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ABSTRACT 
 

 Access to safe, clean drinking water is a major challenge for many communities. These 
communities are often near seawater and/or brackish groundwater sources, making desalination a 
possible solution. Unfortunately, desalination is energy intensive and a reliable, inexpensive 
power supply is also challenging for remote locations. Photovoltaic reverse osmosis systems 
(PVRO) can be used to provide water for underserved communities. A feasibility study which 
demonstrates the economic viability of such systems is discussed here. 

PVRO systems are assembled from mass-produced modular components. This approach 
reduces manufacturing costs. However, designing a system optimized for a specific location is 
difficult.  For even a small inventory of components, the number of design choices is enormous. 
A designer with significant expertise is required to tailor a PVRO system for a given location, 
putting this technology out of reach of many communities. 

This thesis develops a modular design architecture which can be implemented in a 
computer program to enable non-experts to configure systems from inventories of modular 
components. This architecture is not limited to PVRO systems, but can also be used to design 
other systems composed of modular components such as cars, electronics, and computers. The 
method uses a hierarchy of filters to limit the design space based on design principles and 
calculations. The system is then configured from the reduced design space using optimization 
methods and detailed system models. 

In this thesis, the modular design architecture is implemented for PVRO systems. A set of 
detailed physics-based system models are developed to enable this process. A novel method of 
representing a PVRO system using a graph is developed to enable rapid evaluation of different 
system configurations. This modeling technique is validated using the MIT Experimental PVRO 
system constructed as part of this research. 

A series of case studies are conducted to validate the modular design approach for PVRO 
systems. The first set of case studies considers a deterministic solar input and water demand. The 
design goal is to determine the lowest cost system that meets the water demand requirements. It 
is shown that the method is able to tailor systems for a wide range of locations and water 
demands from a large system inventory. The validity of these solutions is demonstrated by 
simulating a custom designed system in the wrong location. Another case study shows that the 
approach can be used to determine market potential of new components. 
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The second set of case studies considers variations in the solar radiation and water 
demand. The design goal is to determine the lowest cost PVRO system that meets the water 
demand profile with a specified probability. Two methods that use historical solar insolation and 
water demand to account for variations are presented. The first method characterizes the 
historical data and develops models to synthetically generate solar insolation and water demand 
profiles, and then simulates the system performance over 100 years to calculate the loss-of-water 
probability. In the second method, distributions of solar radiation and water demand are 
calculated from historical data and used to directly calculate the probability of running out of 
water in the worst month of the year. Both methods are implemented and shown to produce 
feasible system configurations. The direct calculation method is shown to reduce the required 
computation time and is suitable for different systems with variable inputs. 

 
Thesis Supervisor: Steven Dubowsky 

Title: Professor of Aeronautics and Astronautics & Mechanical Engineering
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CHAPTER 

1  
INTRODUCTION 

1.1 Motivation 

Access to safe, clean drinking water is a major concern for many communities.  Currently, 

over 880 million people don’t have access to an adequate fresh water source [1]. Many of these 

people live in coastal areas with an abundance of seawater. Additionally, many inland areas have 

access to brackish groundwater. Desalination is a natural solution for these locations. 

For densely populated areas, large-scale desalination plants are practical. Desalination 

requires tremendous amounts of energy, and system efficiency is a driving factor that determines 

the operating costs and practicality of these systems. Large-scale plants are advantageous 

because they have lower capital costs due to economies of scale and tend to be more energy 

efficient than small-scale systems. The economics of these large systems justify one-of-a-kind 

optimized designs. 

As shown in Table 1.1, there are a broad range of potential desalination solutions for these 

large communities [2-6]. These processes can be divided into two groups: thermal processes and 

membrane processes. Membrane processes include reverse osmosis, where water is forced 

through a membrane using a pressure higher than the osmotic pressure, leaving behind 

concentrated brine. In thermal processes, a phase change is used to make fresh water. Table 1.1 

shows the energy requirements for the different processes which are separated into thermal 

energy used to heat the seawater and electrical energy used to drive pumps, compressors and 

auxiliary equipment. For seawater desalination, reverse osmosis requires the least amount of 

overall energy. However, if thermal energy is inexpensive, a thermal desalination process like 

multi-effect distillation can be practical.   
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Table 1.1: Energy consumption of common desalination processes [6]. 

Desalination Process 
Thermal Energy 

(kJ/kg) 
Electrical Energy 

(kWh/m3) 

Seawater 
Multi-Stage Flash (MSF) 
Multi-Effect Distillation (MED) 
Vapor Compression (VC) 
Reverse Osmosis (RO) without Energy Recovery 
Reverse Osmosis (RO) with Energy Recovery 
Brackish Water 
Reverse Osmosis (RO) with Energy Recovery 
Reverse Osmosis (RO) without Energy Recovery 
Electrodialysis 

 
190-290 
150-290 

- 
- 
- 
 
- 
- 
- 

 
4-6 

2.5-3 
8-12 
7-10 
3-5 

 
1-3 

1.5-4 
1.5-4 

 

For small, remote communities, custom designs are not a viable solution. These areas are 

often off major electrical grids and rely on transported water or small-scale desalination plants. 

Diesel generators are commonly used to meet desalination energy requirements. However, diesel 

generators pollute the environment and their fuel cost makes them expensive to operate. 

Fortunately, these arid areas also typically have an abundance of sunshine. This is shown in 

Figure 1.1. Areas which are shown on the left as water scarce coincide with areas which have 

high solar insolation on the right. This shows that using clean, renewable solar energy to produce 

clean water would be ideal for these communities.  

 

Figure 1.1: Water scarcity [7] (left) and average solar insolation, data from [8]. 

 

For large communities, with tens of thousands of people, solar thermal desalination 

systems can be economical [4, 9]. However, this technology is not easily scaled for small 

communities with lower water demands. For smaller communities, photovoltaic reverse osmosis 

(PVRO) systems assembled from mass-produced, modular components are a potential solution. 

PVRO has minimal environmental impact, and can be configured for different demand profiles 

using modular components. PVRO systems can also be easily maintained and repaired by non-

Average Daily Solar Insolation (kWh/m2/day)

0                       1                      2                       3                      4                      5                       6                      7

Legend

Physical Water Scarcity

Approaching Physical Water
Scarcity

Economic Water Scarcity

Little or No Water Scarcity

Not Estimated
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expert technicians. However, to be most efficient, such systems should be custom configured for 

the water demand, solar insolation and water characteristics of a specific location. Making these 

systems accessible to small communities is the motivation of the modular design algorithms 

developed in this research. 

1.2 Modular Design 

System manufacturing costs are often a dominant factor that determines the success of a 

product. A common method to reduce manufacturing costs in many applications, such as 

automobiles, electronics, and robotics, is to develop products composed of mass-produced 

modular components. The advantages include ease of construction, repair and recycling of 

system components. 

Systems composed of modular components still require a custom design for a particular 

application. Designing a custom system configured from an inventory of potential modular 

components is not a simple task. For a given modular inventory, a large number of possible 

system configurations exist. A designer with significant expertise is required to select the correct 

components and configuration.  This process is expensive and time consuming. For individuals 

without these skills, selecting the best components and system architecture is nearly impossible. 

This thesis presents design methods to configure custom systems from inventories of 

modular components. These methods apply simple engineering principles to first reduce the size 

of the design space. Optimization methods are then be employed to determine the modular 

system configuration. The methods are formulated to be robust to uncertainties in system 

requirements and operating conditions. The modular design methods developed in this research 

enable non-experts to configure tailored systems for their particular application, opening 

technologies to previously unreachable areas. 

1.3 Problem Statement 

This thesis considers the problem of designing complex systems assembled from 

inventories of available modular components. It is assumed that there is an inventory of well-

characterized components that can be included in the system. It is also assumed that the behavior 

of the assembled system is a complex function of the components. In these problems, the 
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performance of a system is highly coupled to the design choices, unlike the effect paint color 

choice has on car performance. In addition, the operating environment of the system is variable 

and has a direct impact on the system performance. This research develops design algorithms to 

enable custom design of modular systems given these assumptions. 

The design of a PVRO desalination system for a remote community is the motivating 

problem of this research. The basic structure of this problem is shown in Figure 1.2. Here, it is 

assumed that the designer has access to an inventory consisting of different photovoltaic (PV) 

panels, pumps, reverse osmosis (RO) membranes, pressure vessels, energy recovery devices and 

control electronics. Also, it is assumed that the designer has access to the system specifications 

which define the location and water demand for the community. Using this information, the 

algorithms developed in this research can be used to configure a custom system for the 

community. 

 

Figure 1.2: PVRO modular design problem. 

 

One challenge of designing a system composed of modular components is, for a given 

inventory, a very large number of possible system configurations exist. Any algorithms that are 

developed must be able to efficiently deal with this large design space to find the best 

configuration. Another challenge is that there is often uncertainty in many parameters that 

determine the system performance. For example, in the PVRO system, the amount of input solar 

energy and water demand is variable. The final challenge is that component age and degradation 

will affect system performance. These factors need to be considered in an effective modular 

design algorithm. 
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1.4 Thesis Contributions 

This research develops a new design approach to tailor a modular system from an 

inventory of potential components. The application of interest considered here is the design of a 

PVRO system. The contributions of this thesis can be separated into three main parts: a method 

to study the feasibility of photovoltaic reverse osmosis systems, the development of a general 

modular design approach, and the application of the design approach to photovoltaic reverse 

osmosis systems while considering the stochastic nature of the environment. 

The primary contribution of this work is the development of a new design method to tailor 

systems composed of modular components for individual applications. The challenge is that even 

with a small modular inventory, there are a very large number of possible system configurations. 

This method employs engineering principles to first limit the size of the design space and make 

the design problem tractable. Optimization methods are then used over the reduced design space 

to determine a customized system for an individual application. This method has many different 

potential uses. The obvious use is to easily determine a tailored system configuration for an 

individual application. Another use of this approach is to determine if new components would 

make an impact on the market. Both of these uses are demonstrated for the application of 

interest, the design of PVRO systems. 

This thesis also presents a new method to analyze the feasibility of PVRO systems as water 

supplies for remote communities. This method determines the lifetime water cost based on local 

solar insolation and water salinity data. This cost is compared with the lifetime costs of other 

water sources such as diesel-powered desalination systems. The analysis shows that there are a 

wide range of locations where PVRO systems are economically feasible. 

The application of the modular design approach to PVRO systems results in new system 

analysis techniques. First, to implement the approach, a new graph-based model representation is 

developed to facilitate the analysis of any potential PVRO system configuration. In this 

formulation, a PVRO system can be simply represented by a series of integer and binary 

variables. Secondly, since the analysis of the system performance is complex due to the 

variations in the power source and demand, this thesis presents two methods to incorporate these 

temporal variations into the design of the system to ensure it is able to meet the requirements 

with a specified probability. The first new method analyzes the historical solar data and 

simulates the system performance over a long time horizon. The second new method uses a 
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statistical approach to analyze the PVRO system performance during the critical period of the 

year. These two methods are compared to deterministic design cases and are shown to develop 

robust system topologies. 

1.5 Thesis Organization 

This thesis has eight chapters. This chapter presents motivation and the problem being 

addressed in this thesis. Chapter 2 provides a detailed technical discussion of the system of 

interest, photovoltaic reverse osmosis systems and a review of the background literature. Chapter 

3 presents a method to evaluate the feasibility of using PVRO systems to provide water for small 

communities. Chapter 4 presents the modular design approach developed in this thesis and 

design space studies used to demonstrate the power of the approach. Chapter 5 presents system 

models which were developed for the application of interest, PVRO systems, and the 

experimental validation of those models. Chapters 6 and 7 present the application of the modular 

design approach to PVRO systems for deterministic and uncertain environmental conditions. 

Chapter 8 summarizes the thesis and suggests avenues for future research. 
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CHAPTER 

2  
BACKGROUND AND LITERATURE REVIEW 

2.1 Photovoltaic Reverse Osmosis Systems 

2.1.1 PVRO Overview 

There are many ways to configure a PVRO system. One simple configuration is shown in Figure 

2.1. As shown, the photovoltaic panels power a feed pump and a high-pressure pump to pressurize the 

source water. The water is then driven through the reverse osmosis membrane array by the high pressure, 

producing clean, drinkable water. Due to energy considerations, the membranes are configured as 

crossflow separators and only a portion of the water is desalinated, leaving high salt concentration brine. 

The high-pressure brine passes through an energy recovery device, such as a pressure exchanger or 

turbine, to recover the useful energy in the brine before it exits the system. 

 

Figure 2.1: Simple PVRO system. 

 

PVRO systems have been a topic of much research. Accurately modeling the reverse 

osmosis system has been a topic of interest [10-17]. One focus of these models has been to 

evaluate system suitability for individual locations such as Jordan [10, 11], Greece [12, 13], or 

Eritrea [14, 15]. Studies between different system components, such as energy recovery devices 

[16], and different system configurations have been performed [14, 15]. Finally, system models 
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are used in control development for particular systems [14, 15, 17]. These models are fixed for a 

specific system configuration and are not suitable for implementation in a modular design 

approach, where multiple configurations must be considered. 

Many PVRO systems have been built and field tested [11, 14, 15, 18-30]. All of these 

systems are community scale, producing between 100 L and 10 m3 of water per day. These 

systems can be divided into two main categories: brackish water systems and seawater systems. 

Brackish water PVRO systems have been designed and tested in a wide range of locations 

[18-21, 29, 30]. Many of these systems are simple and do not incorporate an energy recovery 

device due to the small scale and reduced pressure requirements. Examples include small 

systems designed and tested in Brazil [20], the Southwestern United States [19], Jordan [29], and 

Portugal [21]. There are also small brackish water PVRO systems that incorporate energy 

recovery devices. The most notable of these systems is SolarFlow, which has been tested in the 

Australian Outback [18]. 

Seawater PVRO systems have also been developed [13-15, 22-28, 31]. Many of the early 

systems were simply a photovoltaic array and battery bank used to power an existing reverse 

osmosis system. Such systems were found to be inefficient, so recent research has focused on 

increasing system efficiency, with some success. The Canary Islands Technological Institute has 

developed a small battery-based system [22, 23]. Battery-based systems have also been 

commercialized by Spectra Watermakers [28]. Hybrid solar/wind reverse osmosis systems have 

been developed [25-27]. Research has also led to the development of more cost-effective 

seawater PVRO systems without batteries [13-15, 31]. 

2.1.2 PVRO System Design and Control 

Despite the large body of work in designing and field testing PVRO systems, very little 

research has been done to determine the most effective way to operate such systems. Control 

techniques in systems containing batteries focus on maximizing the power transferred to the 

batteries and then running the system at a fixed operating point. Some simple batteryless systems 

operate using only one pump and maximize the power transfer. For example, Carvalho optimizes 

system performance by controlling the operating point of the reverse osmosis pump to maximize 

the PV panel power output [32]. More complex systems have multiple pumps and other actuators 

to control the system operation. For these cases, researchers have treated system operation as a 
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power management problem and distribute the power to maximize the overall water produced 

[14, 15, 17, 31, 33]. 

Although these strategies have been shown to maximize water production for a given 

system in the short-term, none of these strategies consider the degradation effects of different 

components. A common concern with variable operation of PVRO systems is the fouling of the 

reverse osmosis membranes [5, 14, 15, 25]. Studies have shown that this is not a major concern 

over the course of days [33], but no studies have yet quantified the long term effects. Long term 

degradation effects need to be quantified for an effective system design. 

Methods for designing PVRO systems have also been developed. Mohamed presents a 

method to design a hybrid PV and wind powered RO system using a spreadsheet model and 

average solar and wind data to size the individual system components [13]. Voivontas describes 

a design program to aid in the design of a renewable energy powered desalination system [34]. 

The software tool uses the user inputs to size the energy system and perform a financial analysis, 

and allows users to analyze different options. Bourouni, et al., developed a method to optimize a 

renewable energy powered RO system that considers photovoltaics and wind energy as possible 

power sources [35]. Their software sizes the components and simulates the system operations 

over a typical year to determine if the configurations are feasible. Though similar to the modular 

design problem proposed, none of these approaches include different types of components, 

system topology optimization, uncertainty in power available, variations in system demand and 

the effects of component degradation. 

2.1.3 RO System Design and Control 

Researchers have developed different system operation and cost models to guide the design 

of reverse osmosis systems. Aspects of these models can be used to develop modular design 

algorithms for PVRO systems. The models range from cost models based on empirical 

relationships to technical models based on first principles. Wilf develops basic models that can 

be used for evaluating the cost of RO systems, and how these costs vary by water type [36, 37]. 

Malek determined empirical cost relationships for components in a reverse osmosis system [38]. 

Gambier developed a model of the reverse osmosis system based on first principles for use in 

control system design [39]. 
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Design methods for reverse osmosis desalination systems have been developed. El-

Halwagi was the first to formulate the optimization of reverse osmosis networks as a mixed 

integer non-linear programming (MINLP) problem [40]. El-Halwagi used a general 

superstructure to represent any two-stage reverse osmosis network and used a resolution method 

to minimize the system capital cost. Voros simplified El-Halwagi’s approach and formulated the 

problem as a non-linear program (NLP) [41]. Marcovecchio used an iterative solution method to 

solve the same problem [42]. Saif used the same general superstructure and solved the problem 

using a branch and bound approach [43]. Recently, Lu used the general superstructure to 

optimize reverse osmosis systems with different membrane types and also considered membrane 

degradation [44, 45]. Vince extended the problem using the set structure to a multi-objective 

optimization to determine a system that minimizes the cost and environmental impact [46]. 

Although these methods are useful, their ability to determine the most effective reverse osmosis 

system configuration is limited, as they were restricted to two stage problems. In addition, they 

are not appropriate for a modular design approach considered in this research, since only a few 

types of membranes are considered and no inventory is considered for other system components. 

Another representation of reverse osmosis systems for design optimization has been 

developed by Maskan that uses an alternate representation of the reverse osmosis system based 

on graph theory [47]. Despite having a framework to evaluate many different configurations, 

Maskan only considered eight standard system configurations in design. Additionally, only one 

type of each component is considered. 

The operation of reverse osmosis systems has also been topic of some research. Typically, 

the operating point of a reverse osmosis system is determined during the design stage and the 

control problem becomes a regulator problem. Approaches considered include model predictive 

control [48, 49], fault tolerant control [50] and optimal control methods [51]. The setpoint 

optimization for a given reverse osmosis system has been considered. Bartman developed a 

method to minimize the specific energy consumption for a system without energy recovery [52]. 

Poullikkas developed a method to evaluate the economics of different operational schemes for 

reverse osmosis desalination systems [53]. Guria used genetic algorithms to determine optimum 

pressure setpoints for reverse osmosis systems [54]. These methods, while useful for reverse 

osmosis systems without power limitations, are not directly applicable to PVRO systems. A 
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PVRO system must be able to accommodate power fluctuations to maximize system production 

while considering system component degradation. 

2.2 Modular Design 

There are many different systems composed of modular components. Automatic modular 

design methods have been developed for applications such as robotic systems, electronics, and 

chemical processing plants. These developments are briefly reviewed in this section. 

2.2.1 Modular Design of Robotic Systems 

The robotics community has looked to modular systems to reduce system cost and 

fabrication times [55-60]. As a result, modular design methods have been developed for robotic 

systems. Rutman developed a method to configure a field robot from an inventory of modular 

components using a series of design filters to reduce the number of possible configurations and 

then searched the design space for the best option [58]. Farritor further refined this design 

approach and used a genetic algorithm to determine the best robot configurations [57]. Hornby 

developed another method to configure modular robots, in which the robots are defined as a 

serial chain and evolutionary algorithms are used to design both the robots and the control 

commands to accomplish a given task [59]. Another notable work in the area of modular robotics 

was Leger’s software package Darwin2K, which synthesizes robotic designs from modular 

components [60]. Leger developed a graph approach to represent the robot structure and coupled 

this to a set of evolutionary algorithms to determine the best modular robot design. 

2.2.2 Modular Design of Electronic Circuits 

Modular design has been widely used in the field of electronics, especially in the areas of 

automated analog and digital circuit design. The vast majority of work in analog circuit design 

uses evolutionary algorithms to optimize a circuit [61-64]. Koza developed a method to design 

filters using genetic programming [61, 62]. Similarly, Lohn developed a method using genetic 

algorithms to automatically design filters and transistor based amplifier circuits [63]. They 

configured the optimization algorithm to operate in parallel and used the circuit simulation tool 

SPICE to evaluate different configurations. Other optimization algorithms such as simulated 
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annealing [64] have also been used in automated analog circuit design problems with somewhat 

limited success. 

The majority of the methods used for automated digital circuit design also employ genetic 

algorithms to configure the circuits. One example is Miller, who used genetic algorithms to 

configure circuits to perform arithmetic operations [65]. Miller’s method was somewhat limited 

as it requires the total number of components to be input as a parameter. Another example of 

digital circuit design is Sentovich, who focused on synthesizing VLSI circuits using evolutionary 

algorithms [66]. 

2.2.3 Modular Design of Computer Programs 

Another area where modular design optimization algorithms have been employed is the 

automated generation of computer programs. This field, called Genetic Programming, was 

pioneered by Koza [67, 68]. In this application, a desired program output is specified and the 

evolutionary algorithm generates program trees that are optimized using the algorithm to have 

the specified behavior. Genetic programming uses a population of potential designs like genetic 

algorithms, but uses special operators to perform the mating and mutation tasks. 

2.2.4 Synthesis of Chemical Networks 

Design algorithms have been employed for heat exchangers, mass exchangers and 

chemical processing networks. These problems are commonly solved using genetic algorithms 

[69-71]. An example of the mass exchange problem that can be used with a genetic algorithm 

was formulated by Garrard [69], but requires the user to specify the overall system size. Lewin 

formulated a heat exchanger network problem as a mixed integer linear program which was 

solved in two parts [70]. First, a genetic algorithm was used to determine the heat exchanger 

network configuration. Second, a linear program was used to solve for the system parameters. In 

this approach, the overall system size was also a user input parameter. These methods provide 

insight for the modular design problem, but are not directly applicable. Another approach, 

considered by Cantoni, used genetic algorithms to optimize a plant configuration while 

considering downtime of components for maintenance [72]. This approach only considered 

simple processes such as transporting and crushing materials. All of these approaches have 
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limited system topology optimization, and do not incorporate variations in available power or 

variations in system demand. 

2.3 Design with Uncertain Inputs 

PVRO desalination system design should incorporate knowledge about the statistical 

nature of the environment. This topic has not been directly addressed in literature, but the design 

of similar systems, such as PV power systems and renewable energy systems have been 

discussed. An overview of methods developed to accommodate this uncertainty using design 

rules, simulation, and statistical design methods is presented in this section. 

2.3.1 General Design Rules 

Uncertainty is commonly accommodated by applying general design rules, such as 

historical averaging and safety factors. For example, PV-battery systems are often sized using 

historical average values to determine the required array size and the number of consecutive 

cloudy days to determine the sizing of the components. Safety factors are incorporated to ensure 

that the system load is met with a defined level of confidence. Mack developed a method to size 

stand-alone PV-battery systems for remote telecommunication systems [73]. This method used 

general rules of thumb to size the individual components. Mack’s method was simplified by 

Chapman, who used average data from the worst month to determine the PV array and battery 

capacities that would provide a power supply with a desired reliability [74]. Another method, 

developed by Sidrach-de-Cardona, uses relationships derived from detailed numerical studies of 

individual locations to determine system configurations using data found in any solar radiation 

atlas [75]. Although these methods provide useful guidelines, they are unable to guarantee a 

system reliability level and often result in oversized or undersized PV-battery systems. In 

addition, they do not consider variations in system load, which are critical for the design of 

PVRO systems. 

2.3.2 Robust Design Methods  

Robust optimization has been studied extensively in many fields including operations 

research. The robust optimization methods outlined in literature can be differentiated into two 
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main classes [76]. In the first class, the robustness metrics can be directly calculated using 

numerical techniques and the resulting optimization problem can be solved deterministically. In 

the second class, the uncertainties are treated directly by optimizing noisy functions and 

constraints through Monte Carlo techniques. Both classes of methods have been employed in the 

design of PV systems. 

Methods of the first class make simplifications to the statistical properties of the solar 

radiation to achieve a closed form expression for the probability of meeting a given power 

demand. Researchers developed methods to determine the loss of load probability for different 

system configurations. Bucciarelli developed a random walk method to determine probability 

that a PV system with storage is able to meet demand [77]. This method used two states –

increasing or decreasing capacity – to determine if a system would meet demand and resulted in 

a closed-form solution to the loss of power probability. Bucciarelli then expanded this approach 

to consider correlations between consecutive days to improve the overall accuracy [78]. Bagul 

expanded the method to include three states when analyzing the reliability of a PV-battery 

system [79]. Gordon also used a random-walk method to determine the loss-of-load probability 

[80]. McComber assumed daily insolation is an uncorrelated normal random variable with 

known mean and variance to estimate the loss of load probability for different PV-battery 

systems[81]. These methods have not been implemented in an optimization framework to 

determine the system configuration, but the analytical insight they provide is directly 

transferrable to the PVRO design problem. 

