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Abstract

This dissertation will examine what a first person viewpoint means in the
context of data visualization and how it can be used for navigating and
presenting large datasets. Recent years have seen rapid growth in Big Data
methodologies throughout scientific research, business analytics, and online
services. The datasets used in these areas are not only growing exponentially
larger, but also more complex, incorporating heterogeneous data from
many sources that might include digital sensors, websites, mass media,
and others. The scale and complexity of these datasets pose significant
challenges in the design of effective tools for navigation and analysis.

This work will explore methods of representing large datasets as physical,
navigable environments. Much of the related research on first person
interfaces and 3D visualization has focused on producing tools for expert
users and scientific analysis. Due to the complexities of navigation and
perception introduced by 3D interfaces, work in this area has had mixed
results. In particular, considerable efforts to develop 3D systems for more
abstract data, like file systems and social networks, have had difficulty
surpassing the efficiency of 2D approaches. However, 3D may offer
advantages that have been less explored in this context. In particular, data
visualization can be a valuable tool for disseminating scientific results,
sharing insights, and explaining methodology. In these applications, clear
communication of concepts and narratives are often more essential than
efficient navigation.

This dissertation will present novel visualization systems designed for
large datasets that include audio-video recordings, social media, and
others. Discussion will focus on designing visuals that use the first person
perspective to give a physical and intuitive form to abstract data, to combine
multiple sources of data within a shared space, to construct narratives, and
to engage the viewer at a more visceral and emotional level.
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1 Introduction

As this dissertation was being written, researchers at CERN an-
nounced the confirmation of a subatomic particle likely to be the
Higgs boson. Confirming the particle's existence to a significance
of 4.9 sigmas involved the analysis of about 1015 proton-proton
collisions [Overbye, 2012] using sensors that record over one pet-
abyte of data each month [CERN, 2008]. When the Large Syn-
optic Survey Telescope begins operation in 2016, it is expected to
record image data at a rate of over one petabyte per year [Ste-
phens, 2010]. Increasingly, scientific research is turning to massive
datasets that no one person could hope to view in a lifetime, and
that require dedicated data centers and processing farms just to
access, let alone analyze.

Two years ago, the term "Big Data" entered our lexicon to refer
to the growing trend of data analysis at very large scales, a trend
that extends also to areas far beyond the hard sciences. Advances
throughout information technologies have made it practical to
collect and analyze data at scale in many areas where raw data was
previously limited or prohibitively expensive. In particular, the
explosion of online populations and communication devices, as
well as digital sensors that are inexpensive enough to stick on ev-
erything, have made it possible to collect data from vastly distrib-
uted sources at little cost. The result has been a surge of interest in
addressing a diverse range of problems, new and old, by applying
massive amounts of computing to massive amounts of data.

The Santa Cruz Police Department has recently begun using
crime pattern analysis tools to plan daily patron routes for officers
[Olson, 2012]. Tools have been built to analyze large corpora of
legal documents in order to predict the outcome of patent litiga-
tion and to aid in case planning [Harbert, 2012]. Several com-
panies are developing commercial tools to optimize retail spaces
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using data collected from in-store cameras, point-of-sale data,
RFID tags, and others.

The most visible practitioners are the Internet companies:
Google, Facebook, Amazon and others. These companies col-
lect click-stream data, online transactions, communications, user
generated content, and anything else that might be used to drive
services for advertising, retailing, social networking, and general
information retrieval. Nearly every person with a computer or
phone is both a frequent contributor and consumer of informa-
tion services that fall under the umbrella of Big Data.

Facebook alone counts about one-sixth of the world's population
as its active users, who upload 300 million photographs every day
[Sengupta, 2012]. Users of YouTube upload over ten years of
video every day [YouTube, 2012]. These social networking sites
are now a significant part of our global culture, and offer some of
the most extensive records of human behavior ever created. One
of the most fascinating examples of data mining comes from the
online data site, OkCupid, which has a corpus of the dating habits
of around seven million individuals. Using this corpus, they have
published findings on ethnic dating preferences, the interests that
most strongly differentiate between heterosexuals and homosexu-
als, and the seemingly random questions that best predict if a per-
son might consider sex on a first date ("In a certain light, wouldn't
nuclear war be exciting?") [Rudder, 2011]. The growing corpora
of personal data offer new ways to examine ourselves.

And so the motivations for Big Data analysis are many, from
scientific research, to mining business intelligence, to human cu-
riosity. In turn, there are also many motivations to communicate
effectively about Big Data, to explain what all this data is, dis-
seminate scientific results, share insights, and explain methodol-
ogy. These are all motivations behind the work described in this
document, which will examine approaches to data visualization
that make the analysis and communication of complex datasets
clear and engaging.
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1.1 Challenges

The datasets that will be examined in this document, like many of
the datasets just described, pose several challenges to visualization.

First, they are far too large to view completely. They generally
require ways to view and navigate the data at multiple scales.

Second, they are heterogeneous, comprised of multiple kinds of
data collected from many sources, where sources might be defined
at multiple levels as people, websites, sensors, physical sites, tele-
vision feeds, etc. Drawing out the relationships between multiple
sources of data often requires finding effective methods of synthe-
sis.

Third, they are usually unique in structure. The more complex
the dataset, the less likely it is to resemble another dataset collect-
ed in any other way. This places greater need to develop special-
ized visualization tools that work with a particular dataset.

There are many ways of distilling a dataset, and for very large
datasets, any visualization will involve significant compression.
The structure of the database might be viewed diagrammatically.
Large portions of data can be reduced to statistical summaries, in-
dexes, or otherwise downsampled. Fragments can be shown in de-
tail. Different sources or relationships can be viewed in isolation.
But looking at only one such view can only show a small part or
single aspect. Forming an understanding of the whole must be
done piece-by-piece, and through the exploration of broad sum-
maries, details, components, relationships, and patterns.

1.2 Approach

The approach this document takes towards visualization is to rep-
resent large datasets as physical environments that provide a con-
crete form to abstract and complex data, that can be explored and
seen from multiple viewpoints, and that bring multiple sources of
data into a shared space.
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The goal is not just to show such an environment, but to place
the viewer inside of it and present data from a first person per-
spective. The intent is to tap into the viewers' physical common
sense. When confronted with a physical scene, we have powerful
abilities to perceive spatial structures and information that 2D or
schematic representations do not exploit. We can reason about
such scenes intuitively and draw many inferences about physical
relationships pre-attentively, with little or no conscious effort.
Our ability to remember and recall information is also influenced,
and often enhanced, by spatial context. Last, a first person per-
spective can provide a more vivid sense of being somewhere that can
help to create more engaging graphics.

This dissertation will:

Define what a first person viewpoint means in the context of data
visualization.

Present a body of visualization work that demonstrates tech-
niques for establishing a first person viewpoint, and how those
techniques can be put into practice.

Examine the response received from exhibition of the work and
provide critique.

1.3 Applications

The bulk of this dissertation is comprised of visualizations that
use first person to address challenges encountered in real applica-
tions. Much of the work began with developing tools for retrieval
and analysis, created for use in my own research in areas of com-
puter vision and cognitive science, or by other members of the
Cognitive Machines research group. Much of the work has also
been created or adapted for use in presentations to communicate
research methods and results.

One of the most widely seen exhibitions of the work occurred
at the TED 2011 conference. Deb Roy gave a 20-minute talk on
research from the Media Lab and from Bluefin Labs, a data ana-
lytics company of which Roy is cofounder. The majority of the
visual content consisted of data visualizations, created primarily
by myself and Roy, that were intended to explain the research to
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a general audience. A video of this event was made publicly avail-
able shortly after the talk, has been seen by millions of viewers,
and has generated discussions on numerous high-traffic websites.
Some of the critique received from these discussions will be ex-
amined in Section 5 in evaluation of the work.

Other work has been created for use on US national broadcast
television, which will be discussed in Section 4.2.

1.4 Terminology

The terms data, data visualization, information, information visualiza-

tion, and scientific visualization are not always used consistently.

This document adopts several working definitions to avoid poten-
tial confusion.

Most important is the distinction between data and information.

For the purposes of this document, data is like the text in a book,
and information is what is communicated through the text. A
person who cannot read can still look at the text and perceive the
data, but does not derive the information. Similarly, a bar chart
maps quantities, data, to the size of bars. What the bars represent
and the inferences drawn from the chart are information.

Unfortunately, this distinction between data and information has
little to do with extant definitions of data visualization and informa-

tion visualization. [Card et al., 1998] offer a definition of visualiza-

tion as "the use of computer-supported, interactive, visual repre-
sentations of data to amplify cognition." They further distinguish
between scientific and information visualizations based on the type

of data. Scientific visualization refers to representations of spatial
data, such as wind flow measurements. Information visualization

refers to representations of abstract data, data that is non-spatial or
non-numerical, and that requires the designer to choose a spatial
mapping. However, these definitions are ambiguous when work-
ing with heterogeneous data.

[Post et al., 2003] define data visualization as including both scien-
tific and information visualization. For simplicity, this document
uses data visualization exclusively to refer to any visual representa-
tion of data.
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2 The First Person

What does afirst person viewpoint mean in the context of data visu-
alization? For software interfaces, a first person viewpoint implies
a navigation scheme in which the user moves through a virtual

environment as if walking or flying. And while we refer to such

systems asfirst person interfaces, our categorization of viewpoint

also include many elements beyond 3D navigation. Furthermore,
a data visualization might not be interactive at all, but an image or
animation. The concept of first person extends to all of these me-

diums, as it does to cinema, painting, video games, and literature.

Defined broadly, the first person depicts a world from the eyes of
a character that inhabits and participates in that world. The third

person depicts a world from the viewpoint of a non-participant,
a disembodied observer. To extend the terminology, the term ze-

roth person will refer to a representation that establishes no sense

of a world or characters at all, as in an abstract painting or instruc-

tion manual. Most data visualizations, like bar charts, also fall into

this category1.

The distinction between viewpoints is not always clear. Whether

a representation presents a world and characters, and whether the

viewpoint represents that of an inhabitant or of no one, may all

be ambiguous. Furthermore, the criteria used to make such judg-

ments depend on the properties and conventions of the medium.

In video games, the distinction between first and third-person

shooters is based on a slight shift in camera position. Figure 1

shows a first-person shooter, where the player views the world

1 Second person is conspicuously omitted here due its infrequent use. The sec-

ond person is looking at yourself through someone else's eyes. This is simple to

accomplish linguistically with the word you. Representing the viewer visually

is more difficult, but might include looking at a photograph or video record-

ing of yourself, or the rare video game in which the player controls a character

while looking through the eyes of an uncontrolled character, as seen in the first

boss fight of the NES game Battletoads. 19



Figure 1. A first person shooter.

Figure 2. A third person shooter.

Figure 3. Diego Velizquez. Las Meninas.
1656.

from the eyes of his character. Figure 2 is from a third-person
shooter, where the camera is placed a few feet behind the char-
acter. In either case, the player identifies with the character in
the game and views the environment from a perspective very
close to that of the character. Our categorization of viewpoints
is not something that is defined absolutely, but relative to the
norms of the medium. In the medium of 3D-shooter video
games, Figures 1 and 2 represent the narrow range of view-
points normally found, and so we call the one that is slightly
closer from the character's perspectivefrst person.

Categorization of viewpoint may be more ambiguous for im-
ages, which provide less obvious cues as to whether or not the
image represents the viewpoint of some character. An interest-
ing example of viewpoint in painting is provided by Michel
Foucault in The Order of Things [Foucault 1970]. In the first
chapter, Foucault meticulously examines Diego Velizquez's Las
Meninas and the different ways it relates to the viewer. At first
glance, the viewer might see the 5-year old princess standing
in the center of the room and the entourage surrounding her.
These characters occupy the center of the space and initially
appear to be the focus of attention in the painting, providing
a typical third person view in which the viewer, outside the
painting, views a subject of interest within the painting.

On closer inspection, many of the characters are looking out
of the painting fairly intently, including a painter, Velazquez
himself, who appears to be painting the viewer. A mirror in the
back of the room also reveals the royal couple standing in the
position of the viewer. These elements give the viewer the role
within the scene, as a person being painted, possible the king or
queen. The center of focus is not the princess, but rather, the
princess and entourage are there to watch and perhaps entertain
the royal couple as they pose for a portrait. The focus is on the
viewer. A first person view.

Foucault also describes the dark man hovering at the door in the
back. Compositionally, he mirrors the royal couple, but stands
behind the space of the room while the royal couple stand in

20



front of it. The historical identity of this character is known, but
Foucault suggests that it might double as a representation of the
viewer, as someone who has happened into a scene and pauses to
look in. A second person view.

Intruding into the left of the painting and occupying nearly
the entire height is a canvas on which the represented artist is
painting. To give so much prominence to the back of a canvas is
unusual, and Foucault theorizes it may be intended to guide the
viewer's thoughts away from the representation and towards the
physical canvas that he is looking at in reality, which, too, has
nothing behind it. The painting is not a scene, but just a canvas. A
zeroth person view.

