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Abstract

Networks are vulnerable to natural disasters, such as earthquakes or floods, as well
as to physical attacks, such as an Electromagnetic Pulse (EMP) attack. Such real-
world events happen in specific geographical locations and disrupt specific parts of the
network. Therefore, the geographical layout of the network determines the impact of
such events on the network's connectivity. We focus on network analysis and design
under a geographic failure model of (geographical) networks to such disasters.

Initially, we aim to identify the most vulnerable parts of data networks to attack.
That is, the locations of a disaster that would have the maximum disruptive effect
on a network in terms of capacity and connectivity. We consider graph models in
which nodes and links are geographically located on a plane, and model the disaster
event as a line segment or circular disk. We develop polynomial time algorithms for
finding the worst possible cut in this setting. Then, we obtain numerical results for a
specific backbone network, thereby demonstrating the applicability of our algorithms
to real-world networks.

We also develop tools to calculate network metrics after a 'random' geographic
disaster. The random location of the disaster allows us to model situations where the
physical failures are not targeted attacks. In particular, we consider disasters that take
the form of a 'random' circular disk or line in a plane. Using results from geometric
probability, we are able to calculate some network performance metrics to such a
disaster in polynomial time. In particular, we can evaluate average two-terminal
reliability in polynomial time under these 'random' cuts. This is in contrast to the
case of independent link failures for which there exists no known polynomial time
algorithm to calculate this reliability metric. We present some numerical results to
show the significance of geometry on the survivability of the network. This motivates
the formulation of several network design problems in the context of randomly located
disasters.

We also study some min-cut and max-flow problems in a geographical setting.
Specifically, we consider the problem of finding the minimum number of failures,
modeled as circular disks, to disconnect a pair of nodes and the maximum number
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of failure disjoint paths between a pair of nodes. This model applies to the scenario
where an adversary is attacking the network multiple times with intention to reduce its
connectivity. We present a polynomial time algorithm to solve the geographic min-
cut problem and develop an ILP formulation, an exact algorithm, and a heuristic
algorithm for the geographic max-flow problem.

Finally, we study the reliability of power transmission networks under regional
disasters. Initially, we quantify the effect of large-scale non-targeted disasters and
their resulting cascade effects on power networks. We then model the dependence of
data networks on the power systems and consider network reliability in this dependent
network setting. Our novel approach provides a promising new direction for modeling
and designing networks to lessen the effects of geographical disasters or attacks.

Thesis Supervisor: Eytan Modiano
Title: Professor
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Chapter 1

Introduction

The global communications infrastructure is primarily based on fiber-optic networks,

and as such has physical vulnerabilities. Similarly, power transmission networks, crit-

ical to the operation of data networks, use high-voltage power lines and are vulnerable

to physical failures. Fiber links and power lines can be destroyed by anything from

Electromagnetic Pulse (EMP) attacks [40,60] to natural disasters such as hurricanes

or earthquakes [38,42]. Such real-world disasters happen in specific geographic loca-

tions, and therefore, the geographical layout of the network affects their impact. For

example, an Electromagnetic Pulse (EMP) is a large burst of electromagnetic energy

that can disable electronics over a large geographic region [70]. Hence, such an attack

over a city which is a telecommunications hub would have a disastrous impact on the

telecommunications infrastructure. In this thesis we develop the necessary theory to

evaluate network performance metrics under a geographic failure model. This allows

us to begin developing some network design tools that can mitigate the effects of

regional disasters.

There are several works on the topology of the Internet as a random graph [12] and

on the effect of link failures in these graphs [27,48] (for more details see Section 1.2).

However, most of these works are motivated by failures of routers due to logical attacks

(e.g., viruses and worms), and thereby, focus on the logical Internet topology. There

have also been some attempts to model the Internet using geographical notions [41,72]

(see Fig. 1-1 for a fiber map). Yet, these works do not consider the effect of failures
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Figure 1-1: The fiber backbone operated by a major U.S. network provider [46].

that are geographically correlated.

Since disasters affect a specific geographical area, they will result in failures of

neighboring network components. Therefore, one has to consider the effect of disasters

on the physical layer rather than on the network layer (e.g., the effect on the fibers

rather than on the logical links). Again, these fibers are subject to regional failures

resulting from events such as earthquakes, floods, and even an EMP attack; as these

may lead to failure of the electrical circuits (e.g., amplifiers) that are needed to operate

the fiber plant [70]. Similarly, a geomagnetic storm may damage lines in the power

grid and cause power loss over a large geographic region [3].

Our goal is to understand the effect of a regional failure on the bandwidth and

connectivity of the Internet as well as the reliability of the power transmission net-

work, and to expose the design tradeoffs related to network survivability under a

disaster with regional implications. Such tradeoffs may imply that in certain cases

there may be a need to redesign parts of the network while in other cases there is a

need to protect electronic components in critical areas (e.g., protecting against EMP

attacks by shielding).

In the remainder of this chapter we review the problems considered in this thesis,

our contributions, and related work.

12



1.1 Problem Descriptions and Contributions

We now give an overview of the problems considered and contributions of the thesis.

Initially motivated by targeted attacks on data networks, in chapter 2, we consider

the location of geographical disasters that have the maximum effect on a network,

in terms of capacity and connectivity. That is, we want to identify the worst-case

location for a disaster or attack with respect to certain connectivity metrics. Then,

we turn our attention to the effects of non-targeted attacks such as natural disasters;

in chapter 3 we analyze the effect of 'randomly' located regional failures on a network.

Specifically, we introduce methods to calculate relevant network connectivity metrics

after such an event. Motivated by the effects of multiple disasters, in chapter 4 we

consider the geographic min-cut and max-flow problem. In chapter 5 we analyze the

effects of large scale disasters on power grids and consider some power-data network

dependency problems in the context of network survivability. Finally, in chapter 6 we

conclude and discuss possible extensions to this research. In the following subsections

we give a more detailed description of each problem and the contributions made.

1.1.1 Targeted Attacks

In the context of disasters that cause the failure of multiple links in a geographic

region, chapter 2 focuses on the worst-case location for a disaster to occur. This can

model a scenario where an adversary that knows the network topology and geography

is attacking the network.

We consider two graph models which serve as an abstraction of the continen-

tal/undersea fiber plant. In our graph models, nodes are represented by points on

the plane and links are represented by line segments connecting these points. Let a

cut denote a geometric shape located on the plane, such as a line segment or disk. We

assume that a cut (which represents a regional disaster) affects the electronic compo-

nents of the network within its particular region. Hence, the fibers that pass through

the cut are assumed to be effectively destroyed and removed from the network. See

Fig. 1-2 for an example of the effects of a particular disk cut.
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Figure 1-2: The black dots represent node locations in the network and the line segments between these points
represent links. The red disk represents a circular cut (which may model the effect of some large disaster). The three
grey links represent link failures that occur due to this cut. In chapter 2 we find the worst case location for these
types of cuts with respect to certain connectivity metrics.

We first study a bipartite graph model (in the topological and geographical sense).

This model is analogous to the east and west coasts of the U.S., where nodes on the

left and right sides of the graph represent west and east coast cities (respectively) and

the cities within the continent are ignored. Similarly, it can represent transatlantic or

transpacific cables. Since vertical line segment cuts are simpler to analyze, we focus

first on such cuts.

However, the bipartite model does not consider the impact on nodes located within

the continent; nor does it consider the impact of a disaster that is not simply a vertical

cut. We relax the bipartite graph and vertical cut assumptions by considering a

general model where nodes can be (almost) arbitrarily located on the plane. Under

this model, we consider two problems. In the first one, disasters are modeled as

line segment cuts (not necessarily vertical) in the network graph. In the second one,

disasters are modeled as circular disks in which the links and nodes are affected.

These general problems can be used to study the impact of disasters such as EMP

attacks (disks) and natural disasters (line segments) more realistically.

We consider various performance metrics for the effect of a cut. We consider the

following: (i) the capacity of the removed links, (ii) the fraction of pairs of nodes

that remain connected (termed average two-terminal reliability or ATTR), (iii) the

maximum possible flow between a given source-destination pair, and (iv) the average

maximum flow between pairs of nodes. We show that although there are infinite

number of possible cut locations, only a polynomial number of candidate locations

have to be considered in order to identify a worst-case cut for the aformentioned

performance metrics. Thus, we are able to show that the location of a worst-case cut

14



Figure 1-3: Line segments cuts minimizing the fraction of pairs of nodes that remain connected. The red cut minimizes
this metric and the black segments nearly minimize it.

can be found by polynomial time algorithms.

We then present numerical results which demonstrate the use of these algorithms.

We identify the locations of the worst-case line segment and circular cuts in the net-

work presented in Fig.1-1.1 In particular, we illustrate the locations of cuts that

optimize the different performance metrics described above. See Fig. 1-3 for an ex-

ample.

The main contributions of chapter 2 are the formulation of a new problem (termed

as the geographical network inhibition problem), the design of algorithms for its so-

lution, and the demonstration of the obtained numerical solutions on an example

infrastructure. To the best of our knowledge, our work is among the first to study

this problem.

1.1.2 Non-targeted Attacks

Motivated by the effects of non-targeted failures such as natural disasters (e.g. hur-

ricanes and floods) or collateral damage from an attack, in chapter 3 we consider

a failure model where a disk or line is 'randomly' placed in the plane. Our goal is

to calculate the expected value of relevant network connectivity metrics after such

an event. As in the geographical network inhibition problem above, we assume our

network nodes and links are represented by points and line segments in the plane.

'We present results only for one major operator. The same methodologies can be used in order
to obtain results for all other major operators.
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Figure 1-4: In the example above we consider the probability that a 'random' line that intersects the rectangle C will
also intersect the line segment link Q. In chapter 3 using tools and measures from geometric probability we will show
this probability is given by the ratio of the perimeters of the line segment and rectactangle, that is 1.

We assume that any links which are intersected by the randomly placed line or disk

are removed from the network.

In order to obtain probabilities of relevant failure events we use geometric prob-

ability to assign a measure to sets of lines and disks that intersect some set of line

segments (e.g. a set of segments that disconnects the network). See Fig. 1-4 for an

example. Using these tools, we are able to calculate certain network performance

metrics to a randomly located geographic disaster in polynomial time. To the best

of our knowledge this is the first attempt to apply geometric probability techniques

to network survivability ( [47] applies similar techniques to detection in sensor net-

works). In particular, we can calculate average two-terminal reliability of a network

in polynomial time with respect to a randomly located line or disk. This is a signifi-

cant contribution because calculating this metric assuming independent link failures

in known to be NP-hard [10]. We then present some numerical results to show the

significance of geometry on the survivability of the network (see Fig. 1-5) and consider

a few network design examples.

1.1.3 Geographic Min-Cut and Max-Flow

In chapter 4 we consider the problem of finding the minimum number of failures,

modeled as circular disks, to disconnect two nodes and the maximum number of failure

disjoint paths between two nodes. This models the scenario where an adversary is

attacking the network multiple times (with geographic scale attacks) with intention to

reduce its capacity or connectivity. These problems may also be useful in the context
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Figure 1-5: The colored areas in the figure on the left represent relevant regions with respect to NSFNET [51] and a
'randomly' located circular cut of a particular radius. In the right figure, the solid line shows the fraction of pairs of
nodes that remain connected (ATTR) versus the probability a unit (latitude/longitude) of fiber is cut by a random
disk. The dashed line shows ATTR assuming links fail independently such that links fail with the same probability
as in the random disk-cut case. The difference in these curves shows the significance of geometry on the survivability
of the network.

S T

Figure 1-6: The light gray area (yellow area in online color version) above represents the protected zone that no
circular failure may be centered. The gray disks (red disks in online color version) represent disasters that remove
links (of unit capacity) they intersect. Two disasters are required to disconnect the two nodes S and T (shown
above), so the geographic min-cut is two. Also, since the top pair of paths can be intersected by the same failure, the
geographic max-flow is two; two failure disjoint paths are given by the topmost and bottommost path. In contrast,
the standard min-cut and max-flow is three.

of path protection algorithms to ensure at least some of the primary and backup

paths survive a large scale failure.

We first consider a geographical variant of the min-cut problem. Given a set

of points on the plane, each of which represents a node, and (non-overlapping) line

segments between these points representing links, what is the minimum number of

circular failures such that two nodes, S and T, are disconnected from each other.

If applied to the national fiber plant, the solution to this problem is the number

of failures required to disconnect two cities. If we do not restrict the locations of

potential failure sites, the geographic min-cut will be at most one because nodes S

or T can trivially be eliminated with a single failure. In order to make the problem

more interesting and realistic we can restrict potential failure locations (see Fig. 1-

6). This can represent fiber that has been hardened against EMP attacks or a well

defended city. We extend our arguments from chapter 2 to show we only need to

consider a polynomial number of possible failure sites, thus reducing the geographic

17



Figure 1-7: A solution to the geographic min-cut problem on a particular infrastructure. The disaster radius is about
78 miles and the protection radius around Chicago and Dallas is about 180 miles. The gray disks (red disks in the
online color version) represent the hole locations and the light gray disks (yellow disks in the online color version)
represent the protected zones. Only two disasters, located at 'choke' points to the east and west of Chicago, are
required to disconnect these cities. We note that the standard (non-geographical) min-cut solution is 4, but because
the disks remove multiple links at a time there are only 2 disasters in a geographical min-cut solution.

min-cut to a discrete problem. Then applying the methods in [18], we show how

to find a solution in polynomial time. We obtain numerical results for a specific

backbone network, thereby demonstrating the applicability of our min-cut algorithm

to a real-world network. See Fig. 1-7 for an example.

Next, in the context of geographic failures and path-protection algorithms we

study the geographic max-flow problem; what is the maximum number of paths

between nodes S and T such that no two paths can be intersected by the same

failure. The solution to this problem gives us the maximum number of paths that

are geographically disjoint with respect to disasters of a particular radius. In other

words, we are interested in finding the maximum number of backup paths between

a pair of nodes such that a disaster intersecting one of the paths does not affect

the connection of the other paths (see Fig. 1-6). The solution to this problem gives

us failure disjoint backup paths. Again, to avoid triviality we restrict the locations

of potential failure sites so that nodes S or T cannot simply be eliminated with

a single failure. We then develop an integer linear program (ILP) formulation, an

exact algorithm, and a heuristic algorithm for this geographic max-flow problem. See

Fig. 1-8 for an illustration of the heuristic on a real-world network.

In the final part of chapter 4, we explore the analogue to the min-cut max-flow

theorem in the geographic setting. In particular, we show that the cardinality of
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Figure 1-8: The four gray disks (red disks in the online color version) represent the hole locations in a geographic
min-cut and the light gray disks (yellow disks in the online color version) represent the protected zones. The disaster
radius is about 60 miles and the protection radius around Chicago and Dallas is about 180 miles. The four light gray
worms' (teal 'worms' in the online color version) correspond to hole disjoint paths found using the heuristic algorithm
developed for the geographic max-flow problem. We note that since the cardinality of a max-flow solution must be less
than a min-cut solution, our developed heuristic has found an optimal solution to the geographic max-flow problem
for this particular instance. Also, comparing with Fig. 1-7 we observe that the min-cut increases from 2 to 4 as the
radius of disaster decreases from 78 to 60 miles.

the solutions to these geographic min-cut and max-flow problems are not the same.

Supported by simulation results, we conjecture this difference is no greater than one,

i.e. max-flow < min-cut < max-flow +1.

1.1.4 Applications to Power Networks

Similar to fiber infrastructures, power transmission networks are vulnerable to large-

scale natural disasters or attacks, such as hurricanes or geomagnetic storms [3, 22].

Beyond the effects of physical disasters, power networks are also vulnerable to cascad-

ing failures. Cascading failures occur when an initial failure in the network changes

power flows, which must obey physical law constraints, such that additional lines

overload and fail. This in turn causes the power flows to change again; this process

will continue until some stability is reached. A well known example of a cascading

failure is the 2003 blackout [6]. In the following we describe the two failure models

presented in chapter 5. The first model considers power networks with with respect

to geographic disasters and cascading failures. The second model builds on the first;

we describe a dependency between power and data networks and consider the con-

nectivity of data networks in this context.

Motivated by the effects of natural disasters and cascading failures, in chapter 5
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CDF of Yield on HVIET network with radius= 50km, Average Yield = 0.78336
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Figure 1-9: In the left figure every shaded region represents a set of disk centers whose radius is about 8 kilometers and

only intersects a particular set of links in the Italian high-voltage electrical transmission network (HVIET) [63,64].
In our model, the area of each of these regions is proportional to the probability a randomly located disk will remove
a particular set of power lines. The right figure shows the CDF of the yield (total fraction of demand satisfied) on the
HVIET network [63,64] under our two-stage failure model (a randomly located disk followed by cascading failures).
Note that there is a significant probability the yield is 1; this is mainly caused by disks centered within the region of
interest but do not intersect the network.

we consider a two-stage failure model for power networks. The first stage removes

power lines that intersect a randomly located disk. The second stage then calculates

the cascading failure that occurs due to the removal of the initial links. By using the

tools developed in chapter 3 and using the cascading failure model developed in [16],

we are able to calculate the effect of this type of failure in power networks. To the best

of our knowledge, [14] is the only other work to look at the effect of geographically

correlated failures on power networks. See Fig. 1-9 for an example of a numerical

result.

Then motivated by the effects of power loss on data networks [30], in the final

part of chapter 5 we consider the survivability of data networks with respect to power

networks. We assume data nodes rely on the operation of the closest power demand

nodes to function. See Fig. 1-10 for an example. We note that network connectivity

in this particular example is significantly lower when power network dependency

is considered; this implies power network effects have a significant impact on the

survivability of real-world data networks.

1.2 Related Work

The issue of network survivability and resilience has been extensively studied in the

past (e.g., [15,35,49,74] and references therein). However, most of the previous work
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A1TR vs. Radius for GARR Network

0.4
Radius

Figure 1-10: In the left figure part of the backbone of the Italian research network (GARR) [63,64] is shown by solid
line segments representing links and circles representing nodes. The dashed segments represent the Voronoi cells based
on the locations of power supply nodes, shown by crosses above, in the Italian high-voltage electrical transmission
network (HVIET) [63,64]. Our model assumes that data nodes extract power from the closest power demand node;
when a power demand node no longer receives power, data nodes located within its Voronoi cell are assumed to fail
as well. The right figure shows ATTR in the GARR network versus the effect of a randomly located disk. The solid
line assumes power network dependency effects and the dashed line assumes only the data network itself is affected
by the disaster (the same model considered in chapter 3). We note that ATTR is significantly lower when power
network dependency is considered; this implies power network effects have a significant impact on the survivability of
real-world data networks.

in this area and in particular in the area of physical topology and fiber networks

(e.g., [53, 54]) focused on a small number of fiber failures. On the contrary, in this

thesis we focus on events that cause a large number of failures in a specific geographical

region (e.g., [7,20,40,60]). To the best of our knowledge, [36] is among the first papers

that considered geographically correlated failures. Yet, it focused on a specific routing

solution.

A theoretical problem closely related to some of the problems considered in this

thesis is known as the network inhibition problem [57]. Under that problem, each

edge in the network has a destruction cost, and a fixed budget is given to attack the

network. A feasible attack removes a subset of the edges, whose total destruction

cost is no greater than the budget. The objective is to find an attack that minimizes

the value of a maximum flow in the graph after the attack. Several variants of this

problems have been studied in the past (see for example [58] and the review in [26]).

However, as mentioned above, the removal of (geographically) neighboring links has

not been considered. Perhaps the closest to this concept is the problem formulated

in [67] which considers geographical failures in a wireless network setting.

When the logical (i.e., IP) topology is considered, wide-spread failures have been

extensively studied [27,28,34,48]. Most of these works consider the topology of the

Internet as a random graph [12] and use percolation theory to study the effects of
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random link and node failures on these graphs and whether the resulting network has

a large connected component.

The focus on the logical topology rather than on the physical topology is motivated

by failures of routers due to attacks by software viruses and worms. Based on various

measurements (e.g., [33]), it has been recently shown that the topology of the Internet

is influenced by geographical factors such as population density [11, 41, 72]. These

observations motivated the modeling of the Internet as a scale free geographical graph

[69,73).

Geographic min-cut and max-flow problems similar to the ones described in this

chapter have received some attention. Recently Sen [67] [66] has proposed the idea of

a geographic max-flow and min-cut in a wireless network setting. In [52] the problem

of finding the maximum number of geographically disjoint paths with total minimum

cost is discussed in the continuous setting where paths may be placed anywhere within

a polygonal domain. Additionally, Bienstock has analyzed similar problems to the

ones described above [18]. The key difference is that we assume disasters are circular

and may be placed almost anywhere on the plane; in [18] disasters may be of various

shapes but can only be placed in a finite number of locations.

Power network resilience has been considered in the past [9,17], however so far

only [14] has considered the effects of a targeted geographic failure model. In this

work we consider the effect of non-targeted geographic attacks on the power network.

Some recent work has modeled the interdependence between data and power networks

and demonstrated asymptotic percolation results [23]; however they did not consider

power flows or geography in their models. Additionally, [63] considered a geographic

dependence model but did not consider failures which were geographically correlated.

The rest of the thesis is organized as follows. In chapter 2 we consider the problem

of finding worst case locations for disaster or attack on a network. In chapter 3

we consider randomly located attacks on the network. In chapter 4 we discuss the

geographic min-cut and max-flow problem. Then, in chapter 5 we apply our developed

tools to assess the survivability of power networks. Finally, in chapter 6 we conclude

and propose future research directions.
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Chapter 2

Targeted Attacks

Motivated by the effects of large-scale failures on the fiber infrastructure, in this chap-

ter we are interested in the location of geographical disasters that have the maximum

effect on a data network, in terms of capacity and connectivity. That is, we want to

identify the worst-case location for a disaster or an attack as well as its effect on the

network.

2.1 Introduction

Fiber links in backbone data networks have geographic location and as such have

physical vulnerabilities. For example, natural disasters (e.g. earthquakes) as well

as EMP attacks may cause the failure of several links over a large geographic area

[38, 40,42, 60]. Modeling networks and attacks as geometric objects on the plane, we

consider the problem of finding the worst-case location for a disaster to occur. We

will now introduce our models in more detail.

The global fiber plant has a complicated structure. For example, Fig. 2-1 presents

the fiber backbone operated by a major network provider in the U.S. (node locations

are approximate and point-to-point fibers are represented by straight lines). We

consider two graph models which serve as an abstraction of the continental/undersea

fiber plant. In these models, nodes, links, and cuts are geographically located on a

plane. Nodes are represented as points and links are represented as line segments
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Figure 2-1: The fiber backbone operated by a major U.S. network provider [46]. Node locations are approximate and
point-to-point fibers are represented by straight lines.

between these points. We first study a bipartite graph model (in the topological

and geographical sense). That model is analogous to the east and west coasts of the

U.S., where nodes on the left and right sides of the graph represent west and east

coast cities (respectively) and the cities within the continent are ignored. Similarly,

it can represent transatlantic or transpacific cables. Since vertical line segment cuts

are simpler to analyze, we focus initially on such cuts and provide some motivating

examples.

However, the bipartite model does not consider the impact on nodes located within

the continent; nor does it consider the impact of a disaster that is not simply a vertical

cut. Therefore, we later relax the bipartite graph and vertical cut assumptions by

considering a general model where nodes can be arbitrarily located on the plane.

Under this model, we consider two problems. In the first one, disasters are modeled

as line segment cuts (not necessarily vertical) in the network graph. In the second

one, disasters are modeled as circular areas in which the links and nodes are affected.

These general problems can be used to study the impact of disasters such as EMP

attacks (circular disks) and tornadoes (line segments) more realistically.

We assume that a regional disaster affects the electronic components of the net-

work within a certain region. Hence, the fibers that pass through that region are

effectively removed due to such a disaster. There are various performance measures

for the effect of a cut. We consider the following: (i) the expected capacity of the

removed links, (ii) the fraction of pairs of nodes that remain connected, (iii) the
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maximum possible flow between a given source-destination pair, and (iv) the average

maximum flow between pairs of nodes. We show that although there are infinite

number of cut locations, only a polynomial number of candidate cuts have to be con-

sidered in order to identify a worst-case cut for these performance measures in any

of the problems above. Thus, we are able to show that the location of a worst-case

cut can be found by polynomial time algorithms. It should be noted that any other

quantity that can be calculated in polynomial time may be used as a performance

measure. Hence, measures such as concurrent maximum flow and other measures

that are derived from multicommodity flow problems may also be used.

Finally, we present numerical results and demonstrate the use of these algorithms.

We identify the locations of the worst-case line segment and circular cuts in the

network presented in Fig. 2-1.1 In particular, we illustrate the locations of cuts that

optimize the different performance measures described above.

The main contributions of this chapter are the formulation of a new problem

(termed as the geographical network inhibition problem), the design of algorithms for

its solution, and the demonstration of the obtained numerical solutions on a U.S.

infrastructure. To the best of our knowledge, we are the first to attempt to study

this problem.

This chapter is organized as follows. We briefly discuss related work in Section 1.2.

