4.14)

where

k1 = ‖Pb‖λ , k2 =
sQ

s̄P
, k3 =

λθ 2
max

2sΓ

, k4 =
k1dmax√

sP
. (4.15)

For positive constants ∆1,∆2 such that ∆1 < k2 and 4∆1∆2 ≥ k2
4, it can be shown that for
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any V ,

∆1V +∆2 ≥ k4
√

V (4.16)

through a straight forward completion of squares. Inequalities (4.14) and (4.16) imply that

V̇ ≤−(k2−∆1︸ ︷︷ ︸
K0

)V + k2k3 +∆2︸ ︷︷ ︸
K1

. (4.17)

From the application of the Gronwall-Bellman Lemma [24] [5] to (4.17), it follows that

V (t)≤
(

V (t0)−
K1

K0

)
exp(−K0t)+

K1

K0
(4.18)

and therefore V (t) is bounded. This in turn implies the boundedness of e(t) and therefore

xp(t) for any initial conditions in e(t0).

4.3 Robustness of Adaptive Systems to Unmodeled Dy-

namics

We now consider an LTI plant in the presence of a disturbance that may not be known to

be bounded a-priori, such as a state-dependent disturbance η given by

ζ̇ = Aηζ +bηu, η = cT
ηζ (4.19)

where Aη is a Hurwitz matrix. For ease of exposition, we assume that the plant has the

form

ẋp = Amxp +bλ (u−θ
∗T
x xp +η) (4.20)

where λ and θ ∗x are unknown, and Am and b are known. With the same reference model

and definitions as in Section 4.2, we obtain the error dynamics

ė = Ame+bλ (θ̃ T
ω +η). (4.21)
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We now show that an identical result as in Theorem 7 can be derived in this case even

though the disturbance η is not known to be bounded a-priori.

We introduce a few definitions. P and Pη are the solutions of the Lyapunov equations

AT
mP+PAm =−q1I

AT
ηPη +PηAη =−q2I (4.22)

where q1 and q2 are positive scalars. Since Am and Aη are Hurwitz, P and Pη exist and are

positive definite and symmetric. Let

xm0 = θx,max max
t≥t0
‖xm(t)‖,

c1 = xm0 , c2 = θr,max max
t≥t0
|r(t)|

pb = ‖Pb‖, pη = ||Pηbη ||

c3 = (λ pb‖cη‖+ pηθx,max) , c4 = 2pη(c1 + c2)

(4.23)

F(e,ζ ) = q1‖e‖2 +q2‖ζ‖2−2c3‖e‖||ζ ||− c4‖ζ‖. (4.24)

Theorem 8. Consider the closed-loop adaptive system given by (4.20), the unmodeled

dynamics by (4.19), the control law (4.2), the adaptive law (3.23) with y and f (θ) chosen

as in (4.11) and (3.26). If the reference model in (4.4) and θmax are such that θ ∗ in (4.5)

belongs to Ω0, then for any initial conditions xp(t0), xm(t0), and θ(t0)∈Ω1, the closed-loop

adaptive system has bounded solutions, with θ(t) remaining in Ω1 for all t ≥ t0 if

q1q2 > c2
3. (4.25)

Proof. Let a Lyapunov function candidate be chosen as

V = eT Pe+λ θ̃
T

Γ
−1

θ̃ +ζ
T Pηζ . (4.26)
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Taking the time derivative

V̇ ≤−q1||e||2−q2||ζ ||2 +2eT Pbλη +2ζ
T Pηbηu

with some simplifications leads to

V̇ ≤−q1||e||2−q2||ζ ||2 +2||e||pbλ ||cη || ||ζ ||

+2pη ||ζ ||(θx,max||x||+θr,max|r|).
(4.27)

Noting that e = xp−xm and xm is bounded, using the definitions in (4.23) and (4.24), (4.27)

can be simplified as

V̇ ≤−F(e,ζ ).

It can be shown that F(e,ζ ) = 0 is an ellipse in the (e,ζ ) space if (4.25) holds. Defining

zζ = [eT ,ζ T ]T , and

M =

 q1 −c3

−c3 q2

 ,
(4.27) can be rewritten as

V̇ ≤−zT
ζ

Mzζ +2c4‖zζ‖ (4.28)

where M is positive definite due to (4.25), and ‖ζ‖ ≤ ‖zζ‖. We note that the form of the

inequality (4.28) is identical to that of (4.13), and that V is a function of zζ and θ with θ

bounded. Therefore, identical arguments to that of Theorem 7 can be used to conclude the

boundedness of zζ for any initial conditions e(t0) and ζ (t0). Boundedness of xp(t) follows

in a straight forward manner.

Remark 3. It should be noted that the global nature of the above result was possible

primarily because boundedness of the parameter was established independent of the error

dynamics. The former allowed the sign-definiteness terms to be bounded by a quadratic

function, thereby leading to boundedness of all signals in the system with arbitrary initial

conditions in the state. In other words, the parameter projection algorithm allowed the
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overall adaptive system, by virtue of Lemma 3, to be treated as a linear time-varying system,

thereby leading to a global result. This could not have been accomplished by other adaptive

laws with robustness–based modifications than the projection algorithm discussed above.

We now show that a class of unmodeled dynamics (Aη ,bη ,cη) as in (4.19) exists for

any Am, b, λ , and θ ∗ in (4.20). The following lemma is useful in this regard.

Lemma 5. Let P be the solution of the Lyapunov equation AT P+PA =−qI for a matrix A

that is Hurwitz. Then

s̄P =
q

2sA
. (4.29)

Proof. Since A is Hurwitz,

P =
∫

∞

0
eAT tQeAtdt. (4.30)

If λi and vi are ith eigenvalue and corresponding normalized eigenvector of A, respectively,

it follows that

Pvi =
(

q
∫

∞

0
eλ ∗i teλitdt

)
vi

=
q

2|ℜ(λi)|
vi

(4.31)

since Avi = λivi, AT vi = λ ∗i vi, and eAtvi = eλitvi. Therefore we can derive (4.29).

We note using Lemma 5 that we can express c3 in (4.23) as

c3 ≤ q1
‖b‖‖cη‖λmax

2sAm

+q2
‖bη‖θx,max

2sAη

. (4.32)

Defining

α =

√
q1

q2
, βm =

‖b‖‖cη‖
2sAm

, βη =
‖bη‖
2sAη

(4.33)

and

g(α,βm,βη) = βmλmaxα +
βηθx,max

α
, (4.34)
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it follows that the sufficient condition (4.25) is satisfied if

g(α,βm,βη)< 1 (4.35)

or equivalently, since α > 0, if

βmλmaxα
2−α +βηθx,max < 0. (4.36)

For ease of exposition, we set ‖cη‖ = 1. This implies that the known parameters Am

and b determine βm and the parameters of the unmodeled dynamics determine βη . The

question that needs to be answered can be posed as follows: Given βm and θx,max, does a

βη exist such that (4.36) is satisfied? The answer is affirmative, since it can be derived that

there exists α > 0 with which (4.36) is satisfied if

4βmβηθx,maxλmax < 1, (4.37)

and α , defined in (4.33), is a free parameter. The above discussions are summarized in the

following proposition:

Proposition 1. If βη satisfies the inequality (4.37), then the sufficient condition (4.25) in

Theorem 8 is satisfied.

Proposition 1 implies that for any Am, b, λ , and θ ∗, a class of unmodeled dynam-

ics always exists for which the sufficient condition (4.25) is satisfied. This conclusively

demonstrates that the closed-loop adaptive system described in this section is robust with

respect to a class of unmodeled dynamics that satisfies (4.37) with the relevant quantities

defined in (4.33).
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4.4 Robustness of Adaptive Systems to Time Delay Based

on Pade Approximation

Suppose the input into the plant is delayed so that the plant equation is given by

ẋp = Amxp +bλ (u(t− τ)−θ
∗T
x xp). (4.38)

Equation (4.38) can be rewritten as

ẋp = Amxp +bλ
(
(u(t)+η(t))−θ

∗T
x xp

)
(4.39)

where

η(t) = [G(s)]u(t), (4.40)

and G(s) is an operator defined by G(s) = [e−τs−1], whose rational approximation of order

2N (where N ∈ Z>0) can be obtained by using the Pade approximation of e−τs:

e−τs ≈ ∑
2N
k=0(−1)kckτksk

∑
2N
k=0 ckτksk

(4.41)

where the coefficients are

ck =
(4N− k)!(2N)!
(4N)!k!(2N− k)!

, k = 0,1, . . . ,2N. (4.42)

It is easy to see that the rational approximation, GPade(s), of G(s) admits a state-space

representation (4.19), with the parameters

Aη =
1
τ


−w1 1 0 · · ·

−w2 0 1 · · ·

−w3 0 0 · · ·
...

...
... . . .


︸ ︷︷ ︸

AN

, bη =
1
τ


−v1

−v2

−v3
...


︸ ︷︷ ︸

bN

, cT
η =

[
1 0 0 · · ·

]
(4.43)
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where w1,w2, · · · ,w2N and v1,v2, · · · ,v2N are positive constants which are obtained from

analyzing (4.41) and (4.42). It is important to note that in (4.43), while the 2N× 2N di-

mensional matrix Aη and the 2N× 1 dimensional matrix bη depend on τ , the matrix AN ,

bN , and cη are independent of τ , with AN Hurwitz. This allows us to conclude from Theo-

rem 8 that there exists a family of the adaptive controller given by (4.2) and (3.23) with y

and f (θ) chosen as in (4.11) and (3.26) which guarantees boundedness for Aη ,bη , and cη .

This is summarized in Theorem 9, with the introduction of additional parameters β τ
m,β

τ
η as

β
τ
m =

‖b‖
2sAm

, β
τ
η =
‖bN‖
2sAN

.

Theorem 9. Consider the closed-loop adaptive system given by the plant (4.39), the dis-

turbance η due to time delay which is represented by (4.19) with parameters (4.43), the

control law (4.2), the adaptive law (3.23) with y and f (θ) chosen as in (4.11) and (3.26).

If the reference model in (4.4) and θmax are such that θ ∗ in (4.5) belongs to Ω0, then for

any initial conditions xp(t0), xm(t0), and θ(t0) ∈ Ω1, the closed-loop adaptive system has

bounded solutions, with θ(t) remaining in Ω1 for all t ≥ t0, if

β
τ
η <

1
4β τ

mθx,maxλmax
. (4.44)

Proof. From the definitions of β τ
m, β τ

η and since Aη = (1/τ)AN , bη = (1/τ)bN , it follows

that βm = β τ
m and βη = β τ

η . Therefore condition (4.44) immediately implies that (4.37)

holds. Theorem 8 and Proposition 1 imply that if (4.37) is satisfied, then boundedness of

the overall adaptive system follows, which proves Theorem 9.

Remark 4. As in Section 4.3, whether it exists a class of Pade approximations for which β τ
η

satisfies (4.44) remains to be shown. Unlike (4.37), we note that β τ
η depends on bN and AN

both of which are independent of τ . In other words, β τ
η is a fixed constant. Therefore the

class of reference models and θ ∗ that satisfy the matching condition (4.5) are more limited

in this case compared to those in Section 4.3, for a given Pade approximation GPade(s).

In fact, it is possible to show that the sufficient condition (4.44) essentially requires the

uncertain open-loop plant to be stable. The main reason for this limitation is the nature of
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”unmodeled dynamics” of GPade(s), where both the zeros and poles diverge as τ becomes

smaller, which makes the condition (4.44) quite restrictive.

Remark 5. Another point to note is that the sufficient condition is independent of τ . That

is, if for a given Am and θ ∗, condition (4.44) is satisfied, then it continues to hold for any

τ . This counterintuitive result comes from the fact that the error of Pade approximation

(|∠GPade(s)−∠G(s)|) becomes larger as τ increases. This is another critical limitation of

this analysis, with which one can not develop any methods to compute a delay margin of

the adaptive system, despite Pade approximation is used.

4.5 Summary

In this chapter, we show that the closed-loop adaptive system with MRAC and projection

algorithm has globally bounded solutions for any initial conditions in the presence of a

class of unmodeled dynamics. This class includes the Pade approximation of time delay.

However the sufficient condition obtained as (4.44) is quite restrictive, and limits the class

of plants for which robustness to time delay can be guaranteed. This conservative result is

partially due to the fact that the proof of boundedness solely relies on just a single Lyapunov

function. Moreover, the analysis uses Pade approximation, which obviously remains some

concerns about how reliable the result is.

Therefore a different approach and tools are necessary to prove robustness of the adap-

tive control system with projection algorithm to time delay.

80



Chapter 5

Guaranteed Delay Margins for Adaptive

Control of Scalar Plants

In Chapter 3, the Lipschitz continuous projection algorithm is formulated, and it was

demonstrated that by introducing the algorithm a scalar adaptive stabilizer system obtains

a non-zero delay margin, which was not accomplished by the standard adaptive laws with-

out projection. In Chapter 4, it was shown that with a modified adaptive law based on

projection, global results are obtained in the presence of unmodeled dynamics or a Pade-

approximated time delay. However the result with respect to a time delay in Chapter 4 is

quite restrictive, being only applicable to a small class of plants and not yet providing a

computable delay margin. In contrast to the above results, in this chapter we show that

global boundedness can be derived for a first-order plant with a guaranteed delay margin

using an adaptive law which includes a modification based on projection.

The adaptive law used in this chapter is exactly the same as in Chapter 4, which was

originally proposed in [56], rigorously analyzed in [41, 51], and revised and refined in

[38, 55]. As in Chapter 4, this allows us to establish the boundedness of the parameters,

independent of the plant state. Unlike the standard practice of Lyapunov function based

arguments which suffice when states are measurable, which was also followed in Chapter 4,

extensive first-principles based arguments are employed in order to prove the boundedness.

The problem is stated in Section 5.1. The main result is stated in Section 5.2.3 and

proved in Section 5.3. A flight control example is used to illustrate the order of magnitude
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of the analytically computable delay margin. Extensions to a higher dimensional plant

where states are accessible are discussed in Chapter 6.

5.1 Problem Statement

The problem is the adaptive control of a first-order plant

ẋp(t) = apxp(t)+bpu(t− τ) (5.1)

where ap is an unknown parameter and τ ≥ 0 is an unknown time delay. For ease of

exposition, we assume that bp = 1. It is also assumed that

|ap| ≤ ā, (5.2)

where ā is a known positive constant.

The standard adaptive control solution is to choose a control input

u(t) = θ(t)xp(t)+ r(t) (5.3)

where

θ̇(t) =−γxp(t)e(t) (5.4)

e(t) = xp(t)− xm(t). (5.5)

and xm(t) is specified by a reference model

ẋm(t) = amxm(t)+ r(t) am < 0. (5.6)

The problem is to ensure globally bounded solutions with the control input and adaptive

law as in (5.3) and (5.4).