What we consider to be a first person viewpoint is not defined by
any single element, and as discussed in the Velazquez example,
different elements within a representation can support contrast-
ing interpretations. What the elements of a first person viewpoint
have in common is that they establish some form of egocentric
relationship with the viewer, where the viewer does not perceive

the representation as a configuration of light and symbols, but as a

physical world that includes them, that the viewer might interact

with, or where the world might affect the viewer in some way.
Viewpoint is associated most strongly with visual perception,
where first person is the viewpoint that most strongly creates a
sense of perceived immersion, of the viewer perceiving a scene as sur-
rounding himself. However, the purpose of the Velazquez exam-

ple is to show that viewpoint also occurs at a cognitive level. The

different viewpoints presented in the painting all come from the

same visual stimuli, but differ in how that stimuli is interpreted.

The work shown in this thesis will not attempt to manipulate

viewpoint as subtly as this painting, but will approach viewpoint

as something that extends beyond perception and that includes

this kind of psychological engagement. Colin Ware authored In-

formation Visualization [Ware 2004], which focuses on the percep-
tion of visualizations. In the book, Ware includes a brief discus-

sion on the topic of presence:

"One of the most nebulous and ill-defined tasks related to 3D
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space perception is achieving a sense of presence. What is it that
makes a virtual object or a whole environment seem vividly

three-dimensional? What is it that makes us feel that we are

actually present in an environment?

Much of presence has to do with a sense of engagement, and
not necessarily with visual information. A reader of a power-
fully descriptive novel may visualize (to use the word in its

original cognitive sense) himself or herself in a world of the

author's imagination-for example, watching Ahab on the
back of the great white whale, Moby-Dick."

A viewer is more likely to feel immersed and engaged in a rep-

resentation that "feels" like a physical environment, and so the

concept of presence is at the core of what a first person viewpoint

means within this document. As Ware notes, the concept is not

well defined, and within the book, he does not attempt to delve

much deeper into the subject. There is still much to explore in

what defines presence, how to establish it, and how it might be

applied to data visualization.

Establishing a sense of presence involves more than just represent-

ing a 3D space. Any 3D scatter plot can easily be explored using

a first person navigation scheme, but even so, the representation

may not provide a sense of being in a physical environment. A

representation of flying through a nearly empty space, populated

sparsely by intangible floating dots, is perceptually unlike any

view of the real world we are likely to encounter, and more to the

point, unlikely to evoke a similar experience.

Our minds learn to recognize particular patterns of visual stimuli
and, through experience, associate them with patterns of thought
and reasoning, described by Mark Johnson as image schemata

[Johnson, 1990]. When looking at the small objects on top of a
desk, we are likely to perceive the support structures of stacked

nay be objects, how we might sift through the objects to find a paper, or

t does how a coffee mug will feel in our hand. When we look around
ngage- from the entrance of building, we are likely to draw inferences

about the layout of the building, where we might find an elevator,
and how we can navigate towards it. One way to define presence
is to say that representations with presence more strongly evoke
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the image schemata we associate with physical environments, and
lead to similar patterns of thought and engagement.

There are many individual techniques that might be used in visu-
alization design to establish presence to varying degrees: creat-
ing a sense of depth and space, representing data in the form of
a familiar object or structure, emulating physical properties like
gravitational acceleration and collisions, emulating physical navi-
gation and interaction, rendering naturalistic details and textures,
or providing the viewer with a clear sense of position and scale.
The rest of this document will provide more concrete examples
of these approaches, and will examine how to establish presence
and first person engagement for both photorealistic and non-pho-
torealistic environments.
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3 The Human Speechome Project

In 1980, Noam Chomsky proposed that a developing child could
not receive and process enough stimulus from his environment to
account for learning a complex, natural language. The theory fol-
lowed that, if true, then part of language must be accounted for
by biology, and aspects of language are hard-wired in the brain
[Chomsky, 1980]. This argument is widely known in linguistics
as the poverty of stimulus, and through several decades and into
the present day, a central challenge in this field has been to iden-
tify the aspects of language that are innate, the aspects that are
learned, and the relationship between the two.

Language might be viewed as the product of two sets of input,
genetics and environment. Of the two, genetics is the simpler to
quantify. The human genetic code is about 700 megabytes, and
several specimens are available for download. But the environ-
ment includes all of the stimulus the child receives throughout
development, including everything the child sees and hears. One
of the difficulties in responding to the poverty of stimulus argu-
ment is that it is difficult to produce an accurate figure for the
amount of environment data a child actually receives or how
much might be useful. But the number is certainly greater than
700 megabytes, and likely lies far in the realm of Big Data.

Capturing the input of a child is a difficult and messy task. Stan-
dard approaches include in vitro recording, in which the child is

brought into a laboratory for observation. In vivo recording is
usually performed by sending scientists into the home environ-
ment for observation, or with diary studies in which a caregiver
records notable events throughout the a child's development. In

vivo methods provide more naturalistic data collected that comes
from the child's typical environment, with in vitro methods only
observe the child's atypical behavior in an unfamiliar laboratory.
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However, all of these approaches suffer from incompleteness and
capture only a tiny fraction of the child's input. As a result, each
time the child is observed, he is likely to have developed new
abilities during the time between observation, making it difficult
or impossible to determine how those abilities were acquired.

Other researchers have lamented that the lack of high-quality,
longitudinal data in this area is largely to blame for our poor
understanding of the fine-grained effects of language on acquisi-
tion [Tomasello and Stahl, 2004]. A more complete record might
answer numerous questions about what fine-grained vocabulary
actually looks like, the influence of different environmental fac-
tors on development, and the patterns of interaction between
children and caregivers that facilitate learning.

The poverty of environmental data was one of the motivations
behind the Human Speechome Project (HSP). Speechome is a
portmanteau of speech and home, meant also as a reference to the
Human Genome Project. Where the Human Genome Project cre-
ated a complete record of a human's genetic code, HSP intended
to capture the experience of a developing child as completely as
possible with dense, longitudinal audio-video recordings. Recent
advances in digital sensors and storage costs offered an alterna-
tive solution to the problem of observing child development: to
install cameras and microphones throughout the home of a child
and simply record everything. Of course, recording the data is
the comparatively easy part. The difficult task that HSP set out to
address was how to develop methodologies and technologies to
effectively analyze data of that magnitude.

3.1 Setup

I began working on HSP shortly after its conception in 2005. The
family to be observed was that of my advisor, Deb Roy, and his
wife, Rupal Patel, a professor of language-speech pathology at
Northeastern University. Roy and Patel were expecting their first
child, and initiated the project several months into the pregnancy.
This provided enough time to instrument the house, develop
a recording systems, and construct a storage facility before the
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Figure 5. The HSP recording site.

Figure 6. A camera and microphone
mounted in ceiling. The microphone is
the small silver button near the top.

child arrived. Eleven cameras and fourteen microphones were
installed in ceilings throughout most rooms of the house. Video
cameras were placed near the center of each ceiling looking
down, and were equipped with fisheye lenses that provided an
angle-of-view of 185 degrees, enabling each camera to capture
an entire room from floor to ceiling. The audio sensors were
boundary layer microphones, which sense audio vibrations from
the surface in which they are embedded and use the entire ceil-
ing surface as a pickup. These sensors could record whispered
speech intelligibly from any location in the house.

The goal of recording everything was not entirely pos-
sible, and over the course of three years, the participants
would require moments of privacy. Participants in the
home could control recording using PDAs-an older
type of mobile device that resembles a smart phone
without the telephony-that were mounted in each

room. Each panel had a button that could be pressed to toggle
the recording of audio or video. Another button, the "oops"
button, could be pressed to delete a portion of recently recorded
data. And last, an "ooh" button, could be pressed to mark an
event of interest so that the event could be located and viewed at
a later time.

Recording began the day the child first came home from the
hospital, and completed after the child was three years old and
speaking in multi-word utterances. The corpus from this project
includes 80,000 hours of video, 120,000 hours of audio, and
comprises about 400 terabytes of data. This data is estimated to
capture roughly 80% of the child's waking experience within
the home, and represents the most complete record of a child's
development by several orders of magnitude. A more detailed
account of the recording methodology and system can be find in
[DeCamp, 2007].

Compared to what the child actually experienced, this record is
certainly not complete. It does not contain recordings of smell,
touch, taste or temperature. It is limited to audio-video from a
set of fixed perspectives, and does not show things in the same
way the child saw them, or with the same resolution. Yet, nearly

Figure 7. One of the recording control
panels mounted in each room.
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2005/07/29 12:13 PM 2005/07/29 05:03 AM
The Child Arrives Myself, exasperated, trying to get the record-

ing system to work hours before the arrival.

every aspect of the child's experience is represented, in part, with-
in the data. What the child said and heard, his interactions with
others, his patterns of sleep and play, what he liked or disliked, are
all forms of information contained in the audio-video record. But
the analysis of any such information is predicated on the ability to
extract it.

3.2 The Data

The audio-video recordings are referred to as the raw data. Most
analysis requires extracting more concise forms of data from the
audio-video, like transcripts of speech, person tracks, prosody,
and others, which are referred to as metadata. Extracting useful
metadata from audio-video at this scale can be difficult. Auto-
matic approaches that rely on machine perception are cheapest,
but available technologies limit the kinds of information can be
extracted automatically and the accuracy. Manual approaches
that require humans to view and annotate multiple years of data
can be extremely expensive, even for relatively simple annotation
tasks. And in between are human-machine collaborative ap-
proaches, in which humans performjust the tasks that cannot be
performed automatically.

At the inception of HSP, it was unclear what information could
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be extracted using available tools, what new tools could be devel-
oped, and what information would be economically feasible in
the end. So the project did not begin with a specific set of ques-
tions to answer, but rather a range of inquiry about language and
behavior. An exploratory approach was taken towards choos-
ing paths of research that balanced the relevance of potential
results against the expected cost of mining the required data.
Although the ultimate goal of the project was to develop a model
of language acquisition grounded in empirical data, many of the
significant contributions came from the methodologies research-
ers developed to extract relevant behavioral information from raw

data.

Linguistic analysis required transcripts of the recorded speech.
A key goal of the project was thus to transcribe all speech that
occurred in the child's presence during his 9th to 24th months,
representing the period just before he began to produce words,
and ending after he was communicating in sentences and multi-
word utterances. Current speech recognition technologies were
unable to transcript the speech with any reasonable accuracy. The
audio recordings contain unconstrained, natural speech, includ-
ing significant background noise, overlapping speakers, and the

baby babble of a child learning to talk. Furthermore, although the
audio quality was relatively high, recordings made with far-field
microphones still pose problems for the acoustical models used in
speech recognition. Brandon Roy led efforts to develop an effi-
cient speech transcription system that uses a human-machine col-
laborative approach. Roy's system locates all audio clips contain-
ing speech and identifies the speaker automatically, then organizes
the audio clips into an interface for human transcription [Roy and
Roy, 2009]. As of this writing, approximately 80% of the speech
from the 9 to 24 month period has been transcribed, resulting in a

corpus of approximately 12 million words.

Person tracking, or identifying the locations of the participants
within the video, was required to analyze interactions, spatial

context, and often as a starting point for more detailed video

analysis. Person tracking in a home environment requires fol-
lowing people moving between rooms, severe lighting contrasts
between indoor lights and the natural light entering windows,
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and attempting to track a child that was frequently carried by a
caregiver. George Shaw developed an automatic, multi-camera
tracking system used to extract much of the track data that will be
shown in this document [Shaw, 2011].

Many other forms of data have been extracted to varying degrees
of completeness. Most of these will play a smaller role in the
following discussion, but may be of interest to those developing
methods of analyzing human behavior from audio-video record-
ings. A few of these include:

Prosody: The intonation of speech, including pitch, duration,
and intensity for individual syllables. Many aspects of caregiver
prosody have turned out to be significant predictors of vocabulary
developing in the child [Vosoughi, 2010].

Where-Is-Child Annotations (WIC): Annotations describing the
room in which the child was at any given point in the recorded
data, and whether the child was awake or sleeping. This metadata
was largely used to quickly locate the child within the data, both
for data navigation tasks, and to reduce unnecessary processing of
data irrelevant to the child's development.

Head Orientation: Head orientation is a useful indicator of gaze
direction and attention, what the participants are looking at, if the
child is looking at a care giver directly, or if the child and caregiv-
er share joint-attention within an interaction [DeCamp, 2007].

Affect Classification: The emotional state of the child during dif-
ferent activities [Yuditskaya, 2010].

Sentiment Classification: The attitude or emotional polarity of a
given utterance. For example, "Awesome!" has a positive senti-
ment and, "Yuck!" a negative sentiment.

Taking the raw data together with the metadata, the HSP cor-
pus is large, contains multiple forms of interrelated data, and is
unique.

30



3.3 TotalRecall

After the recording process began, the immediate question be-
came how to look through the data, verify its integrity, and find
information of interest. Skimming through just a few hours of
multi-track audio-video data can be time consuming, let alone
finding specific events or interactions. This led to the develop-
ment of TotalRecall, a software system designed for retrieval and
annotation of the HSP corpus. This interface did not use any 3D
graphics or address issues of viewpoint, but serves here as a base-
line for a more conventional approach.

The TotalRecall interface provides two windows. A video win-
dow that displays the raw video, with one stream at full resolution
and the other streams displayed at thumbnail sizes on the side.
The timeline window provides visual summaries of the audio-
video recordings. The horizontal axis represents time, and can
be navigated by panning or zooming in and out of different time
scales. Each horizontal strip represents one stream of audio or
video.