In Section 2.3, we introduce the network models and formulate the geographical

network inhibition problems. In Section 2.4, we consider a simple case of the bipartite

model and provide numerical examples that provide insight into the location of a

worst-case cut. In Section 2.5, we develop a polynomial-time algorithm for finding

the worst-case cuts in the bipartite model. In Sections 2.6 and 2.7 we study the general

model with line segment and circular cuts. In Section 2.8 we present numerical results.

We conclude and discuss future research directions in Section 2.9.

'We present results only for one major operator. The same methodologies can be used in order
to obtain results for all other major operators.
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2.2 Related Work

The issue of network survivability and resilience has been extensively studied in the

past (e.g., [15,35,49,74] and references therein). However, most of the previous work

in this area and in particular in the area of physical topology and fiber networks

(e.g., [53,54]) focused on a small number of fiber failures or on the concept of Shared

Risk Link Group (SRLG) [39]. On the contrary, in this chapter we focus on events that

cause a large number of failures in a specific geographical region (e.g., [7,20,40,60]).

To the best of our knowledge, before our work, geographically correlated failures have

been considered only in a few papers and under very specific assumptions [8,36,71].

The theoretical problem most closely related to the problem we consider is known

as the network inhibition problem [57]. Under that problem, each edge in the network

has a destruction cost, and a fixed budget is given to attack the network. A feasible

attack removes a subset of the edges, whose total destruction cost is no greater than

the budget. The objective is to find an attack that minimizes the value of a maximum

flow in the graph after the attack. A few variants of this problems were studied in the

past (e.g., [24,26,58]). However, as mentioned above, the removal of (geographically)

neighboring links has been rarely considered [18,66]. One of the first and perhaps the

closest to this concept is the problem studied in [67].

When the logical (i.e., IP) topology is considered, wide-spread failures have been

extensively studied [27,28,34,48]. Most of these works consider the topology of the

Internet as a random graph [12] and use percolation theory to study the effects of

random link and node failures on these graphs. The focus on the logical topology

rather than on the physical topology is motivated by failures of routers due to attacks

by viruses and worms. Based on various measurements (e.g., [33]), it has been recently

shown that the topology of the Internet is influenced by geographical concepts [11,

41, 72]. These observations motivated the modeling of the Internet as a scale free

geographical graph [69,73]. Although these models may prove useful in generating

logical network topologies, we decided to present numerical results based on real

physical topologies (i.e., the topology presented in Fig. 2-1).
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2.3 Model and Problem Formulation

In this section we present three geographical network inhibition problems. The first

problem assumes that the network is bipartite in the topological and geographic

sense and that the cuts are vertical line segments. We then present two problems

where network links can be in almost arbitrary locations on the plane. In one of the

problems, the disasters correspond to line segment cuts in any direction. In the other,

the cuts are modeled by arbitrarily placed circular disks on the plane.

2.3.1 Bipartite Model with Vertical Line Segment Cuts

We now define the geometric bipartite graph. It has a width of 1 and height (south-

to-north) of hG. The height of a left (west) node i is denoted by li. Similarly, the

height of a right (east) node j is denoted by r3 . Nodes cannot overlap and must have

non-negative height; that is ri f r > 0 V i, j and li # ,l > 0 V i, j. Denote the total

number of nodes on the left and right side by N. We denote a link from node i to

node j as (i, j) and let (i, j) be represented by a line segment from [0, li] to [1, r,]. We

define pij as the probability that link (i, j) exists, and cij as the capacity of link (i, j)

where cij E [0, oo). To avoid considering the trivial case in which there are no links

with positive capacity, we assume that there exist some i and j for which cjjpjj > 0.

We assume that the disaster results in a vertical line segment cut of height h whose

lowest point is at point [x, y]. We denote this cut by cuth(x, y). Such a cut removes

all links that intersect it. For clarity, in this chapter we refer to the start and the

end of a link as nodes and the start and the end of a cut as endpoints. Fig. 2-2

demonstrates a specific construction of the model and an example of a cut.

There are many ways to define the effect of a cut on the loss of communication

capability in a network. We define the performance measures and the worst-case cut

as follows.

Definition 1 (Performance Measures). The performance measures of a cut are (the

last 3 are defined as the values after the removal of the intersected links):

e TEC - The total expected capacity of the intersected links.
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Figure 2-2: A bipartite network and an example of a cut.

" ATTR - The fraction of pairs of nodes that remain connected (this is similar to

the average two-terminal reliability of the network2).

* MFST - The maximum flow between a given pair of nodes s and t.

" AMF - The average value of maximum flow between all pairs of nodes.

Definition 2 (Worst-Case Cut). Under a specific performance measure, a worst-

case cut, denoted by cuth(x* y*), is a cut which maximizes/minimizes the value of

the performance measure.3

We now demonstrate the formulation of the following optimization problem using

the TEC performance measure.

Bipartite Geographical Network Inhibition (BGNI) Problem: Given a bi-

partite graph, cut height, link probabilities, and capacities, find a worst-case vertical

line segment cut under performance measure TEC.

We define the following (0, 1) variables:

zig (X, y) = 1 if (i, j) is removed by cuth(x, y)

( 0 otherwise

2The two-terminal reliability between two nodes is the probability they remain connected after
random independent link failures [61].

3For performance measure TEC, the worst-case cut obtains a maximum value, while for the rest,
it obtains a minimum value.
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A solution to the BGNI optimization problem below is an endpoint of a worst-case

cut.

max E(i,j) pijcij zij (x, y)

such that

0 < x < 1

-h < y < hG (2.1)

The above optimization problem can be formulated as a Mixed Integer Linear

Program (MILP) as follows. Define the following (0,1) variables:

1 if (i, j) crosses the cut location (x) above y
Uij o

10 otherwise

di=

0

if (i, j) crosses the cut location (x) below y + h

otherwise

For hG < 1, the solution to the MILP below is a worst-case cut.

max pijcig
(i,j)

such that

(rj - l)x - (y - lj) ;> Ujj - 1I

(y + h - 1) - (rj - lj)x > dij - 1

uij + dij > 2 z.,j

Vij

Vij

Vij

0<x<1

-h < y < hG

uij, dij, zij E {0, 1}
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Solving integer programs can be computationally intensive. Yet, the geographical

(geometric) nature of the BGNI Problem lends itself to relatively low complexity

algorithms (see Section 2.5). Although we initially focus only on the TEC measure,

variants of the BGNI Problem can be formulated for performance measures ATTR,

MFST, and AMF (by definition, when computing these measures we assume that

pij E {0, 1} Vi, j). In the bipartite model, the worst-case cut under some of these

measures is trivial. However, in the general model, a worst-case cut is non-trivial.

2.3.2 General Model

The general geometric graph model contains N non-overlapping nodes on a plane.

Let the location of node i be given by the cartesian pair [xi, y]. Assume the points

representing the nodes are in general form, that is no three points are collinear.

Denote a link from node i to node j as (i, j) and let (i, j) be represented by a line

segment from [xi, yi] to [xi, yj]4. We define pij as the probability of (i, j) existing and

cij as the capacity of (i, j) where cij E [0, oo). We again assume that cijpij > 0 for

some i and j. We now define two types of cuts and the corresponding problems.

When dealing with Arbitrary Line Segment Cuts we assume that a disaster results

in a line segment cut of length h which starts at [x, y1 and contains the point [v, w]

(with [x, y] # [v, w]). We define this cut as cuth([x, y1, [v, w]) (note there can be

infinitely many ways to express a single cut). A cut removes all links which intersect

it. For brevity, we sometimes denote the worst-case cut cuth([x*, y*], [v*, w*]) as cuth.

We now define the following problem and demonstrate its formulation.

Geographical Network Inhibition by Line Segments (GNIL) Problem: Given

a graph, cut length, link probabilities, and capacities, find a worst-case cut under per-

4Notice that the assumption that links are represented by line segments is an approximation of

the real deployments (e.g., [46]) in which links may not be linear.
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formance measure TEC.

We define the following (0,1) variable:

1 1 if (i, j) is removed

Zij ([xY, [v,w]) = by cuth([X, y], [v, w])

0 otherwise

A solution to the GNIL optimization problem below is a worst-case cut.

maxE(i,) pijcijzij ([x, y], [v, w])

such that

[x, y] $ [v, w]

(x - v) 2 + (y - w) 2 < h

xi < x < xj for some i and j

yj : y < y for some i and j (2.2)

When dealing with Circular Cuts we assume that a disaster results in a cut of

radius r which is centered at [x, y]. We define this cut as cut,(x, y). Such a cut

removes all links which intersect it (including the interior of the disk). We call the

set of points for which the Euclidean distance is r away from [x, y] the boundary of

cutr(x, y). For brevity, we sometimes denote the worst-case cut cutr(x*, y*) as cut*.

We now define the following problem and demonstrate its formulation.

Geographical Network Inhibition by Circular Cuts (GNIC) Problem: Given

a graph, cut radius, link probabilities, and capacities, find a worst-case circular cut

under performance measure TEC.

We define the following (0,1) variable:

zi (x, Iy) = 1 if (i, j) is removed by cutr(x, y)

0 otherwise
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Figure 2-3: An example of a complete bipartite graph with N = 8.

A solution to the GNIC optimization problem below is the center of a worst-case cut.

max Z(pijczi ([x, y])

such that

xi < x < xj for some i and j

y 5 y 5 y for some i and j (2.3)

Similar GNIL and GNIC problems can be formulated for performance measures

A TTR, MFST, and AMF (for these measures we assume that pij E {0, 1} Vi, j). For

example, under MFST, flow conversation constraints should be added to the set of

constraints, the flow through links for which zij ([x, y], [v, w]) = 1 is 0, and the flow

between s and t has to be maximized. In sections 2.6 and 2.7 we use the geometric

nature of the GNIL and GNIC problems to show that under all these measures, we

only need to check a polynomial number of locations in order to find a worst-case cut.

2.4 A Motivating Example

In this section, we consider a simple case of the bipartite model in which the network

is represented as a complete bipartite graph, each side has N/2 nodes, pij = 1, and

cij = 1. We also place nodes evenly on each side such that they are separated by

distance a. An example is shown in Fig. 2-3. We first obtain a lower bound for the

BGNI problem by considering cuts down the center. Then, we provide numerical
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Figure 2-4: Number of links intersected (TEC) by a worst-case cut (cUth (x*, y*)) as a function of the cut height (h)
in a bipartite graph with 15 nodes on each side (N = 30).

results for the BGNI problem.

2.4.1 A Lower Bound

In this simple model, we can bound the value of TEC for the worst-case cut by

considering cuts with endpoints at x = 0.5. In the very center of the graph there

is an intersection of N/2 links. a/2 units vertically up and down from this point,

an additional (N/2) - 1 links intersect. Another a/2 units up and down from these

points, another (N/2) - 2 links intersect. This pattern continues until all of the links

are included. Therefore, the capacity removed by a worst-case cut of height h for

h < hG is lower bounded by:

[2J
N ~N i-1
- + E( N- - [ 2 1). (2.4)

2 i=122

2.4.2 Intuition from Numerical Results

We now describe numerical solutions obtained for the BGNI problem (2.1).' We

obtained solutions for a network with 15 nodes on each side (N = 30) and with a = 1

'These solutions were initially obtained using MATLAB's genetic algorithms and later on verified
using the algorithm described in Section 2.5.
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Figure 2-5: The maximum number of removed links (TEC) as a function of the x-location of the cut for h = 1.6.
Note that the results were relatively monotonic, with the worst-case cut appearing at the center.
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Figure 2-6: The maximum number of removed links (TEC) as a function of the x-location of the cut for h = 0.1.
Note the two 'spikes' in the function at x : .3 and x :: .7.

(hG = 14). Fig. 2-4 describes the values of TEC under the worst-case cut for different

cut heights, h (notice that for pij = 1 and ci = 1, TEC is equivalent to the number

of removed links). The result is identical to the lower bound for the center cuts in

(2.4). This implies that a worst-case cut is located at the center of the graph.

Next, we study the effect of the horizontal cut location on TEC (the number of

removed links) on the same network. Figures 2-5 and 2-6 illustrate the maximum

number of removed links versus the horizontal (x) position of the cut on the network.

For a given cut height (h), the maximum number of removed links at each horizontal

position (x) is not decreasing monotonically as we move away from the center. With
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h = 1.6 the results were relatively monotonic, with the worst-case cut appearing

at the center while the number of removed links more or less descends from there

(Fig. 2-5). When the cut height is reduced to 0.1, significant local maxima begin to

appear (Fig. 2-6). It seems the smaller the cut height, the more pronounced these local

maxima are. This possibly results from large intersections of links crossing at different

horizontal locations in the graph. Small cuts can cut these off-center intersections

and remove a large number of links but these small cuts are not as effective elsewhere

in the graph (where links do not intersect).

The results above motivate us to analytically study the effect of the cut location on

the removed capacity. In the following sections, we focus on developing polynomial-

time algorithms for identifying a worst-case cut.

2.5 Worst-Case Cuts - Bipartite Model

In this section we present an O(N) algorithm for solving the BGNI problem. The

main underlying idea is that the algorithm only needs to consider cuts which have

an endpoint on a link intersection or a node. Before proceeding, we note that the

objective function takes on a finite number of bounded values. This leads to the

following observation.

Observation 1. There always exists an optimal solution to (2.1) (i.e., a worst-case

cut).

Below, we present the algorithm which finds a worst-case cut. It can be seen

that the complexity of Algorithm WCBG is O(N). This results from the following

facts: (i) links are line segments and a pair of line segments can have at most one

intersection point (no three nodes are collinear), resulting in at most O(N 4 ) link

intersections; (ii) there are two candidate cuts per link intersection or node (cuts

have two endpoints), and therefore, the total number of candidate cuts is at most

O(N 4 ); (iii) since evaluating lYk!ry-i)Xk+1i1 Y+h>(rj-1i)Xk+li (Line 8) takes 0(1) time

and it has to be evaluated for all (i, j), finding the capacity of a candidate cut takes
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O(N 2). 6

Algorithm 1 Worst-Case Cut in a Bipartite Graph (W

1: input: h, height of cut
2: worstCaseCapacityCut +- 0
3: for every node location and link intersection [xk, Yk] do
4: call evaluateCapacityofCut (xk, Yk)
5: call evaluateCapacityofCut (xk, Yk - h)

Procedure evaluateCapacityofCut(xk, Yk)
6: capacityCut +- 0
7: for every (i, j) do
8: if lYk!(rj-_i)X2,_i1Yk+h>(rj-1i)Xk+lt= 1 then
9: capacityCut +- capacityCut + cijpij

10: if capacityCut > worstCaseCapacityCut then
11: x* <-Xk
12: y* yk
13: worstCaseCapacityCut +- capacityCut

CBG)

We now use a number of steps to prove the theorem below.

Theorem 1. Algorithm WCBG finds a worst-case cut which is a solution to the

optimization problem in (2.1).

Before proving the theorem, we introduce some useful terminology and prove two

supporting lemmas. If cuth(x, y) intersects any links, the links which are intersected

closest to the endpoint [x, y] are denoted by (iQ, j,) and the point where they intersect

the cut is denoted by [x0, ya] (see Fig. 2-7 for an example). Let those links which

intersect cuth(x, y) furthest from the endpoint [x, y] be given by (i, jw) and let the

point where they intersect the cut be given by [xe, y,]. Note that (ie, j,) or (i., jc)

need not be unique. This is because [xv, y,] or [xa, y2] can be a link intersection. It

should be noted that since the model assumes that there exists a link with pjjcjj > 0

for some i and j, all worst-case cuts must intersect at least one link. This implies

(ix, jw) and (ia, ja) exist for all worst-case cuts.

'Computational geometry results can probably be used to reduce the complexity of Algorithm

WCBG. Particularly, [25] (based on [13]), enables counting and locating all the intersections of N 2

line segments in O(N 2 log N + I) time, where I is the number of line segment intersections. A
modified version of the algorithm of [25] can be used within Algorithm WCBG.
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(ieje)(iW , jW)

[xW, yW]

(s at)jie)[zao, Yal

cuth(xy)

Figure 2-7: Example showing (i,, j,) and (ia, j,,). (ia , j,) is the lowest link intersected by the cut and this intersection
is at [Xa, ya]. (iw, j,) axe the highest links intersected by the cut and this intersection is at [XW, y.]. Note (iw, j.) is
not unique.

cuth(X *, ya)

cuth(z*, y*)

Figure 2-8: Example showing how cuth(x*,ya) is a 'slid up' version of cuth(x*,y*). cuth(x*, ya), which has an
endpoint on a link intersection, is guaranteed to intersect every link cuth (x*, y*) does because there exist no links at
x* from y* to y,.

Lemma 1. If there exists a worst-case cut, CUth(x*, y*), such that either (iw, jw) is

not unique, (ia, ja) is not unique, or x* E {0, 1}, then there exists a worst-case cut

that has an endpoint on a node or a link intersection.

Proof. Assume (ia, ja) is not unique or x* E {0, 1} ([x*, ya] is a node or link in-

tersection). Consider CUth(X*, yo) which is a 'slid up' version of the worst-case cut

CUth(X* y*). cuth(x* Ya) intersects at least the same links as cuth(x*, y*) since, by

definition of [xz, ya], there exist no links at x* from y* to y,. Thus, cuth(X*, yC) is

also a worst-case cut and has an endpoint on a node or link intersection. For an

example, see Fig. 2-8. The case where (i,, jw) is not unique is analogous except that

cuth(x*, yw - h), which is a 'slid down' version of cuth(X*, y*), is considered. E

Lemma 2. If there exists a worst-case cut, cuth(x*, y*), such that both (ie, j,) and

(ia,, jc,) are unique, then there exists a worst-case cut that has an endpoint on a link

intersection or node.
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Proof. Let yw(x) = (r. - l)x + 1w be the equation of (i, j) on x E [0,1]. Let

ya(x) - (ra -la)x+la be the equation of (i,ja) on x E [0, 1]. Let yij(x) = (rj-li)x+li

be the equation of (i, j) on x E [0, 1].

Consider the slopes of yw(x) and yQ(x). There are two cases:

1. The slope of yw(x) is smaller or equal to the slope of y,(x): ru - l < r. - la.

2. The slope of yw(x) is greater or equal to the slope of ya(x): re - l ra - la.

We consider now the first case. Let:

minx such that x* < x < 1 and

/yYij(x) = y,(x) for any yi, not y, or

yij (x) = yw(x) for any yij not yw

1 if the x above does not exist

Essentially, x' is the first x-location after x* where y, (x) or y, (x) intersect another

link. If yw (x) or y0 (x) do not intersect another link after x*, then x' = 1.

We now show that x' is an x-location where it is possible to cut all the links which

intersect cuth(x*, y*). Since links are line segments, we know yij(x') = yi,(x*) +

(x' - x*)(r - l4) Vi, j. Since we know y,(x*) y,(x*) + h (cuth(x* y*) intersects

both yw(x) and y 0 (x)) and (rL - 1,)(x' - x*) < (r. - 1,)(x' - x*) (case 1 above and

X' - x* > 0) , we have yw(X*) + (r, - l,)(x' - x*) < ya(x*) + (r0 - lc)(x' - x*) + h.

Thus y(x') ya(x') + h. See Fig. 2-9.

This means cuth(x', ya(x')) will intersect both (iZ, j.) and (i, ja). Since both

these links do not intersect another link on x* < x < ' links which are intersected

by cut(x*, y*) are also intersected by cuth(x', y,(X')) (they are 'trapped' between

(iw, j.) and (i., j,) on x* < x < x').

Now we know cuth(x', y(x')) is a worst-case cut and x' = 1, [x', y 0 (x')] is a link

intersection, or [x', y (x')] is a link intersection. Therefore, by Lemma 1, we know

there exists a worst-case cut which has an endpoint on a link intersection or node.

The second case follows in an analogous fashion.
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CUth(X', ya(x)

Figure 2-9: CUth(X*, y*) is a worst-case cut and has a unique (iu, j,) and (i,,, j). From this we are able to find

cuth(x', ya (x')), a worst-case cut that has an endpoint on a link intersection.

Basically, according to Lemma 2, if (im, .) and (i0 , j,) are both unique for a worst-

case cut, we can find another worst-case cut such that it has at least one endpoint on

a link intersection or node (see Fig. 2-9).

Using the above lemmas, we now prove Theorem 1.

Proof of Theorem 1: Since (ie, j) and (if, j0 ) exist for all worst-case cuts,

Lemmas 1 and 2 imply that we need only check cuts which have endpoints at nodes

or link intersections to find a worst-case cut. Algorithm 1 checks all possible nodes

and intersections as endpoints, and therefore will necessarily find also a worst-case

cut.

We note that although algorithm WCBG finds a worst-case cut, there may be other

worst-case cuts with the same value. The endpoints of these cuts do not necessarily

have to be on a link intersection or a node. However, there cannot be a cut with a

higher value than the one obtained by the algorithm.

2.6 Worst-Case Line Segment Cut - General Model

In this section, we present a polynomial time algorithm for finding the solution of the

GNIL Problem; i.e., for finding a worst-case line segment cut in the general model.

We show that we only need to consider a polynomial-sized subset of all possible cuts.

We first focus on the TEC performance measure and then discuss how to obtain

a worst-case cut for other measures. Our methods are similar to the approach for

solving the BGNI Problem, described in Section 2.5. In this section, a worst-case cut
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refers to a worst-case line segment cut.

2.6.1 TEC Performance Measure

Before proceeding, note that the objective function in (2.2) takes on a finite number

of bounded values. This leads to the following observation.

Observation 2. There always exists an optimal solution to (2.2) (i.e., a worst-case

cut).

Below we present an algorithm that finds a worst-case line segment cut under the

TEC measure in the general model. This algorithm considers all cuts that (i) have

an endpoint on a link intersection and contain a node not at the intersection, (ii)

have an endpoint on a link intersection and another endpoint on a link, (iii) contain

two distinct nodes and have an endpoint on a link, and (iv) contain a node and have

both endpoints on links.

We now use a number of steps to prove the theorem below.

Theorem 2. Algorithm WLGM has a running time of O(N 8 ) and finds a worst-case

line segment cut that is a solution to the GNIL Problem.

Before proving the theorem we present some lemmas to reduce the set of candidate

worst-case cuts.

Lemma 3. There exists a worst-case cut that contains a node or has an endpoint at

a link intersection.

Proof. Let cut* be a worst-case cut with endpoints given by [x*, y*] and [v*, w*]. We

now define some useful terminology. Let the links that intersect cut* closest to the

endpoint [x*, y*] be given by (i0 , j,) and let the closest point to [x* , y*] where (i0 , j,)

intersects cut* be given by [x0 , y,]. Let those links which intersect cut* furthest from

the endpoint [x*, y*] be given by (ie, j,) and let the closest point to [v*, w*] where

(ix, jw) intersects cut* be given by [xe, y,]. We consider two cases, one where either

(i0 , j.) or (i., Jw) are not unique and the other where (ia, j,) and (im, jw) are unique.
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Algorithm 2 Worst-Case Line Segment Cut in the General Model (WLGM)

1: input: h, length of cut
2: worstCaseCapacityCut <- 0
3: L +- {}
4: for every link intersection [xk, Yk] do
5: for every node i such that [Xi, yj] 7 [xk, Yk] do
6: L = L U {cut that has an endpoint at [Xk, Yk] and contains [xi, yi]}
7: for every (i,j) do
8: L = L U {cuts that have an endpoint at [Xk, Yk] and another endpoint on (i,j)}
9: for every (i, j) and node k do

10: for every node 1 such that k = 1 do
11: L = L u {cuts that have an endpoint on (i, j) and contain [Xk, Yk] and [xi, yL]}
12: for every (m, n) do
13: L = L u {cuts that have an endpoint on (i, j), another endpoint on (m, n), and

contain [Xk, yk]}
14: for every cuth([Xk, yk], [vk, wk]) E L do
15: call evaluateCapacityofCut(Xk, Yk, Vk, wk)
16: return cut*
Procedure evaluateCapacityofCut (Xk, Yk, vk, w)
17: capacityCut +- 0
18: for every (i, j) do
19: if zij([Xk, yk], [vwk]) = 1 then
20: capacityCut +- capacityCut + cijpij
21: if capacityCut > worstCaseCapacityCut then
22: cut* <- cuth ([Xk, yk], [vk, wk])
23: worstCaseCapacityCut +- capacityCut
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cut'

Figure 2-10: cut' contains a node as well as intersects all links which cut* does.

In the first case, either (ic, j0) or (ie, jw) are not unique for cut*. Without loss of

generality, we assume (i0 , j,) is not unique. We consider cut' which is a translated

version of cut* such that it has an endpoints on [x0 , y0 ] and on [v*+x 0 -x*, w*+y 0 -

y*]. Since there exist no links between [x*, y*] and [x0 , y,], we know cut' intersects

at least as many links as cut* and thus is a worst-case cut that satisfies the lemma.

Fig. 2-8 shows the analogous case for the bipartite model.