The fundamental difficulty in solving this problem stems from the fact that the ubiqui-
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tous Lyapunov function candidate

V =
1
2

e2 +
1
2γ

φ
2 (5.7)

where γ > 0,

φ(t) = θ(t)−θ
?, (5.8)

θ
? = am−ap (5.9)

yields a time-derivative

V̇ = ame2 + eη (5.10)

where

η(t) = u(t− τ)−u(t). (5.11)

While uniform asymptotic stability in the large of the errors e and φ to zero can be assured

when η(t) ≡ 0, global boundedness in the presence of η has eluded researchers for the

past several years. In Chapter 4, it was shown that modifying the adaptive law with the

simple projection algorithm guarantees the global boundedness in the presence of a class

of unmodeled dynamics which includes the Pade approximation of time delay. However in

addition to the fact that the analysis in Chapter 4 relies on taking approximation, the result

is restrictive and does not provide a computable delay margin.

In the following, we provide a complete solution to this problem for scalar plants of the

form (5.1).
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5.2 Boundedness in the Presence of Time Delay

In this chapter, the modification of the standard MRAC adaptive law based on projection

algorithm is considered as robust adaptive control to establish boundedness. The adaptive

law and the definition of the projection algorithm are identical with those in Chapter 4,

however we again describe them here for the sake of completeness. The adaptive law is

given by

θ̇(t) = γProj(θ(t),−xp(t)e(t)) (5.12)

where

Proj(θ ,y) =


θ 2

max−θ 2

θ 2
max−θ ′2max

y if [θ ∈Ω1\Ω0 ∧ yθ > 0]

y otherwise
(5.13)

with

Ω0 =
{

θ ∈ R1|−θ
′
max ≤ θ ≤ θ

′
max
}

Ω1 =
{

θ ∈ R1|−θmax ≤ θ ≤ θmax
}
.

(5.14)

We note that (5.13) and (5.14) are a scalar version of (3.21) and (3.20), i.e. θ is a scalar,

with the special choice of the convex function f (·) as in (3.26).

We will show that this projection algorithm leads to a nonzero delay margin in adaptive

systems. The overall adaptive controller in this chapter is specified by (5.3), (5.12), and

(5.13).

5.2.1 Properties of the Lipschitz Continuous Projection Algorithm

The projection algorithm guarantees the boundedness of the parameter estimate indepen-

dent of the system dynamics. We note the important lemmas regarding the projection

algorithm Lemma 2 - Lemma 4 appeared in Chapter 4. If the adaptive law is chosen as in

Lemma 3 with y =−γxpe and the convex function f (θ) given by (3.26) in Lemma 4, then
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irrespective of the boundedness of y and e, it follows that θ(t) is bounded and lies in Ω1

|θ(t0)| ≤ θmax =⇒ |θ(t)| ≤ θmax∀t ≥ t0. (5.15)

5.2.2 Choice of Projection Algorithm Parameters

The adaptive law based on projection algorithm (5.12) requires θmax and ε to be specified,

whose selections are discussed below.

We note that the size of parametric uncertainty is assumed to be known as given by

(5.2). The control parameters θmax and ε are then chosen such that

θmax− ε ≥ ā+ |am|, (5.16)

0 < ε < |am|. (5.17)

The condition (5.16) is necessary in order to guarantee θ ? which satisfies the matching

condition (5.9) to lie in Ω0, i.e. θ ? ∈Ω0.

5.2.3 Main Result

Theorem 10. There exists a τ? such that the closed-loop adaptive system with the plant

in (5.1), control input in (5.3), reference model in (5.6), and adaptive law in (5.12), (5.13)

and (5.14), together with the projection parameters as in (5.16) and (5.17), has globally

bounded solutions for any initial conditions

xp(t) = χ(t), θ(t) = χθ (t) t ∈ [t0− τ, t0] (5.18)

where χ(t) : ℜ→ℜ, χθ (t) : ℜ→Ω1, and ∀τ ∈ [0,τ?).

A few definitions are stated before proceeding to the proof of Theorem 10.
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Definition 3. We define the region A and the boundary regions B, B’ as follow:

A =
{

z ∈ R2|−θ
′
max ≤ θ ≤ θ

′
max
}

B =
{

z ∈ R2|−θmax ≤ θ <−θ
′
max
}

B′ =
{

z ∈ R2|θ ′max < θ ≤ θmax
}

where z(t) = [e(t) θ(t)]T . These regions are illustrated in Figure 5-1.

Definition 4. We divide the boundary region B into two regions as follow:

BL =
{

z ∈ R2|−θmax ≤ θ ≤−(θ ′max + ε/2)
}

BU =
{

z ∈ R2|− (θ ′max + ε/2)≤ θ <−θ
′
max
}
.

Note that B = BL∪BU. These regions are illustrated in Figure 5-1.

Figure 5-1: Definition of regions

Let positive constants δ , ē defined by

δ ∈ (0 1] (5.19)

and

ē = max
(

max
t∈[t0−τ,t0]

|χ(t)|+ x̄m +2δ , ce, β

)
(5.20)
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where x̄m ≡maxt≥t0 |xm(t)| and ce > 0, β > 0 are given later in Proposition 2, Proposition

3, respectively. From the definitions of ē and δ , it is immediate that ē−δ > 0.

Condition 1. π(t) is said to satisfy Condition 1 at time ta if

|π(t)| ≤ ē ∀t ∈ [ta− τ, ta], (5.21)

|π(ta)|= ē−δ (5.22)

where ta ≥ t0 and ē ∈ R, δ ∈ R are positive constants with ē−δ > 0.

5.3 Proof of Theorem 10

The closed-loop adaptive system given by (5.1), (5.3), (5.6), (5.12), (5.13) and (5.14) is

equivalent to the error model described by

ė(t) = ame(t)+(θ(t)−θ
?)(e(t)+ xm(t))+η(t) (5.23)

where η is given by (5.11), and the adaptive law described by

θ̇(t) =− θ 2
max−θ 2

θ 2
max−θ ′2max

γe(t)
(
e(t)+ xm(t)

)
if z ∈ (B∪B′) and yθ > 0

(5.24)

and

θ̇(t) =−γe(t)
(
e(t)+ xm(t)

)
otherwise. (5.25)

We first note that since |χθ (t)| ≤ θmax, it follows from Lemma 4 that |θ(t)| ≤ θmax

∀t ≥ t0. Theorem 10 is therefore proven if the global boundedness of e(t) is demonstrated.

The proof is completed using the following four phases.

Phase I: The error e(t) satisfies Condition 1 for some t = ta; this implies that the state z

has to enter B at tb ∈ (ta, ta +∆Tin,max), where ∆Tin,max > 0 is a finite constant (see Figure

5-2(a)).
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! 

"

! 

"

(a) Phase I: Entering the boundary (b) Phase II: In the boundary region B

! 

"

(c) Phase III: Exiting from the boundary

! 

"

(d) Phase IV: Return to Condition 1

Figure 5-2: Phases I-IV of a trajectory
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Phase II: When the trajectory enters B, the parameter enters the boundary of the projection

algorithm; e is shown to be bounded by making use of the underlying linear time-varying

system (see Figure 5-2(b)).

Phase III: There exists ∆Tout,min such that the trajectory reenters A at tc > tb +∆Tout,min

with |e(tc)|< x̄m (see Figure 5-2(c)).

Phase IV: The trajectory has only two alternatives: (IV-A): |e(t)| < ē− δ ∀t > tc which

proves Theorem 10; (IV-B): e(t) satisfies Condition 1 for some td > tc (see Figure 5-2(d)).

If the latter, we replace ta by td and repeat Phases I to IV.

In the following subsections, we prove Phases I-IV rigorously.

5.3.1 Phase I: Entering the Boundary

From (5.20) and the definitions of ē and δ , it can be shown that

|e(t)|< ē−δ ∀t ∈ [t0− τ, t0].

If e(t) grows without bound, it implies that there exists ta > t0 such that

|e(ta)|= ē−δ . (5.26)

That is, e(t) satisfies Condition 1 at t = ta. We note that if no ta exists such that (5.26)

holds, the global boundedness of e(t) ∀t ≥ t0 is immediate. Without loss of generality, we

assume that z(ta) ∈ A.

Phase I is completed by proving the following proposition:

Proposition 2. Let e(t) satisfy Condition 1 at t = ta with δ , ē given in (5.19), (5.20) re-

spectively and z(ta) ∈ A. Then

(i) |e(t)| ≤ ē ∀t ∈ [ta, ta +∆T ] (5.27)

(ii) ∃t ′b ∈ [ta, ta +∆T ] s.t. z(t ′b) ∈ BL, (5.28)
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where

∆T =
δ

b0ē+b1
,

b0 = 3θmax + |am|+ |θ ?|, b1 = (3θmax + |θ ?|)x̄m +2r̄,
(5.29)

and r̄ ≡maxt≥t0 |r(t)|.

Proof of Proposition 2 (i):

We note from (5.23) that

|ė(t)| ≤ |am +θ(t)−θ
?||e(t)|+ |θ(t)−θ

?||xm(t)|+ |η(t)| (5.30)

where η(t) is given by (5.11). Since

|η(t)| ≤ 2θmax

(
max
[t−τ, t]

|e(t)|+ x̄m

)
+2r̄, (5.31)

it follows that

|ė(t)| ≤ b0ē′+b1 ∀t ∈ [ta, ta +∆T ] (5.32)

where

ē′ = max
t∈[ta−τ,ta+∆T ]

|e(t)|. (5.33)

We therefore have that ∀∆t ∈ [0,∆T ],

|e(ta +∆t)| ≤ |e(ta)|+ max
t∈[ta,ta+∆T ]

|ė(t)|∆T

≤ (ē−δ )+δ

(
1+

b0(ē′− ē)
b0ē+b1

)
= (1−b0∆T )ē+b0∆T ē′

(5.34)
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from (5.32) and (5.22) since Condition 1 is satisfied for t = ta. Therefore

max
t∈[ta,ta+∆T ]

|e(t)| ≤ (1−b0∆T )ē+b0∆T ē′. (5.35)

From (5.33) and since e(t) satisfies (5.21), there are only two possible cases, (a) ē′ = ē

and (b) ē′ > ē. If case (a) holds, it immediately implies from (5.33) that Proposition 2 (i)

is true. If we suppose case (b) holds, it implies ē′ = maxt∈[ta,ta+∆T ] |e(t)| and from (5.35) it

follows that

(1−b0∆T )ē′ ≤ (1−b0∆T )ē.

Since 1−b0∆T > 0 this in turn implies that ē′ ≤ ē, which contradicts with the condition of

the case and therefore we obtain ē′ = ē.

Proof of Proposition 2 (ii).

We note from (5.32) that

|e(t)| ≥ |e(ta)|− (b0ē′+b1)∆T ∀ t ∈ [ta, ta +∆T ]

which can be simplified, using Proposition 2 (i) and the fact that e(t) satisfies (5.26), as

|e(t)| ≥ ē−2δ ∀ t ∈ [ta, ta +∆T ]. (5.36)

From (5.36) and the choices of δ and ē in (5.19) and (5.20), it can be shown that

ē−2δ > x̄m.

This in turn implies that θ̇(t) is negative and

−θ̇(t)≥ γ|e(t)|(|e(t)|− |xm(t)|)

≥ γ(ē−2δ )((ē−2δ )− x̄m) ∀ t ∈ TA

(5.37)
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where TA is defined as

TA :
{

t|z(t) ∈ A and t ∈ [ta, ta +∆T ]
}
.

From (5.37) and noting that θ̇(t) < 0 ∀t ∈ [ta, ta +∆T ] since |e(t)| > x̄m ∀t ∈ [ta, ta +∆T ],

it follows that

θ(ta)−θ(ta +∆t)≥ γ(ē−2δ )(ē−2δ − x̄m)∆t

∀∆t ∈ [0,∆T ].
(5.38)

Hence defining

∆Tin,max =
2θmax

γ(ē−2δ )(ē−2δ − x̄m)
(5.39)

and if ∆Tin,max≤∆T , from (5.38), |θ(t)| ≤ θmax ∀t ≥ t0 and definition of region B, it follows

that z(t) enters B at tb ∈ (ta, ta +∆Tin,max).

We now show that z(t) enters BL at t ′b ∈ (ta, ta +∆T ′in,max) for some ∆T ′in,max > ∆Tin,max.

First, it can be proven that

|Proj(θ ,y)|> 1
2
|y| ∀z ∈ BU. (5.40)

Using similar arguments as above, then it can be shown that

−θ̇(t)>
γ

2
(ē−2δ )(ē−2δ − x̄m) ∀t ∈ TBU (5.41)

where TBU is defined as

TBU :
{

t|z(t) ∈ BU and t ∈ [ta, ta +∆T ]
}
.

Noting the definitions of BU and BL given by Definition 4, the maximum time that z(t) can

spend in BU can be derived, using (5.41), to be {ε/2}/{ γ

2(ē− 2δ )(ē− 2δ − x̄m)}. This

92



implies that z(t) enters region BL at t ′b ∈ (ta, ta +∆T ′in,max) where

∆T ′in,max = ∆Tin,max +
ε/2

γ(ē−2δ )(ē−2δ − x̄m)/2

=
2θmax + ε

γ(ē−2δ )(ē−2δ − x̄m)

(5.42)

if ∆T ′in,max ≤ ∆T , since then the inequality in (5.41) is satisfied for all t ∈ (tb, t ′b].

From (5.20)

ē≥ ce. (5.43)

From (5.29) and (5.42), if we let the positive constant ce defined by

ce =
−a2 +

√
a2

2−4a1a3

2a1
,

a1 = δγ

a2 =−δγ (4δ + x̄m)− (2θmax + ε)b0

a3 = 2δ
2
γ (2δ + x̄m)− (2θmax + ε)b1,

(5.44)

then ∆T ′in,max ≤ ∆T is implied from (5.43). This proves Proposition 2 (ii).

Remark 6. We note that since ∆T ′in,max ∼ O
(
ē−2) from (5.42) and ∆T ∼ O

(
ē−1) from

(5.29), the sufficient condition of ∆T ′in,max ≤ ∆T can be obtained in a form of ē≥ ce, where

ce is given as a solution of quadratic equation in ē. Since the exact solution takes a messy

expression as given by (5.44), we derive an upper-bound here. From (5.19) and relative

sizes among the constants θmax, θ ? and ε , it can be shown using algebraic manipulations

that

ce <
16
δγ

(θ 2
max + γ)(1+ x̄m). (5.45)

Therefore if ē≥ 16
δγ
(θ 2

max+γ)(1+ x̄m), then ∆T ′in,max <∆T is implied. The right hand side of

(5.45) is just one example of an upper-bound on ce and may be too conservative, however

the dependencies of the guaranteed bound ē on each parameter γ , θmax and x̄m are more
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transparent.