The audio data is represented with spectrograms, a standard
visualization of the audio spectrum over time. Users can skim
spectrograms to find areas of activity within the audio. With
some practice, users can learn to quickly separate different types
of audio. Human speech contains formant structures that gener-
ate zebra stripe patterns. Doors and banging objects, like dishes,
produce broad spectrum energy bursts that appear as sharp verti-

Figure 8. The TotalRecall interface used for browsing the HSP data.
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cal lines. Running water and air conditioners produce sections of
nearly uniform noise.

Summarization of the video was more challenging. The standard
method used in most video editing and retrieval interfaces is to
show individual frames, often selecting frames scene boundar-
ies or points of significant change. This approach works poorly
for the HSP video, which contains no scene changes or camera
motion. Most rooms are unoccupied, and where there is activity,
it comprises only a small portion of the image. Consequently,
identifying the differences between video frames requires close
attention and more effort relative to edited video.

However, the consistency of the video offers other advantages.
Most of the content of a given stream is already known. The liv-
ing room camera will always show the same of the living room,
and the portions of greatest interest are changes in the fore-
ground. Rather than try to show the whole contents of the video
frames, an image stack process was used to transform each stream
of video into a video volume, a continuous strip that depicts only
the motion within the video.

The process begins with a stream of raw video.

The per-pixel distance between adjacent frames. The distance map
generated for each frame is then used to modulate the alpha chan-
nel, such that dynamic pixels are made opaque and unchanging
pixels are made transparent.
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These images are then composited onto a horizontal image strip,
with each subsequent frame of the video shifted a few more pixels
to the right. This maps the vertical position of motion onto the
vertical axis of the image, and maps both time and horizontal
position onto the horizontal axis.

The result transforms moving objects into space-time worms,
where each segment of the worm represents a slice of time. More
generally, the process converts continuous video into a continu-
ous image. Similar to spectrograms, users can view a set of video
volumes for all the streams of video and, with minimal training,
quickly identify where and when there was activity in the home.
By itself, this was of great value in searching through hours or
months of 11-track video. With additional experience, viewers
may quickly learn to identify more specific patterns as well. From
the number of worms, users can identify the number of people
in a room, and from the size, differentiate between child and
caregivers. The level of intensity indicates the amount of mo-
tion, with the limitation that people at complete rest may nearly
disappear for periods of time. The coloration provides informa-
tion about lighting conditions, and can be used to follow some
brightly colored objects, including articles of clothing and certain
toys. Some activities also produce noticeable patterns, including
instances when the child was in a bounce chair or playing chase
with a caregiver.

A similar image stack process for visualizing video was described
previously in [Daniel, 2003]. In this work, Daniel et al. render the
video as an actual 3D volume. Our application for video volumes
was different in that it we needed to view longitudinal, multi-
track video. Consequently, we adapted the approach by flattening
the image stack into a flat, straight rectangular strip in order to
make it more suitable for display on a multi-track timeline.

Rony Kubat developed the main window of TotalRecall, with
Brandon Roy, Stefanie Tellex, and myself. I developed the video
window, along with all audio-video playback code. This video
volume technique was developed by Brian Kardon, Deb Roy, and
myself. A more detailed account of the system can be found in
[Kubat, 2007].
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3.4 Partitioned Views
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Figure 9. An interface for audio, video and
motion data created by Ivanov et al.

One of the choices made in the design of TotalRecall was to
present different source of data separately, each in its own parti-
tioned view. An advantage of this approach is that it presents each
source accurately and simply, and makes explicit the underlying
structure of the corpus. However, this partitioning obscures the
relationships between sources of data. The representation of the
data is partitioned rather than composed.

In particular, there is a strong spatial relationship between all the
sensors in the house that has been largely omitted. Consequently,
viewing a person moving between rooms, or viewing a caregiver
speaking to the child in the dining room, can require some effort
to follow. In these cases, the user must watch an event multiple
times from multiple views, repeatedly finding the desired track of
audio or video out of the many presented, and to mentally com-
pose that information to gain a complete picture of the activity.
Similarly, the interface does not provide a clear overview of the
whole environment, the spatial layout and the participants present
at a point in time.

A partial solution may have been to include a map view that
presents the space as a whole. For example, Yuri Ivanov et
al. developed an interface similar to TotalRecall for a dataset
containing multi-camera video, person tracks, and motion
sensor data. As seen in Figure 9, one view displays the video,
another the timeline with annotations, and another the map
of the space with overlaid motion data.

The addition of the map view is useful in understanding the
spatial arrangement of the environment and interpreting
motion data. However, it does little to combine the differ-
ent types of data, and the spatial data is still separate from
the video. As with TotalRecall, gaining an understanding of

the environment from the visualization is not a simple perceptual
task, but requires the user to cross-reference a spatial view, tem-
poral view, and video view.
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Both the Ivanov interface and TotalRecall present data in the as a

set of multiple, mostly abstract views. Again, this approach was

likely suitable for their respective purposes as browsing interfaces

for expert users. However, even for us "experts," comprehend-
ing and navigating video across cameras was difficult. And for an
untrained user, a first glance at TotalRecall does not reveal much

about what the data represents. When using the system to explain
the Human Speechome Project, it required around 10 minutes to
explain how to interpret the different visual elements, much as it

was described here, and what they reveal about activities within

the home. In the end, the audience may still only have a partial

picture of what the data contains as a whole.

In motivating HSP, a narrative frequently told in demonstrations
was that we had captured an ultra-dense experiential record of a

child's life, which could be used to study how experience affected

development and behavior. While many found this idea compel-

ling, skeptical listeners would sometimes argue that while a great

amount of data about the child had been recorded, it did not

capture much of what the child experienced. It was easy to un-

derstand the skeptics because they were presented with a disjoint

set of data that bore little resemblance to their own experiences of

the world.

While the data is far from a complete experiential record, part of

the issue is literally how one looks at the data. In the next ex-

ample, the same set of data will be presented in the first person as

a way that more clearly evokes the subjective experiences of the

participants.

3.5 Surveillance Video

The raw video of the HSP corpus is surveillance video, which,

taken by itself, is not always the most engaging or cinematic view

of an environment. The video does not focus in on any particu-

lar area of interest, and any activity is usually limited to a small

region of the total image. This emphasizes the setting and de-

emphasizes the people within it. Furthermore, it provides a third

person viewpoint where the overhead angle forces the viewer to
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Figure 10. A man under surveillance
in The Conversation.

look down into the scene from above, rather than a more typical
eye-level shot as if the viewer were actually within the scene.

In cinema, shots of surveillance or CCTV footage are usually
diagetic, indicating that a character is being recorded within the
narrative. This device has been notably used in films like The Con-
versation, Rear Window, and The Truman Show. These shots often
have ominous or lurid undertones, and tap into a cultural uneasi-
ness surrounding the proliferation of surveillance and loss of
privacy [Levin, 2006]. And indeed, although the HSP participants
were aware of being recorded and in control of the system, this
discomfort with the idea of constant surveillance surfaced fre-
quently in discussion of the project, with terms like "Big Broth-
er" voiced more than occasionally. Although this does not detract
from any information in the video, it can give the viewer of the
system the sense of being an eavesdropper. And in presentations,
this can be a distraction in the scientific intent of the project.

One HSP researcher, Kleovoulos Tsourides, performed a clever
experiment by first tracking a person within a clip of video, then
using the track data to reprocess the video, zooming into the
region containing the person and rotating each frame to maintain
a consistent orientation. This virtual cameraman system made
the video appear as if shot by a cameraman following the per-
son using a normal-angled lens. This system was not completely
developed and had few opportunities to be demonstrated, and it
may be that for people unfamiliar with the data, the effect may
not have seemed markedly different. But for those of us working
on the project that had been viewing the surveillance video for
several years, the transformation was remarkable. It replaced the
impression of surveillance video with the impression of cinematic
video, and gave the impression that the video contained substan-
tially more information and detail. Of course, the process only
removed information, but by removing what was irrelevant made
the relevant information that much greater.
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3.6 HouseFly

In addressing some of the limitations of TotalRecall, I created a
new interface for browsing the HSP data called HouseFly. Rather
than partition the sources of data, HouseFly synthesizes the data
into a 3D simulation of the home. The user can navigate this
environment in the first person and watch events with a vivid
sense of immersion. Because of the density of the HSP data, the
system can render the entire home in photographic detail, while
also providing rapid temporal navigation throughout the three
year recording period. HouseFly also serves as a platform for
the visualization of other spatio-temporal metadata of the HPS
corpus, combining multiple types of data within a shared space
for direct comparison. As a tool for communication, the system
makes the data immediately accessible and engages the viewers in
the recorded events by bringing them into the home.

Figure 12. Raw video used to con-
struct the 3D model below.

Figure 11. The HouseFly system showing an overhead view of the recorded home.
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3.7 Related Work

The virtual reconstruction of physical locations is a general one,
with broad applications in the visualization of spatial environ-
ments. One of the most visible examples is Google Maps, which
includes a StreetView feature that provides a street-level, first-
person view of many cities. For general path planning, conven-
tional maps may be more efficient, but the first-person view

Figure 13. Google Earth 3D. provides additional information on what a location will look like
when the traveler is present, and can be used to identify visible
landmarks for guidance or find specific locations based on appear-
ance [Anguelov et al., 2010]. Google Maps and similar services
provide coverage of very large areas, but primarily as snapshots in
time, with limited capabilities for viewing events or for temporal
navigation. As a web interface, spatial navigation is also highly
constrained, and the user must navigate rather slowly between

Figure 14. Google StreetView. predefined locations.

Sawhney et al. developed the Video Flashlights system for con-
ventional video surveillance tasks, which projects multi-camera
video onto a 3D model of the environment. This system does not
rely on static cameras, and uses a dynamic image registration to
automatically map the video data to the environment. It can also
present track data within, the environment [Sawhney, 2002]. The
flashlight metaphor of Video Flashlights is one of using video data
to illuminate small regions of the model. It places the video in a
spatial context and combines connects recordings to each other
and to the environment, but the range of exploration is limited to
localized areas.

HouseFly builds on these technologies and uses more recent
graphics capabilities to to perform non-linear texture mapping,
allowing for the use of wide-angle lenses that offer much more
coverage. But the most significant advantages of HouseFly are
provided by the data. The HSP corpus provides recordings of a
complete environment, in detail, and over long periods of time.

Figure 15. Video Flashlights. This led to the design of an interface that provides freer explora-

tion of the environment and through time.
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3.8 Constructing the Environment

The first step in developing HouseFly was the creation of a spatial
environment from the data. The environment has three compo-
nents: a 3D model of the house that provides the geometry, video
data used as textures, and a spatial mapping from the geometry to
the textures.

The model of the house is a triangular mesh, created in Google
SketchUp. The model is coarse, containing the walls and floors,
doorways, and using simple boxes to represent fixtures and large
furniture. This model was partitioned manually into zones, where
the geometry within each zone is mapped to a single stream of
video. Generally, each zone corresponds to a room of the house.

Creating a spatial mapping for each stream of video requires a
mathematical model of the camera optics and a set of parameters
that fit the model to each camera. The extrinsic parameters of
the camera consist of the camera's position and orientation. The
intrinsic parameters describe the characteristics of the lens and
imager.

Given the use of a fisheye lens, it is simpler to ignore the lens itself

and instead model the imager surface as a sphere. The zenith axis

of the sphere, Z, exits the front of the camera through the lens.

The azimuth axis, X, exits the right side of the camera. Z x X is

designated Y and exits the bottom of the camera. The center of
the sphere is C.

To map a point in world space, P, to an image coordinate, U, P is
first mapped onto the axes of the camera:

P = [XYZ] (P - C)

P is then projected onto the sensor sphere:

0 = COS-1P

1P|

q= tan-1 PY
Px

Figure 16. Partitioning of the envi-
ronment geometry into zones, each of
which is textured by a single camera.

(1)

(2)

(3)
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where 9 is the inclination, and # is the azimuth. Last, (0, 4) is
mapped into image coordinates:

U = SxOcos#+Tj (4)
Sy6 sin # + Ty

where S, and S, are scaling parameters, and T and T, are transla-
tion parameteps.

Thus, Equation 4 contains four scalar parameters, while Equations
1-3 require six scalar parameters: three to define the center of
the sensor, C, and three to define the orientation as a set of Euler
angles: yaw, pitch, and roll. Together, these equations define a
mapping function between world coordinates and image coordina
tes, f(P : 0) -> U, where E represents the ten camera param-
eters.

Camera Calibration

Finding the ten parameters for each camera comprises the calibra-
tion process. This is performed by first finding a set of correspon-
dence points, which have position defined in both image and world
coordinates. For each correspondence point, the image coordi-
nates are specified by clicking directly on the video frame. World
coordinates are extracted from the 3D model in Sketchup and
entered manually into the calibration interface. Given a sufficient
number of correspondence points, a Levenberg-Marquardt non-
linear solver was used to fit the parameters.