In the second case, (i0 , j0) and (ie, jw) are both unique for cut*. If cut* contains

a node, the lemma is satisfied. In the following, assume cut* does not contain a

node. Now we consider cut'([x* + a, y* + b], [v* + a, w* + b]) and cut"([x* - c, y* -

d], [v* - c, w* - d]) to be translated versions of cut* such that (i) sign(a) = sign(c) and

sign(b) = sign(d), (ii) there does not exist any nodes in the parallelogram defined by

cut* and cuti (which we denote "parallelogram B") except those contained in cuth

and in the parallelogram defined by cut* and cut' (which we denote "parallelogram

C") except those contained in cut", and (iii) no link intersects (i,,j 0 ) or (ie, j) in

either parallelogram except on cut' or cut". Since a node does not exist within the

interior of either parallelogram all links intersected by cut* must also cut one of the

other three edges of each parallelogram.

Now choose the maximum a and c such that the edge ([x*, y*], [x* + a, y* + b])

of parallelogram B and the edge ([x*, y*], [x* - c, y* - d]) of parallelogram C are

both parallel to the link (i0 , j0) and the parallelograms satisfy the constraints in

the paragraph above. This implies both cut' and cut' contain a node or contain a

point where (i., j,) or (i., jw) intersects a link. Since (ia, j,) is parallel to both edges

([x*, y*], [x* + a, y* + b]) and ([x*, y*], [x* - c, y* - d])) and since (i, j,) can cut at
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most one of the edges ([v*, w*], [v* + a, w* + b]) and ([v*, w*], [v* - c, w* - d]) or be

parallel to them (as they both lay on the same straight line), we know at least one of

cut' or cut' intersects the same links that are intersected by cut*. Therefore, we can

choose a, b, c, and d such that either cut' or cut' is a worst-case cut and (i) contains

a node (Fig. 2-10) or (ii) contains a point where (f, j0 ) or (im, jw) intersects a link.

In the latter case, we can translate this worst-case cut in a similar fashion to the first

case to construct a worst-case cut which satisfies the lemma. L

We now consider two cases of worst-case cuts. The first case is a worst-case cut

that has an endpoint at a link intersection. The second case is a worst-case cut that

contains a node. In both cases, let the node or link intersection that is in the cut be

denoted by A. Lemma 4 handles the first case where A can be considered as a link

intersection.

Lemma 4. If there exists a worst-case cut that has an endpoint on point A, then (i)

there exists a worst-case cut that has an endpoint on A and has its other endpoint on

a link or (ii) there exists a worst-case cut that has an endpoint on A and contains a

node that is not A.

Proof. Assume there exists a worst-case cut with endpoint A, denoted by cut*. There-

fore, the other endpoint of cut* must be on a circle of radius h. Denote by 6 the angle

of cut* in some coordinate system. Denote by 6; the angles from A to all nodes inside

the circle and all intersections of links with the circle (including links tangent to the

circle). Choose 6' = Oj such that j = arg mini |0 - 6|. Choose cut' to be the cut

with endpoint at A and having length h and angle 6'. By definition of 6' and the 62's,

all links intersecting cut* must also intersect cut' (because between 6 and 6' no link

intersects with the circle and there exists no node within the interior of that sector).
Thus, cut' is a worst-case cut (see Fig. 2-11). L

The following two lemmas handle the second case where A can be considered as

a node.

Lemma 5. If there exists a worst-case cut that contains point A, then there exists a

worst-case cut that contains A and has an endpoint on some link.
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Figure 2-11: Translate an endpoint of cut* along the circumference of the circle until the cut intersects a node or the
translated endpoint intersects a link; call this new cut cut' . Since every link which intersects cut* intersects cut'
cut' is a worst-case cut.

cut*

cut'

A

Figure 2-12: Translate cut* along the line which contains it until one of its endpoints intersects a link; we call this
new cut cut' . cut' intersects all links cut intersects.

Proof. Let cut* be a worst-case cut that intersects A with endpoints given by [x*, y*]

and [v*, w*]. Let the links that intersect cut* closest to the endpoint [x*, y*] be given

by (i0 , j,) and let the closest point to [x*, y*] where (ia, j0 ) intersects cut* be given

by [x,, y.]. We consider cut' which is a translated version of cut* such that it has

endpoints at [Xa, y.] and at [v* + x0 - x*, w* + ye - y*]. Since there exist no links

between [x*, y*] and [x,, yo], and because the same line contains both cut* and cuth,

we know that every link which intersects cut* also intersects cut' in the same location

(see Fig. 2-12). Thus, cut' is a worst-case cut that contains A and has an endpoint

on a link (this endpoint is [x., y]).

Lemma 6. If there exists a worst-case cut that contains A and has an endpoint on

a link, then there exists a worst-case cut that contains A, has an endpoint on a link,
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Figure 2-13: Translate an endpoint of cut* right along L until it intersects a link intersection. This new cut is the
cut' on the right. We can also translate an endpoint of cut* left along L until it intersects a node. This new cut is
the cut' on the left.

and at least one of the following holds: (i) the cut contains a node that is not A, (ii)

one of the cut endpoints is also a link intersection that is not A , or (iii) the cut has

both endpoints on links.

Proof. Let cut* be a worst-case cut such that it contains A and has an endpoint on

a link. If cut* has an endpoint on A, then Lemma 4 implies Lemma 6. Assume

cut* contains A and has an endpoint on a link and does not have an endpoint on

A. Denote the link which contains this endpoint by L, and one of its endpoints by

[x1, Yi]. Denote the point at which cut* intersects L by [xo, yo]. Now translate the

endpoint of cut* along L so that this new cut still contains A. That is, consider the

cut, of length h, with endpoint at [ax1 + (1- a)xo, ay1 + (1- a)yo] and passing through

A, for 0 < a < 1. For a = 0 this is just cut*. We increase a until a new cut, called

cut' either has an endpoint that is h away from A (we cannot translate further)

or cut' can no longer satisfy Z(ijpi c jcut/ = E y ipijcijcut*. In the first case,

the cut has both endpoints on links. In the second case cut' satisfies at least one of

the following: cut' has an endpoint on L that is a link intersection (considered in

Lemma 4), cut' intersects a node which is not A, or cut' has an endpoint on L and

the other endpoint on a link. The first two possibilities are demonstrated in Fig. 2-13.

Fig. 2-14, which demonstrates the third possibility, shows cut' that contains A and

has both endpoints on links. 0

Using the lemmas above we now prove Theorem 2.
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Figure 2-14: Translate an endpoint of cut* along L until it can no longer intersect the bottom link. This new cut is
cut'.

Proof of Theorem 2: The lemmas presented in this section imply we only need

to consider a polynomially sized set of cuts. By Lemma 3 there are two possible cases

of worst-case cuts. The first case is a worst-case cut which has a endpoint at a link

intersection. The second case is a worst-case cut which contains a node. In the first

case, Lemma 4 implies that for every link intersection, O(N 4), there exists a possible

worst-case cut for every link and node, O(N 2 ). In the second case, Lemmas 5 and 6

imply that for every node-link pair (A and some link L), O(N 3 ), there exist several

possible worst-case cuts for every node and link, O(N 2). Since naively checking each

cut for the total cut capacity takes O(N 2 ), the algorithm has a total running time of

O(N) (the first case provides the greatest running time).

It should be noted that similarly to the bipartite case, although the algorithm finds

a worst-case cut, there may be other worst-case cuts with the same value. However,

there cannot be a cut with a better value than the one obtained by the algorithm.

2.6.2 ATTR, MFST, and AMF Performance Measures

As mentioned in Section 2.3.2, the formulation of the GNIL Problem, presented in

(2.2) should be slightly modified in order to accommodate the ATTR, MFST, and

AMF performance measures. We now briefly discuss how the algorithm has to be

modified in order to obtain results for these problems. In Section 2.8, we present

numerical results obtained using these modified algorithms. Using the lemmas and

theorem above, it is easy to show that only a polynomial number of candidate cuts
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need to be checked in order to find the worst-case cut under any of the performance

measures. This is due to the fact that the performance measures are monotonic.

Therefore, any additional link removed/added only increases/decreases the measure

and all the arguments supporting our lemmas still hold.

For each potential cut some links and/or nodes are removed. Hence, one has to up-

date the network adjacency matrix. Then, different operations have to be performed

for each measure:

" ATTR - If the network is fully connected, the value of ATTR is 1. Otherwise,

one has to sum over all components the value of k(k - 1), where k is the

number of nodes in each of the components. Then the sum has to be divided

by N(N - 1). In order to verify connectivity or to count the number of nodes in

each component, Breadth First Search (BFS) algorithm or the adjacency matrix

eigenvalues and eigenvectors can be used.

* MFST - Run a max-flow algorithm (e.g., O(Na) [2]).

" AMF - Run a max-flow algorithm for every node pair.

2.7 Worst-Case Circular Cut - General Model

In this section we present a polynomial time algorithm for finding a solution of the

GNIC Problem; i.e., for finding a worst-case circular cut in the general model. We

show that we only need to consider a polynomial-sized subset of all possible cuts.

We focus on the TEC performance measure and then briefly discuss how to obtain a

worst-case cut for the other performance measures. In this section, a cut refers to a

circular cut of a particular radius.

Before proceeding, note that the objective function in (2.3) takes on a finite num-

ber of bounded values. This leads to the following observation.

Observation 3. There always exists an optimal solution to (2.3) (i.e., a worst-case

cut).
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Above, we present an algorithm which finds a worst-case circular cut under the

TEC measure in the general model.

Algorithm 3 Worst-Case Circular Cut in the General Model (WCGM)

1: input: r, radius of cut
2: worstCa seCapacityCut <- 0
3: L 4- {}
4: for every (i, j) do
5: L = L U {cuts that intersect (i, j) at exactly one point and are centered on the line

which contains (i,j)}
6: for (k, l) such that (i, j) : (k, l) do
7: if (i, j) is parallel to (k, l) then
8: L = L U {cuts that contain node i or j on its boundary and intersect (k, 1) at

exactly one point}
9: else

10: L = L U {cuts that intersect (i, j) and (1, k) at exactly one point each such that
these points are distinct}

11: for every cutr(xk, yk) E L do
12: call evaluateCapacityofCut (xk, Yk)
13: return cut*
Procedure evaluateCapacityofCut(Xk, Yk)
14: capacityCut <- 0
15: for every (i, j) do
16: if minimum distance from (i, j) to [xk, Yk] is < r then
17: capacityCut <- capacityCut + cijpij
18: if capacityCut > worstCaseCapacityCut then
19: cut* <- cutr (Xk, Yk)
20: worstCaseCapacityCut <- capacityCut

Theorem 3. Algorithm WCGM has a running time of O(N 6) and finds a worst-case

circular cut which is a solution to the GNIC Problem.

Before proving the theorem, we present a useful lemma about cuts and line seg-

ments and then present some lemmas to reduce the set of candidate cuts.

Lemma 7. If a line segment intersects only the boundary of a cut, then the line

segment and cut intersect at exactly one point.

Proof. Proof by contradiction. Assume a line segment intersects only the boundary

of a cut and this intersection contains more than one point. Since a line segment and

a cut region are both convex, their intersection must be convex as well. However,
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Figure 2-15: An example illustrating Lemma 8. cut'. is a translated version of cut* such that {X', y'] lies on the line
which contains the intersected link and cut'r intersects the link at exactly one point (recall [x', y'] is the center of
cut'r).

we assumed at least two points on the boundary of the cut are in the intersection.

The fact that the intersection must be convex implies the chord connecting these two

points must be in the intersection as well. Since part of the chord is in the interior

of the cut, this leads to a contradiction. E

Lemma 8. If there exists a worst-case cut, denoted by cut*, which intersects exactly

one link, then there exists a worst-case cut, denoted by cut'., that intersects this link

at exactly one point such that [x', y'] lies on the line which contains the link (recall

[x', y'] is the center of cut').

Proof. Since cut* is a worst-case cut and only intersects a single link, any cut that

intersects the same link is also a worst-case cut. See Fig. 2-15. El

Lemma 9. If there exists a worst-case cut, denoted by cut*, that intersects at least

two links, then there exists a worst-case cut, denoted by cut'., that intersects at least

two links at exactly one point each and at least one of the following holds: (i) at least

two of the points are distinct and are not diametrically opposite, (ii) at least two of the

points are distinct and one of them is a node, or (iii) [x', y'] lies on a line containing

one of the two links.

The proof of the lemma above is similar to the proofs of the lemmas in Section 2.6.

Essentially, it is shown that we can translate a worst-case cut such that it remains a

worst-case cut and satisfies the properties in the lemma.

Proof. Assume a link that intersects cut* has node locations given by [xi, yj] and

[xj, yj]. Consider cut,[x* + h(x - xi), y* + h(yj - yi)] where h is the minimum non-
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negative value such that only the boundaries of this cut and some link intersect.

Denote this translation of cut* by cut' and note by Lemma 7 this cut must intersect

at least one link at exactly one point. Every link which is intersected by cut* must

intersect cut' because as a line segment and a cut are continuously translated away

from each other, the last non-empty intersection is an intersection of their boundaries.

Thus, cut' is also a worst-case cut. In the proceeding we consider two cases. In the

first case we assume cut" intersects at least two links at exactly one point each and

in the second case we assume cut' intersects exactly one link at exactly one point.

We first consider the case where cut' intersects at least two links at exactly one

point each (in addition to possibly other links that intersect the interior of cut').

Denote one of the points by A and another by B. If A and B are distinct and not

diametrically opposite, the conditions in the lemma are satisfied. Now we will consider

two sub-cases. In the first sub-case, we assume A and B reside in two diametrically

opposing points on cut' and in the second sub-case we assume A and B are not

distinct. In the first sub-case, if either A or B is a node, the lemma holds true. If

neither A or B are nodes, then A and B are diametrically opposing points where

parallel links are tangent to cut'. Denote one of these parallel links by (i, j). Now

consider cutr[x" + h(xz - Xi), y" + h(yj - yi)] where h is the minimum nonnegative

value such that two links intersect only the boundary of this cut at distinct and non-

diametrically opposing points or two links intersect only the boundary of this cut and

one of these intersection points is a node. Denote this translated cut by cut'.. Now,

by Lemma 7 one of the following must hold: either cut'. intersects the parallel links at

exactly one point each where one of these points is a node, or a link which intersected

the interior of cut' now intersects cut'. at exactly one point such that cut'. intersects

two links at exactly one point each such that they are not diametrically opposite and

distinct.

In second sub-case, two links intersect cut'. at a single point, C. This implies C is

a node of at least one of these links. Now choose a link with a node given by C and

denote the link by (k, 1). Let p(t) be a continuous parameterized closed curve which

is always a distance r from (k, 1) such that p(O) = [x", y"] and p(tc) where tc > 0 is
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(k,l1) P9',

Figure 2-16: A case in the proof of Lemma 9. cut* is first translated in the direction of (i, j) to become cut" which
intersects (k, 1) at exactly one point and intersects another link (in this case (i, j)) at exactly the same point. Then
cut', is translated along p(t) towards p(tc) to cut'. such that [x', y'] lies on the line which contains (k, 1).

the point on p(t) closest to C that intersects the line containing (k, 1) (see Fig. 2-16).

Additionally, we require that p(t) is exactly r units away from C for 0 < t < tc.

Let px(t) and py(t) denote the x and y components of p(t) respectively. Since cut'

intersects C, we know [x", y"] is on a semi-circular shaped part of p(t) (these are the

only parts of p(t) that are r units away from an endpoint of (k, 1)). Now consider

cut. [p2 (t), py (t)] where t is the minimum value such that two links intersect only the

boundary of this cut and these intersection points are distinct or t = tc. Denote this

translated cut by cut'.. If t = tc we know cut'. is centered on the line which contains

(k, 1). As before, we know every link which is intersected by cut'" must intersect cut'..

This is because as a line segment and a cut are continuously translated away from

each other, the last non-empty intersection is an intersection of their boundaries.

Also, the links that intersect cut' at C remain intersected throughout the translation

because cutr[px(t),py(t)] intersects C on 0 < t < tc. Thus, cut'. is a worst-case cut

and by Lemma 7 we know two links intersect this cut at exactly one point each and

one of the following: i) these points are distinct and one of them is a node given by

C or ii) [x', y'] lies on a line that contains (k, 1) ([x', y'] = p(tc)).

Now we consider the case where cut' intersects exactly one link at exactly one

point (in addition to other links that intersect the interior of cut'"). Similarly as

above, denote this link by (k, 1). Let p(t) be a continuous parameterized closed curve

which is always a distance r from (k, 1) such that p(O) = [x", y"] (see Fig. 2-17).

Consider cutr[px(t),py(t)] where t is the minimum nonnegative value such that two
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cut*

p()

cut'.

cutr

Figure 2-17: A case in the proof of Lemma 9. cut* is first translated in the direction of (ij) to become cut" which
intersects (k, 1) at exactly one point. Then cut'" is translated along p(t) to cut'. where (i, j) and (k, 1) each intersect
cut' at exactly one point.

links intersect only the boundary of this cut (we assume cut* intersects at least two

links). By Lemma 7 we know these two links intersect this cut at exactly one point

each. So this case reduces to the first case for which we know the lemma holds. O

Lemma 10. There are at most 20 cuts of radius r that intersect two non-parallel line

segment links at exactly one point each such that these points are distinct.

Proof. If a link intersects a cut at exactly one point, then either a node of the link

intersects the boundary of the cut or the link is tangent to the cut (we call a link

tangent to a cut if the line containing the link is tangent to the boundary of the cut).

For a particular pair of links, this implies a cut that satisfies the lemma falls into at

least one of three cases: i) the boundary of the cut intersects two distinct nodes (one

from each link), ii) the boundary of the cut intersects a node of one link and the cut

is tangent to the other link, or iii) both links are tangent to the cut.

In case one, by geometry we know there are at most two cuts of radius r whose

boundary contains two distinct nodes. In case two, given a node and a link, we know

by geometry there are at most two cuts of radius r that the link is tangent to and

whose boundary contains the node. In case three, given two non-parallel links, the

lines containing these segments divide the plane into four pieces. There exist at most

one cut tangent to both lines in each of these pieces. Thus, there are at most four

cuts tangent to both links. Since for a pair of non-parallel links there are four pairs
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of nodes to consider (with at most two cuts per pair that satisfy the lemma), four

endpoint-link pairs (with at most two cuts per pair that satisfy the lemma), and one

link-link pair (with at most four cuts per pair that satisfy the lemma), we know there

exists at most 20 cuts that satisfy the lemma.

Note that the bound above is a simple upper bound on the number of possible

cuts and can possibly be further reduced.

Using the above lemmas, we now prove Theorem 3.

Proof of Theorem 3: The lemmas presented in this section imply there exists a

worst-case cut that intersects a link at exactly one point such that the center of this

cut lies on the line containing this link or there exists a worst-case cut that intersects

two links at exactly one point each and at least one of the following: (i) at least two

of the points are distinct and are not diametrically opposite or (ii) at least two of

the points are distinct and one of them is a node. Algorithm WCGM enumerates all

these possible cuts. It considers each link, O(N 2 ), and finds both cuts that intersect

the link at exactly one point and whose center lies on the line which contains this

link. Then, it considers every combination of two links, O(N 4 ), and if the links are

not parallel it finds every cut (if any exist) which intersect each of the two links at

exactly one point such that these points are distinct. By Lemma 10 we know there are

at most 20 of these cuts for every pair of links. If the links are parallel, we need only

consider cuts that intersect one of the links at exactly one point and whose boundary

intersects the other links endpoint. In total, Algorithm WCGM considers O(N 4 ) cuts

and since naively checking each cut for the total expected capacity removed takes

O(N 2 ), the algorithm has a total running time of O(N).

As mentioned in Section 2.3.2, the formulation of the GNIC Problem, presented

in (2.3), can be slightly modified in order to accommodate the ATTR, MFST, and

AMF performance measures. This modification is done in exactly the same way as

it was done for the GNIL Problem (see Section 2.6.2).

It should be noted that we can also consider the case of an elliptic cut with fixed

axis (that is, no rotation of the ellipse is considered). This disaster model more

closely resembles the effect of an EMP. This case can be solved by applying an affine
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Figure 2-18: Line segments cuts optimizing TEC for h = 2 - the red cuts maximize TEC and the black segments are
nearly worst-case cuts.

transformation to the network node locations and then running WCGM.

2.8 Numerical Results

In this section we present numerical results that demonstrate the use of the algorithms

presented in sections 2.6 and 2.7. These results shed light on the vulnerabilities of a

specific fiber network. Clearly, the algorithms can be used in order to obtain results

for additional networks or for a combined fiber plant of several operators. The results

were obtained using MATLAB.

We used Algorithm WLGM, presented in Section 2.6, to compute worst-case cuts

under the TEC, ATTR, MFST, and AMF performance measures for a fiber plant of

a major network provider [46]. In all cases, we found that the results are intuitive. We

also used Algorithm WCGM, presented in Section 2.7, to compute worst-case circular

cuts under the MFST performance measure for the same fiber plant. We found

these circular cuts are in similar locations to their line segment counterparts. All

distance units mentioned in this section are in longitude and latitude coordinates (one

unit is approximately 60 miles) and for simplicity we assume latitude and longitude

coordinates are projected directly to [x, y] pairs on the plane. We also assume that

all the link capacities are equal to 1.

Fig. 2-18 presents line segment cuts of h = 2 which maximize the TEC perfor-

mance measure. As expected, we find that TEC is large in areas of high link density,
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Figure 2-19: Line segments cuts optimizing the ATTR for h = 2 - the red cuts minimize ATTR and the black
segments are nearly worst-case cuts.

such as areas in Florida, New York, and around Dallas. Fig. 2-19 presents line seg-

ment cuts of h = 2 which minimize the ATTR performance measure. ATTR is

smallest where parts of the network are disconnected, such as at the southern tip of

Texas, Florida and most of New England. This is intuitive since in order to decrease

the ATTR, the graph must be split and under a small cut, only small parts of the

graph can be removed.

Fig. 2-20 illustrates line segment cuts of h = 4 which minimize the MFST per-

formance measure between Los Angeles (s) and New York City (NYC) (t). Removal

of the s and t nodes themselves is not considered as this is a trivial worst-case cut.

We found that MFST is smallest directly around Los Angeles and NYC as well as

in Colorado, Utah, Arizona, New Mexico, and Texas. There are also cuts in the East

Coast which completely disconnect NYC from Los Angeles without actually going

through NYC. The cuts in the southwest are intuitive since the network in that area

is very sparse. In some sense, the fact that in this case we obtain expected results

validates the assumptions and approximations.

We note that different networks (e.g., networks in Europe or Asia) have a different

structure than the sparse structure of the southwest U.S. network. In such cases, the

solution will not be straightforward. In order to demonstrate it, we will discuss below

the MSFT measure between NYC and Forth-Worth. Before that, we present in

Fig. 2-21 line segment cuts of h = 2 which minimize the AMF performance measure.

The AMF values are minimized by cuts in the southwest as well as in Florida and
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Figure 2-20: Line segments cuts optimizing MFST between Los Angeles and NYC for h = 4 - the red cuts minimize
MFST and the black segments are nearly worst-case cuts. Cuts which intersect the nodes representing Los Angeles
or NYC are not shown.

Figure 2-21: Line segments cuts optimizing the AMF for h = 2 - the red cuts minimize AMF and the black segments
are nearly worst-case cuts.

New York.

Finally, we tested how line segment cuts compare to circular cuts. Using Algorithm

WCGM we found circular cuts of r = 2 which minimize the MFST performance

measure between Los Angeles and NYC (see Fig. 2-22). Our results were similar

to the line segment case; worst-case circular cuts were found close to both to Los

Angeles and NYC. The southwest area also appeared to be vulnerable, just as in the

line segment case.

As mentioned above, we tested the MFST measure for circular cuts between Fort

Worth and NYC (see Fig. 2-23). Due to the complexity of the network along the east

coast, the results were less straightforward than in the Los Angles-NYC case.

Finally, for a circular cut in the fiber plant illustrated in Fig. 2-1, we computed

the maximum value of TEC (removed capacity) as a function of the cut radius.

The results are illustrated in Fig. 2-24. As expected, the maximum value of TEC
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Figure 2-22: The impact of circular cuts of radius 2 on the MFST between Los Angeles and NYC. Red circles
represent cuts that result in MFST = 0 and black circles result in MFST 1. Cuts which intersect the nodes
representing Los Angeles or NYC are not shown.

Figure 2-23: The impact of circular cuts of radius 2 on the MFST between Fort Worth and NYC. Red circles represent
cuts that result in MFST = 0, black circles result in MFST = 1, and yellow circles result in MFST = 2. Cuts which
intersect the nodes representing Fort Worth or NYC are not shown.

monotonically increases with the cut radius. This implies that the minimum radius

that guarantees a certain level of a specific performance measure (e.g., finding the

radius of a circular cut that ensures that AMF < 3) can be found by using binary

search along with the methods described in Section 2.7.

2.9 Conclusions

Motivated by applications in the area of network robustness and survivability, in this

chapter, we focused on the problem of geographical network inhibition. Namely, we

studied the properties and impact of geographical disasters that can be represented

by either a line segment cut or a circular cut in the physical network graph. We

considered a simple bipartite graph that abstracts the fiber links between the east
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Figure 2-24: The maximum value of TEC as a function of the cut radius for a circular cut in the fiber plant illustrated
in Fig. 2-1.

and west coasts in the U.S. or transatlantic/pacific links. Then, we considered a

general graph model in which nodes are located on the Euclidian plane and studied

two related problems in which cuts are modeled as line segments or as circular disks.