Other approaches for designing renewable energy systems have used time-series data to 

determine which systems are able to meet demand. In an approach developed by Koutroulis, a 

measured solar radiation profile and wind profile is used over a 20-year time period to determine 

which PV-Wind-battery systems are able to meet demand [82]. Different combinations of 

components are selected and then sized using a genetic algorithm to determine the best system 

configuration. Other researchers have also used recorded data to simulate the performance of 

renewable energy systems and determine the lowest cost option to satisfy a given demand [83-

85]. Since time-series analysis requires significant computation time, other researchers have 

limited the time-series analysis to reduce it. Markvart extracted critical times from the year to 

determine the sizing curve for a PV-battery system with a given reliability [86]. The use of time-

series data is convenient, but due to the limited number of years of data available (~20 years), 
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it’s impossible to guarantee a loss of load probability less than 1% [87]. In addition, time-series 

data is not available for all locations, making its use for design limited. Some researchers have 

developed methods which use simulated time-series data that matches the statistical parameters 

of the locations to circumvent these issues [88]. 

Sampling methods have also been used to accommodate the variations in solar radiation in 

the design of renewable energy systems. Gainnakoudis developed a method to optimize the 

design of a renewable energy system using Monte Carlo sampling [89]. In the optimization, the 

renewable energy system was evaluated for an average year where the random input was a 

percentage deviation from the normal year. Arun used a similar method to consider variations on 

the solar radiation [90]. Dominguez-Munoz developed a method to analyze the reliability of a 

solar thermal system using Monte Carlo methods [91]. Roy used a similar technique to analyze 

the reliability of stand-alone wind-battery energy systems [92]. While the work done in 

designing stand-alone renewable energy systems provides insight, there are additional factors 

that should be considered when designing PVRO systems. None of these methods incorporate 

variation in the load into the design, something that is critical for PVRO systems. 

2.4 Summary 

This section provided an overview of related work to the modular design problem applied 

to the photovoltaic reverse osmosis systems. Modular design approaches for different 

applications such as robotics, circuit design, and computer programs were overviewed. Methods 

for designing PV and RO systems were also reviewed. The methods developed provide insight 

into the problem, but none are directly applicable to the PVRO modular design problem. The 

challenges of dealing with a large inventory, complex system physics, and variations in the 

system environment make this problem challenging and unique. 
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CHAPTER 

3  
PVRO SYSTEM FEASIBILITY 

3.1 Introduction 

In this section, a method for determining the engineering feasibility of community-scale 

PVRO systems is developed. A PVRO system is engineering feasible if it is both technically and 

economically feasible. Technical feasibility of community-scale PVRO systems has been 

established [11, 14, 15, 18-30]. Economic feasibility for the PVRO system is established based 

on a cost comparison with equivalent water supply methods for remote locations. Several 

examples illustrating application to both remote and populated areas are presented.  

Studies have been conducted to evaluate the economic feasibility of community-scale 

photovoltaic reverse osmosis systems for remote locations. A cost analysis was performed for a 

photovoltaic reverse osmosis system in Oman [24]. The economic feasibility of a reverse 

osmosis system powered by wind turbines and photovoltaics in Greece has also been analyzed 

[12]. Photovoltaic and diesel powered reverse osmosis systems in the United Arab Emirates have 

been compared [93]. These studies have shown that engineering feasibility of these systems is 

critically dependent on location. Typically, the focus is on the cost of the photovoltaic panels and 

reverse osmosis membranes, which are generally very expensive. To date, no generalized 

methods to evaluate the feasibility of these systems including the effects of location have been 

developed. 

3.2 Approach 

In this section, a generalized method to determine the engineering feasibility of 

community-scale, photovoltaic-powered seawater and brackish water reverse osmosis systems is 

presented. As discussed above, PVRO has been shown to be technically feasible. However, to be 

practical for implementation, PVRO systems must also be economically feasible. Economic 
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feasibility is heavily dependent on local political and social considerations [94, 95]. Here, 

economic feasibility is determined by comparing the PVRO water cost with water provided by 

conventional methods. The main means to provide fresh water to remote, water scarce regions is 

by transporting water or by using diesel powered water desalination. Here, the feasible regions 

are considered to be water scarce areas that satisfy the following two criteria. First, the cost of 

water produced by the photovoltaic reverse osmosis system is less than the cost of transported 

water. The second criterion is that the photovoltaic reverse osmosis system must be less 

expensive than an equivalent diesel-powered reverse osmosis system. Grid-based systems are not 

evaluated. 

In this approach, the lifecycle costs (capital, operation, and maintenance costs) of 

photovoltaic-powered and diesel-powered reverse osmosis systems are analyzed. The lifecycle 

cost for both systems is broken into two main components, the system capital costs and the 

operating costs. These costs are based on the water demands, local solar energy resource, and 

water characteristics. Due to the energy intensive nature of reverse osmosis, a detailed energy 

analysis is used to determine the solar array size, diesel generator size and the diesel fuel 

consumption. Then, local political factors such as carbon taxes and renewable energy incentives 

are added. The resulting water cost for the PVRO system is compared with the cost of water 

produced by a diesel generator system and transported water to determine the most cost effective 

option. 

To demonstrate the method, seawater reverse osmosis case studies were completed for 

representative locations. Clearly, solar energy and water type vary by location.  To account for 

these variations, global Geographic Information Systems (GIS) data was obtained for solar 

energy and water characteristics [8, 96]. The lifecycles for diesel and photovoltaic-powered 10 

m3 water per day reverse osmosis systems were analyzed to determine the overall water cost. A 

10 m3 system provides 100 people with 100 liters of water per day, more than enough to meet 

basic household needs [97]. These two costs were then compared to determine where the 

photovoltaic-powered systems are less expensive. Areas which have lower costs for the 

photovoltaic-powered system and an overall water cost less than $10.00 per m3 (approximate 

cost of water transportation in the Greek Islands [98]) are considered feasible. Individual sites 

were then chosen for a detailed cost breakdown. 



Chapter 3. PVRO System Feasibility  34 
 

Brackish water reverse osmosis case studies are also presented. The feasibility of 

photovoltaic-powered brackish water reverse osmosis is also location dependent. Unfortunately, 

global GIS data for groundwater conditions is not available, so only a site-specific analysis could 

be conducted. For these sites, the analysis was conducted in the same manner as the seawater 

systems. The energy requirements for each site were determined based on water salinity and 

water depth. The required solar energy and diesel power systems were configured. A full life 

cycle cost analysis was performed for both systems to determine where photovoltaic-powered 

reverse osmosis systems would be economically feasible. 

3.3 Analysis 

3.3.1 Assumptions 

For this analysis, it is assumed that the solar-powered reverse osmosis systems do not 

incorporate any energy storage and will only operate when the solar power is available. In 

addition, average yearly values for solar insolation, water salinity, and water temperature are 

used. Also, this analysis considers only the energy required to perform the reverse osmosis. It 

does not include the energy requirements for pretreatment, post-treatment, water transportation 

and brine disposal. The energy required for these tasks is relatively small compared to the energy 

for the reverse osmosis process. Finally, it is assumed that water is incompressible and is taken 

from the nearest possible seawater or brackish water source. 

3.3.2 Energy Requirements 

3.3.2.1 Photovoltaic Reverse Osmosis System Sizing 

For the photovoltaic-powered system, it is assumed that the reverse osmosis system will 

operate intermittently when solar power is available, eliminating the cost and complications of 

batteries. As a result, the plant capacity as well as feed and product flows need to be scaled 

according to the number of hours that the system operates. For the photovoltaic-powered system, 

the average product flow in m3/hour during daylight operation, Qp,s, is given by: 
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where Vcap is the daily system production capacity in m3/day and tsun is the number of daylight 

hours at the location. The size of the reverse osmosis system is scaled to produce the required 

amount of water in the daylight hours and this value varies by location due to the variation in 

daily sunshine hours. In the analysis presented below, an availability factor is used to account for 

daylight hours when the photovoltaic reverse osmosis plant is not operational due to limited 

sunlight or maintenance. 

3.3.2.2 Diesel Reverse Osmosis System Sizing 

The diesel-powered system is assumed to operate 24 hours a day and the corresponding 

flow of desalinated water for the diesel system in m3/hour is computed as: 

 ,
24

cap

p d

V
Q =  (3.2)  

In this analysis, the capacity of the system and the diesel system product flow rate are the same 

for all locations. The product flow rate for the solar-powered system will be greater than that of 

the diesel-powered system. 

3.3.2.3 Reverse Osmosis Power Requirements 

A simple schematic of the photovoltaic reverse osmosis system considered is shown in 

Figure 2.1. The diesel generator system differs only in the power source, otherwise the schematic 

is identical. In this system, the energy source powers a feed pump and a high-pressure pump to 

pressurize the incoming water. The water is then driven through the reverse osmosis membrane 

array by the high pressure produced by the pumps, leaving high salt concentration brine on one 

side and low salt concentration water on the other side. The high-pressure brine stream passes 

through a turbine to recover its energy before exiting the system. 

The power required by the reverse osmosis system can be expressed as: 

 RO HP ER
P P P= −

 (3.3)
 

where PHP is the power required by all pumps and PER is the power recovered from the exiting 

bring by the energy recovery device. All power units are in kW. 

The power required to pressurize the high pressure stream is determined by: 
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HP

p Q
P .

η
=

 (3.4)

 

where pf is the reverse osmosis membrane feed pressure in bar, Qf is the reverse osmosis unit 

feed flow rate in m3/hour, the constant is the unit conversion factor, and ηHP is the efficiency of 

the motor and pump.   

The brine exits the reverse osmosis unit at a high pressure. It is important to recapture this 

energy to reduce the power consumption of the reverse osmosis process and hence the cost.  The 

power recovered by an energy recovery device is given by: 

 
27 78

ER b b ER
P . p Qη=  (3.5) 

where pb is the reverse osmosis membrane brine exit pressure in bar, Qb is the reverse osmosis 

membrane brine flow rate in m3/hour, the constant is a unit conversion factor, and ηER is the 

efficiency of the energy recovery system. 

The pressures and flow rates for the reverse osmosis system are found using equations 

(3.6)-(3.10) given below. Water is nearly incompressible under pressures considered here. 

Hence, the volume of the water is conserved and the system flow rates are related by: 

 f b p
Q Q Q= +  (3.6) 

where Qf is the feed flow rate, Qb is the brine flow rate and Qp is the product flow rate in 

m3/hour. The flow of the product water through the reverse osmosis membrane is related to the 

feed pressure by [99]: 

 p p TCF mem nd
Q K K A p=  (3.7) 

where Kp is the permeability of the membrane to water in m/bar-hour, KTCF is the membrane 

permeability temperature correction factor, Amem is the membrane area in m2, and pnd is the net 

driving pressure in bar as given by: 

 nd
p p π= ∆ − ∆  (3.8) 

where p∆  is the average differential pressure across the membrane in bar, and π∆ is the average 

difference in osmotic pressure across the membrane in bar. The osmotic pressure differential can 

be determined using the method outlined in [99]. The pressure of the brine is determined using 

the following empirical relation [99]: 
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As the feed water temperature increases, the membrane permeability also increases. This is 

incorporated into the reverse osmosis model through the membrane permeability temperature 

correction factor, empirically found to be [99]: 
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 (3.10) 

where T is the feed water temperature in oC. 

The system recovery ratio is an important design variable of a reverse osmosis system, 

which is given by:  

 
p

f

Q
R

Q
=  (3.11) 

3.3.2.4 Water Transportation Energy Requirements 

It is assumed that the reverse osmosis unit is located close to the sea or a brackish well and 

that transporting the water over long distances is not necessary. However, the reverse osmosis 

unit will be located some distance above the water line. The power required to raise the water in 

kW is given by: 

 
63 6 10

f

FP

FP

Q gh
P

.

ρ

η
=

×
 (3.12) 

where ρ is the water density in kg/m3, g is the acceleration due to gravity in m/s2, h is the change 

in the water height in m, and ηFP is the feed pump efficiency. For the seawater analysis, h is 

given by the site elevation above sea level. For the brackish water analysis, h is the depth of the 

water source. 
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3.3.3 Energy Source 

3.3.3.1 Solar Array Requirements  

For the photovoltaic powered reverse osmosis system, the total energy required in kWh is 

given by: 

 PV FP RO sun
E ( P P )t= +  (3.13) 

Assuming that the desired water production is averaged over many years, the solar array 

area necessary to provide this power can be written as: 

 PV
PV

PV

E
A

Hη
=  (3.14) 

where H is the solar insolation at the location in kWh/m2-day and ηPV is the efficiency of the 

array.  

 The photovoltaic array power rating in kW can then be found from the array area using: 

 
p PV PV r

W A Gη=  (3.15) 

where Gr is the radiation that is used for the solar array peak power rating in kW/m2. The 

standard value used by most solar panel manufacturers is 1 kW/m2. 

3.3.3.2 Diesel Generator Requirements 

If a diesel generator is providing the energy required for the reverse osmosis system, it can 

run continuously. The power rating of the generator required, in kW, can be written as: 

 FP RO
GEN

P P
P

LF

+
=  (3.16) 

where LF is the generator load factor. For this rate of power generation, the rate of diesel fuel 

used in kg/s is given by: 

 
0

FP RO
fuel

GEN comb

P P
m

Hη

+
=

∆
�  (3.17) 

where ηGEN is the diesel-powered generator overall efficiency, and 0

comb
H∆ is the net calorific 

value of diesel fuel, which equals 42.8 MJ/kg at 25oC [100]. 
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3.3.4 System Cost 

This section outlines the financial analysis of reverse osmosis systems. The method utilized 

was the annualized life cycle cost method outlined by Ettouney [94]. The costs are separated into 

capital system costs and operating costs. The cost elements are presented in this section. 

3.3.4.1 Assumptions 

It is assumed that system costs, including capital costs and costs of consumables such as 

diesel, are a function of location. Accounting for these local political and social considerations 

on a global scale is beyond the scope of this analysis. Here, average values for system capital 

costs and consumable costs are used as an example. These values can be modified for a 

particular location and demand. 

3.3.4.2 Overall Cost of Desalinated Water 

The total equivalent annual cost for the solar-powered and the diesel-powered reverse 

osmosis systems can be expressed as:  

 Total ,PV CC ,PV Op,RO Op,PV
A A A A= + +  (3.18)  

 Total ,GEN CC ,GEN Op,RO Op,GEN
A A A A= + +  (3.19) 

where ACC,PV is the annual capital cost of the photovoltaic reverse osmosis system in USD, 

ACC,GEN is the annual capital cost of the diesel reverse osmosis system in USD, and AOp,RO 

represents the annual subsystem operating costs. 

From the total equivalent annual cost for both systems, the cost per m3 of water can be 

found using: 

 
365

Total
w

cap

A
C

nfV
=  (3.20) 

where n is the system lifetime in years, f is the reverse osmosis plant availability, and Vcap is the 

system water production capability in m3/day. 

3.3.4.3 Capital Costs  

Capital costs consist of the cost of the reverse osmosis system and the cost of the energy 

production system. The capital costs are converted into equivalent annual costs using [94]: 



Chapter 3. PVRO System Feasibility  40 
 

 
( )

( )

1

1 1

n

cc n

i i
A DC

i

+
=

+ −
 (3.21) 

where i is the interest rate, and DC is the full system direct capital cost of the photovoltaic or 

diesel reverse osmosis system. 

3.3.4.4 Reverse Osmosis System 

The costs for a reverse osmosis system vary with system size. The total cost of the reverse 

osmosis system including water intake, pretreatment, post-treatment and installation is given by: 

 24
RO p RO

C Q U=  (3.22) 

where URO is the specific cost of the reverse osmosis system in $/m3/day. For the community-

scale seawater systems considered here, the total capital costs of $2400 and $1200 per m3 of 

daily capacity are assumed for seawater and brackish water systems respectively [94, 101]. The 

breakdown of the reverse osmosis system components is shown in Table 3.1. 

Table 3.1: Reverse osmosis components cost breakdown [102]. 
System Component Contribution to Capital Costs 

Intake Cost 25% of System Capital Costs 
Pretreatment System 10% of System Capital Costs 
Reverse Osmosis Components 25% of System Capital Costs 
Post-Treatment & Brine Disposal 5% of System Capital Costs 
Installation & Infrastructure 30% of System Capital Costs 
Professional Costs 5% of System Capital Costs 

3.3.4.5 Photovoltaic Power System 

The capital cost of the entire photovoltaic power system, including the costs of the control 

electronics, wiring, supporting structures and installation can determined using: 

 
PV p PV

C W U=  (3.23) 

where Wp is the peak power rating of the array in Watts and UPV is the unit cost in $/Watt. 

Government incentives can substantially change these costs. For this analysis, a historical price 

$9.00 per watt peak was chosen for the installed cost of the solar energy systems [103]. 

3.3.4.6 Diesel Generator System 

For comparison with the solar energy system, the capital cost of the diesel generator 

system should be included. Here, the cost of the diesel generator system is estimated from 

manufacturer cost data [104]. An installation cost of 10% is assumed in addition to the generator 

price, so the total cost of the diesel generator system is given by:  
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 1 1
GEN GEN

C . U=  (3.24) 

where UGEN is the cost of the generator set in $. 

3.4 Operating Costs 

3.4.1 Reverse Osmosis 

The total annual operational cost for the reverse osmosis system is given by:  

 
Op,RO l chem r ,RO

A A A A= + +  (3.25) 

where Al is the annual labor cost, Achem is the annual chemical cost, and Ar,RO is the annual cost of 

component replacement in $.  

The annual cost of the labor is expressed as:  

 365
l cap

A fVγ=  (3.26) 

where γ is the specific operating labor cost in $/m3-day, f is the fraction of time the reverse 

osmosis system is operating (the plant availability factor), and Vcap is the plant capacity in 

m3/day. In this analysis, the nominal labor cost was chosen as $3.00/m3-day [93]. 

The chemical costs are also location specific as the pre-treatment chemicals are dependent 

on local water conditions. The total annual cost of treatment chemicals is given by: 

 365
chem cap

A kfV=  (3.27) 

where k is the average cost of chemicals $/m3. In this analysis, the treatment chemical cost per 

m3 is assumed to be $0.033 [94]. 

Throughout its lifetime, certain components of the reverse osmosis system will require 

replacement. The major components that will require regular replacement are the reverse 

osmosis membranes. Although it’s never been shown, researchers have speculated that 

membrane life in PVRO systems would be reduced due to the cycles associated with system 

operation. To address this issue, it is assumed that the membranes in the PVRO system will be 

replaced twice as often. Less frequently, the motors and pumps may also require replacement. 

The components and their replacement rates for a typical system are given in Table 3.2. 
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Table 3.2: Replacement rates for reverse osmosis components [93]. 

Component Cost 
Annual Replacement Rate – 

Diesel-RO System 
Annual Replacement Rate – 

PVRO System 

Membranes 40% of RO Components 20% 40% 
Pumps 15% of RO Components 10% 10% 
Motors 15% of RO Components 10% 10% 
Energy Recovery Devices 15% of RO Components 10% 10% 

 

Using the data in Table 3.2 and the component costs found in Table 3.1, the annual cost for 

component replacement can written as: 

 
r ,RO mem mem p p motor motor er er

A C RR C RR C RR C RR= + + +  (3.28) 

where C represents the component costs and RR is the component replacement rate. 

3.4.2 Photovoltaic Power System 

The annual costs for the photovoltaic-power system are low since the energy for this 

system comes directly from the sun. The photovoltaic panels will not require replacement during 

the system lifetime since their expected life is 25 years. Other portions of the photovoltaic-power 

system will require maintenance and replacement over the system operational life. The system 

electronics are the major component that will require replacement; the replacement rate for the 

electronics is taken to be 10% annually and the cost is given by: 

 0 72
PV ,E p

C . W=  (3.29) 

where Wp is the peak power rating of the photovoltaic array in W, and the average cost of 

electronics is $0.72/W [105]. The equivalent annual operating cost for the photovoltaic power 

system is given by: 

 r ,PV PV ,E PV ,E
A C RR=  (3.30) 

where RRPV,E is the replacement rate for the photovoltaic system components. 

3.4.3 Diesel Generator System 

The total annual cost for the generator is given by: 

 
Op,GEN f ,GEN O&M ,GEN r ,GEN Ctax,GEN

A A A A A= + + +  (3.31) 

where Af,GEN is the annual fuel cost, AO&M,GEN is the annual operation and maintenance cost, 

Ar,GEN is the annual replacement cost for the generator system, and ACtax,GEN is the annual carbon 

tax on the generator emissions. 
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Fuel costs are sensitive to location and vary from season to season. The price of diesel fuel 

fluctuates, but in general its price has increased over time. An average diesel fuel escalation rate 

of 12% was found through analysis of data from the Energy Information Administration of the 

US Government data [106]. Using this escalation rate, the annual diesel fuel costs can be 

calculated using [107]: 
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 (3.32) 

where f is the reverse osmosis plant availability, Cfuel is the diesel cost in $/L during year 1, Vfuel 

is the volume of fuel used per day in Liters, and j is the fuel cost escalation rate.   

The operating and maintenance costs of the diesel generator in $/hour are estimated using 

[104]:  

 
( )0 242 0 3505 18 143 1

600

GEN

O&M ,GEN

. . P .
C

+ +
=  (3.33) 

where PGEN is the power rating of the generator in kW. The constants in the equation above are 

derived from empirical data [104]. 

Using the above hourly operational cost, the annual operating and maintenance cost for the 

generator is given by: 

 ( )365 24O&M ,GEN O&M ,GENA fC=  (3.34) 

The diesel generator will also require replacement during the lifetime of the system. The 

generator lifetime will depend on the generator model. Here, an average lifetime of 21000 

operating hours for a diesel generator is assumed [104]. This corresponds to an average rate of 

replacement of 40%. This annual replacement cost of the diesel generator is given by: 

 r ,GEN GEN GEN
A C RR=  (3.35) 

where CGEN is the diesel generator cost in $ and RRGEN is the annual replacement rate for the 

generator system. 

Many countries around the world have imposed economic penalties on the production of 

C02. This impact can also be factored into the analysis. The annual cost due to C02 emissions can 

be found using: 

 
2 2Ctax,Gen CO COA C m=  (3.36) 
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where CCO2
 is the carbon tax in $/kg, and mCO2

 is the mass of CO2 produced per year in kg which 

can be found using equation (3.37). Carbon taxes are due to the local political conditions: for 

example, in France, the current carbon tax is $0.25/kg [108]. 

The rate of carbon dioxide production by the generator can be calculated using the 

relationship [93]: 

 2 2

2

CO CO

CO C fuel C

C C

M M
m m m w

M M
= =� � �  (3.37) 

where MCO2
is the molar mass of carbon dioxide, MC is the molar mass of carbon, and wc is the 

mass fraction of carbon in the diesel fuel. 

3.5 Case Studies 

3.5.1 Seawater Systems 

3.5.1.1 Analysis for Any Location 

The feasibility of community-scale seawater reverse osmosis systems is analyzed for all 

locations using Geographic Information Systems (GIS) data. GIS data on a 1° by 1° grid was 

collected for annual average solar insolation for latitude tilt [8], water salinity and water 

temperature [96]. This data was then analyzed using the method outlined in equations (3.1)-

(3.37). The constants used in the analysis are given in Table 3.3. 

Table 3.3: Input parameters for seawater reverse osmosis analysis. 
Parameter Value 

Plant Capacity, Vcap 
Plant Lifetime, n 
Interest Rate, i 
Plant Availability Factor, f 
Recovery Ratio, R 
Reverse Osmosis Membrane Permeability, Kp [99] 
Reverse Osmosis Motor & Pump Efficiency, ηHP & ηFP [93] 
Energy Recovery System Efficiency, ηER [93] 
Array System Efficiency, ηPV 
Generator Efficiency, ηGEN [104] 
Generator Load Factor, LF [104] 
Reverse Osmosis System Cost, URO [94] 
Installed Array System Cost, UPV [103] 
Initial Diesel Fuel Cost, Cfuel [106] 
Diesel Fuel Annual Inflation Rate, j [106] 

10 m3 
25 years 
5% 
90% 
40% 
3.5  x 10-10 m/bar-s 
70% 
80% 
15% 
30% 
80% 
$2400 / m3 
$9.00 / Wp 
$0.66 / L ($2.50 / Gallon) 
12% 

 

The Middle East is a large market for desalination since the majority of the region does not 

have access to an adequate freshwater resource. Hence, a more detailed analysis was carried out 
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for this region. GIS data was obtained for a denser grid of 0.25° by 0.25° to provide a more 

detailed picture of this region. 

The solar array area required for the 10 m3 per day reverse osmosis system discussed above 

is shown in Figure 3.1. It is evident from this figure that array area requirements are lower for 

equatorial regions that have high solar insolation. Also, the majority of areas in the Middle East 

require less than 40 m2 of solar array area to power a small reverse osmosis system. The area 

requirements for systems in equatorial regions are reasonable. 

 

Figure 3.1: Array area required for 10m3 system. 

 

The cost of water produced by the photovoltaic powered reverse osmosis system is 

presented in Figure 3.2 and Figure 3.3. Figure 3.2 shows that the majority of equatorial regions 

are able to produce fresh water for less than $6.00 per m3. Based on published water 

transportation cost data of $10.00 per m3 [109], PVRO is a feasible alternative to transported 

water supplies. 

 

Figure 3.2: Water cost for 10m3 system. 
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Figure 3.3 shows water prices for the photovoltaic reverse osmosis system in the Middle 

East. Many coastal areas in this region are able to produce clean water using photovoltaics for 

less than $5.00 per m3. As expected, water prices increase for Northern areas that receive less 

sunshine. Water prices also increase in areas that have higher salinity feed water, such as the 

Persian Gulf and the Mediterranean Sea. 

 

Figure 3.3: Water cost for a 10m3 system in the Middle East. 