Figure 17.The interface used
for camera calibration. Rony
Kubat developed the interface,
and I developed the camera
model and parameter solver.
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Texture Mapping

Figure 20 shows the simplified geometry for one zone of the
partitioned environment model, and below shows the texture
used for that region. Normally, with a rectilinear lens, the texture
can be mapped to the geometry at the vertex level. That is, the
camera model defines a function that maps a world coordinate to a
texture coordinate, and that function is applied once for each ver-
tex of the model geometry. With a rectilinear lens, the texture for
each point of the triangle can be computed accurately by linearly
interpolating the texture coordinates of its vertices.

However, the fisheye lenses are not modeled well with linear
functions. Note that in Figure 20, although the geometry above
is rendered from an angle to approximately align with the texture
below, the match is not very accurate. The edges between the
floor and walls are straight on the geometry, but appear curved in
the texture, leading to distortion. This distortion grows greater
towards the edges of the texture as it becomes more warped and
non-linear. Figure 18 shows the result of using a piece-wise lin-
ear, per-vertex mapping, where distortion becomes increasingly
severe as the model approaches the edges of the texture.

Subdividing the geometry produces a finer mapping and reduces
distortion, but requires far more video memory and processing.
Beyond a certain threshold, when the vertices of the subdivided
geometry no longer fit in memory, the geometry must be loaded
dynamically according to the user's current position, greatly in-
creasing the complexity of the renderer.

Figure 18. Per-vertex mapping.

Figure 20. Partitioning of the
environment geometry into
zones, each of which is tex-
tured by a single camera.

Figure 19. Per-fragment mapping.
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Fortunately, modern GPUs feature programmable shaders that
can perform non-linear texture projection. Instead of mapping
each vertex to the texture, the renderer loads the camera model
onto the graphics card, which then computes the correct texture
coordinate for each pixel at every render pass. Unless the graphics
card is being taxed by other operations, per-fragment incurs no
detectable performance penalty while eliminating completely the
non-linear distortions, as in Figure 19.

Rendering

Given the spatial model, textures, and mapping, the house can be
rendered in full. Each zone is rendered separately. For each zone,
the associated texture object is bound, the camera parameters are
loaded into the fragment shader, and the geometry is sent to the
graphics card for rasterization and texturing.

A benefit of this approach is that any frame of video may be
loaded into the texture object and will be projected onto the envi-
ronment model without any preprocessing. As a result, animation
of the environment is just a matter of decoding the video streams
and sending the decoded images directly to the texture objects. In
this document, all the video is prerecorded, but in future applica-
tions, live video streams may be viewed just as easily.

Controls

HouseFly provides fluid navigation of both time and space. The
user may go to any point in time in the corpus and view the envi-
ronment from any angle.

Temporal navigation is very similar to conventional interfaces for
multi-track video playback. A collapsible timeline widget displays
the user's current position in time, and may be clicked to change
that position. Using either a keyboard or ajog-shuttle controller,
the user may control his peed along the time dimension. The data
can be traversed at arbitrary speeds, and the user may watch events
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in real-time, thousands of times faster, backwards, or frame-by-
frame.

HouseFly was designed to create a similarly first-person view-

point into the data. It supports two primary schemes for spatial

navigation, both of which follow a metaphor of moving through

the environment rather than moving the environment.

First, navigation can be performed with a keyboard and mouse

using the same controls as a first-person shooter. The WASD keys

are pressed to move forward, left, backward, and right, and the

mouse is used to rotate. The Q and E keys are pressed to increase

or decrease elevation. The drawback to this scheme is that it

requires both hands, making it difficult to simultaneously control

time.

Second, navigation can be performed using a SpaceNavigator

input device. This device consists of a puck mounted flexibly

on a heavy base, where the puck can be pushed-pulled along

three axes, and rotated about three axes, providing six degrees-

of-freedom. Navigation with the SpaceNavigator provides full

control over orientation and position using only a single hand.

The drawback is that this device requires significant practice to

use effectively.

Audio

For audio, one stream is played at a time. The system dynamically

selects the stream of audio recorded nearest the user's location.

While this simple approach does not capture the acoustic varia-

tion within a room, it does capture the variations between rooms.

When the user is close to people in the model, their voices are

clear. When the user moves behind a closed door, the voices from

the next room become accurately muffled. When the user moves

downstairs, he can hear the footsteps of the people overhead.

Such effects may not draw much attention, but add greatly to the

immersiveness of the interface.

Figure 21. SpaceNavigator and jog-
shuttle controller used for time-space
navigation.
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When playing data forward at non-real-time speeds, SOLA-FS
is used to correct the pitch of the audio [Hejna, 1991], which
improves comprehension of speech [Foulke 1969].

Implementation

HouseFly was developed in the Java programming language. 3D
graphics were produced with OpenGL using the Java bindings
provided by the JOGL library. Shader programming was done in
GLSL and Cg. Functionality that required significant optimiza-
tion, like video decoding, was written in C. C was also necessary
for interfacing with input devices, including the SpaceNavigator
and jog-.shuttle controller.

The graphics engine developed for HouseFly is similar to a 3D
game engine, with similar techniques used to manage assets, script
events, and handle user input. This engine was used for most of
the original visualizations in this document.

Roughly, the hardware requirements of HouseFly are below that
of most modern first-person shooter games. The system runs
smoothly, between 30 and 60 frames-per-second, on personal
computers and newer laptops. More specific figures depend great-
ly on how the software is configured and the data being accessed.

The most significant bottleneck of the system is video decoding.
First, due to the size of the corpus, the video must be pulled from
the server room via Ethernet. Network latency is largely miti-
gated through aggressive, predictive pre-caching. Alternatively,
if not all the data is required, a subset may be stored locally for
better performance.

Second, video decoding is currently performed on the CPU. The
HSP video is compressed using a variant of motion JPEG with
a resolution of 960 by 960 pixels at 15 frames per second. On a
laptop with a two-core 2.8 GHz processor, the system can replay
four streams of video without dropping frames. On an eight-core
2.8 GHz processor, frame dropping becomes noticeable at around
eight streams of video.
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However, it is not always necessary to decode many streams of
video. For most viewpoints within the house, only three or four
rooms are potentially visible. To improve performance, HouseFly
dynamically enables or disables playback of video streams based
on the location of the user.

Baseline Summary

The tools provided by HouseFly encourage the exploration of
the data as a whole environment rather than as individual streams.
The user can navigate to any point in time within the corpus and
view it as a rich 3D environment, filled with objects and people
that move, speak, and interact with the environment. The user
can move closer to areas of interest, pull out to look at multiple
rooms or the entire house, and follow events fluidly from one
room into the next. Rather than looking down into the scene, the
user can look from within, gain a clear sense of the spatial context
that connects both data and events, and receives a much closer ap-
proximation of what the participants saw, heard, and experienced.

The system still has significant limitations in its ability to recon-
struct the environment. The people and objects do not actu-
ally stand up and occupy space, but are projected flatly onto the
surfaces of the environment. There is no blending between zones,
so when a person walks to the edge of one zone towards the next,
the person is chopped into two texture pieces recorded from two

Figure 22. Examples of the home environment as rendered in HouseFly.
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different viewpoints. Also, many parts of a given room are not
visible from the camera, and there is no data available for textur-
ing areas under tables and behind objects. Just filling these blind
areas with black or gray made caused them to stick out conspicu-
ously next to the textured areas. Instead, the video data is project-
ed onto these areas regardless of occlusions, and the area under-
neath a table is given the same texture as the top of the table.

Surprisingly, though, many viewers tend not to notice these is-
sues. In demonstrations, listeners frequently asked how the people
are rendered into the environment, and only realized that the
people were not 3D models but flat projections after the camera
was moved to floor.

Most methods of acquiring geometry from video are far from
tractable, and even if applicable to the HSP video, would produce
numerous artifacts and draw more attention to the limitations
of the representation. So while the model HouseFly provides is
coarse, there is enough detail within the video to provide a vivid
depiction of a naturalistic, 3D environment.

3.9 Visualizing Metadata

In addition to the audio-video, the HSP corpus contains many
forms of metadata. HouseFly provides several ways to incorporate
metadata into the scene, combining it with other data and plac-
ing it in context. In turn, the metadata also provides methods for
searching and navigating the corpus, greatly improving the acces-
sibility of the data.

Much of the metadata used for temporal navigation is placed on
the timeline widget, shown in Figure 23. The timeline displays
the user's place in time, and can be expanded to show an index of
the audio-video recordings organized by room. The green bars
represent audio recordings and the blue bars represent video re-
cordings. Clicking on a room within the timeline moves the user
temporally to that place in time and also moves the user spatially
to an overhead view of the selected room.
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Figure 23. The timeline in HouseFly.

The orange and yellow bars are the Where-Is-Child annotations,
showing the room in which the child is located. The bar is or-
ange if the audio for that period has been transcribed, and yellow
otherwise, where transcripts will be discussed later. The viewer
can then browse through the timeline to quickly determine the
location of the child at a given point in time, and view the child
by clicking on the bar.

The small flags at the bottom of the timeline are bookmarks. The
user can create a bookmark associated with a point of time, and
may optionally associate the bookmark with a room of the house

or a specific camera position.

As described earlier, the PDA devices mounted in each room
as control panels also contained an "ooh" button that could be
pressed to mark significant moments. These events were incor-

porated into the system as bookmarks, represented here by the

pink flags. The user may browse these bookmarks to view events

like the child's first steps and many of his first words. One ooh

event was made after describing the recording system to the child,
explaining that years later, the child would be able to go back and

find that moment in the data.
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Transcripts

Transcripts of the speech are used in several ways. Most directly,
the transcripts can be rendered as subtitles, similar to closed-
captions. This is helpful in revealing verbal interactions when
skimming the data, and also aids comprehension of the language,
where the child speech in particular can be difficult to understand.

The transcripts are fully indexed and searchable. The user can
query transcripts by typing in a word or phrase. All the matching
instances will be selected, and are placed on the timeline, where
the user can browse through the selected instances one by one.
The color of the transcript as it appears on the timeline indicates
the speaker, where green represent caregiver speech, and red rep-
resents child speech.

Any given word can be used as a lens to explore patterns of lan-
guage development. By typing in any given word, the user can
quickly find the child's first use of that word. By browsing sub-
sequent instances, the viewer can hear how that word developed
over time. By also viewing the context in which the word was
used, the user can determine if the child was using the word accu-
rately, if he was requesting an object or merely identifying it, or
if the child over or under-generalized the meaning of the word.

Figure 24. Summarization of transcripts as tag clouds.
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HouseFly also summarizes the contents of transcripts, display-
ing a distribution over word types in each room as a tag cloud.
By default, turning on tag clouds shows the word type distribu-
tion from the previous 30 minutes of data. If any data has been
selected and placed on the timeline, the word clouds will display
a summary of all selected data. For example, after performing a
transcript search for the word "fish," the timeline will contain
the set of the thousands of transcribed utterances containing that
word, and the tag clouds will display the distribution of words
that co-occurred with "fish." This enables the user to rapidly
view the lipguistic context of that word. The user may compare
how the word was used in the child's bedroom, which contained
fish magnets and a fish mobile, next to how' the word was used in
the kpchgg, where fish was something tp e'at. Arbitrary segments
of lata maalso be selected from the timelie and similarly sum-
marized.

Tracks

Person tracks were generated by identifying and following blobs
of motion or color through each video stream. The resulting
track data was mapped into the coordinate space of the environ-
ment using the same camera models that HouseFly uses for tex-
ture mapping. Extracting accurate 3D coordinates from 2D video
is a difficult problem and is not addressed in this work. Instead,
the mapped track data assumes a fixed elevation of one meter
from the floor for all objects. Objects are frequently visible from
multiple cameras simultaneously, particularly around doorways
and the edges of rooms, which produces multiple, overlapping
tracklets, or partial tracks. After the tracklets were mapped into a
unified coordinate system, the tracklets that overlapped and were
thought by the tracking system to correspond to the same object
were merged, resulting in a set of full tracks that extend across
multiple rooms. This is a quick overview of what is a complicated
and messy process, which is described in greater detail in [Shaw,
2011].

An advantage of the spatially consistent view provided by House-
Fly is that the multi-camera tracks can be rendered directly in
the same environment model. When track rendering is enabled,
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Figure 25. 30 minutes of track data rendered into the environment. The green represents the caregiver, the red the adult.

HouseFly renders the video in grayscale to make the tracks more
visible, while still enabling the tracks to be viewed in context.
Figure 25 shows 30 minutes of track data. The red tracks indicate
the child, and the ring structure in the upper-right surrounds the
child's walking toy intended for the child to walk around. The
green tracks represent the caregiver, who made several trips into
the kitchen via the dining room on the left, as well as one trip to a
computer in the lower-right hand corner. The yellow spot in the
center of the room resulted from both child and caregiver occu-
pying the same location.

HouseFly can also render tracks by mapping time to elevation,
such that the tracks begin on the floor and move upward as time
progresses. For small amounts of track data, this can better reveal
the sequence of events, as illustrated in Figure 26. However, the
3D structure can be difficult to perceive from a 2D image. While
the structure is made more evident in the interface through mo-
tion parallax, improving the legibility of the 3D tracks remains
a challenge for future work. This technique has previously been
explored in [Kapler and Wright, 2004].