For all cases, we developed polynomial-time algorithms for finding worst-case cuts.

We then used the algorithms to obtain numerical results for various performance

measures.

Our approach provides a fundamentally new way to look at network survivability

under disasters or attacks that takes into account the geographical correlation be-

tween links. Some future research directions include the analytical consideration of

arbitrarily shaped cuts and the use of computational geometric tools for the design

of efficient algorithms.
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Chapter 3

Non-Targeted Attacks

In chapter 2 we considered the problem of finding the worst-case location for a geo-

graphic failure (represented as a disk or line segment) in a geographic network with

respect to certain network connectivity measures. On the other hand, in this chapter

we consider the impact of a randomly located disaster (represented as a disk or line)

on network connectivity.

3.1 Introduction

In this chapter we consider non-targeted geographic attacks; this can model failures

resulting from natural disasters such as hurricanes or collateral (non-targeted) damage

in an EMP attack. It can also model manufacturing errors in a VLSI ship or damage

to a printed circuit board. This chapter first considers the effect of a random line

cut, then it considers the effect of a random disk cut. Any links (modeled as line

segments) that are intersected by a cut are removed from the network.

Our method is to use geometric probability to assign a measure to sets of lines and

disks in the plane that intersect some set of line segments. Using these basic tools

which are introduced and explained in sections 3.2 and 3.7, we are able to calculate

network performance metrics to these random cuts in polynomial time. We also

present numerical results that demonstrate the significance of geometry on network

survivability.
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To the best of our knowledge we are among the first to apply geometric probability

techniques to network survivability. In [71] the survivability of undersea cables with

respect to a randomly located disk is studied, however only a two node topology was

considered. Also, [47] applied geometric probability techniques to detection in sensor

networks.

A notable contribution of this chapter is the development of an algorithm to

calculate the average two-terminal reliability of a network in polynomial time with

respect to non-targeted line or disk failure model. This result is significant because

calculating this metric assuming independent link failures in known to be NP-hard

[10]. We also present some numerical results that demonstrate the significance of

geometry on the survivability of the network and discuss network design in the context

of random line and disk cuts.

This chapter is organized as follows: In sections 3.2 and 3.3 we introduce geometric

probability with respect to lines and present an algorithm that allows us to evaluate

joint link failure probabilities after a random line cut. In section 3.4 we use these

results to demonstrate how to evaluate average two-terminal reliability to a random

line cut (among other metrics). In section 3.5 we present some numerical results

to show the significance of geometry on the survivability of the network and then

in section 3.6 we present some network design problems in the context of random-

line cuts. We then shift focus to random disk cuts. In sections 3.7 and 3.8 we

present a method that allows us to approximate joint link failure probabilities under

a random disk-cut. Then in section 3.9 we use these tools to show how to approximate

certain metrics under this geographic failure model. In section 3.10 we again present

some numerical results that make clear that geographically correlated failures are

fundamentally different from independent failures. Then in section 3.11 we present

some network design problems in the context of random-disk cuts. We conclude and

discuss future research directions in section 3.12.
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3.2 Modeling Random Line Cuts in Geographic

Networks

In this section we describe how to model random disasters using geometric probability.

For simplicity, we focus only on disasters which remove links along a random line.

For example, damage to communication infrastructure can be a result of a natural

disaster such as a tornado or collateral damage in an EMP attack. As these disasters

are not targeted, these events can be modeled as breaking fiber along random line.

After introducing some basic definitions from geometric probability, we review classic

results which allow us to find single and pairwise link failure probabilities. These

results are requisite for Section 3.3 where we show how to find joint link failure

probabilities to random line-cuts.

3.2.1 Geometric Probability

Geometric probability is the study of probabilities involved in geometric problems.

In our case, we are interested in the probability that a 'randomly' placed line in a

plane will intersect a certain set of links (e.g., links whose removal would disconnect

the network). It should be noted that the problem we are interested in is very similar

in nature to the Buffon's Needle problem [68].

Before proceeding further, we will present some useful notation. Let C be a closed

bounded convex set on the plane. Let Lc be the perimeter of C (where perimeter

is the length of the boundary). Also, let [C] denote the set of all lines in the plane

which intersect C.

Geometric probability tells us how to assign a measure to sets of lines; let this

measure be denoted by m. The rest of this section reviews results from geometric

probability (see [50,65]) that are necessary for the development of this work. We first

present some geometrical arguments to get intuition about what m([C)) should be

for a given set C.

Let Z be a line in the plane, 0 be the origin, and H be the closest point on Z to
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Figure 3-1: Let Z be a line in the plane, 0 be the origin, and H be the closest point on Z to 0 (see Fig. 3-1). Note
that every line in the plane can be parameterized by p and 0 where 0 is the smallest non-negative angle between the

x-axis and the line's normal and Jp| is the Euclidean distance between H and 0 such that p E R, 0 E [0, ir), and the

equation of the line is x cos 0 + y sin 0 - p = 0.
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Figure 3-2: Consider a set of parallel lines (0 = 900 but variable p) that intersect C. Projecting C onto a line

perpendicular to the parallel lines results in line segment ST. Let D(90*) be the length of this line segment. It seems

reasonable for a measure to map the set of parallel lines in the plane with 0 = 900 that intersect C to D(90*). Note

that D(6) remains unchanged if C is translated.

o (see Fig. 3-1). Note that every line in the plane can be parameterized by p and 0

where 6 is the smallest non-negative angle between the x-axis and the line's normal

and |pl is the Euclidean distance between H and 0 such that p E R, 9 E [0, 7r), and

the equation of the line is x cos 0 + y sin 0 - p = 0.

Let C be a bounded closed convex set in the plane. We first start by considering a

set of parallel lines (fixed 0 but variable p) that intersect C (see Fig. 3-2). Projecting

C onto a line perpendicular to the parallel lines results in a line segment (see Fig. 3-2).

Let D(9) be the length of this line segment. It seems reasonable for a measure to

map the set of parallel lines in the plane with angle 0 that intersect C to D(9). Note

that D(6) remains unchanged if C is translated.

Intuitively, by considering D(6) over all angles, it seems reasonable to assign

m([C]) as fo" D(9)d6. Note that D(9) is invariant under the translation of C and
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since D(0) = D(O + r) we know f(7 D(0)dO is invariant under the translation and

rotation of C.

Note, we have not yet properly defined the measure, we have only noted a property

we would like it to have. For a proper definition of the measure see Appendix 3.A. We

will now present two examples of evaluating fo" D(0)dO. Consider a circle of radius

1. Since the projection of this circle onto any line is a line segment of length 2,

we know that D(0) = 2 for all 0. So fJ D(0)d0 = 27r. Next consider a horizontal

line segment length 1. By simple trigonometry, we know D(0) = cos 01 and thus

f( D(0)d0 = sin 0| -sin6I| = 2.
2

We now present an important result from geometric probability.

Lemma 11. Let C be a bounded closed convex set and D(0) be defined the same as

above. Now,

m([C]) = dpd0 = D(0)d0 = Lc

Note this is consistent with the above examples. See [50, 65] for a proof of the

above statement and see Appendix 3.A for an intuitive argument.

3.2.2 Single Link Failures

Let [Q] and [C] be sets of lines in the plane such that [Q] C [C]. Given m, the

probability a 'random' line is in the set [Q] when it is known to be in the set [C]

is defined to be ratio of measures [65], m([Q]) This definition appeals to intuition;

m([C]) in some sense represents the 'weight' of lines in [C] and m([Q]) represents the

'weight' of lines in [Q]. Therefore it makes sense that the probability a line in [C] is

also in [Q] is m([Q

We now present an example relating to network survivability. Consider a rectangle

C with height a and width b and a line segment Q of length 1 inside C (see Fig. 3-3).

Now we consider a random line-cut. We have:

Pr(Q cut|C cut) = m([Q]) LQ 1

m([C]) Lc a+b
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Figure 3-3: Rectangle C with link Q inside.

Figure 3-4: The dotted curve shows the internal cover of A and B, denoted by I(A, B). The dashed curve shows the
boundary of the convex hull of A U B.

3.2.3 Pairwise Link Failures

We now present a classic definition and result in geometric probability which allows

us to find pairwise link failure probabilities with respect to a random line-cut.

Definition 3 (Internal Cover). The internal cover of two bounded convex sets in the

plane, A and B, denoted by I(A, B) is given by the following. If A f B = 0 then the

internal cover is realized by a closed elastic string drawn about A and B and crossing

over a point 0 placed between A and B [65] (see Fig. 3-4). If A f B 7 0, then the

internal cover is realized by a string which is wrapped around the entire perimeter of

both A and B. In this case, LI(A,B) = LA + LB.

Let conv(A) denote the convex hull of set A.

Lemma 12 ( [65]). If A and B are bounded closed convex sets,

m([A] f[B]) = LI(A,B) - Lconv(AUB)

64



1

1 *k

Figure 3-5: Pr( j and k cut j j cut) = v 1+ d2 - d

1j

k1

Figure 3-6: Pr( j and k cut I j cut ) =

For a proof, see Appendix 3.B.

Given two links, j and k, by definition the probability a 'random' line is in the

set [j] n [k] when it known to be in the set [j] (note that [j] n [k] C [j]) is the ratio

of measures "(i .[k) So, using Lemma 12, we find

Pr(k cutli cut) = m([k] f[j]) LI(j,k) - Lconv(jUk)
m([j]) Lj

Examples demonstrating of the above result for pairwise link failures are given

below.

Example 1: Two parallel links, j and k, of length 1 are separated by a distance d.

The nodes form corners of a rectangle. See Fig. 3-5. Since the length of a diagonal

is given by v/1 + d2, we know LI(j,k) = 2 + 2 1 + d2 . Also, the perimeter of the

rectangle is given by 2 + 2d. Therefore, Pr( j and k cut I j cut ) = v1+ d2 - d.

Example 2: Two links, j and k, of length 1 overlap as shown in Fig. 3-6 where

the length of the overlap is e. These links intersect, so LI(j,k) = 4 by definition. Also,
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Figure 3-7: Pr( j and k cut I j cut) = 1 - sin 2

it is evident Lcono(juk) = 2(2 - E). Therefore, Pr( j and k cut I j cut ) =E.

Example 3: Two links, j and k, of length 1 are at an angle # to each other and

share a common node. See Fig. 3-7. These links intersect, so LI(jk) = 4. Also, the

perimeter of the convex hull is given by 2 + 2 sin 6. Therefore, Pr( j and k cut I j cut

) 1 - sin (. This result agrees with our intuition. If # = 0, then the links are on

top of each other and the probability is one. If # = 7r, then only lines which intersect

the shared node intersect both links and the probability is zero.

3.3 Geographically Correlated Link Failures Un-

der a Random Line Cut

In this section we present an algorithm which calculates the measure of lines that

intersect every line segment in a set of segments. This result will allow us to calculate

the probability that a random line-cut intersects a certain set of links in a network

(e.g. links whose removal would disconnect the network). We will then use this to

efficiently calculate network performance measures with respect to random line-cuts.

The details of this section may be skipped and the reader may proceed without loss

of continuity to Section 3.4 on evaluating network reliability.

Assume we are given a set of line segments, Q, on a plane such that the endpoints

are in general form; that is, no three endpoints are collinear'. Let the ith line segment

1This assumption is not restrictive as we can slightly perturb the location of the endpoints to
satisfy this condition.

66



P5

P6  P4

Q2

Z

P 2

P, P3
P1

Figure 3-8: Shown above are three line segments, Qi, Q2, and Q3, and a line Z which does not intersect the convex
hull of P. We want to find m([Qi] [Q2] f[Q3]) which is equivalent to m(Z f[Qi] f[Q2] f[Q3]).

be denoted by Qj. Our goal is to find m(f [Qi]); that is, the measure of the set of

lines that intersect all segments in Q.

Sylvester in [68] shows how to solve for m(flQ [Qj]). However, this approach

takes exponential time in |Q|; this is because the perimeter of the convex hull of

every subset of Q must be considered. Ambartzumian in [4] and [5] provides an

algorithm to calculate m(fl1. [Qj]) in polynomial time. The algorithm in this section

presents an alternate way to solve for m(F1Q [Qi]) in polynomial time by reducing

the problem to finding pairwise link failures, as was done in Section 3.2.3.

In the following, for clarity of presentation we break down our procedure into steps

for finding m(fl QM]).

Step 1:

Let P be the set of endpoints of the line segments in Q. Let us impose an

arbitrary ordering on P and denote the ith point in P by P. Let PP be the line

segment between P and P.

We start by arbitrarily placing a vertical line Z such that it does not intersect

the convex hull of P (see Fig. 3-8). Note that m(fl'[Q= ]) = m((fl'[Q ]) nl[Z])
because the set of all lines which do not intersect Z has measure zero.

Step 2:

Consider all lines that intersect two points in P. Let the intersection points of
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Z

Figure 3-9: Consider all lines that intersect two points in P. Let the intersection points of these lines and Z be
denoted by a (shown as dots on Z above). Let the divisions of of Z into line segments and rays by points in a be
denoted by M. Let us impose an ordering on M and denote Mi to be the ith segment in M.

these lines and Z be denoted by a. Let the divisions of Z into line segments and rays

by points in a be denoted by M (see Fig. 3-9). Let us impose an ordering on M and

denote Mi to be the ith segment in M.

Step 3:

Now,

IQI

m(fl[Qi])
i=1

IQI
= m(([Qi]) [Z])

i=1

QI0

= m(Q[Qi) O(U [Mj]))
i=1 Ml3 EAM

1QI

= m( U ((flin[M,]))
Mlj EM i=1

Since every [AIj] is disjoint from [Mk when j # k up to measure zero, we have:

10I 1Q1

m( U ((DQi nlAf1i>)= E m((flin[M])
Mj E M i=1 Mj E M i=1
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Our problem is now reduced to computing m((091[Qi]) nl[M]) for every j. That

is, the measure of the set of lines that intersect both Mj and each of the segments in

Q. We will show that computing this is easy because it is equivalent to computing

m([PkPI) n[Mj]) for some k and 1. That is, m((fl,[Q]) nl[Mj]) is the same as the

measure of the set of lines intersecting M and a line segment connecting two points

in P.

Step 4:

In the following steps, we assume X is a point on Z such that X V a.

Definition 4 (T(X)). T(X) is an ordered set of all points in P such that when Z

is rotated counter-clockwise about X, the order in which points in P are intersected

is the ordering in T(X).

For an illustration of this definition see Fig. 3-11.

Lemma 13. T(X) = T(X') for every X E M, and X' E M,.

Intuitively, this lemma states that the ordering of T(X) is the same for all X in

Mi .

Proof. We want to show the ordering of T(X) is constant for all X in any Mj. This

is equivalent to showing the pairwise ordering in T(X) is constant for all X in any

Mj .

We will use geometry techniques to prove the pairwise ordering in T(X) is con-

stant. In order to do this we will present some notation. Consider two different

points in P, P1 and P2. Assume the line that contains P1 and P2 intersects Z (the

proof is trivial otherwise) and denote this intersection point by W. Let the distance

between W and P1 be given by di and the distance between W and P2 be given by

d2. Without loss of generality, assume di < d2. Let X be a point on Z such that

X V W. Let x denote the distance between X and W. Let 01 be the angle Z must

rotate counter-clockwise about X to intersect Pi and 02 be the angle to intersect P2.

Realizing arctan is a strictly monotonically increasing function, from geometry we
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Figure 3-10: This is the setup for the proof of Lemma 13. Here X is above W, so06 = arctan($-) and 02 = arctan(-2).

have:

01 = arctan(-) < arctan(-) = 02 V X above W
x x

01 = r - arctan( ) > 7r - arctan(-) = 02 V X below W
x x

See figure 3-10 for clarification.

Now let X' E M1 for some j such that X' V W. Now, the equations above imply:

P1 comes before P 2 in both T(X) and T(X') or P1 comes after P 2 in both T(X) and

T(X'). Because the above holds for any two different P1 and P2 , this completely

specifies the ordering of T(X) and T(X') and also implies T(X) = T(X').

Step 5:

Definition 5 (A'). A' is the last point in T(X) such that there does not exist Pk

and P ahead of A' where PkPI G Q.

Definition 6 (Af). Aj is the first point in T(X) such that there exists a Pk before

AX where P 2 E Q.

See Fig. 3-11 for an example.

Lemma 14. If AX comes before AX, then [X| f(l [Q]) = [X] n[AfAx], other-

wise if AX comes before AX, then [X ] f(fl [Q]) = 0.

Intuitively, this lemma says the set all lines which intersect X and every line

segment in Q is the same as the set of all lines which intersect X and some PkP.
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Figure 3-11: An example to demonstrate the definitions of T(X), Ax, and A . Here T(X) is the ordered set
{P 1 , P 3 , P2, P4, P5 , P 6 }. AX is the last point in T(X) such that there does not exist a Pi and Pj ahead of Aj where
Pj E Q. Here Af' = P2 . Af is the first point in T(X) such that there exists a Pi before AX where PiAX E Q.

Here AX = P4 . Note how the dotted line segment A A' has the property [X] f(fl([Qi]) = [X] 2[Af A'].

Take Fig. 3-11 as an example. The set of lines that intersect X and all three line

segments is equivalent to the set of lines that intersect X and P 2 P4 .

Proof. We first use the definitions of AX and AX to find the angles of lines which

intersect X and every Qi E Q. Then conditioned on the ordering of AX and AX in

T(X), we use this set of angles to prove the lemma.

We first introduce some useful terminology. Let V denote the line which is a

counter-clockwise rotation of Z about X by 0 degrees. Let Vo denote the line which

intersects both AX and X and let V/2 denote the line which intersects both AX and

X. The definition of AX implies 01 is the smallest 6 such that for every Qj E Q there

exists a VO with 6 < 01 such that Qj is intersected. Intuitively, 01 is the smallest angle

0 such that V can intersect every Qj E Q. The definition of Ax implies 02 is the

largest 0 such that for every Qj C Q there exists a V with 0 ;> 02 such that Qj is

intersected. Intuitively, 02 is the largest angle 0 such that V can intersect all Qj E Q.

Since 01 is the smallest angle 0 such that V can intersect every Qj E Q and 02 is the

largest angle 0 such that V can intersect all Q C Q, this implies V intersects every

Qj E Q iff 01  6 0 2.

If we assume AX comes before Aj in T(X), this implies 01 02. Note from

geometry, we know a line subsects angle ZAXXA[ iff this line intersects X and
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AxAx; thus 01 02 iff VO intersects AxAx. Since V intersects every Qj E Q iff

01 < 0 < 02, this implies [X] (1Qi]) = [X) f[AfAf].

If we assume Ax comes before AX in T(X), this implies62 < 01. Since V intersects

every Qj E Q iff 01 < 0 < 0 2 , this implies if 02 < 01 no line intersects X and every

Qj E Q. Also, if 02 = 01 only the line Vol intersects X and every Qi E Q. In this

case, since Vo intersects AX and AX, Vo is equivalent to BAX,A. O

Lemma 15. Assume X E Mj . If Ax comes before AX in T(X), then m([M,] f(fl[Q ])) =

m([AMj] f[AXAf]), otherwise m([Mj] f(nif [Qm])) = 0.

Intuitively, this lemma says the measure of all lines which intersect M and all

line segments in Q is the same as the measure of all lines which intersect M and

some line segment connecting two points in P. This reduces the problem to finding

the measure of the set of lines intersecting two line segments, a problem which we

already know how to solve (see Lemma 12).

Proof. Direct result of Lemmas 13 and 14 and the fact m([ai])= 0 Vi E a. L

Summary:

In steps 1 and 2 we place a vertical line Z and partition it into a set of line

segments M. In step 3 we show m(nif=[Qi]) = m((ifQl[Qi]) n[M3]). Steps

4 and 5 when when combined with a lemma about rays (see appendix) show how to

compute m((if1[Q]) f[M]) in constant time assuming we know AX and Ax. For

a given X E AY, T(X) can be computed in polynomial time by sorting the angles

between XP and Z for all i. Ax and AX can then be found by enumerating through

T(X). Since |MI is polynomial, this allows us to calculate m(flQ([Qj]) in polynomial

time.

The complexity of this algorithm can be reduced by going through all Mj 'in

order,' thus eliminating the need to sort P for all M in M.
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3.4 Evaluating Network Reliability Under A Ran-

dom Line

In this section we introduce and show how to evaluate some performance metrics

with respect to a random line-cut. After introducing our network model, we show

that every performance metric can be evaluated in polynomial time. In particular, we

can evaluate average k-terminal reliability in polynomial time under 'random' line-

cuts. This is in contrast to the case of independent link failures for which there exists

no known polynomial time algorithm to calculate this reliability metric.

3.4.1 Network Model

We start by describing our network model. Our geometric graph model contains a

set of nodes N where each node is represented by a point on the plane. We assume

the node locations are in general form; that is no three are collinear. A link between

two nodes is represented by a line segment with endpoints at the respective node

locations. In order to assign probabilities to random line events, we assume the set

which contains all nodes and links (conv(N)) is a subset of some bounded closed

convex set C with perimeter Lc. If a 'random' line that intersects C also intersects

some links, those links are disrupted. Our goal is to evaluate the performance metrics

described below in Definition 7 after a single random line-cut that intersects C.

3.4.2 Performance Metrics

We first introduce some network performance metrics and then describe how to evalu-

ate each one after the removal of the intersected links. We will use the tools developed

in Section 3.3 to evaluate average values of these metrics with respect to a random

line-cut.

Definition 7. [Performance Metrics]

* ATR - The all terminal reliability of the network. The all terminal reliability is
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defined here as 1 if the network is connected and 0 otherwise. In order to verify

connectivity of the network a Breadth First Search algorithm can be used.

* ATTR - The average two terminal reliability of the network over all pairs of

nodes. The two terminal reliability between two nodes is defined here as 1, if

there is a path between them and 0, otherwise [61]. Effectively this metric is

the probability a randomly chosen pair of nodes is connected. If the network is

fully connected, the value of ATTR is 1. Otherwise, we have to sum over the

number of node pairs in every connected component and divide it by the total

number of node pairs in the network. That is, we sum the value of k(k - 1)

over every connected component, where k is the number of nodes in each of the

components, and then divide this sum by N(N - 1). This ratio gives the fraction

of node pairs that are connected to each other. In order to verify connectivity

or to count the number of nodes in each connected component a Breadth First

Search algorithm can be used.

In this chapter we only discuss the above two metrics. However, the following

relevant metrics can also be evaluated with respect to random line-cuts using the results

of this section.

" TC - The total capacity of the intersected links.

* MFST - The maximum flow between a given pair of nodes s and t.

" AMF - The average value of maximum flow between all pairs of nodes.

It is apparent from the descriptions above that evaluating each metric after the

removal of intersected links takes polynomial time in |NI.

3.4.3 Evaluation of the Metrics

We now show how to evaluate the metrics in Definition 7 with respect to a random-

line cut. The basic idea is that every line which separates the nodes in the same

way removes the same set of links. Using the techniques in Section 3.3, we calculate
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Figure 3-12: Consider a line-partition of a set of nodes, N, into two non-empty subsets in the figure above. One subset
has nodes colored grey and the other has nodes colored black. A line separates N into these subsets iff it intersects
every dashed line segment connecting a grey node and black node.

the measure of the set of lines that separate the nodes in this way; this allows us

to calculate the weighted average of a metric over all possible cuts. We start by

introducing some useful terminology.

Definition 8 (Line-partition). A line-partition is a partition of a set of nodes into two

subsets which are separated by a line. It is important to notice that not all partitions

of N are line-partitions.

Let P be the set of all line-partitions created by lines that intersects conv(N). For

each line-partition p in P, let [p] be the set of all lines which form the line-partition

p. For a particular p, let the set of all line segments connecting a node in one subset

to a node in the other subset be given by Q,.

Lemma 16. m([p]) = m(neQ,[q)) for every p E P

Proof. If a line intersects every line segment in Q,, then it separates the endpoints

of the line segments in Q, into subsets that form p or it intersects a node. On the

other hand, if a line forms a line partition p, then it separates nodes into two subsets

and thus will intersect every line segment that has endpoints in both subsets (this

is precisely Qp). See Fig. 3-12. Thus [p] = nqEQ,[q] except for a set of lines which

intersect nodes. Since the set of lines which intersect nodes has zero measure (points

have zero perimeter), the result follows. l

Now, let [r] be the set of lines that intersect C but not conv(N). That is, [r] =

[C]\[conv(N)]. Thus, m([r]) = m([C]) - m([conv(N)]) by countable additivity of
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measures.

Note that (UpEP[p]) U [r] = [C] up to a set of measure zero. Now, since every line

which forms the same line-partition removes the same links, evaluating the perfor-

mance measures to a random line-cut becomes a weighted average over each partition.

Let Y(p) be the performance metric on the network when links that intersect a line

in [p] are removed. Since " ) is the probability a random line-cut will create a

partition p, the performance metric to a random line-cut can be expressed as

m([r] ) +E m([p] )
Lc pE Lc

Lc - monv(N) [EQ,
pEP Yp

Section 3.3 shows how to calculate m(O [q]) in polynomial time. The per-

formance metrics in Definition 7 can be calculated in polynomial time as discussed

above. In the following, we will show that |P is O(IN12 ).