 

In order for the photovoltaic-powered reverse osmosis system to be cost competitive, the 

cost of the water produced should be less than the cost of water produced by an equivalent 

diesel-powered system. Figure 3.4 and Figure 3.5 show regions where a solar-powered reverse 

osmosis system would be more cost effective than using diesel-powered reverse osmosis. 

Photovoltaic-powered reverse osmosis systems are economically feasible throughout large areas 

of water scarce regions. The coastal regions of Northern Africa, the Middle East, South Africa, 

Mexico and the Caribbean are all examples of water stressed areas where a solar-powered 

seawater reverse osmosis system could feasibly deliver clean water to small communities at a 

lower cost than a diesel powered reverse osmosis system. 
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Figure 3.4: Areas where PVRO systems are feasible. 

 

 

Figure 3.5: Areas in Middle East where PVRO systems are feasible. 

3.5.1.2 Site Analysis 

Table 3.4 gives detailed results for six sites. As expected, the areas with higher water 

salinity require more energy to perform reverse osmosis. Also, as expected, the areas listed with 

low solar insolation are not favorable for the solar powered systems. For the price assumptions 

made, the photovoltaic-powered systems are less expensive for sites in Cyprus, Haiti and Saudi 

Arabia. PVRO is feasible in areas with a good solar resource. 
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Table 3.4: Site-specific analysis results – seawater without incentives and carbon tax. 

Location 
Boston, 
USA 

Los 
Angeles, 
USA 

Limassol, 
Cyprus 

Aqaba, 
Jordan 

Cap-
Haïtien, 
Haiti 

Jeddah, 
Saudi 
Arabia 

Latitude 
Longitude 
Average Latitude Tilt Solar Insolation (kWh/m2-day) 
Daylight Hours (hours) 
Water Salinity (ppm) 
Energy Required per day (kWh) 
Solar Array Area (m2) 
Total Solar RO System Capital Cost ($) 
Solar RO System Equivalent Annual Cost ($) 
Total Diesel System Capital Cost ($) 
Diesel System Equivalent Annual Cost ($) 
Cost of Water Solar ($/m3) 
Cost of Water Diesel ($/m3) 

42.35 N 
71.06 W 
4.4 
9.08 
32664 
29.2 
44.2 
149,830 
23,042 
46,718 
17,147 
7.01 
5.21 

34.05 N 
118.24 W 
5.6 
9.88 
33505 
30.1 
35.8 
123,349 
18,553 
46,644 
17,295 
5.64 
5.25 

34.67 N 
33.03 E 
6.1 
9.87 
39182 
34.1 
37.3 
120049 
17,494 
46,362 
17,983 
5.32 
5.47 

29.52 N 
35.07 E 
5.9 
10.25 
41160 
35.7 
40.3 
125,696 
18,225 
46,279 
18,231 
5.55 
5.54 

19.76 N 
72.2 W 
6.0 
10.93 
36275 
31.9 
34.8 
118,296 
17,457 
46,497 
17,626 
5.31 
5.36 

16.89 N 
42.55 E 
6.6 
11.13 
38340 
33.4 
33.7 
111,748 
16,311 
46,445 
17,758 
4.96 
5.41 

3.5.2 Brackish Water Systems 

Brackish groundwater is present in many water stressed locations. For these areas, brackish 

water RO desalination could be a major potential solution to fresh water shortage. These areas 

also typically have an abundance of sunshine, so photovoltaics can be coupled with RO systems 

to provide the required energy. Due to a lack of global data sets for groundwater salinity and 

depth, only a site specific analysis was performed to demonstrate the methodology for brackish 

water desalination. The input parameters for this analysis are given in Table 3.5. 

Table 3.5: Input parameters for brackish water reverse osmosis analysis. 
Parameter Value 

Plant Capacity, Vcap 
Plant Lifetime, n 
Interest Rate, i 
Plant Capacity Factor, f 
Recovery Ratio, R 
Reverse Osmosis Membrane Permeability, Kp [99] 
Reverse Osmosis Motor & Pump Efficiency, ηHP & ηFP [93] 
Energy Recovery System Efficiency, ηER [93] 
Array System Efficiency, ηPV 
Generator Efficiency, ηGEN [104] 
Generator Load Factor, LF [104] 
Reverse Osmosis System Cost, URO [94] 
Installed Array System Cost, UPV [103] 
Initial Diesel Fuel Cost, Cfuel [106] 
Diesel Fuel Annual Inflation Rate, j [106] 

10 m3 
25 years 
5% 
90% 
40% 
7.5  x 10-10 m/bar-s 
70% 
80% 
15% 
30% 
80% 
$1200 / m3 
$9.00 / Wp 
$0.66 / L ($2.50 / Gallon) 
12% 

 

Table 3.6 gives the details for all four sites analyzed. As expected, the energy requirements 

are higher for the areas with higher salinity water. Also, there is an energy penalty associated 

with raising the water from the source. Additionally, the high cost of diesel fuel results in a lower 

unit price for the solar powered reverse osmosis systems in all four cases. Photovoltaic reverse 

osmosis systems are economically feasible for brackish water desalination. 
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Table 3.6: Site-specific analysis results – brackish water without incentives and carbon tax. 

Location 
Alamogordo, 
NM, USA [110] 

Jurf El-Darwish, 
Jordan [111] 

Broken Hill 
Australia [112] 

Djebeniana, 
Tunisia [113] 

Latitude 
Longitude 
Average Solar Insolation (kWh/m2-day) 
Daylight Hours (hours) 
Water Salinity (ppm) 
Water Depth (m) 
Energy Required (kWh) 
Solar Array Area (m2) 
Total Solar RO System Capital Cost ($) 
Solar RO System Equivalent Annual Cost ($) 
Total Diesel System Capital Cost ($) 
Diesel System Equivalent Annual Cost ($) 
Cost of Water Solar ($/m3) 
Cost of Diesel Water($/m3) 

32.88 N 
105.95 W 
5.8 
9.98 
3000 
120 
20.8 
23.9 
71,189 
7,944 
32,154 
12,652 
2.41 
3.85 

30.700 N 
35.867 E 
5.7 
10.15 
2421 
100 
19.9 
23.3 
68,263 
7,775 
30,274 
12,306 
2.36 
3.75 

31.95 S 
141.43 E 
5.7 
10.07 
6000  
15 
18.4 
21.5 
58,227 
7,148 
21,977 
11,438 
2.17 
3.48 

35.05 N 
10.9 E 
5.2 
9.80 
3500  
20 
16.0 
20.5 
59,509 
7,512 
22,882 
10,987 
2.28 
3.34 

3.5.3 Comparison with Other PVRO Studies 

Other researchers have also investigated PVRO systems and estimated the overall cost of 

water produced. A summary of these systems are listed in Table 3.7. The estimated water costs 

vary greatly due to variable system efficiency and assumptions that are made during the cost 

analysis. It should be noted that the calculated costs of between $4.96/m3 and $7.00/m3 for 

seawater photovoltaic reverse osmosis systems and between $3.34/m3 and $3.85/m3 for brackish 

water systems lie within the established range. 

Table 3.7: Summary of estimated water costs for PVRO systems. 

Location 
Water 

Salinity 
(mg/L) 

Water 
Production 

(m3/day) 

PV Power 
Rating 
(kWp) 

Batteries 
(kWh) 

Energy 
Recovery 

Water 
Cost 

($US/m3) 
Year 

Cituis, Indonesia[114] 
Coité–Pedreiras, Brazil [115] 
Hammam Lif, Tunisia [116] 
Heelat Ar Rakah, Oman [24, 117] 
Mesquite, Nevada [19] 
Athens, Greece[13] 
Canary Islands, Spain [22, 23] 
Massawa, Eritia[14, 15] 

3500* 
1200* 
2800* 
1010* 
3910* 
40000 
35500 
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3.6 Conclusions 

This chapter presented a method for determining the engineering feasibility of community-

scale photovoltaic reverse osmosis systems as a function of location and water demand. This 

method compares the cost of water produced using photovoltaic reverse osmosis to water 

produced using diesel-powered reverse osmosis. This method uses physics-based models to size 

the system and determine the system energy requirements. The energy requirements are then 



Chapter 3. PVRO System Feasibility  50 
 

used to determine the water cost for each system. A PVRO system is considered feasible if it is 

more cost effective than an equivalent diesel-based system or transported water. 

Case studies presented in this chapter clearly show the location dependence of the 

feasibility of photovoltaic-powered reverse osmosis. This dependency is due to the differences in 

terrain characteristics, the solar resources and water characteristics. For the conditions analyzed, 

the photovoltaic reverse osmosis is feasible for many water stressed regions. The high fuel costs 

for the diesel-powered systems results in higher water costs for most locations. When the system 

is configured for a region without a good solar resource, the high capital costs for community-

scale seawater photovoltaic reverse osmosis systems are not recovered during the system 

lifetime. With modular design methodologies and intelligent system control of the photovoltaic-

powered reverse osmosis systems, it is possible that the system costs could be further reduced, 

and the PVRO systems could become affordable for larger geographic regions. 
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CHAPTER 

4  
MODULAR DESIGN APPROACH 

This section provides an overview of the modular design approach developed in this thesis. 

This approach can be used to custom tailor modular systems from inventories of potential 

components. This section also demonstrates the power of the developed approach for the 

application of interest, the design of PVRO systems, as well as the design of a hybrid 

automobile. 

4.1 Modular Design 

A common method to reduce manufacturing costs in many applications, such as 

automobiles, electronics, and robotics, is to develop products composed of mass-produced 

modular components. As stated in Chapter 1, this approach has many advantages, but designing 

a custom system configured from an inventory of potential modular components is not a simple 

task. For a given modular inventory, a large number of possible system configurations exist. A 

designer with significant expertise is required to select the correct components and configuration.  

The problem considered in this thesis is the design of a system from an inventory of mass-

produced, modular components. Here, it is assumed that the design algorithms have access to an 

inventory of potential components with known characteristics and a design objective. It is also 

assumed that the performance of a system is highly coupled to the design choices. 

For the PVRO problem, this inventory consists of different PV panels, motors, pumps, 

reverse osmosis membranes, pressure vessels, energy recovery devices and control electronics. 

For the cases considered, the systems are designed to operate variably to eliminate the need for 

energy storage in the form of batteries, instead storing the energy in the form of clean water and 

reducing overall system cost. Also, the design algorithms have access to the system 

specifications which define the location and water demand of the community. The algorithm 

developed should enable a non-expert to configure a custom system for the community from 
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modular components. The design goal of the modular design of the PVRO system is to determine 

the most cost-effective option in terms of lowest lifetime cost that meets the water production 

and quality requirements. 

4.2 Design Approach 

The design framework developed to configure a custom system from a library of potential 

modular components can be seen in Figure 4.1. In this framework, a series of different filters are 

used to systematically reduce the size of the design space. The preliminary filters are based on 

computationally efficient, simple tests to eliminate inappropriate modules and subassemblies 

quickly. The smaller design space is further refined by a topology filter using simple, low-

fidelity models and tests. Finally, a high-fidelity model is used on the fully reduced design space 

to optimize the system and determine the final system configuration. This approach greatly 

reduces the size of the design space and dramatically speeds the optimization, as is shown in 

examples in sections 4.3 and 4.4. 

Different optimization techniques can be used on the reduced design space to determine a 

final system configuration. For the design of a PVRO system, a genetic algorithm is used to 

optimize the final system configuration [118]. This method is used because the PVRO system 

configuration is represented by a series of binary, integer and continuous design variables. In 

addition, the equations which describe the system performance are non-linear. Genetic 

algorithms can easily encode discrete variables and can handle non-linear equations by 

evaluating a large population of potential configurations. Genetic algorithms are often the 

preferred choice for topology optimization problems and are well-matched for the design of 

other modular systems [47, 57, 59, 60, 63, 69, 71]. 
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Figure 4.1: Modular design approach. 

4.3 PVRO System Design Space Study 

4.3.1 Overview 

To show the effectiveness of this approach for a PVRO system, a design space study for a 

modular inventory was performed. In this study, the total number of system combinations is 

enumerated through each of the steps outlined in the modular design approach. The inventory 

considered in the design space study is shown in Figure 4.2 and the component details are given 

in Table 4.1. In this example, this simple inventory will be used to design a small, 1 m3/day 

water production, brackish water system for Haiti. 

 

Figure 4.2: Inventory used in design space study. 
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Table 4.1: Sample inventory used for design space study. 
Component  Details 

PV Panels Quantity Power Rating Efficiency Cost 

PV Model 1 6 250 W 15% $500 
PV Model 2 6 200 W 13% $300 
PV Model 3 6 300 W 18% $450 

RO Membranes Quantity Water Type Area 
Rated Water 
Production 

Cost 

RO Membrane Model 1 3 Brackish Water 2.8 m2 3.2 m3/day $120 
RO Membrane Model 2 3 Brackish Water 7.5 m2 9.1 m3/day $220 
RO Membrane Model 3 3 Seawater 2.8 m2 2.6 m3/day $150 

Motor + Pump Units Quantity 
Maximum 
Pressure 

Maximum 
Power 

Efficiency Cost 

Pump Model 1 3 25 bar 200 W 65% $300 
Pump Model 2 3 80 bar 400 W 82% $800 
Pump Model 3 3 80 bar 800 W 80% $1500 

Energy Recovery + 
Pressure Control Valves 

Quantity 
Maximum 
Pressure 

Maximum Flow 
Rate 

Efficiency Cost 

Energy Recovery Model 1 1 80 bar 0.5 L/s 85% $3500 
Energy Recovery Model 2 1 80 bar 0.3 L/s 90% $3000 
Pressure Control Valve 1 1 80 bar 1 L/s 0% $200 

4.3.2 Enumerating Full Design Space 

To determine the initial design space, it is assumed that each system must contain at least 

one PV panel, one pump and motor, one RO membrane, and one energy recovery device or 

pressure control valve. It is also assumed that the required pressure vessels, connecting 

components and power control electronics are readily available. The system is being configured 

for a location with one water intake, one brine disposal, and one potable water storage facility in 

place. It is also assumed that not all the components need to be used. 

The PVRO system has two main subsystems, the reverse osmosis system and the 

photovoltaic power system which are coupled via the control electronics. The total number of 

system configurations is given by 

 PVRO RO PV
N N N= ×  (4.1) 

where NRO is the number of different RO system configurations and NPV is the number of PV 

system configurations. 

Each reverse osmosis system is formed by selecting and connecting components from the 

modular inventory. This results in a large number of possibilities for a given inventory, which 

can be expressed as: 
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(4.2) 

where Np,i is the number pumps of type i in the inventory, Nro,i is the number of reverse osmosis 

membranes of type i in the inventory, Ner,i is the number of energy recovery devices and pressure 

control valves of type i in the inventory, ninputs is the number of component inputs for a 

configuration as given by: 

 , , ,

1 1 1

2 1
p ro er

N N N

outputs p i ro i er i

i i i

n n n n
= = =

= + + +∑ ∑ ∑  (4.3) 

and noutputs is the number of components outputs for the configuration as given by: 
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Np,base, Nro,base, and Ner,base are indices that ensure each configuration has at least one pump, one 

reverse osmosis membrane, and one energy recovery or pressure control valve and are expressed 

as:   
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The derivation of equations (4.2) - (4.7) are presented in Appendix A. 

There are many ways to configure a PV system from an inventory of PV panels. Provided 

the PV array voltage and current output is compatible with the control electronics, the 

configuration of the PV array does not greatly impact the overall power production. Therefore, 
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the number of distinct configurations can be determined by the number of ways to select groups 

of PV panels from the inventory as given by: 

 ( )
,

,

1

1 1
pv typeN

PV pv i

i

N n
=

= + −∏  (4.8) 

where Npv,type is the number of different types of PV panels in the inventory, npv,i is the number of 

PV panels of type i in the inventory. The derivation of equation (4.8) is presented in Appendix A. 

Using equations (4.1)-(4.8), the total number of configurations for the inventory presented 

in Figure 4.2 can be computed. The resulting number of system configurations is 1.9 x 10173. 

This number far exceeds the approximate number of atoms in the observable universe, which is 

estimated to be 9.4 x 1079 [119]. Optimizing a system with a design space this large is infeasible. 

4.3.3 Module Level Filters 

Using the modular design approach outlined in Figure 4.1, the size of the design space is 

reduced. In the initial step, module level filters are applied to the motor/pump units, reverse 

osmosis membranes, energy recovery devices and PV panels to remove inappropriate elements 

from the inventory. The filters applied for PVRO systems are detailed here. 

For the PVRO system, the design goal is to minimize the lifetime system cost. The filters 

presented here assume that the expected life of all components of the same type is identical. As a 

result, the applied value metrics only consider capital costs. If lifetimes of components are 

different and known, the value metrics should be adjusted to account for such differences. 

4.3.3.1 Motor/Pump Filters 

For the motors and pumps, the following filters are applied to reduce the size of the design 

space: 

1. Motor/pump combinations that are designed for pressures that are inappropriate for the 

given system are eliminated from the inventory. Since the salt concentration varies for 

different source waters, the typical operating pressures also vary. For brackish 

desalination, the typical operating pressure is 30 bar, while for seawater desalination, 

the operating pressures go up to 80 bar.   
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2. Motors and pumps with inappropriate power ratings are eliminated from the inventory. 

Based on the energy requirements, shown in Table 1.1, the average power requirement 

of the system can be calculated as follows: 

 
Average Energy Requirements Average Energy Requirements

Number of Operating Hours Number of Peak Sun Hours
P = =  (4.9) 

Using the solar data at the site, the power requirement can be estimated. Pumps that 

are rated for more than two times the average power requirement are oversized and are 

removed from the inventory.   

3. Value metrics are applied to pumps/motor units. The cost per percent efficiency is 

used to compare possibilities. Since different system scales require different types of 

pumps, these metrics are evaluated by power rating. Pump/motor units that do not rank 

in the top 50% for one of these metrics are removed from the design problem. 

When applied in the context of designing a brackish water PVRO system capable of producing 1 

m3 of clean water per day in Haiti, these filters remove Pump/Motor 3 from the inventory since it 

is oversized for the system energy requirements. 

4.3.3.2 Reverse Osmosis Membrane Filters 

For the reverse osmosis membranes, the following filters are applied to reduce the size of 

the design space: 

1. Membranes are removed that are for the incorrect water type. For example, when 

designing a system for brackish water desalination, the seawater filters are removed 

from the design space. 

2. Value metrics are applied to membranes. The cost per water permeability and cost per 

salt permeability are calculated for each type of component. Since different system 

scales require different membrane areas, these metrics are compared by membrane 

size. Membranes that do not rank in the top 50% of their category for one of these 

metrics are removed from the design problem. 

For the sample Haiti PVRO system design problem, the filters remove Reverse Osmosis 

Membrane 3 from the inventory. 
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4.3.3.3 Energy Recovery Device and Pressure Control Valve Filters 

The following filters are applied to the energy recovery/pressure control devices to reduce 

the size of the design space: 

1. Components that have inappropriate pressure and flow ratings for the application are 

eliminated from the design space. Expected operating pressures for the brackish water 

systems are 30 bar and for seawater systems the expected operating pressure is 

between 60-80 bar. Devices that have pressure ratings too low are removed from the 

inventory. 

The expected flowrate through the energy recovery system is calculated as follows: 

 
Sys

ERD

Q
Q

R
=  (4.10) 

 where Qsys is the rated system flowrate and R is the expected recovery ratio. For the 

small systems considered here, the recovery ratio will range between 10% and 30%.  

Using these numbers, the range of required flowrates is calculated. Energy recovery 

devices with maximum flowrates below the expected range will be eliminated from 

the inventory. 

2. Value metrics are applied to energy recovery devices. The cost per percentage 

efficiency is calculated for each ERD. ERDs that do not rank in the top 50% for one of 

these metrics are removed from the inventory. 

When applied to the brackish water system design problem for Haiti, these filters remove Energy 

Recovery Model 1 from the inventory based on the component value metric. 

4.3.3.4 PV Panel Filters 

For the PV panels, the following filters are applied to reduce the size of the design space: 

1. Value metrics are applied to the PV panels. The cost per percentage efficiency and 

cost per power rating is calculated for each PV panel. Since the possible power ratings 

of the PV array are discrete, the inventory should contain PV panels with lower power 

ratings to ensure that PV array is not oversized. As a result, value metrics are 

compared for PV panels with power ratings less than or equal to 200 Watts or greater 

than 200 W. Panels that do not rank in the top 50% in their category for one of these 

metrics are removed from the inventory. 
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The filters remove PV Model 2 from the inventory based on the value metric when applied to the 

Haiti brackish system design problem. 

After eliminating these components from the inventory, the total number of possible 

system configurations has decreased to 7.5 x 1088. The design space at this stage is still much too 

large to configure a system design using optimization methods. Further design space reduction is 

required to make the problem tractable. 

4.3.4 Subassembly Filters 

In the next algorithm step, subassembly level filters are applied to limit the design space. 

This step configures subassemblies that can be used in the full system. For the small-scale PVRO 

system design problem, subassemblies such as the PV array and reverse osmosis membrane array 

are sized. In addition, the total numbers of pumps and energy recovery devices to be considered 

during the design are determined. 

The PV array is sized based on simple energy calculations. For the brackish water case, the 

range of energy consumption is assumed to range from 1 kWh/m3 to 5 kWh/m3. These numbers 

can be used with the solar insolation at the site to set the limits on the PV array power ratings as 

follows: 

 
max/min

max/min

cap rate
E V G

P
H

=  (4.11) 

where Pmax/min is the maximum or minimum array rating required in kW, Emax/min is the maximum 

or minimum specific energy requirement for the water desalination in kWh/m3 as given in Table 

1.1, Vcap is the desired system capacity, Grate is the solar radiation that the panels are tested at 

(typically 1 kW/m2) and H is the average annual solar insolation in kWh/m2 at the site. For the 

Haiti system with an average insolation of 6.05 kWh/m2 [8], the maximum array power rating is 

661 W and the minimum requirements are 165 W. Using these max and minimum values, limits 

are placed on the number of panels required. Panels in a PVRO system configuration are limited 

to a single model unless the calculated limits exceed what is available for a single model in the 

inventory. 

Similarly, the maximum and minimum size for the reverse osmosis array can be 

determined. For given water production, the average clean water flow rate can be determined by: 
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p

p ave

sun

V
Q

n
=  (4.12) 

where nsun is the number of hours of peak sunshine. For the 1 m3/day Haiti system being 

considered, the average flowrate would be 165 L/hour. Using this flowrate, the number of each 

membrane type required can be determined. A 50% safety factor is incorporated to ensure that 

resulting subsystems result in feasible system designs. 

For the system pumps and energy recovery devices, rules of thumb are used to limit the 

total number of pumps that can be included. For the community-scale systems considered here, 

conventional systems are used as a guide. For small systems with a daily capacity less than 2m3, 

typical systems contain two pumps or fewer. To allow for innovative designs, an upper bound on 

the number of pumps in the system is placed at 3. For larger systems with daily production 

capacities above 2m3, the number of pumps allowed in the system is placed at 5 to allow for 

innovative configurations. 

For small-scale PVRO systems, energy recovery devices are typically expensive and 

dominate the system cost. As the devices are scaled up for larger flowrates, they tend to be more 

cost effective. As a result, the total number of energy recovery devices that can be placed in the 

system is limited to one. In addition, one pressure control valve will be allowed in the final RO 

system. 

After these subassembly level filters are applied, the size of the design space for the Haiti 

system design problem is reduced to 9.8 x 1049. This design space is still very large for direct 

application of an optimization algorithm. 

4.3.5 Topology Filters 

The next step in the modular design algorithm is the topology filter. This limits the number 

of configurations which can be assembled from the subsystems by applying simple calculations 

and design rules. For the PVRO system design problem, unreasonable system topologies are 

eliminated. The filters applied here can be broken into two categories: RO system topology 

filters and PVRO system filters. 

The topology filters for the RO system eliminate the following cases: 

1. Configurations with permeate stream and brine stream mixing which negates the 

purpose of the reverse osmosis process. Mixing of the permeate stream and the feed is 
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allowed for brackish water systems. Given the low water salinity and the discrete 

nature of the system configurations, diluting desalinated water with feed water may be 

the most cost effective option and is used in practice [120]. 

2. Configurations where not all components are connected or a path does not exist from 

the reverse osmosis water input and the brine and permeate outputs. 

3. Configurations where input water is not pressurized before entering the reverse 

osmosis membranes. In these cases, there would not be the driving force necessary for 

desalination. 

4. Configurations containing loops without pumps or energy recovery devices in the 

reverse osmosis setup. These cases are infeasible. 

5. Configurations where pumps are directly connected to energy recovery exhaust 

streams. In these cases, energy is being put into the water by the pumps and then being 

removed by the energy recovery unit without any product water being produced. Since 

these processes are not 100% efficient, this results in wasted energy. 

6. Configurations where high pressure pumps are directly connected to permeate or brine 

outputs. Any pump connected to these outlets would waste energy. In addition any 

configuration where the exiting brine stream doesn’t pass through a pressure control 

valve or energy recovery device is eliminated. These components are required to 

produce the pressure for reverse osmosis. 

Examples of these cases are depicted in Figure 4.3 below. 
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Figure 4.3: Examples of RO system configurations eliminated by the topology filter. 

 

The remaining assembly filters match the size of the PV array with the RO system designs. 

The amount of energy required for the desalination will vary greatly depending on the use of 

energy recovery devices, as shown in Table 1.1. The allowable power ratings for each PV array 

for systems with/without energy recovery devices are determined using the expected energy 

requirements and equation (4.11). 

