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ABSTRACT

Genetically encoded ratiometric sensors can provide valuable mechanistic understanding of
biological systems. Characterization of cellular response of these sensors is the first step in
validating their use. Here, we characterize the response of a genetically encoded H20 2 sensor,
HyPer, expressed in HeLa cells. Using quantitative fluorescence microscopy, we found
significant heterogeneity in HyPer response among the cell population. Further analysis showed
that the variation in HyPer response was dependent on expression of HyPer protein as well as on
cell cycle phase. Cells with higher levels of expressed HyPer protein showed a stronger HyPer
response to H20 2. Cells synchronized in S-phase showed a weaker HyPer response than
unsynchronized cells. It was determined that this weaker response could be a function of higher
antioxidant capacity in S-phase cells. The dependence of HyPer response on these factors needs
to be accounted for to avoid experimental artifacts.
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INTRODUCTION

The discovery of free radicals in biological systems in the 1950s initiated extensive research

efforts in deciphering their role in ageing and pathological processes (9). Initial research showed

that reactive oxygen species (ROS) such as hydrogen peroxide (H20 2) were accidental

byproducts of oxygen metabolism, and their existence was detrimental to cell survival (17).

More recent investigations have revealed a significant role of ROS in maintenance of normal

biological functions (11, 34, 39). Signaling molecules such as growth factors and cytokines

stimulate cell growth and proliferation by producing low levels of ROS (4, 36). Moreover,

macrophages and neutrophils employ a burst of ROS to kill pathogens (28). However, due to

their high reactivity, higher than normal levels of ROS can cause irreversible damage to cellular

organelles. Hence, cells have evolved regulatory mechanisms, such as antioxidant enzymes, to

regulate intracellular ROS levels. An imbalance between ROS production and the antioxidant

capacity leads to oxidative stress which has been implicated in ageing, cancer and

neurodegenerative diseases.(l, 15). Although this dual nature of ROS in biology has been under

extensive research, our understanding is predominantly qualitative in nature. Quantitative

knowledge, such as concentration of ROS leading to a particular physiological affect, is very

limited which precludes the development of mechanistic understanding of biological processes

involving ROS.

Mechanistic knowledge of biological systems is critical for the efficient design of novel

therapeutic strategies to address the wide variety of pathological conditions that have been linked

to oxidative stress. Unraveling this information requires probes that can provide reliable

detection while inducing minimal perturbations in the system. Recently, genetically encoded

fluorescent proteins have been effectively employed as biosensors for reporting intracellular

calcium, chloride, zinc and pH (5, 19, 29, 31, 38, 40). These non-invasive probes can give real-

time spatial and temporal information and can be targeted to subcellular compartments.

Furthermore, ratiometric variants of these probes can potentially provide reliable quantification

that is independent of the number of fluorophores present in the system.

HyPer is a genetically encoded sensor that is sensitive to H20 2 (6, 24, 25). This probe consists of

a circularly permuted yellow fluorescent protein inserted into the peroxide-sensing domain of the
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bacterial transcription factor OxyR (2, 42). HyPer has two excitation peaks at 420nm and 500nm

and an emission peak at 516nm. Upon stoichiometric reaction with H20 2, HyPer undergoes a

reversible oxidation leading to a conformational change that causes changes in its spectral

properties. The excitation peak at 420nm decreases whereas the excitation peak at 500nm

increases which allows for a ratiometric readout that has been correlated with intracellular H20 2

present in the system (6, 24).

HyPer's remarkable specificity for H20 2, reversibility and low micromolar sensitivity to

exogenously added H20 2 when expressed in cells makes it a good redox probe for tracking

intracellular H20 2 concentration (24). Several studies have successfully used HyPer to track

intracellular redox changes involved in cell signaling events (14, 21, 41). Furthermore, HyPer

has been used in zebra fish to detect real-time H20 2 generation in wounds (10, 30) and in C.

Elegans to monitor age-related increase in H20 2 levels (3).

Intracellular probes such as HyPer provide the possibility of robust quantification of ROS.