Lemma 17 ( [37]). There are O(IN 2) line-partitions of a set of |NI nodes.

Proof. [37] shows there are (III) + 1 line-partitions of a set of |Ni points, no three

of which are collinear. L

We will now provide some intuition behind the above result. Consider a line that

forms a line-partition in which neither subset of nodes is empty (the line intersects

conv(N)). Now rotate this line clockwise until nodes prevent any further clockwise

movement (imagine that the line cannot pass through the nodes). There will be two

points stopping the line from moving any further. Now, these two points specify this

partition, and since there are (III) ways to pick two nodes, there are (I) partitions

(see Fig. 3-13). The additional partition comes from the case when the line does not

intersect conv(N).

Theorem 4. Evaluating any performance metric in Definition 7 with respect to a

random line cut takes polynomial time in N.
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Figure 3-13: Consider a line-cut resulting in a line-partition in which neither subset of nodes is empty. Now rotate
this line-cut clockwise until nodes prevent any further clockwise movement (imagine that the line cannot pass through
the nodes).

Proof. Since |P is polynomial in |NI and evaluating m((qEQp [q]) and Y(p) takes

polynomial time, Equation 3.1 can be evaluated for any performance metric in poly-

nomial time. E

This is particularly interesting for the case of ATTR because there is no known

polynomial algorithm to find ATTR assuming independent link failures. This is a

consequence of the fact not all partitions of N are line-partitions.

3.5 Numerical Results to Random Line-cuts

We first present an example that demonstrates the significance of geometry on the

survivability of the network. We then find ATTR of a real-world network to a random

line-cut.

3.5.1 An Example to Demonstrate the Importance of Geom-

etry

In this example, every link has a length of one, so every link is intersected by a

random line-cut with equal probability. We consider different geometries of the same

network and evaluate ATR to random line-cuts. For comparison, we also evaluate

ATR assuming independent links failures.

Consider a network of |NI nodes connected in serial by line segments of length

1. We consider two different cases of geometries for this network. In case (i) the
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Figure 3-14: Two networks of 4 nodes connected in serial by line segments of length 1. The network in case (i)
resembles a line segment of length 3 and the network in case (ii) resembles a line segment of length 1.
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Figure 3-15: Assuming LC = 10-r, the figure shows ATR versus number of nodes for different network configurations.
The dotted line represents the network which resembles a line segment of length 1, the solid line represents the network
which resembles a line segment of length INI - 1, and the dashed line represents independent link failures.

network resembles a line segment of length INI - 1, and in case (ii) the network

resembles a line segment of length 1 (see Fig. 3-14). Assuming Lc = 107r and letting

|NI vary (assuming INI < 10), we calculate ATR to random line-cuts in both cases

using methods described in Section 3.4. Also, since any particular link of length 1

fails with probability y with respect to a random line-cut, we evaluate ATR when

links fail independently with probability A.
Fig. 3-15 shows the results. In case (i), ATR is approximately 1 - 2N 1 since

ATR is 1 if any link is intersected and 0 otherwise. In case (ii), ATR is approx-

imately 1 - y for all |NI (again, since ATR is 1 if any link is intersected and 0

otherwise). When links fail independently with probability y, ATR is given by

Pr(no links fail) = (1 - y )IN|-1. Note this value lies between the results for the two

geometric networks.
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Figure 3-16: This figure shows NSFNET from 1991 [51].
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Figure 3-17: The solid line shows ATTR in NSFNET versus the probability a unit (latitude/longitude) of fiber is cut
by a random line. The dashed line shows ATTR in NSFNET assuming links fail independently such that links fail
with the same probability as in the random line-cut case.

These results agree with intuition. In case (i) when the network resembles a line

segment of length |NI - 1, the network is spread out and the probability of any link

being intersected is larger when |NI is larger. In case (ii) when the network resembles

a line segment of length 1, the network has a perimeter of 2 and thus the probability

of any link being intersected is small. This example highlights the importance of node

location on the survivability of the network (see Fig. 3-15).

3.5.2 A Real-World Example

In this example we consider NSFNET as found in 1991 [51] (see Fig. 3-16). This

network has 14 nodes and connects major universities across the U.S.. We assume

the network is contained within a convex set with perimeter Lc.

Using the results of Section 3.4, we calculate ATTR of NSFNET to random-line

cuts while LC varies. Given the length of a particular link, the probability that link is
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cut is proportional to T-. So we can plot ATTR versus -. Note - is the probability

a unit of fiber is cut (since a unit of fiber has a perimeter of 2). See Fig. 3-17 for

results. Note the linear form of the result in the figure; this agrees with Equation 3.1.

Next, we calculated ATTR of NSFNET assuming independent link failures such

that links fail with the same probability as in the random line-cut case. Thus the

probability a link fails is still proportional to its length, however links fail indepen-

dently. Since the total number of links is small, calculating ATTR by enumerating all

possible failures is still feasible (possible failures are exponential in number of links).

See Fig. 3-17 for results. Note that ATTR in the independent failure model is greater

than in the case of random line-cuts. Perhaps this is because at least two links must

fail independently to disconnect the network, however a line which intersects the net-

work is guaranteed to disconnect it. Since most backbone networks are likely to be

well connected, we expect a random line-cut to lead to lower ATTR than independent

link failures in the real-world setting.

3.6 Network Design Under Random Line-cuts

In this section we present some network design problems in the context of random

line-cuts. In all the proposed problems the location of every node is fixed; the problem

is to find a set of links most robust to some metric under some constraints.

(i) Let N be a set of nodes fixed on the plane. As before, assume all links are

represented as line segments between the points. A reasonable goal is to design a

connected network with the least expected number of links cut by a random line. By

linearity of expectation, the expected number of links cut is proportional to iEQ i

where Q is the set of links and 1i is the length of link i. So, this problem reduces

to minimizing the total length of links in the network while ensuring the graph is

connected. This is equivalent to finding a Euclidean minimum spanning tree of N

which can be done in polynomial time. Note however that the resulting network is

not robust because a single link failure will disconnect it.

(ii) We next consider ring networks. Let N be a set of nodes fixed on the plane.
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A reasonable goal is to design a connected ring network with the least expected

number of links cut by a random line. As before, the expected number of links cut

is proportional to EQ 1i where Q is the set of links and Ii is the length of link i.

So this problem reduces to finding the minimum length cycle that visits every node

exactly once and returns to the starting node. This is equivalent to the Euclidean

traveling salesman problem which is hard to compute [43].

(iii) The final problem considers how to connect two nodes such that the path

between them is robust to random-line disasters. More precisely, let N be a set of

nodes fixed on the plane. Let S E N and T E N such that S # T. Let Q be a set

of links. The problem is to find a path from S to T consisting of links from Q that

has the minimum probability of being cut. This may correspond to finding the most

robust path between two cities along preexisting conduits. Since the probability a

random line will intersect the path is proportional to the perimeter of the convex hull

of the path (a line intersects the path iff it intersects the convex hull of the path),

we want to find a path such that the perimeter of the convex hull of the path is

minimized. That is, we want to find a path with minimum perimeter convex hull

such that the path starts at S and ends at T, its edges belong to Q, and it contains

no repeated vertices. The authors do not know a polynomial time algorithm to solve

this problem (except in a trivialized setting).

3.7 Modeling Random Circular Cuts

We now shift focus from random lines to randomly located disks of a particular radius.

The circular form of the attack model may better model the effect of storms or large

bombs. After introducing some basic definitions from geometric probability, we review

classical results which allow us to find single link failure probabilities. These results

are requisite for Section 3.8 where we show how to find joint link failure probabilities

to random disk-cuts.
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Figure 3-18: Every disk in the plane of radius rb can be parameterized by the location of its center. Denote the center
of disk D as [XD, yDI-

3.7.1 Geometric Probability

Geometric probability is the study of probabilities involved in geometric problems.

In our case, we are interested in the probability that a 'randomly' placed disk (of

a particular radius) in the plane will only intersect a certain set of links (e.g., links

whose removal would disconnect the network). We model a disaster event in the

network as a single randomly located disk of a radius rb.

Before proceeding further, we will present some useful notation. Denote the

perimeter of a set of points in the plane C by Lc and its area by Rc. Given a

set in the plane, let (-) denote the set of all disks in the plane of radius rb that

intersect it.

Geometric probability tells us how to assign a measure to sets of disks; let this

measure be denoted by p. The rest of this section reviews results from geometric

probability (see [50,65]) that are necessary for the development of this work.

Note that every disk in the plane of radius rb can be parameterized by the location

of its center. Denote the center of disk D as [XD, YDI (see Fig. 3-18). Let Do be the

disk of radius rb centered at the origin.

We now present the definition of the measure p.

Definition 9 (Measure of a set of disks). The measure p of a set of disks G is defined

as the integral

p(G) = jdxdy

Note we use G to denote both a set of disks and the set of centers of these disks.
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rb

Figure 3-19: The dotted shape above represents Q e Do . This shape is known as a hippodrome and it represents the
set of all points whose shortest distance to Q is less than or equal to rb [32]. Denote the hippodrome corresponding
to a link Q and radius rb by H(Q, rb). Note that a disk D of radius rb intersects Q iff [xD, YD] E H(Q, rb).

This integral is the area of G in the (x, y) plane and will be denoted by area(G).

This definition appeals to intuition; in the same way the 'size' of a set of points in

the plane is its area, the 'size' of a set of disks is the area of the disks centers.

Definition 10 (Minkowski Sum). The Minkowski sum of two sets in the plane A and

B in Euclidean space, denoted by A ED B, is given by

AD B = {a + bla E A,b E B}

Intuitively, every point in the Minkowski sum C E Do represents a center of a

disk of radius rb that intersects C. We will now discuss an important example. Let

Q be a line segment link; consider Q ED Do (see Fig. 3-19). This shape is known as a

hippodrome and it represents the set of all points whose distance to Q is less than or

equal to rb [32]. Denote the hippodrome corresponding to a link Q and radius rb by

H(Q, rb). Note that a disk D of radius rb intersects Q iff [XD, YD] E H(Q, rb).

Lemma 18 ( [65]). Let C be a bounded closed convex set of points in the plane, then

yt (C)) = j dxdy = area(C ED Do) = Rc + Lcrb + rrb 

Intuitively, every point in the Minkowski sum C E Do represents a center of a

unique disk of radius rb that intersects C. Integrating over the set of centers of

these disks yields the measure of (C). For example, consider a line segment link Q

of length d. Now the measure of the set of disks of radius rb that intersect Q is

p((Q)) = area(Q E Do) = area(H(Q, rb)) = 2drb -I- lrb 2
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Figure 3-20: The rectangle C and line segment link Q are shown in solid. The center of every disaster that intersects
Q is given by the dotted hippodrome H(Q, rb). The center of every disaster that intersects C is given by C e Do
which is shown as the larger dotted shape.

3.7.2 Single Link Failures

Let (Q) and (C) be sets of disks of radius rb in the plane such that (Q) C (C). Given

p, the probability that a 'random' disk is in the set (Q) given it is in the set (C) is

given by the ratio ( [65]. Note that C contains the centers of all possible disk

failures and is required for normalization purposes.

We now present an example relating to network survivability. Consider a rectangle

C with height a and width b and a line segment Q of length d inside C (see Fig. 3-20).

Now we consider a random disk-cut. We have:

Pr(Q cutiC cut) p((Q)) _ area(Q @ Do)
p((C)) area(C ED Do)

2drb + rb2

ab + 2(a + b)rb + rb2

3.8 Geographically Correlated Link Failures Un-

der Circular Cuts

In this section we present an algorithm that calculates the measure of disks of radius

rb intersecting only a particular set of links. This result will allow us to calculate

the probability that a random disk-cut intersects a certain set of links in a network

(e.g. links whose removal would disconnect the network). We will then use this to

efficiently calculate network performance measures with respect to random disk-cuts.
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Figure 3-21: The measure of disks that intersect C, 13, and 14 but neither li or 12 is given by the area of the shaded
region above (for ease of presentation we do not picture C). This measure can be written as pi((C) n(13 )n(l 4 )-(li)U(l2))
as well as area((C E Do) n H(13 , rb) n H(1 4 , rb) - H(11, rb) U H(1 2 , rb)).

Let L be the set of all line segment links in the network and C be a con-

vex polygon that contains L. Consider some set of links K C L. We wish to

find the measure of all disks of radius rb that intersect C and every link in K

but intersect no links in L - K. See Fig. 3-21 for an example. This measure is

given by p ((C) n (nkeK(k)) - UqE(L-K)(q)). It is clear that a disk D belongs to

this measured set iff i) [XD, YD] E C e Do, ii) [XD, yD] E H(k, rb) Vk E K, and

iii) [XD, YD] g H(q, rb) Vq E (L - K). So, this measure can also be written as

area ((C D Do) n (nkEKH(k, rb)) - UqE(L-K)H(q,rb)). For ease of presentation we

abuse notation and denote this measure by area(K).

Definition 11 ( area(K) ). Let area(K) be given by the measure of all disks of radius

rb that intersect C and every link in K but intersect no links in L - K.

3.8.1 Approximation

We note that finding area(K) seems difficult because it requires finding the area of

intersections and unions of hippodromes. In the following we describe a method for

approximating area(K) which is based on approximating hippodromes by polygons

for which there are known methods to calculate intersections, unions, and area. We

approximate H(l, rb) by the inscribing polygon Hn(l, rb) such that H(l, rb) shares the

line segment portion of its boundary with Hn(l, rb) and each end of Hn(l, rb) forms

half of a regular 2n-sided polygon (see Fig. 3-22). Let afre'a,(K) be defined the same
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Figure 3-22: We approximate H(1, rb), shown as a dashed hippodrome above, by the inscribing polygon Hn(1, rb) such
that H(1, rb) shares the line segment portion of its boundary with l,r (1, b) and each end of f, (1, rb) forms half of a
regular 2n-sided polygon. The solid polygon above is 14(1, rb).

as area(K) except that every hippodrome is replaced by its polygon approximation.

Using techniques for finding the intersection, union, and area of polygons [55], we can

find adre'a(K) in polynomial time.

We now present a lemma that shows ade'ai(K) is a good approximation for

area(K) for large enough n. A proof may be found in the appendix.

Lemma 19. limo ozre'a,(K) = area(K) V K C L

3.9 Evaluating Network Reliability Metrics

In this section we introduce and show how to evaluate some performance metrics with

respect to a random disk-cut.

3.9.1 Network Model and Metrics

We start by describing our network model. Let N be the set of nodes in our geograph-

ical graph where each node is represented by a point on the plane. A link between

two nodes is represented by a line segment with endpoints at the respective node

locations. Let L be the set of all links in the network; we assume every link has a

capacity associated with it. Let C denote the convex polygon containing the network

(C is required in order to assign probabilities to random disk events). If a 'random'

disk that intersects C also intersects some links, those links are disrupted. Our goal

is to evaluate the performance metrics described below after a single random disk-cut

that intersects C.

We now introduce two important network performance metrics which are eval-

uated after the removal of the intersected links. We will use tools from geometric
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Figure 3-23: This figure shows the hippodromes and related intersections with respect to NSFNET [51] and a circular
cut of rb = 2.

probability to evaluate 'average' values of these metrics with respect to a random

disk-cut. The first metric we consider is the total capacity of intersected links. Let

this metric be denoted by TC. The other metric we consider is the fraction of node

pairs that remain connected to each other. Let this metric be denoted by ATTR.

3.9.2 Evaluation of the Metrics Under Random Circular Cuts

We now show how to evaluate the metrics above with respect to a random-disk cut

or radius rb. The basic idea is that the center of all disks of radius rb that intersect a

particular set of links (and no other links) is some set in the plane. By showing the

number of these sets we need to consider grows polynomially in N and by evaluating

the area of each set, we can evaluate a 'weighted average' of a metric over all possible

cuts.

Let P be the set of all subsets of L that can be intersected by exactly one disk of

radius rb. Evaluating performance metrics to a random disk-cut is a weighted average

over every K E P. Let Y(K) be a reliability metric evaluated after the removal of

every link in K. Since r,,(K) is the probability a random disk of radius rb that

intersects C also intersects every link in K and no links in (L - K), the performance

metric to a random disk-cut can be expressed as:

area(K)Z area( D) Y(K) (3.3)
KEP area(C Do)

Section 3.8 shows how to approximate area(K) in polynomial time. Y(K) for the
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performance metrics can also be calculated in polynomial time. In the following, we

apply the theory of arrangements to show that the size of P grows polynomially with

respect to N. For technical reasons this theory cannot be directly applied to this

setting and requires modification.

Let 0 denote the boundary of a set. Consider the set of curves R = 0C U

{OH(l, rb) |l C L}. These curves partition C, the set containing the network, into

maximally connected regions called faces that are bounded by the curves in R. By

enumerating these faces, we can enumerate every element in P (since every disk in a

particular face intersects the same links). Arrangements, a computational geometry

tool, allow us to enumerate the faces of a set of curves in R2 in polynomial time.

However, the theory requires that every pair of curves intersect in a finite number

of locations [31] which does not hold in our setting. Nonetheless, the theory can be

applied with a minor perturbation to the geometry.

Since enumerating P, evaluating Y(K), and approximating area(K) all take poly-

nomial time, the network performance metrics can be approximated in polynomial

time under a random disk failure.

3.10 Numerical Results

In this section we evaluate some network metrics using the results of the previous

section. We consider NSFNET as found in 1991 [51] and the ARCOS-1 ring network

[29]. The NSFNET network we consider has 14 nodes and connects major universities

across the U.S. (see Fig. 3-23). ARCOS-1 has 24 nodes and connects regions on the

Dominican Republic, Florida, Mexico, Panama, and Venezuela (see Fig. 3-24). All

distance units mentioned in this section are in longitude and latitude coordinates (one

unit is approximately 60 miles) and for simplicity we assume latitude and longitude

coordinates are projected directly to [x, y] pairs on the plane. We assume that all

the link capacities are equal to 1. We also assume each network is contained within

a rectangular set C.
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Figure 3-24: ARCOS-1 network circa 2009 [29].

NSFNET ARCOS-1
1.005 1

1- ----------------------- - 0.98

0.995 0.96

0.99 0.94

,1 0.985 - 0.92 -

0.98 0.9

0.975' 0.881
0 0.005 0.01 0.015 0 0.01 0.02 0.03

Probability of Unit Link Failure Probability of Unit Link Failure

Figure 3-25: The solid line shows ATTR versus the probability a unit (latitude/longitude) of fiber is cut by a random
disk of rb = 2. The dashed line shows ATTR assuming links fail independently such that links fail with the same
probability as in the random disk-cut case.

3.10.1 Independent Versus Correlated Failures

Using the results of Section 3.9, we calculate ATTR of NSFNET and ARCOS-1 to

random-disk cuts of r= 2 while the size of C varies. The size of C is varied to change

the probability a unit of fiber is cut. So we can plot ATTR versus the probability

a unit of fiber is cut. See Fig. 3-25 for results. Note the linear form of the result in

the figure; this agrees with Equation 3.3 since 1/area(C ED D) is proportional to the

probability a unit of fiber is cut.

Next, we calculate ATTR of the networks assuming independent link failures such

that links fail with the same probability as in the random disk-cut case. Thus the

probability a link fails is still a function of its length, however links fail indepen-

dently. Since the total number of links is small in each network, calculating ATTR

by enumerating all possible failures is still feasible (possible failures are exponential

in number of links). Note the total expected number of removed links is the same for
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both the independent and geographically failure models. See Fig. 3-25 for results.

Notice that in NSFNET ATTR under independent failures is greater than in the

case of random disk-cuts. Perhaps this is because in most cases at least three links

must fail independently to disconnect the network; however a disk that intersects a

node is guaranteed to disconnect the network. Since most backbone networks are

likely to be well connected, we expect a random disk-cut to lead to lower ATTR than

independent link failures in this type of mesh network setting. We also note that

similar results were found for the random line-cut setting.

Looking at the results for the ARCOS-1 network we see the opposite tendency;

ATTR under independent failures is typically less than the case of random disk-

cuts. Perhaps this is because a single disk that intersects ARCOS-1 usually only

removes two adjacent links creating components of size 1 and |NI - 1 (where |NI is

the number of nodes) whereas just two independent link failures on opposite sides of

the ring create components of size IN1/2 and IN1/2 (which results in lower ATTR).

3.10.2 Multiple Disk Failures

We calculate the TC metric of the NSFNET and ARCOS-1 networks under sequential

disk failures, both intentional and random. We assume every additional random

failure is located independently of the previous failures. We first describe how to

evaluate metrics after sequential failures, then we present some numerical results.

To calculate a network metric after two randomly located sequential disk failures,

we simply evaluate the weighted average of the metric over each pair of possible areas

(each area represents the set of centers of disks that remove exactly the same links).

Equation 3.3 then becomes Eg,, E " area(K') "rea)Y(K U K'). For n failures,

Equation 3.3 becomes

( area(Ki) "S area(C e Do)
K 1 EP KEP i=1 i=1

In chapter 2 we propose an algorithm to evaluate network reliability metrics after

an intentional disk failure. To calculate a network metric after sequential intentional
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Figure 3-26: The solid line shows the total expected capacity removed versus the number of randomly located circular
disasters of rb = 2. Using the algorithm in chapter 2, the dashed line shows the total capacity removed versus the
number of intentionally located circular disasters of rb = 2.

failures, we simply apply the algorithm found in chapter 2 iteratively.

Fig. 3-26 shows the results for multiple failures, both intentional and random for

NSFNET (similar results for ARCOS-1 are not shown). As expected, the plots are

sub-linear since each additional failure is being placed on a smaller network. Note

that random failures result in much less disruption than intentional failures.

3.11 Network Design Under Random Circular Cuts

In this section we discuss some network design problems in the context of random disk-

cuts. In all the proposed problems the location of every node is fixed; the problem

is to find a set of links most robust to some metric under some constraints. In

the following, let N be a set of nodes fixed on the plane and assume all links are

represented as line segments between the nodes.

(i) A reasonable goal is to design a connected network with the least expected

number of links cut by a random disk of radius rb. By Eqn. 3.2 and linearity of

expectation, the expected number of links cut is proportional to brrg(INI - 1) +
2 rb ElEU dl where U is the set of links chosen and dl is the length of link 1. So, this

problem reduces to minimizing the total length of links in the network while ensuring

the graph is connected. This is equivalent to finding a Euclidean minimum spanning

tree of N which can be done in polynomial time. Note however that the resulting
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network is not robust because a single link failure will disconnect it. We also note

this is the same result we get for optimizing for random line-cuts. If fact, it can be

shown that this result will hold for any convex-shaped cut.

(ii) We next consider ring networks. A reasonable goal is to design a connected

ring network with the least expected number of links cut by a random disk of radius

rb. As before, the expected number of links cut is affine in the total length of the links.

So this problem reduces to finding the minimum length Hamiltonian cycle. This is

equivalent to the Euclidean traveling salesman problem which is hard to compute [43].
We again note this is the same result we get for optimizing for random line-cuts. If

fact, it can be shown that this result will hold for any convex-shaped cut.

(iii) The final problem considers how to connect two nodes such that the path

between them is robust to a random-disk disaster of radius rb. Let S and T be a pair

of nodes in N and let U be a set of links. The problem is to find a ST path consisting

of links from U that has the minimum probability of being cut. This may correspond

to finding the most robust path between two cities along preexisting conduits. Since a

disk intersects a path iff it intersects a hippodrome corresponding to a link in a path,

we want to find a ST path whose edges belong to U and whose area of the union

of corresponding hippodromes is minimized. The authors do not know a polynomial

time algorithm to solve the above problem except in a trivialized setting.

An interesting example is given in Fig. 3-27. The uppermost path here gives the

most robust path to a random disk failure; however, the bottom path is the shortest.

This shows the shortest path is not necessarily the most robust to failure.

3.12 Conclusions

Motivated by applications in the area of network robustness and survivability, we

focused on the problem of geographically correlated network failures. Namely, we fo-

cused on randomly located geographical attacks on the network which can model the

'random' nature of a natural disaster or collateral damage. In particular, we focused

on random line and disk cuts. Using tools from geometric-probability we demon-
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Figure 3-27: The bottom path is shorter than the top path by 2e. However the top path is more robust to a random
circular failure as compared to the bottom path since the blue dotted shape has less area than the red dashed shape.
This shows the shortest path is not necessarily the most robust to failure.

strated how to compute failure probabilities and showed how to calculate ATTR and

other network performance metrics in polynomial time under these failure models.

This result is significant because calculating this metric assuming independent link

failures in known to be NP-hard [10]. We then presented some numerical results to

demonstrate the significance of geometry on the survivability of the network and also

discussed network design problems in the context of random line and disk failures.

Our approach provides a fundamentally new way to look at network survivabil-

ity that takes into account the geographical correlation between links. Some future

research directions include the consideration of multiple line-cuts (instead of a single

line failure), convex cuts (e.g., oval cuts), and robust network design in the face of

geographical failures.

3.A Definition of the Measure m and Intuition Be-

hind Lemma 11

We now present the definition of the measure.