5.3.2 Phase II: In the Boundary Region B

Let the trajectory stays in B for t ∈ (tb, tc) for some tc > tb. From the definition of B, it

follows that

θ(t) =−θmax + ε(t) for t ∈ (tb, tc) (5.46)

where

ε(t) ∈ [0 ε).

Hence, from (5.1), (5.3), and (5.6), the error dynamics can be shown to be of the form

ė(t) = m0e(t)+m1e(t− τ)+ rB(t) ∀t ∈ (tb, tc) (5.47)

where

m0 ≡ ap

m1 ≡−θmax + ε(t− τ)

rB(t)≡−θ
?xm(t)+m1xm(t− τ)+(r(t− τ)− r(t)) .

(5.48)

Note that the boundedness of rB is immediate since r and xm are bounded.

Proposition 3 contains the main result of this section.

Proposition 3. There exists β > 0 such that for any τ ≤ τ̄ ,

|e(t)| ≤max{|e(tb)|,β} ∀t ∈ (tb, tc)

where

τ̄ =
−(ā−θmax + ε)

4θ 2
max

. (5.49)
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Proof. The proof is built upon Proposition 6.7 in [23], model transformation, and Razu-

mikhin Theorem. The key idea is that m0, m1 in (5.47) given by (5.48) satisfy m0 +m1 < 0

for t ∈ (tb, tc), or when the trajectory stays in B, from (5.16) and (5.17).

Using

e(t− τ) = e(t)−
∫ 0

−τ

ė(t +ζ )dζ ,

with ė(t+ζ ) replaced by the right hand side of the system equation (5.47) with appropriate

time shift, we obtain the following transformed system:

ė(t) = (m0 +m1(t))e(t)+ rB(t)

−m1(t)
∫ 0

−τ

(
m0e(t +ζ )+m1(t +ζ )e(t +ζ − τ)

+ rB(t +ζ )
)
dζ

= m̄0e(t)+
∫ 0

−2τ

m̄(t,ζ )e(t +ζ )dζ + r̄B(t),(
m̄0(t), m̄(t, ·)

)
∈ Ω̄,

(5.50)

where

Ω̄ =


(

m̄0, m̄(·)
)
∣∣∣∣∣∣∣∣∣∣∣∣

m̄0 = m0 +m1

m̄(ζ ) =−m1m0ζ ,

m̄(−τ +ζ ) =−m1m1ζ

−τ ≤ ζ < 0


miζ (t) = mi(t +ζ )

(5.51)

and

r̄B ≡ rB(t)−m1(t)
∫ 0

−τ

rB(t +ζ )dζ .

r̄B(t) is bounded since rB(t) and m1(t) are bounded. That is, there exists a scalar rmax such

|r̄B(t)| ≤ rmax ∀t ≥ t0. Equation (5.50) can be seen to be a system with distributed delays,

whose stability can be shown using the Razumikhin method, as shown below.

95



Define

V (e) = e2 (5.52)

et(t) = max
ζ∈[−2τ,0]

|e(t +ζ )|, (5.53)

V̄ (et) = max
ζ∈[−2τ,0]

V (e(t +ζ )) (5.54)

and a set Ωt

Ωt ≡
{

t
∣∣∣t ∈ (tb, tc), V (e(t)) = V̄ (et)

}
. (5.55)

It follows that for all t ∈ (tb, tc), there are two cases, (a) t ∈ Ωt , (b) t ∈ (tb, tc)\Ωt . We

provide the proof for each case separately.

(a) t ∈Ωt : From the definitions in (5.54) and (5.55), it follows that in this case,

V (e(t +ζ ))≤V (e(t)) for all −2τ ≤ ζ ≤ 0. (5.56)

Hence we obtain that

V̇ (e)≤ 2m̄0(t)e2(t)+
∫ 0

−2τ

m̄(t,ζ )e(t +ζ )e(t)dζ +2e(t)r̄B(t)

+
∫ 0

−2τ

α(ζ )
[
e2(t)− e2(t +ζ )

]
dζ

with any scalar positive function α(ζ ), since the last term then becomes positive due to

(5.56). We therefore obtain that

V̇ (e)≤
∫ 0

−2τ

ET
ζ
(t)Ψ(t,ζ )Eζ (t)dζ +2rmax|e(t)| (5.57)
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where

Ψ(t,ζ )≡

np(t,ζ ) m̄(t,ζ )

m̄(t,ζ ) −α(ζ )

 , (5.58)

np(t,ζ ) =
1
τ
(m0 +m1)+α(ζ ), (5.59)

and Eζ (t) = [e(t) e(t +ζ )]T .

With the selection

α(ζ ) =

 ā2 − τ < ζ ≤ 0

θ 2
max −2τ ≤ ζ ≤−τ

,

noting that θmax > ā, from (5.59) and (5.48) it can be seen that if

τ <
−(ap−θmax + ε)

θ 2
max

, (5.60)

then

np(t,ζ )< 0 ∀t,ζ . (5.61)

Furthermore, together with (5.48) and (5.51), the determinant of the matrix Ψ(t,ζ )

given by (5.58) can be computed and bounded as

det(Ψ(t,ζ ))

=

 −(1
τ
(m0 +m1)+ ā2)ā2−m2

1m2
0ζ

−(1
τ
(m0 +m1)+θ 2

max)θ
2
max−m2

1m2
1ζ

≥

 −1
τ
(ap−θmax + ε)ā2− ā4−θ 2

maxā2 − τ < ζ ≤ 0

−1
τ
(ap−θmax + ε)θ 2

max−θ 4
max−θ 4

max −2τ ≤ ζ ≤−τ.

(5.62)
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Again noting that θmax > ā, it can therefore be seen that if

τ <
−(ap−θmax + ε)

2θ 2
max

(5.63)

then

det(Ψ(t,ζ ))> 0 ∀t,ζ . (5.64)

From (5.60) and (5.63), we see that if

τ ≤ τ̄ (5.65)

where

τ̄ ≡ −(ā−θmax + ε)

4θ 2
max

, (5.66)

then (5.61) and (5.64) are both satisfied, proving that

Ψ(t,ζ )< 0 ∀t,ζ (5.67)

for all ap ∈ [−ā, ā].

Defining

εv ≡ min
t,ζ ,τ∈[0,τ̄]

(−eig(Ψ(t,ζ ))), (5.68)

(5.57) can therefore be simplified as

V̇ (e(t))≤−εv|e(t)|2 +2rmax|e(t)|. (5.69)

From (5.69),

V̇ (e(t))< 0 ∀t ∈Ωt\{t||e(t)|> β} (5.70)
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where β = 2rmax/εv. Since V̄ (et(t)) = V (e(t)) as we defined Ωt in (5.55), it can be con-

cluded that

˙̄V (et(t))< 0 ∀t ∈Ωt\{t||e(t)|> β}. (5.71)

(b):t ∈ (tb, tc)\Ωt : From the definitions in (5.54) and (5.55), it follows that for any t in Case

(b),

V̄ (et(t))>V (e(t)). (5.72)

Suppose there exists a t = ts ∈ (tb, tc)\Ωt such that

˙̄V (et(ts))> 0.

Then it follows that

V (e(t+s ))> V̄ (et(ts))

from the definition of V̄ (et) in (5.54). This contradicts (5.72), and therefore we can con-

clude that

˙̄V (et(t))≤ 0 ∀t ∈ (tb, tc)\Ωt .

From Case (a) and (b),

˙̄V (et(t))≤ 0 ∀t ∈ (tb, tc)\{t||e(t)|> β}. (5.73)

From (5.53), we have that et(t) is always positive. Therefore (5.73) implies that

ėt(t)≤ 0 ∀t ∈ (tb, tc)\{t||e(t)|> β}
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and therefore

et(t)≤max{et(tb),β} . (5.74)

Since |e(t)| ≤ et(t) from (5.53), (5.74) implies that

|e(t)| ≤max{|e(tb)|,β} ∀t ∈ (tb, tc),

completing the proof.

From Proposition 2, |e(tb)| ≤ ē and since ē ≥ β from (5.20), it can be concluded that

|e(t)| ≤ ē ∀t ∈ (tb, tc).

5.3.3 Phase III: Exiting from the Boundary

Proposition 4. Let z(t ′b) ∈ BL. Then either

(I) z(t) ∈ B ∀t ≥ t ′b, or

(II) there exists tc > t ′b such that z(tc) ∈ A and z(t) ∈ B ∀t ∈ [t ′b, tc).

In addition, in case (II),

tc− t ′b ≥ ∆Texit,min (5.75)

where

∆Texit,min =
2ε

γ x̄2
m
, (5.76)

and

|e(tc)|< x̄m. (5.77)

Proof. It is straightforward to see that cases (I) and (II) are mutually and collectively ex-

clusive.

100



From the definition of regions A and BL, it follows that

θ(t ′b)≤−(θ ′max + ε/2), θ(tc)≥−θ
′
max.

In addition, from (5.24) and (5.25)

θ̇(t)≤ 1
4

γ x̄2
m ∀ t.

Hence

tc− t ′b ≥
2ε

γ x̄2
m
,

completing the proof for (5.75).

We now prove (5.77) as follows. From the conditions in case (II), it is seen that

θ(tc−∆tc)<−θ
′
max, θ(tc)≥−θ

′
max

for any ∆tc ∈ (0, tc− t ′b]. Letting ∆tc tend to zero from the right hand side, it follows that

θ̇(tc)> 0. From (5.24) and (5.25), this in turn implies that |e(t)|< |xm(t)|, proving (5.77).

5.3.4 Phase IV: Return to Condition 1

So far, we have shown on Phases I through III that if at t = ta, e(t) satisfies Condition 1,

I. z(tb) ∈ B for tb < ta +∆Tin,max, with |e(t)| ≤ ē ∀t ∈ [ta, tb]

II. Defining tc such that z(t) ∈ B ∀t ∈ (tb, tc), if τ ≤ τ̄ , then |e(t)| ≤ ē ∀t ∈ (tb, tc).

III. Either (a) tc = ∞, or (b) tc ≥ t ′b +∆Texit,min

where z(tc) ∈ A and |e(tc)|< x̄m.

We also infer from (5.19) and (5.20) that x̄m < ē−2δ .

I to III above imply therefore that there are only two possibilities:

(A) |e(t)|< ē−δ for all t ≥ tc, or

(B) there exists td > tc s.t. |e(td)|= ē−δ and |e(t)|< ē−δ ∀t ∈ [tc, td).
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Global boundedness of z(t) is immediate in case (A). If case (B) holds, then from the

condition of the case it immediately implies that e(t) satisfies Condition 1 (5.22) for t = td .

We note that ∀t ∈ (tb, tc), z(t) ∈ B with |e(t)| ≤ ē. This together with the condition of the

case implies that

|e(t)| ≤ ē ∀t ∈ [tb, td].

Hence if τ ≤ ∆Texit,min, it follows that e(t) satisfies Condition 1 (5.21) for t = td . This

proves Phase IV.

5.3.5 Final Part of the Proof

The above phases imply that starting t = ta, there are only one of three possibilities: The

trajectory stays on Phase II for all t > t1 for some finite t1 ≥ tb; (ii) The trajectory stays

on Phase IV-(A) for all t ≥ t2 for some t2 ≥ tc; (iii) The trajectory visits all four phases

infinitely often. The discussions in sections 5.3.1 through 5.3.4 imply that in all three cases

(i)-(iii), e(t) always remains bounded, which proves Theorem 10. In particular, it follows

from (5.27), Proposition 3, and (5.77) that in all cases (i)-(iii), if τ ≤ τ?l defined as

τ
?
l = min

[
∆Texit,min, τ̄

]
, (5.78)

then,

|e(t)| ≤ ē ∀t ≥ t0

and hence

|z(t)| ≤M ∀t ≥ t0,

where M ≡
√

ē2 +θ 2
max, proving global boundedness.
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5.3.6 Delay Margin of the Adaptive System

From (5.66), (5.76), and (5.78), we obtain that the solutions of the overall adaptive system

is bounded for all τ ≤ τ?l . Hence, the lower bound of the delay margin τ? is given by τ?l ,

with

τ
?
l = min

[
2ε

γ x̄2
m
,
θmax− ā− ε

4θ 2
max

]
. (5.79)

Noting (5.16), if we choose

θmax− ε = ā+ |am|,

(5.79) can be rewritten as

τ
?
l = min

[
2ε

γ x̄2
m
,

|am|
4(ā+ |am|+ ε)2

]
. (5.80)

The delay margin obtained as given by (5.79) or (5.80) is intuitive. As adaptation speed

γ is set to be larger, it is seen that the delay margin becomes smaller. As reference input

r(t) is more aggressive, which usually leads to larger x̄m, the guaranteed delay margin is

reduced. As there is larger size of uncertainty ā in the system, it requires larger θmax to

ensure the ideal gain to lie in the inner projection set, leading to smaller delay margin.

5.3.7 Remarks

Theorem 10 establishes global boundedness in the presence of time delay and a computable

lower bound of the delay margin is obtained as in (5.79) or (5.80). Instead of utilizing any

Lyapunov function, which is a fixture in most adaptive control proofs, a first principles

approach was used to ensure the global boundedness of the errors.

It should be noted that while Theorem 10 ensures global boundedness for a range of

time delays, if τ = 0 (no time delay in the system) convergence of the state error e(t) can

be shown for the adaptive system as follows, utilizing the Lyapunov function. If τ = 0,
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with a V as in (5.7), we obtain

V̇ = ame2 +φ
(
exp +Proj(θ ,−exp)

)
(5.81)

since η(t) = 0 ∀t from (5.11). Equation (3.22) in Lemma 2 together with y =−exp implies

that the term within the parentheses in Eq. (5.81) is non-positive. This in turn implies that

V̇ ≤ ame2,

where am is negative as given in (5.6).

5.4 Numerical Example

In this section we demonstrate using a simple example as to how the main result in this

chapter can be used to obtain delay margin of adaptive systems. We consider the roll

dynamics of a conventional aircraft which can be approximated by a scalar plant.

Consider the aircraft roll dynamics in the form of

ṗ = Lp p+Lδaδa

where p is the aircraft roll rate in stability axis (radians/s), δa is the total differential

aileron-spoiler deflection (radians), Lp is the roll damping derivative, and Lδa is the di-

mensional rolling moment derivative with respect to differential aileron-spoiler deflection,

(the aileron-to-roll control effectiveness). Given Lp = −0.8(s−1) and Lδa = 1.6(s−1), we

design a nominal controller

δa = kp p+ kcmd pcmd

where kp =−0.75 and kcmd = 1.25. Then the ideal closed-loop dynamics is given as

ṗideal =−2pideal +2pcmd.
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Now we assume that the constant roll damping derivative Lp is unknown, but known to be

|Lp| ≤ 2. An adaptation can be introduced into kp as

k̇p =−γ pep

where γ is a positive constant and ep = p− pideal . A projection algorithm as described

above is introduced, modifying the adaptive law as

k̇p = proj(kp,−γ pep) .