Although HyPer has been used in diverse settings to track redox events, quantitative use of

HyPer is still lacking. This requires a readout that is independent of number of fluorophores

present in the system. The ratiometric readout provided by HyPer and other genetically encoded

sensors, such as Pericam for calcium (29) and pHRed for pH (38), in principle can be

independent of the number of fluorophores present, but this assumption has not always been

rigorously validated. Frequently, literature studies report these sensors to be ratiometric due to

the presence of dual excitation peaks which provides an internal self-calibration capability (6, 29,

38). However, the presence of the dual excitation peaks may not be a sufficient criterion for the

sensor reading to be independent of the number of fluorophores present. A recent study showed

that the ratio readout of a genetically encoded ratiometric zinc sensor was dependent on the

sensor concentration at 'resting conditions'(31). Similarly, Sztretye et al., working with a

ratiometric calcium sensor, reported slightly lower ratio values in intracellular regions of higher

sensor expression, although this correlation was not seen across cells (37). Another study with a

ratiometric chloride sensor reported the absence of a correlation between the sensor

concentration and the calculated chloride concentration obtained from the ratiometric readout

(40). The divergent observations reported by these studies indicate that assuming the ratiometric

readout to be independent of sensor concentration based on the presence of dual excitation peaks
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is not always sufficient. Dependence of ratio readout on sensor expression warrants a rigorous

analysis at basal conditions and in response to stimulation to confidently validate the probe for a

clear connection between ratiometric analysis and analyte concentration.

Furthermore, population-level quantitative understanding of biological processes is hindered by

limitations of the measurement techniques as well as by the improper use of these methods.

Spectroscopic methods, such as flow cytometry and spectrofluorimetry, provide population-level

quantification of probe response (12, 18, 24); however, analysis of adherent cells with these

methods requires trypsinization which can induce stress leading to artifactual generation of ROS

in the system (16, 33). Besides spectroscopy, fluorescence microscopy is widely used for

characterizing response of genetically encoded sensors. This method can potentially provide

good quantification without the need of stress-inducing perturbations. However, quantitative use

of fluorescence microscopy is very limited due to the small sample size (21, 24, 27). For

example, Miller et al. analyzed 10-15 HyPer-expressing cells per experiment to detect

intracellular H20 2 generation (26). A recent study with a HyPer derived pH sensor, SypHer,

showed how quantitative results can be obtained using fluorescence microscopy provided a

larger fraction of the population is analyzed (32).

Here, we use fluorescence microscopy to quantitatively characterize the response of HyPer in a

population of adherent cells. Using image analysis, we were able to probe the HyPer response in

a significantly larger fraction of cell population than in previous studies. This has revealed

significant heterogeneity in HyPer response within the population. We have shed light on factors

that affect HyPer response and that need to be accounted for so that the HyPer probe can be used

more quantitatively.
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RESULTS

Figure 1 shows the image processing steps that were used to quantify the response of HeLa cells

stably expressing HyPer to stimulation with H20 2. HyPer images are obtained using 488/6nm

and 415/30nm excitation filters before and after incubation with H20 2. Emission is collected at

525/40nm for both these channels. HyPer images are then corrected for uneven background

illumination using the rolling ball algorithm in Image J (35). A radius of 200 pixels is used to

eliminate background noise while minimizing loss of signal. Figure 1 (C, D) shows how the

algorithm reduces the background noise close to zero in both excitation channels.

The background corrected images are then used in the CellProfiler to identify HyPer expressing

cells. The CellProfiler program scales the pixel intensities between 0 to 1 using the maximum

image depth. Cell identification is done based on intensity thresholding using the Mixture of

Gaussian (MoG) algorithm (8). This algorithm works by estimating Gaussian distributions to

match the distribution of pixel intensities in the image. The identification process also uses the

typical diameter of the objects (30-125ptm) to exclude noise in the image. The cells identified are

then filtered using eccentricity between 0-0.9. Once the regions are identified as HyPer

expressing cells, HyPer ratio, (Emission at 488/6nm)/(Emission at 415/30nm), for each region is

calculated by dividing the average pixel intensities for the region in the 488/6nm image by the

average pixel intensity for the region in the 415/30nm image.
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Figure 1: Images are processed before calculating the ratiometric HyPer readout. (A) Fluorescent image
(488/6nm excitation, 525/40nm emission) of HeLa cells stably expressing the HyPer sensor protein under

control of the CMV promoter. Scale bar: 25pm. (B) Fluorescent image of the same field of view (415/30nm
excitation, 525/40 nm emission). Images shown in (A) and (B) were taken after a 10 minute incubation with 20

pM H202. (C, D) Intensity as a function of distance plots for the line shown in panels A and B before (black)
and after (red) correction for background signal using the rolling ball algorithm (radius = 200 pixels) in