Definition 12 (Measure of a set of lines). The measure of a set of lines G is defined

as the integral

m(G) = dpd

Note we use G to denote both a set of lines and its equivalent set of points in

the (p, 0) plane. In some sense, this integral is the area of G in the (p, 0) plane.
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Figure 3-28: Since every line in the plane can be parameterized by p and 0, we can represent a line in G as a point
in the (p,O) plane. Integrating over the set of all these points allows us to assign a measure to the set G.

For a visualization of the measure, see Fig. 3-28. Since every line in the plane can

be parameterized by p and 6, we can represent each line in G as a point (p,O) in

R x [0, 7r).

Note that given this definition we can show the measure with respect to any line

segment is twice its length. This fact is used below.

Now we present an intuitive argument to why m([C]) = Lc. Given a convex set

C, let S be an ordered set of line segments such that the union of all the line segments

in S form a closed convex curve that approximates the boundary of C (see Fig. 3-29).

Let si be the ith element of S and let di be the length of line segment si. Let l(p, 0)

be the line parameterized by p and 6. Now let

IsI
N(p, 6) = 1(p,o)nsje

j=1

That is, N(p, 6) is the total number of si E S that are intersected by the line param-

eterized by p and 6.
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l(p, 0)

C

Figure 3-29: The blue curve in the figure above is the boundary of a convex set C. Ui 1 s is a closed convex curve

which approximates the boundary of C. S = {sili E N and 1 < i < 8}. N(p, 9) = E81 1i(,)fs3 $#0, that is N(p, 0)

is the number of si E S that are intersected by the line parameterized by p and 9.

Now consider,

N(p, 6)dpd6
IS|

[)1 ( 31

IS|

IS|= z
j=z1

[ 
s ]

I dpd6[s,]

|S|

= 52dj
j=1

The key is to note that since Uidis= forms a closed convex curve, N(p, 6) = 2 if

l(p, o) n (u1.isi) # 0 except for a set of lines with measure zero. So,

N(p, 0)dpd0 =
I I/i='st]

2dpd0 = 2m([U i 1si])

|S|
m([U Sisi]) = dj

j=1

Since U1 ~lsi approximates the boundary of C, it seems reasonable that m([C]) =
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3.B Proof of Lemma 12

This proof can be found in [50] and is only presented here for completeness and

convenience.

Proof. Let A and B be bounded closed convex sets and let Sc denote the complement

of set S. First note that [A U B] = [A] U [B]. This is because a line intersects A U B

iff it intersects A or it intersects B. Now note that [A] = ([A] n [B]c) U ([A] n [B])

and [B] and [B]c are disjoint, so

m([ A]) = m([A] n [B]c)+m([A] n [B]) = LA

Similarly note that [B] = ([B] n [A]C) U ([B] n [A]) and since [A] and [A]c are disjoint,

so

m([B]) = m([B] n [A]c) + m([B] n [A]) = LB

We will now show that the theorem holds true in the case where A n B $ 0 and then

show it also holds when A n B= 0.

First assume AnB 7 0. Since a line intersects A U B iff the line intersects

conv(A U B), we know [A U B] = [conv(A U B)]. So,

m([A] U [B]) = m([A U B]) Lconv(AUB)

Note that

[A] U [B] = ([A] n [B]c) U ([A]c n [B]) U ([A] n [B])

and so

m([A] U [B]) = m([A] n [B]c)+m([ A]c n [B])

+m([A] n [B])

- Lconv(AUB)
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Figure 3-30: The sets with solid boundary are two disjoint convex sets A and B. The sets with dashed boundary are
two convex sets A' and B' such that A' n B' = 0 and A' U B' = I(A, B). Note that a line intersects A and B and
not 0 iff the line intersects A' and B' and not 0. The set with the dash-dot boundary is conv(A U B) and note that
conv(A' U B') = conv(A U B).

Combining this equation with the ones above, we get

m([A] n [B]) = m([A]) + m([B]) - m([A] U [B])

= LA + LB - Lconv(AUB)

which is consistent with the theorem (since LI(AB) = LA - LB)

Now assume A n B = 0. Let A' and B' be supersets of A and B respectively,

such that A' n B' is a single point, 0, and A' U B' = I(A, B). For an example

illustration, see Fig. 3-30. Note that conv(A U B) = conv(A' U B'). Also note that a

line intersects A and B and not 0 iff it intersects A' and B' and not 0. This implies

[A]n[B] = [A']n[B'] up to a set of measure zero and thus m([A]n[B]) = m([A']n[B')).

Since A' n B' = 0, we can apply the previous result and attain

m([A] n [B]) = m([A'] n [B'])

= m([A']) + m([B']) - m([A'] U [B'])

LA' + LB' - Lcone(A'UB')

LI(A,B) - Lconv(AUB)

3.C A Lemma About Rays

Lemma 20. Let d([xa, ya], [xb, yb]) = '(xb - xa) 2 + (Yb - ya) 2 . Let A be a vertical

ray with endpoint [XA, YA] and B be a line segment with endpoints [xi, y'] and [x2, y2]
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such that the line containing B does not intersect A except possibly at [XA, YA] and the

angle between A and the line segment connecting [XA, YA] and [x'B, y'] is greater or

equal than the angle between A and the line segment connecting [XA, YA] and [x2, y2B]

Then,

m([A] n [B]) d([xA, YA], [xi, y]) - d([xA, ya], [xB, yB)

where Zu, = 1 if A extends infinitely upwards and Z,, = -1 otherwise.

We first present some intuition behind this lemma. We cannot use Lemma 12 di-

rectly to get an expression for m([A] n [B]) because A is unbounded (it is a ray);

however, the intuition remains the same. In some sense, LI(A,B) - Lcono(AUB) is

d([X, yA], [xiy2]) - d([XA, yA], [x1, y1]) + 'length' of vertical ray from [xy] -

'length' of vertical ray from [xi, y %]. Again, in some sense, the difference in the

'length' of the vertical rays is ±(y2 - y') (the sign depends on the orientation of A)

which is the desired result. In order to obtain this rigorously, we use the fact that

measures are continuous from below.

Proof. Assume ray A extends infinitely in the upwards direction. Let Ai be the line

segment of length i that is a subset of the A and has an endpoint at [XA, yA] (Note:

Ui= 1 Ai = A). See Fig. 3-31.

We know by Lemma 12 that

m([Ai] n [B]) = LI(Ai,B) - Lconv(AiUB)

= d([xA, yA], [x24, y2 -- d([xA, YA + i], [X14, Y1)

- d([XA, YA], [x, y1b - d(XA, YA + i], [x2B, y

Now note,

m([A] n [B]) = m([UO1 Ai] n [B])

= m(U 1([Aj] n [B]))
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Figure 3-31: We cannot use Lemma 12 directly to get an expression for m([A]n[B]) because A is unbounded; however,
the intuition remains the same. In some sense, LI(A,B) - Lconv(AUB) is d([XA, yA), [X, yB]) - d([xA, ,
'length' of vertical ray from [xi, yI]- 'length' of vertical ray from [X2, y2]. Again, in some sense the difference in
the 'length' of the vertical rays is i(y- y) which is the desired result. In order to obtain this rigorously, we must
use the fact that measures are continuous from below.

Since Ai C Ai+1, this implies [Ai] n [B] C [Ai+ 1 ] n [B], and since measures are

continuous from below we have,

m([A] n [B]) = m(U 1 ([Ai] n [B])) = lim m([Ai] n [B])

=lim d([XA, YA], [xBI, YB + d([XA, YA + i], [X,

- d([XA, YA + i], [x2B, y2 ]) - d([XA, YA], [4 ,BY

=~ ~ d(2,Y] 4y] d([XA, YA], [XI, Y1M) +I -2 YB=d([I A, yA], [B, I B A, B BB O B UB

This is because

Br )2 + (YA + Y' - - ) + (YA+ -

= lrn (-TA B ) -
2

(YA + iOY1 +(B) - - B) + 2(YA + B~~-()
'~ ~/z~ -)

2
+(IA~i)

2 
+ _2z -)

2
+ A+iy)

2 1
= YB _ YB

If we assume ray A extends infinitely in the downwards direction, an analogous

result follows.
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3.D Proof of Lemma 19

We first develop Lemmas 21 and 22 which allow us to prove Lemma 19.

Let A, (n) = area (H (1,r) - Sn(lrb) .

Lemma 21. limo A,(n) = 0 Vl E L

Proof. Let dl denote the length of link 1. Since H(l, rb) C H(l, rb) for all 1 E L we

know

Al(n) - area (H (l,rb) - ,(1, rb))

- area (H (1, rb)) - area (H$, (1, rb)

= (2dirb + wr) -- (2dirb + n sin(w/n)r 2 )

So,

lim A, (n) = (2dirb + r) - (2dirb + rrb2 ) = 0 Vl E L
n-+oo

1:1

Lemma 22. Let K C L. Now,

area(K) - IK|AI(n) dre'an(K) 5 area(K) + IL - KIAll(n)

and some 1' E L.

Proof. We first prove the right hand side.

arda(K)

for some 1 E L

= area ((C (

< area ((Ce

= area ((C®

D) n (f lk) -
kEK

U ftq
qE(L-K)

since $tk C Hkn ((HL) u S/
k EK qE(L-K)

D) n (n Hk) -
kEK

(U
qE(L-K)

Hq -Hq - ($

(qE( L-K )

U ft)
qE(L-K)
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since if B C A then B = A - (A - B)

= area (((CeD)

((C

n(flHk)-
kEK

ED)n(C Hk)fn
kEK

(U
qE(L-

U H, u
qE(L-K)

Hq- U )q
K) qE(L-K)

since A-(B-C) = (A-B)u(AnC)

<area ((C@D)r

by subadditivity

<area (K) + area

= area (K)

<area (K) +

kEK
( H

g6(L-K)

+area U Hq-

qE(L-K)

U (Hf-Sq)
qE(L-K)

by subadditivity+ area U ( H -Sq) - Sq)
qE(L-K)

area (Hq - Hq) by subadditivity
qE(L-K)

<area (K) + |L - KAq(n) for some q G (L - K)

We now prove the left hand side.

area(K)

= area (C

> area (C

ED) n (f lSk) -
kEK

D D) n (f lSk) -
kEK

U Sq)
qE(L-K)

U Hg)
qE(L-K)

since Hk C Hk

= area ((C D) n Hk - U $k
kEK / /)

since if B c A then B = A - (A - B)
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area (CDD)nU Hk) - UHk-Y fk - U H)
kEK / kEK kEK qE(L-K)

since An(B-C) = (AnB) -C

=area (C (DD)n(U Hk)-

kEK
U Hq -

qE(L-K) \kEK

Hk-USk

kEK))

since (A-B)-C=(A-C)-B

>area (CeD)n(UHk)-
kEK

by subadditivity

> area (C D D)n(Y Hk)-
kEK

U Hq -area U Hk-U fk
qE(L-K) ( kEK kEK

) Hq -area U (Hk -)k ftk
qE(L-K) (kEK kEK

> area (K) - area U(Hk - Ik) by subadditivity

> area (K) - area (Hk - Hk) by subadditivity
kEK

= area (K) - K|Ak(n) for some k E K

El

We now prove Lemma 2. Note

lim (area(K) - IKIAI(n)) < lim ada,(K) for some I E L
n-+oo n-+oo

So,

area(K) - IKI lim Ai(n) < lim ae'a,(K) for some 1 E L
rL-*oo fl-+oo

Thus by Lemma 21,

area(K) < lim a'(K)
n-4oo
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Similarly, we have

lim are'an(K) lim (area(K) + IL - K|Ap(n)) for some 1' E L
n->oo n-+oo

So,

lim arean(K) < area(K) + IL - KI lim Ap,(n) for some 1' E L
n->oo n-+oo

Thus by Lemma 21,

lim are'a(K) < area(K)
n-+oo
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Chapter 4

Geographic Min-Cut and

Max-Flow

In chapter 2 we considered the problem of finding the worst-case location for a failure

in a geographic network with respect to certain network connectivity measures. This

models the scenario where the network is attacked once with the intention to reduce

its capacity or connectivity. In chapter 3 we considered the impact of a randomly

located disaster on network connectivity; the random location of the disaster can

model failures resulting from a natural disaster or collateral (non-targeted) damage in

an attack. In this chapter we consider the problem of finding the minimum number of

failures, modeled as circular disks, to disconnect two nodes and the maximum number

of failure disjoint paths between two nodes. This approach provides a way to look

at network survivability in the face of multiple disasters or attacks that takes into

account the geographical correlation between links.

4.1 Introduction

We first consider a geographical variant of the min-cut problem. Given a set of points

on the plane, each of which represents a node, and non-crossing line segments between

these points representing links, what is the minimum number of circular attacks such

that two nodes, S and T, are disconnected from each other. If applied to the national
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Figure 4-1: The light gray area (yellow area in online color version) above represents the protected zone that no
circular failure may be centered. The gray disks (red disks in online color version) represent disasters that remove
links (of unit capacity) they intersect. Two disasters are required to disconnect the two nodes S and T (shown above),
so the geographic min-cut is two. Also, since the top pair of paths can be intersected by the same failure, geographic
max-flow is two; two failure disjoint paths are given by the topmost and bottommost path. In contrast, the standard
min-cut and max-flow is three.

fiber plant, the solution to this problem is the number of geographic failures required

to disconnect two cities. If we do not restrict the locations of potential failure sites,

the geographic min-cut will be at most one because nodes S or T can trivially be

eliminated with a single failure. In order to make the problem more relevant and

realistic we restrict potential failure locations (see Fig. 4-1). This can represent fibers

that have been hardened against EMP attacks or a well defended city. We show that

we only need to consider a polynomial number of possible failure sites, thus reducing

the geographic min-cut to a discrete problem. Then applying the methods from [18],

we show how to find a solution in polynomial time. We obtain numerical results

for a specific backbone network [46], thereby demonstrating the applicability of our

min-cut algorithm to a real-world network.

Next, in the context of geographic attacks and path-protection algorithms we

study a geographic max-flow problem: the largest set of paths between nodes S and

T such that no two paths can be intersected by the same failure. The solution to

this problem gives the maximum number of paths that are geographically disjoint

with respect to disasters of a particular radius (i.e. the maximum number of failure

disjoint backup paths). See Fig. 4-1 for an example. Again, to avoid triviality we

restrict the locations of potential failure sites so that nodes S or T cannot simply

be eliminated with a single failure. We then develop an ILP formulation, an exact

algorithm, and a heuristic algorithm for this geographic max-flow problem.

Finally, we explore the analogue to the min-cut max-flow theorem in the geo-

graphic setting. In particular, we show that the cardinality of the solutions to these

106



geographic min-cut and max-flow problems are not the same. Supported by simu-

lation results, we conjecture this difference is no greater than one, i.e. max-flow <

min-cut < max-flow +1.

4.2 Related work

The traditional min-cut and max-flow problem has been extensively studied in the

literature, however most attention has been focused on the single layer setting. Under

this model, min-cut is the minimum number of links to disconnect S and T and max-

flow is the maximum number of link disjoint paths. In [45] the authors generalized

this min-cut and max-flow concept to a cross layer fiber network setting where a

single physical link failure may disconnect several logical links. In the same vein,

our work may be seen as a min-cut max-flow problem in another cross layer setting

where a single physical disaster may remove several physical links in the vicinity of

one another.

Min-cut and max-flow problems similar to the ones presented here have also re-

ceived some attention in the literature. Recently [66] considered the problem of a

geographic max-flow and min-cut in a wireless network setting. In [52] the problem

of finding the maximum number of geographically disjoint paths with total minimum

cost is discussed in the continuous setting where paths may be placed anywhere within

a polygonal domain. Finally, [18] considers a related problem to the geographic max-

flow and min-cut, where failures of nearly arbitrary shapel can occur in a finite set of

locations. Here we take the geography into account by allowing failures to take place

at any location, yet restricting the shape of a failure to a geometric disk.

4.3 Geographic Min-Cut

We start by formulating the geographic min-cut problem and presenting an algorithm

to solve this problem in polynomial time. We then use this algorithm to analyze the

'In particular, every disaster in [18] must have a shape that in homeomorphic to the unit disk.
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vulnerability of a real-world network.

4.3.1 Network Model and Problem Formulation

Let N be an ordered set of points in the plane representing nodes. Assume the points

representing the nodes are in general position, that is no three points are collinear.

Let n E N; the cartesian pair [Xz, yn] denotes the location of n. Denote an undirected

link from node i to node j by (i, j). For simplicity of presentation we denote by (i, j)
as a link represented as a line segment in the plane with endpoints at node i and node

j. Let the set of undirected links be given by E. We assume that the graph is simple

(contains no self-loops or multiple edges) and connected, and links do not intersect

each other except at node locations.

We model a disaster as a closed disk of radius Tb centered at some point [x, y].
We denote this disk as hole,, ([x, y]). A hole removes all links that intersect it. Every

hole in this chapter is assumed to have radius rb. Let D be an ordered set of holes

where di is the ith hole. Let [Xd, yd ] denote the cartesian pair that corresponds to the

center of hole di. In the problem defined below, we assume a hole may be centered

anywhere in the plane, except inside a protective disk of radius r, centered at nodes

S and T.

We now define the following problem and demonstrate its formulation.

Geographical Min-Cut By Circular Disasters (GMCCD) Problem: Given

a graph drawn in the plane G = {N, E}, two distinct nodes S and T, hole radius rb,

and protection radius rp, find a minimum cardinality set of holes that disconnect S

and T.

Let ED = {e E E Vdi E D, endi = 0} and GD = {N, ED}. Intuitively, GD is the

graph G after the links intersecting any hole in D have been removed. The solution
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to the GMCCD optimization problem below is a geographical min-cut.

min IDI

such that Vdi E D, /(Xda - XS) 2 + (Yd. - ys) 2 2 r, (4.1)

Vdi E D, I(Xdj - XT) 2 + (Ye, - YT) 2 > rp (4.2)

S and T are in different components of GD

Denote C by the cardinality of a solution to the GMCCD problem.

In the above we seek the minimum cardinality set of holes such that S and T

are disconnected after their removal. Constraints (4.1) and (4.2) ensure that hole

locations are not in the protected zone.

4.3.2 Algorithm to Solve GMCCD Problem

Here we describe an algorithm that finds a solution to the GMCCD problem. For

clarity of presentation we break down the algorithm into steps. We initially note that

holes may be centered anywhere not inside the protective disks; thus there are an

infinite uncountable number of holes to consider in general. The first step (step 1) of

the algorithm reduces this infinitely sized set of potential holes to a polynomial sized

set by extending the methods in chapter 2. Once this set of holes is enumerated,

we can apply a simplified algorithm for computing geographic min-cut based on [18].

We do this by first creating a dual-like graph (step 2) and then running an algorithm

based on shortest closed walks on this new dual-like graph to solve the GMCCD

problem (step 3).

Step 1: There are an infinite number of hole locations centered outside the protective

disks; in this step we find a polynomial sized set of holes from which we can construct

a solution to the GMCCD problem.

Before proceeding, we introduce some notation. Let H(e, rb) be the set of points

whose shortest distance to line segment e is less than or equal to rb. Such a shape is

known as a hippodrome [32]. Note that a hole of radius rb is centered in H(e, rb) if
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Figure 4-2: Let H(e, rb) be the set of points whose distance to link I is less than or equal to re. Such a shape (shown
above) is known as a hippodrome [32]. A hole of radius rb is centered in H(e, rb) if and only if the hole intersects 1.

protected zone

t 3

Figure 4-3: The light gray area (yellow area in the online color version) above represents the protected zone. C
represent centers of some holes given by the algorithm in chapter 2. These holes intersect both links above, however
they are centered in the protected zone. We consider additional holes centered at the points labeled 8. Note two of
these points correspond to holes that intersect both links and are not centered within the protected zone.

and only if the hole intersects e (see Fig. 4-2).

In chapter 2 we considered the same failure model without the protected zone.

Under this model we found a polynomial size set of hole locations such that every

hole in the plane can be represented by one of these locations and intersects at least

the same set of links. For example, any hole centered in the intersection of the two

hippodromes in Fig. 4-3 can be represented by a hole centered on one of the two

points labeled a. Holes centered at one of these locations will intersect the same links

as any hole centered in the intersection of the hippodromes.

The polynomially sized set of potential failure locations found by the algorithm

in chapter 2 cannot be used for the GMCCD problem because of the restrictions

that holes cannot be placed inside the protected zones. For example, the set of holes

found using this method would have us consider the holes marked with a in Fig. 4-3.

However, these holes are centered inside the protected zone and cannot be considered.

If we consider additional holes that are centered at the intersection of the boundaries

of the protected zones and hippodromes (shown by points labeled by # in Fig. 4-3),
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T

Figure 4-4: The dual-like graph is shown by the dotted potion of the figure above. The solid dots and line segments
represent the original network G. For ease of presentation, we take the set of gray disks (red disks in the online color
version) above to be U. G has five faces; each of these faces represents a node in K (shown as dashed circles). There
exists a link between two nodes in K for each hole in U that intersects the faces they represent. Note, there exist two
holes intersecting face one and face five, ul and u2. So there exist two links between node one and node five in K;
one corresponding to ui and the other corresponding to u2. Also, for presentation purposes the only self-loop in K
shown is located at node 4 and corresponds to us; there are more self-loops in K (see Fig. 4-6).

we can show that this expanded set of potential failure locations is sufficient. We

omit the details here, which can be found in Appendix 4.A. Let this polynomially

sized set of potential hole locations for the GMCCD problem be given by U.

Step 2: We construct an undirected dual-like graph from G, the original graph, and

U, the polynomially sized set of potential hole locations. Let this dual-like graph be

denoted by K.

We first introduce some notation. The drawing of G in the plane partitions the

rest of the plane into connected regions called faces (even the outer, infinitely large

region). For example, the graph in Fig. 4-4 divides the plane into five faces, four

bounded faces and one infinitely large face.

We now describe the dual-like graph K. Every node in the dual-like graph K

corresponds to a face in G. For example, in Fig. 4-4 G has five faces; each of these

faces represents a node in K (shown as dashed circles). There exists a link between

two nodes in K for each hole u E U that intersects the faces they represent. For

example, in Fig. 4-4 there exist two holes intersecting face one and face five, ui and

u2. So there exist two links between node one and node five in K; one corresponding

to ui and the other corresponding to U2 . Note, because every link in K is associated

with a hole, there exist more than one edge between two nodes in K if more than one

hole intersects their corresponding faces.
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Figure 4-5: The dashed links above represents a closed walk in K such that the corresponding holes (shown as disks)
remove links which disconnect S and T. By searching over a set of closed walks in K, we will be able to find a solution
to the GMCCD problem.

Step 3: The final step finds a solution to the GMCCD problem by considering a set of

closed walks in K and then from this set finds the shortest walk whose corresponding

holes disconnect S and T (see Fig. 4-5). This is similar to a known algorithm to

find the min-cut in a planar graph (in the standard sense); the algorithm finds the

shortest closed walk in the dual graph that disconnects S from T [62].

We now describe the algorithm. First, for all nodes in the dual-like graph run

Dijkstra's algorithm [19]. This gives a shortest path tree rooted at n. Denote links

in this tree by C,. Notice that when a set of links is removed from the graph new

faces are created. Intuitively a shortest path in K between two nodes gives the

minimum number of disasters such that the faces corresponding to these nodes will

be contained in a larger face after the disaster. It is worth emphasizing that this face

is not necessarily the outer face of the new graph.

Next, for every link e in K consider the closed walk in C,, U e which contains node

n and link e. A solution to the GMCCD problem is given by finding the closed walk

in C, U e for all n nodes and links e in K and then searching over these walks for the

shortest one whose corresponding holes disconnect S and T.

For example, consider Fig. 4-6. Let the link from node ni to nj associated with

hole u be given by {(ni , n 3 ), u}. The solid links are the links in the shortest path

tree rooted at node 2, C2 . Consider the link {(1, 5) , u 2}. Now C2 U {(1, 5) , u 2}

contains a closed walk given by {{(1, 2) ,u 2 }, {(2,5), U2}, {(1,5), U 2} . Since hole

u 2 does not disconnect S and T (every hole in this cycle is marked with u2), {u 2}
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Figure 4-6: The graph shown above is K from Fig. 4-4 complete with self-loops. Every link is marked with its
respective hole.

is not a candidate solution. Now consider the link { (1, 5), u1}. The resulting closed

walk is given by {{(172),U 2 }, {(2,5) ,U2 }, {(1,5) ,u}}. Since disasters ui and u2

disconnect S and T, {u1 , U2} is a candidate solution. Enumerating over all nodes

and edges in K and finding the minimum cardinality candidate solution solves the

GMCCD problem (in this example, a solution is given by {u1 , U2})-

Theorem 5. The algorithm described in steps 1-3 finds a solution to the GMCCD

problem.

Proof. In step 1 we identify a polynomial sized set of locations such that we can find

a geographic min-cut considering only holes placed at these locations. Once these

locations have been identified the correctness of steps 2 and 3 follow from [18]. 0

Let M be the set of nodes in K. As a result of Euler's formula INI - El + MI = 2

we know |MI is polynomial in |N|. Since the algorithm considers a closed walk for

every node-link pair in K, we know the algorithm runs in polynomial time in INI.