Noting the upper bound on Lp, we choose the projection parameters θ ′max = 2.7 and ε =

0.01.

Also, we set γ = 1 and assume that pcmd(t) is such that

|pideal(t)| ≤ 0.2(radians/s),

which specifies x̄m in (5.79). We can therefore calculate the delay margin using (5.79) as

τ
?
l = 0.024(s).

According to some numerical simulation studies1, it was seen that the actual delay margin

of the uncertain adaptive system is around 0.38(s). It can be therefore concluded that the

analytical lower bound of a delay margin obtained in this chapter is not overly conservative.

5.5 Summary

In this chapter, robust adaptive control of scalar plants in the presence of time delay is es-

tablished. It is shown that a standard MRAC adaptive law modified only with a projection

algorithm ensures global boundedness of the overall adaptive system for a range of non-

zero delays. The upper bound of such delays, i.e. the delay margin, is explicitly computed

1Extensive time simulations were conducted over the parameter space specified.
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and demonstrated using the aircraft roll dynamics. By taking a close look at how the tra-

jectory behaves and relying on first principle analysis, not overly conservative results are

obtained.

An extension to higher dimensional plants where states are accessible is presented in

the next chapter.
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Chapter 6

Guaranteed Delay Margins for Adaptive

Systems with State Variables Accessible

In Chapter 5, it was shown that global boundedness can be derived with a computable delay

margin using a modified adaptive law based on projection for a first-order uncertain plant.

In contrast to the results in Chapter 4, not overly conservative results were obtained, by

virtue of taking a close look at how the trajectory behaves with a scalar plant and relying

on first principle analysis.

In this chapter, we extend this result to higher dimensional plants with a scalar input,

where states are accessible. Although some complications arise when we depart from the

first-order plant case, similar arguments can be still applied to obtain global results and

computable delay margins.

The problem is stated in Section 6.1. The main result is stated in Section 6.2 and proved

in Section 6.3.

6.1 Problem Statement

An nth order plant with a scalar input and a parameter uncertainty is given by

ẋp(t) = Apxp(t)+bpu(t− τ) (6.1)
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where Ap is an unknown parameter, bp is known, and τ ≥ 0 is an unknown time delay.

A control law is chosen as

u(t) = θ
T (t)xp(t)+ r(t) (6.2)

where θ(t) is time varying due to adaptation and r(t) is a reference input. The problem is

to ensure bounded solutions with the control law as in (6.2) using a suitable adaptive law

for adjusting θ(t).

(6.1) can be rewritten into the form of

ẋp(t) = Apxp(t)+bp
(
u(t)+η(t)

)
(6.3)

where

η(t) = u(t− τ)−u(t). (6.4)

Therefore the system subject to the input time delay can be interpreted as a perturbed

system by the unmodeled dynamics η(t).

A reference model is chosen as

ẋm(t) = Amxm(t)+bmr(t) (6.5)

where Am is Hurwitz. Therefore with a reference input r(t) bounded, boundedness of xm is

straightforward. We define r̄ ≡maxt≥t0 |r(t)|. Also we take bm = bp.

Assuming that θ ? exists such that

Ap +bpθ
?T = Am, (6.6)
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we define the parameter and state errors

φ(t) = θ(t)−θ
? (6.7)

e(t) = xp(t)− xm(t). (6.8)

The closed-loop adaptive system is given by

ẋp(t) = Amxp(t)+bp
(
φ

T (t)xp(t)+ r(t)+η(t)
)

(6.9)

and the error equation

ė(t) = Ame(t)+bm
(
φ

T (t)xp(t)+η(t)
)
. (6.10)

It is known that since Am is Hurwitz, for any positive definite symmetric matrix Q, there

exists a positive definite symmetric matrix P which satisfies the Lyapunov equation

AT
mP+PAm =−Q. (6.11)

As in the first-order plant case discussed in Section 5.1, it can be seen that a standard

adaptive law based on MRAC [44]

θ̇(t) =−Γxp(t)bT
mPe(t) (6.12)

where Γ is a positive definite symmetric matrix and P is given by (6.11), with the quadratic

function

V =
1
2

eT Pe+
1
2

φ
T

Γ
−1

φ (6.13)

which truly serves as a Lyapunov function to ensure stability if there is no delay, only yields

V̇ =−eT Qe+ eT Pbmη (6.14)
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with a state-dependent disturbance η . Therefore, in the presence of a delay, stability can

no longer be assured.

In fact, as shown in Theorem 1 and 2 in Chapter 3, the adaptive stabilizer with the

standard adaptive law (6.12) has unbounded solutions.

The question is if a different adaptive law than (6.12) can ensure a delay margin. This

is the problem addressed in Section 6.2 for general nth order plants. In particular, we

demonstrate that a modified adaptive law based on projection algorithm guarantees the

determination of a τ?l such that the adaptive system consisting of the plant in (6.1) and the

control law in (6.2) has globally bounded solutions for all τ ∈ [0, τ?l ].

6.2 Boundedness in the Presence of Time Delay

We now establish a robust adaptive controller for higher dimensional plants with a scalar

input, which ensures global boundedness in the presence of a certain range of finite time

delays, using projection algorithm.

Before we proceed with the main theorem, we first describe the specific adaptive law

based on projection algorithm that we will use to adjust the parameter θ in (6.2). In order to

ensure robustness, we apply projection to a set of transformed error states. As will be seen

in this section, the nonsingular transformation helps in focusing on two key scalars, one

each in e and θ which are central to the proof. This transformation is described in Section

6.2.1. The adaptive law based on projection is discussed in Section 6.2.2. Certain features

of the reference model parameters are discussed in Section 6.2.3 using the transformation.

A key property of the projection algorithm is revisited in Section 6.2.4. Selections of the

projection algorithm parameters are discussed in Section 6.2.5. Following these prelimi-

naries, the main result is stated in Section 6.2.6 and proved in Section 6.3.
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6.2.1 A Nonsingular Transformation

In this section, we will derive transformed state error E (t) and parameter ϑ(t) using trans-

fer matrices C and M so that

E (t)≡Ce(t), (6.15)

ϑ(t)≡Mθ(t). (6.16)

We refer to ith component of these states by Ei(t), ϑi(t) respectively, i = 0,1, · · · ,n− 1.

The introduction of C and M are needed in order to identify crucial scalars that capture the

dominant effect of the perturbation η . We now describe the construction of C and M.

The matrix M in (6.16) is chosen as follows. First we define

c0 =
Pbm

pbb
(6.17)

where P is given in (6.11) and pbb ≡
√

bT
mPbm. We note that

cT
0 bm =

bT
mP

pbb
bm = pbb. (6.18)

Then we pick n−1 vectors ci for i = 1,2, · · · ,n−1 which satisfy

cT
i P−1c j =

 0 if i 6= j,

1 if i = j
(6.19)

where j = 0,1, · · · ,n−1. We therefore note that

cT
i bm = cT

i P−1c0 pbb = 0 for i = 1,2, · · · ,n−1. (6.20)
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We obtain an invertible matrix C by defining

C =


cT

0

cT
1
...

cT
n−1

 . (6.21)

From (6.17), (6.19) and (6.21), it can be seen that

CP−1CT = I (6.22)
n−1

∑
j=0

c jcT
j = P. (6.23)

Using P and C, we choose M as

M = pbbCP−1. (6.24)

6.2.2 A Modified Adaptive Law with the Projection Algorithm

Several approaches have been taken in robust adaptive control to establish boundedness,

which includes the modification of the standard MRAC adaptive law. One such example is

to utilize projection algorithm as demonstrated in Chapter 4, Chapter 5, and [41, 51, 55].

The adaptive law we propose in this chapter is of the form

θ̇(t) = M−1w (6.25)

where w = [w1 w2 · · · wn]
T and

wi = Proj
(
{Mθ(t)}i,−{MΓxp(t)bT

mPe(t)}i

)
. (6.26)

The projection Proj(,) in (6.26) is a scalar function with scalar arguments and is defined
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by1

Proj(Θ,y) =


θ 2

max−Θ2

θ 2
max−θ ′2max

y if [Θ ∈Ω1\Ω0 ∧ yΘ > 0]

y otherwise
(6.27)

where θmax > θ ′max are any positive constants,

ε = θmax−θ
′
max, (6.28)

and

Ω0 =
{

Θ ∈ R1|−θ
′
max ≤Θ≤ θ

′
max
}

Ω1 =
{

Θ ∈ R1|−θmax ≤Θ≤ θmax
}
.

(6.29)

When the projection is not activated (Proj(Θ,y) = y), the adaptive law given by (6.25) and

(6.26) is reduced to the standard adaptive law (6.12). For the sake of simplicity, we will

assume that Γ = γP.

6.2.3 Properties Regarding the Reference Model

We define scalars

αi j ≡ cT
i AmP−1c j, i, j = 0, · · · ,n−1 (6.30)

and an (n×n) matrix

Am =CAmP−1CT . (6.31)

1The projection function is identical with the one given by (5.13) and (5.14) in Chapter 5. For the sake of
completeness we repeat them here.
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We partition Am as

Am =

α00 aT
1

a0 A ′
m

 (6.32)

where A ′
m is an (n−1)× (n−1) matrix. We show below that A ′

m is Hurwitz.

Lemma 6. Am is Hurwitz.

Proof. From (6.22),

P−1CT =C−1 (6.33)

and therefore (6.31) can be rewritten as

Am =CAmC−1. (6.34)

Then we obtain

det(sI−Am) = det
(
C(sI−Am)C−1)= det(C)det(sI−Am)det(C−1),

which becomes zero only and if

det(sI−Am) = 0

since det(C) 6= 0. Therefore the eigenvalues of Am and those of Am are identical. Since Am

is Hurwitz, this implies that Am is also Hurwitz.

We note that the eigenvectors of Am and those of Am are not necessary identical.

Lemma 7. A ′
m is Hurwitz.

Proof. From (6.34) and (6.33),

AT
mP+PAm =CT (Am +A T

m
)

C = PC−1 (Am +A T
m
)

C. (6.35)
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Noting P > 0, and AT
mP+PAm < 0 from (6.11), we obtain

C−1 (Am +A T
m
)

C < 0.

Therefore

Am +A T
m < 0. (6.36)

Considering the principal (n−1)× (n−1) submatrix, it can be then concluded that

A ′
m +A ′

m
T < 0. (6.37)

Since the symmetric part is negative definite, A ′
m is Hurwitz.

Remark 7. Am, as seen in (6.31), has a special structure with C chosen using (6.17),

(6.19) and (6.21). While in general a Hurwitz matrix X need not have its submatrix X ′ to

be Hurwitz, because of the special structure of Am, it is true that A ′
m is Hurwitz, as shown

in Lemma 7. Two examples are shown below to demonstrate that this does hold. Since one

of our main interests is flight applications, this includes one with flight dynamics.

Example 1. Consider a 3×3 matrix in a control canonical form

Am =


0 1.0000 0

0 0 1.0000

−1.4142 −3.4545 −4.5726

 , bm =


0

0

1

 .

P is obtained as a unique solution of the Lyapunov equation AT
mP+PAm =−Q with Q = I,

P =


2.2426 1.9947 0.3536

1.9947 3.8719 0.7222

0.3536 0.7222 0.2673

 .
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From bm and P, we construct C as

C =


0.6839 1.3968 0.5170

1.1474 0.0898 0

0.6771 1.3830 0

 .

Therefore we obtain

Am =


−1.8707 −0.1736 1.1039

0.1736 −0.5091 0.6873

2.6751 −0.3004 −2.1928

 , A ′
m =

−0.5091 0.6873

−0.3004 −2.1928



whose eigenvalues are {−3.7525,−0.4101± 0.4569i} and {−0.6422,−2.0597}, respec-

tively. This does not contradict with Lemma 7.

Example 2. The linearized short period dynamics is of the form

Ap =

 −0.2950 1.0000

−13.0798λα −0.2084λq

 , bp =

 0

−9.4725


where λα , λq are parametric uncertainties with a nominal value of one. A reference model

is chosen as

Am =

 −0.2950 1.0000

−12.9121 −6.6762

 ,
whose eigenvalues are −3.4856± 1.6529i. With Q = I, we obtain the unique solution of

the Lyapunov equation

P =

1.0901 0.0138

0.0138 0.0770

 .
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Choosing bm = bp, we compute

C =

−0.0498 −0.2774

1.0429 0

 .
Therefore Am, A ′

m can be calculated as

Am =

−6.4967 3.1386

−3.7592 −0.4746

 , A ′
m =

[
−0.4746

]

whose eigenvalues are −3.4856±1.6529i and −0.4746, respectively.

6.2.4 Properties of the Lipschitz Continuous Projection Algorithm

The most interesting property of the projection algorithm is its ability to ensure the bound-

edness of the parameter estimate independent of the system dynamics. We note Lemma

2-Lemma 4, which are the important lemmas regarding the projection algorithm. For the

sake of completeness, we state a lemma2 below.

Lemma 8. Consider the dynamics of Θ ∈ R1

Θ̇ = Proj(Θ,y) (6.38)

with Projection algorithm in (6.27), (6.29). Then,

|Θ(t0)| ≤ θmax =⇒ |Θ(t)| ≤ θmax∀t ≥ t0. (6.39)

The proof of Lemma 8 is straightforward from Lemma 3, or Lemma 4.

The implications of Lemma 8 on boundedness of the control parameter θ are obvious.

If the adaptive law is chosen as in (6.17)-(6.27) with Θ = {Mθ}i and y =−{MΓxpbT
mPe}i

for each i = 1,2, · · · ,n, then irrespective of the boundedness of y and e, it follows that

{Mθ(t)}i is bounded, i.e. |{Mθ(t0)}i| ≤ θi,max =⇒ |{Mθ(t)}i| ≤ θi,max∀t ≥ t0.

2Lemma 8 is a scalar version of Lemma 4.
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We let sets Ω0R and Ω1R be defined as

Ω0R =
{

θ ∈ Rn|−θ
′
i,max ≤ {Mθ}i ≤ θ

′
i,max ∀i

}
,

Ω1R =
{

θ ∈ Rn|−θi,max ≤ {Mθ}i ≤ θi,max ∀i
}
.

6.2.5 Choice of Projection Algorithm Parameters

The projection algorithm (6.26) requires θi,max and εi to be specified, whose selections are

discussed below.