Image J. (E) Cells expressing HyPer are identified in an automated fashion (CellProfiler) using the

background-subtracted 488/6nm excitation image. (F) Calculated HyPer ratio for the cells identified in (E).
The HyPer ratio is defined as the average emission intensity upon excitation with 488/6nm light divided by
the average emission intensity upon excitation with 415/30nm light. Each data point represents the average

HyPer ratio within one cell.
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Figure 2 shows the HyPer ratio response to different concentrations of H20 2 in a population of

adherent HyPer-HeLa cells. Below 51 M H20 2, the HyPer ratio remains close to its basal redox

state. Above 1OpM H20 2, the HyPer ratio changes showing the altered redox state due to the

externally added H20 2. The HyPer signal saturates when treated with above 20pM H20 2.

Furthermore, HyPer's response at 25ptM and 50pM shows that the probe response is slightly

muted compared to 20pM suggesting that HyPer might be undergoing over-oxidation that alters

its response. Figure 2 strikingly shows that the HyPer response at a particular H20 2 concentration

presents significant heterogeneity within the cell population. This cell-to-cell heterogeneity in

HyPer's ratio is not apparent in the basal redox state.
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Figure 2: HyPer response to H20 2 . HyPer-HeLa cells were incubated with 0-50pM H20 2 for 10 minutes. At
the end of incubation, HyPer fluorescence images were obtained using 488/6nm and 415/30nm excitation
filters. Emission was collected at 525/40nm. HyPer ratio was calculated from cell regions identified by
CellProfiler using background corrected images. HyPer ratio for each region is shown for the indicated H20 2

concentrations 10 minutes after treatment. Each data point represents the HyPer ratio in one cell. (A) 0 pM
(158 cells) (B) 5 pM (431 cells) (C) 10 pM (337 cells) (D) 20 pM (338 cells) (E) 25 pM (292 cells) (F) 50 pM
(307 cells).

10



Dependence of HyPer response on expression level

Figure 3 shows that the HyPer ratio response to H20 2 stimulation depends on the expression

level of the HyPer protein within a cell. Before addition of H20 2, the HyPer ratio is uniform

across the cell population (Figure 3A). Furthermore, HyPer ratio does not show any dependence

on expression level before H20 2 stimulation. We use the HyPer emission intensity at 488/6nm

excitation wavelength as an indicator of expression level. The emission intensities at 488/6nm

and 415/30nm excitation are linearly correlated (Figure 3B) which allows the use of either one as

an indirect measure of expression. Using the emission intensity at 488/6nm excitation, Figure 3C

shows that the basal HyPer ratio did not correlate with expression level. However, unlike the

basal observation, the HyPer ratio 10 minutes after incubation with 20ptM H20 2 is positively

correlated to the HyPer expression level within that cell (Figure 3D). Higher expression seems to

drive a higher HyPer ratio response. The Spearman correlation between the HyPer 488/6nm

emission intensity at time zero and ratio response at 10 minutes was determined to be 0.70

(p<0.05) signifying a strong positive correlation. These results indicate that the expression level

of HyPer within a cell influences the ratio response.
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Figure 3: The HyPer ratio response to H 20 2 correlates with the HyPer expression level. Images of HyPer-HeLa cells

were obtained using 488/6nm and 415/30nm excitation filters before and after incubation with H202 for 10

minutes. Emission was collected at 525/40nm. HyPer ratio was calculated from cell regions identified by

CellProfiler using background corrected 488/6nm excitation image. (A) HyPer ratio across cell regions

before incubation with hydrogen peroxide. (B) Correlation between HyPer emission intensities when excited

at 488/6nm and 415/30nm before addition of H2 0 2. (C & D) HyPer ratio as a function of emission intensity

when excited with 488/6nm excitation filter, before (C) and after incubation with 20pM H202 for 10 minutes

(D). All emission intensities reported here were scaled by a factor of 10 4.

Cell Cycle and HyPer Response

In addition to expression level, we studied the effect of cell cycle on HyPer ratio response.