After applying assembly level filters, the design space is greatly reduced to 3.4 x 107 

different configurations. This size of design space is a much more reasonable size for 

optimization. The modular design algorithm has made this problem more tractable. A summary 

of the results of the design space study are shown in Table 4.2. 

Table 4.2: Summary of PVRO modular design study. 
Filter Level Design Space Size 

Component Library 1.9 x 10173 
Module Filter 7.5 x 1088 
Subassembly Filter 9.8 x 1049 
Topology Filter 3.4 x 107 
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4.4 Parallel Example – Hybrid Car Powertrain 

There are many different modular systems that can be configured using the approach 

developed in this thesis. This section details a simplified design example for a hybrid electric car. 

Here, the design problem is to determine the vehicle configuration with the minimum fuel 

consumption while maintaining the following objectives: 

1. 0-100 kph time less than 12 seconds 

2. Minimum all electric range of 25 km. 

3. Range of 600 km. 

For this design space study, the module inventory detailed in Table 4.3 is used. This 

inventory has a selection of vehicle platforms, combustion engines, electric motors, generators, 

batteries, and gas tank sizes. 

Table 4.3: Modules considered in hybrid car design study. 

Batteries Chemistry 
Number of Cells 

in Inventory 
Cell 

Voltage 
Cell Capacity Cell Weight 

Charge/Discharge 
Efficiency 

Battery 1 Li-ion 150 3.3 V 4.2 Ah 205g 97% 
Battery 2 Li-ion 150 3.7 V 21 Ah 313g 95% 
Battery 3 Li-ion 150 3.6 V 52 Ah 1000g 97% 
Battery 4 NiMH 150 1.2V 6.5 Ah 170g 70% 
Battery 5 NiMH 150 1.2V 30 Ah 760g 67% 

Motors Type 
Maximum Power 

Output 
Max Torque 

Output 
Weight Max Efficiency 

Motor 1 AC 91.0 kW 166.8 Nm 162 kg 89.2% 
Motor 2 AC 50.0 kW 151.8 Nm 115 kg 89.3% 
Motor 3 DC 21.5 kW 94.9 Nm 70.8 kg 89.1% 
Motor 4 DC 27.7 kW 183.0 Nm 104 kg 91.4% 
Motor 5 DC 22.1 kW 162.7 Nm 167 kg 86.4% 

Engines Engine Size Max Power Output 
Max Torque 

Output 
Weight Max Efficiency 

Engine 1 1 L 48.5 kW 118.0 Nm 97.5 kg 32% 
Engine 2 1.4 L 62.7 kW 131.5 Nm 99.8 kg 29% 
Engine 3 1.6L 110.4 kW 229.1 Nm 101.6 kg 30% 
Engine 4 2.0L 149.2 kW 299.6 Nm 133.8 kg 33% 
Engine 5 2.4L 167.9 kW 348.5 Nm 164.7 kg 29% 

Generators 
Max Power 

Output 
Weight Efficiency 

Generator 1 54 kW 74 kg 92% 
Generator 2 44 kW 82 kg 90% 
Generator 3 34 kW 35 kg 85% 
Generator 4 22 kW 55 kg 89% 
Generator 5 8 kW 10 kg 80% 

Platforms Type 
Average Drag Area 

(CdA) 
Average 
Weight 

Platform 1 Subcompact 0.7 m2 2000 lbs 
Platform 2 Compact 0.65 m2 2500 lbs 
Platform 3 Midsize 0.58 m2 3000 lbs 
Platform 4 SUV 1.08 m2 3500 lbs 

Tank Volume 

Tank 1 37.8 L 
Tank 2 45.4 L 
Tank 3 56.8 L 

Tank 4 68.1 L 
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For hybrid cars, there are two main system configurations. In one configuration, the 

electric motor and fuel powered engine are in parallel, in the other the motor and engine are 

connected in series. These two configurations can be seen in Figure 4.4. It is assumed for this 

study that the transmission and electronics are readily available and selected independent of the 

other components. 

 

Figure 4.4: Parallel hybrid car (left) and series hybrid car (right) configurations. 

 

The total number of system configurations can be determined as follows: 

 
hybrid para series

N N N= +  (4.13) 

where Npara is the number of parallel configurations and Nseries is the number of series system 

configurations. The number of parallel system configurations is determined by the product rule: 

 
para Plat Bat Eng Motor Gas

N N N N N N=  (4.14) 

where NPlat is the number of vehicle platforms, NBat is the number of different battery system 

configurations, NEng is the number of engines in the inventory, Nmotor is the number of motors in 

the inventory, and NGas is the number of gas tanks in the inventory. The number of series system 

configurations is determined by the product rule: 

 
series Plat Bat Eng Gen Motor Gas

N N N N N N N=  (4.15) 

where NGen is the number of generators in the inventory. 

Assuming that all batteries in the vehicle pack are the same and the arrangement of 

batteries in series and parallel can be accommodated by the electronics, the number of battery 

configurations is given by: 

 ( )
,

,

1

1 1
Bat typeN

Bat Bat i

i

N n
=

= + −∏  (4.16) 

where nBat,i is the number of batteries of type i in the inventory, and NBat,type is the total number of 

battery types. 
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Using equations (4.13) to (4.16), the full design space can be enumerated. For the 

inventory specified, the total number of system configurations is 2.4 x 1014. This number of 

configurations here is much smaller than the PVRO system since there are a limited number of 

system topologies. 

The design space is reduced by applying the module level filters. Since the design goal 

here is to maximize the fuel economy while maintaining performance, efficiency and power 

metrics are applied. For the platform, the different configurations are ranked based on weight and 

drag. The platforms that didn’t rank in the top 50% in either category were eliminated. For the 

example, the SUV design is eliminated due to high mass and drag characteristics. 

The engine configurations are filtered based on weight, power, and efficiency. Engines are 

ranked according to maximum power output per unit weight and efficiency. Engines that don’t 

rank in the top 50% are eliminated. Engine 5 is eliminated due to low efficiency and power 

output. 

The generators are used to convert mechanical energy from the gasoline engine into 

electrical energy to store in the batteries and must be sized appropriately. For the inventory 

selected, the minimum power input to the generator would be 48 kW. Generators with maximum 

power ratings below this value are undersized for the application. As a result, Generator 4 and 5 

are eliminated from the inventory. 

The batteries are filtered based on energy density, power density and charge/discharge 

efficiency. Again, batteries are ranked for each of the above categories and the components that 

do not rank in the top 50% for any of the criteria are eliminated. For the batteries, the NiMH 

configurations are eliminated due to their high weight and low efficiency. 

The filtering of the electric motors is broken into two categories. If the vehicle has the 

series configuration, the motor must provide all the power to the wheels. In the parallel 

configuration, the electric motor assists the gasoline engine. Motors which are able to provide 

high power (above 100 kWh) are evaluated separately from the smaller motors. The motors are 

ranked in terms of overall efficiency and maximum power output per unit weight. The motors 

that do not rank in the top 50% are eliminated. As a result, Motor 5 is eliminated from the 

inventory. 

The number of tanks in the inventory is limited using simple mileage calculations. A 

reasonable hybrid car achieves at least 12.75 km/L in the city. Therefore to guarantee a 600 km 
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range, a tank volume of 47 L is required. As a result, the 68.1 L tank is removed from the 

inventory. 

Based on the filters specified above, the total number of system configurations drops to 9.9 

x 108. This is a large reduction from the initial design space size, but with additional filters, this 

number can further decreased. 

In the next step of the modular design approach, subassembly level filters are applied to 

reduce the size of the design space. In this step, engines and generators are matched based on 

torque and speed characteristics. In addition, battery packs are configured from battery modules. 

Maximum and minimum numbers of batteries are determined based on energy calculations. The 

average power usage of current hybrid vehicles is 22 kWh per 100 km [121]. The minimum 

capacity on each battery pack is set at 4 kWh, which provides enough energy to drive the 

minimum range considering a 25% increase in system efficiency. Using these filters, the size of 

the design space is reduced to 2.8 x 106. 

In the final step, full system assemblies are considered. Since there is limited topology 

optimization for the hybrid car case, only a few filters are applied. In the series configuration, all 

the power is applied to the wheels using the electric motor, and only the higher power 

configurations (Motor 1 and Motor 2) are considered. For the parallel configuration, the electric 

motors share the power with the gasoline engine and the smaller motors (Motor 3 and Motor 4) 

are considered. The total number of system configurations is 1.4 x 106. Detailed analysis can 

then be used on these configurations to determine the system configuration using optimization 

methods. 

The reduction of the design space size of the hybrid car problem using the modular design 

approach is detailed in Table 4.4. This section provides an example of how this approach can be 

used for other modular design problems. It does not provide an exhaustive list of potential filters 

for the design of a hybrid car drivetrain. This example only considers the fuel economy 

objective, but other objectives involving cost can also be incorporated into the design approach. 

Table 4.4: Modules considered in hybrid car design study. 
Filter Level Design Space 

Size 

Component Library 2.4 x 1014 
Module Filter 9.9 x 108 
Subassembly Filter 2.8 x 106 
Topology Filter 1.4 x 106 
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4.5 Summary 

This section presented the modular design approach. The approach uses a series of tests 

based on engineering principles to reduce the size of the discrete design space and make the 

problem tractable for optimization algorithms. The power of the approach is demonstrated 

through two sample design space studies, the design of a photovoltaic reverse osmosis system 

and the design of a hybrid car. In both cases, the approach is shown to greatly reduce the size of 

the design space.   

The final step in the modular design algorithm is to optimize the system over the reduced 

design space using a detailed system model. The optimization problem is challenging as the cost 

function and constraints are non-linear, resulting in a mixed integer nonlinear program (MINLP). 

The detailed system model is described in Chapter 5 and the optimization setup is described in 

Chapter 6. 
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CHAPTER 

5  
PVRO SYSTEM MODEL 

This section describes the models used for the modular design of PVRO systems.  The 

components overviewed below are: the environment, PV system, control electronics, motors, 

pumps, reverse osmosis membranes, and energy recovery devices. These models account for all 

the main physical characteristics and losses. However, these models neglect the fast system 

dynamics and assume the system can quickly adapt to changing levels of solar insolation. 

5.1 Environment Models 

5.1.1 Solar Energy Model 

Solar radiation varies greatly from location to location. For any given location, the 

radiation varies greatly over the course of the day and year. The solar energy model used for the 

design of modular PVRO systems accounts for these variations by using site specific solar 

radiation data provided by the NASA Solar Radiation Database [8]. This database provides daily 

solar insolation values for any location derived from satellite imagery. 

This solar radiation data is used differently for each of the case studies presented in 

chapters 6 and 7. In all of the cases presented, the daily solar insolation is used to generate daily 

radiation profiles to analyze the system performance. The hourly data is generated from the daily 

insolation as follows. First, the sun position for each hour is calculated using: 

 cos sin sin cos cos cos sin
zs s

θ δ φ δ φ ω γ= + =  (5.1) 

 
( )

( )
sin sin sin

cos
cos cos

s

s

s

sign
γ φ δ

ψ φ
γ φ

−
=     (5.2) 

where θzs is the solar zenith angle (angle between vertical and the sunlight direction), ψs is the 

solar azimuth (angle between the meridian and the sun), γs is the solar elevation (angle between 
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the sun and the horizon), ω is the true solar time, φ  is the latitude of the location, δ is the solar 

declination as given by:  

 
( )360 284

23.45 sin
365

no
d

δ
+ 

=  
 

 (5.3) 

where dn is the day number. All angles are expressed in degrees. 

The true solar time is the angular difference between solar noon and current time as given 

by: 

 
( )4 9.87sin 2 7.53cos 1.5sin

15 12
60

o

GMTT
ς δ δ δ

ω
+ − − 

= − ∆ + − 
 

 (5.4) 

where T is the local time in hours, ∆GMT the time difference between Greenwich Mean Time in 

hours, and ς the longitude of the site. 

Using equation (5.1), the sunrise angle, ωs can be found. At sunrise, the solar elevation (γs) 

is 0, and therefore: 

 ( )arccos tan tansω δ φ= − −  (5.5) 

Outside the earth’s atmosphere, the radiation from the sun can be easily determined. The 

radiation on a flat surface outside the atmosphere, in W/m2, is given by: 

 ( )0 0 0 cos ZSB T B ε θ=  (5.6) 

where B0 is the solar constant outside the earth’s atmosphere which equals 1367 W/m2 and ε0 is 

eccentricity of the earth’s orbit which is given by: 

 
0

360
1 0.033cos

365
n

d
ε

 
= +  

 
 (5.7) 

The extraterrestrial radiation integrated over the course of the day gives: 

 
0 0 0

24
sin sin cos cos sin

180
d s sB B

π
ε ω δ φ δ φ ω

π

 
= − −  

 (5.8) 

The ratio between the extraterrestrial radiation at a given instant and the daily irradiation can be 

used to determine the radiation at the earth’s surface as follows [122]: 

 ( )0

0

( )
( ) cosd

d

B t G
G t a b

B
ω= +  (5.9) 

where Gd is the measured or generated daily solar insolation at the earth’s surface in Wh/m2 and 

a and b are empirically derived as follows: 
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( )0.409 0.5016 sin 60sa ω= − +  (5.10)  

 
( )0.6609 0.4767 sin 60sb ω= + +  (5.11) 

Equation (5.9) approximates the radiation on a flat plate at any instant in time given the 

daily solar insolation. This radiation has two components: beam radiation which comes from the 

direction of the sun, and diffuse radiation which is scattered by the atmosphere and comes from 

all directions. The breakdown of the radiation components can be found as follows. 

Due to the atmosphere, only a fraction of the radiation reaches the earth’s surface. This is 

referred to as the clearness index and for a day’s time period it is given by: 

 
0

d
Td

d

G
K

B
=  (5.12) 

The clearness index has been used to empirically determine the amount of diffuse radiation. 

Based on data from the European weather station network, the diffuse fraction of radiation was 

derived as: 
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 (5.13) 

Using this fraction, the daily diffuse insolation is given by: 

 d Dd d
D F G=  (5.14) 

Given the daily diffuse insolation, the diffuse insolation at any period of time is determined 

using the following empirical relationship: 

 0

0

( )
( ) d

d

B t
D t D

B
=  (5.15) 

and the beam radiation at the earth’s surface is given by: 

 ( ) ( ) ( )B t G t D t= −  (5.16) 

The diffuse radiation and beam radiation falling on the earth’s surface along with the sun 

position as outlined in equations (5.1) and (5.2) can be used in the solar panel model for a given 

panel orientation as outlined in section 5.2.2. 
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5.1.2 Water Salinity Model 

Water salinity varies greatly by location. For the purpose of the modular design approach, 

water salinity numbers are taken for each case study location from the World Ocean Atlas [96]. 

The water salinity will change over the course of the year due to the natural water cycle. These 

variations are typically less than 10%. To simplify the analysis here, average yearly values of 

water salinity and temperature values from a depth of 10 m are used. For system design for a 

specific location, measurements of the local water salinity should be taken to provide an accurate 

performance estimates. 

5.1.3 System Demand 

The water demand varies for each case and greatly affects the system design. In the case 

studies detailed in Chapter 6 and Chapter 7, the demand is treated differently. In the case studies 

in Chapter 6, the demand is assumed to be constant and known and the PVRO system is designed 

to meet these needs. In the case studies presented in Chapter 7, the water demand is assumed to 

vary according to historical water demand statistics. These statistics and predicted demand trends 

are detailed in Chapter 7. 

5.2 Component Models 

5.2.1 PV System 

Photovoltaics convert light energy directly to electrical energy. A PV cell is composed of 

two or more layers of doped semiconducting materials as shown in Figure 5.1. When exposed to 

sunlight, electrons are excited from the valence band to the conduction band in the 

semiconducting material. The electrons then move via diffusion to the PN junction where they 

are separated from their corresponding holes. The electrons are then conducted by electrical 

contacts to an external circuit. A typical PV cell produces only a few watts of power. Cells are 

typically strung together in series and are encapsulated in a PV module to provide adequate 

voltage. These modules are then strung together in array to provide enough power for a given 

application. 
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Figure 5.1: Solar cell operation. 

 

Due to the bandgap of the semiconductor and the cell structure, photovoltaics can only 

convert a portion of the solar spectrum into electrical energy. The remainder of the solar energy 

is lost to heat. Conversion efficiencies of photovoltaic cells vary depending the material and 

process used to produce the cells. Many different types of semiconducting materials are used in 

PV cells. The majority of commercial PV modules on the market today are made of silicon (Si) 

which can be divided into three main categories: monocrystalline silicon, which has the highest 

efficiency and cost, polycrystalline silicon, which has a less ordered crystal structure and lower 

efficiency, and amorphous silicon, which is a thin film technology with relatively low efficiency. 

Other compounds that are commonly used in solar cells include cadmium telluride (CdTe), 

gallium arsenide (GaAs), and copper indium gallium selenide (CIGS). Common efficiencies for 

commercial monocrystalline silicon modules are 15-18% [123]. 

The basic operation of a solar cell can be represented using the classic one diode model. In 

this model, depicted in Figure 5.2, the current produced by a solar module is given by [124]: 

 0 exp 1
( 273.15) /

s s
ph

cell sh

V IR V IR
I I I

nk T q R

  + +
= − − −  

+  
 (5.17) 

where Iph is the light generated current, I0 is the reverse saturation current which is affected by 

temperature, V is the panel operating voltage, I is the operating current, Rs is the panel series 

resistance, Rsh is the panel shunt resistance, n is the diode ideality factor, k is the Boltzmann 

constant, Tcell is the cell temperature in oC, and q is the charge of the electron. Note that I0, Rs, Rsh 

and n are all panel specific parameters. All currents are in A, voltages are in V, and resistances 

are in Ohms. The light generated current can be represented by:  

 ( )0 1ph panel cell PVI A C C T G= +  (5.18) 

where Apanel is the area of the solar panel in m2, GPV is the incoming solar radiation normal to the 

cell, and C0 and C1 are panel specific constants. 
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Figure 5.2. Electrical circuit representation of the one diode solar module model. 

 

From the above equations, it is evident that the output current of the photovoltaic module is 

dependent on many factors including the operating voltage, the solar radiation, and the solar cell 

temperature. Output current and power produced by a typical solar panel for a given amount of 

solar radiation and different cell temperatures are shown in Figure 5.3. At each temperature or 

radiation level, there exists an operating voltage at which the solar panel produces its maximum 

amount of power. In general, connecting a load directly to a solar panel will not result in the 

voltage that gives maximum power output. Typically, a power converter with a maximum power 

point tracking algorithm is required to optimize the power output. 

 

Figure 5.3. Photovoltaic panel operating curves. 

 

The PV model which is used in the modular design approach assumes that the electronics 

are able to track the maximum power output for the given solar radiation. Using this assumption, 

the PV system model determines the power output for a given solar profile, panel type, and 

number of panels. For each PV module in the inventory, dimensions, efficiency, and thermal 

properties are extracted from the manufacturer’s data sheet. Using these properties, the power 

produced by the PV system can be determined using: 
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 [ ](1 ( 298))Solar panel PV PV PV cellP n G A Tη α= + −  (5.19) 

where Psolar is the power produced by the PV system, npanel is the number of PV panels, ηPV panel 

efficiency of the PV panel considered, GPV is the solar radiation incident on the PV panel, APV is 

the PV panel area, α is the temperature coefficient of the panel and Tcell is the cell temperature. 

The cell temperature can be estimated using the following relationship: 

 
( )20

800

PV

cell amb

G NOCT
T T

−
= +  (5.20) 

where Tamb is the ambient temperature in oC and NOCT is the normal operating cell temperature 

of the model being considered in oC. 

5.2.2 PV Tracking/Mounting 

The amount of solar radiation being received by the solar panel depends on time of day, 

weather conditions, and the panel orientation. This section outlines the calculation of the panel 

radiation, GPV, for an input solar radiation (which factors weather conditions and time of day) 

and panel position. One and two-axis PV tracking systems and fixed mounting configurations 

were also considered. Tracking systems add expense to the PV system, but can be cost effective 

when used in locations with clear skies. 

The solar radiation calculated using the method outlined in section 5.1.1 determines the 

solar radiation falling on a horizontal panel over the course of the day from the daily solar 

insolation value. To determine the radiation falling on the PV panel, this must be translated to the 

panel orientation. For a given sun position, the angle between the incident solar rays and the 

panel position, θs, is given by: 

 
[ ]

[ ]

cos sin sin cos ( ) sin cos sin cos cos cos cos cos

           ( ) cos sin sin cos cos cos sin sin sin

s
sign

sign

θ δ φ β φ δ φ β α δ φ β ω

φ δ φ β α ω δ α ω β

= − +

+ +
 (5.21) 

where β is the panel slope, and α is the panel azimuth. All angles are expressed in degrees. 

The simplest mounting case considers fixed PV panels with the azimuth facing the equator. 

For this case, equation (5.21) simplifies to: 

 ( ) ( )( ) ( )( )cos sin sin cos cos coss sign abs absθ φ δ φ β δ φ β ω= − + −    (5.22) 
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The one-axis tracking systems considered in these studies are all polar mount systems. In 

these mechanisms, the axis of rotation is aligned north-south and tilted relative to the ground by 

an angle, βPV. To maximize the power output, the panel will rotate about the polar axis by: 
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s s
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 (5.23) 

where c is a constant associated to the quadrant of θPV as follows: 
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 (5.24) 

Note that θPV is limited between +/- 90o due to the mechanism design. From this relationship, the 

panel slope and azimuth are calculated as follows: 

 ( )arccos cos * cosPV PVβ θ β=  (5.25) 

It is assumed that two-axis tracking systems are able to follow the sun exactly. For these 

mechanisms, the azimuth and slope of the PV panel are given by: 
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β γ

=

= −
 (5.26) 

With the slope of the PV panel defined for all possible mounting mechanisms, the solar 

radiation incident on the panel surface can be calculated as follows. The radiation incident on the 

sloped PV panel has 3 components: beam radiation, diffuse radiation, and reflected radiation. 

The beam radiation incident on the panel, in W/m2, is calculated using: 

 
( )( )max 0,cos
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zs

B t
B t

θ

θ
=  (5.27) 

Assuming that diffuse radiation comes equally for all directions, the amount of diffuse radiation 

falling on the PV panel, in W/m2, is proportional to the panel’s view factor of the sky as given 

by: 

 ( ) ( )
1 cos

2
PVD t D t

β+
=  (5.28) 

Finally, the reflected radiation component, in W/m2, is given by the panel’s view factor of the 

ground as given by: 
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1 cos

( ) ( )
2

PVR t G t
β

ρ
−

=  (5.29) 

where ρ represents the reflectivity of the ground. For the studies conducted here, a general 

number of 0.2 was assumed. 

By adding together the different radiation components, the total radiation incident on the 

PV panels, in W/m2, can be found. 

 ( ) ( ) ( ) ( )
PV PV PV PV

G t B t D t R t= + +  (5.30) 

The total solar radiation incident on the PV panel for the three different panel tracking 

configurations is shown in Figure 5.4. These cases are considered for a day in mid-May in 

Boston with the fixed panels and 1-axis tracking systems oriented at latitude tilt. It is evident that 

there is substantial gain from the 1-axis tracking mechanism, but only a small additional 

improvement is seen for the 2-axis tracking mechanism. With latitude tilt for the polar 1-axis 

tracking system, the largest gains are seen during the summer and winter solstice. This 

cost/performance tradeoff will be analyzed in the modular design approach. 

 

Figure 5.4. Radiation incident of PV panels with different tracking mechanisms on clear May 

day in Boston. 

5.2.3 Motors 

Two different types of motors are considered in the modular design approach, DC motors 

and AC motors. For low-power applications, DC motors tend to be cost effective and efficient. 
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As the power requirements increase, AC motors become more cost effective. The models used to 

describe the different types of motors used are detailed in this section. 

A simple, non-dynamic, DC motor model was used. In this model, the motor torque output, 

τm, is directly proportional to the motor current as given by: 

 ( )0, ,/m m m T mI I Kτ = −  (5.31) 

where Im is the motor current in A, I0,m is the friction related current in A, and KT,m is the torque 

constant in Nm/A. 

The internal motor back-EMF, Vm, is related to the motor speed, Ωm as shown:  

 ,Ω /
m m V m

V K=  (5.32) 

where KV,m is the motor speed constant. 

The motor terminal voltage, Vmotor, can be found by adding the resistive voltage drop to the 

back-EMF, Vm, as shown: 

 
,

Ω
 m

motor m motor m motor m

V m

V V I R I R
K

= + = +  (5.33) 

where Rm is the resistance of the motor in Ohms. 

Similar equations can be derived for AC motors. The sync speed of the AC motor, Ωsync, in 

revolutions per second, is dependent on the frequency set by the drive as given by: 

 
2

m
sync

poles

f

n
Ω =  (5.34) 

where fm is the motor frequency in Hz, and npoles is the number of AC motor poles. Taking the 

motor slip into account, the speed of the AC motor can be written as: 
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τ τΩ = Ω − = −  (5.35) 

where Ks,m is the motor slip constant. 