We assume that upper bounds θ ?
i,max ∈ R on the uncertain parameter θ ? are known and

are defined as

θ
?
i,max = max

θ?

∣∣ϑ ?
i
∣∣ i = 0,1, · · · ,n−1

where ϑ ? = Mθ ? and ϑ ?
i refers to its ith component. We choose the control parameters

θi,max and εi for i = 1,2, · · · ,n−1 such that

θi,max− εi ≥ θ
?
i,max. (6.40)

Letting pϕ be a positive number, we then choose θ0,max and ε0 such that

−(θ0,max− ε0)+θ
?
0,max <−α00 +

1
2pϕsQ′

(
‖P′a0‖+(‖a1‖+φ

′
max)pϕ

)2 (6.41)

where α00, a0, and a1 are defined as in (6.32), P′ is the solution of

A ′T
m P′+P′A ′

m =−Q′

with a positive definite symmetric matrix Q′ and

φ
′
max ≡

√
n−1

∑
1

(
θi,max +θ ?

i,max

)2
.

It should be noted that choosing control parameters which satisfy (6.41) is always possible

by taking θ0,max to be large enough. We also note that (6.40) implies that the condition

118



Θ? ∈Ω0 in Lemma 2 is satisfied with Θ = ϑi for i = 0,1, · · · ,n−1. The choice of θ0,max in

(6.41) will become clear in Section 6.3.6, where the boundedness of e and θ are addressed.

Lastly, we define

Θmax ≡

√√√√n−1

∑
i=0

θ 2
i,max (6.42)

and

φmax ≡

√√√√n−1

∑
0

(
θi,max +θ ?

i,max

)2
. (6.43)

6.2.6 Main Result

Theorem 11. There exists a τ? such that the closed-loop adaptive system with the plant

in (6.1), reference model in (6.5), control law in (6.2), and adaptive law in (6.25), (6.27),

(6.29) together with the projection parameters as in (6.40), (6.41) has globally bounded

solutions for any initial conditions

xp(t) = χ(t), θ(t) = χθ (t) t ∈ [t0− τ, t0] (6.44)

where χ(t) : R→ Rn, χθ (t) : R→Ω1R, and ∀τ ∈ [0,τ?).

Theorem 11 implies that the adaptive system consisting of MRAC with the projection

algorithm has a nonzero time delay margin τ?.

6.2.7 Preliminaries

Before we proceed to the proof of Theorem 11, a few important constants and a specific

condition are first defined. This condition will be shown to be satisfied by the trajectory in

the proof.

119



Notations

Throughout the chapter, we again use the following notations. Let

sA = min
i

∣∣ℜ(λi(A)
)∣∣

s̄A = max
i

∣∣ℜ(λi(A)
)∣∣ (6.45)

where λi is ith eigenvalue of a square matrix A and ℜ(λi) is its real part.

Definitions

Definition 5. We define regions A, B, and B’ as follows (See Figure 6-1): Let z(t) =

[E T (t) ϑ T (t)]T .

A =
{

z ∈ R2n|−θ
′
0,max ≤ ϑ0 ≤ θ

′
0,max

}
B =

{
z ∈ R2n|−θ0,max ≤ ϑ0 <−θ

′
0,max

}
B′ =

{
z ∈ R2n|θ ′0,max < ϑ0 ≤ θ0,max

}
.

Definition 6. We divide the boundary region B into two regions as follows (See Figure 6-1):

BL =
{

z ∈ R2n|−θ0,max ≤ ϑ0 ≤−(θ ′0,max + ε0/2)
}

BU =
{

z ∈ R2n|− (θ ′0,max + ε0/2)≤ ϑ0 <−θ
′
0,max

}
.

We note that B = BL ∪BU, and that A, BL, BU, and B′ are all regions in R2n that lie

between two hyperplanes. All of these hyperplanes are specified using only one scalar

state variable, ϑ0.

Constants

Let positive constants δ , E0 defined by

δ ∈ (0 1] (6.46)
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Figure 6-1: Definition of regions

and

E0 = max
(

max
t∈[t0−τ,t0]

|E0(t)|+m0 +2δ , ce, β

)
(6.47)

where m0≡maxt≥t0

∣∣cT
0 xm(t)

∣∣ and ce > 0, β > 0 are specified later in Proposition 6, Lemma

10, respectively. From the definitions of E0 and δ , it can be shown that E0−2δ > m0.

We also define a positive constant E ′ by

E ′ = max

(√
s̄P′

sP′
max

t∈[t0−τ,t0]
‖E (t)‖,

√
l2rp

1− l2rp
E0

)
(6.48)

where positive constants l,rp are such that

rp > 1, (6.49)√
l2rp

1− l2rp
< 1. (6.50)
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From the definition of E ′, it is seen that

E ′ < E0. (6.51)

Using rp, E0 and E ′, we further define

E =
√

rp

√
E2

0 +E ′2. (6.52)

Since rp > 1, it is seen that

E > E0. (6.53)

Also from the definitions of E ′ and E, it can be proven that

lE ≤ E ′. (6.54)

Condition

Condition 2. π(t) ∈ Rn is said to satisfy Condition 2 at time ta if

|π0(t)| ≤ E ∀t ∈ [ta− τ, ta], (6.55)

|π0(ta)|= E0−δ , (6.56)

π
′T (ta− τ)P′π ′(ta− τ)≤ sP′E

′2 (6.57)

where πi is the ith component of π i = 0,1, · · · ,n− 1 and π ′(t) =
[
π1 π2 · · · πn−1

]T
∈

Rn−1. ta ≥ t0 and E0 ∈ R, δ ∈ R, E ′ ∈ R are positive constants with E0− δ > 0. P′ is a

positive definite matrix.

122



6.3 Proof of the Main Result

The closed-loop adaptive system is equivalent to the error model described by

ė(t) = Ame(t)+bm

{(
θ

T (t)−θ
?T)(e(t)+ xm(t)

)
+η(t)

}
(6.58)

where the state-dependent disturbance η due to input delay is given by (6.4), and the adap-

tive law in (6.25) and (6.26) which can be rewritten as

{Mθ̇(t)}i = Proj
(
{Mθ(t)}i,−

{
MΓ(e(t)+ xm(t))bT

mPe(t)
}

i

)
. (6.59)

We first note that since χθ (t0) ∈Ω1R, it follows from Lemma 8 that θ(t) ∈Ω1R ∀t ≥ t0,

or |ϑi(t)| ≤ θi,max ∀i ∀t ≥ t0. Theorem 11 is therefore proved if the global boundedness

of e(t) is demonstrated. In sections 6.3.1 through 6.3.3, the transformed error dynamics

are discussed. An outline of the proof, with four phases, is provided in Section 6.3.4. The

details of the four phases of the proof are provided in sections 6.3.5 through 6.3.8.

6.3.1 Transformed State Error Dynamics

In order to prove boundedness of e(t), we will utilize the transformed error E (t) introduced

in (6.15). The global boundedness of e(t) is demonstrated if the global boundedness of E (t)

is shown. In this section, we will derive the dynamics of E . In what follows, y ∈ Rn−1 is

said to be a subvector of a x ∈ Rn if its jth element

y j = x j+1, j = 1, · · · ,n−1.

Noting that Ei refers to the ith component of E and cT
i is the ith row vector of C, it

follows from (6.15) that for i = 0, · · · ,n−1

Ėi(t) = cT
i ė(t). (6.60)

For i = 1, · · · ,n− 1, using the property in (6.20) and the fact (6.23), it can be shown
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from (6.58) that

Ėi(t) = cT
i AmIe(t)

= cT
i AmP−1

(
n−1

∑
j=0

c jcT
j

)
e(t).

(6.61)

Noting the definition of αi j in (6.30), (6.61) can be rewritten as

Ėi(t) =
n−1

∑
j=1

αi jE j(t)+αi0E0(t). (6.62)

The definition of A ′
m in (6.31) and a0 in (6.32) implies that the subvector E ′ of E given by

E ′(t)≡ [E1 E2 · · · En−1] (6.63)

satisfies the error dynamics

Ė ′(t) = A ′
mE ′(t)+a0E0(t). (6.64)

We now return to (6.60) and consider the special case when i = 0. Using the property

in (6.18) and the definition of αi j in (6.30), the dynamics of the critical state error E0 can

be obtained from (6.58) as

Ė0(t) = cT
0 Ame(t)+ pbb

(
θ

T (t)−θ
?T)(e(t)+ xm(t)

)
+ pbbη(t)

=
n−1

∑
j=0

α0 jE j(t)+ pbb
(
θ

T (t)−θ
?T)(e(t)+ xm(t)

)
+ pbbη(t).

(6.65)

Defining

mi(t)≡ cT
i xm(t) (6.66)
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and noting (6.23) and (6.16), the error equation (6.65) can be rewritten as

Ė0(t) =
n−1

∑
j=0

α0 jE j(t)+ pbb
(
θ

T (t)−θ
?T)P−1(n−1

∑
j=0

c jcT
j
)(

e(t)+ xm(t)
)
+ pbbη(t)

=
n−1

∑
j=0

α0 jE j(t)+
n−1

∑
j=0

(
ϑ j(t)−ϑ

?
j
)(

E j(t)+m j(t)
)
+ pbbη(t)

=
(
α00 +ϑ0(t)−ϑ

?
0
)
E0(t)+

(
ϑ0(t)−ϑ

?
0
)
m0(t)+ pbbη(t)

+
n−1

∑
j=1

{(
α0 j +ϑ j(t)−ϑ

?
j
)
E j(t)+

(
ϑ j(t)−ϑ

?
j
)
m j(t)

}
=
(
α00 +ϑ0(t)−ϑ

?
0
)
E0(t)+

(
ϑ0(t)−ϑ

?
0
)
m0(t)+ pbbη(t)

+
(
a1 +ϑ

′(t)−ϑ
′?)E ′(t)+ (ϑ ′(t)−ϑ

′?)m′(t)

(6.67)

where ϑ ? = Mθ ? and ϑ ′? is its subvector. m(t) = [m0 m1 · · · mn−1] and m′(t) is its sub-

vector. Since xm(t) is known to be bounded, boundedness of mi(t) is straightforward from

(6.66) and we define m≡maxt≥t0 ‖m(t)‖. We also note that the definition of m0 in Section

6.2.7 can be rewritten as m0 ≡maxt≥t0 |m0(t)|.

Equations (6.64) and (6.67) represent the transformed tracking error dynamics E . These

equations show that the perturbation η due to the time delay τ appears directly only in the

dynamics of E0 and not in Ei, i = 1, · · · ,n−1.

In what follows, we will relate the boundedness of E ′ to that of E0 using Lemma 7.

Proposition 5. Suppose

|E0(t)| ≤W t ∈ Ts = [ts, tss] (6.68)

where tss > ts ≥ t0. Then

V ′(t)≤max
(

V ′(ts),
1
2

sP′ (lW )2
)
∀t ∈Ts, (6.69)

where V ′(.) is defined as

V ′(t) =
1
2
E ′T (t)P′E ′(t), (6.70)
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P′ = P′T > 0 is the solution of A ′T
m P′+P′A ′

m =−Q′ for some Q′ = Q′T > 0, and a positive

constant l is defined as

l =
2s̄2

P′‖a0‖
sP′sQ′

. (6.71)

Proof. Since A ′
m is Hurwitz, for any positive definite symmetric matrix Q′ there exists a

positive definite symmetric matrix P′ which satisfies the Lyapunov equation

A ′T
m P′+P′A ′

m =−Q′. (6.72)

Considering a Lyapunov-like function (6.70), we obtain its time derivative as

V̇ ′ =−1
2
E ′T Q′E ′+E ′T P′a0E0

≤−1
2

min
i

(
ℜ
(
λi(Q′)

))
‖E ′‖2 +‖P′a0‖W‖E ′‖.

(6.73)

Noting that

1
2

sP′‖E ′(t)‖2 ≤V ′(t)≤ 1
2

s̄P′‖E ′(t)‖2, (6.74)

(6.73) can be simplified as

V̇ ′ ≤−k1V ′+ k2
√

V ′ (6.75)

where

k1 =
s
¯Q′

s̄P′
, k2 =

√
2s̄P′‖a0‖W√

sP′
. (6.76)

For positive constants ∆1, ∆2 such that ∆1 < k1 and 4∆1∆2 ≥ k2
2, it can be shown that for

any V ′,

∆1V ′+∆2 ≥ k2
√

V ′ (6.77)
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through a straightforward completion of squares. Inequalities (6.75) and (6.77) imply that

V̇ ′ ≤−(k1−∆1)V ′+∆2.

Defining ∆1 = k1/2 and ∆2 = k2
2/(4∆1) = k2

2/(2k1), we therefore obtain

V̇ ′ ≤−k1

2
V ′+

k2
2

2k1
. (6.78)

(6.78) implies that

V̇ ′(t)≤ 0 if V ′(t)≥ K1 (6.79)

where

K1 =

(
k2

k1

)2

=
1
2

sP′ (lW )2 . (6.80)

This proves Proposition 5.

Corollary 1. Suppose (6.68) is satisfied where tss > ts ≥ t0. Then

sP′‖E ′(t)‖2 ≤max
(
E ′T (ts)P′E ′(ts), sP′ (lW )2

)
∀t ∈Ts. (6.81)

Proof. From Proposition 5 and noting (6.74), (6.81) follows.

6.3.2 Transformed Parameter Dynamics

Similar to Section 6.3.1, we now focus on the transformed parameter ϑ(t) in (6.16). From

(6.59) and noting that {Mθ(t)}i = ϑi and (6.24), we obtain, for i = 0, · · · ,n−1,

ϑ̇i(t) = Proj
(

ϑi,−γ pbbcT
i (e(t)+ xm(t))bT

mPe(t)
)

= γ pbbProj
(

ϑi,−(Ei(t)+mi(t))bT
mPe(t)

)
.
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We also note that bT
mPe(t) = pbbcT

0 e(t) = pbbE0(t) from (6.17) and (6.15). Therefore we

obtain

ϑ̇i(t) = γ
′Proj

(
ϑi,−(Ei(t)+mi(t))E0(t)

)
, i = 0, · · · ,n−1 (6.82)

where γ ′ = γ p2
bb. As will be seen later, E0 is the main component of interest. We therefore

examine (6.82) for i = 0 in more detail. Returning to the definition of Proj(·, ·) in (6.27), it

follows that

ϑ̇0(t) =−γ
′(E0(t)+m0(t)

)
E0(t)

if [z ∈ A] ∨
[
(z ∈ (B∪B′)) ∧ (E0(t)+m0(t))E0(t)ϑ0 ≥ 0

] (6.83)

and

ϑ̇0(t) =−

(
θ 2

0,max−ϑ 2
0

θ 2
0,max−θ ′20,max

)
γ
′(E0(t)+m0(t)

)
E0(t)

if
[
(z ∈ (B∪B′)) ∧ (E0(t)+m0(t))E0(t)ϑ0 < 0

]
.