HyPer-HeLa cells were synchronized in G1/GO phase using serum starvation and in S-phase

using 2mM thymidine (7, 22). Figure 4 shows that there was no significant difference in HyPer

response in G1/GO synchronized cells; however, HyPer response in S-phase synchronized cells

was significantly muted. This difference was further elaborated in the normal probability plot

shown in Figure 5. For the S-phase synchronized cells, the probability of HyPer ratio within a

certain cell being under 2.5 was 0.99 which was significantly less than the HyPer ratio observed

in the G 1/GO synchronized cells as well as in the respective control groups.
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Figure 4: Cell cycle phase affects HyPer response. HyPer-HeLa cells were synchronized in G1/GO phase using

serum starvation or in S-phase using 2mM thymidine. Synchronized cells were treated with 20pM H 20 2 for

10 minutes. Images of HyPer-HeLa cells were obtained using 488/6nm and 415/30nm excitation filters before

and after incubation with H 20 2 for 10 minutes. Emission was collected at 525/40nm. The HyPer ratio was

calculated from cell regions identified by CellProfiler using background corrected 488/6nm excitation image.

(A-B) The HyPer ratio response in cells cultured in full media (A) and cells cultured in serum free media (B).

(C-D) The HyPer ratio response in cells cultured without thymidine (C) and cells cultured with 2mM

thymidine (D). All emission intensities reported here were scaled by a factor of 10 4.
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Figure 5: S-phase synchronized cells show muted HyPer response. Normal probability plot showing HyPer
ratio response in synchronized cells. HyPer-HeLa cells were synchronized in G1/G0 phase using serum
starvation or in S-phase using 2mM thymidine. Unsynchronized Control I and 2 served as control cell
cultures for S-phase and GI/GO phase synchronized cell cultures. Cells were treated with 20pM H 20 2 for 10
minutes. Images of HyPer-HeLa cells were obtained using 488/6nm and 415/30nm excitation filters before
and after incubation with H2 0 2 for 10 minutes. Emission was collected at 525/40nm. HyPer ratio was
calculated from cell regions identified by CellProfiler using background corrected 488/6nm excitation image.

The muted HyPer response seen in S-phase synchronized cells can be due to an altered

antioxidant capacity of the cells in S-phase. We investigated this by measuring the uptake of

extracellularly added H2 0 2 in S-phase synchronized cells. After adding 20M H2 0 2 in the

extracellular medium, we followed the H20 2 concentration in the medium for 10 minutes

(Supplementary Figure Sl). HRP-ABTS assay was used to quantify the the extracellular H2 0 2

concentration at 2-minute intervals. We determined that the H20 2 decay rate constant was

significantly higher in S-phase synchronized cells (1.1 x 10-3± .2 min-'cell-') compared to

unsynchronized cells (6.6 x 10-4±0.1 min-'cell-'). This indicates that the antioxidant capacity in

S-phase cells is significantly high. Since the timescale of HyPer response to H2 0 2 is significantly

longer than the timescale of antioxidants reacting with H20 2 (11, 24), the higher antioxidant level

in S-phase synchronized cells can potentially cause a lower HyPer ratio response as seen in

Figure 4D.
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DISCUSSION

Using quantitative fluorescence microscopy, we found significant cell-to-cell heterogeneity in

the HyPer response to hydrogen peroxide in adherent HyPer-HeLa cells. Below a certain

threshold (5pM H20 2), HyPer did not respond to extracellularly added H20 2. The dynamic range

of HyPer was determined to be 5pM-20pM H20 2. Similar dynamic range was reported by Jiang

et al. in HeLa cells (18). A slightly different dynamic range was reported in a study done in

neurons, approximately 10pM-50pM H20 2 (13). This difference in dynamic range can be

explained by variation in antioxidant capacity and cell membrane characteristics between cell

lines. Furthermore, we saw that HyPer ratio response saturated over 20PM H20 2. HyPer also

showed slightly muted response at concentrations higher than 20PM H20 2 suggesting that over-

oxidation led to an altered response.

Our results show that the HyPer expression level within a cell leads to the cell-to-cell

heterogeneity seen in HyPer response. Ratiometric variants of genetically encoded sensors, such

as HyPer, are thought to provide a readout independent of the number of fluorophores present in

the system, although this claim has not been rigorously tested at experimental conditions. At

basal conditions, we found HyPer's response to be independent of its expression level within a

cell. Similar observation was reported in studies done in C. Elegans expressing HyPer (3, 20).