The motor current for the AC motor is related to the torque output as follows: 

  ( ) ( )
2 22 2

motor a r a m a r m rI I I m b m bτ τ= + = + + +  (5.36) 

where Ia is the active current and Ir is the reactive current. The active and reactive currents are 

approximated by linear functions of the motor torque where ma and mr are the slopes and ba and 

br are the intercepts of the relationship. Using the active current, the power required to drive the 

AC motor can be calculated using: 
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 , ,3m AC m AC aP V I=  (5.37) 

5.2.4 Pumps 

Due to the pressures and flow rates involved in the reverse osmosis system, positive 

displacement pumps are commonly used. Positive displacement pumps used in reverse osmosis 

systems take on many different forms, such as vane pumps, progressive cavity pumps, 

diaphragm pumps and piston pumps. Fortunately, these pumps all have similar operating 

characteristics. The flow rate produced by a positive displacement pump, in L/s, is found using:

 
, ,

2

p p

pump p p s p R p

D p
Q D n c Q

π µ

∆
= − −  (5.38) 

where np is the pump speed in revolutions per second, Dp is the pump volumetric displacement in 

L per revolution, cs,p is the pump slip coefficient, µ is the dynamic viscosity of the water, ∆pp is 

the pressure difference across the pump in bar, and QR,p is the flow loss due to inlet flow 

restriction in L/s. 

The torque required by a positive displacement pump, in Nm, is given by: 

 , , ,100
2 2

p p p

p d p p p f p p c p

p D D
c D n c p Tτ µ

π π

∆
= + + ∆ +  (5.39) 

where cd,p is the coefficient of viscous drag for the pump, cf,p is the coefficient of friction for the 

pump geometry, and Tc,p is the pump torque constant in Nm. Since the motor and pump share the 

same shaft, the speed and torque of the motor and pump are identical. 

5.2.5 Reverse Osmosis Membranes 

The reverse osmosis membranes are the essential components affecting separation. The 

prevalent construction used in PVRO systems are composite, spiral-wound membranes, as 

shown in Figure 5.5. In this configuration, permeate is driven through the membrane by the high 

pressure into the permeate carrier, and then spirals in to the permeate tube. The membrane itself 

is composed of a thin, nonporous polyamide active layer supported by a thicker, porous 

polysulfone backing. The membrane is configured as a cross-flow separator wherein a portion of 

the water is recovered. The rest leaves the membrane module as high concentrate brine. 
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Figure 5.5. Reverse osmosis membrane configuration. 

 

The membranes are modeled as a cross-flow separator with the permeate water well mixed. 

The flow rate of clean water across the membrane is proportional to pressure difference minus 

the osmotic pressure difference, given by  

 ( ) ( )p A TCFmem
Q KK pA FF π= ∆ − ∆  (5.40) 

where Amem is the membrane surface area in m2, KA is the membrane permeability for water, KTCF 

is the water permeability temperature correction factor, FF is the membrane fouling factor, p∆  

is the average pressure applied across the membrane in bar, and π∆  is the average osmotic 

pressure applied across the membrane in bar. This equation shows that increasing the membrane 

area, permeability and driving pressure result in increased water production. 

The osmotic pressure must be overcome to produce fresh water by reverse osmosis. The 

osmotic pressure varies depending on the amount of salt dissolved in the water and the 

composition of the salt. For the majority of seawater sources, the composition of dissolved 

minerals scales proportionally with overall salinity. For these cases, the following relationship is 

used to estimate the osmotic pressure of the water in bar [125]: 
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 (5.41) 

where Cw is the water concentration in mg/L and Tw is the water temperature in °C. Using this 

relationship, the average osmotic pressure across the membrane can be determined using: 
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∆ = −  (5.42) 

where πf is the osmotic pressure of the feed water, πb is the osmotic pressure in the brine, πp is 

the osmotic pressure in the permeate, and pf is the membrane polarization factor. 
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The membrane polarization factor accounts for the boundary layer effect next to the 

membrane. In this region, the salt concentration is higher and increases the osmotic pressure. For 

the model used in the modular design approach, the polarization factor is given by the following 

empirical relationship [99]: 

 exp(0.7 ) exp 0.7
p

f

Q
pf R

Q

 
= =   

 
 (5.43) 

where R is the membrane recovery ratio, and Qf is the feed water flow rate. 

The membrane permeability increases with rising water temperature. This can greatly 

affect performance and has been exploited in the design of PVRO systems [126]. The 

temperature effect is accounted for in the model using the empirical temperature correction 

factor relationship given by [99]: 
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 (5.44) 

where Tw is the temperature of the feed water in °C. 

The pressure applied along the length of the membrane is not constant due to the pressure 

drop associated with water flowing through a constrained space. The average pressure applied 

across the membrane is found using:  

 
2

fc

H p

p
p p p

∆
∆ = − −  (5.45) 

where pp is the pressure of the fresh water exiting the membrane in bar and ∆pfc is the pressure 

drop over the membrane module in bar, estimated empirically using [99]: 
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where Qb and Qf are the brine and feed flow rates in L/s, respectively. The pressure drop over the 

membrane can also be used to calculate the pressure in the brine using: 

 
fC F c

P P P= − ∆  (5.47) 

Since separation across an RO membrane is not perfect, some salt is also transmitted. The 

concentration of salt in the fresh water is given by [99]: 
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where KB is the membrane permeability to salt and Cfc is the average concentration of the water 

on the concentrate side of the membrane, given by:
  

 
2

f b

fc

C C
C

+
=  (5.49) 

where Cf is the salt concentration in the feed water and Cb is the salt concentration in the exiting 

brine. 

In order to solve for the pressures, flowrates and concentrations of the feed, brine, and 

permeate streams, two more physical relationships are required. First, the volume of water 

flowing through the membrane must be conserved as shown by: 

 
f b p

Q Q Q= +  (5.50) 

In addition, the salt must also be conserved, as given by: 

 
f f b b p p

Q C Q C Q C= +  (5.51) 

5.2.6 Energy Recovery Devices 

Different types of energy recovery devices and pressure control options were considered in 

the modular design approach. These devices consist of hydraulic motors coupled to electric 

generators, pressure exchangers, and pressure control valves. The physical models used for these 

systems are described in this section. 

The first type of energy recovery devices considered enable direct control of the system 

operating pressure and water recovery ratio. These devices consist of a turbine or hydraulic 

motor connected to an electric generator. The equations that describe a hydraulic motor are 

similar to those of a positive displacement pump. The speed of the hydraulic motor in rev/s, nhm, 

can be calculated using: 

 ,

,
2

hm R hm hm
hm s hm

hm

Q Q p
n c

D πµ

− ∆
= −  (5.52) 

where Qhm is the flow through the hydraulic motor in L/s, QR,hm is the flow restriction in L/s, Dhm 

is the displacement per revolution of the hydraulic motor in L/rev, cs,hm is the motor slip 

coefficient and ∆phm is the pressure difference across the motor in bar. 
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The torque produced by the hydraulic motor in Nm, τhm, is given by: 

 ,, ,100
2 2
hm hm hm

hm d hm hm hm f hm hm c hm

p D D
c D n c p Tτ µ

π π

∆
= − − ∆ −  (5.53) 

where cd,hm is coefficient of viscous drag for the hydraulic motor, cf,hm is the friction coefficient 

and Tc,hm is the hydraulic motor torque constant in Nm. 

Similarly, the equations that describe the operation of the generator are parallel to the 

equations that describe the operation of the motor. A simple DC generator model, with resistance 

assumed constant, is used to estimate the system performance. The generator current in A, Igen, 

can be expressed using the following equation: 

 ( ), ,gen T gen gen f genI K τ τ= −  (5.54) 

where τgen is the shaft torque of the generator in Nm, τf,gen is the torque required to overcome the 

friction in Nm, and KT,gen is the torque constant. 

The generator terminal voltage, Vgen, can be found by subtracting the resistive voltage drop 

from the EMF term: 

 
,

Ω
gen

gen gen gen

V gen

V I R
K

= −  (5.55) 

where Ωgen is the generator speed in rev/s, KV,gen is the EMF constant, and Rgen is the resistance of 

the generator in Ohms. Since the hydraulic motor and the generator are on the same shaft, the 

speeds and torques are identical. 

The second type of energy recovery devices considered is pressure exchangers. These 

devices use high pressure brine to pressurize the incoming feed water. Pressure exchangers can 

be classified into two different categories: pressure intensifiers and isobaric devices. Pressure 

intensifiers, such as the Clark Pump manufactured by Spectra Watermakers or the RO-Boost 

manufactured by Danfoss, operate based on the principle shown in Figure 5.6. These energy 

recovery devices use a mechanism consisting of two pistons connected with a rod. When the 

piston reaches the end of travel, a reversing valve switches the brine and exhaust connections, 

and the piston reverses direction. The area of the rod changes the effective areas on either side of 

the piston, and the device adds the energy in the medium pressure feed to the energy in the 

concentrate, producing water at a higher pressure than the concentrate. 
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Figure 5.6. Pressure intensifier mechanics (left) and typical system configuration (right). 

 

Isobaric devices pressurize the incoming seawater directly. These devices have different 

configurations. All the different pressure exchanger configurations have a constant area between 

brine and feedwater which results in both having the same pressure. A schematic of one of the 

device configurations, the Dual Work Energy Exchanger (DWEER) manufactured by Flowserve, 

can be seen in Figure 5.7. Since the high pressure feedwater exits the device at the same pressure 

as the brine, an additional pump is required to boost the pressure, as shown in Figure 5.7. 

 

Figure 5.7. Isobaric pressure exchanger mechanics (left) and typical system configuration 

(right). 

 

Fortunately, these two types of pressure exchangers can be described by the same set of 

equations. These are fixed displacement devices and the flow rate of the brine is related to the 

flow rate of the feed water by: 

 , ,f ER b ER
Q Qϕ=  (5.56) 

where Qf,ER is the flow of the feed through the energy recovery device in L/s, Qb,ER is the flow of 

the brine through the energy recovery device in L/s, φ is the ratio between the feed flow and the 

brine flow defined by the energy recovery device geometry. For pressure intensifiers, this 

number is greater than 1. For isobaric pressure exchangers, this number equals 1. 

The pressure relationship for these devices varies with system flow rate. To simply the 

analysis, the pressure relationship is taken to be constant and is given by: 
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 , , , ,f ER f ER ER b ER b ER
p Q p Qη∆ = ∆  (5.57) 

where ∆pf,ER is the change in feed stream pressure, ∆pb,ER is the change in pressure in the brine 

stream, and ηER is the efficiency of the energy recovery device. 

5.2.7 Control Electronics 

The control electronics condition power from the PV panels and other power sources such 

as the generator in the energy recovery system for use by the system pumps. The overall power 

in the system must be conserved, as shown by:  

 
Power In Power Out=∑ ∑   
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 (5.58) 

where ηmppt is the efficiency of the maximum power point tracking algorithm used for the PV 

system,  ηDCDC is the efficiency of the DC to DC conversion, ηinv is the efficiency of the inverter 

used for any AC motors. 

The control electronics will dictate the distribution of power amongst the different system 

motors. In order to accommodate this, additional design variables, θi, are added to the 

optimization problem. The number of design variables added are equal to the number of pumps 

in the system and determine the output power as follows: 
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5.3 Graph Representation 

Section 5.1 above describes individual component models. This section describes a new 

structure which was developed to link the component models together to represent any PVRO 

system configuration and estimate the overall system performance. As stated above, the models 
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are segmented into two parts, the PV system and the RO system, whose performance is coupled 

via the electrical power transmitted through the control electronics. 

The RO system model must determine the water output flow rate and water quality for a 

given component selection, system topology, pressure operating point, power input, and input 

water salinity. To represent and analyze the reverse osmosis system, a graph-based model was 

developed. In this model, the RO system components and connecting pipes are represented using 

edges and the nodes are the points of connection. Each edge has an assigned type based on the 

component it represents and associated equations, presented in section 5.1 above, which govern 

the pressure, flow and water concentrations. These edge types include: pumps, reverse osmosis 

membranes, energy recovery devices, and pipes which serve to connect all components. An 

example system and its graph representation can be seen in Figure 5.8. 

 

Figure 5.8: Sample reverse osmosis system and its graph representation. 

 

This representation has advantages. First, it can easily capture any reverse osmosis system 

configuration using a node adjacency matrix of zeros and ones, as shown in Figure 5.9, and a 

vector representing the system components, which is can be implemented in a genetic algorithm 

optimization. Second, it allows the system equations to be uncoupled and allows for an iterative 

solution approach, detailed below. 
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Figure 5.9: Connection matrix for sample reverse osmosis system. 

 

For the given system connection matrix, component types, pressure operating point, and 

power input, the method outlined in Figure 5.10 is used to calculate the output water flowrate 

and concentration. This method was programmed using Matlab and starts by ordering the system 

nodes and generating a node-arc incidence matrix for the system graph. The incidence matrix is a 

l × m matrix, where l is the number of nodes and m is the number of edges. The matrix, B, is 

defined as: 

 
1 if edge  enters node 

1 if edge  leaves node 
ij

j i
b

i j


= 

−
 (5.61) 

This matrix defines conservation of water and salt over the network as follows: 

 in out
= −Bq q q  (5.62) 

where q is the vector of flows through each edge, qin is the vector of flows entering the system at 

each of the node and qout is the flow exiting the system at each node. 

The node-arc incidence matrix also defines the concentration of salt over the network as 

follows: 

 
( )

in in out out
= −B q c q c q c� � �  (5.63) 

where �  denotes component-wise multiplication of vectors, c is the vector of water 

concentrations along each edge, cin is the vector of water concentrations entering the system at 

each of the node and cout is the vector of water concentrations exiting the system at each node. 
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Once this graph structure is generated, an initial guess of the overall water production is 

made based on the power input using equation (4.11). An average system recovery rate (10% for 

systems which produce less than 5 m3 per day, and 30% for all other systems) is assumed to fully 

define qin and qout for the system. Using these system flowrate guesses, a feasible system 

flowrate vector is determined using equation (5.62). The pressures at each of the system nodes 

and the concentration of water at each edge are determined using the system equations in section 

5.1 and the initial flowrate guesses. This calculation neglects the membrane pressure flow 

calculation defined in equation (5.40) as it is used to correct the flowrates in the next step. The 

calculated pressures are then used to determine the flow across the membrane and the system 

flows are recalculated using equation (5.62). The calculated flow rate is averaged with the 

previous guess and the process is repeated until the change in the flow rate is less than the 

specified tolerance. This solution method is very robust and the process typically converges in 

less than 1 second. 

 

Figure 5.10: Solution method for reverse osmosis system equations. 
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computation of the water output using a varying power input for an average year would take 

many minutes. Fortunately, the resulting system of equations, while non-linear, can be accurately 

approximated by interpolating between evaluated function points. The resulting water production 

for the sample PVRO system depicted in Figure 5.8 is shown in Figure 5.11. 

 

Figure 5.11: Water production and water concentration vs. power input for sample PVRO 

system. 

 

To determine the number of interpolation points required, a study evaluating the error 

versus the number of points was performed for an array of 10 different RO system 

configurations. In this study, the each system was simulated for an average spring day in Boston 

using the full model. Then water production and output water salinity were evaluated using a 

different surrogate model where the system output is determined by interpolating between 

evaluation points of the original model output. The sample points of the original model are 

evenly distributed between zero system power and the maximum system power. The number of 

times the original model is sampled is varied to determine the number of samples required to 

meet a desired accuracy. Here, the criteria was set that the surrogate model have a less than 1% 

error.  

The average percentage error in the water production and the water salinity for the 

surrogate model versus the number of function evaluations is shown in Figure 5.12. As expected, 

as the number of evaluations increases, the error goes to zero. In order to achieve <1% error, a 

total of 8 evaluations of the full system model at varying power levels are required. For each 
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PVRO system evaluated in the final stage of the modular design approach, this surrogate model, 

formed by 8 evaluations of the full system model, will be used to determine the system output 

over varying solar profiles. 

 

Figure 5.12: Error in water production based on number of evaluations. 

 

The interpolation approach saves substantial computation time. The time saved varies 

depending on the PVRO system being evaluated and the length of the simulation. An average 

value of 10.2 seconds is saved for a day-long simulation of a PVRO system with an hourly time 

step. When simulated over the course of a year, an average time of 2.9 hours is saved. The 

surrogate model enables the implementation of the modular design approach. 

5.4 Experimental Model Verification 

5.4.1 Experimental System Description 

The PVRO system modeling approach outlined above was verified using data from the 

MIT Experimental PVRO System. The system is modular and has been constructed on a campus 

rooftop (see Figure 5.13). The system schematic and model representation can be seen in Figure 

5.14. It is composed of a tracking PV panel, custom control electronics, parallel DC pumps, a 

Clark pump energy recovery system, a reverse osmosis membrane within a pressure vessel, and 

plastic water tanks. The system is equipped with custom control electronics and designed to 

operate variably to eliminate the need for batteries. The system is fully instrumented and 
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computer controlled to optimize the system water output, and is designed to produce 

approximately 350 L of fresh water per day in Boston on a sunny summer day. 

 

Figure 5.13: Experimental PVRO system. 

 

The system instrumentation consists of 18 different sensors that provide sufficient 

information for model validation and control feedback (see Figure 5.14). Sensors include 

thermistors for measuring solar panel, feed water, and ambient air temperature, flow sensors, 

salinity sensors, pressure transducers, and sensors for measuring solar panel orientation. The 

sensors are connected via custom electronics to the data acquisition and control computer, shown 

in Figure 5.15.  

 

Figure 5.14: Experimental PVRO system layout. 
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Figure 5.15: MIT experimental PVRO system electronics. 

 

Two PIC24 microcontrollers in a Master/Slave configuration are used to acquire sensor 

data through a sensor conditioning board, and to perform computation and control tasks. The 

Master PIC24 is used to control a DC/DC step down converter that receives power from the solar 

panels and converts it to the voltage desired by the two DC boost pumps. This electrical system 

configuration was designed with student Roman Geykman [127]. Custom control software was 

developed to track the maximum power point of the solar panel throughout variable solar 

radiation and temperature conditions and maximize the system water production. The Slave 

PIC24 is used to drive the solar panel tracker motors. The Master PIC24 also communicates with 

a base station PC running Linux over a wireless modem. The base station is used to record the 

acquired data and to display it in real time.  

The water type used for the experimental system greatly affects the system performance. 

The seawater salinity varies from location to location, but the reference value commonly used is 

35.164 g of salts per kg of seawater [128]. The majority of seawater in the world has water 

salinities close to this value, although there are areas in the Arabian Gulf and Red Sea where 

salinities can exceed 45 g/kg [2]. Since the MIT experimental system is located far from any 

natural salt water source, surrogate seawater was used to test the performance of the 
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experimental system. This water was mixed using NaCl with the concentration adjusted to ensure 

the solution has the same osmotic pressure as seawater. This method is commonly used by 

reverse osmosis membrane manufacturers in system testing [14]. The water concentration used 

in the experiments was 32800 mg/L or 32125 g/kg. This concentration results in an osmotic 

pressure of 25.8 bar, equivalent to the osmotic pressure of standard seawater. 

The PVRO system was tested over a range of operating conditions to evaluate the system 

performance. The power produced and panel efficiency for different radiation levels over a 

spring day is shown in Figure 5.16. As is expected, the power production is roughly linear with 

respect to the input solar radiation. Also, the efficiency of the panels is roughly constant over the 

majority of the day. Slight variations in the efficiency occur due to temperature effects and the 

dynamics of the maximum power point tracking. 

 

Figure 5.16: Power produced by PV panels. 

 

The overall reverse osmosis system efficiency was also evaluated to benchmark the 

performance of the system against data in literature. Since the system has been designed to 

operate variably to account for differing levels of solar radiation without the need for batteries, 

the system will have different specific power consumptions for different input power levels. The 

specific power consumption is shown in Figure 5.17. The system requires a certain amount of 

energy, approximately 20 W, to overcome static friction in the system mechanical components 

and generate a water pressure higher than 25.8 bar required for desalination. Once this initial 

level is reached, the experimental system operates efficiently and is able to produce water with a 

specific energy consumption of 2.7 to 4 kWh/m3. While this is much higher than the 
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thermodynamic limit of 0.8 kWh/m3 for the 9% water recovery ratio (this number is 0.7 kWh/m3 

as the recovery ratio goes to 0), this is very efficient for such a small scale system. Typical 

specific energy consumption of large scale reverse osmosis plants is between 3 to 5 kWh/m3 [6]. 

It should be noted that energy numbers for large plants include plant overhead, pretreatment, and 

brine disposal that are not accounted for here. When only considering desalination, power 

consumptions of new, highly-efficient plants have been shown to reach values of 2.5 kWh/m3 

[129]. 

 

Figure 5.17: Specific power consumption of experimental PVRO system. 

5.4.2 Model Representation 

A graph-based model was generated for the MIT Experimental PVRO system using the 

approach detailed in section 5.3. This graph is shown in Figure 5.18. The system consists one 

tracking Sunpower 230W solar panel, two Shurflo 8050-243-169 pumps and DC motors, one 

DOW Filmtec SW30-2540 reverse osmosis membrane, and a Clark Pump energy recovery 

device manufactured by Spectra Watermakers. Parameters of the system components are 

outlined in Table 5.1. 
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Figure 5.18: Graph representation of MIT experimental PVRO system. 

 

Table 5.1: Model parameters of MIT Experimental PVRO system. 
Component Parameter Value 

Sunpower 230W Solar Panel [23] 

Solar panel efficiency, ηPV 18.5 % 

Solar panel area, APV 1.23 m2 

Solar panel temperature coefficient, α 0.38 %/K 

Normal operating cell temperature, NOCT 45 °C 

Shurflo 8050-243-169 Pump & DC 
Motor 

Pump coefficient of viscous drag cd 3.803 x10-4 N-m/bar-L 
Pump friction coefficient, cf 4.033 N-m/bar-L 
Pump slip coefficient, cs 3.361 x10-10  
Pump volumetric displacement per revolution, D 2.60 x10-3 L/rev 
Motor friction related current,I0 0.65 A 
Motor torque constant, KT 2.252 A/N-m 
Motor speed constant, KV 1.824 rev/V-s 
Motor resistance, Rm 0.1546 Ω 
Pump torque constant, Tc 0.05 Nm 

DOW Filmtec SW30-2540 Reverse 
Osmosis Membrane [24] 

Membrane water permeability, KA 3.714x10-4 L/m2-bar-s 
Membrane salt permeability, B

 
5.842x10-5 L/m2-s 

Membrane area, SE 2.6 m2 

Other System Parameters 
Feed water salt concentration, Cf 32800 mg/L 
Clark pump recovery ratio, Rt 0.090 

5.4.3 Model Validation 

Data from a partly cloudy summer day was used to validate the modeling approach. The 

solar profile used as an input to the model is shown in Figure 5.19. The resulting water 

production for the experimental system and the model prediction is shown in Figure 5.20. There 

is a very good agreement between the data and model values, with an error of less than 8%. This 

shows that the graph modeling approach and the simplified analysis method accurately predict 

system water production. 
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Figure 5.19: Solar radiation input for model validation. 

 

 

Figure 5.20: Experimental validation of modeling approach. 

 

The specific energy consumption of the experimental system was compared to the values 

determined in the model. For a wide operating range, the model accurately predicts the overall 

system performance. This shows that the physical models detailed in section 5.2 capture the 

important system characteristics and are appropriate for use with the modular design approach. 
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Figure 5.21: Model specific energy consumption. 

5.5 Economic Models 

As stated in section 4.1, the goal of the modular design approach as applied to PVRO 

systems is to configure the lowest lifetime cost system that is able to meet the fresh water 

demands of a particular location. Therefore, a set of economic models are required to estimate 

the overall system cost. These models are described here. 

5.5.1 Total Costs 

The equivalent annualized cost method used in Chapter 3 is applied here to compare the 

economics of different PVRO systems. The costs are separated into capital system costs and 

operating costs. The total annualized costs are given by: 

 
PVRO CC Op

A A A= +  (5.64) 

Using the total annual cost, the total water cost can be estimated using the following: 

 PVRO
w

w

A
C

V
=  (5.65) 

where Vw is the amount of water produced by the system during an average year. 
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5.5.2 Capital Costs 

The capital costs of a PVRO desalination system are given by: 

 
PVRO Infra PV RO

C C C C= + +  (5.66) 

where CInfra is the capital cost of the system infrastructure, CPV is the capital cost of the PV 

system and CRO is the capital cost of the RO system. 

The infrastructure capital costs encompass a wide array of items such as system 

installation, site preparation, brine disposal system, water intake, and water distribution system. 

These costs will vary greatly from location to location. For the purpose of the case studies done 

in this thesis, these costs are accounted for by scaling the costs of RO plant as follows: 

 infra infra RO
C Cϕ=  (5.67) 

where φinfra is the cost of the infrastructure relative to the reverse osmosis components. Based on 

literature surveying installed reverse osmosis systems, this value is taken to be 1.71 [102]. 

The photovoltaic system costs include the cost associated with the PV panels, the mounting 

system and the control electronics. They are calculated using: 

 
,

, ,
1

PV typeN

PV PV i PV i mount elec

i

C n C C C
=

= + +∑  (5.68) 

where nPV,i is the number of panels of type i which are included in the system configuration, CPV,i 

is the cost of panel I, Cmount is the cost of the mounting system, and Celec to the cost of the 

electrical components. The mounting cost is directly calculated based on the mounting 

component type and the number of panels. Different types of electronics modules are not 

considered in this thesis. Equation 3.29 is used to calculate the cost associated with the 

electronics, repeated here [105]: 

 0.72
elec p

C W=  (5.69) 

where Wp is the power rating of the PV array in Watts. 

The reverse osmosis system capital costs are given by: 

 Pre _RO RO comp Post
C C C C= + +  (5.70) 

where CPre is the pre-treatment system cost, CRO_comp is the cost of the reverse osmosis 

components, and Cpost is the cost is cost of the post-treatment system and water storage.   