(6.84)

It is seen that ϑ̇0 < 0 when E0 <−m0 or m0 < E0.

Equations (6.82) for i = 1, · · · ,n−1 and (6.83), (6.84) constitute the complete adaptive

law.

6.3.3 Complete Transformed State Error and Parameter Dynamics

The two states in the adaptive system are the state error E and the parameter ϑ . The former

is given by (6.65) and (6.64), and the latter by (6.82) for i = 1, · · · ,n−1 and (6.83), (6.84).

Of the 2n states E and ϑ , two scalar variables E0(t) and ϑ0(t) will be seen to be more

crucial. We note that while η explicitly appears in the dynamics of E0, it does not in the

dynamics of Ei, i ≥ 1. Among the parameter states, only ϑ0 is affected by a nonlinear

function of E0 whereas ϑi, i ≥ 1 includes only linear function of E0. The effects of such

features in E and ϑ , E0 and ϑ0 in particular, will become clear in the following sections.
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6.3.4 Outline of the Proof

The proof is completed using the following four phases.

Phase I: The transformed error E (t) satisfies Condition 2 for some t = ta; this implies that

the state z(t) has to enter B at tb ∈ (ta, ta +∆Tin,max), where ∆Tin,max > 0 is a finite constant

(see Figure 6-2(a)).

Phase II: While the trajectory stays in B, the parameter ϑ0(t) stays in the boundary of the

projection algorithm; E (t) is shown to be bounded by making use of the underlying linear

time-varying system (see Figure 6-2(b)).

Phase III: There exists ∆Tout,min such that the trajectory reenters A at tc > tb +∆Tout,min

with |E0(tc)|< m0 (see Figure 6-2(c)).

Phase IV: The trajectory has only two alternatives: (IV-A): |E0(t)|< E0−δ ∀t > tc which

proves Theorem 1; (IV-B): E0(t) satisfies Condition 2 (6.56) for some td > tc. If the latter,

we replace ta by td and repeat Phases I to IV.

In the following subsections, we prove Phases I-IV in detail. Lemmas and propositions

are introduced as needed in order to prove these phases.

6.3.5 Phase I: Entering the Boundary

The goal of this section is to prove the following proposition.

Proposition 6. Let E (t) satisfy Condition 2 at t = ta with δ , E0, E ′ given in (6.46), (6.47),

(6.48) respectively and z(ta) ∈ A where z =
[
E T ϑ T

]T
. Then

(i) |E0(t)|< E0 ∀t ∈ [ta, ta +∆T ] (6.85)

(ii) ∃t ′b ∈ (ta, ta +∆T ] s.t. z(t ′b) ∈ BL, (6.86)
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Figure 6-2: Phases I-III of a trajectory
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where

∆T =
δ

b0E +b1
, (6.87)

b0 = B+B′, b1 =

(
φmax +2

s̄c

sc
Θmax

)
m+2pbbr̄,

B = |a00|+ |ϑ ?
0 |+

(
1+2

s̄c

sc

)
Θmax, B′ = ‖a1‖+‖ϑ ′?‖+

(
1+2

s̄c

sc

)
Θmax.

Proof of Proposition 6 (i):

We note from (6.67) that

|Ė0(t)| ≤ |a00 +ϑ0(t)−ϑ
?
0 ||E0(t)|+ |ϑ0(t)−ϑ

?
0 ||m0(t)|+ pbb|η(t)|

+‖a1 +ϑ
′(t)−ϑ

′?‖‖E ′(t)‖+‖ϑ ′(t)−ϑ
′?‖‖m′(t)‖.

(6.88)

From (6.4) and (6.2) it can be also seen that

|η(t)| ≤ 2
pbb

s̄c

sc
Θmax

(
max
[t−τ, t]

‖E (t)‖+m
)
+2r̄. (6.89)

From (6.88) together with (6.89), it follows after elaborate algebraic manipulations that

|Ė0(t)| ≤ BÊ0 +B′Ê ′+b1 ∀t ∈ [ta, ta +∆T ] (6.90)

where

Ê0 = max
t∈[ta−τ,ta+∆T ]

|E0(t)|, Ê ′ = max
t∈[ta−τ,ta+∆T ]

‖E ′(t)‖. (6.91)

By applying Proposition 5, with ta−τ replacing ts, ta+∆T replacing tss, and Ê0 replac-

ing W , we obtain that

E ′T (t)P′E ′(t)≤max
(
E ′T (ta− τ)P′E ′(ta− τ), sP′(lÊ0)

2
)
∀t ∈ [ta− τ, ta +∆T ].

Since E (t) satisfies Condition 2 (6.57) at t = ta, the right hand side can be simplified to
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obtain

E ′T (t)P′E ′(t)≤max
(

sP′E
′2, sP′(lÊ0)

2
)
∀t ∈ [ta− τ, ta +∆T ].

Noting the definition of Ê ′ in (6.91), we therefore obtain

Ê ′ ≤

√
1

sP′
max

(
sP′E ′2, sP′(lÊ0)2

)
.

Since l < 1 and E ′ < E0 (6.51), it follows that

Ê ′ ≤max
(

E0, Ê0

)
. (6.92)

From (6.92), it can be seen that there are two possible cases, (A) E0 ≤ Ê0 and (B)

E0 > Ê0.

Case (A) E0 ≤ Ê0

Condition of Case (A) and (6.92) imply that Ê ′ ≤ Ê0. This allows us to simplify (6.90) as

|Ė0(t)| ≤ b0Ê0 +b1 ∀t ∈ [ta, ta +∆T ] (6.93)

where b0 ≡ B+B′. Note that ∀∆t ∈ [0,∆T ]

|E0(ta +∆t)| ≤ |E0(ta)|+ max
t∈[ta,ta+∆T ]

|Ė0(t)|∆T. (6.94)

From (6.93), the definition of ∆T in (6.87), and (6.56) in Condition 2 which is satisfied for

t = ta, it follows that

|E0(ta +∆t)| ≤ (E0−δ )+δ

(
1+

b0(Ê0−E)
b0E +b1

)
∀∆t ∈ [0,∆T ]. (6.95)

Therefore

max
t∈[ta,ta+∆T ]

|E0(t)| ≤ E0 +b0∆T
(
Ê0−E

)
. (6.96)
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Noting the definition of Ê0 in (6.91) and since E0(t) satisfies (6.55),

Ê0 = max
{

E, max
t∈[ta,ta+∆T ]

|E0(t)|
}

and therefore there are only two possible cases, (A-a) Ê0 = E and (A-b) Ê0 > E. If case

(A-a) holds, it immediately implies from (6.96) that Proposition 6 (i) is true. If we suppose

case (A-b) holds, it implies Ê0 = maxt∈[ta,ta+∆T ] |E0(t)| and from (6.96) it follows that

(1−b0∆T )Ê0 ≤ E0−b0∆T E.

Noting E > E0 and 1−b0∆T > 0, we can therefore obtain

Ê0 <
E0−b0∆T E0

1−b0∆T
= E0 < E.

This contradicts with the condition of the case and therefore we obtain Ê0 = E.

Case (B) E0 > Ê0

Condition of Case (B) and (6.92) imply that Ê ′ ≤ E0. This together with Condition of Case

(B) allows us to simplify (6.90) as

|Ė0(t)| ≤ b0E0 +b1 ∀t ∈ [ta, ta +∆T ]. (6.97)

Noting that (6.94) ∀∆t ∈ [0,∆T ], we therefore obtain using (6.87) and (6.56) that

|E0(ta +∆t)| ≤ (E0−δ )+δ
b0E0 +b1

b0E +b1

< (E0−δ )+δ
b0E +b1

b0E +b1

= E0,

(6.98)

which again implies that Proposition 6 (i) is true.

Proof of Proposition 6 (ii).
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Equation (6.90) together with (6.92) gives that

|Ė0(t)| ≤ b0 max
(

E0, Ê0

)
+b1 ∀t ∈ [ta, ta +∆T ].

Thus, since E ≥max
(

E0, Ê0

)
from the proof of Proposition 6 (i),

|E0(t)| ≥ |E0(ta)|− (b0E +b1)∆T ∀ t ∈ [ta, ta +∆T ]

which can be simplified, using the fact that E0(t) satisfies (6.56), as

|E0(t)| ≥ E0−2δ ∀ t ∈ [ta, ta +∆T ]. (6.99)

From the choices of δ and E0 in (6.46) and (6.47), it can be shown that E0−2δ ≥ m0 and

therefore

|E0(t)| ≥ m0 ∀ t ∈ [ta, ta +∆T ].

From (6.83), this in turn implies that ϑ̇0(t) is non-positive and

−ϑ̇0(t)≥ γ
′|E0(t)|(|E0(t)|− |m0(t)|)

≥ γ
′(E0−2δ )((E0−2δ )−m0) ∀ t ∈ TA

(6.100)

where TA is defined as

TA :
{

t|z(t) ∈ A and t ∈ [ta, ta +∆T ]
}
.

From (6.100), it follows that

ϑ0(ta)−ϑ0(ta +∆t)≥ γ
′(E0−2δ )(E0−2δ −m0)∆t (6.101)
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for all ∆t ∈ [0,∆T ] which satisfy [ta, ta +∆t]⊂ TA. Hence defining

∆Tin,max =
2θ0,max

γ ′(E0−2δ )(E0−2δ −m0)
(6.102)

and if ∆Tin,max ≤ ∆T , from (6.101), (6.39) and definition of regions A and B, it follows that

z(t) enters B at tb ∈ (ta ta +∆Tin,max).

We now show that z(t) enters BL at t ′b ∈ (ta ta +∆T ′in,max) for some ∆T ′in,max > ∆Tin,max.

First, it can be proven that

|Proj(θ ,y)|> 1
2
|y| ∀z ∈ BU. (6.103)

Using similar arguments as above, then it can be shown that

−ϑ̇0(t)>
γ ′

2
(E0−2δ )(E0−2δ −m0) ∀t ∈ TBU (6.104)

where TBU is defined as

TBU :
{

t|z(t) ∈ BU and t ∈ [ta, ta +∆T ]
}
.

Noting Definition 6, the maximum time that z(t) can spend in BU can be derived, using

(6.104), to be {ε0/2}/{ γ ′

2 (E0− 2δ )(E0− 2δ −m0)}. This implies that z(t) enters region

BL at t ′b ∈ (ta, ta +∆T ′in,max) where

∆T ′in,max = ∆Tin,max +
ε0/2

γ ′(E0−2δ )(E0−2δ −m0)/2

=
2θ0,max + ε0

γ ′(E0−2δ )(E0−2δ −m0)

(6.105)

if ∆T ′in,max ≤ ∆T , since then the inequality in (6.104) is satisfied for all t ∈ (tb, t ′b].

From (6.47)

E0 ≥ ce. (6.106)
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Noting that E < E0
l from (6.54) and (6.51), if we let the positive constant ce defined by

ce =
−l2 +

√
l2
2−4l1l3

2l1
,

l1 = δγ
′

l2 =−δγ
′ (4δ +m0)− (2θ0,max + ε0)

b0

l

l3 = 2δ
2
γ
′ (2δ +m0)− (2θ0,max + ε0)b1,

(6.107)

then (6.106) implies ∆T ′in,max < ∆T from (6.87) and (6.105). This proves Proposition 6 (ii).

Remark 8. As in Chapter 5, an upper-bound of ce can be derived. It can be shown using

algebraic manipulations that

ce <
16
δγ ′

(θ 2
0,max + γ

′)(1+m0).

6.3.6 Phase II: In the Boundary Region B

We return to the overall adaptive system, which can be written using (6.1), (6.2), and (6.6)

as

ẋp(t) =
{

Am−bmθ
?T}xp(t)+bm

{
θ

T (t− τ)xp(t− τ)+ r(t− τ)
}

(6.108)

which leads to the error dynamics

ė(t) = Ame(t)−bmθ
?T xp(t)+bmθ

T (t− τ)xp(t− τ)+bm
(
r(t− τ)− r(t)

)
. (6.109)

Noting that E =Ce, we then obtain

Ė (t) =CAm(P−1CTC)e(t)−Cbmθ
?T (P−1CTC)

(
e(t)+ xm(t)

)
+Cbmθ

T (t− τ)(P−1CTC)
(
e(t− τ)+ xm(t− τ)

)
+Cbm

(
r(t− τ)− r(t)

)
= M0E (t)+M1E (t− τ)+R(t)

(6.110)
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where the matrices M0,M1 and the vector R are defined as

M0 ≡Am− cIϑ
?T

M1 ≡ cIϑ(t− τ)

R(t)≡−pbbcIθ
?T xm(t)+ pbbcIθ

T (t− τ)xm(t− τ)+ pbbcI
(
r(t− τ)− r(t)

)
cI =

[
1 0 · · · 0

]T
.

(6.111)

Let the trajectory stay in B for t ∈ (tb, tc) for some tc > tb. From the definition of B, it

follows that

ϑ0(t) =−θ0,max + ε(t) for t ∈ (tb, tc) (6.112)

where

ε(t) ∈ [0 ε0).

We show below that E (t) is guaranteed to converge to a bounded set if the trajectory

remains in B. Before we proceed to this result, we study the properties of M0+M1 while in

B. Let us define a set as follows:

ΩB = {(M0,M1)|z ∈ B}.

Lemma 9. There exists q > 0 such that

(M0 +M1)
T P +P(M0 +M1)<−qI (6.113)

is satisfied for all (M0,M1) ∈ΩB, where P is a constant matrix defined as

P =I̊T P̊ I̊,

P̊ =

P′ 0

0 pϕ

 , I̊ =

 01×(n−1) 1

I(n−1)×(n−1) 0(n−1)×1

 . (6.114)
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Proof. From (6.111), it is seen that

M0 +M1 = Am +

ϑ T (t− τ)−ϑ ?T

0

 . (6.115)

From (6.114), (6.115) and (6.32), we obtain that

S(t)≡ I̊(M0 +M1)I̊T =

 A ′
m a0

aT
1 +ϕ ′T (t− τ) α00 +ϕ0(t− τ)

 (6.116)

where ϕ0 ∈ℜ, ϕ ′ ∈ℜn−1 are given by

[
ϕ0(t) ϕ ′T (t)

]T
= ϑ(t)−ϑ

?. (6.117)

Defining a symmetric matrix function Q̊(.) as

Q̊(S) =−
(
P̊S+ST P̊

)
=

 Q′ −qd(ϕ
′)

−qT
d (ϕ

′) −2pϕ(α00 +ϕ0(t− τ))

 (6.118)

where qd(ϕ
′) ≡ P′a0 +(a1 +ϕ ′(t− τ))pϕ , we can show that Q̊(S) is positive definite for

all S(t) if z(t) ∈ B as follows.