The selection of what track data to render uses the same selection
mechanism as the tag clouds. When track rendering is enabled,
whatever time intervals have been selected in the timeline de-
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Figure 26. The time of track points mapped to vertical height to show sequence of events.

termines the track data that is shown. When track rendering is
enabled, any data that the user traverses is automatically selected,
so that the user may simply skim or jump through the video and
the corresponding tracks will appear. If the user searches the tran-
scripts for all instances of car, then those instances will be selected,
and all available track data that co-occurred with that word can be
viewed.

The tracks also provide a way to make spatial queries of the data.
The user may click on any area of the environment, drag out a
sphere, and the system will locate all tracks that intersect with
that sphere and select the corresponding intervals of time, as in
Figure 27. The user can then browse all data that contains activity
in a particular region of the house, or enabled tag clouds to get a
summary of what people said in different locales.

Figure 27. A spatial query performed
by selecting a region of the environ-

Queries 
ment, shown as a sphere.

The different kinds of metadata are all linked together using a
shared selection mechanism, which provides the user with great
flexibility in how to query the data. If the user is interested in the
spatial distribution of a given word or phrase, he can query the
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transcripts to retrieve the corresponding track data. If the user is
interested in the patterns of speech that occur by the kitchen sink,
he can begin by selecting that spatial region and view a summary
of the words produced there. If he wants to view the activities of
a given day, he can select that region of time and view the tracks
and transcripts from that period. In any of these queries, the user
can easily retrieve the raw audio-video data and view specific
events in detail. Each form of metadata provides an index over the
entire corpus.
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3.10 Presenting HSP to an Audience

One benefit of HouseFly is that it shows many streams of data in
a way that is immediately recognizable. Even for those completely
unfamiliar with the project, viewing HouseFly clearly depicts the
observed environment and the scope of the recorded data. This
has made HouseFly useful as a communication tool for presenting
the HSP project to new audiences.

For the TED presentation, HouseFly was used to give an over-
view of the home environment, the data recorded, and the impli-
cations for behavioral analysis.

The visualization begins with an overhead shot of 3D
model constructed from the recorded video.

The camera swoops into the child's bedroom, revealing
that the model is an explorable environment. By the stan-
dards of current computer graphics, this may not seem to
particularly impressive. Yet, in the majority of demon-
strations, including TED, this moment draws an audible
response of excitement from the audience. This might be
due to first presenting an graphic that appears to be an
image and then defying those expectations, or perhaps
the novelty of exploring actual video recordings in the
same way as a video game.

The guest bedroom is shown from the inside.
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The camera then goes through the door and flies down
the hallway.

The camera moves a short ways down the stairs and
peeks into the first floor of the house, showing that the
lower level is there as well.

The camera then goes into kitchen and performs a full
turn, showing the completeness and detail of the model.

The next shot presents an example of a typical caregiver-
child interaction. The camera moves into the living room,
where the child sits on the floor and the nanny on the
couch. The audio and video begin to play, bringing the
model into motion. The nanny asks the child to find a
fire truck, and the child walks to the shelf to find it, and
selects an ambulance instead. The camera follows the
child, showing the ability to look closely at areas of inter-
est. Subtitles of the speech are shown at the bottom of the
screen to improve speech comprehension.
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The next shot is to explain person tracking. The camera
moves to an overhead view of the living room, and the
time of the video shifts to a point at which the child and
father are sitting on the floor.

The video transitions to grayscale, and as the father and
child move about, their paths are rendered on screen, the
child in red and father in green. This is the data generated
by the video tracking system.

Time speeds up, indicated by both the speed of the video
and a clock in the upper-right corner, until approximately
half an hour of video has been played. As the camera
pulls up, the tracks can be seen to extend to other rooms,
and that the caregiver has made several trips through
the dining room and into the kitchen. The child's tracks
circle around a point in the floor, where the underlying
video shows the child's walking toy.

To make the sequence of events more evident, the time
of the track data is mapped to the elevation of the tracks,
such that the earliest tracks begin at the floor and rise into
the air as they move forward in time. For this, the camera
moves nearer to the floor, almost level with the tracks,
before the tracks spread vertically into this 3D structure.
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Viewing the tracks again shows that the father and son
began in the center of the room, moved to the couch for
a while, and then split up, with the father going to and
from the kitchen, while the child walked around his toy.
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3.11 Wordscapes

One of the key goals of HSP was to study language within con-
text. The context of language contains innumerable factors and
can be difficult to model in great detail, but one salient factor that
can be extracted efficiently from video is the locations of the par-
ticipants within the home. Different locations are correlated with
different types of activities, and thus different patterns of speech.
Speech in the kitchen often involves words about eating and
cooking, while speech in the living room contains more words
about toys and books. The HSP corpus contains many thousands
of such spatial-linguistic correlations, some predictable, and some
not. By analyzing these correlations, we hoped to identify the
roles that different activities play in language development.

Linguists make a distinction between word types and tokens. Every
instance of the word green in this document is a distinct token, but
all the tokens belong to the same green type. The starting point of
the analysis was to construct a spatial distribution of each word
type learned by the child that described how likely a word type
was to be produced at any location in the house. For each type,
all tokens were extracted from the transcripts. For each token, the
locations of all participants in the home were extracted by ap-
plying a person tracking system to a 20 second window of video
centered on that token.

The result of this process was a set of 2D points for each word.
Figure 28 shows the set of 8685 points found for water. The diffi-
culty when plotting so many points directly is that there is a large
amount of overlap between them, making it hard to accurately
gauge density. The points can be made smaller to reduce overlap,
but this makes them more difficult to see at all in sparsely covered
regions.
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Figure 28. 8685 utterances of water spoken through- Figure 29. Heatmap of estimated distribution.
out the home.

To provide a more consistent view of the density, the points were
converted into a continuous distribution function using a kernel
density estimation process described in [Botev, 2010]. Figure 29
shows a heatmap of this distribution. This avoids issues of over-
lap, although, as is a problem with all heat maps, our quantitative
judgment of color is not very accurate.

In this case, where the domain of the function is small relative to
the inflections of the function, a 3D surface plot might be more
accurate. But in this application, a disadvantage of using either
a heatmap or a surface plot is that they obscure the underlying
samples and no longer appear as an aggregation. And none of
these methods provide a clear sense of the physical space being
examined or the scale at which these patterns of activity occur.
This motivated me to develop a new kind of plot that would bet-
ter communicate what this data represented and the amount of
processing required to produce such a glimpse into the use of a
single word.

Figure 30 presents a different view of the data as a Wordscape.
Instead of representing the samples as dots or representing the
distribution as a smooth contour, each sample is rendered as 20
seconds of track data. The representation uses a physical metaphor
of rendering the tracks as ribbons that, as they are added to the
scene, lay on top of one another to form a topographic distribu-
tion.

In creating this visualization, each track is first modeled as a finely
segmented, planar line strip. As each vertex of the line strip is
added to the scene, a height table over the discretized space is
checked to determine how many segments have already been
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Figure 30. Thousands of person tracks combined to reveal a spatial distribution of the word water.

placed in that location, which is used to set the z-coordinate of
the new vertex. After all the segments have been placed, the line
strip is smoothed with a box filter to remove both noise present
in the raw track data and aliasing effects generated by the use of a
discrete height table.

The line strip is then converted to triangles in the form of a rib-
bon of constant width. This ribbon is bent along its length to
form an extruded V shape so that it does not disappear when
viewed from the side, but retains at least 35% of its perceived
width from any angle. The geometry is rendered with a Lam- Figure 31. Detail of peak in kitchen.

bertian shader using a single directed light source and smoothed
normals. Although the ribbon geometry is bent, the normals are
computed as if the ribbons laid flat so that the crease down the
center remains invisible.

This method of rendering track data is believed to be novel, and
offers several advantages. It shows the distribution of word pro-
duction, as the heatmap does, and likely provides a better sense
of the quantitative density through the use of height rather than
color. At the same time, it shows the individual samples, provid-
ing a look at the form of the underlying data and a rough sense
of the size of the dataset. And it connects the two modalities,
the individual samples and the distribution, through a physical
metaphor of a pile of ribbons that is easily recognizable and more
intuitive than a representation of a Gaussian convolution.
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The interface built for this visualization uses the same
rendering engine as HouseFly and enables the user to move
through the plot in the same manner. The similar use of
first person navigation provides a greater sense of the physi-
cal space than the 2D maps of the previous page, although
without the rich detail provided by the video, the scale and
nature of the environment is still not as apparent. However,
there may be several ways to combine these two views of the
home. The following animation presents one approach, and
was produced to explain the data at the TED presentation.

The video opens on a scene in the living room rendered in
3D in the manner of HouseFly. This orients the viewer with
a representation that immediately recognizable.

Here, the nanny is standing near the wall at the end of the
couch. The child is camouflaged in this still image, but is
standing nearby between the couch and coffee table.

The audio and video begin playing immediately and present
the viewer with an example of a single sample point, a short
interaction containing a particular word.

As the two people move through the room, a thick colored
ribbon is drawn behind them to mark their paths, directly re-
lating the track data with the movements of the inhabitants.
Only the most recent seconds of track data is highlighted
with color, red for the child and green for the caregiver, and
fades to gray as it grows longer.

The nanny asks, "Would you like some water?" and extends
a glass to the child, and the child replies, "No!" and turns
away. I wanted to visually connect each track to be shown
with the occurrence of water. So, just as the caregiver says,
"Would you like some water?" a caption of this utterance
rises vertically from the ground from her position, with the
word water highlighted in blue. The caption continues to rise
until it moves outside of view.

At this point, the video also begins to fade out in order to
shift focus from the event to the track and transcript data.
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The video fades out completely and the camera moves to the
side to setup the next beat. The tracks of the child and nanny
continue to extend.

The aggregation of the tracks begins slowly. A few more
tracks begin to appear in throughout the home in the same
manner as the first, each generating a text caption.

Ift At its climax, the video builds to a frenzy of text and tracks.

' 7 ?1t iiUnlike a heatmap or surface plot, the viewer sees the indi-
vidual samples that establish the distribution. This provides a

rough, qualitative sense of the significance, which can other-
wise be a difficult concept to explain to audiences unfamiliar
with statistics.

As the last of the captions leaves the screen, the distribution
emerges. Utterances of water are shown to be highly con-
centrated within the kitchen area of the home.

For the next beat, we wanted to draw a comparison between
the spatial distributions of different word types. In an early
draft, the wordscape for water would build-out by sinking
into the floor, followed quickly by the build-in of the bye

wordscape emerging from the floor. The problem is that at
first glance, the distributions of many words appear similar
and have significant peaks in the kitchen, the living room,
and the child's bedroom. For the bye wordscape, shown
right, the most salient visual difference is that larger peaks of
the kitchen, which is somewhat misleading because bye was a
more frequent word and simply generated more samples.
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Much of the importance of a given word type's spatial
distribution is in how it differs from the spatial distribution
all speech. For analysis, it is useful to plot the difference
between distributions or a normalized distribution. But for
presentation, this introduces another level of abstraction,
and would break the metaphor of the pile of tracks.

Instead, before the transition to bye, a change is made to the
camera position to focus on an area of significant divergence
from the mean distribution. Specifically, the camera moves
to an areajust outside the kitchen door and next to the stairs
that lead to the entrance of the house.

When the wordscape transitions to bye, the viewer sees sig-
nificant growth in this region and the formation of a small
mound. This particular mound represents a specific type of
event: of people saying "bye" to those in the nearby rooms
before leaving the home.

The camera then moves back to show more of the distribu-
tion.

More than showing the spatial distributions of word types,
this animation also shows what the data represents. The
opening gives the viewer a concrete image of how each line
represents a small event in the child's life. The use of anima-
tion is used to link the single event to the distribution to
show how quantitative patterns of behavior emerge from
many such events. The animation shows the process with vi-
sual excitement, and results in a representation that has more
presence and physicality than a typical surface plot.

This video does not address the linguistic analysis performed
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by researchers, or present the quantitative results. More detailed
information on the spatio-linguistic analyses can be found in
[Roy, B. 2012] and [Miller, 2011], with additional publications
pending.

In the animation shown, track data was provided by George
Shaw, and transcript data by Brandon Roy. Deb Roy and I con-
ceived of the visualization, and I created the software system and
animation to produce it.
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3.12 First Steps: Making Data Personal

The rise of personal data offers opportunities to look at people
in new ways, and thus new ways to tell dramatic stories. For the
recorded participants of the Human Speechome Project, the
collected data is extraordinarily personal. Deb, the father of the
home, has referred to the data as the largest collection of home
videos ever collected. For the child, the data is a unique record of
his own early development.

Tangential to its scientific goals, HSP has brought to surface
implications for how information technologies may eventually
change the way we record events from our lives. Today, to aug-
ment and share our memories, we have access to collections of

photographs and videos taken from the sparse set of events we

think will be notable and merit documentation. As it becomes
increasingly feasible to collect data anywhere at all times, we can

create vastly more comprehensive records of our past that might
capture unanticipated events or events that might not seem no-
table until long after they have passed.

Beyond the collection of data, there are implications for how

such data might be accessed. HouseFly offers a unique contribu-

tion to the HSP participants as a way to review memories that is

far more evocative of reliving those events than photographs or

conventional video, one in which the users can travel through
the scene, be immersed in it, and view details of events from new

perspectives. Indeed, the participants have used HouseFly for this

purpose, using it in their home to browse through personal copies

made of a portion of the corpus.