Pre-treatment systems are often required for reverse osmosis systems to ensure that system 

components, such as the membranes, do not degrade prematurely. While completely 
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characterizing reverse osmosis pretreatment options is beyond the scope of this thesis, including 

these components in the overall cost analysis is required for accuracy. For this work, it is 

assumed that the capital cost of the pre-treatment components is proportional to the overall 

reverse osmosis system cost as follows: 

 Pre Pre _RO comp
C Cϕ=  (5.71) 

where φPre is the cost of the pretreatment relative to the reverse osmosis components. Based on 

literature surveying installed reverse osmosis systems, this value is taken to be 0.35 [102]. 

The costs associated with the reverse osmosis components are directly taken from the 

components selected during the modular design approach. The total component cost is calculated 

using: 

 _RO comp mem press p motor er connect
C C C C C C C= + + + + +  (5.72) 

where Cmem is the total cost of membranes selected for the system, Cpress is the total cost of 

pressure vessels required to hold those membranes, Cp is the total cost of the system pumps, 

Cmotor is the total cost of the system motors, Cer is the total cost of the system energy recovery 

devices, and Cconnect is the total cost of the component piping and other connections. 

The costs associated with post-treatment systems are typically low when compared with 

with other system costs. The chemical post-treatment system cost is estimated based on literature 

values. In addition to chemical post-treatment, investment is also required for water storage to 

supply water when the system is not operating due to cloudy weather. The overall post-treatment 

cost is given by: 

 _post post RO comp storage
C C Cϕ= +  (5.73) 

where φpost is the cost of the post-treatment chemical system relative to the reverse osmosis 

components and Cstorage is the cost of the water storage component selected by the modular 

design approach. Based on literature surveying installed reverse osmosis systems, φpost is taken to 

be 0.03 [102]. 

The capital costs are converted into annualized costs using Equation 3.21, presented again 

here: 

 
(1 )

(1 ) 1

n

cc PVROn

i i
A C

i

+
=

+ −
 (5.74) 

where i  is the interest rate, and CPVRO is the total PVRO system capital cost. 
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5.5.3 Operating and Maintenance Costs 

The total annual operational cost for the photovoltaic reverse osmosis system is given by:  

 
Op l chem r ,RO

A A A A= + +  (5.75) 

where Al is the annual labor cost, Achem is the annual chemical cost, and Ar is the annual cost of 

component replacement in $. 

The annual cost of the labor will be highly dependent on the system location. Here, it is 

assumed the labor cost can be expressed as:  

 365
l cap

A Vγ=  (5.76) 

where γ is the specific operating labor cost in $/m3-day, and Vcap is average system production in 

m3/day. In this analysis, the specific operating labor cost was $3.00/m3-day [93]. 

The chemical costs are also location specific as the pre-treatment chemicals are dependent 

on local water conditions. The total annual cost of treatment chemicals is given by: 

 365
chem cap

A kV=  (5.77) 

where k  is the average cost of chemicals $/m3. In this analysis, the treatment chemical cost per 

m3 was $0.033 [94]. 

From time-to-time, system components will require replacement. The major components 

that will require regular replacement are the reverse osmosis membranes. Less frequently, 

pumps, motors, energy recovery units, pre- and post-treatment systems and control electronics 

will require replacement. The replacement rates assumed are specified in Table 5.2. Using the 

replacement rates, the annual replacement cost is given by: 

 
e er PV PV elec lec mem mem p p motor motor er r pre pre post postA C RR C RR C RR C RR C RR C RR C RR C RR= + + + + + + + (5.78) 

where RR represents the replacement rate of each component. 

Table 5.2: Assumed replacement rate of PVRO system components. 
Component Annual Replacement 

Rate 

PV Components 4% 
Control Electronics 10% 
Membranes 20% 
Pumps 10% 
Motors 10% 
Energy Recovery Units 10% 
Pre-treatment 10% 
Post-treatment 10% 
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5.6 Summary 

This section developed the physical system and economic models used for the modular 

design of PVRO systems. Physics-based models are developed for individual system 

components. The component models are implemented in a graph-based system model to 

represent any PVRO system configuration. A surrogate model of the solar radiation to water 

production relationship is developed to increase calculation speed for different solar profiles. 

This model is validated using an experimental PVRO system that was constructed as a part of 

this research. The model use is demonstrated in the case studies in Chapters 6 and 7. 
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CHAPTER 

6  
DETERMINISTIC CASE STUDIES 

A series of case studies were performed to study the performance of the modular design 

approach applied to PVRO systems. To simplify the analysis, initial case studies were performed 

with deterministic solar radiation inputs and system demands. These case studies are detailed in 

this chapter. 

6.1 Problem Description 

Several representative case studies were conducted to demonstrate the modular design 

approach. Systems were designed for four different locations with a seawater source and for one 

location with a brackish water source. The location details are shown in Table 6.1. These 

locations provide a range of different water salinities and solar insolation values. The objective 

of this design process is to minimize the net present cost of the PVRO system assuming a system 

life of 25 years and a 4% interest rate. Both system capital costs and maintenance costs are 

included as described in section 5.5. The system must meet the specified water demand and 

produce water which is below the drinkable salinity level of 500 ppm as outlined by the World 

Health Organization [130]. 

Table 6.1: Locations used for deterministic modular design case studies. 

Location 
Water Salinity 

(ppm) 
Average Yearly Solar Insolation 

(kWh/m2/day) 

Albuquerque, NM 3000* 5.79 
Boston, MA 32664 4.21 
Brisbane, Australia 35438 5.31 
Cape Haiten, Haiti 36275 6.05 
Limassol, Cyprus 39182 6.25 

            *Brackish Groundwater 
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6.1.1 System Inventory 

Systems are designed for different average water demands, ranging between 1 m3/day and 

20 m3/day. To accommodate the wide range of system requirements, a large component 

inventory was constructed. Figure 6.1 shows this inventory. It consists of 6 different types of 

motors, 8 different types of pumps, 8 different reverse osmosis membranes, 8 different types of 

PV panels, 3 different PV panel mounting/tracking configurations, 2 different hydraulic motors, 

2 different generators, 5 pressure exchange energy recovery devices, and one pressure control 

valve. 

 

Figure 6.1: Inventory used for case studies. 

 

The inventory details are presented in Table 6.2 through Table 6.7. Individual component 

specifications are derived from manufacturers’ datasheets and costs are given by local 

component distributers. 

Table 6.2: PV panel inventory used for case studies [131]. 

PV Panels Quantity 
Power 

Rating (W) Efficiency Temperature 
Factor (%/K) 

NOCT (oC) Cost 

Model 1 – First Solar – FS-385 40 85 11.8% 0.25 45 $399 
Model 2 – First Solar – FS-280 40 80 11.8% 0.25 45 $299 
Model 3 – Sunpower – 315W 40 315 19.3% 0.38 45 $999 
Model 4 – Trina Solar – TSM-230PA05 40 230 14.1% 0.45 46 $529 
Model 5 – Trina Solar – TSM-225PA05 40 225 14.1% 0.45 46 $399 
Model 6 – Sanyo – HIT-N220A01 40 220 17.4% 0.336 44 $619 
Model 7– Suntech – STP205-24UD 40 205 13.9% 0.47 45 $408 
Model 8 – Suntech – STP295-24VDC 40 295 15.2% 0.4 45 $587 
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Table 6.3: PV panel mounting inventory used for case studies [132]. 
PV Panels Tracking Type Average Power Use (W) Max Array Area Per Mount (m2) Cost 

Model 1 – No Tracking None 0 11.6 $500 
Model 2 – Wattsun-AZ-125 1 – Axis 1.5 11.6 $3985 
Model 3 – Wattsun-AZ-125 2 – Axis 1.5 11.6 $4710 
Model 4 – Wattsun-AZ-225 2 - Axis 1.5 15.7 $7250 
Model 5 – Wattsun-AZ-225 2 - Axis 1.5 17.6 $7645 
Model 5 – Wattsun-AZ-225 2 - Axis 1.5 20.9 $8175 

 

Table 6.4: RO membrane inventory used for case studies [133]. 

RO Membranes Quantity Water Type 
Water 

Permeability 
(L/m2-bar-s) 

Salt 
Permeability 

(L/m2 -s) 

Area 
(m2) 

Max 
Pressure 

(bar) 
Cost 

Model 1 – Dow SW30XLE-400i 3 Seawater 4.25 x 10-4 1.93 x 10-5 37 83 $990 
Model 2 – Dow SW30HRLE-400i 3 Seawater 3.48 x 10-4 1.59 x 10-5 37 83 $982 
Model 3 – Dow SW30-2540 3 Seawater 4.22 x 10-4 5.84 x 10-5 2.8 69 $188 
Model 4 – Dow SWHRLE-4040 3 Seawater 3.50 x 10-4 2.02 x 10-5 7.9 83 $435 
Model 5 – AM M-B2540A 3 Brackish Water 9.95  x 10-4 1.09 x 10-4 2.8 41 $163 
Model 6 – AM M-B4040AHF 3 Brackish Water 1.31 x 10-3 1.44 x 10-4 7.5 41 $303 
Model 7– Koch 4820HR 3 Brackish Water 5.94 x 10-4 2.51 x 10-5 7.5 41 $343 
Model 8 – Koch 8822HR-400 3 Brackish Water 6.09 x 10-4 2.55x10-5 7.5 41 $844 

 

Table 6.5: Motor inventory used for case studies [134].  
Motor Quantity Motor Type Max Power (HP) Rated RPM Max Efficiency Cost 

Leeson 116698.00 3 AC Motor 5 3600 93.6 % $845 
Leeson G141121.00 3 AC Motor 10 3600 89.3 % $1319 
Leeson 170615.60 3 AC Motor 15 3600 92.4% $2141 
Shurflo 8050-243-169 3 DC Motor 1/6 3600 80.2% $150 
Leeson 108014.00 3 DC Motor 0.5 1750 81.7 % $754 
Leeson 108022.00 3 DC Motor 1 1750 83.7 % $968 

 

Table 6.6: Pump inventory used for case studies [135]. 

Pumps Quantity 
Volumetric 

Displacement (mL/rev) 
Max Rated RPM 

Max Pressure 
(bar) 

Cost 

Danfoss APP 0.8 3 5.1 3450 80 $700 
Danfoss APP 1.8 3 10.0 3450 80 $4239 
Danfoss APP 2.5 3 15.3 3450 80 $4782 
Danfoss APP 3.5 3 20.5 3450 80 $7452 
Shurflo 8050-243-169 3 2.6 3450 10 $150 
Procon 140 GPH 3 5.3 1725 17.3 $152 
NRD PRG 10 3 13.1 1725 18 $190 

 

Table 6.7: Pressure exchange energy recovery inventory used for case studies. 

Energy Recovery Unit Quantity 
Max Brine Flow 

(L/h) 
Feed to Brine Flow 

Ratio 
Average Efficiency Cost 

ERI PX-30S 1 6800 1 90% $6000 
Spectra Clark Pump 1 760 1.08 95% $3500 
Spectra Clark Pump 1 1160 1.18 95% $4500 
Flowserve DWEER 1 12000 1 95% $8000 
Pressure Control Valve 1 1000 N/A N/A $45 
Pressure Control Valve 1 10000 N/A N/A $171 

 

In addition to the component costs outlined above, there are costs associated with the 

pressure vessels required to hold the individual reverse osmosis membranes. In the 
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representation chosen, the pressure vessel itself is not one of the design choices, but is contingent 

on the selection of the reverse osmosis membrane configuration. The pressure vessel costs are 

outlined in Table 6.8. 

Table 6.8: Costs of membrane pressure vessels used in case studies [136]. 
  Number of 40” Long Membranes 

Water Type Membrane Diameter 1 2 3 

Brackish Water 
2.5” $144 N/A N/A 
4” $294 $356 $418 

Seawater 
2.5” $244 N/A N/A 
4” $539 $611 $685 
8” $1190 $1338 $1453 

6.1.2 Power Source 

Solar radiation varies greatly over the course of the year due to changing seasons and local 

weather. To account for these variations, an average sunny day and an average cloudy day are 

simulated for each of the four seasons. The average values of solar insolation for cloudy and 

sunny days are determined from historical solar radiation data [8]. Using the method outlined in 

section 5.1.1, the solar profile is determined for a typical sunny and cloudy day for each season. 

Example solar radiation profiles for a sloped photovoltaic panel in Boston, MA are shown in 

Figure 6.2. 

 

Figure 6.2: Typical solar profile used for case studies. 
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The PVRO system is simulated over these eight average days. The number of typical days 

in each season is determined from the average seasonal solar insolation using the following 

relationship: 

 
, ,

, ,

, ,

1
sun i sun i

i sun i cloud i

total i total i

n n
H H H

n n

 
= + −  

 
 (6.1) 

where Hi is the average solar insolation in season i, Hsun,i is the solar insolation on a sunny day 

during season i, Hcloud,i is the solar insolation on a cloudy day during season i, nsun,i is the number 

of sunny days in season i, and ntotal,i is the total number of days in season i. 

6.1.3 System Demand 

The system demand is simplified for the deterministic case studies. Here, the system must 

meet the demand measured as an average daily water production. Average system demands 

between 1 m3 per day and 20 m3 per day are examined. Although using an average system 

demand simplifies the analysis, in reality, the system demand and water production will vary on 

a daily basis. Any system design must be able to accommodate these variations. This effect is 

accounted for in the case studies presented in Chapter 7. 

Using the water produced on each of the typical days, the average daily water production is 

determined from the number of sunny and cloudy days in each season using: 

 
4

, , , ,

1

1

365
ave sun i sun i cloud i cloud i

i

V n V n V
=

 = + ∑  (6.2) 

where Vsun, is the water production on a sunny day in season i, and Vcloud,i is the water production 

on a cloudy day in season i. 

6.2 Optimization Setup 

The modular design algorithm was implemented using Matlab. Starting with the inventory 

specified in section 6.1.1, the number of possible system configurations is decreased by applying 

the module, subassembly, and topology filters using the approach detailed in chapter 4. The final 

step in the modular design algorithm is to optimize the system over the reduced design space. 

Modular systems are composed of discrete components, making the optimization problem 

difficult. To add to the complexity, the cost function and constraints are non-linear, resulting in a 
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mixed integer nonlinear program (MINLP). Different optimization routines have been developed 

that can accommodate MINLPs such as Branch and Bound, genetic algorithms and simulated 

annealing. Any optimization algorithm can be used with the modular design approach. For the 

PVRO system, the topology must also be optimized, adding to the number of discrete variables 

and the complexity. This large number of discrete variables can easily be incorporated into a 

genetic algorithm, which is used here.  

The genetic algorithm optimization routine is coupled to a detailed system model as shown 

in Figure 6.3. For the PVRO system design, the number of design variables depends on the 

individual location and requirements. For the cases studied, this ranges between 20 and 50 design 

variables. These variables represent the number of different components (integer design 

variables), the type of each component (integer design variables), the reverse osmosis system 

connections (binary design variables), reverse osmosis system operating pressure (discrete 

variable), and pump power division (discrete variable).   

 

Figure 6.3: Optimization and model setup for PVRO design problem. 

 

The design goal is to minimize the lifecycle cost of the PVRO system while meeting the 

water volume requirements, water quality requirements, and system pressure and flowrate 
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where f(x,y) represents the system cost as outlined in section 5.5.1, g(x,y) represents the system 

equations outlined in section 5.3, x represents the reverse osmosis system connections, and y 

represents the remainder of the design variables. 

For genetic algorithms, constraints are incorporated using penalty functions. The overall 

fitness function for the PVRO design problem becomes: 

 
max max

min

( 5)( max(0, ) max(0, )

              max(0, ) max(0, 500))

PVRO all p q

V ave

fitness A j

V V Cp

κ κ κ

κ

= + + − + −

+ − + −

p p q q
 (6.4) 

where κall represents the scaling factor on the constraint violation, κp is the scaling factor of the 

pressure violations, κq is the scaling factor on flowrate violations, κV is the scaling factor on 

water production violations, and j is the number of generations. The scaling factors are used to 

scale the violations to the same order of magnitude. 

As stated above, the genetic algorithm was chosen because it can accommodate the 

discrete design variables and the non-linear system equations. A genetic algorithm is a heuristic 

optimization method that mimics the behavior of natural selection. It uses a population of 

individuals which represent different system configurations. The population is evaluated at each 

iteration to determine their fitness. The fittest individuals are then selected to produce the next 

generation of individuals. The next generation is produced by mating selected individuals. The 

process continues until the termination criteria are met. This termination criterion is typically 

specified in terms of the number of generations since the latest cost improvement. More details 

on genetic algorithms are available in [118]. 

The main downside of genetic algorithms is that their execution takes considerable 

amounts of computation since the cost function must be evaluated for every individual in each 

generation. Even with the simplifications made, the computation time for one system power level 
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of the PVRO system model is on the order of seconds, and the time required to compute the 

average water production in on the order of minutes. The genetic algorithm parameters must be 

carefully selected to ensure that the computation time is reasonable. 

A set of design studies were conducted to select the parameters of the genetic algorithm 

optimization. In these design studies, the parameters of the genetic algorithm were varied for the 

example case of designing a 1 m3 system in Boston, MA. Different sampling methods can be 

used to study these effects, such as Latin Hypercubes and one-factor-at-a-time. For these cases, 

the one-factor-at-a-time approach was used to gain intuition. 

Table 6.9 shows the starting point for the one-factor-at-a-time sampling. Each case was run 

three times to ensure that the random nature of the genetic algorithm optimization isn’t 

dominating the results. The difference in genetic algorithm performance for different population 

sizes is shown in Figure 6.4. As the population size increases, the overall system cost decreases 

but the computation requirements increase. To balance this, a population size of 60 individuals 

was used in the case studies and the remainder of the genetic algorithm parameter study. 

Table 6.9: Starting point for genetic algorithm parameters. 
Parameter Value 

Population Size 80 
Elite Count 10% of Population Size  
Crossover Fraction 50% 
Maximum Number of Generations 100 
Mutation Probability 1% 

 

Figure 6.4: Optimization performance for different population sizes. 

 

 Similar studies were conducted for the elite count, the number of individuals that are 

directly transferred the next generation. The elite individuals are those that have the best fitness. 
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The variation in the overall cost and computation time required when the elite count is varied is 

shown in Figure 6.5. Based on the simulation results, an elite count of 6, or 10% of the 

population was chosen for the case studies and the remainder of the genetic algorithm parameter 

study. 

 

Figure 6.5: Optimization performance for different elite count. 

 

 The effect of the variation of crossover probability was also studied. The crossover 

probability determines the likelihood that children are produced through mating of two pairs of 

the previous generation. If no children are produced, the parents are directly carried into the next 

generation. The variation in overall system cost and computation time required when the 

crossover probability is varied is shown in Figure 6.7. Based on the results, a value of 0.7 was 

used for the modular design case studies and the remainder of the genetic algorithm parameter 

study. 
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Figure 6.6: Optimization performance for different crossover fraction. 

 

Once the children are generated, the genetic algorithm performs a mutation operation. In 

this operation, bits in the system representation are randomly flipped. The probability of these 

bits being flipped was varied to study the effect. The variation in system cost and convergence 

time for different probability of mutation is shown in Figure 6.7. Based on these results, a value 

of 2% was selected for the modular design case studies and the remainder of the genetic 

algorithm parameter study. 

 

Figure 6.7: Optimization performance for different mutation percentage. 
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Genetic algorithms have no clear stopping point, so criteria such as the maximum number 

of generations and the number of generations since the last fitness function improvement are 

commonly used to terminate the algorithm. Here, the effect of varying the termination criteria of 

the number of stalled generations is studied. The results are shown in Figure 6.8. Based on these 

results, a value of 30 generations was selected for the modular design case studies. The final 

parameters selected for the modular design case studies are shown in Table 6.10. 

 

Figure 6.8: Optimization performance for different termination criteria. 

 

Table 6.10: Parameters used for genetic algorithm in modular design studies. 
Parameter Value 

Population Size 60 
Elite Count 10% of Population Size  
Crossover Fraction 70% 
Number of Generations for Convergence 30 
Maximum Number of Generations 100 
Mutation Probability 2% 

6.3 Optimization Results 

6.3.1 Varied Location 

Table 6.11 shows the results for a 1 m3 system designed for the following locations: 

Albuquerque, NM, Boston, MA, Brisbane, Australia, Cape Haïtien, Haiti and Limassol, Cyprus. 

The configurations are similar for most locations except for Limassol, Cyprus, where an energy 

recovery device was excluded from the design. Energy recovery devices, especially for small-

scale applications, are expensive. Cyprus has an abundant solar resource, so the power produced 



Chapter 6. Deterministic Case Studies  112 
 

by the PV panels is less expensive. As a result, the most cost-effective design is a less efficient 

system with more PV panels. This is not an obvious tradeoff and it would be difficult for a non-

expert to capture this subtlety. 

 Water costs for systems designed using the modular design approach are in the range 

reported by other researchers developing photovoltaic reverse osmosis systems, shown in Table 

3.7. The calculated water costs for the systems designed using the modular design approach are 

at lower end of the reported range, as expected since the system is optimized for system cost. 

Another factor which contributes to low water costs when compared to previously reported 

numbers is the dramatic reduction in the cost of installed small-scale photovoltaic systems (≤5 

kWp), which dropped by $3.40/Wp or 30% between 2000-2010 [137].  
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Table 6.11: Results of modular design approach for 1 m3 systems in various locations. 

 

 

System 
Location 

System Stats System Configuration Component Details 

Albuquerque 
(Brackish 
Water) 

Lifetime Cost: 
$36668 
Capital Cost:  
$12834  
Water Cost:  
$3.78/m3  
 

 

Panel 
Trina Solar 225 W 
Panels 

Panel 
Mounting 

Fixed Panels 

Motor Leeson 0.5 HP Motor 

Pump 
Procon 140 GPH 
Pump 

Energy 
Recovery 

18% Spectra Clark 
Pump 

Membrane 

2.5” Diameter, 40” 
long, Applied 
Membranes M-
B2540AHF 

Boston Lifetime Cost: 
$43874 
Capital Cost:  
$17104 
Water Cost:  
$4.71/m3 

 

Panel 
Trina Solar 225 W 
Panels 

Panel 
Mounting 

Fixed Panels 

Motor Leeson 1 HP Motor 

Pump 
NRD PRG 10 Vane 
Pump 

Energy 
Recovery 

18% Spectra Clark 
Pump 

Membrane 
4” Diameter, 40” long, 
Dow SWHRLE 

Brisbane Lifetime Cost: 
$40663 
Capital Cost:  
$15088  
Water Cost:  
$4.41 /m3 

 

Panel Suntech 295 W Panels 
Panel 
Mounting 

Fixed Panels 

Motor Leeson 1 HP Motor 

Pump 
NRD PRG 10 Vane 
Pump 

Energy 
Recovery 

8% Spectra Clark 
Pump 

Membrane 
4” Diameter, 40” long, 
Dow SWHRLE 

Limassol, 
Cyprus 

Lifetime Cost: 
$39943 
Capital Cost:  
$18324  
Water Cost:  
$3.93/m3 

 

Panel 
Trina Solar 225 W 
Panels 

Panel 
Mounting 

Fixed Panels 

Motor Leeson 5 HP Motor 

Pump Danfoss APP 0.8 
Energy 
Recovery 

None 

Membrane 
4” Diameter, 40” long, 
Dow SWHRLE 

  

Haiti Lifetime Cost: 
$40663 
Capital Cost:  
$15088 
Water Cost:  
$4.03/m3 

 

Panel Suntech 295 W Panels 

Panel 
Mounting 

Fixed Panels 

Motor Leeson 1 HP Motor 

Pump 
NRD PRG 10 Vane 
Pump 

Energy 
Recovery 

8% Spectra Clark 
Pump 

Membrane 
4” Diameter, 40” long, 
Dow SWHRLE 

18% PX

Control

ElectronicsM

18% PX

Control

ElectronicsM

8% PX

Control

ElectronicsM

M

Control
Electronics

8% PX

Control

ElectronicsM
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To demonstrate both the effectiveness of the modular design approach and the location 

dependency, the performance of the system designed to produce an average of 1 m3 average in 

Haiti was simulated in Boston. The results for this system were compared to those of the system 

designed for Boston. The system simulation for an average spring day is shown in Figure 6.9. 

The system tailored for Boston produces 1.09 m3 of water on the spring day, while the system 

tailored for Haiti is only produces 0.69 m3 of water. 

 

Figure 6.9: Comparison of two systems simulated in Boston. 

 

Over the course of the year, the system optimized for Boston is able to produce 1.03 m3 of 

water per day on average at a cost of $4.71/m3. The system optimized for Haiti produces 0.65 m3 

of water per day on average at a cost of $6.85/m3. The algorithm effectively designs a system for 

a location and demand. 

6.3.2 Varied System Size 

Different scale systems were designed for Boston, MA. The results for systems which 

produce 1 m3, 5 m3 and 20 m3 of water per day are shown in Table 6.12. The system 

configuration becomes more complex as the water demand increases. The effect of economies of 

scale can be seen. For the 1m3 system, the water cost is $4.71/m3. For the 20 m3 system, the 

water cost decreases to $3.01/m3. This demonstrates the modular design algorithm is effective at 

designing systems of different sizes. 
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Table 6.12: Results of modular design approach for various size systems in Boston, MA. 

6.3.3 Cost Sensitivity 

The cases conducted above assume a discount rate of 4% and a system life of 25 years. 