4.3.3 Numerical Results

We used the algorithm presented in the previous section to solve the GMCCD problem

for a major network provider [46]. We replace every link intersection with a node in

this network which allows our algorithm to be applied. All distance units mentioned

here are in longitude and latitude coordinates (one unit is approximately 60 miles)
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Figure 4-7: A solution to the GMCCD problem when rb = 1.3, rp = 3.0, S = Dallas, and T = Chicago. The gray
disks (red disks in the online color version) represent the hole locations and the light gray disks (yellow disks in the
online color version) represent the protected zones. Only two disasters, located at 'choke' points to the east and
west of Chicago, are required to disconnect these cities. So, a network designer trying to increases robustness of the
Chicago-Dallas connection may consider laying additional fiber down from St. Louis to western Tennessee.

Figure 4-8: A solution to the GMCCD problem when rb = 1, r, = 3.0, S = Dallas, and T = Chicago. The gray disks
(red disks in the online color version) represent the hole locations and the light gray disks (yellow disks in the online
color version) represent the protected zones. Note four disasters with rb = 1 are required to disconnect the two cities,
whereas only two disasters are required with rb = 1.3 (see Fig. 4-7).

and for simplicity we assume latitude and longitude coordinates are projected directly

to [x, y] pairs on the plane.

Fig. 4-7 shows a solution to the GMCCD problem when rb = 1.3, rp = 3, S =

Dallas, and T = Chicago. Only two disasters, located at 'choke' points to the east

and west of Chicago, are required to disconnect these cities. So, a network designer

trying to increases robustness of the Chicago-Dallas connection may consider laying

additional fiber down from St. Louis to western Tennessee. Fig. 4-8 shows that when

rb is reduced slightly to 1 a total of four disasters are required to disconnect the two

cities.

Fig. 4-9 shows a solution to the GMCCD problem when rb = 1.3, rp = 3.0, S=

Los Angeles, and T = New York. Only two disasters, located in Utah and New
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Figure 4-9: A solution to the GMCCD problem when rb = 1.3, r, = 3.0, S = Los Angeles, and T = New York. The
gray disks (red disks in the online color version) represent the hole locations and the light gray disks (yellow disks
in the online color version) represent the protected zones. Only two disasters, located in Utah and New Mexico, are
required to disconnect these cities. Note that in this particular fiber network, these same two failures disconnect every
east cost city from every west coast city.

Mexico, are required to disconnect these cities. Note that in this particular fiber

network, these same two failures disconnect every east cost city from every west coast

city.

4.4 Geographic Max-Flow

In the context of geographic attacks and path-protection algorithms we consider the

geographic max-flow problem: the maximum number of paths between nodes S and

T such that no two paths can be disconnected by the same hole. The solution to this

problem gives the maximum number of paths which are geographically disjoint with

respect to disks of a particular radius. In other words, the solution gives the maximum

number of paths between a pair of nodes such that a hole of a particular radius

intersecting one of the paths does not affect the connection of the other paths. Similar

to the GMCCD problem, to avoid triviality we restrict the locations of potential failure

sites so that S and T cannot be eliminated with a single failure. This is analogous to

the maximum node disjoint path problem where two paths are considered disjoint if

they have no nodes in common except for S and T.

In this section we formulate the geographic max-flow problem and present an ILP

to find its solution. We then discuss the fundamental differences between our problem

and the work in [18] and present previous results that apply to our setting. Finally,
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we develop an exact algorithm and a heuristic algorithm for the GMFCD problem

and present numerical results based on real-world networks.

4.4.1 Problem Formulation

We use the network and disaster model from the last section. In the problem defined

below, we assume a hole may be centered anywhere in the plane, except for inside

protective disks of radius r, centered at S and T.

Geographical Max-Flow By Circular Disasters (GMFCD) Problem: Given

a graph drawn in the plane G {N, E}, two distinct nodes S and T, hole radius rb,

and protection radius rp, find the maximum cardinality set of paths connecting S and

T such that no hole intersects a pair of these paths.

Let P be a set of paths from S to T. Let H be the set of all holes in the plane

centered outside the open disks of radius r, centered at S and T (centered outside

the protected zone). The solution to the GMFCD optimization problem below is a

geographical max-flow.

max |P

such that 7h E H where

pi n h # 0 and pj n h 7 0 V'Ep, i j

Let F denote the cardinality of a solution to the GMFCD problem.

4.4.2 ILP Formulation of GMFCD Problem

We will now present an ILP formulation of the GMFCD problem with a polynomial

number of constraints. The idea for this formulation is to find paths, each with a

different 'label', such that each one of these paths obeys some flow constraints and

every pair of these paths is failure disjoint.

Recall that C is the cardinality of the solution to the GMCCD problem. Note

that F < C since every path in a GMFCD solution must be intersected by a hole
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in order to disconnect the network and there exists no hole that intersects a pair of

paths in a GMCCD solution. Let A = {1, 2,..., C}. We use this set to limit the

number of variables in the ILP formulation.

Define the following {0,1} variables for all links (i, j) E E and for all a E A:

1 if (i, j) has label a

0 otherwise

We call link (i, j) active with label a if Xa = 1. In the ILP constraints below we ensure

that sets of active links with the same label obey flow conservation constraints.

Define the following {0,1} variables for all nodes i E N and for all a E A:

1 if there exists a node j such that x. = 1
y =3

0 otherwise

Intuitively, ya is 1 if any active links with label a have an endpoint at i. This

variable allows us to write the flow constraints in (4.5) below.

Define the following {0,1} constants for all links (i, j) E E and for all links (k, 1) E

E:

1 if ]h E H that intersects both (i, j) and (k, 1)

0 otherwise

Effectively, #3 f = 1 if links (i, j) and (k, 1) intersect the same hole. If a pair of active

links is intersected by the same hole then constraint (4.4) below ensures they cannot

have different labels, and thus the paths they form are failure disjoint.

The solution to the ILP below is a solution to the GMFCD problem.
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max x>Z a (4.3)
aEA (S,j)EE

such that

X a+ < 1 V(ia E and V a'EA (4.4)

where #' = 1 and a 4 a'

ya if i = S or T

S i <; VE (4.5)
j:(i,j)EE 2yy otherwise

i, y E {0, 1} Vi E N, V(i, j)E E, and Va E A

Constraint (4.4) above ensures that a pair of active links with differing labels

cannot be intersected by the same hole. Note that constraint (4.4) is generated only

for zy. and x? pairs where #3! = 1 and a / a' (this reduces the total number of

constraints), so there must be some offline computation done to find #ff

Constraint (4.5) consists of flow conservation equations that ensure the total num-

ber of active links with a particular label and endpoints is either 0 or 2 except for

nodes S and T (0 or 1 for nodes S and T). This ensures active links with a particular

label form an ST path (or a cycle not including S or T).

The objective function in the above ILP maximizes the total number of active

label-link pairs that have an endpoint at S. Since the flow constraint (4.5) above

ensures an active link with label a and endpoint at S must be part of an ST path

consisting of links active with label a and constraint (4.4) ensures differently labeled

links do not interfere, this ILP will give us the maximum number of failure disjoint

paths (i.e. a solution to the GMFCD problem). In Section 4.4.6 we obtain numerical

results using this ILP and its relaxations, and compare these results to heuristic

algorithms.
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Figure 4-10: A graph and holes in the context of [18]. There are two holes shown in gray above (red in online color
version). One hole intersects e2 and e3 and the other intersects ei and e4. So the two dashed paths in above constitute
a geographic max-flow in this setting. Note however that in our context, there exists a hole centered at the middle
node that intersects the middle four links so F = 1. This example makes clear the key difference between the two
settings; in our setting geographic max-flow paths must be node disjoint except perhaps for nodes located inside the
protected zone.

4.4.3 Bounds on C and F

In this section we discuss fundamental differences between the GMFCD and GMCCD

problems and the problems in [18] and we also present bounds on F as a function

of C. We first discuss the relationship between our problems and the ones found

in [18]. The max-flow and min-cut problem in [18] differs from the GMFCD and

GMCCD problem in two key aspects. First, a hole in [18] need not be a disk; the

only requirement is that every hole be homeomorphic to the unit disk. See Fig. 4-10

for an example of these holes. Second, in [18] holes may only be placed in a finite

number of set locations (as opposed to our case where there exists an infinite number

of holes outside the protected zones). This is a crucial difference because under the

model of [18] some nodes or links may not be intersected by a hole. This means

that it is possible for a pair of geographic max-flow paths to intersect each other.

In contrast, in the context of our geometric problems, since holes can be centered

anywhere on the plane outside the protected zone, we know that a pair of geographic

max-flow paths must be node disjoint outside the protected zone (see Fig. 4-10).

We now present a few bounds on C and F. We first note that C 7f F. A simple

example demonstrating this is given in Fig. 4-12 (a similar example can be found

in [66] in the context of wireless networks). Note in this example C = 2 and F = 1;

a geographic min-cut is given by {u1 , u2} and the max-flow is given by the path

corresponding to the dashed curve. This is interesting as it shows the analogue to

the max-flow min-cut theorem [19] does not hold in our setting. Also we know that
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F < C because every geographic max-flow path must be intersected by a hole in a

geographic min-cut or otherwise there would remain a path from S to T after the

removal of holes on the min-cut.

Once we establish the fact that we need only to consider a polynomial number of

hole locations, as discussed in step 1 in Section 4.3, it follows that the GMFCD and

GMCCD problems are special cases of the geographic max-flow and min-cut problems

described in [18]. Thus, some of the results presented in [18] can be applied to our

setting.

For example, in the special case where S and T share a common face (that is, S

and T are both nodes on the same face) [18] shows that C < F + 1. Moreover, in our

setting this bound is tight (i.e., can be met with equality) as demonstrated by the

example in Fig. 4-12.

We now describe a family of graphs for which [18] shows that C = F. In order to

describe these graphs we introduce some notation. Assume S and T are on a same

face, denoted by B. Consider the two paths between S and T that form the boundary

of B. Denote them by q and r respectively. We now define a bad hole with respect

to face B.

Definition 13. A bad hole with respect to face B is a hole that intersects both q and

r but does not contain a curve with endpoints on q and r that only intersects faces

other than B.

For an example of some bad holes, see the holes in Fig. 4-11.

Lemma 23. [18] If there does not exist a bad hole with respect to a common ST face,

then C = F.

In fact, when there is no bad hole a simple greedy algorithm is optimal. The

greedy algorithm starts with path q (or r) and removes all links within rb of path q

(outside the protected zone). The common face will now be a subset of a larger face

for which a new q and r are defined. We remove all links within rb of this new path

q and repeat until S and T are no longer connected.
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q r
-------------- - - - -

----------- -- -

Figure 4-11: The gray disks (red disks in the online color version) above are examples of bad holes on this graph.
Note S and T share the outer infinitely large face. Consider the paths that form the boundary of this common face,
shown as the dotted path labeled q and the dashed path labeled r. Each of these holes intersects both q and r but
does not contain a curve with endpoints on q and r that only intersects the inside faces, thus they are bad holes. We
also note that the greedy algorithm outputs a single path, q, whereas the optimal solution is given by the two center
paths which form a rectangle.

U1

U3 U

-- - - -----

Figure 4-12: A simple network where S and T lie in the same face (a version of this example may be found in {66]).
The protected zone is shown as the light gray disk (yellow disk in the online color version). All relevant holes in U
are shown above in gray (red in online color version); others holes can effectively be ignored. Note C = 2 and F = 1
(a geographic min-cut is given by dUi, U2} and max-flow given by path corresponding to the blue dotted curve). This
shows the analogu te reedy max-flow min-cut theorem [19] does not hold in our setting. Also, it shows that the bound
C < F + 1 (shown in [18]) is tight for our problem when S and T lie in the same face.

Lemma 24. [18] If there does not exist a bad hole with respect to a common ST face,

then greedy algorithm returns a solution to the -GMFCD problem.

It is interesting to note that the greedy algorithm is not always guaranteed to give

an optimal solution when there exist bad holes (in contrast the analogous greedy al-

gorithm always works in the non-geographic setting [21]). Fig. 4-11 shows an example

of the greedy approach failing. The greedy algorithm outputs just one path whereas

the optimal solution is given by the two paths that form a rectangle.

4.4.4 Exact Algorithm

Next we present an algorithm to solve the GMFCD problem exactly that works by

applying a greedy routine to every ST path. We first give a brief overview of the algo-
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rithm. Let p be a ST path in G. We remove every link that is not hole disjoint with p

(effectively, every link outside the protected zone that intersects a 'worm' around p is

removed). Denote the resulting graph by G' and let F' denote the cardinality of the

geographic max-flow for G'. S and T now share a common face on G' (with a caveat

described in Appendix 4.B). We will show that the greedy algorithm on G' finds the

geographic max-flow for G'. Additionally, if p belongs to a solution to the GMFCD

problem, we will show F = F'+ 1 and thus p combined with the set of paths found

by the greedy approach is an optimal solution. By enumerating over all ST paths,

the algorithm will eventually consider a path belonging to a solution and thus solve

the GMFCD problem. See Algorithm 4 for an explicit description.

Algorithm 4 Exact Algorithm to Solve GMFCD Problem

1: maxDisjointPaths +- 0
2: for every ST path p do
3: call greedyRoutine(p)
4: return maxDisjointPaths

Procedure greedyRoutine(p)
5: disjointPaths +- p
6: G' +- G except for links that intersect a hole that intersects p
7: while S and T in same component of G' do
8: call removeQ
9: if IdisjointPathsl > ImaxDisjointPathsl then

10: maxDisjointPaths <- disjointPaths
Procedure removeQ
11: {q, r} +- ST paths that form the boundary of the new face
12: disjointPaths +- disjointPaths U q
13: G' +- G' except for links that intersect a hole that intersects q

We now present a few lemmas which help prove that Algorithm 4 solves the

GMFCD problem.

Lemma 25. G' contains no bad holes with respect to the new common face S and T

share.

A proof can be found in Appendix 4.C.

Lemma 26. If p is a path in a solution to the GMFCD problem, then F' + 1 = F.
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Proof. G' necessarily contains all the other disjoint paths in the solution to the GM-

FCD problem because only links not hole disjoint from p were removed from G. Since

p is a single path, we have F' + 1 = F. O

Theorem 6. Algorithm 4 finds an exact solution for the GMFCD problem.

Proof. A path in a solution to the GMFCD problem will be considered by Algorithm 4

since every ST path is enumerated. Let p denote one of these paths. By Lemma 25

we know G' contains no bad holes with respect to the new common face S and T

share. So, by Lemma 24 the greedy algorithm obtains a geographic max-flow for G'.

Since p is assumed to be in the solution, by Lemma 26 we know F' + 1 = F. Thus,

path p combined with the result of the greedy algorithm on G' is a solution to the

GMFCD problem.

This algorithm may not be practical since typically the number of ST paths grows

exponentially with the size of a graph, however it gives insight to the development of

a good heuristic algorithm.

4.4.5 Heuristics

The basis of the heuristic algorithm presented here is to try to identify the paths

that are likely to be in the geographic max-flow. The algorithm works similarly to

the exact algorithm above except we apply the greedy routine to a subset of paths,

instead of every ST path. In particular, the subset of paths considered consists of

those found by a standard (node disjoint) max-flow algorithm on the original topology.

We apply the greedy routine on every one of these paths and return the largest set

of disjoint paths found. In the next section we provide some numerical results using

this heuristic. See Algorithm 5 for an explicit description.

4.4.6 Numerical Results

Similar to Section 4.3.3, we discuss the results of our developed algorithms for the

GMFCD problem when applied to a major network provider [46].
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Algorithm 5 Heuristic Algorithm For GMFCD Problem

1: maxDisjointPaths +- 0
2: P +- max-flow ST paths (non-geographic)

3: for every path p E P do
4: call greedyRoutine(p)

5: return maxDisjointPaths
Procedure greedyRoutine(p)

6: disjointPaths <- p
7: G' +- G except for links that intersect a hole that intersects p
8: while S and T in same component of G' do
9: call removeQ

10: if IdisjointPathsl > ImaxDisjointPathsl then
11: maxDisjointPaths +- disjointPaths
Procedure removeQ
12: {q, r} +- ST paths that form the boundary of the new face
13: disjointPaths +- disjointPaths U q
14: G' +- G' except for links that intersect a hole that intersects q

Fig. 4-13 shows a result of the GMFCD heuristic algorithm. The four disks rep-

resent hole locations in a geographic min-cut. The four 'worms' correspond to hole

disjoint paths found using the GMFCD heuristic algorithm. Since the cardinality of

the geographic max-flow and min-cut solutions is the same and F < C, we know the

heuristic has found an optimal solution to the GMFCD problem.

If there is no restriction on S and T belonging to the same face, it is known

C < 2F + 2 [18]. We believe the disjointness of geographic max-flow paths in our

setting allows for this bound to be tightened. We conjecture that C < F + 1 in our

setting. Using the algorithm in Section 4.3 and running CPLEX on the the ILP in

Section 4.4.2, we solve the GMCCD and GMFCD problems exactly for 1000 randomly

generated graphs consisting of 13 nodes. We found C = F for 99% of the instances

and C = F + 1 for the remaining 1%. There was not a single example where C

exceeded F by more than 1, thus supporting our conjecture.

4.4.7 Complexity of the GMFCD Problem

The max-flow problem in [18] is shown to be NP-hard, however, the proof does not

directly transfer to our setting since in our setting geographic max-flow paths cannot

intersect outside protected zones. We believe a polynomial time solution may be
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Figure 4-13: Result of GMFCD heuristic algorithm when rb 1.0, r, 3.0, S Dallas, and T = Chicago. The four
gray disks (red disks in the online color version) represent the hole locations in a geographic min-cut and the light
gray disks (yellow disks in the online color version) represent the protected zones. The four light gray 'worms' (teal
'worms' in the online color version) correspond to hole disjoint paths found using the heuristic algorithm. Since the
cardinality of the max-flow and min-cut solutions is the same and F < C, we know the heuristic has found an optimal
solution to the GMFCD problem.

possible and this is a subject of future work.

4.5 Conclusions and Future Work

Motivated by applications in the area of network survivability, in this chapter we

present a geographic max-flow and min-cut problem where failures, modeled as disks,

may be placed anywhere in the graph except for certain protected zones. We show

these problems can be reduced to discrete ones and present a polynomial time algo-

rithm for the GMCCD problem based on ideas from [18] and chapter 2. We then

develop an ILP formulation, an exact algorithm, and a heuristic algorithm for the

GMFCD problem. Using these algorithms, we obtain numerical results for an exam-

ple backbone network, thereby demonstrating the applicability of our algorithms to

a real-world network.

Our approach provides a way to look at network survivability in the face of multi-

ple disasters or attacks that takes into account the geographical correlation between

links. Some future directions include application of this approach to the electric

power transmission network, finding a tight bound on the difference between geo-

graphic min-cut and max-flow (i.e. the analog to the max-flow min-cut theorem),

and the development of network design tools (e.g. how to build a network under

some constraints such that geographic min-cut is maximized).

125



4.A Details of Step 1

There are an infinite number of hole locations centered outside the protective disks; in

this step we find a polynomial sized set of candidate holes for the GMCCD problem.

We first make a note about holes. Let h and h' be holes such that h' intersects every

link h does in addition to possibly other links. We note that if h belongs to a set of

holes that disconnects S and T, then replacing h with h' will still result in S and T

being disconnected (if S and T are disconnected, removing additional links will also

leave them disconnected).

We now describe how to find a set of potential failure locations for the GMCCD

problem. First, we apply an algorithm from chapter 2 where the graph and disaster

model is the same except that there exists no protected zones. The algorithm creates

a polynomial sized set of holes, denoted by A, such that for every hole in the plane

there exists a hole a E A that intersects at least the same set of links. Note however,

one of these holes may be centered inside one of the protective disks around S or T

(see Fig. 4-3), and so we must consider additional holes to solve the GMBCD problem.

Let A' be the set of disks in A not centered in the protected zone.

Let h be a hole not centered in the protected zone and let a be a hole in A that

intersects at least the same links as hole h. We will show there exists a polynomially

sized set of holes centered outside the protected zone, denoted by M, such that if

hole a is in the protected zone, then a hole m E M intersects at least the same links

as hole h. So, for every hole not centered in the protected zone there exists a hole

in A' U M that intersects at least the same set of links. Thus, A' U M gives us a

polynomial sized set of candidate holes for the GMBCD problem.

In the following we present notation that allows us to describe the locations of the

holes in M. Let Os denote the circle centered at S with radius r and let OT denote

the circle centered at T with radius rp. Let e denote a link and let " denote the line

that contains e. Let &H(e, rb) denote the boundary of H(e, rb).

Lemma 27. Let M be the set of all holes of radius rb centered on at least one of the

following sets:
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1. UeEE{sfl nH(e, rb)|e does not have an endpoint at S or rp -) rb},

2. UeEE{O T l OH (e, rb)|e does not have an endpoint at T or r, / rb},

3. UeeE{O5s n Ie has an endpoint at S and rp = rb},

4. UeeE{OT n l |e has an endpoint at T and rp = rb}.

Assume there exists a polynomially sized set of holes A such that for every hole in

the plane there exists a hole a E A that intersects at least the the same links. Given

a hole h not centered in the protected zone, if a hole a E A is in the protected zone

and intersects at least the same set of links as h, then there exists a hole m E M that

intersects at least the same links as h.

Proof. Let # denote the center of hole h and a denote the center of a. Let Z denote

the set of all links that intersect h. Note that x E nzEzH(z, rb) iff x is the center

of a hole that intersects every z E Z. So # E nzEzH(z, rb) and a E nzEzH(z, rb).

Also note that nzEzH(z, rb) is convex and thus path-connected, so there exists a path

p in nzEzH(z, rb) from a to # that necessarily intersects Os or 0 T. Let y be this

intersection point. The hole centered at y must necessarily intersect at least the same

links as h since y E nzEzH(z, rb).

W.l.o.g. assume y lies on Os. Note every point in the sets (i) and (iii) above lies

on OS. Let y' be the first point in (i) or (iii) in the clockwise direction from y on

OS. Now, y' c nzEzH(z, rb) since every hippodrome y intersects is also intersected by

y'. Therefore a hole centered on (i) or (iii) must intersect every link that intersects

h. 0

Since for each link we consider at most eight holes ( OsnaH < 4 and |OTnH <

4 under conditions above), M is of polynomial size. Since IA'I is polynomial, the set

of potential holes for the GMCCD problem, A' U M, is of polynomial size. For the

remainder of the section let U - A' U M.
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Figure 4-14: No hole intersects the nodes located in the protected zone, so removing links not hole disjoint with some
path will never result in a graph where S and T are on the same face.

4.B Modifying G

Here we discuss a caveat for applying Algorithms 4 and 5. We first note that removing

every link not hole disjoint with some ST path does not ensure S and T lie on the

same face. See Fig. 4-14 for an example. Here we note how to modify G so that when

links around a ST path are removed S and T are guaranteed to share a common face.

Let 0 be a circle of radius rp - rb centered at S (assume rp - rb > 0). Note no hole

may intersect a link anywhere within this circle. Place nodes everywhere 0 intersects

a link. Consider the links forming paths that lie entirely within 0 that have endpoints

at S and these new nodes. Replace these links such that there exists a path inside 0

from S to each of these new nodes such that these paths do not intersect each other

except at S. Repeat this process for T. Now when links within rb of a particular path

are removed (outside the protected zone) S and T are guaranteed to be on the same

face. Since the removed links do not intersect any hole and since the connectivity

of G is unchanged outside the protected zone, the solution to the GMFCD problem

remains the same. We assume the exact algorithm is applied after this modification.

4.C Proof of Lemma 26

Proof. Let B denote the new common face S and T share after the removal of links

not hole disjoint with path p. Let q and r be two ST paths that form the boundary

of face B (see Fig. 4-15).

We will use proof by contradiction. Assume there exists a bad hole with respect

to B, denoted by h. Hole h must intersect both q and r but not p (because all links

intersecting a hole that intersects p are removed). Thus, h must contain a curve with
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Figure 4-15: The dashed links represent path p. Every link not hole disjoint with path p is removed. The grey face
(teal face in the online color version) B above represents the new common face S and T share. q and r are the two
ST paths that form the boundary of B. If a hole intersects both q and r, it must not intersect p (because all links
intersecting a hole that intersects p are removed). This hole must then contain a curve with endpoints on q and r
that only intersects faces other than B (shown as the grey dashed curve above).

endpoints on q and r that only intersects faces other than B (see Fig. 4-15). So, h is

not a bad hole, a contradiction. l
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Chapter 5

Power Network Reliability

Problems

In this chapter, we use our developed tools to consider the effect of geographically

correlated failures on power transmission networks. Similar to fiber infrastructures,

power transmission networks are vulnerable to large-scale natural disasters or attacks,

such as hurricanes or geomagnetic storms [3,22,59]. The geographical layout of the

network affects the impact of such real-world disasters since they occur in specific

geographic locations. For example, a hurricane or earthquake can cause failure of

electric power lines that directly transmit power to a large city, thereby likely causing

significant disruptions to power services. However, the damage to the power network

infrastructure is not necessarily limited to these initial failures; power networks are

also vulnerable to cascading failures. Cascading failures occur when an initial failure

in the network changes power flows, which must obey physical law constraints, such

that additional lines overload and fail. This in turn causes the power flows to change

again; this process will continue until some stability is reached. A well known example

of a cascading failure is the 2003 blackout where a significant area of the northeastern

U.S. lost power [6]. In this chapter we consider two failure models. The first model

considers power networks with respect to a randomly located geographic disaster and

subsequent cascading failures. The second model builds on the first; we describe a

dependency between power and data networks and consider the connectivity of data
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networks in this context. For each model, we present numerical results based on

real-world networks.