We wanted to share this aspect of the project at the TED confer-

ence, and to create a video that would connect to the audience on

an emotional level to show the implications for how the research

might one day impact everyday life. So for the last clip of the

presentation, I made a video of the child's first steps, an exciting

milestone to which most parents can relate.
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The video begins with an establishing shot, a familiar
overhead view of the home.

The next action is to bring the viewer into the home and
establish the scene and the atmosphere with greater detail.

The camera swoops into the living room, through the din-
ing room, and into the kitchen.

The camera briefly pauses at the grandmother making
dinner in the kitchen, the only other person in the home,
before continuing out the door on the right and into the
hallway.

The camera enters the hallway just as the father and child
arrive. The child stands up, and the father beckons the
child to walk towards him. "Can you do it?"

The child takes a several slow steps towards the father.
He shows his excitement by whispering, "Wow," which is
repeated by the father.
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After a few steps, the child ends is walk and falls back
down to a crawling position.

The denouement.

The video freezes. The camera pulls out from the home,
continuing until it vanishes. This was the last clip of the
presentation, so this transition also served to close out
discussion of the HSP project.

67



In this video, the ability to navigate through the home is used to
show details of the scene to establish atmosphere and draw the
viewer into the event. Aesthetically, it turns what might other-
wise look like typical surveillance video into something less sterile
and more intimate, increasing the drama of the event. The video
is not the strongest example of a data visualization, as it shows a
fairly literal depiction of a single event. But the means to access
such moments is been provided by the tools developed to orga-
nize and retrieve the recorded data. The video does not just rep-
resent a parent that had a camcorder at a lucky moment, but the
ability to recall any such moment that may have occurred years
ago in any part of the environment. It suggests the possibility of a
future in which there is little need to hold and operate a camera.

This video was the last played at the TED presentation, and was
one of the videos most frequently mentioned by viewers in online
discussions. The content of this discussion suggests that it success-
fully connected with the audience, and many viewers comment-
ing that the clip was touching or "had me almost crying." It also
successfully promoted interest in the personal implications of the
research, and several viewers expressed a wish for a similar record
of their own life. A more detailed account of audience feedback is
provided in Section 5.

3.13 Additional Applications

HouseFly was initially developed for the HSP data, but can be
used to browse other datasets that include suitable, multi-camera
video recordings. Such video is commonly collected by surveil-
lance systems used in many businesses and other facilities, which
offers possibilities for the analysis of human behavior in other
environments. Indeed, several HSP researchers have explored this
topic, and employed the same methodologies as HSP to analyze
how people utilize retail spaces, and how store layout and cus-
tomer-employee interactions impact sales. Through partnerships
with several companies, data was collected from multiple loca-
tions, including several banks and an electronics store. The data
collected includes video, but due to the more public nature of the
environments, does not include audio.
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The construction of the camera and environment models required
by HouseFly, as described in 3.8, requires only a few hours of
effort, and was easily performed to bring data from three differ-
ent retail environments into the system. A notable advantage of
HouseFly is that it greatly simplifies tasks that involve following
unfamiliar individuals through large and crowded environments.
Even more so, tracking groups of people that enter the store to-
gether, or interactions between a customer and employee, where
the participants may at times separate and occupy different areas
of the store. Providing a coherent overview of the space enables
the user to view the entire space without switching between cam-
eras, and to follow complex activities at whatever distance is most
convenient.

Figure 35 shows three hours of track data extracted from bank
video. Here, the green tracks indicate customers and the red
tracks employees. The customer-employee classification is per-
formed automatically using a system developed by George Shaw.
The classifier uses both appearance and motion features of the
persons tracked. Although the employees do not wear uniforms,
they adhere to a standard of dress that can be modeled as a color
histogram and classified with accuracy significantly greater than
chance. The paths of the employees are also distinct from those of
the customers, where employees occupy certain seats more often,
stand in the teller area behind the counter, and enter doors to
back rooms. Using this information, Shaw's system could separate
employees from customers with approximately 90% accuracy.

Browsing this set of tracks quickly reveals which areas of the
stores were used more than others. Many customers used the
ATM, a few used a computer console installed in the lower-left,
and none perused the pamphlets to the left of the entrance shown
in the lower-middle. One experiment being performed by the
bank was the installation of two Microsoft Touch Tables in the
lower right. Within this interface, the user can select the track
data around these tables and retrieve all recordings of people
in that area. In this set of data, customers sat at the tables only
slightly more than the employees, and interacted with the table
interfacejust as frequently as they used the table as a writing sur-
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Figure 32. Bank in North Carolina recorded with 11 cameras.

Figure 33. Bank in Manhattan recorded with 20 cameras.

Figure 34. Electronics store recorded with 8 cameras.
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Figure 35. Three hours of track
data in a bank. Red lines indicate
customer tracks, green indicates
employees.
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face or as a place to set their coffee.

Figure 36. Customer transactions.

Retail stores also generate electronic records of customer trans-
actions. In a bank environment, transactions include deposits,
withdrawals, and other financial events. In the electronics store,
transactions consisted of items purchased by each customer, or
point-of-sales data. Figure 36 shows two anonymized transac-
tions in the bank environment, which are rendered in HouseFly as
progress bars.

Much of the analysis performed involved the combined analysis
of the track data with the transactions. Automatic analysis of
the track data can be used to determine how long each customer
waited in queue, which can then be used to model how waiting
in queue affects transaction rates. One phenomenon discovered
was that when customers conducted transactions over $1000, they
would interact with the teller three times longer before initiating
the transaction. While the process was identical regardless of the
amount of money, the social interaction was substantially differ-
ent.

In recent years, an industry has begun to grow around the use of
video analytics for similar purposes. Several companies now offer
services to count the number of customers entering a store, how
long they remain, and which areas generate the most traffic. In
the past, such studies were performed manually, with observers
in the store recording this information on clipboards. Analysis of
space utilization was performed with spaghetti plots, in which the
analysts would physically lay colored string throughout the envi-
ronment in order to explore traffic patterns. The rapid decline of
recording costs and improvements of computer vision will likely
play a pivotal role in how retailers approach store layout and
design. This line of inquiry was more extensively pursued and
described by my colleagues in [Rony, 2012; Shaw, 2011].

72



4 Social Media

At the time of this writing, the social network site Facebook has

over 900 million active users. In other words, one-seventh of the

world's entire population has logged into Facebook within the

past month [Sengupta, 2012]. Other services like Google+, Twit-

ter and LinkedIn also have memberships in the tens to hundreds

of millions. There has been great interest in the analysis of these

networks. Some of that interest is financially motivated, where

the vast size and personal nature of social networks may hold

lucrative new opportunities for personalized advertisement,
tracking personal interests and identifying consumer trends.

Other motivations include finding ways to use the networks as

effective tools for political organization, disaster response, and

other applications that call for rapid, mass communication. Other

motivations are in the social sciences, where the vast amounts of

data from these networks may reveal much about human social

behavior.

The work presented so far has focused on recreating real places as

simulations as a way to view data. The spatial layout of the envi-

ronments and physical appearance of many objects was naturally

defined by the data itself. Attempting to place the viewer inside

data that is non-spatial or abstract, like that collected from a social

network, presents several challenges: defining a coherent 3D

space to hold the data, visually communicating what abstract data

represents when it has no naturally recognizable form, and giving

non-physical data a sense of presence.

What is the point of making an abstract dataset look physical?

Several possibilities will be explored in this section, but I will

provide one general argument here. Providing a physical repre-

sentation to abstract data is the same as using a physical metaphor

to explain an abstract concept. It provides the viewer with a con-
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crete image of something that might otherwise be communicated
only symbolically, and can thus be a powerful tool for helping
to conceptualize what the data represents, facilitate reasoning
through physical common sense, and to make the data familiar,
relatable, and engaging.

4.1 Connecting Social Media to Mass Media

This section describes work I performed in collaboration with
Bluefin Labs. Bluefin is a media analytics company founded by
Deb Roy, my academic advisor, and Michael Fleischman, a for-
mer member of my research group.

Bluefin aims to analyze the relationships between mass media and
social media. One of the primary objectives has been to measure
audience response to television programming. Methods of audi-
ence measurement often involve soliciting viewers to participate
in focus groups, to keep diaries of their viewing habits, or to use
electronic devices that automatically record and send this data to
the analysts. Bluefin's approach is instead to measure the unsolicited
response of the audience by collecting and analyzing the public
comments individuals post online to blogs and social network
sites.

This analysis involves the construction of two very large data
structures: a mass media graph, and a social media graph. For the mass
media graph, dozens of television channels are continuously
recorded and processed. Numerous types of data are extracted
from the television content, but relevant to this discussion is the
identification of every show (e.g. Seinfeld) and commercial (e.g.
"Coca-Cola Polar Bears, Winter 2011"). Each show and commer-
cial constitutes a node in the mass media graph, and the edges of
the graph connect the shows to all commercials that played within
it.

For the social media graph, public comments are collected from
Twitter and Facebook. Each identified author becomes one node
in the graph, and the edges of the graph represent lines of com-
munication and connect authors that send or receive messages to
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one another.

These two graphs are constructed from different sources, and the
challenge remains in finding the connections between the two.
Television is a popular conversation topic and generates millions
of comments on social media sites every day. Each time an author
writes about a piece of televised content, he constructs a referen-
tial link between himself and the content. These links provide a
connective web between the social and mass media graphs such
that the authors are not only connected to those they commu-
nicate with, but also to some of the things they communicate
about.

For humans, such links are easy to find. We are adept at derefer-
encing natural language and linking speech to objects. But finding
these links at scale is a large endeavor that requires parsing billions
of comments and linking them to millions of audio-video events,
requiring computer systems that can both parse natural language
and identify television content. The payoff is that the resulting
synthesis of the two graphs can reveal a wealth of unsolicited

feedback about TV programming, the effectiveness of advertise-
ment campaigns, the television viewing habits of individuals, and

the dynamics of shared conversation topics across social groups.

I worked with Bluefin to create a visualization as a way to effi-

ciently explain the approach of this analysis and to illustrate this
relationship between social and mass media. This visualization
was intended for a general audience, and was presented at the
TED conference amongst other venues. Mass media and social

media are both abstract and nebulous networks of information,
and one of the goals was to provide an image of the two networks
that was concrete and easy to conceptualize. A second, editorial-

minded goal was to make the visualization evocative of the scale

and complexity of the data.

Figure 37 shows an early iteration of a data browsing interface

that uses a standard network diagram representation of dots and

lines. This image shows a small subset of the data pertaining to a

single television show, Supernatural, and its audience. The show
is represented by the red dot in the center. All the authors that
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Figure 37. Graph of people commenting on
the television show Supernatural on Twitter.

Figure 38. Detail of the graph, highlighting
one author and connected followers.

Figure 39. Pieter Bruegel. The Tower of Babel.

c. 1563.

have written about the show are drawn as white dots, and
all the authors that have not written about the show but
follow someone who does are drawn in gray. In total, there
are about 51,000 nodes and 81,000 edges to this graph. The
nodes have been organized using the implementation of the
sfpd algorithm provided by GraphViz [Ellson, 2003].

The representation of a graph as a dots and lines on a plane is
a conventional approach. It can be highly functional and use-
ful for analysis, but is not always the most exciting. Here, the
records of over 50,000 individuals have been reduced to a
mathematical abstraction that says little about the scale or na-
ture of the data itself. There are enough dots to saturate the
image, yet it does not provide a visual impression of being
anything massive or impressive, or of being anything at all.

Like most network diagrams, this graphic provides no sense
of scale. The issue is not in communicating a quantitative
scale, of which there is none, but to provide the qualitative
feeling of scale that one gets when entering a cathedral, or
even looking at a vividly rendered naturalistic image of a
large space, as in Figure 39. This is an issue of presence. Cre-
ating a representation that looks and feels like an actual place
must give the viewer a sense of absolute scale and communi-
cate how the viewer relates to the environment physically.

Painters have long known techniques to make paintings look
large, but it is an interesting exercise to revisit those tech-
niques to identify the minimum number of details that must
be added to make abstract data appear large. Our perception
of size and depth is well studied in terms of the perception
of different depth cues and the interpretation of those cues
to build a mental model of a spatial environment. The cat-
egorization of depth cues is not consistent across literature,
but the table on the following page provides descriptions of
12 established cues, collected from a survey, [Cutting, 1997],
and several additional sources.

This document will not discuss all of these in detail, but the
table is provided to define terms as I present an example of
using these cues to establish a sense of space.
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Cues for Depth and Size Perception

Source

Occlusion or Interposition

Relative Size

Relative Density or
Texture Gradient

Familiar Size

Motion Perspective

Elevation

Aerial Perspective

Defocus Blur

Object Dynamics

Stereopsis

Convergence

Accommodation

Description Information Provided
(Physically possible, although not
necessary perceived by humans!)

Relative Sources

Closer objects block more distant objects from sight,

indicating the order of depth.

The difference in apparent size between similar objects

indicates ratio of distance from viewer.

The scaling of textures or object groupings according to

distance.

Absolute Sources

If the absolute size of an object is known, its apparent

size indicates absolute distance.