These factors can vary depending on the economic climate and the maintenance abilities of the 

communities in which the systems are implemented. To show the trends in water cost due to 

these factors, a sensitivity study was conducted. The results for this study are shown in Table 

6.13. For the baseline case of 4% interest and a 25 year system life, the overall cost of water 

produced by the system is $4.71/m3. At the other end of the spectrum, a system that has an 8% 

interest rate and lasts 10 years produces water at a cost of $7.23/m3, a cost increase of over 50%. 

This shows that the choosing the correct values is critical for accurate cost modeling. Future 

System 
Location 

System Stats System Configuration Component Details 

1 m3 Lifetime Cost: 
$43874 
Capital Cost:  
$17104 
Water Cost:  
$4.71/m3 

 

Panel 
Trina Solar 225 W 
Panels 

Panel 
Mounting 

Fixed Panels 

Motor Leeson 1 HP Motor 

Pump 
NRD PRG 10 Vane 
Pump 

Energy 
Recovery 

18% Spectra Clark 
Pump 

Membrane 
4” Diameter, 40” long, 
Dow SWHRLE 

5 m3 Lifetime Cost: 
$160672 
Capital Cost: 
$49562 
Water Cost: 
$3.45 /m3 

 

Panel 
Trina Solar 225 W 
Panels 

Panel 
Mounting 

Fixed Panels 

Motor 
2 x Leeson 5 HP 
Motor 

Pump 2 x Danfoss APP 2.5 
Energy 
Recovery 

ERI PX-30S 

Membrane 
8” Diameter, 40” long, 
Dow SWHRLE 

  

20 m3 Lifetime Cost: 
$547279 
Capital Cost: 
$120761  
Water Cost:  
$3.01/m3 

 

Panel 

39 x Suntech  295 W 
Panels  
40 x Trina Solar 225 
W Panels 

Panel 
Mounting 

Fixed Panels 

Motors 
Leeson 15 HP Motor,  
Leeson 10 HP Motor 

Pumps 
Danfoss APP 3.5 
Danfoss APP 2.5 

Energy 
Recovery 

Flowserve DWEER 

Membrane 
2 x 8” Diameter, 40” 
long, Dow 
SW30XLE-400i 

18% PX

Control

ElectronicsM

M

PX

M

Control

Electronics

M

PX

M

Control

Electronics

X 39

X 40
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work could implement the modular design approach with uncertainty in these two cost 

parameters. 

Table 6.13: Sensitivity of water cost for various interest rates and system lifetimes for 1m3 

Boston, MA system. 
 Interest Rate 

4% 6% 8% 

System Life 

25 Years $4.71/m3 $5.13/m3 $5.59/m3 
20 Years $4.99/m3 $5.40/m3 $5.84/m3 
15 Years $5.48/m3 $5.87/m3 $6.28/m3 
10 Years $6.47/m3 $6.84/m3 $7.23/m3 

6.3.4 Varied Inventory 

The modular design approach can also be used by companies to determine if new 

components will make an impact on the overall market. In order to validate that claim, a case 

study was conducted with a new component added to the inventory. The new component is a 

pressure exchange device, the RO-Boost, manufactured by Danfoss. It operates on the same 

principles as the Clark Pump manufactured by Spectra Watermakers, and has a 13% recovery 

ratio. Based on personal communication, this device would likely be priced at $2499 per unit. 

 This expanded inventory was used to design a system a new 1 m3 PVRO system for 

Cyprus. With the original inventory, the most cost effective system design did not include an 

energy recovery device, see Table 6.11. The total lifetime cost of the system using the original 

inventory is $39943 and the water cost is $3.92/m3. When the expanded inventory is used, the 

new design includes the Danfoss energy recovery device. The total lifetime cost of the new 

configuration is $38,139 and the total water cost is $3.87/m3. The configurations are shown in 

Figure 6.10. 

 

Figure 6.10: System designed in Cyprus using original inventory (left) and expanded inventory 

(right). 

M

Control

Electronics

13% PX

Control

ElectronicsM
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6.3.5 Convergence Properties 

The case study results show that the modular design approach is effective when used to 

configure systems for different locations and different water demand requirements. The 

computation time and convergence properties of process must also be considered. Since the 

proposed solution is meant for design of PVRO systems by non-experts, all cases were 

conducted on a regular desktop computer containing an Intel 2.8 GHz Dual Core processor and 4 

GB of RAM. The total CPU time required for an individual case ranged from 5.2 hours to 32.7 

hours, with an average time of 16.1 hours. The designs are not generated instantaneously, but 

total computation time is not unreasonable. 

The convergence properties of the genetic algorithm optimization were also studied. The 

genetic algorithm optimization process is heuristic, so there is no guarantee that the optimizer 

will converge to a minimum. Convergence was studied by repeating the 1 m3 system 

optimization for Boston 10 times. A sample convergence pattern for one of these cases can be 

seen in Figure 6.11. In this case, the final system configuration is reached by a path which 

includes infeasible system configurations that don’t meet the water production requirements. In 

the end, the optimizer determines a low-cost feasible solution. 

In the 10 cases conducted, the optimization converges to the same, lowest-cost 

configuration 7 times. This lowest cost solution has an equivalent annual cost of $2,809 or a net 

present cost of $43,874. The cases that didn’t converge to this configuration also had low overall 

costs, with the maximum case having an equivalent annual cost of $2,876 and a net present cost 

of $44,923. 

 

Figure 6.11: Convergence of PVRO design for 1 m3 system in Boston. 



Chapter 6. Deterministic Case Studies  118 
 

6.4 Summary 

This section presented case studies for the design of PVRO systems using the modular 

design approach. The approach uses filters to limit the size of the design space and then uses a 

genetic algorithm to optimize the system design. The parameters of the genetic algorithm are 

selected based on a study presented in this section. It is shown that the approach is able to tailor 

systems for a wide range of locations and water demands from a large system inventory. In 

addition, it is shown that the approach is able to repeatedly generate low-cost configurations for a 

given application. 
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CHAPTER 

7  
ACCOMMODATING VARIATIONS  

The previous chapter demonstrated that the modular design approach can be used to 

configure PVRO systems under deterministic environmental conditions. However, the solar 

radiation and water demand vary considerably from year-to-year and a PVRO design must meet 

the water demand in spite of such uncertainty. This chapter presents two approaches to 

accommodate these variations during the design phase, and case studies to evaluate their 

performance. 

7.1 Problem Description 

In this chapter, the variations in the water demand and solar insolation are incorporated 

into the design. The overall design goal remains the same: determine the PVRO system with the 

lowest lifetime cost that meets the water demand of an individual location. When considering 

these variations, the sequence of events and the water storage becomes important. The design 

requirements are slightly different for the problems in this chapter. Instead of meeting an average 

daily water production requirement, the water demand must be met with a specified probability. 

The problem statement for this case becomes: 

 

max

tank

max

max

min max

minimize ( , )

subject to ( , ) 0
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where Ctank represents the concentration of the desalinated water in the storage tank, and LOWP 

represents the loss-of-water probability as given by: 

 
# , water not supplied

#

hours
LOWP

total hours
=   (7.2) 

Details of the LOWP calculation for the different design methods are presented in the following 

section. 

The PVRO component inventory used for these design problems is identical to the 

inventory specified in section 6.3.3. However, since the sequence in which the events occur is 

important, the size of water storage plays a large role, so this cost is considered separately. The 

overall cost of water storage varies greatly since these units are usually constructed locally for 

each system. The assumed costs used in these studies are from approximated tank costs for 

developing world applications and are listed in Table 7.1 [138]. 

Table 7.1: Water tank details. 
Tank Volume Cost 

1 m3 $200 
2 m3 $300 
5 m3 $600 

10 m3 $1000 
20 m3 $1600 
40 m3 $3000 
60 m3 $5000 

 

Bacterial contamination and algal growth of stored water is a common concern. To 

alleviate these effects; water storage will be limited to 10 times the average daily water 

consumption. In addition, it is assumed that the water is chlorinated to maintain drinkability. The 

cost of the post-treatment chlorination system is factored into the infrastructure costs described 

in section 5.5.2. 

7.2 Stochastic Modeling Approach 

The first method evaluates the PVRO systems using a time-series simulation. This section 

describes these simulation models. 

7.2.1 Simulation Model 

The time-series model used to evaluate the loss-of-water probability for a given PVRO 

system is shown in Figure 7.1. In this model, the graph method described in section 5.3 is used to 
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develop a simple relationship for the system production as a function of input power. This 

relationship is used to determine the loss-of-water probability for a given water demand and solar 

input profile. 

 

Figure 7.1: Stochastic modeling approach. 

 

The flowrate and concentration of the water being produced by the PVRO system are 

determined at each time step. These values are used to update the volume of stored water as 

follows: 

 
( ) ( )1 1

1
2

t t t t

t t

Q Q D D
V V t

− −

−

+ − +
= + ∆  (7.3) 

where Qt is the water being produced by the PVRO system at time t, and Dt is the water demand 

at time t and ∆t is the time step length. A one hour time-step is used for all simulations. The 

volume in the tank is limited by the tank capacity, Vtank as follows: 

 tank0
t

V V≤ ≤  (7.4) 

If the tank is empty, the water demand is not met during the time-period. 

Since the salt concentration of the produced by the system varies with the power input, the 

salt concentration in the water tank must also be updated at each step as follows: 

Generate RO system

graph

Use RO graph model to

determine Power vs.

Flow/Concentration
Relationships

Analyze historical

solar data and

generate 100 years of
solar data

Generate water

demand profile

Time-Series

Simulation

Design Variables

x, y

Loss-of-Water Probability
LOWP

Location

Average Water
Requirements
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 (7.5) 

This expression assumes that all the water is withdrawn from the tank at the end of the time 

period. If the concentration in the tank exceeds the maximum allowable value of 500 ppm, the 

water quality limit set by the World Health Organization [130], the water demand is not met. 

The system is simulated over a 100-year time period. This length of simulation was chosen 

because it has been shown that long-term simulations are required to provide reliable loss-of-

load probabilities for photovoltaic systems [139]. The models used to generate the solar data and 

water demand data for the 100-year time period are described below. To initialize the simulation, 

the water tank is assumed to be half-full and the water concentration is assumed to be 250 ppm. 

Since simulations are run for long time periods, the initial state of the water in the tank has little 

effect. 

Due to the seasonal water demand and solar energy cycles, the PVRO system is only 

seriously stressed during one period of the year. Therefore, the analysis can be simplified by only 

considering this time period. A series of case studies are conducted only considering the most 

critical month and are compared to the results using the full-year analysis. 

7.2.2 Solar Radiation Model 

Solar data is available for any location over a 21-year time horizon from the NASA 

Surface Meteorology and Solar Energy Database [8]. Unfortunately, data from this time period is 

not sufficient to ensure a loss-of-water probability lower than 0.01. In order to simulate the 

system performance over a longer time period, representative solar data is generated. A first-

order Markov chain model is used to generate the solar data is based on a method outlined by 

Richardson [140]. As shown in Figure 7.2, the model has two states: mostly sunny or mostly 

cloudy days. The characteristics of this model can be extracted from solar insolation data. 
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Figure 7.2: Markov model of solar radiation. 

 

The sunny and cloudy days have distinctly different levels of solar insolation. The mean 

insolation values for sunny and cloudy days over a 21-year time horizon in Boston, MA are 

shown in Figure 7.3. A first-order Fourier series is used to smooth the seasonal solar insolation 

for the sunny and cloudy days as follows: 

 
0,

1, 1,

2 2
( ) cos sin

2 365 365

sun

sun sun sun

a d d
H d a b

π π
= + +  (7.6) 

 
0,

1, 1,

2 2
( ) cos sin

2 365 365

cloud

cloud cloud cloud

a d d
H d a b

π π
= + +  (7.7) 

 

 

Figure 7.3: Solar insolation profile for Boston, MA. 

 

One of the characteristics that define the Markov chain model is the state transition 

probabilities. The probabilities are determined by counting the number of transitions over the 21-

Cloud

Sun

P(Cloud/Sun)P(Sun/Cloud)

P(Sun/Sun)

P(Cloud/Cloud)
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year history for the site. These transition probabilities vary over the course of the year and were 

fit using a first-order Fourier series: 

 
0,

1, 1,

2 2
( ) cos sin

2 365 365

P

P P

a d d
P d a b

π π
= + +  (7.8) 

The probability of transitioning from a sunny day to a sunny day and a cloudy day to a cloudy 

day for Boston, MA is shown in Figure 7.4. The other transition probabilities are determined as 

follows: 

 
( / ) 1 ( / )

( / ) 1 ( / )

P sun cloud P cloud cloud

P cloud sun P sun sun

= −

= −
 (7.9) 

where P(cloud/cloud) is the probability of having a cloudy day after a cloudy day, P(sun/cloud) 

is the probability of having a sunny day after a cloudy day, P(sun/sun) is the probability of 

having a sunny day following a sunny day, and P(cloud/sun) is the probability of having a 

cloudy day after a sunny day. 

 

Figure 7.4: Transition probabilities for Boston, MA. 

 

The characteristics of the solar insolation time series are determined from the Markov 

chain characteristics. The first step reduces the measured solar insolation sequence to residual 

elements. The residual is calculated as follows: 



Chapter 7. Accommodating Variations    125 
 

 

( ) ( )
, ( )

( )
( )

( ) ( )
, ( )

( )

sun

sun

cloud

cloud

H d H d
X d sun

d
d

H d H d
X d cloud

d

σ
χ

σ

 −
=


= 

− =

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where H(d) is the measured solar insolation on day d, ( )
sun

H d is the mean solar insolation on day 

d when the day is sunny, σsun(d) is the standard deviation of the solar insolation on day d when 

the day is sunny, ( )
cloud

H d is the solar insolation on day d when the day is cloudy, σcloud(d) is the 

standard deviation of the solar insolation on day d when the day is cloudy, and X(d) is the state of 

day d. This translation results in a stationary, zero-mean, unit variance sequence. An example 

residual sequence for Boston, MA is shown in Figure 7.5. 

 

Figure 7.5: Solar insolation residual for Boston, MA. 

 

A general model is developed from the properties of the solar insolation residuals. Figure 

7.6 shows the autocorrelation of the solar insolation residuals for Boston, MA. From the figure, it 

is evident that there is statistically significant correlation between the value of the residual from 

one day to the next. As such, a first-order autoregressive model is used to represent the residuals: 

 ( 1) ( ) ( )i a i b iχ χ ε+ = +  (7.11) 

where a is given by the value of the first-order lag in the autocovariance function, b is given by:

 21b a= −  (7.12) 
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and ε(i) is unit variance, white noise. For Boston, MA, a takes on a value of 0.19 and b takes on 

a value of 0.96. These values can be calculated for any location by analyzing the solar insolation 

sequence. 

 

Figure 7.6: Solar insolation residual autocorrelation for Boston, MA. 

 

Using the characterization of the solar insolation above, the simulated solar insolation 

sequence for the PVRO system is generated using the following process: 

1. The initial state (sunny or cloudy) is generated based on the overall day state 

probability on January 1. 

2. The sequence of day states is generated using the Markov chain model and transition 

probabilities. 

3. The sequence of residuals is generated using the first-order autoregressive model in 

equation (7.11). 

4. The residuals are translated back to daily solar insolation values depending on the state 

of the day, as given by: 

 
( ) ( ), ( )
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( ) ( ), ( )

s s

c c

i H i X i s
H i

i H i X i c

σ χ

σ χ

 + =
= 

+ =
 (7.13) 

5. The hourly insolation sequences are then generated from the daily solar insolation 

using the method specified in 5.1.1. 



Chapter 7. Accommodating Variations    127 
 

Figure 7.7 shows an example of a generated solar insolation sequence for Boston, MA. The 

characteristics of the generated sequence match the solar characteristics of the measured 

characteristics of the solar insolation shown in Figure 7.3. 

 

Figure 7.7: Generated solar insolation sequence for Boston, MA. 

7.2.3 System Demand Model 

Researchers have shown that solar radiation is related to water demand, but their models 

typically include many climatic variables unknown for the locations being studied here [141]. It 

is also expected that there may be some coupling between the amount of water stored and the 

water demand where residents would ration water usage when supply is low. However, given the 

data available, estimating and accounting for this effect is not possible here but can be 

considered in future work. 

Due to the lack of climatic variables that are used in many water demand models, a system 

demand model was determined using a process similar to that used to determine the solar 

radiation. The demand on a water system varies over the course of the year. In the water demand 

model developed here, the water demand is assumed to consist of a deterministic seasonal 

component and a random component as shown: 

 ( ) ( ) ( ), ,d d seas d randV d V d V d= +  (7.14) 

The seasonal component is determined by fitting a Fourier series to the data: 
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To analyze the variations in water demand, data was solicited from the Massachusetts 

Water Resources Authority. Data was obtained for 2005-2010 and the average value was fit with 

a Fourier series to determine the seasonal component. Since only the first harmonic had a 

significant contribution, higher order terms were ignored. The 2005 water demand and the 

calculated seasonal component are shown in Figure 7.8. 

 

Figure 7.8: Water use and yearly average in Boston, MA. 

 

The residuals of the water use data were calculated using the following relationship:

 ( )
( ) ( )

( )
demand

D

D d D d
d

d
χ

σ

−
=  (7.16) 

where D(d) is the measured water demand on day d, ( )D d is the mean demand on day d, σD(d) 

is the standard deviation of the demand on day d. Since the water demand is taken relative to the 

yearly average, regardless of the state of the day, the solar radiation residual is calculated without 

regard of the day state as follows: 
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where ( )H d is mean solar radiation on day d, and σH(d) is the standard deviation of the solar 

radiation on day d. 

The residuals of the water demand and solar insolation for 2005 are shown in Figure 7.9. 

Periods of high solar insolation often coincide with periods of high water use. This suggests that 

the water demand model should depend on the level of solar insolation. Therefore, both the water 

residual autocorrelation and cross-correlation between the water demand and solar insolation are 

examined. 

 

 Figure 7.9: Normalized water demand and solar insolation residuals. 

 

The autocorrelation of the water demand residuals can be seen in Figure 7.10. Statistically 

significant correlation between the values of the residuals from one day to the next is evident. 

This indicates that an autoregressive term should be included in the water demand model. 
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Figure 7.10: Water demand residual autocorrelation. 

 

The cross-correlation function between the solar insolation and the water demand is shown 

in Figure 7.11. This indicates evidence of a lagged relationship between the solar insolation and 

the water demand. However, since each of the sequences is autocorrelated, this cross-correlation 

may be misleading. To determine if the signals are correlated, each signal is pre-whitened [142]. 

  

 

Figure 7.11: Cross-correlation between solar insolation and water demand residuals. 
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The water demand and solar insolation sequences are pre-whitened using the simple first-

order filter: 

 ( ) ( ) ( )' 1Y d Y d Y dα= − −  (7.18) 

where α is the first order lag of the solar insolation autocorrelation function. The autocorrelation 

of the whitened solar insolation function is shown in Figure 7.12. The only statistically 

significant occurs at a lag of 0, indicating that the resulting signal is nearly white. 

 

Figure 7.12: Autocorrelation of whitened daily solar insolation sequence. 

 

The cross-correlation of the two whitened signals, see Figure 7.13, shows that a correlation 

exists between the solar insolation and the water demand. Significant correlations exist at lags of 

0 and 1. Based on these results, different models are fit to the water demand data. 
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Figure 7.13: Whitened cross-correlation between solar radiation and water use. 

 

The variable component of demand is modeled using an autoregressive distributed lag 

system that depends on current and previous values of the solar insolation residuals as well as the 

previous values water use:   

 ( ) ( ) ( ) ( ) ( ), , 0

1 0

m n

d rand i d rand i

i i

V d V d i H d i H d i u dα β α
= =

 = − + − − − + + ∑ ∑  (7.19) 

where u(d) is a noise input. The coefficients α and β are determined by fitting the data. Table 7.2 

shows testing results of three different model configurations. The tests show that there is only a 

small amount of accuracy gained by including a lag input for the solar insolation. As a result, the 

final model used is given by: 

 ( ) ( ) ( ) ( ) ( ), 1 , 0 01
d rand d rand

V d V d H d H d u dα β α = − + − + +   (7.20) 

The coefficients are selected for each season and the values used in simulation are shown in 

Table 7.3. The agreement between the model and the measured data is shown in Figure 7.14. 

Table 7.2: Water demand models tested. 
Case Conditions MSE R2 Chi-Squared Value 

1 m=0, n=0 199.6 0.840 0.369 
2 m=1, n=0 121.6 0.901 0.251 
3 m=1, n=1 121.1 0.903 0.248 

 

Table 7.3: Demand model coefficients. 
Coefficient Jan 1 – April 30 May 1 – Aug 31 Sept 1 – Dec 31 

α0 -0.169 -1.184 -0.198 
α1 0.982 0.828 0.859 
Β0 2.41 x 10-4 3.46 x 10-3 1.63 x 10-3 
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Figure 7.14: Water use and the model fit. 

 

The model developed above is tailored for Boston, but the general model representation 

can be used to develop models for other locations. Ideally, demand data is available for analysis 

at every location to allow for estimation of the model coefficients. Unfortunately, this is not 

always the case. By making the assumption that the relationship between water demand and solar 

insolation is the same in other locations, the demand model can be scaled to determine the water 

demand for other locations and system sizes. The demand scaling factor is given by: 

 
0,

,2
dV

d ave

a

V
φ =  (7.21) 

where a0,Vd is the Fourier coefficient for the analyzed water data, and Vd,ave is the average water 

demand for the case of interest. With the scaling factor, the demand for the individual application 

is given by: 

 ( ) ( ) ( ) ( ), , ,d app d d seas d randV d V d V d V dφ φ φ= = +  (7.22) 

The above analysis provides the amount of water used over the course of a day. However, 

a shorter time step is needed to determine if the PVRO system is able to instantaneously meet the 

water demand. All cases considered here use an hourly time-step to determine system 

performance. An average daily water use profile was developed based on [141]. The average 

profile for a small family, shown in Figure 7.15, has usage peaks in the morning and evening. 

For simulation, this hourly profile is scaled based on the daily water demand as follows: 
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V d h V d

V h dh
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∫
 (7.23) 

where Vd,base(h) is the baseline hourly water demand specified in Figure 7.15. 

 

Figure 7.15: Assumed hourly water demand profile. 

7.3 Stochastic Modeling Case Studies 

A series of case studies were conducted to test the stochastic modeling approach and to 

demonstrate the effect of various loss of water probabilities. In these case studies, a PVRO 

system capable of providing an average water production of 1 m3 in Boston, MA, was designed. 

Two sets of studies are conducted: one that considers the entire year and one that only considers 

the month during which the system is most stressed. 

7.3.1 Full Year Simulations 

In the full-year simulations, the stochastic solar radiation model and water demand model 

described above are used to generate typical profiles for 100 years. The method described in 

section 7.2.1 is used to analyze the system loss-of-water probability. The inventory specified in 

section 6.3.3 is used to configure the lowest lifecycle cost system. As in the deterministic case 

studies, a system lifetime of 25-years and an interest rate of 4% are assumed. 

Cases are run for varying loss-of-water probabilities to illustrate the economic impact of 

more reliable PVRO systems. Designs are generated for loss-of-water probabilities ranging from 
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0.01% to 10%.  A Pareto plot of the loss-of-water probability versus the resulting lifetime PVRO 

system costs is shown in Figure 7.16. Different methods can be used in multi-objective 

optimization to generate Pareto plots. Here, the plot is generated by specifying the required loss 

of water probability and optimizing a system to meet the requirement. It is evident as probability 

of meeting demand increases, so does system cost. Here, the overall expense increases by almost 

30%. The additional expense for higher reliability may not be justified in some locations if there 

are other backup water options available, so the appropriate level of reliability is also location 

dependent. As the higher loss of water probabilities are reached, the Pareto plot levels off.  This 

occurs due to constraints of the discrete inventory. As the loss-of-water probability increases, the 

systems become smaller and there are fewer components and subsystems which can be decreased 

or eliminated while meeting the system requirements. 

 

Figure 7.16: Pareto plot of lifetime system cost versus loss-of-water probability. 

 

Table 7.4 details system configurations resulting from different loss-of-water probability 

constraints. As the loss of water probability increases, the overall system cost and complexity 

decrease. For the low probability levels, the system configurations are different. The inventory 

has a limited number of small-scale energy recovery devices. The small-scale energy recovery 

devices in the inventory are unable to provide the required flowrates to meet the demands due to 

the component operational limits and are not included in the final system configuration as a 

result. For the remaining configurations, the number of membranes and PV panels decrease as 

the probability increases, resulting in lower system costs. 
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Table 7.4: Results of modular design approach for 1 m3 systems with various LOWP. 

7.3.2 Critical Month Simulations 

In the critical month of case studies, the stochastic solar radiation model and water demand 

model described above are used to generate typical profiles for 100 years, which are used to 

determine the months of highest water stress. Since the amount of water produced is proportional 

to the solar insolation is the month in which the system is most stressed. The water demand/solar 

Loss of 
Water 
Probability 

System Stats System Configuration Component Details 

0.01% Lifetime Cost: 
$47788 
Capital Cost: 
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Average Cost 
of Water: 
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0.1% Lifetime Cost: 
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of Water: 
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Dow SWHRLE 

Water 
Tank Size 

10m3 

1% Lifetime Cost: 
$38262 
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10% Lifetime Cost: 
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Capital Cost: 
$11769  
Average Cost 
of Water: 
$4.09/m3 
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insolation ratio is determined for every month over the 100-year period, and the month with the 

highest ratio is selected for each year. This ratio varies by location.  Figure 7.17 shows the 

system demand ratio over one year for the 1 m3 Boston system, as well as the long-term average. 