From (6.72), we have that Q′ > 0. Therefore all k leading principal minors of Q̊ are

positive for k = 1,2, · · · ,n−1. Also, noting from (6.118) that

det
{
Q̊
}
= det

{
Q′
}(
−2pϕ(α00 +ϕ0(t− τ))−qT

d (ϕ
′)Q′−1qd(ϕ

′)
)

(6.119)

and the design of the projection algorithm (6.41) which implies

ϕ0(t− τ)<−α00−
1

2pϕ

qT
d (ϕ

′)Q′−1qd(ϕ
′) if z ∈ B,
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we obtain

det
{
Q̊
}
> 0 if z ∈ B.

Since all the leading principal minors of Q̊ are positive, we obtain that Q̊ is positive definite

while z ∈ B.

Noting the definition of S in (6.116) and from the fact that I̊T = (I̊)−1, we obtain

−I̊T Q̊I̊ = I̊T P̊SI̊ + I̊T ST P̊ I̊

= I̊T P̊
(
I̊(M0 +M1)I̊T)I̊ + I̊T(I̊(M0 +M1)

T I̊T)P̊ I̊

= (I̊T P̊ I̊)(M0 +M1)+(M0 +M1)
T (I̊T P̊ I̊).

(6.120)

Equation (6.120) serves as a Lyapunov equation for M0 +M1, since it can be rewritten into

the form of

−Q = P(M0 +M1)+(M0 +M1)
T P (6.121)

with P ≡ I̊T P̊ I̊ and Q≡ I̊T Q̊I̊. From the definition, P is symmetric and positive definite

since P̊ is a symmetric positive definite matrix. In the same manner, it can be seen that

Q is symmetric and positive definite for all (M0,M1) ∈ ΩB since the symmetric matrix

function Q̊ is positive definite while z ∈ B. This proves Lemma 9.

Lemma 10. Consider the uncertain time-varying system (6.110) with the selection of the

projection parameters which satisfies (6.41). Let the solutions of the system lie in B for

t ∈ (tb, tc). Then there exist τ̄ and β > 0 such that for any τ ≤ τ̄ ,

V (E (t))≤max
{

V (E (tb)), s̄Pβ
2} ∀t ∈ (tb, tc) (6.122)

where

V (E ) = E T PE . (6.123)

Proof. Lemma 10 is a vector version of Proposition 3 in Chapter 5 and its proof is built
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upon Proposition 6.7 in [23] utilizing Lemma 9, model transformation, and Razumikhin

Theorem.

Using

E (t− τ) = E (t)−
∫ 0

−τ

Ė (t +ζ )dζ , (6.124)

with Ė (t + ζ ) replaced by the right hand side of the system equation (6.110) with appro-

priate time shift, we obtain the following transformed system:

Ė (t) = (M0 +M1(t))E (t)+R(t)

−M1(t)
∫ 0

−τ

(
M0E (t +ζ )+M1(t +ζ )E (t +ζ − τ)+R(t +ζ )

)
dζ

= M̄0E (t)+
∫ 0

−2τ

M̄(t,ζ )E (t +ζ )dζ + R̄(t),(
M̄0(t),M̄(t, ·)

)
∈ Ω̄,

(6.125)

where

Ω̄ =


(

M̄0,M̄(·)
)∣∣∣∣

M̄0 = M0 +M1

M̄(ζ ) =−M1M0ζ , M̄(−τ +ζ ) =−M1M1ζ , −τ ≤ ζ < 0

for (M0,M1) ∈ΩB and (M0ζ ,M1ζ ) ∈ΩB

 ,

Mkζ (t) = Mk(t +ζ )

(6.126)

and

R̄(t)≡ R(t)−M1(t)
∫ 0

−τ

R(t +ζ )dζ . (6.127)

R̄(t) is bounded since R(t) and M1(t) are bounded. That is, there exists a scalar Rmax such

that ‖PR̄(t)‖ ≤ Rmax ∀t ≥ t0. Equation (6.125) can be seen to be a system with distributed

delays, whose stability can be shown using the Razumikhin method, as shown below.
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Define

V̄ (Et) = max
ζ∈[−2τ,0]

V (E (t +ζ )) (6.128)

and a set Ωt

Ωt ≡
{

t
∣∣∣t ∈ (tb, tc), V (E (t)) = V̄ (Et)

}
. (6.129)

It follows that for all t ∈ (tb, tc), there are two cases, (a) t ∈ Ωt , (b) t ∈ (tb, tc)\Ωt . We

provide the proof for each case separately.

(a) t ∈Ωt : From the definitions in (6.128) and (6.129), it follows that in this case,

V (E (t +ζ ))≤V (E (t)) for all −2τ ≤ ζ ≤ 0. (6.130)

Hence we obtain from (6.123) and (6.125) that

V̇ (E )≤ 2E T (t)PM̄0(t)E (t)+2
∫ 0

−2τ

E T (t)PM̄(t,ζ )E (t +ζ )dζ +2E T (t)PR̄(t)

+
∫ 0

−2τ

α(ζ )
[
E T (t)PE (t)−E T (t +ζ )PE (t +ζ )

]
dζ

(6.131)

with any scalar positive function α(ζ ), since the last term then becomes non negative due

to (6.130). Equation (6.131) can be simplified as

V̇ (E )≤
∫ 0

−2τ

ET
ζ
(t)Ψ(t,ζ )Eζ (t)dζ +2Rmax‖E (t)‖ (6.132)

where

Ψ(t,ζ )≡

 Np(t,ζ ) PM̄(t,ζ )

(PM̄(t,ζ ))T −α(ζ )P

 , (6.133)
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Np(t,ζ ) =
1

2τ
[P(M0 +M1)+(M0 +M1)

T P]+α(ζ )P, (6.134)

and Eζ (t) = [E T (t) E T (t +ζ )]T .

We take

α(ζ ) = Θmax

√
s̄P

sP
·

 ‖M0ζ‖ − τ < ζ ≤ 0

‖M1ζ‖ −2τ ≤ ζ ≤−τ

. (6.135)

We now state and prove a sublemma:

Sublemma 1. There exist εv, τ̄ such that Ψ(t,ζ )≤−εvI if τ ≤ τ̄ .

Proof. From (6.134), (6.135) and Lemma 9 (6.113), it can be seen that if

τ <
1

2Θmax‖Mkζ‖s̄P

√
sP

s̄P
q k = 0,1 (6.136)

then

Np(t,ζ )< 0 ∀t,ζ . (6.137)

Using (6.137), it can be then shown that for any vectors v1, v2 ∈ℜn

[
vT

1 vT
2

]
Ψ(t,ζ )

v1

v2


≤−sNp(t,ζ )

(
‖v1‖−

‖PM1Mkζ‖‖v2‖
sNp(t,ζ )

)2

+

(
‖PM1Mkζ‖2

sNp(t,ζ )
−α(ζ )sP

)
‖v2‖2,

(6.138)

and also noting (6.134) and (6.113),

sNp(t,ζ ) ≥
1

2τ
q−α(ζ )s̄P (6.139)

holds. From the definition of Mk, k = 0,1 given in (6.111) and noting (6.6), it can be
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obtained that

‖Mk‖ ≤Θmax. (6.140)

Therefore noting that

‖PM1Mkζ‖ ≤ s̄PΘmax‖Mkζ‖,

and integrating (6.139) into (6.138), we can further simplify the inequality as

[
vT

1 vT
2

]
Ψ(t,ζ )

v1

v2

≤((s̄P Θmax‖Mkζ‖)2

1
2τ

q−α(ζ )s̄P

−α(ζ )sP

)
‖v2‖2 (6.141)

where k = 0 if −τ < ζ ≤ 0 and k = 1 if −2τ ≤ ζ ≤−τ . With α substituted by (6.135), it

is seen that the parenthesis in (6.141) becomes negative which in turn implies that

Ψ(t,ζ )< 0

for all t,ζ if

τ <
1

4Θmax‖Mkζ‖s̄P

√
sP

s̄P
q for k = 0,1. (6.142)

Noting (6.140) again, it can be seen that (6.136) and (6.142) are satisfied if

τ <
1

4Θ2
maxs̄P

√
sP

s̄P
q . (6.143)

We let

τ̄ ≡ 1
(4+ ς)Θ2

maxs̄P

√
sP

s̄P
q , ς > 0. (6.144)
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Then defining

εv ≡ min
t,ζ ,τ∈[0,τ̄]

(−eig(Ψ(t,ζ ))), (6.145)

Ψ(t,ζ )≤−εvI

is satisfied. This proves Sublemma 1.

(6.132) can therefore be simplified as

V̇ (E (t))≤−εv‖E (t)‖2 +2Rmax‖E (t)‖. (6.146)

From (6.146),

V̇ (E (t))< 0 ∀t ∈Ωt\{t| ‖E (t)‖> β} (6.147)

where

β = 2Rmax/εv. (6.148)

Since V̄ (Et(t)) =V (E (t)) as we defined Ωt in (6.129), it can be concluded that

˙̄V (Et(t))< 0 ∀t ∈Ωt\{t| ‖E (t)‖> β} . (6.149)

(b):t ∈ (tb, tc)\Ωt : From the definitions in (6.128) and (6.129), it follows that for any t in

Case (b),

V̄ (Et(t))>V (E (t)). (6.150)

Suppose there exists a t = ts ∈ (tb, tc)\Ωt such that

˙̄V (Et(ts))> 0.
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Then it follows that

V (E (t+s ))> V̄ (Et(ts)) (6.151)

from the definition of V̄ (Et) in (6.128). This contradicts (6.150), and therefore we can

conclude that

˙̄V (Et(t))≤ 0 ∀t ∈ (tb, tc)\Ωt . (6.152)

From Case (a) and (b) ((6.149) and (6.152)), with β as in (6.148),

˙̄V (Et(t))≤ 0 ∀t ∈ (tb, tc)\{t| ‖E (t)‖> β} . (6.153)

Therefore

V̄ (Et(t))≤max
{

V̄ (Et(tb)), s̄Pβ
2} . (6.154)

Since V (E (t))≤ V̄ (Et(t)) from the definition given by (6.128), (6.154) implies that

V (E (t))≤max
{

V (E (tb)), s̄Pβ
2} ∀t ∈ (tb, tc),

completing the proof.

Proposition 7 contains the main result of this section.

Proposition 7. If τ ≤ τ̄ , then ‖E (t)‖< E ∀t ∈ [tb, tc).

Proof. From Lemma 10, ∀t ∈ [tb, tc)

V (E (t))≤max
{

V (E (tb)), s̄Pβ
2}

≤max
{

s̄P

(
E0(tb)2 +‖E ′(tb)‖2) , s̄Pβ

2} . (6.155)

We note from Proposition 6 that |E0(tb)| < E0. Also applying Corollary 1 (6.81) with
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ts = ta− τ , tss = tb, W = E0 and noting that Condition 2 (6.57) is satisfied at t = ta, it can

be shown that ‖E ′(tb)‖ ≤max(E ′, lE0). Therefore (6.155) can be simplified as

V (E (t))≤ s̄P max
{(

E2
0 +max(E ′2, l2E2

0)
)
, β

2} .
Furthermore, from the definition of E0 (6.47), E0 ≥ β . Also from (6.53) and (6.54), E ′ >

lE0. Therefore we obtain

V (t)≤ s̄P

(
E2

0 +E ′2
)
∀t ∈ [tb, tc). (6.156)

Noting that

sP‖E (t)‖2 ≤V (t)≤ s̄P‖E (t)‖2,

(6.156) implies that

‖E (t)‖ ≤

√
s̄P

(
E2

0 +E ′2
)

sP
∀t ∈ [tb, tc).

By taking

rp ≡
s̄P

sP
,

it can be therefore concluded that

‖E (t)‖ ≤ E ∀t ∈ [tb, tc).

6.3.7 Phase III: Exiting from the Boundary

Proposition 8. Let z(t ′b) ∈ BL. Then either

(I) z(t) ∈ B ∀t ≥ t ′b, or
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(II) there exists tc > t ′b such that z(tc) ∈ A and z(t) ∈ B ∀t ∈ [t ′b, tc).

In addition, in case (II),

tc− t ′b ≥ ∆Texit,min (6.157)

where

∆Texit,min =
2ε0

γ ′m2
0
, (6.158)

and

|E0(tc)|< m0. (6.159)

Proof. It is straightforward to see that cases (I) and (II) are mutually and collectively ex-

clusive.

From the definition of regions A and BL, it follows that

ϑ0(t ′b)≤−(θ ′0,max + ε0/2), ϑ0(tc)≥−θ
′
0,max.

In addition, from (6.83)

ϑ̇0(t)≤
1
4

γ
′m2

0 ∀ t.

Hence

tc− t ′b ≥
2ε0

γ ′m2
0
,

completing the proof for (6.157).

We now prove (6.159) as follows. From the conditions in case (II), it is seen that

ϑ0(tc−∆tc)<−θ
′
0,max, ϑ0(tc)≥−θ

′
0,max (6.160)

147



for any ∆tc ∈ (0, tc− t ′b]. Letting ∆tc tend to zero from the right hand side, it follows that

ϑ̇0(tc)> 0. From (6.83), this in turn implies that |E0(tc)|< |m0(t)|, proving (6.159).

6.3.8 Phase IV: Return to Condition 2

So far, we have shown on phases I through III the following:

Phase I. At t = ta, E (t) satisfies Condition 2. Then z(t ′b) ∈ BL for t ′b < ta +∆T ′in,max, with

|E0(t)|< E0 ∀t ∈ [ta, ta +∆T ].

Phase II. Defining tc such that z(t) ∈ B ∀t ∈ (tb, tc), if τ ≤ τ̄ , then ‖E (t)‖< E ∀t ∈ [tb, tc).

Phase III. Either (a) tc = ∞, or (b) tc ≥ t ′b +∆Texit,min where z(tc) ∈ A and |E0(tc)|< m0.

The following proposition contains the main result of this section:

Proposition 9. Either E (t) returns to Condition 2 for some t = td or the boundedness of

E (t) is immediate.

Proof. In case (a) in Phase III, the boundedness of E (t) is guaranteed since Phase II implies

that ‖E (t)‖ < E ∀t ≥ tb. In Phase III case (b), noting (6.159) and that E0− δ > m0 from

(6.47), there are only two possibilities:

(A) |E0(t)|< E0−δ for all t ≥ tc, or

(B) there exists td > tc s.t. |E0(td)|= E0−δ and |E0(t)|< E0−δ ∀t ∈ [tc, td).