However, when we treated HyPer expressing cells with extracellularly added H20 2, we found

that HyPer response correlated with HyPer expression within a cell. Image analysis showed that

higher HyPer expression led to a higher HyPer ratio response when treated at a particular H20 2

concentration. This unexpected dependence of HyPer response on expression has not been

reported in literature before. The HyPer ratio is derived from the changes in emission intensity at

two excitations peaks (500nm and 420nm). The increase in HyPer ratio upon addition of H20 2 is

due to increase in emission intensity at 500nm and decrease in emission intensity at 420nm. The

increase in HyPer ratio with expression level seems to be driven by the decrease in emission

intensity at 420nm. The decrease in 420nm emission on addition of H20 2 shows a positive

correlation with HyPer expression level whereas the increase in 500nm emission does not show

such a correlation (Supplementary Figure S2). This can cause the non-ratiometric rise in HyPer

ratio as the number of fluorophores increase with higher expression level.
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HyPer's response also showed dependence on cell cycle. HyPer-expressing cells synchronized in

S-phase displayed a significantly muted response to H20 2 compared with unsynchronized cells.

However, cells synchronized in Gl/GO phase behaved similar to unsynchronized cells. We

determined that the S-phase synchronized cells had a significantly high antioxidant capacity.

Since the rate of reaction of antioxidants with H20 2 is faster compared to rate of reaction of

HyPer with H20 2 (11, 24), the high antioxidant capacity can potentially neutralize the H20 2,

thereby reducing the HyPer response. Glutathione, an important player in cellular antioxidant

system, is known to be at a higher concentration in S-phase cells compared to quiescent cells

(23). It is possible that the muted HyPer response to H20 2 in S-phase synchronized cells was due

to the presence of this high antioxidant capacity.

The cell-to-cell heterogeneity in HyPer response makes quantification of HyPer response in

adherent cells non-trivial. Assaying a few cells for HyPer response for understanding biological

processes can lead to incorrect inferences due to significant heterogeneity in response. Hence,

use of HyPer in adherent cell analysis should be done while reducing the heterogeneity in HyPer

response. Based on our findings, this heterogeneity can be reduced by controlling HyPer

expression level within the cell. Besides experimental methods, statistical methods can be

employed to select a population of cells that can potentially provide a quantitative HyPer

response based on parameters such as expression level and cell cycle phase. Moreover, spectral

properties of HyPer probe can be re-engineered to remove the dependence of the readout on

changes in the emission intensity at 420nm excitation peak.

HyPer probe provides the potential to quantitatively understand the biological role of hydrogen

peroxide. HyPer's specificity and low micromolar sensitivity to H20 2 allows reliable detection of

intracellular redox processes. However, to appreciate the full capability of this probe,

quantitative methods need to be employed to analyze HyPer's response in a significant fraction

of the cell population. Moreover, the dependence of HyPer response on expression level and cell

cycle phase needs to be accounted for to avoid experimental artifacts. This is critical for moving

beyond qualitative findings and to obtain a true mechanistic understanding of ROS processes.

Moreover, it is highly recommend that the ratiometric property of genetically encoded sensors

should always be validated under experimental conditions of interest. This will ensure that the

sensor can provide a ratiometric readout that is independent of the sensor concentration.
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MATERIALS AND METHODS

Materials

EMEM and FBS were sourced from ATCC. Penicillin-streptomycin was from EMD Millipore.

HyPer plasmid (pHyPer-cyto) was from Evrogen. Lipofectamine was from Life Technologies.

PBS, thymidine and G418 were from Sigma-Aldrich. H20 2 was from BDH Chemicals. HRP and

ABTS were from Alfa Aesar and Tokyo Chemicals, respectively.

Methods

Cell Culture and Transfection

HeLa cells were cultured in EMEM supplemented with 10% FBS and 1% penicillin-

streptomycin. The cell cultures were maintained in a 370 C humidified incubator in the presence

of 5% CO 2. Media was changed every 3 days and cells were passaged every 5-6 days.

HeLa cells were stably transfected with pHyPer-cyto vector containing the HyPer gene under

CMV promoter. Cells were first transiently transfected with Lipofectamine following supplier's

protocol. Twenty four hours after transfection, media was changed and supplemented with

700pg/mL of G418. After two weeks, stable clones were selected by picking fluorescent colonies

using an Olympus widefield fluorescence camera (IX81). The selected colonies were expanded

in medium containing 200pg/mL G418 in 96-well plates. The best fluorescing colony was kept

for subsequent experiments. The stable cell HyPer-HeLa line was cultured in 200pg/mL G418 to

maintain selection pressure and remove non-fluorescing cells.