The average over the 100-year time window indicates that December is the critical period and is 

used in the simulations. 

 

Figure 7.17: Demand solar insolation ratio for sample year and 100-year average. 

 

The method described in section 7.2.1 is used to analyze the system loss-of-water 

probability. The loss-of-water probability for the entire year is estimated using two methods to 

provide an upper and lower bound. Since simulation data is only provided for the critical month, 

the lower bound on the year-long loss-of-water probability is determined by assuming all other 

time periods are able to satisfy demand. The upper bound on the year-long loss-of-water 

probability is determined by assuming all other months during the year provide the same level of 

performance. The inventory specified in section 6.3.3 is again used to configure the lowest 

lifecycle cost system and a system lifetime of 25-years and an interest rate of 4% are again 

assumed. 

Designs are generated for loss-of-water probabilities ranging from 0.1% to 10%. A Pareto 

plot showing the how the total lifetime cost varies with loss of water probability is shown in 

Figure 7.18. Both methods for estimating the year-long loss-of-water probability are shown. The 

results show that the assumption that the rest of the year the system is able to provide water fails 

as these cases consistently result in lower-cost configurations than the full-year simulations. This 
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indicates the system is stressed at other points of the year. The failure in assuming the non-

simulated months are able to meet demand is especially evident at high loss of water 

probabilities. For this case, at a probability of 10%, the system does not need to provide any 

water during the critical month to meet the design requirements. As a result, the system is 

configured to meet the minimum requirements of a valid system. 

The cases where the loss-of-water probability for the unsimulated portion of the year is 

assumed to be the same as the critical month result in solutions that are more expensive than the 

full-year cases. This is expected as the system is sized to the worst month. As the loss-of-water 

probability increases, the distance between the upper bound and the full-year simulation cases 

narrows. This occurs since the systems get smaller as the probability increases and accordingly, 

there are fewer system design choices. 

 

Figure 7.18: Pareto plot of lifetime system cost versus loss-of-water probability. 

  

The overall computation time for the month long cases is greatly reduced. The 

computation time required on a normal desktop computer ranged from 22.3 to 43.1 hours with an 

average value of 28.5 hours. However, greater reduction in computation time is still desired. 

7.4 Calculation of Loss-of-Water Probability Using Historical Data 

Section 7.3 presented a simulation-based approach to estimate the loss-of-water probability 

for a given system design. While this approach was shown to be effective, the computation time 
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required for a single optimization ranges between 3-5 days on a standard desktop computer. A 

faster method is needed. 

To decrease the computation time required, an analytic method for computing the LOWP is 

developed by using the knowledge of the solar insolation and water demand distributions to 

determine the distribution of the net change in stored water. The amount of water in storage is 

represented by a number of discrete states. The probability of transitioning between these states 

during a day is determined using the tank volume change distribution. Using this representation, 

the loss of water probability can be determined analytically. 

Several simplifying assumptions are applied in order to estimate the LOWP using the data 

from the month with the highest solar demand. First, it is assumed that the solar radiation and 

water demand on a given day are independent of the values on previous days. It is also assumed 

that the critical water storage level is reached at the end of the day. 

The solar insolation during the critical month is analyzed first. The daily data from a 21-

year time period is obtained for any location using the NASA Surface Meteorology Database [8]. 

This data can be analyzed to determine a solar insolation histogram. An example for the month 

of December in Boston, MA can be seen in Figure 7.19. 

 

Figure 7.19: Normalized histogram of Boston daily solar insolation in December. 

 

Next, the probability distribution is generated from the solar insolation distribution for a 

given PVRO system. Hourly solar radiation profiles are generated using the standard outlined in 

section 5.1.1 and the relationship between solar insolation and water production is calculated 
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[122]. The daily water production distribution is directly calculated from the daily solar 

insolation distribution using this relationship. Figure 7.20 shows the relation between solar 

insolation and water production for a small PVRO system in Boston, as well as the resulting 

water production distribution for the critical month of December. 

 

Figure 7.20: Daily water production for a small PVRO system in Boston and the normalized 

histogram of daily water production in December. 

 

Variation in the water demand is then considered. A histogram of the water demand over 

the month of December is generated from the collected data from the Massachusetts Water 

Resources Authority. Individual histograms are generated for different levels of solar radiation to 

account for correlation between the two random variables. The water demand histograms for a 1 

m3 system located in Boston during the month of December are shown in Figure 7.21. The 

correlation between water demand and solar insolation is low during the month of December, but 

is included here to illustrate the general method. Other locations may have higher correlation. As 

mentioned above, there may be other effects which are not accounted for here due to lack of 

information, such as coupling between water tank level and system demand. 
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Figure 7.21: Normalized histograms of daily water demand in December for different ranges of 

solar insolation. 

 

Once distributions for the solar insolation and water demand are generated, the distribution 

of the change in water tank level is calculated. The water production is calculated for each level 
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of solar insolation. The distribution in the water tank level is calculated by comparing water 

production and water use for that insolation level. The probability of a given change in water 

tank level is calculated by summing over all insolation levels as follows: 

 
1

1 tank 2 ,1 ,2 ,1 ,2

,1 ,2 1 ,2 ,1 2

( ) ( | ) ( | ) 

                                s.t. -  & -

NH
H

prod prod prod use use use

H H

prod use prod use

P V V V P V V V H P V V V H

V V V V V V

=

≤ ∆ < = ≤ < ≤ <

> <

∑
 (7.24) 

where ∆Vtank is the change in tank water level, Vprod is the volume of water produced and Vuse is 

the volume of water used. The resulting distribution for the example case of a 1 m3 system in 

Boston is shown in Figure 7.22. 

 

 

Figure 7.22: Normalized histogram of daily tank volume change for a 1 m3 PVRO system in 

Boston during the month of December. 

 

The tank is discretized into N levels, with level 1 being an empty tank and level N being a 

full tank. Given the probability distribution of water in the tank on day i, the distribution on day 

i+1 can be determined using the following: 

 1i i+ =π Aπ  (7.25) 

where A is the transition probability matrix and π is and N x 1 vector representing the probability 

water volume in the being at a given level.  The entries of A are given by the tank volume 

change probability as follows: 
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where Vt is the size of the discretization of the tank volume. 

Given a known initial volume of a half-full tank, the probability distribution of the tank 

storage level can be determined throughout the course of the month. This is done for the example 

of 1 m3 system in Boston starting with a half-full 5 m3 tank, and the resulting tank volume 

distributions are shown in Figure 7.23. Due to the limits of the tank size, spikes occur in the 

probability distribution when the tank is empty (0 m3) and when the tank is at full capacity (5 

m3). Since the initial volume is unknown, the steady state value is utilized to determine the 

system loss-of-water probability. The steady state distribution can be determined using: 

 ( ) 0ss− =I A π  (7.27) 

The system loss of water probability is given by the probability that the system is in the lowest 

state in the steady state condition. For the example case, the loss-of-water probability is 0.81%. 
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Figure 7.23: Evolution of water tank storage distribution in December. 

 

This method can be used to calculate the loss-of-water probability in the final optimization 

stage of the modular design approach for PVRO systems. This approach substitutes for the time-

series simulations. Case studies for this approach are presented below.   

7.5 Direct Calculation Case Studies 

Case studies were conducted using the direct calculation of the loss-of water probability. 

The problem statement remains the same as the cases presented in section 7.3. The inventory 

specified in section 6.3.3 is again used to configure the lowest lifecycle cost system, and a 

system lifetime of 25-years and an interest rate of 4% are assumed. Cases are run for varying 

loss-of-water probabilities to see the tradeoff between cost and reliability. Designs are generated 

for loss-of-water probabilities between 0.01% and 10%. A Pareto plot of the loss-of-water 

probability versus the resulting lifetime PVRO system costs can be seen in Figure 7.24 and 

resulting system configurations can be seen in Table 7.5. It can be seen that the results are very 

similar to the full-year simulation case studies. The resulting systems are typically larger since 

they are sized according to the worst period of the year. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5

N
o

rm
a

liz
e

d
 D

is
tr

ib
u

ti
o

n

Tank Volume (m
3
)

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5

N
o

rm
a

liz
e

d
 D

is
tr

ib
u

ti
o

n

Tank Volume (m
3
)

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

Tank Volume (m
3)

N
o

rm
a

liz
e

d
 D

is
tr

ib
u

ti
o

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1 2 3 4 5

N
o

rm
a

liz
e

d
 D

is
tr

ib
u

ti
o

n

Tank Volume (m3)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1 2 3 4 5

N
o

rm
a

liz
e

d
 D

is
tr

ib
u

ti
o

n

Tank Volume (m
3)

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

N
o

rm
a

liz
e

d
 D

is
tr

ib
u

ti
o

n

Tank Volume (m
3)

Day 1 Day 5 Day 10

Day 30Day 20 Steady State



Chapter 7. Accommodating Variations    145 
 

 

Figure 7.24: Pareto plot of lifetime system cost versus loss-of-water probability for direct 

LOWP calculation approach. 

 

Table 7.5: Results of modular design approach for 1 m3 systems when using the direct LOWP 

calculation. 

 

For the cases considered, the direct calculation method typically results in a higher cost 

system cost than the full-year simulation. This matches intuition as the system components are 

Loss of 
Water 
Probability 

System Stats System Configuration Component Details 

0.01% Lifetime Cost: 
$48586 
Capital Cost: 
$24092 
Average Cost 
of Water: 
$5.32/m3 
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Mounting 
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Pump  Danfoss APP 1.8 
Energy 
Recovery  
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Water 
Tank Size 
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10% Lifetime Cost: 
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of Water: 
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sized to meet demand in the worst month. An exception occurs at a loss-of-water probability of 

0.05%. The resulting system configurations for this case can be seen in Figure 7.25. It is seen 

that the resulting system topologies are different. This occurs due to the limited one month time-

window which is considered during the direct calculation approach. During this worst month, 

which is the winter for the case studied, the system demand and water production flowrates are 

lower. As a result, the system components which can meet demand during this month may reach 

their operational limits when system flowrates are required to be higher during the summer 

months. This is the case with the energy recovery device and a different configuration is required 

when the full year is considered. 

 

 

Figure 7.25: Systems designed for LOWP = 0.05% using full-year simulations (left) and direct 

calculation of LOWP in the critical month (right). 

 

The computation time for this method is also greatly reduced from the full-year simulation 

method. In the cases studied, the total computation time on a computer with an Intel 2.8 GHz 

Dual Core processor and 4 GB of RAM ranged between 18.3 and 31.7 hours with an average of 

22.5 hours. This method decreases the computation time required, and can be used to design 

systems with the required loss-of-water probability. For the majority of cases studies, the direct 

LOWP calculation method provides similar results to the full-year simulations. Due to 

simplifications made, checks should be implemented to ensure the resulting system can meet the 

required LOWP during the remaining portion of the year. \ 
\
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CHAPTER 

8  
SUMMARY AND CONCLUSIONS 

8.1 Summary 

This thesis describes an approach for automatically designing systems composed of 

modular components. Engineering principles are used to limit the scope of the design problem. 

Optimization methods are then used to determine the modular system configuration. The 

application considered in detail here is the design of PVRO systems for small communities. The 

methods are formulated to be robust to uncertainties in system requirements. Software tools can 

be created from the modular design methods developed in this research to enable modular system 

design by non-experts. 

Chapter 1 presents the motivation for this research. Clean drinking water is a major issue 

for many locations and PVRO systems can provide a possible solution. PVRO systems are 

composed of modular components, so designing a system for an individual location is beyond 

the expertise available in many parts of the world. For a given modular inventory, a large number 

of possible system configurations exist. Methods which enable non-experts to custom configure 

PVRO systems for individual locations can make this technology accessible to many parts of the 

world. 

Chapter 2 presents relevant literature on the topics of PVRO systems and modular design 

methods. PVRO systems have been designed and deployed in many regions. These systems are 

custom designed for individual locations and water demands. No general design methods have 

been developed for PVRO, although they exist for other applications including robotics, 

electronic circuits, and computer programs. These methods are application specific and do not 

consider many aspects important for PVRO system design, such as accommodating a large 

component inventory, complex system physics, and variations in the system environment. 
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Chapter 3 presents a PVRO feasibility study that was conducted to determine the potential 

impact of this research. The feasibility study compares the economics of PVRO systems to those 

of diesel reverse osmosis systems and transported water for a wide range of locations. It shows 

that PVRO systems are economically viable for many small communities located in equatorial 

regions. It also shows the area where PVRO is economically viable will increase as the system 

costs decrease. Decreasing the system costs can be accomplished using by using modular design 

methods. 

Chapter 4 presents the details of the modular design approach. Engineering principles are 

used to reduce the system design space, and optimization methods are then used to configure a 

modular system for an individual application. The method is applied in a design space study for a 

PVRO system, where it greatly reduces the size of the design space. A parallel example is 

presented for the design of a hybrid car. The design studies show that this method has great 

potential and can be applied to many modular systems. 

Chapter 5 presents the PVRO system models used in the modular design approach. 

Physics-based models are developed for individual system components. A new method of 

representing different reverse osmosis system configurations is developed which uses a graph to 

indicate the component connections. This graph representation is implemented in Matlab to 

calculate the PVRO system production for given solar input. A surrogate model of the solar 

radiation to water production relationship is developed to increase calculation speed for different 

solar profiles. This model is validated using an experimental PVRO system that was constructed 

as a part of this research. 

Chapter 6 presents the implementation of the modular design approach for PVRO system 

design using deterministic solar radiation inputs and demands. The approach is able to tailor 

systems for a wide range of locations and water demands from a large system inventory. The 

validity of these solutions is demonstrated by simulating a custom designed system in the wrong 

location. A final case study demonstrates that the method can be used to determine if new 

components are capable of impacting the market. 

Chapter 7 presents the implementation of the modular design approach for PVRO systems 

using variable solar insolation and water demand. Two methods that use historical solar 

insolation and water demand to account for variations are presented. The first method 

characterizes the historical data and develops models to synthetically generate data, then 
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simulates the system over a period of 100 years to determine the loss-of-water probability. In the 

second method, distributions of solar radiation and water demand are calculated from historical 

data and used to directly calculate the probability of running out of water in the worst month of 

the year. Modular design cases were conducted for both methods. The full-year simulation 

method is able to design systems for varying loss-of-water probabilities, but the computation 

time required is over 3 days for every case considered. The direct calculation method is shown to 

yield similar results to the full-year simulation method, and the computation time is greatly 

reduced to less than 1 day in many instances. The direct calculation method can be used to 

quickly estimate the failure probability of many systems with variable inputs. 

8.2 Suggestions for Future Work 

This thesis presents a general design approach for modular systems and studies its 

application to the design of PVRO systems in detail. There are many interesting opportunities for 

future research on both the design approach and the application of PVRO systems. 

A major challenge with reverse osmosis desalination is proper pre-treatment of the 

incoming feedwater. In certain locations, the feedwater may contain bacteria or salts that are near 

their saturation limits. This is of particular concern when designing brackish water systems. This 

research did not consider the effects and costs associated with different pre-treatment systems. 

Modeling these aspects and adding them to the modular design approach will greatly aid system 

designers. 

As PVRO systems age, the performance of individual components will degrade. These 

effects may result in much lower PVRO system production as the components reach the end of 

their lives. The effects of degradation can be incorporated into the system models for to ensure 

that the designed system is able to meet the demands over the entire system life. 

Another design issue that may be incorporated into a modular design approach is 

accommodating component failure. Many of the system configurations produced by the modular 

design implementation will fail if one key component fails. Failure of the system may have 

terrible consequences. Developing a method to analyze the effects of component failure and 

address them during the design can be an interesting extension of this work. 

In some locations where PVRO systems are economically viable, the system would not be 

required to provide all the water for community. For example, locations in the developing world 
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may already have rainwater catchments in place. Rainwater systems complement PVRO systems 

since they provide water during inclement weather. Designing these complementary systems 

provides a different set of challenges and would be an interesting avenue for future research. 

This thesis developed a method to directly calculate the probability of failing to provide 

adequate water from statistical solar radiation and water use data. The method made simplifying 

assumptions to allow for the calculation. The main simplifications are that the system is only 

stressed during one-month of the year and that the solar radiation and water use are independent 

of previous values. As a result, this method provides an estimate of the loss-of-water probability. 

The method should be expanded to ensure conditions outside the critical month are considered. 

In addition, development of an expanded approach that considers day-to-day persistence of solar 

radiation and demand will improve the accuracy of loss-of-water probability calculation and 

make it useful for future design applications.   

Another promising avenue of research is the implementation of the PVRO technology from 

this research in the developing world. For a PVRO system to have a long-term impact on a 

community in the developing world, it must be properly operated and maintained. Developing a 

control system with a robust user interface that identifies potential system issues will be essential 

to the successful implementation of these systems. In addition, effective training programs and 

maintenance programs will be required. The technical and social aspects of deploying such 

systems provide interesting avenues for future research. 
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 APPENDIX  

A  
ENUMERATION OF PVRO DESIGN SPACE 

A.1 Rules of Combinatorics 

The enumeration of the total number of system configurations for a given inventory of PV 

and RO components rely on basic rules of combinatorics, which are outlined here. 

Product Rule 

If event A can occur in α ways and event B can occur in β ways and the events are 

independent, then the total number of ways that A and B can simultaneously occur is αβ ways. 

Sum Rule 

If event A can occur in α ways and event B can occur in β ways and the two events 

cannot occur at that same time, then the total number of ways that A and B can occur is α + β 

ways. 

Permutations 

A permutation is an ordered arrangement of the elements of a set. The number of 

permutations with r elements that can be formed from a set with n distinct elements is given by: 

 
!

( , ) ( 1)( 2) ( 1)
!

n
P n r n n n n r

n r
= − − − + =

−
�  (A.1) 

Combinations 

A combination is an unordered arrangement of the elements of a set. The number of 

combinations with r elements that can be formed from a set with n distinct elements is given by: 
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Combinations and Permutations of Multi-Sets 

A multi-set is a set which contains multiple elements that are not unique. An example of a 

multi-set with 8 elements and 3 objects is S={a,a,b,b,c,c,c,c}. 

Infinite repetition number 

If there is an infinite number of each type of object in the set, the objects are said to have 

an infinite repetition number. In this special case the number of r-permutations of the set is: 

 ( , ) r
P n r k=  (A.3) 

where n is the total number of objects and k is the number of distinct objects. When there are 

finite numbers of objects, this expression is also true if nk≤r for all k, where nk is the number of 

object k available in the inventory. 

For cases with infinite repetition number, the number of r-combinations of the multi-set is: 
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 (A.4) 

Again, this expression is also valid for finite repetition number sets where nk<r for all k. 

Finite Repetition Number 

If there are finite numbers of each type of object in the set, the objects are said to have a 

finite repetition number. In this case the number of permutations of the set is: 

 
1 2

!
( )

! ! !
k

n
P n

n n n
=

�
 (A.5) 

where ni is the total number of type i objects. 

The number of r-combinations of a multi-set is as follows [143]: 
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where the sum is taken for all terms where 
1

1
j

p

i

j

k r n p
=

+ − − −∑ >0. 

For example, for simple set, S={a,a,b,b,b}, the 3-combinations are {a,a,b},{a,b,b} and {b,b,b}, 

and the total number can be calculated as: 
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A.2 Number of Possible Reverse Osmosis Systems 

In this section, the number of possible reverse osmosis systems is determined for different 

inventories. A simple case with all distinct pumps, membranes, and energy recovery devices is 

considered first. This is followed by a case with all identical components. Finally, a realistic 

inventory with mixed component types is considered. 

A.2.1 Distinct Reverse Osmosis Components 

To determine the total number of configurations, the component connection matrix 

representation is used. A simple connection matrix for a RO system with two pumps, two reverse 

osmosis membranes and one energy recovery device is shown in Figure A.1. In this connection 

matrix, the columns represent individual component inputs and the rows represent the individual 

component outputs. An entry of 1 within the matrix indicates that the components are connected. 

Using this representation, it can be seen that the total number of system configurations for a 

selection of distinct components can be written as:  

 2 inputs outputsn n

confign =  (A.8) 

where ninputs are the total number of component inputs and noutputs are the total number of 

component outputs for a given subset of components. 
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Figure A.1: Pareto plot of lifetime system cost versus loss-of-water probability for direct LOWP 

calculation approach. 

 

For a simple set of components with np distinct pumps in the system, nro distinct reverse 

osmosis membranes and ner distinct energy recovery devices or pressure control valves, the total 

number of component outputs is given by: 

 
2 1

outputs p ro er
n n n n= + + +

 (A.9) 

and total number of component inputs is given by: 

 
2

inputs p erro
n n n n= + + +

 (A.10) 

Even with distinct components, not all of the configurations are distinct. If a zero row or 

column exists in this connection matrix, a component is not connected. Taking this into account, 

the number of matrices that do not result in a fully connected system can be written as: 

 
discon zr zc zrzc

n n n n= + −
 (A.11) 

where nzr represents the number of connection matrices with zero rows, nzc represents the number 

of connection matrices with zero columns, and nzrzc represent the number of connection matrices 

with zero rows and zero columns. 

The number of connection matrices that have zero rows is found using the following 

methodology. The number of cases that have noutputs zero rows (all zero rows) is 1. The number 

of configurations with noutputs-1 zero rows is given by: 
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Next, considering the number of configurations with noutputs-2 zero rows,
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This trend continues and total number of connection matrices with zero rows is given by: 
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Similarly, the number of connection matrices that have zero columns is given by: 
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The same methodology can be followed to determine the number of cases that contain a zero row 

and zero column: 
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Using equations (A.8)-(A.11) and equations (A.14)-(A.16), the total number of configurations 

for a given selection of components when all components in the inventory are distinct can be 

written as: 
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 Taking into account the number of different ways to select the components, the total 

number of configurations when all components are distinct is given by 
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where Np is the total number of pumps in the inventory, Nro is the total number of reverse 

osmosis membranes in the inventory, and Ner is the total number of energy recovery units or 

pressure control valves in the inventory. The number of component outputs for configuration 

(i,j,k) is given by: 

 ( , , ) 2 1
out

n i j k i j k= + + +  (A.19) 

and the number of component inputs for configuration (i,j,k) is given by: 

 ( , , ) 2
in
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A.2.2 Identical Reverse Osmosis Components 

Determining the number of different configurations that can result from an inventory in 

which all the pumps, reverse osmosis membranes, and energy recovery devices are the same 

follows a similar methodology. The main difference here is that the order of the rows and 

columns in the connection matrix associated with individual components does not matter, and 

different connection matrices result in the same system configuration. As a result, the number of 

configurations for a given selection of components becomes: 
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Using the sum rule, the total number of configurations that result when accounting for the 

number of different ways to select components is: 
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A.2.3 Full Reverse Osmosis Component Inventory 

A realistic inventory for an RO system consists of different types of pumps, membranes 

and energy recovery devices. The inventory will likely consist of more than one of each type of 

component. This example is a combination of the cases presented above. For this case, the 

number of system configurations for a given selection of components is given by: 
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where np,i is the number of pumps of type i, nro,i is the number of RO membranes of type i in the 

configuration, ner,i is the number of energy recovery devices or pressure control valves of type i 

in the configuration, Np is the total number of different types of pumps, Nro is the number of 

different types of reverse osmosis membranes, and Ner is the number of different types of energy 

recovery devices. The number of component outputs will be given by: 
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and the total number of component inputs is given by: 
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Using the sum rule, the total number of system configurations for the mixed reverse osmosis 

system component inventory is: 
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where Np,i is the total number of pumps of type i in the inventory, Nro,i is the total number of RO 

membranes in the inventory of type i and Ner,i is the total number of energy recovery devices of 

type i in the inventory. Using this relationship, the total number of distinct configurations can be 

derived for any reverse osmosis component inventory. 

A.3 Number of Possible Photovoltaic Power Systems 

This section determines the number of possible configurations for a PV system. A PV 

array consists of multiple PV panels in combinations of series and parallel connections. The 

layout of the array will affect the voltage and current output. The overall power will not be 

impacted as long as the modules connected in an individual sub array are matched in 

power/current output and configured in a way that is compatible with the control electronics. 

Since the configuration of panels does not impact the performance, the design choice for 

the PV subsystem is the number of panels to include in the system. For an inventory containing 

multiple types of PV panels, the number of configurations can be determined using the following 

methodology. For a given number of panels, the number of distinct configurations is given 

directly from the rules for combinations of multi-sets given in equation (A.6) as follows: 

,

,

1 2 ,

, ,

1, ,1 ,2 ,

0 1

,

1
( ; , , , ) ( 1)

1

pv type

j

pv type

p pv type

p

N
pv type pv ip

jpv exact pv pv pv N

p i i i N

pv type

N r n p
n C r n n n

N

=

= ≤ ≤ ≤ ≤ ≤

 
+ − − − 

= = −  
 − 

∑
∑ ∑

�

…  (A.27) 

where npv,j is the number of PV panels of type j in the inventory, Npv,type is the number of different 

types of PV panels, and r is the number of PV panels selected for the configuration. 

Fortunately, when considering the total number of panels in the inventory, the calculation 

becomes much simpler. Since there are (npv,i + 1) ways to choose the number of PV panel type i 



Appendix A. Enumeration of PVRO Design Space 167 
 

to include in the system, the number of different PV system configurations can be written using 

the product rule: 

 ( )
,

,

1

1 1
pv typeN

PV pv i

i

N n
=

= + −∏  (A.28) 