5.1 Overview of Models and Related Work

We initially consider a two-stage failure model for power networks. The first stage

removes power lines that intersect a randomly located disk. The second stage then

calculates the cascading failure that occurs due to the removal of the initial links.

By using the tools developed in chapter 3 and the cascading failure model presented

in [16], we are able to calculate the effect of this type of failure in power networks.

To the best of our knowledge, [14] is the only other work to look at the effect of

geographically correlated failures on power networks.

Then motivated by the effects of power loss on data networks [30], in the final

part of chapter 5 we consider the survivability of data networks with respect to power

networks. We assume data nodes rely on the operation of the closest power load

nodes to function. We present numerical results that show data network connectiv-

ity is significantly lower when power network dependency is considered; this implies

power network effects have a significant impact on the survivability of real-world data

networks.

We now discuss some related work. Power network resilience has been considered

in the past [9,17], however so far only [14] has considered the effects of a targeted

geographic failure model. In this chapter we consider the effect of non-targeted geo-

graphic attacks on the power network. Some recent work has modeled the interdepen-

dence between data and power networks and demonstrated asymptotic percolation

results [23]; however they did not consider power flows or geography in their models.

Additionally, [63] considered a geographic dependence model but did not consider

failures which were geographically correlated.
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5.2 Assessing Power Network Reliability

We now consider a geographic failure model for power networks where a disaster is

modeled as a 'randomly' located disk. This can describe the effect of some natural

disasters such as geomagnetic storms [3,22,59] or hurricanes, in addition to collateral

(non-targeted) damage from attacks on other continental networks (e.g. an attack on

the communication or transportation networks). Our goal is to be able to understand

and quantify the effect of large-scale non-targeted disasters and their resulting cascade

effects on the power network. We first describe the network and failure model and

then propose metrics to be evaluated on a real-world network.

5.2.1 Network and Failure Model

The network model remains the same as in the previous chapters; we consider a net-

work such that nodes are represented by points on the plane and links are represented

by line segments.

The failure model consists of two stages; the first stage is link failures caused by

the random circular disaster and the next stage is the resulting cascading failures.

We first describe the initial failures caused by the random circular disk (which is the

same as the failure model presented in chapter 3). We model a disaster event in the

network as a single randomly located disk of a radius rb centered within an area of

interest C (i.e. C is a set of points in the plane where the disaster may be centered).

If the randomly located disk intersects some power lines, we assume those lines are

destroyed.

Geometric probability [65] allows us to assign a measure to sets of disks. As in

chapter 3, this measure is simply defined as the Lebesgue integral over the set of disk

centers. Using this measure and tools from computational geometry, we can find the

probability a randomly located disk that intersects C also intersects some set of links.

See Fig. 5-1 for a simple example and Fig. 5-2 for an example with respect to the

Italian high-voltage electrical transmission network (HVIET).

After this initial failure, due to power flow constraints, a cascading failure may
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14K ..... .

Figure 5-1: The probability that a randomly located disk centered in C intersects only l3 and 14 is given by the ratio
of the area of the shaded region to the area of the large rounded rectangle.

Figure 5-2: Every shaded region above represents a set of disk centers whose radius is :::: 8 kilometers and only intersects
a particular set of power lines should a failure be centered within that region. The network being represented is the
Italian high-voltage electrical transmission network (HVIET) [63,64].
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occur. We will use the same power flow and cascading failure model described in [161.

Thus these geometric probability tools along with the cascading failure model allow us

to analyze the effects of large scale randomly located disasters on the power network.

We now present our failure model for power flows and cascading failures in power

networks. We use the same models as found in [14,16] and even borrow some notation.

The details of the DC power flow and cascading model may be skipped and the reader

may proceed to Section 5.2.2 without loss of continuity.

DC Power Flow Model

We now describe the DC power flow model which is a linearized version of the more

complicated AC power flow model. We use the DC model because it is more tractable

and easier to find solutions for power flows.

Let #3 represent the amount of power injected at node i. If 3 > 0 then node i

is a source of power and may represent a generator where power is injected into the

system. If #i < 0 then node i is a sink of power and may represent demand at this

node. We call these type of nodes power demand nodes. If 3 = 0 then power is

neither injected or removed at node i and may represent a power bus. Let N be the

set of nodes in the network.

Let (i, j) denote the power line from node i to node j and let E denote the set of

all these lines. Let xij denote the reactance of (i, j) and let uij denote the capacity

of (i, j).

A DC power flow can be described by the amount of power to flow from node i

to node j on (i, j), denoted by fij, and the phase angle at node i, denoted by 64. A

DC power flow must obey the following constraints.

E fj = #i Vi E N (5.1)
j:(i,j)EE

E t ( constrans V(i j) (5.2)

Equation (5.1) constrains the total power out of a node to be equal to the amount
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of power injected at that node (power conservation). For example, if a node is a

generator then the net power flow out must be the amount of power generated at that

node. Equation (5.2) is the analogue to Ohm's law; the amount of power through a

power line is proportional to the difference in phase angles 0% and 0,.

It should be noted that the power flow has a feasible solution as long as EiK #K =
0 for every connected component K in the network (that is, aggregate supply equals

aggregate demand for that component) [16]. Additionally, the values of the power

flows are unique [16].

Cascading Failure Model

We now describe the cascading failure model. Again, this model can be found in

[14,16], but is presented here for completeness.

Before any failures occur, we assume the network is connected and that ZiEN =

0. In other words, we assume aggregate demand is equal to aggregate supply.

We now describe the cascading failure model in steps.

1. Set fij to be the absolute value of the power flow on (i, j) before any failure

occurs.

2. Consider some subset of power lines to be initially removed from the network.

3. In order to calculate DC power flows for this modified network, aggregate supply

and demand must match in each component. Hence, we proportionately reduce

supply (or demand) at nodes in each component until this condition is met.

This may model load shedding or a ramping down of generators.

4. Power flows fij are then calculated for the remaining lines.

5. Let fij = alfij + (1 - a)fij.

fij represents some 'moving average' of flow through the power line (i, j) and

can be thought of as modeling of some thermal effects. a is a parameter in

this moving average set to a value between 0 and 1. If a is small, then the line

will take more time steps to 'heat up'; if a = 1 then the line can be thought of
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as feelings the effects of the new flow instantaneously. In this work we assume

oz = 0.5.

6. We then remove all lines for which fij > uij. This may cause an additional

change in the power flows (hence the cascade); we go back to step 3 and the

process repeats until no flow is above capacity.

It should be noted that we were not able to attain the capacities of power lines

for real power networks. Hence, in order to approximate the capacities on a power

network we calculate the initial power flows on each line and then set uij proportional

to I fij before any failures occur. This proportion is called the Factor of Safety (FoS)

and relates to the amount of 'spare capacity' on the power lines. In other words

nij = Ifij| x FoS before any failures occur. For real power grids, it is believed that

a good approximation for FoS is 1.2 [14]. Hence, for the majority of this work, we

assume FoS = 1.2.

5.2.2 Performance Metrics and Numerical Results

Our goal is to analyze the effect of a randomly located circular disk failure in con-

junction with cascading failures on power networks. Let the yield be the fraction of

demand satisfied after the disaster and resulting cascade. By calculating the proba-

bilities of relevant joint link failures using the tools and equations in section 3.9 and

considering the resulting cascading effects, one can evaluate the expected value as

well as the distribution of the yield to a randomly located disk failure event.

We now discuss some numerical results based on the HVIET network1 . Fig. 5-3

shows the cumulative distribution function (CDF) of the average yield on the HVIET

network with disaster radius of 50 kilometers. Addressing the effect of Factor of

Safety, Fig. 5-4 shows how average yield changes as the factor of safety (FoS) is

changed (Factor of Safety relates to the amount of 'spare capacity' on power lines).

Note when FoS = 1, then there is no spare capacity allocated on the power lines,

so when a failure event occurs the resulting cascading failure brings down most of

'We would like to thank the authors of [63,64] for sharing their data.
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CDF of Yield on HVIET network with radius=50km, FoS=1.2, and a=0.5, Average Yield = 0.78336

0.4 0.5 0.6 0.7 0.8 0.9 1
Yield

Figure 5-3: CDF of the average yield on the HVIET network with disaster radius of approximately 50 kilometers.
We assume that the region of interest is given by the convex hull of the network. Note that there is a significant
probability the yield is 1; this is mainly caused by disks centered within the region of interest that do not intersect
the network.

the network. As FoS increases, the amount of spare capacity on the power lines

increase, so the average yield increases as well, as one would expect. For example,

when FoS = 2 the failure event will not have much effect on the yield. Addressing the

effect of the radius of the disaster, Fig. 5-5 shows as the radius of the initial disaster

increases, the average yield in the network decreases.

We now compare the effect of independent random link failures to the effect of a

randomly located circular failure. We initially calculate the average yield of HVIET

to a circular disaster while the size of the region of interest C varies. The size of C

is varied to change the probability a unit of fiber is cut. So we can plot average yield

versus the probability a unit of fiber is cut. See Fig. 5-6 for results.

Next, we calculate average yield assuming independent link failures such that links

fail with the same probability as in the random disk-cut case. Thus the probability

a link fails is still a function of its length, however links fail independently. Since the

total number of power lines is not small, calculating average yield by enumerating

all possible failures is not feasible (possible failures are exponential in number of

links). Instead we use a Monte Carlo approach, using 4000 samples for each particular

138



Average Yield vs. FoS on HVIET network with radius~50km and a=0.5
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FoS

Figure 5-4: Average yield vs. FoS on the HVIET network with disaster radius of approximately 50 kilometers. When
the FoS = 1, then there is no spare capacity allocated on the power lines, so when a failure event occurs the resulting
cascading failure brings down most of the network. As FoS increases, the average yield increases as well, as one would
expect. Note when FoS = 2, then the failure event will not have much smaller effect on the yield.

Average Yield vs. Disaster Radius on HVIET network with FoS=1.2 anda=0.5
I I I I I I

~0

U

U

Radius

Figure 5-5: Average yield vs. radius (in terms of degrees of latitude/longitude) on the HVIET
of the initial disaster increases, the average yield in the network decreases.

network. As the radius
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Average Yield vs. Probability of Unit Link Failure for radius~8km, FoS=1.2, and a=0.5
n OQ -
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Figure 5-6: The solid line shows average yield in HVIET versus the probability a unit (latitude/longitude) of power
line is cut by a random disk of radius approximately 8km. The dashed line shows average yield in HVIET assuming
power lines fail independently such that lines fail with the same probability as in the random disk case.

probability of unit link failure sample point. See Fig. 5-6 for results.

Notice that average yield under independent failures is less than in the case of ran-

dom disk-cuts. This result demonstrates geographic disasters on power networks have

key differences from independent smaller scale failures (e.g. power line failure due to

brush growth). Perhaps this is because some power supply nodes and power demand

nodes are near each other and so a random disk may be more likely to effectively

remove both these nodes simultaneously which may reduce the chances of a large

cascading failure (since power loads will remain balanced). Also note the contrast

to the result in Fig. 3-25 for the NSFNET data network where independent failures

have less impact than in the case of random disk-cuts; this highlights a fundamental

difference in the survivability between power and data networks.

5.2.3 Possible Extensions

In the context of random geographic failures and power networks, the following prob-

lems are potential extensions for future work:

1. Other metrics beyond yield

Consider other metrics beyond yield such as the distribution of number of lines

destroyed or the distribution of connected components. These distributions will
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allow us to better understand the impact of a random geographical disaster on

the survivability of the power grid.

2. Computationally efficient algorithms

Development of efficient algorithms to calculate the yield in general networks

that scale well with network size. Analyzing the running time of our current

algorithms and developing faster methods will allow us to obtain numerical

results on larger and more detailed real-world power networks.

3. Extending the probabilistic failure model

Currently, our model assumes that every power line intersected by a circular

attack is removed from the network. However, power lines within a disaster

region may not always fail (e.g. shielded power lines near a hurricane may re-

main operational). So the attack may have a probabilistic effect on the lines.

It would be interesting to capture this doubly random effect; we model a disas-

ter as a randomly located disk that also has a non-deterministic effect on the

intersected power lines.

4. AC Power Flow Model

A more realistic power flow model can be considered. Currently, many papers

on power networks assumes a DC power flow model [17] [14]; this type of model

is very simple and ignores certain effects that may occur during a cascade. The

AC power flow model is a more realistic flow model, though it is harder to

solve for the flow equations [56]. We can alter our failure model to incorporate

the more realistic AC power flow model and study the impact of the cascading

model on yield and other performance metrics.

5. Robust Design

In addition to the above items, we can study some power network design issues.

One goal may be to increase the average yield in the network under a random

circular disk disaster. To this end, we may consider how to add additional
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power lines or increase capacities of certain power lines in order to increase

average yield. For example, we may consider what Factor of Safety is required

to guarantee the expected yield above a certain threshold.

5.3 Design of Infrastructure Robust To Power Fail-

ures

Many systems and networks depend on reliable delivery of power from the electric

grid. For example, power is required to operate street lights for transportation net-

works in cities. Another example are fiber networks; power is needed at backbone

routers and amplifiers (on fiber links) or else those components will fail. Since cas-

cading power outages can be widespread, their effect on dependent systems can be

devastating. In particular, due to the widespread nature of blackouts, continental

fiber networks may become disconnected if the power failure affects a large area that

includes the networks physical components. For example, the blackouts of 2003 had

a significant effect on the connectivity of the Internet [30].

Motivated by the dependencies of many networks and systems on the power net-

work, we consider the design of robust infrastructures with respect to cascading power

failures caused by a randomly located geographic attack. We first describe a model

for the dependence of a network on the power network. We then present our failure

model and compare data network reliability with and without power network depen-

dency. We then close by proposing an example problem formulation for the design of

robust data networks with respect to power outages.

5.3.1 Dependence on Power Network

As described above, many networks and systems require power to operate properly;

that is, failure to provide power to systems can cause failure in those dependent

systems. Although these systems typically have backup power supplies, backup gen-

erators are often unreliable. We assume, as in the previous section, that the power
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-Power Demand Node

+ --- Data Node

Figure 5-7: Part of the backbone of the Italian research network (GARR) [63, 64] is shown above by solid line
segments representing links and circles representing nodes. The dashed segments represent the Voronoi cells based
on the locations of power demand nodes, shown by crosses above, in the Italian high-voltage electrical transmission
network (HVIET) [63,64]. Our model assumes that data nodes extract power from the closest power demand node;
when a demand node fails, data nodes located within its Voronoi cell are assumed to fail as well.

network is represented by points and line segments in the plane. Similarly, we assume

the dependent network is also modeled by points and line segments. A dependent

node is likely to draw its power from a nearby substation. So, we let a dependent

node be operational if the closest (in a Euclidean sense) power demand node is still

delivering power (that is 3 < 0 for node i). Thus, based on the locations of de-

mand nodes in the power network, we can construct a Voronoi diagram; a dependent

node in a particular Voronoi cell will depend on the operation of the supply node

corresponding to that cell. See Fig. 5-7 for an example.

5.3.2 Failure Model

We use the same failure model for the power grid presented in the previous section

augmented with data-power network dependency. This failure model consists of three

stages; the first stage is link failures caused by the random circular disaster and the

next stage is the resulting cascading failures in the power network. Then, the effects

on the dependent network (based on geographical proximity to supply nodes) are
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considered once the cascading failures have occurred.

5.3.3 Metrics for Dependent Network Robustness

Our goal is to design a network robust to failures in the power grid. In the context of

a random geographic failure on the power grid and the resulting impact on dependent

networks, we propose to consider the following metrics:

" Connectivity - In many networks, especially data networks, we are concerned

with connectivity; i.e. does the network remain connected. For example, we

would like for all major U.S. cities to be able to communicate with each other,

therefore it is reasonable to consider the connectivity of the continental fiber

network. Thus, we can consider the probability that the dependent network

remains connected after a random attack on the power grid.

" ATTR - If a connected network cannot be guaranteed after a failure or full

connectivity is not critically important, it may be useful to consider the ATTR

metric. This is given by the probability a randomly chosen pair of nodes in

the dependent network remain connected after a random attack on the power

grid. In the following, we consider the effect of random disasters on real-world

dependent networks using this metric.

5.3.4 Numerical Results

Using the failure model just described, we present some numerical results based on

the Italian research network (GARR) and the Italian high-voltage electrical trans-

mission network (HVIET) [63,64]. Consider Fig. 5-8. Via a Monte Carlo simulation,

this figure shows how ATTR is significantly lower when power network dependency

is considered; this implies power network effects have a significant impact on the

survivability of real-world data networks. Fig. 5-9 shows a similar result when the

connectivity metric is considered although the difference is not as significant. Perhaps

this is because removing certain power demand nodes from the network causes the

connectivity metric to be zero regardless if a cascading failure occurs.
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Figure 5-8: The red dashed curve shows ATTR for the Italian research network (GARR) as a function of the radius (in
latitude/longitude coordinates) of a randomly located circular disaster when no power networks are considered (using
tools and models from chapter 3). The blue solid curve shows ATTR for the GARR network when the dependency
effects of Italian high-voltage electrical transmission network (HVIET) are considered. For every radius considered a
Monte Carlo approach with 4000 samples was used. We note that ATTR is significantly lower when power network
dependency is considered; this implies power network effects have a significant impact on the survivability of real-world
data networks.
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Figure 5-9: The red dashed curve shows the probability the data network remains connected for the Italian research
network (GARR) as a function of the radius (in latitude/longitude coordinates) of a randomly located circular disaster
when no power networks are considered (using tools and models from chapter 3). The blue solid curve shows the
probability the data network remains connected for the GARR network when the dependency effects of Italian high-
voltage electrical transmission network (HVIET) are considered. For every radius considered a Monte Carlo approach
with 4000 samples was used.
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5.3.5 Possible Extensions

In the context of a random geographic attack on the power grid and its effect on

dependent networks, one can consider to study some network design problems. One

goal may be to increase the connectivity or ATTR metric in the dependent network.

To this end, we may consider how to add additional power lines or increase capacities

of certain power lines in order to decrease the effect of cascading failures in the

power grid thereby reducing the effect on dependent networks. For example, we may

consider what Factor of Safety is required to guarantee the ATTR metric remains

above a certain threshold in the dependent network. Alternatively, we can consider

how to augment the existing dependent network so that it becomes more robust

to cascading power failures. An interesting future direction would be to study the

joint design of the power grid and dependent network as well as explore the tradeoffs

between strengthening the power network and the dependent network.

We now discuss a design problem with respect to data networks. Suppose we wish

to strengthen the connection of the data network of two major American cities under

the context of random power failures caused by an attack. One problem would be

to consider a maximally blackout disjoint path problem: how to find a pair of data

paths with common source and destination that has the minimum probability of being

affected by a blackout. The solution to this problem gives the most survivable pair

of paths with respect to power blackouts. See Fig. 5-10 for an example of blackout

disjoint paths.

More specifically, we assume the same failure model as before; a single randomly

located disk of fixed radius removes power lines it intersects. Let R be the set of

all possible initial failure events caused by the random disk. Let ri E R and let pi

correspond to the probability of ri (the probability a random disk causes the failure

event ri). Now assuming our two-stage failure and dependent network effects model,

the problem becomes how to choose two data paths between S and T (ST paths),
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Figure 5-10: Four light grey (teal in online color version) Chicago-Dallas paths are highlighted above for a particular
backbone network [46]. The grey closed curve (red closed curve in online color version) surrounding eastern states
represents the region of a power blackout. Note the two rightmost paths are not disjoint with respect to this blackout
since those pair of data paths both intersect the blackout zone.

pathi and path 2, such that the following expression is maximized

max pi max(lpathi survives ri, path2 survives ri)
pathi,path2 EST paths E

riGR

This problem fits naturally into the Shared Risk Link Group (SRLG) framework

presented in [44] and may provide a good starting point for analysis and heuristics.
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Chapter 6

Conclusion and Future Directions

In this thesis we developed the necessary theory to evaluate network performance

metrics under several geographic failure models. This allows us to begin developing

some network design tools that can mitigate the effects of regional attacks such as

electromagnetic pulse attacks and natural disasters. Our approach provides a fun-

damentally new way to look at network survivability under disasters or attacks that

takes into account the geographical correlation between links. We conclude with an

overview of our results and potential future directions to our work.

6.1 Conclusions and Extensions

Motivated by applications in the area of network robustness and survivability we

initially focused on the problem of geographically correlated network failures. Namely,

we considered graph models in which nodes and links are geographically located on

a plane, and model the disaster event as a geometric object. We first looked at

the properties and impact of geographical line segment cuts which are located with

the intention to reduce network capacity and connectivity. We considered a simple

bipartite graph that abstracts the fiber links between the east and west coasts in

the U.S. or transatlantic/pacific links. Then, we considered a general graph model

in which nodes are located on the Euclidian plane and studied two related problems

in which cuts are modeled as line segments or as circular disks. For these cases,
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we developed polynomial-time algorithms for finding worst-case cuts. We then used

these algorithms to obtain numerical results for various performance measures. Some

future research directions include the analytical consideration of arbitrarily shaped

cuts, the use of computational geometric tools for the design of efficient algorithms,

and how to design a network to mitigate the effects of these worst-case attacks.

In the next part of the thesis we focus on random geographical attacks on the

network which can model the result of a natural disaster or collateral damage. In

particular, we focused on random line and circular cuts. Using tools from geometric

probability we demonstrate how to compute failure probabilities and show how to

calculate ATTR and other network performance metrics in polynomial time under

these failure models. This is a significant contribution because calculating this metric

assuming independent link failures in known to be NP-hard [10]. We then present

some numerical results to demonstrate the significance of geometry on the surviv-

ability of the network and also discussed network design problems in the context of

these randomly located failures. Some future research directions include the consider-

ation of multiple randomly located cuts (instead of a single randomly located failure),

convex cuts (e.g., oval cuts), and robust network design in the face of geographical

failures.

We then presented a geographic max-flow and min-cut problem where failures,

modeled as disks, may be placed anywhere in the graph except for certain protected

zones. We show these problems can be reduced to discrete ones and present a poly-

nomial time algorithm for the geographic min-cut problem. We developed an ILP

formulation, an exact algorithm, and a heuristic algorithm for the geographic max-

flow problem. Using these algorithms, we obtain numerical results for a specific

backbone network, thereby demonstrating the applicability of our algorithms to a

real-world network. This approach provides a way to look at network survivability

in the face of multiple disasters or attacks that takes into account the geographical

correlation between links. Some future directions include application of this approach

to the electric power transmission network, finding a tight bound on the difference

between geographic min-cut and max-flow (i.e. the analog to the max-flow min-cut
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theorem), and the development of network design tools (e.g. how to build a network

under some constraints such that geographic min-cut is maximized).

Motivated by the effects of natural disasters such as geomagnetic storms [59] and

cascading failures, we considered a two-stage failure model for power networks. The

first stage removes power lines that intersect a randomly located disk and the second

stage calculates the cascading failure that occurs due to the removal of the initial links.

We used the tools developed for randomly located circular cuts and a cascading failure

model to calculate the effect of this type of failure in power networks. Then motivated

by the effects of power loss on data networks [30], we considered the survivability of

data networks with respect to power networks. We assumed data nodes rely on the

operation of the closest power load nodes to function. Through numerical results, we

were able to show power network effects have a significant impact on the survivability

of real-world data networks. As discussed in section 5.3.5, a natural extension is the

problem of how to design backup data paths such that they are maximally 'blackout

disjoint.' That is, how to find data paths such that a large power blackout would

have a small probability of disconnecting all the paths, thus making the data network

more robust to large scale power failures. Another way to extend the work is the

consideration of other power system models and metrics (see section 5.2.3).

Another direction to explore with respect to geographically correlated failures is

the connection with Shared Risk Link Groups (SRLGs). SRLGs are sets of links in a

network which can fail simultaneously. Consider an analog to our work; every set of

links which can be simultaneously intersected by a disk belongs to an SRLG under

the random disk failure model. However, since a disaster may not necessarily destroy

a fiber it seems natural to look at Probabilistic SRLGs (PSRLGs) in which every link

in a SRLG fails with some probability [44]. For example, some links in a SRLG may

be removed with probability 1 and others may be removed with probability }. This

model can capture the different vulnerabilities of fiber to real-world failures, since,

for example, fiber can be above or below ground (it should be noted a model similar

to this has recently been considered in [1]). Evaluating performance metrics and

considering network design under this more general model can help us find locations
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where fiber needs to be better protected (e.g., through shielding).
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