Motion perspective includes motion parallax and radial

outfow. Motion parallax is the apparent speed of an

object in motion relative to the viewer or another

object. Radial outflow is the areal scaling of an object is

its distance to the viewer changes [Gomer, 20091.

If the viewer is positioned over a ground plane, the base

of objects resting on that plane indicates distance, and

closer objects will have a lower position in the visual

field.

Viewing objects through mediums that are not

completely transparent, including air, causes distant

objects to appear desaturated.

For optical lens systems, the amount by which an

object is blurred indicates its distance from the focal

plane. Further, depth of field is shallower for near focus
[Mather, 19961.

Knowledge of dynamical systems can provide depth

information from the apparent speed, acceleration, or

other motion of objects. For example, the apparent

acceleration of an object in free fall can indicate absolute

distance [Hecht, 19961. These cues are not yet well

defined and less researched than the others.

Not produced by 2D displays

The displacement between apparent positions of an
object as seen by the left and right eye.

Fixating both eyes on a near object causes them to point

inward, where the angle provides depth information.

The ocularmotor flexing of the eye's lens to bring an
object into focus provides a sense of depth.

Ordinal

Ratio

Ratio

Absolute if size is known.

Absolute if velocity is known.
Otherwise, a ratio.

Absolute if the eye height is
known. Otherwise, a ratio.

Absolute if opacity of medium
is known.

Absolute if lens characteristics
and aperture are known.

Absolute if dynamical model is
known.

Absolute, but requires
stereoscopic display.

Absolute, but requires
stereoscopic display.

Absolute, but requires
holographic display.

Informationfrom [Cutting, 1997], except where cited otherwise.
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Beginning again with a set of dots, each represents
a single author, and have been arranged and colored

randomly. The only depth cue is occlusion. The scale

of the image might be anything, from microns to

light-years.

I first tried to replace the dots with icons of people,
objects of familiar size. The viewer might now guess

a rough scale (my office mate estimated it to be the
size of a soccer field), although the representation is
still quite flat.

The icons could be made more realistic or changed
to photos, but even real physical objects do not
evoke a strong sense of scale when removed from
other depth cues. Experiments on this subject have
involved showing objects like playing cards, to
participants under restricted viewing conditions that

removed other depth cues and asking the participants
to judge the distance and size of those objects. The

results revealed that when shown a normal-sized card

five meters away, participants were more likely to
report seeing an unusually small card at around two
meters away [Predebon, 1992; Gogol, 1987]. In the
absence of other information, our visual perception
will readily disregard our knowledge of object size.

A further problem of using a 2D layout is that re-

gardless of the representation chosen for the authors,
attempting to show more than a few thousand will
result in an indiscernible texture.
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Positioning the icons within a volume appear more
spatial, but provides only a relative depth through
contrast in size and texture and occlusions.

Navigating within this 3D scene provides motion
perspective information, but without a clear sense of
the viewer's own velocity or size, the absolute scale
remains unresolved.

Aerial perspective, or fog, might indicate absolute
depth if the density is known, but even so, we are
poor at using it to judge depth. In most cases, includ-
ing the image on the left, it primarily provides an
ordinal measure of depth. In this image, however, it
does help in improving the visual contrast between
and far and near objects and reinforcing the sense of
volumetric space.

In this image, the volumetric layout has been aban-
doned and the icons have been return to a plane, but
now viewed from a lower angle. The result is an im-
age that provides a much more vivid sense of a large
space containing a vast number of people.

The planar configuration accomplishes two things.
First, it establishes a linear perspective. Linear
perspective is not, in itself, a source of depth infor-
mation, but a system of interpretation. It combines
multiple sources of information and resolves the
constraints and ambiguities between them to pro-
duce a spatial model of a scene. In particular, linear
perspective largely relies on the heuristic of inter-
preting elements that are apparently collinear in the
retinotopic image as also being collinear in physical
space. Here, increasing the colinearity of the icons
greatly reduces the perceived ambiguity of the scale
and depth of each.

Second, the icons now create an implicit ground
surface, which provides an organizing structure
that helps to define the space. With the lower cam-
era angle, the ground surface establishes a horizon
line and elevation cues, and also creates a strong
texture gradient that extends from foreground to
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background. This information further reinforces the
linear perspective.

This is a complex way of saying that to create a sense
of absolute space, it helps to have a ground surface.
The different techniques of providing depth infor-
mation are important, but any cue is likely to be
ambiguous without an organizing structure.

The use of a ground surface is not limited to large
spaces, and might be instrumental in defining a space
of any scale. At left is an image of the same icons,
but grouped more closely together, without aerial
perspective, and viewed from a higher vantage point.
The image does not look tiny, but substantially less
expansive than the previous image.

Defocus blurring can emulate the depth-of-field
created by optical lens systems, including the hu-
man eye. Shallow DOFs emulate the focus on near
objects, and when added to an aerial photograph or
other large scene using a tilt-shift camera or digital
manipulation, can sometimes produce a striking
miniaturization effect. Here, without the richer scale
cues provided by naturalistic imagery, the effect is
still present, but less pronounced.

For interactive visualizations, defocus blurring is best
avoided as it predetermines what the viewer may
focus on. In passive mediums, like photography and
cinema, we are more accepting of having our focus
guided, and even appreciate the bokeh of a photo-
graph or the way a narrowly-focused movie scene
lifts the actors out of the background. In interactive
mediums, the user is more likely to want to con-
trol what he sees and to explore different parts of a
scene, where the inability to adjust his focus may be
an annoyance. This is demonstrated by video games,
where the emulation of DOF has recently become an
easily achievable effect and is now a feature of many
popular engines [Hillaire, 2008]. While it is still
too early to judge its impact, initial opinion appears
predominately negative.
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4.2 Social Network Visualization

After achieving the desired effect of scale, the

system was then used to produce the following
visualization.

The visualization opens with a shot of the au-
thors, arranged as discussed.

Lines are added that connect authors that commu-
nicate to each other, revealing an intricate social
graph.

The camera pulls back to reveal more of the net-
work.

The motion of the camera includes significant
lead-in and lead-out acceleration to emulate
physical inertia. This helps significantly to main-
tain a sense of a physical space and navigation.

Nodes representing television shows and com-
mercials are then added to the scene, organized
on a new plane below the authors. Each node
is shown as video panel, which provides a large
amount of visual activity and excitement to the
scene.
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The camera moves closer to the mass media nodes
to set up the next beat.

Edges are added that connect commercials to the
television shows in which they aired, revealing
the mass media graph.

The camera pulls out, showing the two media
graphs.

The two graphs are shown as separate, but par-
allel, planes, preparing the audience for a third
dimension.

The two graphs are then connected. Each line
connects an author to a show or commercial that
the author has written about.

This image represents one of the main points of
the visualization: to provide a conceptual bridge
between mass media and social media that invites
new inferences.
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All of the lines are removed. Now that the data-
set has been explained at a distance, the next few
beats present examples of types of patterns found
in the connected graphs.

The first pattern begins with a single author that
has written about a show, illustrated by a bright
line that extends from the show to the author.

Lines then extend from the one author to the
other authors that received those comments.

More lines extend between authors, showing a
small network of people that communicate with
one another.
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These authors also write about the same show,
and form a co-viewing clique that communicates
about a shared interest.

The lines are removed, and the visualization
moves to the second pattern. Here, many lines
shoot out from a single author creating a firework
effect, showing an amateur critic that comments
on many shows and is read by many people.

In one version, we attempted to make the anima-
tion of the lines less sudden, slowing it down and
using multiple build ins. However, test audiences
responded well to the more dramatic explosion of
lines, and the effect was retained.

The third pattern looks at a specific television
show. The camera moves forward and dives
through the crowd.

The camera stops on a video showing a recent
State of the Union address, and holds for a few
seconds. This is an event that generates a huge
number of comments.
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As the camera returns to the side, lines shoot from

the State of the Union to thousands of authors.

And then all the authors that have received com-
ments about the State of Union are highlighted.

The visualization closes by showing some of the
most salient phrases used in this discussion. Al-
though the video does not delve any deeper into

the content analysis, this shot is meant to raise the
topic for further discussion.

This visualization shows two very different data-
sets, explains what each dataset represents, how
they are connected, and a few of the inferences
that might be drawn from those connections. The
visualization is far from naturalistic, but provides
sufficient cues to establish a strong sense of scale
and space, resulting in a visualization that is more
engaging and evocative than the earlier 2D ver-
sion shown in Figure 37. It also provides a more
cinematic approach to animation, which is used to
connect different viewpoints of the scene, from
distant shots that show the large portions of the
graphs, to very close shots that show only a single
node.
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4.3 News Television

For many news events, public reaction is an essential part of the
story, and news television networks are increasingly turning to
social media as a way to gauge this reaction. The relationship
between news and social media is still being defined, and studios
continue to develop effective practices for using social media for
journalistic purposes. This section discusses the development of a
visualization for news television intended to report on public re-
action within social media, and the design considerations involved
when creating visualizations for a medium like television.

In late 2011, one of the largest media events in America was
coverage of the GOP presidential primaries, wherein seven of the
candidates running for the Republican Party nomination par-
ticipated in a series of televised debates. As coverage of an elec-
tion process, public reaction to the debates was a primary focus,
and ABC News wanted to air a segment analyzing social media
response to a debate being held on December 10th. Producers
from ABC had seen the social network visualization created for
TED, discussed in Section 4.2, and thought that it might adapt
well to television. And so in collaboration with Bluefin Labs and
Isabel Meirelles, I extended the visualization and produced a

two-minute segment to be played the morning after the debate on
This Week With Christiane Amanpour. The data involved would be
just a single piece of televised content, the recording of the debate

itself, and all the Twitter comments it generated.

Most data visualization literature focuses on design for print, pro-

jector, or computer display, and draws from the established design

practices of those fields. Little is mentioned of visualization
design for television, and few visualizations are shown on televi-

sion beyond basic charts that report political polls, stock prices, or

one-dimensional product comparisons. There are several reasons

why television is not an ideal medium for data visualization, but

also compelling possibilities for using television to reach large

audiences and strengthen the use of empirical analysis in popular

discourse.

One of the primary limitations of television is the picture qual-
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ity. Most television sets have a low native resolution, vary greatly
in size and aspect ratio, and are usually viewed from a distance.
Furthermore, they are better optimized to display naturalistic im-
ages, like film and photographs, and poorly optimized to display-
ing high-contrast edges, as with text, and fine lines. Designing
an effective graphics for television involves reducing text where
possible, giving a large amount of space to every element that the
viewer must see clearly, and avoiding complicated layouts that
divide the space of the screen. This is antithetical to visualization
design for print, where it is possible to present intricate informa-
tion within a single view, and to allow the viewer to look over it
from up close.

A second limitation is that television does not allow the viewer
to examine things at his own pace, or control the flow of the
presentation. For many programs, viewers are not expected to
even look at the television much at all. The segment I created
was targeted to play on a Sunday morning just after the debate, a
weekend when many viewers might actually sit down to watch
the morning news. The proposal of creating a segment for a
weekday was considered impractical, because the audience was
expected to be preparing for work and might only glance at the
television occasionally, largely undermining the purpose of airing
a visualization.

These issues are not unique to television. Image quality and
resolution are significant issues whenever showing graphics on a
distant screen, as when presenting with a projector. The issues of
pacing and passive communication are present whenever commu-
nicating to many people at once. Edward Tufte, one of the stan-
dard bearers of information design, has also described this as prob-
lematic, and has argued that providing a paper handouts prior to
presentations can give the audience "...one mode of information
that allows them to control the order and pace of learning" [Tufte,
2007]. But handouts are not always practical.

When trying to visually communicate complex ideas in these
circumstances, it may be necessary to accept the limitations of
what the medium can show within a single view, and compensate
by taking advantage of what can be shown in sequence at lower
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resolution. The use of 3D animation provides several ways to do

this. Camera movements can be used to briskly bring the viewer

from one view to the next. Animation can communicate causal
and process information that would otherwise call for a textual
explanation. The third reason is that animation provides addi-

tional visual information through motion perspective that can

significantly help perception when pushing against the limits of a

low resolution display. Objects that appear as a small smudge in a

static image are sometimes easy to identify in motion.

4.4 Visualization of the GOP Debate

In the visualization that follows, video and social media data was

provided by Bluefin Labs and Twitter. Topic analysis of the Twit-

ter data was performed by Mathew Miller. Editorial focus, cap-

tion writing, and transcript authoring was performed by Russell

Stevens and Tom Thai. Deb Roy and Isabel Mierelles provided

design input. I was the primary designer and producer of the

visualization itself. The debate ended at 10pm on December 10,
2011. The complete video was sent to the ABC News team, who

trimmed the video down, revised the transcript, and approximat-

ed 12 hours after the debate ended, aired the segment.
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Establish subject

The opening shot establishes the subject, the GOP
Debate, shown as video footage provided by ABC
News.

Introduce a single point of data

The next beat introduces a single comment made
about the debate, using the same author icons as
the social graph visualization.

Introduce rest of data

The camera pulls back as the rest of the comments
are added to the screen. 236,000 comments were
identified, however, only 70,000 are shown in the
scene so that the icons would not become overly
small. The analysis to be shown is accurate for the
entire dataset.