In case (A), applying Corollary 1 with ts = tc, tss = ∞, and W = E0− δ , it can be shown

from (6.81) that

‖E ′(t)‖ ≤max
(√

s̄P′

sP′
‖E ′(tc)‖, l(E0−δ )

)
∀t ≥ tc.

This implies that E (t) and therefore z(t) is bounded.

If case (B) holds, then from the condition of the case it immediately implies that E (t)

satisfies (6.56) in Condition 2 for t = td . We note that ∀t ∈ (tb, tc), z(t)∈B with ‖E (t)‖<E.

This together with the condition of the case |E0(t)| ≤ E0−δ ∀t ∈ [tc, td] implies that

|E0(t)|< E ∀t ∈ (tb, td] (6.161)
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since |E0(t)| ≤ ‖E (t)‖ and E > E0. Hence if τ ≤ ∆Texit,min, it follows that E0(t) satisfies

(6.55) in Condition 2 for t = td . Furthermore, since E0(t) satisfies (6.55) in Condition 2 at

t = ta, and from Phase I |E0(t)|< E0 ∀t ∈ [ta, ta +∆T ], we obtain

|E0(t)|< E ∀t ∈ [ta− τ, td]. (6.162)

Then applying Proposition 5 with ts = ta− τ , tss = td− τ and W = E, it follows that

V ′(td− τ)≤max
(

V ′(ta− τ),
1
2

sP′ (lE)
2
)
. (6.163)

Noting that (6.57) in Condition 2 is satisfied by E ′(t) for t = ta, and using (6.54), we obtain

V ′(td− τ)≤max
(

1
2

sP′E
′2,

1
2

sP′E
′2
)

=
1
2

sP′E
′2.

(6.164)

Hence ‖E ′(t)‖ satisfies Condition 2 (6.57) for t = td . This implies that E (t) satisfies Con-

dition 2 for t = td , proving Proposition 9.

6.3.9 Final Part of the Proof

The above phases imply that starting t = ta, there are only one of three possibilities: (i)

The trajectory stays in Phase II for all t ≥ t1 for some finite t1 ≥ tb; (ii) The trajectory

stays on Phase IV-A for all t ≥ t2 for some t2 ≥ tc; (iii) The trajectory visits all four phases

infinitely often. The discussions in sections 6.3.5 through 6.3.8 imply that in all three cases

(i)-(iii), E (t) always remains bounded, which proves Theorem 1. In particular, it follows

from (6.85), Lemma 10, and (6.159) that in all cases (i)-(iii), if τ ≤ τ?l defined as

τ
?
l = min

[
∆Texit,min, τ̄

]
, (6.165)
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then

|E0(t)| ≤ E ∀t ≥ t0. (6.166)

Again applying Proposition 5 with ts = ta− τ and W = E, we obtain

V ′(t)≤max
(

1
2

sP′E
′2,

1
2

sP′ (lE)
2
)
∀t ≥ ta− τ.

Noting (6.53) and (6.54), it follows that

‖E ′(t)‖ ≤ E ′ ∀t ≥ ta− τ. (6.167)

Hence

|z(t)| ≤M ∀t ≥ t0, (6.168)

where

M ≡

√
E2 +max

(
E ′, max

[t0, ta−τ]
‖E ′(t)‖

)2

+Θ2
max,

proving global boundedness.

6.3.10 Delay Margin of the Adaptive System

From (6.144), (6.158), and (6.165), we obtain that the solutions of the overall adaptive

system is bounded for all τ ≤ τ?l . Hence, the lower bound of the delay margin τ? is given

by τ?l , with

τ
?
l = min

[
2ε0

γ ′m2
0
,

1
(4+ ς)Θ2

maxs̄P

√
sP

s̄P
q
]
. (6.169)
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6.3.11 Differences from Chapter 5

As we establish guaranteed delay margins for adaptive systems with first-order plants in

Chapter 5 and extend the result to higher-order plants in this chapter, it can be seen that

the main theorems (Theorem 10 and Theorem 11) and their proofs share many similari-

ties. However more complexities had to be dealt with in the vector case due to the higher

dimensions of the state errors and parameters. Here we summarize the key differences.

The most significant difference is the non-singular transformations we take to extract

the crucial scalar states E (t) and ϑ(t). The transformation involves matrices C and M

which are constructed utilizing the direction of input vector bp. Consequently, the proposed

adaptive control law applies the projection algorithm on the transformed parameter state

ϑ(t).

Another difference is the extra condition (6.41) in choosing the projection algorithm

parameters θi,max and εi. Given the size of parametric uncertainties in Ap, the condition

(6.40) is necessary in order to guarantee the existence of ϑ ? ∈ Ω0R which satisfies the

matching condition (6.6). This is identical with the case of first-order plants where the

parameter estimate is a scalar. However in the vector case, in addition to the condition

(6.40), θ0,max needs to be sufficiently large so that the condition (6.41) is also satisfied.

This is necessary to prove Lemma 9 and eventually Lemma 10, where the boundedness of

the adaptive system while staying on the boundary region B is discussed.

The last difference we note is Proposition 5. Treating the crucial scalar state E0 as

an input, the boundedness of the other states E = [E1 E2 · · · En−1] for a finite period of

time is discussed. Lemma 7, which is proven by utilizing the special structure of Am (the

transformed reference model dynamics matrix), plays the critical role in showing this.

6.3.12 Remarks

The results of Theorem 11 together with Theorem 10 represent an important step in robust

adaptive control. From establishing global boundedness in the presence of disturbances

and unmodeled dynamics, this thesis takes the next step in robust adaptive control and

extends it to time delays for a class of adaptive systems. A computable delay margin is
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demonstrated to exist, thereby providing a theoretical framework for verification of adap-

tive control systems in flight as well in other applications. The most important point to note

is the absence of any Lyapunov function, a fixture in most adaptive control proofs. A first

principles approach was used instead in this chapter as well as in Chapter 5 to ensure the

global boundedness of the tracking errors, which is a distinctly different type of proof than

those employed in robust adaptive control to-date. As can be seen in the proof of Theorem

11 as well as in the proof of Theorem 10, the two most crucial pieces of the proof involve

the boundary of the projection algorithm in the adaptive law - the first says that the trajec-

tory will hit the boundary region in a finite time (Phase I). The second is that once it hits

the boundary region, it cannot become unbounded while remaining on the boundary region.

These two were central points that helped establish global boundedness in this challenging

problem.

In this chapter, for the sake of simplicity we assumed that bp is known and let bm = bp.

However it is expected that the result can be extended straightforwardly for the case bp =

λbm, where λ > 0 is an unknown parameter.

6.4 Numerical Example

In this section we demonstrate using a simple example as to how the main result in this

chapter can be used to obtain delay margin of adaptive systems. We consider the short

period dynamics of a conventional aircraft which can be approximated by a second-order

plant with a scalar input.

From [57], short period dynamics of a fixed-wind aircraft with zero bank angle can be

expressed as α̇

q̇


︸︷︷︸

ẋp

=

 −Lα −Lq

λαMα λqMq


︸ ︷︷ ︸

Ap

α

q


︸︷︷︸

xp

+λδ

 0

Mδ


︸ ︷︷ ︸

bp

(
δ︸︷︷︸
u

+dtrm

)
(6.170)

where α is the aircraft angle of attack (radians), q is the body pitch rate in stability axis

(radians/s), and δ is the total differential elevator deflection (radians). The scalars λδ > 0,
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λα , and λq represent uncertainties in the parameter values, and dtrm denotes an unknown

trim input component. The nominal values are given as λα = λq = λδ = 1 and dtrm = 0.

In the following, we assume that there are no uncertainties in the control effectiveness and

the trim input, i.e. λδ = 1 and dtrm = 0. Also we assume that the size of uncertainties

are known and λα ∈ [.6 1] and λq ∈ [.7 1]. The rest of parameters represent the so-called

aircraft stability and control derivatives. The values of the stability and control derivatives

used in this example are

Lα = 0.6582, Lq =−0.9705, Mα =−3.3105, Mq =−1.4741, and Mδ =−3.6764.

These values can be found from a numerical linearization of a nonlinear aircraft model.

A state-feedback controller architecture is used for the controller so that

δ = θ
T
x (t)xp + kδ δcmd

where θx =
[
θα θq

]T
and δcmd is the pilot command. Let the dynamics without uncer-

tainty be denoted (i.e. (6.170) where λα = λq = 1)

ẋp = Ap,nomxp +bpδ . (6.171)

The Linear Quadratic (LQ) optimal control design techniques [61] is straightforwardly

applied to the dynamics in (6.171) to obtain a nominal controller. In this example, the

values minimizing the cost function

J =
1
2

∫
∞

0
xT

p
(
QJ + kxRJkT

x
)

xpdt

with QJ = diag([2 1]) and RJ = 1 are calculated as kx =
[
−0.2816 −0.7434

]T
. This

nominal gain is used as an initial condition for the parameters θx(t) to be adapted, i.e.

θx(t0) = kx. The feed forward gain kδ is designed to produce the angle of attack following

so that kδ = 1/gα , where
[
gα gq

]T
= −(Ap,nom + bpkT

x )
−1bp is the steady state gain of

(6.171) with the feedback corresponding to kx. Then the closed loop dynamics of (6.171)
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with the nominal controller can be written as

ẋm = Amxm +bmδcmd (6.172)

where Am = Ap,nom + bpkT
x and bm = bp. (6.172) will serve as a reference model. An

adaptation can be then introduced into θx(t) as

ϑ̇i = γ
′Proj(ϑi,−(Ei +mi)E0) i = 0,1

where E , ϑ , and m are the transformed state error, parameter, and reference state, as in-

troduced in (6.15), (6.16), and (6.66), respectively. A Transfer matrix C is constructed

utilizing bm and Am (which gives P > 0, a solution of Lyapunov equation (6.11)), and given

as

C =

 0.1247 0.4572

−0.4572 0.1247

 .
Similarly, M and Am are constructed from (6.24) and (6.31). We then choose the projection

parameters from equations (6.40) and (6.41) and the size of uncertainties in λα , λq as

θ0,max = 6.0, θ1,max = 1.5 and ε1 = ε2 = 0.01. Also, we set the adaptation gain γ ′ =

10.83 based on ad-hoc tuning and assume that δcmd is such that |αm(t)| ≤ 0.1745(radians),

|qm(t)| ≤ 0.6109(radians/s) ∀t ≥ t0 which leads to m0 = 0.3010 from (6.66). q is set to

1 and s̄P , sP are calculated from Am, θi,max, εi, and ϑ ?. We can therefore calculate the

delay margin using (6.169) as

τ
?
l = 6.8(ms).

According to numerical simulation studies, it was seen that the actual delay margin of the

adaptive system is around 0.070(s). It can be therefore again argued that the analytically

computable bound of the delay margin established in this chapter is not overly conservative.
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6.5 Summary

In this chapter, the result in Chapter 5 is extended and robust adaptive control of general nth

order plants with a scalar input in the presence of time delay is established. The proposed

adaptive control law applies the projection algorithm to the transformed parameter state

component-wise. The transformation involves a matrix M which is constructed utilizing the

direction of input vector bp. Together with Chapter 5, these results clearly demonstrate that

adaptive systems with state variables accessible have a guaranteed delay margin, providing

one solution to a non-trivial open problem in this field.
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Chapter 7

Concluding Remarks and Future Works

In this thesis, we have focused on robust adaptive control technology for safe flight. The de-

veloped adaptive controller in Chapter 2 consists of a fixed controller that provides satisfac-

tory performance under nominal flying conditions, and a direct Model Reference Adaptive

Controller (MRAC) that provides stability in the presence of failures or damages. Using a

NASA Generic Transport Model (GTM), which is a model of a transport aircraft, the be-

havior of the adaptive control system is simulated in the presence of various uncertainties

in this chapter. While a significant improvement in flight safety was observed in several

failure and damage scenarios, an undesirable flight performance and robustness concerns

also become apparent. One such case was in the presence of time delays, illustrating that

robustness of adaptive control systems in the presence of delays has to be addressed. Chap-

ter 3 presents fundamental theoretical results related to adaptive control of scalar plants

in the presence of time delays. The main instability results are summarized as Theorem

1 and 2 for the case when the standard adaptive laws without any modification except for

σ -modification. Projection algorithm can be then introduced as a tool to avoid instabil-

ity. The properties of the Lipschitz continuous projection algorithm, which are utilized

throughout the rest of the thesis, are formulated in this chapter together with its key defini-

tions and lemmas. We show that with this projection algorithm, a robust adaptive stabilizer

that guarantees global boundedness in the presence of time delay can be established.

In Chapter 4, a class of adaptive systems is examined in the presence of unmodeled

dynamics and robustness results are derived using a Lyapunov function approach. Even
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though the result in the chapter is quite restrictive, it sheds light on the potential of the

projection algorithm as a tool to achieve desirable global results.

The main results of this thesis are presented in Chapter 5 and 6 in Theorem 10 and 11,

where robust adaptive control of general plants with a single input and states accessible

in the presence of time delay is established. In contrast to Theorem 9 in Chapter 4, we

show that global boundedness can be derived without requiring any approximation. One

of the main goals of the thesis, an analytically computable delay margin, is also achieved.

In Chapter 5, global boundedness and a delay margin are derived for the adaptive control

of scalar plants with the adaptive law straightforwardly modified based on the projection

algorithm. In the adaptive law proposed in Chapter 6, the projection algorithm is applied

to a transformed parameter state component-wise, and this transformation enables the use

of two crucial scalar states, and allows the results of Chapter 5 to be applied. The results

demonstrate that adaptive systems with state variables accessible have a guaranteed de-

lay margin, providing a solution to a long standing open problem in the field of adaptive

control.

The results of this thesis, while solving a highly difficult problem in robust adaptive

control, need to be generalized much further. The following are some examples:

• Developing robust adaptive control for plants with multiple inputs and states accessi-

ble, which ensures global boundedness in the presence of time delays (Multivariable

control),

• Developing robust adaptive control where state variables are not accessible, which

ensures global boundedness in the presence of time delays (Output feedback),

• Developing robust adaptive control for the above two cases in the presence of un-

modeled dynamics

One important aspect of the main result in this thesis is that the robustness properties

of the adaptive systems with projection are partially determined by the properties of the

LTV system exhibited while the trajectory stays on the projection boundary. This notion is

promising, since utilizing the similar analysis, it may be possible to study the performance

of general robust adaptive systems.
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Lastly, it should be noted that while the modification based on the projection algorithm

proposed in this thesis ensures global boundedness and therefore a nonzero delay margin,

the performance of the overall adaptive system may be far from satisfactory in the presence

of time delay. In the worst case, the system may exhibits an oscillating behavior by visiting

all four phases infinitely often. In most of the actual systems this is not acceptable. Filling

the gap between boundedness and satisfactory performance is not an easy task, but that

would be also an important future work of the thesis.
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