For imaging, HyPer-HeLa cells were plated at a density of 2x 104 cells per well for approximately

42 hours in 96-well plate without G418. Before imaging, each well was washed with pre-warmed

PBS (pH 7.4), and incubated with 150uL of 20uM H20 2 in PBS for 10 minutes at room

temperature.

Cell Cycle Synchronization

For S-phase synchronization, HyPer-HeLa cells were grown as mentioned above in the presence

of 2mM thymidine (7). Control cultures were grown similarly in absence of thymidine. For

G1/G0 synchronization, cells were plated at a density of x 104 cells per well in EMEM with

10% FBS. After culturing for 24 hours, cells were washed with PBS (pH 7.4) and placed in
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serum-free media for additional 24 hours before imaging (22). Control cultures were grown

similarly except the replaced media contained 10% FBS.

Imaging

HyPer imaging was done using an Olympus widefield fluorescence microscope (IX8 1) and Prior

Lumen2000 lamp. Images were acquired with a 20X Olympus objective. The 96-well plate was

clamped on the stage to obtain same view-field images before and after the incubation with

H20 2. HyPer fluorescence images were taken using Chroma D415/30x and Semrock FF01-

488/6-25 excitation filters while emission was collected using a Semrock FF02-525/40-25 filter.

Both images have 1600x1200 pixel density at 16-bit resolution. Exposure time was set at 300ms

with the lamp intensity at 25%. Images were taken using a Retiga 2000R camera. The

microscope, lamp and camera settings were kept constant throughout this study.

Image Analysis

HyPer images were background subtracted using the rolling ball algorithm (radius=200 pixels) in

ImageJ (35). These images were then used to identify cell regions in CellProfiler _software (8)

based on intensity thresholding. The thresholding algorithm used was 'Mixture of Gaussian

Adaptive.' The regions determined were filtered using a size criterion of 30-125 pixels and

eccentricity of 0-0.9. HyPer ratio for a particular region was calculated as the average pixel

intensity in HyPer-long channel divided by the average pixel intensity in HyPer-short channel in

that region.

HRP-ABTS Assay

HyPer-HeLa cells, seeded at 1xi06 cells in 10cm2 dishes, were grown as mentioned above

without G418 for 48 hours. Cells were then washed with PBS (pH 7.4) and incubated with 1 OmL

of 20uM H20 2 in PBS (pH 7.4) for 10 minutes. 150pL samples were drawn every two minutes.

These were treated with 50ptL of 2.5mM ABTS and 10pl of 3mg/mL HRP. Absorbance was

measured at 405nm using Tecan M200 plate reader in a 96-well plate.
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LIST OF ABBREVIATIONS

ABTS- 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
EMEM- Eagle's Minimum Essential Medium
FBS- Fetal Bovine Serum
HRP- Horseradish Peroxidase
H20 2- Hydrogen Peroxide
PBS- Phosphate Buffered Saline
ROS- Reactive Oxygen Species
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SUPPLEMENTARY FIGURES

(A) S-phase Synchronized Cells
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Figure S1: HRP-ABTS assay is used to measure antioxidant capacity by following the H202 decay kinetics in
S-phase synchronized (A) and unsynchronized cells (B). 20pM H 20 2 is added in the extracellular medium.
Samples are withdrawn every 2 minutes to measure the remaining H202 concentration. Each data point is the
average of three measurements. Error bars represent one standard deviation. The H202 decay constant
calculated from the shown kinetic data is normalized by the number of cells present in the samples. Cells are
counted from brightfield images obtained using a 20X magnification lens. Average cell count was 117±22 (n=4
images) in S-phase synchronzied sample and 227±24 (n=6 images) in unsynchronized sample.
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Figure S2: The percent decrease in emission intensity at 415/30nm excitation correlates with HyPer

expression level. Images of HyPer-HeLa cells were obtained using 488/6nm (for 500nm excitation peak) and

415/30nm (for 488nm excitation peak) excitation filters after incubation with H202 for 10 minutes. Emission

was collected at 525/40nm. HyPer ratio was calculated from cell regions identified by CellProfiler using

background corrected 488/6nm excitation image. (A) Percent decrease in emission intensity at 415/30nm

excitation 10 minutes after addition of H202 as a function of emission intensity at 488/6nm excitation

(Spearman correlation=0.71). (B) Percent increase in emission intensity at 488/6nm excitation 10 minutes

after addition of H202 as a function of emission intensity at 488/6nm excitation (Spearman correlation=0.16).

Data points shown are within the 5-95% percentile. p<0.01 for Spearman correlation.
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