Summarize setting

The camera holds in this position for a moment,
creating an image of tens of thousands of people
watching the debate and offering their comments
on it. This provides a literal, visual explanation of
what the data represents.



Introduce candidates

The giant screen builds out, and icons of each of
the candidates in the debate builds in.

Transition to next view

The authors begin moving, creating a moment

of intense visual activity. Instead of just cutting

to the next view, the transition is animated to

show that this new view uses the same data and

to maintain continuity.

Show the volume of comments about each can-

didate

The comments organize themselves into a bar

chart showing the amount of discussion about

each candidate. Mitt Romney generated the

most comments and Rick Perry the least.

Transition to next view
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Show volume of comments over time

The comments reorganize themselves into an area
plot that shows the volume of comments received
throughout the debate. The peaks of this graph
indicate notable events that drove discussion, with
the largest peaks generated between a half-hour
and an hour into the debate.

Introduce event

The screen re-emerges, showing the single event
of the debate that generated the greatest number
of comments. After Perry criticizes statements
made by Romney in a book, Romney extends
his arm and offers to bet Perry $10,000 that those
statements were never made.

Show response to event

A number of comments are highlighted, showing
the social media response to this event.
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Show detail

A specific comment about the event is shown.
takey aokuh line to This comment was representative of the overall

opinion, where most regarded Romney's bet as

a gaffe that made him appear as a rich, frivolous
with his money, and disconnected from the work-

ing class.

Show propagation of comment

The comment shown was retweeted, or posted
again by other authors, many times throughout

Sthe event. The text of the comment streams
out from the original comment to each of the
retweeted versions, showing its pattern of propa-
gation.

A primary contribution of this visualization is the way it connects

different views of the data using a persistent representation. The

comments made about the debate are introduced once, explained
through a metaphor of a large crowd of people watching the
debate. The comments are then rearranged to bring the viewer

through different aspects of the public response, including overall

volume, response to individual candidates, the response over time,
and response to a single event within the debate.

While the visualization shows the volume of comments about a

single event, it does not go into further detail about who respond-

ed or what was actually written. The software that was developed
provides several views that may have addressed this and offered

a more detailed analysis, but were ultimately left out of the final

video due to editorial decisions.

Figure 40 is taken from an earlier draft of the visualization, using

data from a previous debate. In this debate, Perry accused Rom-

ney of hiring illegal immigrants to work on his property. The

people icons at the bottom of the image represent the comments
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about this specific event. The icons are colored red, white, or
green to indicate if the coment expressed a negative, neutral,
or positive sentiment. In this instance, the image shows that
the general sentiment towards this event was slightly more
negative than positive. Another unused view organized the
comments by demographic groups, showing the breakdown
of comments according to author gender, age, and interests.

Figure 40. Sentiment breakdown of comments
about Perry's accusation that Romney hired
illegal immigrants to work on his property.
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5 Critique

With the exception of the GOP Debate visualization discussed
in Section 4.4, all of the videos described in this document were
used in a 20-minute presentation at TED 2011 delivered by Deb
Roy. This video was posted online shortly after the presentation,
and at the time of this writing, has been viewed over 1.5 mil-
lion times on the TED website. The video is also been viewed on
YouTube, and has been used as in-flight entertainment by Virgin
Airlines. Subsequently, the presentation has generated thousands
of comments online from unsolicited viewers. While Roy was
responsible for constructing and delivering the presentation, I was
the primary creator of most of the graphics, including all of the
video content, and much of the feedback referred explicitly to the
visualizations.

This kind of feedback is often more useful in qualitative assess-
ment than quantitative, but to provide a rough sense of audience
response, a portion of the comments were coded for sentiment
and tallied. 299 comments were collected from the TED web-
site, not including one comment in a foreign language and two
comments made involved researchers. Of these, 62 comments
expressed an opinion specifically about the visualizations and
graphics. I believe this is a relatively high fraction considering
that many comments did not containing any specific details on
the talk, and that the talk was not about data visualization and
mentioned the design of the visualizations used only briefly. Each

comment was hand coded as expressive a positive, negative, or
neutral sentiment. Of these comments, 5 were negative, 57 were
positive, and 0 were neutral.

Informativeness is one of the key attributes for which most
visualizations strive. As Edward Tufte describes, "Excellence in
statistical graphics consists of complex ideas communicated with
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clarity, precision, and efficiency" [Tufte, 1986]. Several com-
menters thought that the visualizations failed in this regard:

"Actually, I found many of the visualizations more dis-
tracting than clarifying, especially the social media ones.
Lots of little TV screens in a grid, flying through space...
uh..."

Conversely:

"The data visualizations in this presentation are very
impressive. They manage to provide overwhelmingly
complex ideas and data in an easily interpretable format."

"I'm a software engineer. I was staggered by the level,
detail and complexity of the information and analyses
that he has displayed without batting an eyelid. Why are
'fancy graphs' important? Because it helps people like you
understand complex information :)"

Several viewers were specifically impressed by the sense of im-
mersion created by the visualizations:

"While designed to monitor his son's development, his
computer system ended up giving him an unparalleled
glimpse into his own life and that of his family. He can
literally search through footage using spoken words and
behaviors. Using multiple angles and simulation software,
he can virtually live through his past experiences in the
first person!"

"Never come across something so powerful that almost
gets us back in time... fantastic stuff."

Comments on the aesthetics and production of the visualizations
were almost uniformly positive. However, a few of the viewers
thought that the visualizations were designed to hype research
that would otherwise be poor or uninteresting:

"Data visualizations are most useful when they help peo-
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ple understand complex information. When they are used

to make pretty standard observations look like 'expensive'

research, they become dangerous."

The comments collected did not provide critiques much more

detailed than that shown. However, in general, opinion was very

positive and often enthusiastic. Viewers found the visualizations

informative, immersive, and technically and visually impressive.

Many comments did not discuss the visualization work explicitly,
but imply that they may have achieved their goals in making the

research interesting and relatable:

"As I said on Twitter last week, Deb Roy's talk at this

year's TED was among my favorites ever. Its mixture of

science, data, visualization, and personal story touched all

my hot buttons, and touched me personally."

"There's no doubt that Mr. Roy's approach to researching

the development of his son's language is, at first glance, a

bit creepy. Document every waking hour of your family's

life using an array of ceiling-mounted cameras all over

your house? Yep, creepy. ... But as Mr. Roy and MIT's

work is demonstrating, the ability to record everything,
archive it, analyze it and share it with others can have the

most wonderful, human and un-creepiest results."

The most frequent criticism on the presentation, appearing in 40

comments on the TED website, was that the results were disap-

pointing or too obvious:

"This was so disappointing. A year of recording audio

and video, significant time analyzing, tons of money and

technology - and all we learn is that 'water' is mostly spo-

ken in the kitchen and a few other obvious tidbits?"

I cannot take responsibility for much of the presentation, but will

offer a response. In a short 20-minute presentation, it can be dif-

ficult to describe the results of several years of linguistics analysis

in great detail. The visualizations that were created were focused
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more on explaining the data, the methodologies developed, and
the potential impact of the research, which we felt would have
broad relevance to a general audience.

HSP has produced a number of scientific findings that we were
not able to fully disseminated at TED. For example, the three
caregivers of the household - the father, wife, and nanny - con-

tinuously adjusted the complexity of their utterances in the
presence of the child in a way that seems designed to help him
learn language to a surprisingly and previously unobserved
degree. Given the difficulty of tracking exactly which words
the child does and does not know at a given moment and taking
that knowledge into account each time they spoke to the child, a
reasonable interpretation is that caregivers subconsciously tracked
the child's receptive vocabulary and predictively tuned their lan-
guage to serve as linguistic scaffolding.

A second point is that even very obvious things require empiri-
cal observation to model scientifically. To use the example of the
critic, it is quite expected that water would be spoken most fre-
quently in the kitchen. However, measuring the precise frequency
empirically, and being able to compare that to the frequency of
other word types, is surprisingly difficult. What the wordscape
visualization (Section 3.11) shows is that we have developed a
way to collect such data, and have verified that this data conforms
to what we might expect. This is, in itself, an important step in
building scientific models of linguistic development.

In working with this data further, my colleagues have discovered
a surprisingly strong influence of non-linguistic social and physi-
cal context - what is happening, where, and when - in predicting
the order in which the child learned his first words. By combin-
ing linguistic factors, such as the frequency or prosody of words
heard by the child, with non-linguistic context, they have been
able to create the most precise predictive model of word learning
ever created for a given child [Miller, 2011].
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6 Conclusions

This dissertation has presented a body of work that has utilized
the first person and 3D graphics to address challenges of viewing,
navigating, analyzing, and communicating information embed-

ded in big, heterogeneous data sets. The datasets used in this work

included a variety of data collected for real world applications.

And while the design of each visualization was tailored to the
specifics of each dataset, each relied on the same generalizable ap-

proach of placing the viewer inside the data. Many aspects of the

first person viewpoint and its implications have not been deeply

explored previously, and this document makes several contribu-
tions to this area:

An approach to thefirst person viewpoint that encompasses the no-

tion of presence and of creating a sense of physical engagement

through visual perception. Where previous work has focused
more on navigation schemas and immersive display technologies,
this dissertation has extended the idea that many aspects of the

first person can also play a significant role in visualizations pre-

sented on 2D displays, or that may not even be interactive. Not all

the works in this thesis produced as strong a sense of first person

engagement as video games, virtual reality rigs, or actual physical

environments, but our sense of immersion does not need to be

overwhelming to have an impact.

Methods of visualizing complex datasets as simulated environments to

facilitate intuitive, spatio-temporal perception and navigation.

The HouseFly system incorporates many previously established

techniques, but as a whole, no simulation of a real environment

has been created previously with a similar level of spatial detail

and temporal depth. HouseFly presents multiple sources of data

in a way that immediately reveals the environment as a whole and

enables users to identify and follow activities seamlessly across
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multiple sensors, levels of detail, and time. It also demonstrates a
unique approach to retrieval that combines spatial, temporal, text,
and annotation based queries.

An approach to data storytelling that leverages the use of 3D graph-
ics to compose and sequence shots in a more cinematic manner,
including similar techniques for establishing context and subject
matter, focusing viewer attention, and explaining relationships
between different views of the data. The use of cinematic tech-
niques in data visualization has been discussed previously, e.g.
[Gershon, 2001], but clear examples of the approach are still
uncommon, with substantial room left for exploration.

An approach to creating more engaging visualizations by placing the
viewer inside the data. This dissertation has examined how the
first person can provide a vivid sense of being in a physical scene,
provide novel perspectives and visual excitement, and, as dis-
cussed in the visualization of a child's first steps in Section 3.12,
even help to establish a more personal connection with the data.

The evaluation of the thesis work has focused on the naviga-
tion of complex datasets, clarity of communication, and ability
to present data in a way that provides meaning to the data and
promotes engagement. These are significant goals in both research
and communication. However, with regards to applying first per-
son interfaces for analysis tasks, this work is still in an exploratory
stage. The research of both HSP and Bluefin Labs involves the
application of novel methodologies and technologies at very large
and challenging scales. Much of the effort behind this dissertation
has been focused on developing methods of collecting data and
attempting to uncover the new forms of analysis this data makes
possible. As applications for these datasets become more clear,
future work will be required to identify specific analysis tasks
that call for optimization, and to evaluate the performance of the
techniques discussed quantitatively.

Further effort will also be required to reduce the labor and
expertise required to create such graphics, and to develop bet-
ter software tools. Creating 3D interfaces for data visualization
currently requires significant ability in software development, as
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well as specialized knowledge of graphics hardware, algorithms,
and software libraries. For designers without such experience,
the approach to visualization discussed here may be difficult or
prohibitively expensive to replicate. Many of the visualization
frameworks available are limited to producing standard plots and
2D graphics. The Processing language, developed by Ben Fry and
Casey Reas, is a notable exception, and provides a simplified in-
terface to OpenGL and other libraries that enable novice develop-
ers to more easily produce 3D graphics, typography, and multi-
media content [Fry, 2004]. However, Processing is still closer to
a language than a visualization engine, a simplified dialect of Java
with additional libraries, and does not include many of the higher
level tools required for highly functional 3D interfaces. A short
list of desirable tools might include a system for asset and scene-
graph management, scripting and animation, unified geometry
collision and picking, a flexible renderer that facilitates procedur-
ally generated graphics, and a GUI library that integrates both 2D
and 3D interface components. Still, any software framework that
integrates these tools would only mitigate the effort of software
development. The result would resemble a 3D video game en-
gine, which still require significant expertise and learning to use
effectively. Making 3D visualization truly accessible to non-pro-
grammers will require more radical developments in tool design.

I do not claim that the approach to visualization argued for in this
document is appropriate for all applications, or even most. Creat-
ing a 3D interface to visualize sales figures at a financial review
meeting would be unlikely to illuminate the data any better than
a simple line plot, and an extravagant waste of effort. But as we
encounter new and increasingly massive datasets, there is greater
need to understand these datasets as complex systems and to view
them from many perspectives. This dissertation has shown how
placing the viewer inside the data may achieve this goal, and in
the process, to produce graphics that show something new, in-
sightful, and beautiful.
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